radeon/llvm: Enable vec4 loads on R600
[mesa.git] / src / gallium / drivers / radeon / R600Instructions.td
1 //===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // R600 Tablegen instruction definitions
11 //
12 //===----------------------------------------------------------------------===//
13
14 include "R600Intrinsics.td"
15
16 class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17 InstrItinClass itin>
18 : AMDGPUInst <outs, ins, asm, pattern> {
19
20 field bits<32> Inst;
21 bit Trig = 0;
22 bit Op3 = 0;
23 bit isVector = 0;
24
25 let Inst = inst;
26 let Namespace = "AMDIL";
27 let OutOperandList = outs;
28 let InOperandList = ins;
29 let AsmString = asm;
30 let Pattern = pattern;
31 let Itinerary = itin;
32
33 let TSFlags{4} = Trig;
34 let TSFlags{5} = Op3;
35
36 // Vector instructions are instructions that must fill all slots in an
37 // instruction group
38 let TSFlags{6} = isVector;
39 }
40
41 class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
42 AMDGPUInst <outs, ins, asm, pattern>
43 {
44 field bits<64> Inst;
45
46 let Namespace = "AMDIL";
47 }
48
49 def MEMxi : Operand<iPTR> {
50 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
51 }
52
53 def MEMrr : Operand<iPTR> {
54 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
55 }
56
57 def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
58 def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
59 def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
60
61 class R600_ALU {
62
63 bits<7> DST_GPR = 0;
64 bits<9> SRC0_SEL = 0;
65 bits<1> SRC0_NEG = 0;
66 bits<9> SRC1_SEL = 0;
67 bits<1> SRC1_NEG = 0;
68 bits<1> CLAMP = 0;
69
70 }
71
72
73 class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
74 InstrItinClass itin = AnyALU> :
75 InstR600 <inst,
76 (outs R600_Reg32:$dst),
77 (ins R600_Reg32:$src, variable_ops),
78 !strconcat(opName, " $dst, $src"),
79 pattern,
80 itin
81 >;
82
83 class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
84 InstrItinClass itin = AnyALU> :
85 InstR600 <inst,
86 (outs R600_Reg32:$dst),
87 (ins R600_Reg32:$src0, R600_Reg32:$src1, variable_ops),
88 !strconcat(opName, " $dst, $src0, $src1"),
89 pattern,
90 itin
91 >;
92
93 class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
94 InstrItinClass itin = AnyALU> :
95 InstR600 <inst,
96 (outs R600_Reg32:$dst),
97 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2, variable_ops),
98 !strconcat(opName, " $dst, $src0, $src1, $src2"),
99 pattern,
100 itin>{
101
102 let Op3 = 1;
103 }
104
105 class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
106 InstrItinClass itin = VecALU> :
107 InstR600 <inst,
108 (outs R600_Reg32:$dst),
109 ins,
110 asm,
111 pattern,
112 itin
113
114 >;
115
116 class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
117 InstrItinClass itin = AnyALU> :
118 InstR600 <inst,
119 (outs R600_Reg128:$dst),
120 (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
121 !strconcat(opName, "$dst, $src0, $src1, $src2"),
122 pattern,
123 itin
124 >;
125
126 def TEX_SHADOW : PatLeaf<
127 (imm),
128 [{uint32_t TType = (uint32_t)N->getZExtValue();
129 return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
130 }]
131 >;
132
133 def COND_EQ : PatLeaf <
134 (cond),
135 [{switch(N->get()){{default: return false;
136 case ISD::SETOEQ: case ISD::SETUEQ:
137 case ISD::SETEQ: return true;}}}]
138 >;
139
140 def COND_NE : PatLeaf <
141 (cond),
142 [{switch(N->get()){{default: return false;
143 case ISD::SETONE: case ISD::SETUNE:
144 case ISD::SETNE: return true;}}}]
145 >;
146 def COND_GT : PatLeaf <
147 (cond),
148 [{switch(N->get()){{default: return false;
149 case ISD::SETOGT: case ISD::SETUGT:
150 case ISD::SETGT: return true;}}}]
151 >;
152
153 def COND_GE : PatLeaf <
154 (cond),
155 [{switch(N->get()){{default: return false;
156 case ISD::SETOGE: case ISD::SETUGE:
157 case ISD::SETGE: return true;}}}]
158 >;
159
160 def COND_LT : PatLeaf <
161 (cond),
162 [{switch(N->get()){{default: return false;
163 case ISD::SETOLT: case ISD::SETULT:
164 case ISD::SETLT: return true;}}}]
165 >;
166
167 def COND_LE : PatLeaf <
168 (cond),
169 [{switch(N->get()){{default: return false;
170 case ISD::SETOLE: case ISD::SETULE:
171 case ISD::SETLE: return true;}}}]
172 >;
173
174 class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
175 dag ins, string asm, list<dag> pattern> :
176 InstR600ISA <outs, ins, asm, pattern>
177 {
178 bits<7> RW_GPR;
179 bits<7> INDEX_GPR;
180
181 bits<2> RIM;
182 bits<2> TYPE;
183 bits<1> RW_REL;
184 bits<2> ELEM_SIZE;
185
186 bits<12> ARRAY_SIZE;
187 bits<4> COMP_MASK;
188 bits<4> BURST_COUNT;
189 bits<1> VPM;
190 bits<1> EOP;
191 bits<1> MARK;
192 bits<1> BARRIER;
193
194 /* CF_ALLOC_EXPORT_WORD0_RAT */
195 let Inst{3-0} = rat_id;
196 let Inst{9-4} = rat_inst;
197 let Inst{10} = 0; /* Reserved */
198 let Inst{12-11} = RIM;
199 let Inst{14-13} = TYPE;
200 let Inst{21-15} = RW_GPR;
201 let Inst{22} = RW_REL;
202 let Inst{29-23} = INDEX_GPR;
203 let Inst{31-30} = ELEM_SIZE;
204
205 /* CF_ALLOC_EXPORT_WORD1_BUF */
206 let Inst{43-32} = ARRAY_SIZE;
207 let Inst{47-44} = COMP_MASK;
208 let Inst{51-48} = BURST_COUNT;
209 let Inst{52} = VPM;
210 let Inst{53} = EOP;
211 let Inst{61-54} = cf_inst;
212 let Inst{62} = MARK;
213 let Inst{63} = BARRIER;
214 }
215
216 /*
217 def store_global : PatFrag<(ops node:$value, node:$ptr),
218 (store node:$value, node:$ptr),
219 [{
220 const Value *Src;
221 const PointerType *Type;
222 if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
223 PT = dyn_cast<PointerType>(Src->getType()))) {
224 return PT->getAddressSpace() == 1;
225 }
226 return false;
227 }]>;
228
229 */
230
231 def load_param : PatFrag<(ops node:$ptr),
232 (load node:$ptr),
233 [{
234 const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
235 if (Src) {
236 PointerType * PT = dyn_cast<PointerType>(Src->getType());
237 return PT && PT->getAddressSpace() == AMDILAS::PARAM_I_ADDRESS;
238 }
239 return false;
240 }]>;
241
242 //class EG_CF <bits<32> inst, string asm> :
243 // InstR600 <inst, (outs), (ins), asm, []>;
244
245 /* XXX: We will use this when we emit the real ISA.
246 bits<24> ADDR = 0;
247 bits<3> JTS = 0;
248
249 bits<3> PC = 0;
250 bits<5> CF_CONS = 0;
251 bits<2> COND = 0;
252 bits<6> COUNT = 0;
253 bits<1> VPM = 0;
254 bits<1> EOP = 0;
255 bits<8> CF_INST = 0;
256 bits<1> WQM = 0;
257 bits<1> B = 0;
258
259 let Inst{23-0} = ADDR;
260 let Inst{26-24} = JTS;
261 let Inst{34-32} = PC;
262 let Inst{39-35} = CF_CONST;
263 let Inst{41-40} = COND;
264 let Inst{47-42} = COUNT;
265 let Inst{52} = VPM;
266 let Inst{53} = EOP;
267 let Inst{61-54} = CF_INST;
268 let Inst{62} = WQM;
269 let Inst{63} = B;
270 //}
271 */
272 def isR600 : Predicate<"Subtarget.device()"
273 "->getGeneration() == AMDILDeviceInfo::HD4XXX">;
274 def isR700 : Predicate<"Subtarget.device()"
275 "->getGeneration() == AMDILDeviceInfo::HD4XXX &&"
276 "Subtarget.device()->getDeviceFlag()"
277 ">= OCL_DEVICE_RV710">;
278 def isEG : Predicate<"Subtarget.device()"
279 "->getGeneration() >= AMDILDeviceInfo::HD5XXX && "
280 "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
281 def isCayman : Predicate<"Subtarget.device()"
282 "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
283 def isEGorCayman : Predicate<"Subtarget.device()"
284 "->getGeneration() == AMDILDeviceInfo::HD5XXX"
285 "|| Subtarget.device()->getGeneration() =="
286 "AMDILDeviceInfo::HD6XXX">;
287
288 def isR600toCayman : Predicate<
289 "Subtarget.device()->getGeneration() <= AMDILDeviceInfo::HD6XXX">;
290
291
292 let Predicates = [isR600toCayman] in {
293
294 /* ------------------------------------------- */
295 /* Common Instructions R600, R700, Evergreen, Cayman */
296 /* ------------------------------------------- */
297 def ADD : R600_2OP <
298 0x0, "ADD",
299 [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
300 >;
301
302 // Non-IEEE MUL: 0 * anything = 0
303 def MUL : R600_2OP <
304 0x1, "MUL NON-IEEE",
305 [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
306 >;
307
308 def MUL_IEEE : R600_2OP <
309 0x2, "MUL_IEEE",
310 [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
311 >;
312
313 def MAX : R600_2OP <
314 0x3, "MAX",
315 [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
316 >;
317
318 def MIN : R600_2OP <
319 0x4, "MIN",
320 [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
321 >;
322
323 /* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
324 * so some of the instruction names don't match the asm string.
325 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
326 */
327
328 def SETE : R600_2OP <
329 0x08, "SETE",
330 [(set R600_Reg32:$dst,
331 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
332 COND_EQ))]
333 >;
334
335 def SGT : R600_2OP <
336 0x09, "SETGT",
337 [(set R600_Reg32:$dst,
338 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
339 COND_GT))]
340 >;
341
342 def SGE : R600_2OP <
343 0xA, "SETGE",
344 [(set R600_Reg32:$dst,
345 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
346 COND_GE))]
347 >;
348
349 def SNE : R600_2OP <
350 0xB, "SETNE",
351 [(set R600_Reg32:$dst,
352 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
353 COND_NE))]
354 >;
355
356 def FRACT : R600_1OP <
357 0x10, "FRACT",
358 [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
359 >;
360
361 def TRUNC : R600_1OP <
362 0x11, "TRUNC",
363 [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
364 >;
365
366 def CEIL : R600_1OP <
367 0x12, "CEIL",
368 [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
369 >;
370
371 def RNDNE : R600_1OP <
372 0x13, "RNDNE",
373 [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
374 >;
375
376 def FLOOR : R600_1OP <
377 0x14, "FLOOR",
378 [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
379 >;
380
381 def MOV : R600_1OP <0x19, "MOV", []>;
382
383 class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
384 (outs R600_Reg32:$dst),
385 (ins R600_Reg32:$alu_literal, immType:$imm),
386 "MOV_IMM $dst, $imm",
387 [], AnyALU
388 >;
389
390 def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
391 def : Pat <
392 (imm:$val),
393 (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
394 >;
395
396 def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
397 def : Pat <
398 (fpimm:$val),
399 (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
400 >;
401
402 def KILLGT : R600_2OP <
403 0x2D, "KILLGT",
404 []
405 >;
406
407 def AND_INT : R600_2OP <
408 0x30, "AND_INT",
409 [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
410 >;
411
412 def OR_INT : R600_2OP <
413 0x31, "OR_INT",
414 [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
415 >;
416
417 def XOR_INT : R600_2OP <
418 0x32, "XOR_INT",
419 [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
420 >;
421
422 def NOT_INT : R600_1OP <
423 0x33, "NOT_INT",
424 [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
425 >;
426
427 def ADD_INT : R600_2OP <
428 0x34, "ADD_INT",
429 [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
430 >;
431
432 def SUB_INT : R600_2OP <
433 0x35, "SUB_INT",
434 [(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
435 >;
436
437 def MAX_INT : R600_2OP <
438 0x36, "MAX_INT",
439 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
440
441 def MIN_INT : R600_2OP <
442 0x37, "MIN_INT",
443 [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
444
445 def MAX_UINT : R600_2OP <
446 0x38, "MAX_UINT",
447 [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
448 >;
449
450 def MIN_UINT : R600_2OP <
451 0x39, "MIN_UINT",
452 [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
453 >;
454
455 def SETE_INT : R600_2OP <
456 0x3A, "SETE_INT",
457 [(set (i32 R600_Reg32:$dst),
458 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
459 >;
460
461 def SETGT_INT : R600_2OP <
462 0x3B, "SGT_INT",
463 [(set (i32 R600_Reg32:$dst),
464 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
465 >;
466
467 def SETGE_INT : R600_2OP <
468 0x3C, "SETGE_INT",
469 [(set (i32 R600_Reg32:$dst),
470 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
471 >;
472
473 def SETNE_INT : R600_2OP <
474 0x3D, "SETNE_INT",
475 [(set (i32 R600_Reg32:$dst),
476 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
477 >;
478
479 def SETGT_UINT : R600_2OP <
480 0x3E, "SETGT_UINT",
481 [(set (i32 R600_Reg32:$dst),
482 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
483 >;
484
485 def SETGE_UINT : R600_2OP <
486 0x3F, "SETGE_UINT",
487 [(set (i32 R600_Reg32:$dst),
488 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
489 >;
490
491 def CNDE_INT : R600_3OP <
492 0x1C, "CNDE_INT",
493 [(set (i32 R600_Reg32:$dst),
494 (IL_cmov_logical R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
495 >;
496
497 /* Texture instructions */
498
499
500 def TEX_LD : R600_TEX <
501 0x03, "TEX_LD",
502 [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
503 > {
504 let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
505 let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
506 }
507
508 def TEX_GET_TEXTURE_RESINFO : R600_TEX <
509 0x04, "TEX_GET_TEXTURE_RESINFO",
510 [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
511 >;
512
513 def TEX_GET_GRADIENTS_H : R600_TEX <
514 0x07, "TEX_GET_GRADIENTS_H",
515 [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
516 >;
517
518 def TEX_GET_GRADIENTS_V : R600_TEX <
519 0x08, "TEX_GET_GRADIENTS_V",
520 [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
521 >;
522
523 def TEX_SET_GRADIENTS_H : R600_TEX <
524 0x0B, "TEX_SET_GRADIENTS_H",
525 []
526 >;
527
528 def TEX_SET_GRADIENTS_V : R600_TEX <
529 0x0C, "TEX_SET_GRADIENTS_V",
530 []
531 >;
532
533 def TEX_SAMPLE : R600_TEX <
534 0x10, "TEX_SAMPLE",
535 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
536 >;
537
538 def TEX_SAMPLE_C : R600_TEX <
539 0x18, "TEX_SAMPLE_C",
540 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
541 >;
542
543 def TEX_SAMPLE_L : R600_TEX <
544 0x11, "TEX_SAMPLE_L",
545 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
546 >;
547
548 def TEX_SAMPLE_C_L : R600_TEX <
549 0x19, "TEX_SAMPLE_C_L",
550 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
551 >;
552
553 def TEX_SAMPLE_LB : R600_TEX <
554 0x12, "TEX_SAMPLE_LB",
555 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
556 >;
557
558 def TEX_SAMPLE_C_LB : R600_TEX <
559 0x1A, "TEX_SAMPLE_C_LB",
560 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
561 >;
562
563 def TEX_SAMPLE_G : R600_TEX <
564 0x14, "TEX_SAMPLE_G",
565 []
566 >;
567
568 def TEX_SAMPLE_C_G : R600_TEX <
569 0x1C, "TEX_SAMPLE_C_G",
570 []
571 >;
572
573 /* Helper classes for common instructions */
574
575 class MUL_LIT_Common <bits<32> inst> : R600_3OP <
576 inst, "MUL_LIT",
577 []
578 >;
579
580 class MULADD_Common <bits<32> inst> : R600_3OP <
581 inst, "MULADD",
582 [(set (f32 R600_Reg32:$dst),
583 (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
584 >;
585
586 class CNDE_Common <bits<32> inst> : R600_3OP <
587 inst, "CNDE",
588 [(set (f32 R600_Reg32:$dst),
589 (IL_cmov_logical R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
590 >;
591
592 class CNDGT_Common <bits<32> inst> : R600_3OP <
593 inst, "CNDGT",
594 []
595 >;
596
597 class CNDGE_Common <bits<32> inst> : R600_3OP <
598 inst, "CNDGE",
599 [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
600 >;
601
602 class DOT4_Common <bits<32> inst> : R600_REDUCTION <
603 inst,
604 (ins R600_Reg128:$src0, R600_Reg128:$src1),
605 "DOT4 $dst $src0, $src1",
606 [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
607 >;
608
609 class CUBE_Common <bits<32> inst> : InstR600 <
610 inst,
611 (outs R600_Reg128:$dst),
612 (ins R600_Reg128:$src),
613 "CUBE $dst $src",
614 [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
615 VecALU
616 >;
617
618 class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
619 inst, "EXP_IEEE",
620 [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
621 >;
622
623 class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
624 inst, "FLT_TO_INT",
625 [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
626 >;
627
628 class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
629 inst, "INT_TO_FLT",
630 [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
631 >;
632
633 class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
634 inst, "FLT_TO_UINT",
635 [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
636 >;
637
638 class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
639 inst, "UINT_TO_FLT",
640 [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
641 >;
642
643 class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
644 inst, "LOG_CLAMPED",
645 []
646 >;
647
648 class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
649 inst, "LOG_IEEE",
650 [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
651 >;
652
653 class LSHL_Common <bits<32> inst> : R600_2OP <
654 inst, "LSHL $dst, $src0, $src1",
655 [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
656 >;
657
658 class LSHR_Common <bits<32> inst> : R600_2OP <
659 inst, "LSHR $dst, $src0, $src1",
660 [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
661 >;
662
663 class ASHR_Common <bits<32> inst> : R600_2OP <
664 inst, "ASHR $dst, $src0, $src1",
665 [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
666 >;
667
668 class MULHI_INT_Common <bits<32> inst> : R600_2OP <
669 inst, "MULHI_INT $dst, $src0, $src1",
670 [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
671 >;
672
673 class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
674 inst, "MULHI $dst, $src0, $src1",
675 [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
676 >;
677
678 class MULLO_INT_Common <bits<32> inst> : R600_2OP <
679 inst, "MULLO_INT $dst, $src0, $src1",
680 [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
681 >;
682
683 class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
684 inst, "MULLO_UINT $dst, $src0, $src1",
685 []
686 >;
687
688 class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
689 inst, "RECIP_CLAMPED",
690 []
691 >;
692
693 class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
694 inst, "RECIP_IEEE",
695 [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
696 >;
697
698 class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
699 inst, "RECIP_INT $dst, $src",
700 [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
701 >;
702
703 class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
704 inst, "RECIPSQRT_CLAMPED",
705 [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
706 >;
707
708 class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
709 inst, "RECIPSQRT_IEEE",
710 []
711 >;
712
713 class SIN_Common <bits<32> inst> : R600_1OP <
714 inst, "SIN", []>{
715 let Trig = 1;
716 }
717
718 class COS_Common <bits<32> inst> : R600_1OP <
719 inst, "COS", []> {
720 let Trig = 1;
721 }
722
723 /* Helper patterns for complex intrinsics */
724 /* -------------------------------------- */
725
726 class DIV_Common <InstR600 recip_ieee> : Pat<
727 (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
728 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
729 >;
730
731 class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
732 (int_AMDGPU_ssg R600_Reg32:$src),
733 (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
734 >;
735
736 class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
737 (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
738 (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
739 >;
740
741 /* ---------------------- */
742 /* R600 / R700 Only Instructions */
743 /* ---------------------- */
744
745 let Predicates = [isR600] in {
746
747 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
748 def MULADD_r600 : MULADD_Common<0x10>;
749 def CNDE_r600 : CNDE_Common<0x18>;
750 def CNDGT_r600 : CNDGT_Common<0x19>;
751 def CNDGE_r600 : CNDGE_Common<0x1A>;
752 def DOT4_r600 : DOT4_Common<0x50>;
753 def CUBE_r600 : CUBE_Common<0x52>;
754 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
755 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
756 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
757 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
758 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
759 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
760 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
761 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
762 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
763 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
764 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
765 def SIN_r600 : SIN_Common<0x6E>;
766 def COS_r600 : COS_Common<0x6F>;
767 def ASHR_r600 : ASHR_Common<0x70>;
768 def LSHR_r600 : LSHR_Common<0x71>;
769 def LSHL_r600 : LSHL_Common<0x72>;
770 def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
771 def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
772 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
773 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
774 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
775
776 def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
777 def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
778 def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
779 def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
780
781 }
782
783 // Helper pattern for normalizing inputs to triginomic instructions for R700+
784 // cards.
785 class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
786 (intr R600_Reg32:$src),
787 (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
788 >;
789
790 //===----------------------------------------------------------------------===//
791 // R700 Only instructions
792 //===----------------------------------------------------------------------===//
793
794 let Predicates = [isR700] in {
795 def SIN_r700 : SIN_Common<0x6E>;
796 def COS_r700 : COS_Common<0x6F>;
797
798 // R700 normalizes inputs to SIN/COS the same as EG
799 def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
800 def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
801 }
802
803 //===----------------------------------------------------------------------===//
804 // Evergreen Only instructions
805 //===----------------------------------------------------------------------===//
806
807 let Predicates = [isEG] in {
808
809 def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
810
811 def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
812 def MULHI_INT_eg : MULHI_INT_Common<0x90>;
813 def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
814 def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
815 def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
816
817 } // End Predicates = [isEG]
818
819 /* ------------------------------- */
820 /* Evergreen / Cayman Instructions */
821 /* ------------------------------- */
822
823 let Predicates = [isEGorCayman] in {
824
825 // BFE_UINT - bit_extract, an optimization for mask and shift
826 // Src0 = Input
827 // Src1 = Offset
828 // Src2 = Width
829 //
830 // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
831 //
832 // Example Usage:
833 // (Offset, Width)
834 //
835 // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
836 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
837 // (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
838 // (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
839 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
840 [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
841 R600_Reg32:$src1,
842 R600_Reg32:$src2))],
843 VecALU
844 >;
845
846 def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
847 [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
848 R600_Reg32:$src2))],
849 VecALU
850 >;
851
852 def MULADD_eg : MULADD_Common<0x14>;
853 def ASHR_eg : ASHR_Common<0x15>;
854 def LSHR_eg : LSHR_Common<0x16>;
855 def LSHL_eg : LSHL_Common<0x17>;
856 def CNDE_eg : CNDE_Common<0x19>;
857 def CNDGT_eg : CNDGT_Common<0x1A>;
858 def CNDGE_eg : CNDGE_Common<0x1B>;
859 def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
860 def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
861 def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
862 def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
863 def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
864 def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
865 def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
866 def SIN_eg : SIN_Common<0x8D>;
867 def COS_eg : COS_Common<0x8E>;
868 def DOT4_eg : DOT4_Common<0xBE>;
869 def CUBE_eg : CUBE_Common<0xC0>;
870
871 def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
872 def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
873 def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
874 def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
875
876 def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
877 def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
878
879 def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
880 let Pattern = [];
881 }
882
883 def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
884
885 def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
886 let Pattern = [];
887 }
888
889 def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
890
891 def : Pat<(fp_to_sint R600_Reg32:$src),
892 (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
893
894 def : Pat<(fp_to_uint R600_Reg32:$src),
895 (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
896
897 //===----------------------------------------------------------------------===//
898 // Memory read/write instructions
899 //===----------------------------------------------------------------------===//
900
901 let usesCustomInserter = 1 in {
902
903 def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
904 (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
905 "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
906 [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
907 {
908 let RIM = 0;
909 /* XXX: Have a separate instruction for non-indexed writes. */
910 let TYPE = 1;
911 let RW_REL = 0;
912 let ELEM_SIZE = 0;
913
914 let ARRAY_SIZE = 0;
915 let COMP_MASK = 1;
916 let BURST_COUNT = 0;
917 let VPM = 0;
918 let EOP = 0;
919 let MARK = 0;
920 let BARRIER = 1;
921 }
922
923 } // End usesCustomInserter = 1
924
925 // Floating point global_store
926 def : Pat <
927 (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
928 (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
929 >;
930
931 class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
932 : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
933
934 // Operands
935 bits<7> DST_GPR;
936 bits<7> SRC_GPR;
937
938 // Static fields
939 bits<5> VC_INST = 0;
940 bits<2> FETCH_TYPE = 2;
941 bits<1> FETCH_WHOLE_QUAD = 0;
942 bits<8> BUFFER_ID = buffer_id;
943 bits<1> SRC_REL = 0;
944 // XXX: We can infer this field based on the SRC_GPR. This would allow us
945 // to store vertex addresses in any channel, not just X.
946 bits<2> SRC_SEL_X = 0;
947 bits<6> MEGA_FETCH_COUNT;
948 bits<1> DST_REL = 0;
949 bits<3> DST_SEL_X;
950 bits<3> DST_SEL_Y;
951 bits<3> DST_SEL_Z;
952 bits<3> DST_SEL_W;
953 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
954 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
955 // however, based on my testing if USE_CONST_FIELDS is set, then all
956 // these fields need to be set to 0.
957 bits<1> USE_CONST_FIELDS = 0;
958 bits<6> DATA_FORMAT;
959 bits<2> NUM_FORMAT_ALL = 1;
960 bits<1> FORMAT_COMP_ALL = 0;
961 bits<1> SRF_MODE_ALL = 0;
962
963 // LLVM can only encode 64-bit instructions, so these fields are manually
964 // encoded in R600CodeEmitter
965 //
966 // bits<16> OFFSET;
967 // bits<2> ENDIAN_SWAP = 0;
968 // bits<1> CONST_BUF_NO_STRIDE = 0;
969 // bits<1> MEGA_FETCH = 0;
970 // bits<1> ALT_CONST = 0;
971 // bits<2> BUFFER_INDEX_MODE = 0;
972
973 // VTX_WORD0
974 let Inst{4-0} = VC_INST;
975 let Inst{6-5} = FETCH_TYPE;
976 let Inst{7} = FETCH_WHOLE_QUAD;
977 let Inst{15-8} = BUFFER_ID;
978 let Inst{22-16} = SRC_GPR;
979 let Inst{23} = SRC_REL;
980 let Inst{25-24} = SRC_SEL_X;
981 let Inst{31-26} = MEGA_FETCH_COUNT;
982
983 // VTX_WORD1_GPR
984 let Inst{38-32} = DST_GPR;
985 let Inst{39} = DST_REL;
986 let Inst{40} = 0; // Reserved
987 let Inst{43-41} = DST_SEL_X;
988 let Inst{46-44} = DST_SEL_Y;
989 let Inst{49-47} = DST_SEL_Z;
990 let Inst{52-50} = DST_SEL_W;
991 let Inst{53} = USE_CONST_FIELDS;
992 let Inst{59-54} = DATA_FORMAT;
993 let Inst{61-60} = NUM_FORMAT_ALL;
994 let Inst{62} = FORMAT_COMP_ALL;
995 let Inst{63} = SRF_MODE_ALL;
996
997 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
998 // is done in R600CodeEmitter
999 //
1000 // Inst{79-64} = OFFSET;
1001 // Inst{81-80} = ENDIAN_SWAP;
1002 // Inst{82} = CONST_BUF_NO_STRIDE;
1003 // Inst{83} = MEGA_FETCH;
1004 // Inst{84} = ALT_CONST;
1005 // Inst{86-85} = BUFFER_INDEX_MODE;
1006 // Inst{95-86} = 0; Reserved
1007
1008 // VTX_WORD3 (Padding)
1009 //
1010 // Inst{127-96} = 0;
1011 }
1012
1013 class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1014 : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1015
1016 let MEGA_FETCH_COUNT = 4;
1017 let DST_SEL_X = 0;
1018 let DST_SEL_Y = 7; // Masked
1019 let DST_SEL_Z = 7; // Masked
1020 let DST_SEL_W = 7; // Masked
1021 let DATA_FORMAT = 0xD; // COLOR_32
1022 }
1023
1024 def VTX_READ_PARAM_eg : VTX_READ_32_eg <0,
1025 [(set (i32 R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1026 >;
1027
1028 def VTX_READ_GLOBAL_eg : VTX_READ_32_eg <1,
1029 [(set (i32 R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1030 >;
1031
1032 class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1033 : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1034
1035 let MEGA_FETCH_COUNT = 16;
1036 let DST_SEL_X = 0;
1037 let DST_SEL_Y = 1;
1038 let DST_SEL_Z = 2;
1039 let DST_SEL_W = 3;
1040 let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
1041 }
1042
1043 def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1044 [(set (v4i32 R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1045 >;
1046
1047 }
1048
1049 let Predicates = [isCayman] in {
1050
1051 let isVector = 1 in {
1052
1053 def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1054
1055 def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1056 def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1057 def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1058 def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1059
1060 } // End isVector = 1
1061
1062 // RECIP_UINT emulation for Cayman
1063 def : Pat <
1064 (AMDGPUurecip R600_Reg32:$src0),
1065 (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1066 (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1067 >;
1068
1069 } // End isCayman
1070
1071 /* Other Instructions */
1072
1073 let isCodeGenOnly = 1 in {
1074 /*
1075 def SWIZZLE : AMDGPUShaderInst <
1076 (outs GPRV4F32:$dst),
1077 (ins GPRV4F32:$src0, i32imm:$src1),
1078 "SWIZZLE $dst, $src0, $src1",
1079 [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1080 >;
1081 */
1082
1083 def LAST : AMDGPUShaderInst <
1084 (outs),
1085 (ins),
1086 "LAST",
1087 []
1088 >;
1089
1090 def GET_CHAN : AMDGPUShaderInst <
1091 (outs R600_Reg32:$dst),
1092 (ins R600_Reg128:$src0, i32imm:$src1),
1093 "GET_CHAN $dst, $src0, $src1",
1094 []
1095 >;
1096
1097 def MULLIT : AMDGPUShaderInst <
1098 (outs R600_Reg128:$dst),
1099 (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1100 "MULLIT $dst, $src0, $src1",
1101 [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1102 >;
1103
1104 let usesCustomInserter = 1, isPseudo = 1 in {
1105
1106 class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1107 (outs R600_TReg32:$dst),
1108 (ins),
1109 asm,
1110 [(set R600_TReg32:$dst, (intr))]
1111 >;
1112
1113 def TGID_X : R600PreloadInst <"TGID_X", int_r600_read_tgid_x>;
1114 def TGID_Y : R600PreloadInst <"TGID_Y", int_r600_read_tgid_y>;
1115 def TGID_Z : R600PreloadInst <"TGID_Z", int_r600_read_tgid_z>;
1116
1117 def TIDIG_X : R600PreloadInst <"TIDIG_X", int_r600_read_tidig_x>;
1118 def TIDIG_Y : R600PreloadInst <"TIDIG_Y", int_r600_read_tidig_y>;
1119 def TIDIG_Z : R600PreloadInst <"TIDIG_Z", int_r600_read_tidig_z>;
1120
1121 def NGROUPS_X : R600PreloadInst <"NGROUPS_X", int_r600_read_ngroups_x>;
1122 def NGROUPS_Y : R600PreloadInst <"NGROUPS_Y", int_r600_read_ngroups_y>;
1123 def NGROUPS_Z : R600PreloadInst <"NGROUPS_Z", int_r600_read_ngroups_z>;
1124
1125 def GLOBAL_SIZE_X : R600PreloadInst <"GLOBAL_SIZE_X",
1126 int_r600_read_global_size_x>;
1127 def GLOBAL_SIZE_Y : R600PreloadInst <"GLOBAL_SIZE_Y",
1128 int_r600_read_global_size_y>;
1129 def GLOBAL_SIZE_Z : R600PreloadInst <"GLOBAL_SIZE_Z",
1130 int_r600_read_global_size_z>;
1131
1132 def LOCAL_SIZE_X : R600PreloadInst <"LOCAL_SIZE_X",
1133 int_r600_read_local_size_x>;
1134 def LOCAL_SIZE_Y : R600PreloadInst <"LOCAL_SIZE_Y",
1135 int_r600_read_local_size_y>;
1136 def LOCAL_SIZE_Z : R600PreloadInst <"LOCAL_SIZE_Z",
1137 int_r600_read_local_size_z>;
1138
1139 def R600_LOAD_CONST : AMDGPUShaderInst <
1140 (outs R600_Reg32:$dst),
1141 (ins i32imm:$src0),
1142 "R600_LOAD_CONST $dst, $src0",
1143 [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1144 >;
1145
1146 def LOAD_INPUT : AMDGPUShaderInst <
1147 (outs R600_Reg32:$dst),
1148 (ins i32imm:$src),
1149 "LOAD_INPUT $dst, $src",
1150 [(set R600_Reg32:$dst, (int_R600_load_input imm:$src))]
1151 >;
1152
1153 def RESERVE_REG : AMDGPUShaderInst <
1154 (outs),
1155 (ins i32imm:$src),
1156 "RESERVE_REG $src",
1157 [(int_AMDGPU_reserve_reg imm:$src)]
1158 >;
1159
1160 def STORE_OUTPUT: AMDGPUShaderInst <
1161 (outs),
1162 (ins R600_Reg32:$src0, i32imm:$src1),
1163 "STORE_OUTPUT $src0, $src1",
1164 [(int_AMDGPU_store_output R600_Reg32:$src0, imm:$src1)]
1165 >;
1166
1167 def TXD: AMDGPUShaderInst <
1168 (outs R600_Reg128:$dst),
1169 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1170 "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1171 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1172 >;
1173
1174 def TXD_SHADOW: AMDGPUShaderInst <
1175 (outs R600_Reg128:$dst),
1176 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1177 "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1178 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1179 >;
1180
1181 } // End usesCustomInserter = 1, isPseudo = 1
1182
1183 } // End isCodeGenOnly = 1
1184
1185 def CLAMP_R600 : CLAMP <R600_Reg32>;
1186 def FABS_R600 : FABS<R600_Reg32>;
1187 def FNEG_R600 : FNEG<R600_Reg32>;
1188
1189 let usesCustomInserter = 1 in {
1190
1191 def MASK_WRITE : AMDGPUShaderInst <
1192 (outs),
1193 (ins R600_Reg32:$src),
1194 "MASK_WRITE $src",
1195 []
1196 >;
1197
1198 } // End usesCustomInserter = 1
1199
1200 //===----------------------------------------------------------------------===//
1201 // ISel Patterns
1202 //===----------------------------------------------------------------------===//
1203
1204 // KIL Patterns
1205 def KILP : Pat <
1206 (int_AMDGPU_kilp),
1207 (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1208 >;
1209
1210 def KIL : Pat <
1211 (int_AMDGPU_kill R600_Reg32:$src0),
1212 (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1213 >;
1214
1215 // SGT Reverse args
1216 def : Pat <
1217 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1218 (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1219 >;
1220
1221 // SGE Reverse args
1222 def : Pat <
1223 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1224 (SGE R600_Reg32:$src1, R600_Reg32:$src0)
1225 >;
1226
1227 // SETGT_INT reverse args
1228 def : Pat <
1229 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1230 (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1231 >;
1232
1233 // SETGE_INT reverse args
1234 def : Pat <
1235 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1236 (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1237 >;
1238
1239 // SETGT_UINT reverse args
1240 def : Pat <
1241 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1242 (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1243 >;
1244
1245 // SETGE_UINT reverse args
1246 def : Pat <
1247 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1248 (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1249 >;
1250
1251 // The next two patterns are special cases for handling 'true if ordered' and
1252 // 'true if unordered' conditionals. The assumption here is that the behavior of
1253 // SETE and SNE conforms to the Direct3D 10 rules for floating point values
1254 // described here:
1255 // http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1256 // We assume that SETE returns false when one of the operands is NAN and
1257 // SNE returns true when on of the operands is NAN
1258
1259 //SETE - 'true if ordered'
1260 def : Pat <
1261 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1262 (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1263 >;
1264
1265 //SNE - 'true if unordered'
1266 def : Pat <
1267 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1268 (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1269 >;
1270
1271 def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1272 def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1273 def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1274 def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1275
1276 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1277 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1278 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1279 def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1280
1281 def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1282 def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1283 def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1284 def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1285
1286 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1287 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1288 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1289 def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1290
1291 def : Vector_Build <v4f32, R600_Reg32>;
1292 def : Vector_Build <v4i32, R600_Reg32>;
1293
1294 // bitconvert patterns
1295
1296 def : BitConvert <i32, f32, R600_Reg32>;
1297 def : BitConvert <f32, i32, R600_Reg32>;
1298 def : BitConvert <v4f32, v4i32, R600_Reg128>;
1299
1300 } // End isR600toCayman Predicate