835008360a6de253f34840fe1bb6ddbcbb67fc01
[mesa.git] / src / gallium / drivers / radeon / r600_pipe_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45
46 struct r600_multi_fence {
47 struct pipe_reference reference;
48 struct pipe_fence_handle *gfx;
49 struct pipe_fence_handle *sdma;
50
51 /* If the context wasn't flushed at fence creation, this is non-NULL. */
52 struct {
53 struct r600_common_context *ctx;
54 unsigned ib_index;
55 } gfx_unflushed;
56 };
57
58 /*
59 * shader binary helpers.
60 */
61 void radeon_shader_binary_init(struct radeon_shader_binary *b)
62 {
63 memset(b, 0, sizeof(*b));
64 }
65
66 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
67 {
68 if (!b)
69 return;
70 FREE(b->code);
71 FREE(b->config);
72 FREE(b->rodata);
73 FREE(b->global_symbol_offsets);
74 FREE(b->relocs);
75 FREE(b->disasm_string);
76 FREE(b->llvm_ir_string);
77 }
78
79 /*
80 * pipe_context
81 */
82
83 /**
84 * Write an EOP event.
85 *
86 * \param event EVENT_TYPE_*
87 * \param event_flags Optional cache flush flags (TC)
88 * \param data_sel 1 = fence, 3 = timestamp
89 * \param buf Buffer
90 * \param va GPU address
91 * \param old_value Previous fence value (for a bug workaround)
92 * \param new_value Fence value to write for this event.
93 */
94 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
95 unsigned event, unsigned event_flags,
96 unsigned data_sel,
97 struct r600_resource *buf, uint64_t va,
98 uint32_t old_fence, uint32_t new_fence)
99 {
100 struct radeon_winsys_cs *cs = ctx->gfx.cs;
101 unsigned op = EVENT_TYPE(event) |
102 EVENT_INDEX(5) |
103 event_flags;
104
105 if (ctx->chip_class == CIK) {
106 /* Two EOP events are required to make all engines go idle
107 * (and optional cache flushes executed) before the timestamp
108 * is written.
109 */
110 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
111 radeon_emit(cs, op);
112 radeon_emit(cs, va);
113 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
114 radeon_emit(cs, old_fence); /* immediate data */
115 radeon_emit(cs, 0); /* unused */
116 }
117
118 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
119 radeon_emit(cs, op);
120 radeon_emit(cs, va);
121 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
122 radeon_emit(cs, new_fence); /* immediate data */
123 radeon_emit(cs, 0); /* unused */
124
125 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
126 }
127
128 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
129 {
130 unsigned dwords = 6;
131
132 if (screen->chip_class == CIK)
133 dwords *= 2;
134
135 if (!screen->info.has_virtual_memory)
136 dwords += 2;
137
138 return dwords;
139 }
140
141 void r600_gfx_wait_fence(struct r600_common_context *ctx,
142 uint64_t va, uint32_t ref, uint32_t mask)
143 {
144 struct radeon_winsys_cs *cs = ctx->gfx.cs;
145
146 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
147 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
148 radeon_emit(cs, va);
149 radeon_emit(cs, va >> 32);
150 radeon_emit(cs, ref); /* reference value */
151 radeon_emit(cs, mask); /* mask */
152 radeon_emit(cs, 4); /* poll interval */
153 }
154
155 void r600_draw_rectangle(struct blitter_context *blitter,
156 int x1, int y1, int x2, int y2, float depth,
157 enum blitter_attrib_type type,
158 const union pipe_color_union *attrib)
159 {
160 struct r600_common_context *rctx =
161 (struct r600_common_context*)util_blitter_get_pipe(blitter);
162 struct pipe_viewport_state viewport;
163 struct pipe_resource *buf = NULL;
164 unsigned offset = 0;
165 float *vb;
166
167 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
168 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
169 return;
170 }
171
172 /* Some operations (like color resolve on r6xx) don't work
173 * with the conventional primitive types.
174 * One that works is PT_RECTLIST, which we use here. */
175
176 /* setup viewport */
177 viewport.scale[0] = 1.0f;
178 viewport.scale[1] = 1.0f;
179 viewport.scale[2] = 1.0f;
180 viewport.translate[0] = 0.0f;
181 viewport.translate[1] = 0.0f;
182 viewport.translate[2] = 0.0f;
183 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
184
185 /* Upload vertices. The hw rectangle has only 3 vertices,
186 * I guess the 4th one is derived from the first 3.
187 * The vertex specification should match u_blitter's vertex element state. */
188 u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
189 if (!buf)
190 return;
191
192 vb[0] = x1;
193 vb[1] = y1;
194 vb[2] = depth;
195 vb[3] = 1;
196
197 vb[8] = x1;
198 vb[9] = y2;
199 vb[10] = depth;
200 vb[11] = 1;
201
202 vb[16] = x2;
203 vb[17] = y1;
204 vb[18] = depth;
205 vb[19] = 1;
206
207 if (attrib) {
208 memcpy(vb+4, attrib->f, sizeof(float)*4);
209 memcpy(vb+12, attrib->f, sizeof(float)*4);
210 memcpy(vb+20, attrib->f, sizeof(float)*4);
211 }
212
213 /* draw */
214 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
215 R600_PRIM_RECTANGLE_LIST, 3, 2);
216 pipe_resource_reference(&buf, NULL);
217 }
218
219 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
220 struct r600_resource *dst, struct r600_resource *src)
221 {
222 uint64_t vram = 0, gtt = 0;
223
224 if (dst) {
225 vram += dst->vram_usage;
226 gtt += dst->gart_usage;
227 }
228 if (src) {
229 vram += src->vram_usage;
230 gtt += src->gart_usage;
231 }
232
233 /* Flush the GFX IB if DMA depends on it. */
234 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
235 ((dst &&
236 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
237 RADEON_USAGE_READWRITE)) ||
238 (src &&
239 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
240 RADEON_USAGE_WRITE))))
241 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
242
243 /* Flush if there's not enough space, or if the memory usage per IB
244 * is too large.
245 */
246 if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
247 !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
248 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
249 assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
250 }
251
252 /* If GPUVM is not supported, the CS checker needs 2 entries
253 * in the buffer list per packet, which has to be done manually.
254 */
255 if (ctx->screen->info.has_virtual_memory) {
256 if (dst)
257 radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
258 RADEON_USAGE_WRITE,
259 RADEON_PRIO_SDMA_BUFFER);
260 if (src)
261 radeon_add_to_buffer_list(ctx, &ctx->dma, src,
262 RADEON_USAGE_READ,
263 RADEON_PRIO_SDMA_BUFFER);
264 }
265 }
266
267 /* This is required to prevent read-after-write hazards. */
268 void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
269 {
270 struct radeon_winsys_cs *cs = rctx->dma.cs;
271
272 /* done at the end of DMA calls, so increment this. */
273 rctx->num_dma_calls++;
274
275 /* IBs using too little memory are limited by the IB submission overhead.
276 * IBs using too much memory are limited by the kernel/TTM overhead.
277 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
278 *
279 * This heuristic makes sure that DMA requests are executed
280 * very soon after the call is made and lowers memory usage.
281 * It improves texture upload performance by keeping the DMA
282 * engine busy while uploads are being submitted.
283 */
284 if (cs->used_vram + cs->used_gart > 64 * 1024 * 1024) {
285 rctx->dma.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
286 return;
287 }
288
289 r600_need_dma_space(rctx, 1, NULL, NULL);
290
291 if (!radeon_emitted(cs, 0)) /* empty queue */
292 return;
293
294 /* NOP waits for idle on Evergreen and later. */
295 if (rctx->chip_class >= CIK)
296 radeon_emit(cs, 0x00000000); /* NOP */
297 else if (rctx->chip_class >= EVERGREEN)
298 radeon_emit(cs, 0xf0000000); /* NOP */
299 else {
300 /* TODO: R600-R700 should use the FENCE packet.
301 * CS checker support is required. */
302 }
303 }
304
305 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
306 {
307 }
308
309 void r600_preflush_suspend_features(struct r600_common_context *ctx)
310 {
311 /* suspend queries */
312 if (!LIST_IS_EMPTY(&ctx->active_queries))
313 r600_suspend_queries(ctx);
314
315 ctx->streamout.suspended = false;
316 if (ctx->streamout.begin_emitted) {
317 r600_emit_streamout_end(ctx);
318 ctx->streamout.suspended = true;
319 }
320 }
321
322 void r600_postflush_resume_features(struct r600_common_context *ctx)
323 {
324 if (ctx->streamout.suspended) {
325 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
326 r600_streamout_buffers_dirty(ctx);
327 }
328
329 /* resume queries */
330 if (!LIST_IS_EMPTY(&ctx->active_queries))
331 r600_resume_queries(ctx);
332 }
333
334 static void r600_flush_from_st(struct pipe_context *ctx,
335 struct pipe_fence_handle **fence,
336 unsigned flags)
337 {
338 struct pipe_screen *screen = ctx->screen;
339 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
340 struct radeon_winsys *ws = rctx->ws;
341 unsigned rflags = 0;
342 struct pipe_fence_handle *gfx_fence = NULL;
343 struct pipe_fence_handle *sdma_fence = NULL;
344 bool deferred_fence = false;
345
346 if (flags & PIPE_FLUSH_END_OF_FRAME)
347 rflags |= RADEON_FLUSH_END_OF_FRAME;
348 if (flags & PIPE_FLUSH_DEFERRED)
349 rflags |= RADEON_FLUSH_ASYNC;
350
351 if (rctx->dma.cs) {
352 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
353 }
354
355 if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
356 if (fence)
357 ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
358 if (!(rflags & RADEON_FLUSH_ASYNC))
359 ws->cs_sync_flush(rctx->gfx.cs);
360 } else {
361 /* Instead of flushing, create a deferred fence. Constraints:
362 * - The state tracker must allow a deferred flush.
363 * - The state tracker must request a fence.
364 * Thread safety in fence_finish must be ensured by the state tracker.
365 */
366 if (flags & PIPE_FLUSH_DEFERRED && fence) {
367 gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
368 deferred_fence = true;
369 } else {
370 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
371 }
372 }
373
374 /* Both engines can signal out of order, so we need to keep both fences. */
375 if (fence) {
376 struct r600_multi_fence *multi_fence =
377 CALLOC_STRUCT(r600_multi_fence);
378 if (!multi_fence)
379 return;
380
381 multi_fence->reference.count = 1;
382 /* If both fences are NULL, fence_finish will always return true. */
383 multi_fence->gfx = gfx_fence;
384 multi_fence->sdma = sdma_fence;
385
386 if (deferred_fence) {
387 multi_fence->gfx_unflushed.ctx = rctx;
388 multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
389 }
390
391 screen->fence_reference(screen, fence, NULL);
392 *fence = (struct pipe_fence_handle*)multi_fence;
393 }
394 }
395
396 static void r600_flush_dma_ring(void *ctx, unsigned flags,
397 struct pipe_fence_handle **fence)
398 {
399 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
400 struct radeon_winsys_cs *cs = rctx->dma.cs;
401 struct radeon_saved_cs saved;
402 bool check_vm =
403 (rctx->screen->debug_flags & DBG_CHECK_VM) &&
404 rctx->check_vm_faults;
405
406 if (!radeon_emitted(cs, 0)) {
407 if (fence)
408 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
409 return;
410 }
411
412 if (check_vm)
413 radeon_save_cs(rctx->ws, cs, &saved);
414
415 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
416 if (fence)
417 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
418
419 if (check_vm) {
420 /* Use conservative timeout 800ms, after which we won't wait any
421 * longer and assume the GPU is hung.
422 */
423 rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
424
425 rctx->check_vm_faults(rctx, &saved, RING_DMA);
426 radeon_clear_saved_cs(&saved);
427 }
428 }
429
430 /**
431 * Store a linearized copy of all chunks of \p cs together with the buffer
432 * list in \p saved.
433 */
434 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
435 struct radeon_saved_cs *saved)
436 {
437 void *buf;
438 unsigned i;
439
440 /* Save the IB chunks. */
441 saved->num_dw = cs->prev_dw + cs->current.cdw;
442 saved->ib = MALLOC(4 * saved->num_dw);
443 if (!saved->ib)
444 goto oom;
445
446 buf = saved->ib;
447 for (i = 0; i < cs->num_prev; ++i) {
448 memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
449 buf += cs->prev[i].cdw;
450 }
451 memcpy(buf, cs->current.buf, cs->current.cdw * 4);
452
453 /* Save the buffer list. */
454 saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
455 saved->bo_list = CALLOC(saved->bo_count,
456 sizeof(saved->bo_list[0]));
457 if (!saved->bo_list) {
458 FREE(saved->ib);
459 goto oom;
460 }
461 ws->cs_get_buffer_list(cs, saved->bo_list);
462
463 return;
464
465 oom:
466 fprintf(stderr, "%s: out of memory\n", __func__);
467 memset(saved, 0, sizeof(*saved));
468 }
469
470 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
471 {
472 FREE(saved->ib);
473 FREE(saved->bo_list);
474
475 memset(saved, 0, sizeof(*saved));
476 }
477
478 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
479 {
480 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
481 unsigned latest = rctx->ws->query_value(rctx->ws,
482 RADEON_GPU_RESET_COUNTER);
483
484 if (rctx->gpu_reset_counter == latest)
485 return PIPE_NO_RESET;
486
487 rctx->gpu_reset_counter = latest;
488 return PIPE_UNKNOWN_CONTEXT_RESET;
489 }
490
491 static void r600_set_debug_callback(struct pipe_context *ctx,
492 const struct pipe_debug_callback *cb)
493 {
494 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
495
496 if (cb)
497 rctx->debug = *cb;
498 else
499 memset(&rctx->debug, 0, sizeof(rctx->debug));
500 }
501
502 static void r600_set_device_reset_callback(struct pipe_context *ctx,
503 const struct pipe_device_reset_callback *cb)
504 {
505 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
506
507 if (cb)
508 rctx->device_reset_callback = *cb;
509 else
510 memset(&rctx->device_reset_callback, 0,
511 sizeof(rctx->device_reset_callback));
512 }
513
514 bool r600_check_device_reset(struct r600_common_context *rctx)
515 {
516 enum pipe_reset_status status;
517
518 if (!rctx->device_reset_callback.reset)
519 return false;
520
521 if (!rctx->b.get_device_reset_status)
522 return false;
523
524 status = rctx->b.get_device_reset_status(&rctx->b);
525 if (status == PIPE_NO_RESET)
526 return false;
527
528 rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
529 return true;
530 }
531
532 bool r600_common_context_init(struct r600_common_context *rctx,
533 struct r600_common_screen *rscreen,
534 unsigned context_flags)
535 {
536 slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
537
538 rctx->screen = rscreen;
539 rctx->ws = rscreen->ws;
540 rctx->family = rscreen->family;
541 rctx->chip_class = rscreen->chip_class;
542
543 if (rscreen->chip_class >= CIK)
544 rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
545 else if (rscreen->chip_class >= EVERGREEN)
546 rctx->max_db = 8;
547 else
548 rctx->max_db = 4;
549
550 rctx->b.invalidate_resource = r600_invalidate_resource;
551 rctx->b.transfer_map = u_transfer_map_vtbl;
552 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
553 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
554 rctx->b.texture_subdata = u_default_texture_subdata;
555 rctx->b.memory_barrier = r600_memory_barrier;
556 rctx->b.flush = r600_flush_from_st;
557 rctx->b.set_debug_callback = r600_set_debug_callback;
558
559 /* evergreen_compute.c has a special codepath for global buffers.
560 * Everything else can use the direct path.
561 */
562 if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
563 (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
564 rctx->b.buffer_subdata = u_default_buffer_subdata;
565 else
566 rctx->b.buffer_subdata = r600_buffer_subdata;
567
568 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
569 rctx->b.get_device_reset_status = r600_get_reset_status;
570 rctx->gpu_reset_counter =
571 rctx->ws->query_value(rctx->ws,
572 RADEON_GPU_RESET_COUNTER);
573 }
574
575 rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
576
577 r600_init_context_texture_functions(rctx);
578 r600_init_viewport_functions(rctx);
579 r600_streamout_init(rctx);
580 r600_query_init(rctx);
581 cayman_init_msaa(&rctx->b);
582
583 rctx->allocator_zeroed_memory =
584 u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
585 0, PIPE_USAGE_DEFAULT, true);
586 if (!rctx->allocator_zeroed_memory)
587 return false;
588
589 rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
590 PIPE_BIND_INDEX_BUFFER |
591 PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
592 if (!rctx->uploader)
593 return false;
594
595 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
596 if (!rctx->ctx)
597 return false;
598
599 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
600 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
601 r600_flush_dma_ring,
602 rctx);
603 rctx->dma.flush = r600_flush_dma_ring;
604 }
605
606 return true;
607 }
608
609 void r600_common_context_cleanup(struct r600_common_context *rctx)
610 {
611 unsigned i,j;
612
613 /* Release DCC stats. */
614 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
615 assert(!rctx->dcc_stats[i].query_active);
616
617 for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
618 if (rctx->dcc_stats[i].ps_stats[j])
619 rctx->b.destroy_query(&rctx->b,
620 rctx->dcc_stats[i].ps_stats[j]);
621
622 r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
623 }
624
625 if (rctx->query_result_shader)
626 rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
627
628 if (rctx->gfx.cs)
629 rctx->ws->cs_destroy(rctx->gfx.cs);
630 if (rctx->dma.cs)
631 rctx->ws->cs_destroy(rctx->dma.cs);
632 if (rctx->ctx)
633 rctx->ws->ctx_destroy(rctx->ctx);
634
635 if (rctx->uploader) {
636 u_upload_destroy(rctx->uploader);
637 }
638
639 slab_destroy_child(&rctx->pool_transfers);
640
641 if (rctx->allocator_zeroed_memory) {
642 u_suballocator_destroy(rctx->allocator_zeroed_memory);
643 }
644 rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
645 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
646 }
647
648 /*
649 * pipe_screen
650 */
651
652 static const struct debug_named_value common_debug_options[] = {
653 /* logging */
654 { "tex", DBG_TEX, "Print texture info" },
655 { "compute", DBG_COMPUTE, "Print compute info" },
656 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
657 { "info", DBG_INFO, "Print driver information" },
658
659 /* shaders */
660 { "fs", DBG_FS, "Print fetch shaders" },
661 { "vs", DBG_VS, "Print vertex shaders" },
662 { "gs", DBG_GS, "Print geometry shaders" },
663 { "ps", DBG_PS, "Print pixel shaders" },
664 { "cs", DBG_CS, "Print compute shaders" },
665 { "tcs", DBG_TCS, "Print tessellation control shaders" },
666 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
667 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
668 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
669 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
670 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
671 { "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
672
673 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
674
675 /* features */
676 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
677 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
678 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
679 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
680 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
681 { "notiling", DBG_NO_TILING, "Disable tiling" },
682 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
683 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
684 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
685 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
686 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
687 { "nodcc", DBG_NO_DCC, "Disable DCC." },
688 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
689 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
690 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
691 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
692 { "noce", DBG_NO_CE, "Disable the constant engine"},
693 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
694 { "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
695
696 DEBUG_NAMED_VALUE_END /* must be last */
697 };
698
699 static const char* r600_get_vendor(struct pipe_screen* pscreen)
700 {
701 return "X.Org";
702 }
703
704 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
705 {
706 return "AMD";
707 }
708
709 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
710 {
711 switch (rscreen->info.family) {
712 case CHIP_R600: return "AMD R600";
713 case CHIP_RV610: return "AMD RV610";
714 case CHIP_RV630: return "AMD RV630";
715 case CHIP_RV670: return "AMD RV670";
716 case CHIP_RV620: return "AMD RV620";
717 case CHIP_RV635: return "AMD RV635";
718 case CHIP_RS780: return "AMD RS780";
719 case CHIP_RS880: return "AMD RS880";
720 case CHIP_RV770: return "AMD RV770";
721 case CHIP_RV730: return "AMD RV730";
722 case CHIP_RV710: return "AMD RV710";
723 case CHIP_RV740: return "AMD RV740";
724 case CHIP_CEDAR: return "AMD CEDAR";
725 case CHIP_REDWOOD: return "AMD REDWOOD";
726 case CHIP_JUNIPER: return "AMD JUNIPER";
727 case CHIP_CYPRESS: return "AMD CYPRESS";
728 case CHIP_HEMLOCK: return "AMD HEMLOCK";
729 case CHIP_PALM: return "AMD PALM";
730 case CHIP_SUMO: return "AMD SUMO";
731 case CHIP_SUMO2: return "AMD SUMO2";
732 case CHIP_BARTS: return "AMD BARTS";
733 case CHIP_TURKS: return "AMD TURKS";
734 case CHIP_CAICOS: return "AMD CAICOS";
735 case CHIP_CAYMAN: return "AMD CAYMAN";
736 case CHIP_ARUBA: return "AMD ARUBA";
737 case CHIP_TAHITI: return "AMD TAHITI";
738 case CHIP_PITCAIRN: return "AMD PITCAIRN";
739 case CHIP_VERDE: return "AMD CAPE VERDE";
740 case CHIP_OLAND: return "AMD OLAND";
741 case CHIP_HAINAN: return "AMD HAINAN";
742 case CHIP_BONAIRE: return "AMD BONAIRE";
743 case CHIP_KAVERI: return "AMD KAVERI";
744 case CHIP_KABINI: return "AMD KABINI";
745 case CHIP_HAWAII: return "AMD HAWAII";
746 case CHIP_MULLINS: return "AMD MULLINS";
747 case CHIP_TONGA: return "AMD TONGA";
748 case CHIP_ICELAND: return "AMD ICELAND";
749 case CHIP_CARRIZO: return "AMD CARRIZO";
750 case CHIP_FIJI: return "AMD FIJI";
751 case CHIP_POLARIS10: return "AMD POLARIS10";
752 case CHIP_POLARIS11: return "AMD POLARIS11";
753 case CHIP_STONEY: return "AMD STONEY";
754 default: return "AMD unknown";
755 }
756 }
757
758 static const char* r600_get_name(struct pipe_screen* pscreen)
759 {
760 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
761
762 return rscreen->renderer_string;
763 }
764
765 static float r600_get_paramf(struct pipe_screen* pscreen,
766 enum pipe_capf param)
767 {
768 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
769
770 switch (param) {
771 case PIPE_CAPF_MAX_LINE_WIDTH:
772 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
773 case PIPE_CAPF_MAX_POINT_WIDTH:
774 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
775 if (rscreen->family >= CHIP_CEDAR)
776 return 16384.0f;
777 else
778 return 8192.0f;
779 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
780 return 16.0f;
781 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
782 return 16.0f;
783 case PIPE_CAPF_GUARD_BAND_LEFT:
784 case PIPE_CAPF_GUARD_BAND_TOP:
785 case PIPE_CAPF_GUARD_BAND_RIGHT:
786 case PIPE_CAPF_GUARD_BAND_BOTTOM:
787 return 0.0f;
788 }
789 return 0.0f;
790 }
791
792 static int r600_get_video_param(struct pipe_screen *screen,
793 enum pipe_video_profile profile,
794 enum pipe_video_entrypoint entrypoint,
795 enum pipe_video_cap param)
796 {
797 switch (param) {
798 case PIPE_VIDEO_CAP_SUPPORTED:
799 return vl_profile_supported(screen, profile, entrypoint);
800 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
801 return 1;
802 case PIPE_VIDEO_CAP_MAX_WIDTH:
803 case PIPE_VIDEO_CAP_MAX_HEIGHT:
804 return vl_video_buffer_max_size(screen);
805 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
806 return PIPE_FORMAT_NV12;
807 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
808 return false;
809 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
810 return false;
811 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
812 return true;
813 case PIPE_VIDEO_CAP_MAX_LEVEL:
814 return vl_level_supported(screen, profile);
815 default:
816 return 0;
817 }
818 }
819
820 const char *r600_get_llvm_processor_name(enum radeon_family family)
821 {
822 switch (family) {
823 case CHIP_R600:
824 case CHIP_RV630:
825 case CHIP_RV635:
826 case CHIP_RV670:
827 return "r600";
828 case CHIP_RV610:
829 case CHIP_RV620:
830 case CHIP_RS780:
831 case CHIP_RS880:
832 return "rs880";
833 case CHIP_RV710:
834 return "rv710";
835 case CHIP_RV730:
836 return "rv730";
837 case CHIP_RV740:
838 case CHIP_RV770:
839 return "rv770";
840 case CHIP_PALM:
841 case CHIP_CEDAR:
842 return "cedar";
843 case CHIP_SUMO:
844 case CHIP_SUMO2:
845 return "sumo";
846 case CHIP_REDWOOD:
847 return "redwood";
848 case CHIP_JUNIPER:
849 return "juniper";
850 case CHIP_HEMLOCK:
851 case CHIP_CYPRESS:
852 return "cypress";
853 case CHIP_BARTS:
854 return "barts";
855 case CHIP_TURKS:
856 return "turks";
857 case CHIP_CAICOS:
858 return "caicos";
859 case CHIP_CAYMAN:
860 case CHIP_ARUBA:
861 return "cayman";
862
863 case CHIP_TAHITI: return "tahiti";
864 case CHIP_PITCAIRN: return "pitcairn";
865 case CHIP_VERDE: return "verde";
866 case CHIP_OLAND: return "oland";
867 case CHIP_HAINAN: return "hainan";
868 case CHIP_BONAIRE: return "bonaire";
869 case CHIP_KABINI: return "kabini";
870 case CHIP_KAVERI: return "kaveri";
871 case CHIP_HAWAII: return "hawaii";
872 case CHIP_MULLINS:
873 return "mullins";
874 case CHIP_TONGA: return "tonga";
875 case CHIP_ICELAND: return "iceland";
876 case CHIP_CARRIZO: return "carrizo";
877 #if HAVE_LLVM <= 0x0307
878 case CHIP_FIJI: return "tonga";
879 case CHIP_STONEY: return "carrizo";
880 #else
881 case CHIP_FIJI: return "fiji";
882 case CHIP_STONEY: return "stoney";
883 #endif
884 #if HAVE_LLVM <= 0x0308
885 case CHIP_POLARIS10: return "tonga";
886 case CHIP_POLARIS11: return "tonga";
887 #else
888 case CHIP_POLARIS10: return "polaris10";
889 case CHIP_POLARIS11: return "polaris11";
890 #endif
891 default: return "";
892 }
893 }
894
895 static int r600_get_compute_param(struct pipe_screen *screen,
896 enum pipe_shader_ir ir_type,
897 enum pipe_compute_cap param,
898 void *ret)
899 {
900 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
901
902 //TODO: select these params by asic
903 switch (param) {
904 case PIPE_COMPUTE_CAP_IR_TARGET: {
905 const char *gpu;
906 const char *triple;
907 if (rscreen->family <= CHIP_ARUBA) {
908 triple = "r600--";
909 } else {
910 if (HAVE_LLVM < 0x0400) {
911 triple = "amdgcn--";
912 } else {
913 triple = "amdgcn-mesa-mesa3d";
914 }
915 }
916 switch(rscreen->family) {
917 /* Clang < 3.6 is missing Hainan in its list of
918 * GPUs, so we need to use the name of a similar GPU.
919 */
920 default:
921 gpu = r600_get_llvm_processor_name(rscreen->family);
922 break;
923 }
924 if (ret) {
925 sprintf(ret, "%s-%s", gpu, triple);
926 }
927 /* +2 for dash and terminating NIL byte */
928 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
929 }
930 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
931 if (ret) {
932 uint64_t *grid_dimension = ret;
933 grid_dimension[0] = 3;
934 }
935 return 1 * sizeof(uint64_t);
936
937 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
938 if (ret) {
939 uint64_t *grid_size = ret;
940 grid_size[0] = 65535;
941 grid_size[1] = 65535;
942 grid_size[2] = 65535;
943 }
944 return 3 * sizeof(uint64_t) ;
945
946 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
947 if (ret) {
948 uint64_t *block_size = ret;
949 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
950 ir_type == PIPE_SHADER_IR_TGSI) {
951 block_size[0] = 2048;
952 block_size[1] = 2048;
953 block_size[2] = 2048;
954 } else {
955 block_size[0] = 256;
956 block_size[1] = 256;
957 block_size[2] = 256;
958 }
959 }
960 return 3 * sizeof(uint64_t);
961
962 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
963 if (ret) {
964 uint64_t *max_threads_per_block = ret;
965 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
966 ir_type == PIPE_SHADER_IR_TGSI)
967 *max_threads_per_block = 2048;
968 else
969 *max_threads_per_block = 256;
970 }
971 return sizeof(uint64_t);
972 case PIPE_COMPUTE_CAP_ADDRESS_BITS:
973 if (ret) {
974 uint32_t *address_bits = ret;
975 address_bits[0] = 32;
976 if (rscreen->chip_class >= SI)
977 address_bits[0] = 64;
978 }
979 return 1 * sizeof(uint32_t);
980
981 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
982 if (ret) {
983 uint64_t *max_global_size = ret;
984 uint64_t max_mem_alloc_size;
985
986 r600_get_compute_param(screen, ir_type,
987 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
988 &max_mem_alloc_size);
989
990 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
991 * 1/4 of the MAX_GLOBAL_SIZE. Since the
992 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
993 * make sure we never report more than
994 * 4 * MAX_MEM_ALLOC_SIZE.
995 */
996 *max_global_size = MIN2(4 * max_mem_alloc_size,
997 MAX2(rscreen->info.gart_size,
998 rscreen->info.vram_size));
999 }
1000 return sizeof(uint64_t);
1001
1002 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1003 if (ret) {
1004 uint64_t *max_local_size = ret;
1005 /* Value reported by the closed source driver. */
1006 *max_local_size = 32768;
1007 }
1008 return sizeof(uint64_t);
1009
1010 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1011 if (ret) {
1012 uint64_t *max_input_size = ret;
1013 /* Value reported by the closed source driver. */
1014 *max_input_size = 1024;
1015 }
1016 return sizeof(uint64_t);
1017
1018 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1019 if (ret) {
1020 uint64_t *max_mem_alloc_size = ret;
1021
1022 *max_mem_alloc_size = rscreen->info.max_alloc_size;
1023 }
1024 return sizeof(uint64_t);
1025
1026 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1027 if (ret) {
1028 uint32_t *max_clock_frequency = ret;
1029 *max_clock_frequency = rscreen->info.max_shader_clock;
1030 }
1031 return sizeof(uint32_t);
1032
1033 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1034 if (ret) {
1035 uint32_t *max_compute_units = ret;
1036 *max_compute_units = rscreen->info.num_good_compute_units;
1037 }
1038 return sizeof(uint32_t);
1039
1040 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1041 if (ret) {
1042 uint32_t *images_supported = ret;
1043 *images_supported = 0;
1044 }
1045 return sizeof(uint32_t);
1046 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1047 break; /* unused */
1048 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1049 if (ret) {
1050 uint32_t *subgroup_size = ret;
1051 *subgroup_size = r600_wavefront_size(rscreen->family);
1052 }
1053 return sizeof(uint32_t);
1054 case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1055 if (ret) {
1056 uint64_t *max_variable_threads_per_block = ret;
1057 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
1058 ir_type == PIPE_SHADER_IR_TGSI)
1059 *max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
1060 else
1061 *max_variable_threads_per_block = 0;
1062 }
1063 return sizeof(uint64_t);
1064 }
1065
1066 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1067 return 0;
1068 }
1069
1070 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1071 {
1072 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1073
1074 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1075 rscreen->info.clock_crystal_freq;
1076 }
1077
1078 static void r600_fence_reference(struct pipe_screen *screen,
1079 struct pipe_fence_handle **dst,
1080 struct pipe_fence_handle *src)
1081 {
1082 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1083 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1084 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1085
1086 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1087 ws->fence_reference(&(*rdst)->gfx, NULL);
1088 ws->fence_reference(&(*rdst)->sdma, NULL);
1089 FREE(*rdst);
1090 }
1091 *rdst = rsrc;
1092 }
1093
1094 static boolean r600_fence_finish(struct pipe_screen *screen,
1095 struct pipe_context *ctx,
1096 struct pipe_fence_handle *fence,
1097 uint64_t timeout)
1098 {
1099 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1100 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1101 struct r600_common_context *rctx =
1102 ctx ? (struct r600_common_context*)ctx : NULL;
1103 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1104
1105 if (rfence->sdma) {
1106 if (!rws->fence_wait(rws, rfence->sdma, timeout))
1107 return false;
1108
1109 /* Recompute the timeout after waiting. */
1110 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1111 int64_t time = os_time_get_nano();
1112 timeout = abs_timeout > time ? abs_timeout - time : 0;
1113 }
1114 }
1115
1116 if (!rfence->gfx)
1117 return true;
1118
1119 /* Flush the gfx IB if it hasn't been flushed yet. */
1120 if (rctx &&
1121 rfence->gfx_unflushed.ctx == rctx &&
1122 rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1123 rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1124 rfence->gfx_unflushed.ctx = NULL;
1125
1126 if (!timeout)
1127 return false;
1128
1129 /* Recompute the timeout after all that. */
1130 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1131 int64_t time = os_time_get_nano();
1132 timeout = abs_timeout > time ? abs_timeout - time : 0;
1133 }
1134 }
1135
1136 return rws->fence_wait(rws, rfence->gfx, timeout);
1137 }
1138
1139 static void r600_query_memory_info(struct pipe_screen *screen,
1140 struct pipe_memory_info *info)
1141 {
1142 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1143 struct radeon_winsys *ws = rscreen->ws;
1144 unsigned vram_usage, gtt_usage;
1145
1146 info->total_device_memory = rscreen->info.vram_size / 1024;
1147 info->total_staging_memory = rscreen->info.gart_size / 1024;
1148
1149 /* The real TTM memory usage is somewhat random, because:
1150 *
1151 * 1) TTM delays freeing memory, because it can only free it after
1152 * fences expire.
1153 *
1154 * 2) The memory usage can be really low if big VRAM evictions are
1155 * taking place, but the real usage is well above the size of VRAM.
1156 *
1157 * Instead, return statistics of this process.
1158 */
1159 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1160 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1161
1162 info->avail_device_memory =
1163 vram_usage <= info->total_device_memory ?
1164 info->total_device_memory - vram_usage : 0;
1165 info->avail_staging_memory =
1166 gtt_usage <= info->total_staging_memory ?
1167 info->total_staging_memory - gtt_usage : 0;
1168
1169 info->device_memory_evicted =
1170 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1171
1172 if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1173 info->nr_device_memory_evictions =
1174 ws->query_value(ws, RADEON_NUM_EVICTIONS);
1175 else
1176 /* Just return the number of evicted 64KB pages. */
1177 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1178 }
1179
1180 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1181 const struct pipe_resource *templ)
1182 {
1183 if (templ->target == PIPE_BUFFER) {
1184 return r600_buffer_create(screen, templ, 256);
1185 } else {
1186 return r600_texture_create(screen, templ);
1187 }
1188 }
1189
1190 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1191 struct radeon_winsys *ws)
1192 {
1193 char llvm_string[32] = {}, kernel_version[128] = {};
1194 struct utsname uname_data;
1195
1196 ws->query_info(ws, &rscreen->info);
1197
1198 if (uname(&uname_data) == 0)
1199 snprintf(kernel_version, sizeof(kernel_version),
1200 " / %s", uname_data.release);
1201
1202 #if HAVE_LLVM
1203 snprintf(llvm_string, sizeof(llvm_string),
1204 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1205 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1206 #endif
1207
1208 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1209 "%s (DRM %i.%i.%i%s%s)",
1210 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1211 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1212 kernel_version, llvm_string);
1213
1214 rscreen->b.get_name = r600_get_name;
1215 rscreen->b.get_vendor = r600_get_vendor;
1216 rscreen->b.get_device_vendor = r600_get_device_vendor;
1217 rscreen->b.get_compute_param = r600_get_compute_param;
1218 rscreen->b.get_paramf = r600_get_paramf;
1219 rscreen->b.get_timestamp = r600_get_timestamp;
1220 rscreen->b.fence_finish = r600_fence_finish;
1221 rscreen->b.fence_reference = r600_fence_reference;
1222 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1223 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1224 rscreen->b.query_memory_info = r600_query_memory_info;
1225
1226 if (rscreen->info.has_uvd) {
1227 rscreen->b.get_video_param = rvid_get_video_param;
1228 rscreen->b.is_video_format_supported = rvid_is_format_supported;
1229 } else {
1230 rscreen->b.get_video_param = r600_get_video_param;
1231 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1232 }
1233
1234 r600_init_screen_texture_functions(rscreen);
1235 r600_init_screen_query_functions(rscreen);
1236
1237 rscreen->ws = ws;
1238 rscreen->family = rscreen->info.family;
1239 rscreen->chip_class = rscreen->info.chip_class;
1240 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1241
1242 slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1243
1244 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1245 if (rscreen->force_aniso >= 0) {
1246 printf("radeon: Forcing anisotropy filter to %ix\n",
1247 /* round down to a power of two */
1248 1 << util_logbase2(rscreen->force_aniso));
1249 }
1250
1251 util_format_s3tc_init();
1252 pipe_mutex_init(rscreen->aux_context_lock);
1253 pipe_mutex_init(rscreen->gpu_load_mutex);
1254
1255 if (rscreen->debug_flags & DBG_INFO) {
1256 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1257 printf("family = %i (%s)\n", rscreen->info.family,
1258 r600_get_chip_name(rscreen));
1259 printf("chip_class = %i\n", rscreen->info.chip_class);
1260 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1261 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1262 printf("max_alloc_size = %i MB\n",
1263 (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1264 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1265 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1266 printf("has_sdma = %i\n", rscreen->info.has_sdma);
1267 printf("has_uvd = %i\n", rscreen->info.has_uvd);
1268 printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1269 printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1270 printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1271 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1272 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1273 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1274 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1275 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1276 printf("has_userptr = %i\n", rscreen->info.has_userptr);
1277
1278 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1279 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1280 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1281 printf("max_se = %i\n", rscreen->info.max_se);
1282 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1283
1284 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1285 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1286 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1287 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1288 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1289 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1290 }
1291 return true;
1292 }
1293
1294 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1295 {
1296 r600_perfcounters_destroy(rscreen);
1297 r600_gpu_load_kill_thread(rscreen);
1298
1299 pipe_mutex_destroy(rscreen->gpu_load_mutex);
1300 pipe_mutex_destroy(rscreen->aux_context_lock);
1301 rscreen->aux_context->destroy(rscreen->aux_context);
1302
1303 slab_destroy_parent(&rscreen->pool_transfers);
1304
1305 rscreen->ws->destroy(rscreen->ws);
1306 FREE(rscreen);
1307 }
1308
1309 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1310 unsigned processor)
1311 {
1312 switch (processor) {
1313 case PIPE_SHADER_VERTEX:
1314 return (rscreen->debug_flags & DBG_VS) != 0;
1315 case PIPE_SHADER_TESS_CTRL:
1316 return (rscreen->debug_flags & DBG_TCS) != 0;
1317 case PIPE_SHADER_TESS_EVAL:
1318 return (rscreen->debug_flags & DBG_TES) != 0;
1319 case PIPE_SHADER_GEOMETRY:
1320 return (rscreen->debug_flags & DBG_GS) != 0;
1321 case PIPE_SHADER_FRAGMENT:
1322 return (rscreen->debug_flags & DBG_PS) != 0;
1323 case PIPE_SHADER_COMPUTE:
1324 return (rscreen->debug_flags & DBG_CS) != 0;
1325 default:
1326 return false;
1327 }
1328 }
1329
1330 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1331 {
1332 return (rscreen->debug_flags & DBG_CHECK_IR) ||
1333 r600_can_dump_shader(rscreen, processor);
1334 }
1335
1336 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1337 uint64_t offset, uint64_t size, unsigned value,
1338 enum r600_coherency coher)
1339 {
1340 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1341
1342 pipe_mutex_lock(rscreen->aux_context_lock);
1343 rctx->clear_buffer(&rctx->b, dst, offset, size, value, coher);
1344 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1345 pipe_mutex_unlock(rscreen->aux_context_lock);
1346 }