radeon/vcn: update quantiser matrices only when requested
[mesa.git] / src / gallium / drivers / radeon / r600_buffer_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "radeonsi/si_pipe.h"
25 #include "r600_cs.h"
26 #include "util/u_memory.h"
27 #include "util/u_upload_mgr.h"
28 #include <inttypes.h>
29 #include <stdio.h>
30
31 bool si_rings_is_buffer_referenced(struct r600_common_context *ctx,
32 struct pb_buffer *buf,
33 enum radeon_bo_usage usage)
34 {
35 if (ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, buf, usage)) {
36 return true;
37 }
38 if (radeon_emitted(ctx->dma.cs, 0) &&
39 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, buf, usage)) {
40 return true;
41 }
42 return false;
43 }
44
45 void *si_buffer_map_sync_with_rings(struct r600_common_context *ctx,
46 struct r600_resource *resource,
47 unsigned usage)
48 {
49 enum radeon_bo_usage rusage = RADEON_USAGE_READWRITE;
50 bool busy = false;
51
52 assert(!(resource->flags & RADEON_FLAG_SPARSE));
53
54 if (usage & PIPE_TRANSFER_UNSYNCHRONIZED) {
55 return ctx->ws->buffer_map(resource->buf, NULL, usage);
56 }
57
58 if (!(usage & PIPE_TRANSFER_WRITE)) {
59 /* have to wait for the last write */
60 rusage = RADEON_USAGE_WRITE;
61 }
62
63 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
64 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs,
65 resource->buf, rusage)) {
66 if (usage & PIPE_TRANSFER_DONTBLOCK) {
67 ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
68 return NULL;
69 } else {
70 ctx->gfx.flush(ctx, 0, NULL);
71 busy = true;
72 }
73 }
74 if (radeon_emitted(ctx->dma.cs, 0) &&
75 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs,
76 resource->buf, rusage)) {
77 if (usage & PIPE_TRANSFER_DONTBLOCK) {
78 ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
79 return NULL;
80 } else {
81 ctx->dma.flush(ctx, 0, NULL);
82 busy = true;
83 }
84 }
85
86 if (busy || !ctx->ws->buffer_wait(resource->buf, 0, rusage)) {
87 if (usage & PIPE_TRANSFER_DONTBLOCK) {
88 return NULL;
89 } else {
90 /* We will be wait for the GPU. Wait for any offloaded
91 * CS flush to complete to avoid busy-waiting in the winsys. */
92 ctx->ws->cs_sync_flush(ctx->gfx.cs);
93 if (ctx->dma.cs)
94 ctx->ws->cs_sync_flush(ctx->dma.cs);
95 }
96 }
97
98 /* Setting the CS to NULL will prevent doing checks we have done already. */
99 return ctx->ws->buffer_map(resource->buf, NULL, usage);
100 }
101
102 void si_init_resource_fields(struct si_screen *sscreen,
103 struct r600_resource *res,
104 uint64_t size, unsigned alignment)
105 {
106 struct r600_texture *rtex = (struct r600_texture*)res;
107
108 res->bo_size = size;
109 res->bo_alignment = alignment;
110 res->flags = 0;
111 res->texture_handle_allocated = false;
112 res->image_handle_allocated = false;
113
114 switch (res->b.b.usage) {
115 case PIPE_USAGE_STREAM:
116 res->flags = RADEON_FLAG_GTT_WC;
117 /* fall through */
118 case PIPE_USAGE_STAGING:
119 /* Transfers are likely to occur more often with these
120 * resources. */
121 res->domains = RADEON_DOMAIN_GTT;
122 break;
123 case PIPE_USAGE_DYNAMIC:
124 /* Older kernels didn't always flush the HDP cache before
125 * CS execution
126 */
127 if (sscreen->info.drm_major == 2 &&
128 sscreen->info.drm_minor < 40) {
129 res->domains = RADEON_DOMAIN_GTT;
130 res->flags |= RADEON_FLAG_GTT_WC;
131 break;
132 }
133 /* fall through */
134 case PIPE_USAGE_DEFAULT:
135 case PIPE_USAGE_IMMUTABLE:
136 default:
137 /* Not listing GTT here improves performance in some
138 * apps. */
139 res->domains = RADEON_DOMAIN_VRAM;
140 res->flags |= RADEON_FLAG_GTT_WC;
141 break;
142 }
143
144 if (res->b.b.target == PIPE_BUFFER &&
145 res->b.b.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
146 PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
147 /* Use GTT for all persistent mappings with older
148 * kernels, because they didn't always flush the HDP
149 * cache before CS execution.
150 *
151 * Write-combined CPU mappings are fine, the kernel
152 * ensures all CPU writes finish before the GPU
153 * executes a command stream.
154 */
155 if (sscreen->info.drm_major == 2 &&
156 sscreen->info.drm_minor < 40)
157 res->domains = RADEON_DOMAIN_GTT;
158 }
159
160 /* Tiled textures are unmappable. Always put them in VRAM. */
161 if ((res->b.b.target != PIPE_BUFFER && !rtex->surface.is_linear) ||
162 res->b.b.flags & R600_RESOURCE_FLAG_UNMAPPABLE) {
163 res->domains = RADEON_DOMAIN_VRAM;
164 res->flags |= RADEON_FLAG_NO_CPU_ACCESS |
165 RADEON_FLAG_GTT_WC;
166 }
167
168 /* Displayable and shareable surfaces are not suballocated. */
169 if (res->b.b.bind & (PIPE_BIND_SHARED | PIPE_BIND_SCANOUT))
170 res->flags |= RADEON_FLAG_NO_SUBALLOC; /* shareable */
171 else
172 res->flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
173
174 if (sscreen->debug_flags & DBG(NO_WC))
175 res->flags &= ~RADEON_FLAG_GTT_WC;
176
177 if (res->b.b.flags & R600_RESOURCE_FLAG_READ_ONLY)
178 res->flags |= RADEON_FLAG_READ_ONLY;
179
180 /* Set expected VRAM and GART usage for the buffer. */
181 res->vram_usage = 0;
182 res->gart_usage = 0;
183 res->max_forced_staging_uploads = 0;
184 res->b.max_forced_staging_uploads = 0;
185
186 if (res->domains & RADEON_DOMAIN_VRAM) {
187 res->vram_usage = size;
188
189 res->max_forced_staging_uploads =
190 res->b.max_forced_staging_uploads =
191 sscreen->info.has_dedicated_vram &&
192 size >= sscreen->info.vram_vis_size / 4 ? 1 : 0;
193 } else if (res->domains & RADEON_DOMAIN_GTT) {
194 res->gart_usage = size;
195 }
196 }
197
198 bool si_alloc_resource(struct si_screen *sscreen,
199 struct r600_resource *res)
200 {
201 struct pb_buffer *old_buf, *new_buf;
202
203 /* Allocate a new resource. */
204 new_buf = sscreen->ws->buffer_create(sscreen->ws, res->bo_size,
205 res->bo_alignment,
206 res->domains, res->flags);
207 if (!new_buf) {
208 return false;
209 }
210
211 /* Replace the pointer such that if res->buf wasn't NULL, it won't be
212 * NULL. This should prevent crashes with multiple contexts using
213 * the same buffer where one of the contexts invalidates it while
214 * the others are using it. */
215 old_buf = res->buf;
216 res->buf = new_buf; /* should be atomic */
217
218 if (sscreen->info.has_virtual_memory)
219 res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf);
220 else
221 res->gpu_address = 0;
222
223 pb_reference(&old_buf, NULL);
224
225 util_range_set_empty(&res->valid_buffer_range);
226 res->TC_L2_dirty = false;
227
228 /* Print debug information. */
229 if (sscreen->debug_flags & DBG(VM) && res->b.b.target == PIPE_BUFFER) {
230 fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Buffer %"PRIu64" bytes\n",
231 res->gpu_address, res->gpu_address + res->buf->size,
232 res->buf->size);
233 }
234 return true;
235 }
236
237 static void r600_buffer_destroy(struct pipe_screen *screen,
238 struct pipe_resource *buf)
239 {
240 struct r600_resource *rbuffer = r600_resource(buf);
241
242 threaded_resource_deinit(buf);
243 util_range_destroy(&rbuffer->valid_buffer_range);
244 pb_reference(&rbuffer->buf, NULL);
245 FREE(rbuffer);
246 }
247
248 static bool
249 r600_invalidate_buffer(struct r600_common_context *rctx,
250 struct r600_resource *rbuffer)
251 {
252 /* Shared buffers can't be reallocated. */
253 if (rbuffer->b.is_shared)
254 return false;
255
256 /* Sparse buffers can't be reallocated. */
257 if (rbuffer->flags & RADEON_FLAG_SPARSE)
258 return false;
259
260 /* In AMD_pinned_memory, the user pointer association only gets
261 * broken when the buffer is explicitly re-allocated.
262 */
263 if (rbuffer->b.is_user_ptr)
264 return false;
265
266 /* Check if mapping this buffer would cause waiting for the GPU. */
267 if (si_rings_is_buffer_referenced(rctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
268 !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
269 rctx->invalidate_buffer(&rctx->b, &rbuffer->b.b);
270 } else {
271 util_range_set_empty(&rbuffer->valid_buffer_range);
272 }
273
274 return true;
275 }
276
277 /* Replace the storage of dst with src. */
278 void si_replace_buffer_storage(struct pipe_context *ctx,
279 struct pipe_resource *dst,
280 struct pipe_resource *src)
281 {
282 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
283 struct r600_resource *rdst = r600_resource(dst);
284 struct r600_resource *rsrc = r600_resource(src);
285 uint64_t old_gpu_address = rdst->gpu_address;
286
287 pb_reference(&rdst->buf, rsrc->buf);
288 rdst->gpu_address = rsrc->gpu_address;
289 rdst->b.b.bind = rsrc->b.b.bind;
290 rdst->b.max_forced_staging_uploads = rsrc->b.max_forced_staging_uploads;
291 rdst->max_forced_staging_uploads = rsrc->max_forced_staging_uploads;
292 rdst->flags = rsrc->flags;
293
294 assert(rdst->vram_usage == rsrc->vram_usage);
295 assert(rdst->gart_usage == rsrc->gart_usage);
296 assert(rdst->bo_size == rsrc->bo_size);
297 assert(rdst->bo_alignment == rsrc->bo_alignment);
298 assert(rdst->domains == rsrc->domains);
299
300 rctx->rebind_buffer(ctx, dst, old_gpu_address);
301 }
302
303 static void si_invalidate_resource(struct pipe_context *ctx,
304 struct pipe_resource *resource)
305 {
306 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
307 struct r600_resource *rbuffer = r600_resource(resource);
308
309 /* We currently only do anyting here for buffers */
310 if (resource->target == PIPE_BUFFER)
311 (void)r600_invalidate_buffer(rctx, rbuffer);
312 }
313
314 static void *r600_buffer_get_transfer(struct pipe_context *ctx,
315 struct pipe_resource *resource,
316 unsigned usage,
317 const struct pipe_box *box,
318 struct pipe_transfer **ptransfer,
319 void *data, struct r600_resource *staging,
320 unsigned offset)
321 {
322 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
323 struct r600_transfer *transfer;
324
325 if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC)
326 transfer = slab_alloc(&rctx->pool_transfers_unsync);
327 else
328 transfer = slab_alloc(&rctx->pool_transfers);
329
330 transfer->b.b.resource = NULL;
331 pipe_resource_reference(&transfer->b.b.resource, resource);
332 transfer->b.b.level = 0;
333 transfer->b.b.usage = usage;
334 transfer->b.b.box = *box;
335 transfer->b.b.stride = 0;
336 transfer->b.b.layer_stride = 0;
337 transfer->b.staging = NULL;
338 transfer->offset = offset;
339 transfer->staging = staging;
340 *ptransfer = &transfer->b.b;
341 return data;
342 }
343
344 static void *r600_buffer_transfer_map(struct pipe_context *ctx,
345 struct pipe_resource *resource,
346 unsigned level,
347 unsigned usage,
348 const struct pipe_box *box,
349 struct pipe_transfer **ptransfer)
350 {
351 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
352 struct r600_resource *rbuffer = r600_resource(resource);
353 uint8_t *data;
354
355 assert(box->x + box->width <= resource->width0);
356
357 /* From GL_AMD_pinned_memory issues:
358 *
359 * 4) Is glMapBuffer on a shared buffer guaranteed to return the
360 * same system address which was specified at creation time?
361 *
362 * RESOLVED: NO. The GL implementation might return a different
363 * virtual mapping of that memory, although the same physical
364 * page will be used.
365 *
366 * So don't ever use staging buffers.
367 */
368 if (rbuffer->b.is_user_ptr)
369 usage |= PIPE_TRANSFER_PERSISTENT;
370
371 /* See if the buffer range being mapped has never been initialized,
372 * in which case it can be mapped unsynchronized. */
373 if (!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
374 TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED)) &&
375 usage & PIPE_TRANSFER_WRITE &&
376 !rbuffer->b.is_shared &&
377 !util_ranges_intersect(&rbuffer->valid_buffer_range, box->x, box->x + box->width)) {
378 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
379 }
380
381 /* If discarding the entire range, discard the whole resource instead. */
382 if (usage & PIPE_TRANSFER_DISCARD_RANGE &&
383 box->x == 0 && box->width == resource->width0) {
384 usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE;
385 }
386
387 /* If a buffer in VRAM is too large and the range is discarded, don't
388 * map it directly. This makes sure that the buffer stays in VRAM.
389 */
390 bool force_discard_range = false;
391 if (usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
392 PIPE_TRANSFER_DISCARD_RANGE) &&
393 !(usage & PIPE_TRANSFER_PERSISTENT) &&
394 /* Try not to decrement the counter if it's not positive. Still racy,
395 * but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */
396 rbuffer->max_forced_staging_uploads > 0 &&
397 p_atomic_dec_return(&rbuffer->max_forced_staging_uploads) >= 0) {
398 usage &= ~(PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
399 PIPE_TRANSFER_UNSYNCHRONIZED);
400 usage |= PIPE_TRANSFER_DISCARD_RANGE;
401 force_discard_range = true;
402 }
403
404 if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE &&
405 !(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
406 TC_TRANSFER_MAP_NO_INVALIDATE))) {
407 assert(usage & PIPE_TRANSFER_WRITE);
408
409 if (r600_invalidate_buffer(rctx, rbuffer)) {
410 /* At this point, the buffer is always idle. */
411 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
412 } else {
413 /* Fall back to a temporary buffer. */
414 usage |= PIPE_TRANSFER_DISCARD_RANGE;
415 }
416 }
417
418 if ((usage & PIPE_TRANSFER_DISCARD_RANGE) &&
419 ((!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
420 PIPE_TRANSFER_PERSISTENT))) ||
421 (rbuffer->flags & RADEON_FLAG_SPARSE))) {
422 assert(usage & PIPE_TRANSFER_WRITE);
423
424 /* Check if mapping this buffer would cause waiting for the GPU.
425 */
426 if (rbuffer->flags & RADEON_FLAG_SPARSE ||
427 force_discard_range ||
428 si_rings_is_buffer_referenced(rctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
429 !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
430 /* Do a wait-free write-only transfer using a temporary buffer. */
431 unsigned offset;
432 struct r600_resource *staging = NULL;
433
434 u_upload_alloc(ctx->stream_uploader, 0,
435 box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT),
436 rctx->screen->info.tcc_cache_line_size,
437 &offset, (struct pipe_resource**)&staging,
438 (void**)&data);
439
440 if (staging) {
441 data += box->x % R600_MAP_BUFFER_ALIGNMENT;
442 return r600_buffer_get_transfer(ctx, resource, usage, box,
443 ptransfer, data, staging, offset);
444 } else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
445 return NULL;
446 }
447 } else {
448 /* At this point, the buffer is always idle (we checked it above). */
449 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
450 }
451 }
452 /* Use a staging buffer in cached GTT for reads. */
453 else if (((usage & PIPE_TRANSFER_READ) &&
454 !(usage & PIPE_TRANSFER_PERSISTENT) &&
455 (rbuffer->domains & RADEON_DOMAIN_VRAM ||
456 rbuffer->flags & RADEON_FLAG_GTT_WC)) ||
457 (rbuffer->flags & RADEON_FLAG_SPARSE)) {
458 struct r600_resource *staging;
459
460 assert(!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC));
461 staging = (struct r600_resource*) pipe_buffer_create(
462 ctx->screen, 0, PIPE_USAGE_STAGING,
463 box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT));
464 if (staging) {
465 /* Copy the VRAM buffer to the staging buffer. */
466 rctx->dma_copy(ctx, &staging->b.b, 0,
467 box->x % R600_MAP_BUFFER_ALIGNMENT,
468 0, 0, resource, 0, box);
469
470 data = si_buffer_map_sync_with_rings(rctx, staging,
471 usage & ~PIPE_TRANSFER_UNSYNCHRONIZED);
472 if (!data) {
473 r600_resource_reference(&staging, NULL);
474 return NULL;
475 }
476 data += box->x % R600_MAP_BUFFER_ALIGNMENT;
477
478 return r600_buffer_get_transfer(ctx, resource, usage, box,
479 ptransfer, data, staging, 0);
480 } else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
481 return NULL;
482 }
483 }
484
485 data = si_buffer_map_sync_with_rings(rctx, rbuffer, usage);
486 if (!data) {
487 return NULL;
488 }
489 data += box->x;
490
491 return r600_buffer_get_transfer(ctx, resource, usage, box,
492 ptransfer, data, NULL, 0);
493 }
494
495 static void r600_buffer_do_flush_region(struct pipe_context *ctx,
496 struct pipe_transfer *transfer,
497 const struct pipe_box *box)
498 {
499 struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
500 struct r600_resource *rbuffer = r600_resource(transfer->resource);
501
502 if (rtransfer->staging) {
503 struct pipe_resource *dst, *src;
504 unsigned soffset;
505 struct pipe_box dma_box;
506
507 dst = transfer->resource;
508 src = &rtransfer->staging->b.b;
509 soffset = rtransfer->offset + box->x % R600_MAP_BUFFER_ALIGNMENT;
510
511 u_box_1d(soffset, box->width, &dma_box);
512
513 /* Copy the staging buffer into the original one. */
514 ctx->resource_copy_region(ctx, dst, 0, box->x, 0, 0, src, 0, &dma_box);
515 }
516
517 util_range_add(&rbuffer->valid_buffer_range, box->x,
518 box->x + box->width);
519 }
520
521 static void r600_buffer_flush_region(struct pipe_context *ctx,
522 struct pipe_transfer *transfer,
523 const struct pipe_box *rel_box)
524 {
525 unsigned required_usage = PIPE_TRANSFER_WRITE |
526 PIPE_TRANSFER_FLUSH_EXPLICIT;
527
528 if ((transfer->usage & required_usage) == required_usage) {
529 struct pipe_box box;
530
531 u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box);
532 r600_buffer_do_flush_region(ctx, transfer, &box);
533 }
534 }
535
536 static void r600_buffer_transfer_unmap(struct pipe_context *ctx,
537 struct pipe_transfer *transfer)
538 {
539 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
540 struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
541
542 if (transfer->usage & PIPE_TRANSFER_WRITE &&
543 !(transfer->usage & PIPE_TRANSFER_FLUSH_EXPLICIT))
544 r600_buffer_do_flush_region(ctx, transfer, &transfer->box);
545
546 r600_resource_reference(&rtransfer->staging, NULL);
547 assert(rtransfer->b.staging == NULL); /* for threaded context only */
548 pipe_resource_reference(&transfer->resource, NULL);
549
550 /* Don't use pool_transfers_unsync. We are always in the driver
551 * thread. */
552 slab_free(&rctx->pool_transfers, transfer);
553 }
554
555 static void si_buffer_subdata(struct pipe_context *ctx,
556 struct pipe_resource *buffer,
557 unsigned usage, unsigned offset,
558 unsigned size, const void *data)
559 {
560 struct pipe_transfer *transfer = NULL;
561 struct pipe_box box;
562 uint8_t *map = NULL;
563
564 u_box_1d(offset, size, &box);
565 map = r600_buffer_transfer_map(ctx, buffer, 0,
566 PIPE_TRANSFER_WRITE |
567 PIPE_TRANSFER_DISCARD_RANGE |
568 usage,
569 &box, &transfer);
570 if (!map)
571 return;
572
573 memcpy(map, data, size);
574 r600_buffer_transfer_unmap(ctx, transfer);
575 }
576
577 static const struct u_resource_vtbl r600_buffer_vtbl =
578 {
579 NULL, /* get_handle */
580 r600_buffer_destroy, /* resource_destroy */
581 r600_buffer_transfer_map, /* transfer_map */
582 r600_buffer_flush_region, /* transfer_flush_region */
583 r600_buffer_transfer_unmap, /* transfer_unmap */
584 };
585
586 static struct r600_resource *
587 r600_alloc_buffer_struct(struct pipe_screen *screen,
588 const struct pipe_resource *templ)
589 {
590 struct r600_resource *rbuffer;
591
592 rbuffer = MALLOC_STRUCT(r600_resource);
593
594 rbuffer->b.b = *templ;
595 rbuffer->b.b.next = NULL;
596 pipe_reference_init(&rbuffer->b.b.reference, 1);
597 rbuffer->b.b.screen = screen;
598
599 rbuffer->b.vtbl = &r600_buffer_vtbl;
600 threaded_resource_init(&rbuffer->b.b);
601
602 rbuffer->buf = NULL;
603 rbuffer->bind_history = 0;
604 rbuffer->TC_L2_dirty = false;
605 util_range_init(&rbuffer->valid_buffer_range);
606 return rbuffer;
607 }
608
609 static struct pipe_resource *si_buffer_create(struct pipe_screen *screen,
610 const struct pipe_resource *templ,
611 unsigned alignment)
612 {
613 struct si_screen *sscreen = (struct si_screen*)screen;
614 struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ);
615
616 if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
617 rbuffer->b.b.flags |= R600_RESOURCE_FLAG_UNMAPPABLE;
618
619 si_init_resource_fields(sscreen, rbuffer, templ->width0, alignment);
620
621 if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
622 rbuffer->flags |= RADEON_FLAG_SPARSE;
623
624 if (!si_alloc_resource(sscreen, rbuffer)) {
625 FREE(rbuffer);
626 return NULL;
627 }
628 return &rbuffer->b.b;
629 }
630
631 struct pipe_resource *si_aligned_buffer_create(struct pipe_screen *screen,
632 unsigned flags,
633 unsigned usage,
634 unsigned size,
635 unsigned alignment)
636 {
637 struct pipe_resource buffer;
638
639 memset(&buffer, 0, sizeof buffer);
640 buffer.target = PIPE_BUFFER;
641 buffer.format = PIPE_FORMAT_R8_UNORM;
642 buffer.bind = 0;
643 buffer.usage = usage;
644 buffer.flags = flags;
645 buffer.width0 = size;
646 buffer.height0 = 1;
647 buffer.depth0 = 1;
648 buffer.array_size = 1;
649 return si_buffer_create(screen, &buffer, alignment);
650 }
651
652 static struct pipe_resource *
653 si_buffer_from_user_memory(struct pipe_screen *screen,
654 const struct pipe_resource *templ,
655 void *user_memory)
656 {
657 struct si_screen *sscreen = (struct si_screen*)screen;
658 struct radeon_winsys *ws = sscreen->ws;
659 struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ);
660
661 rbuffer->domains = RADEON_DOMAIN_GTT;
662 rbuffer->flags = 0;
663 rbuffer->b.is_user_ptr = true;
664 util_range_add(&rbuffer->valid_buffer_range, 0, templ->width0);
665 util_range_add(&rbuffer->b.valid_buffer_range, 0, templ->width0);
666
667 /* Convert a user pointer to a buffer. */
668 rbuffer->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0);
669 if (!rbuffer->buf) {
670 FREE(rbuffer);
671 return NULL;
672 }
673
674 if (sscreen->info.has_virtual_memory)
675 rbuffer->gpu_address =
676 ws->buffer_get_virtual_address(rbuffer->buf);
677 else
678 rbuffer->gpu_address = 0;
679
680 rbuffer->vram_usage = 0;
681 rbuffer->gart_usage = templ->width0;
682
683 return &rbuffer->b.b;
684 }
685
686 static struct pipe_resource *si_resource_create(struct pipe_screen *screen,
687 const struct pipe_resource *templ)
688 {
689 if (templ->target == PIPE_BUFFER) {
690 return si_buffer_create(screen, templ, 256);
691 } else {
692 return si_texture_create(screen, templ);
693 }
694 }
695
696 void si_init_screen_buffer_functions(struct si_screen *sscreen)
697 {
698 sscreen->b.resource_create = si_resource_create;
699 sscreen->b.resource_destroy = u_resource_destroy_vtbl;
700 sscreen->b.resource_from_user_memory = si_buffer_from_user_memory;
701 }
702
703 void si_init_buffer_functions(struct si_context *sctx)
704 {
705 sctx->b.b.invalidate_resource = si_invalidate_resource;
706 sctx->b.b.transfer_map = u_transfer_map_vtbl;
707 sctx->b.b.transfer_flush_region = u_transfer_flush_region_vtbl;
708 sctx->b.b.transfer_unmap = u_transfer_unmap_vtbl;
709 sctx->b.b.texture_subdata = u_default_texture_subdata;
710 sctx->b.b.buffer_subdata = si_buffer_subdata;
711 }