radeonsi: drop support for LLVM 3.8
[mesa.git] / src / gallium / drivers / radeon / r600_pipe_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45
46 #if HAVE_LLVM
47 #include <llvm-c/TargetMachine.h>
48 #endif
49
50 #ifndef MESA_LLVM_VERSION_PATCH
51 #define MESA_LLVM_VERSION_PATCH 0
52 #endif
53
54 struct r600_multi_fence {
55 struct pipe_reference reference;
56 struct pipe_fence_handle *gfx;
57 struct pipe_fence_handle *sdma;
58
59 /* If the context wasn't flushed at fence creation, this is non-NULL. */
60 struct {
61 struct r600_common_context *ctx;
62 unsigned ib_index;
63 } gfx_unflushed;
64 };
65
66 /*
67 * shader binary helpers.
68 */
69 void radeon_shader_binary_init(struct ac_shader_binary *b)
70 {
71 memset(b, 0, sizeof(*b));
72 }
73
74 void radeon_shader_binary_clean(struct ac_shader_binary *b)
75 {
76 if (!b)
77 return;
78 FREE(b->code);
79 FREE(b->config);
80 FREE(b->rodata);
81 FREE(b->global_symbol_offsets);
82 FREE(b->relocs);
83 FREE(b->disasm_string);
84 FREE(b->llvm_ir_string);
85 }
86
87 /*
88 * pipe_context
89 */
90
91 /**
92 * Write an EOP event.
93 *
94 * \param event EVENT_TYPE_*
95 * \param event_flags Optional cache flush flags (TC)
96 * \param data_sel 1 = fence, 3 = timestamp
97 * \param buf Buffer
98 * \param va GPU address
99 * \param old_value Previous fence value (for a bug workaround)
100 * \param new_value Fence value to write for this event.
101 */
102 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
103 unsigned event, unsigned event_flags,
104 unsigned data_sel,
105 struct r600_resource *buf, uint64_t va,
106 uint32_t old_fence, uint32_t new_fence)
107 {
108 struct radeon_winsys_cs *cs = ctx->gfx.cs;
109 unsigned op = EVENT_TYPE(event) |
110 EVENT_INDEX(5) |
111 event_flags;
112
113 if (ctx->chip_class >= GFX9) {
114 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
115 radeon_emit(cs, op);
116 radeon_emit(cs, EOP_DATA_SEL(data_sel));
117 radeon_emit(cs, va); /* address lo */
118 radeon_emit(cs, va >> 32); /* address hi */
119 radeon_emit(cs, new_fence); /* immediate data lo */
120 radeon_emit(cs, 0); /* immediate data hi */
121 radeon_emit(cs, 0); /* unused */
122 } else {
123 if (ctx->chip_class == CIK ||
124 ctx->chip_class == VI) {
125 /* Two EOP events are required to make all engines go idle
126 * (and optional cache flushes executed) before the timestamp
127 * is written.
128 */
129 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
130 radeon_emit(cs, op);
131 radeon_emit(cs, va);
132 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
133 radeon_emit(cs, old_fence); /* immediate data */
134 radeon_emit(cs, 0); /* unused */
135 }
136
137 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
138 radeon_emit(cs, op);
139 radeon_emit(cs, va);
140 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
141 radeon_emit(cs, new_fence); /* immediate data */
142 radeon_emit(cs, 0); /* unused */
143 }
144
145 if (buf)
146 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
147 RADEON_PRIO_QUERY);
148 }
149
150 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
151 {
152 unsigned dwords = 6;
153
154 if (screen->chip_class == CIK ||
155 screen->chip_class == VI)
156 dwords *= 2;
157
158 if (!screen->info.has_virtual_memory)
159 dwords += 2;
160
161 return dwords;
162 }
163
164 void r600_gfx_wait_fence(struct r600_common_context *ctx,
165 uint64_t va, uint32_t ref, uint32_t mask)
166 {
167 struct radeon_winsys_cs *cs = ctx->gfx.cs;
168
169 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
170 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
171 radeon_emit(cs, va);
172 radeon_emit(cs, va >> 32);
173 radeon_emit(cs, ref); /* reference value */
174 radeon_emit(cs, mask); /* mask */
175 radeon_emit(cs, 4); /* poll interval */
176 }
177
178 void r600_draw_rectangle(struct blitter_context *blitter,
179 int x1, int y1, int x2, int y2, float depth,
180 enum blitter_attrib_type type,
181 const union pipe_color_union *attrib)
182 {
183 struct r600_common_context *rctx =
184 (struct r600_common_context*)util_blitter_get_pipe(blitter);
185 struct pipe_viewport_state viewport;
186 struct pipe_resource *buf = NULL;
187 unsigned offset = 0;
188 float *vb;
189
190 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
191 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
192 return;
193 }
194
195 /* Some operations (like color resolve on r6xx) don't work
196 * with the conventional primitive types.
197 * One that works is PT_RECTLIST, which we use here. */
198
199 /* setup viewport */
200 viewport.scale[0] = 1.0f;
201 viewport.scale[1] = 1.0f;
202 viewport.scale[2] = 1.0f;
203 viewport.translate[0] = 0.0f;
204 viewport.translate[1] = 0.0f;
205 viewport.translate[2] = 0.0f;
206 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
207
208 /* Upload vertices. The hw rectangle has only 3 vertices,
209 * I guess the 4th one is derived from the first 3.
210 * The vertex specification should match u_blitter's vertex element state. */
211 u_upload_alloc(rctx->b.stream_uploader, 0, sizeof(float) * 24,
212 rctx->screen->info.tcc_cache_line_size,
213 &offset, &buf, (void**)&vb);
214 if (!buf)
215 return;
216
217 vb[0] = x1;
218 vb[1] = y1;
219 vb[2] = depth;
220 vb[3] = 1;
221
222 vb[8] = x1;
223 vb[9] = y2;
224 vb[10] = depth;
225 vb[11] = 1;
226
227 vb[16] = x2;
228 vb[17] = y1;
229 vb[18] = depth;
230 vb[19] = 1;
231
232 if (attrib) {
233 memcpy(vb+4, attrib->f, sizeof(float)*4);
234 memcpy(vb+12, attrib->f, sizeof(float)*4);
235 memcpy(vb+20, attrib->f, sizeof(float)*4);
236 }
237
238 /* draw */
239 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
240 R600_PRIM_RECTANGLE_LIST, 3, 2);
241 pipe_resource_reference(&buf, NULL);
242 }
243
244 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
245 {
246 struct radeon_winsys_cs *cs = rctx->dma.cs;
247
248 /* NOP waits for idle on Evergreen and later. */
249 if (rctx->chip_class >= CIK)
250 radeon_emit(cs, 0x00000000); /* NOP */
251 else if (rctx->chip_class >= EVERGREEN)
252 radeon_emit(cs, 0xf0000000); /* NOP */
253 else {
254 /* TODO: R600-R700 should use the FENCE packet.
255 * CS checker support is required. */
256 }
257 }
258
259 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
260 struct r600_resource *dst, struct r600_resource *src)
261 {
262 uint64_t vram = ctx->dma.cs->used_vram;
263 uint64_t gtt = ctx->dma.cs->used_gart;
264
265 if (dst) {
266 vram += dst->vram_usage;
267 gtt += dst->gart_usage;
268 }
269 if (src) {
270 vram += src->vram_usage;
271 gtt += src->gart_usage;
272 }
273
274 /* Flush the GFX IB if DMA depends on it. */
275 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
276 ((dst &&
277 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
278 RADEON_USAGE_READWRITE)) ||
279 (src &&
280 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
281 RADEON_USAGE_WRITE))))
282 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
283
284 /* Flush if there's not enough space, or if the memory usage per IB
285 * is too large.
286 *
287 * IBs using too little memory are limited by the IB submission overhead.
288 * IBs using too much memory are limited by the kernel/TTM overhead.
289 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
290 *
291 * This heuristic makes sure that DMA requests are executed
292 * very soon after the call is made and lowers memory usage.
293 * It improves texture upload performance by keeping the DMA
294 * engine busy while uploads are being submitted.
295 */
296 num_dw++; /* for emit_wait_idle below */
297 if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
298 ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
299 !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
300 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
301 assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
302 }
303
304 /* Wait for idle if either buffer has been used in the IB before to
305 * prevent read-after-write hazards.
306 */
307 if ((dst &&
308 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
309 RADEON_USAGE_READWRITE)) ||
310 (src &&
311 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
312 RADEON_USAGE_WRITE)))
313 r600_dma_emit_wait_idle(ctx);
314
315 /* If GPUVM is not supported, the CS checker needs 2 entries
316 * in the buffer list per packet, which has to be done manually.
317 */
318 if (ctx->screen->info.has_virtual_memory) {
319 if (dst)
320 radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
321 RADEON_USAGE_WRITE,
322 RADEON_PRIO_SDMA_BUFFER);
323 if (src)
324 radeon_add_to_buffer_list(ctx, &ctx->dma, src,
325 RADEON_USAGE_READ,
326 RADEON_PRIO_SDMA_BUFFER);
327 }
328
329 /* this function is called before all DMA calls, so increment this. */
330 ctx->num_dma_calls++;
331 }
332
333 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
334 {
335 }
336
337 void r600_preflush_suspend_features(struct r600_common_context *ctx)
338 {
339 /* suspend queries */
340 if (!LIST_IS_EMPTY(&ctx->active_queries))
341 r600_suspend_queries(ctx);
342
343 ctx->streamout.suspended = false;
344 if (ctx->streamout.begin_emitted) {
345 r600_emit_streamout_end(ctx);
346 ctx->streamout.suspended = true;
347 }
348 }
349
350 void r600_postflush_resume_features(struct r600_common_context *ctx)
351 {
352 if (ctx->streamout.suspended) {
353 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
354 r600_streamout_buffers_dirty(ctx);
355 }
356
357 /* resume queries */
358 if (!LIST_IS_EMPTY(&ctx->active_queries))
359 r600_resume_queries(ctx);
360 }
361
362 static void r600_flush_from_st(struct pipe_context *ctx,
363 struct pipe_fence_handle **fence,
364 unsigned flags)
365 {
366 struct pipe_screen *screen = ctx->screen;
367 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
368 struct radeon_winsys *ws = rctx->ws;
369 struct pipe_fence_handle *gfx_fence = NULL;
370 struct pipe_fence_handle *sdma_fence = NULL;
371 bool deferred_fence = false;
372 unsigned rflags = RADEON_FLUSH_ASYNC;
373
374 if (flags & PIPE_FLUSH_END_OF_FRAME)
375 rflags |= RADEON_FLUSH_END_OF_FRAME;
376
377 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
378 if (rctx->dma.cs)
379 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
380
381 if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
382 if (fence)
383 ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
384 if (!(flags & PIPE_FLUSH_DEFERRED))
385 ws->cs_sync_flush(rctx->gfx.cs);
386 } else {
387 /* Instead of flushing, create a deferred fence. Constraints:
388 * - The state tracker must allow a deferred flush.
389 * - The state tracker must request a fence.
390 * Thread safety in fence_finish must be ensured by the state tracker.
391 */
392 if (flags & PIPE_FLUSH_DEFERRED && fence) {
393 gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
394 deferred_fence = true;
395 } else {
396 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
397 }
398 }
399
400 /* Both engines can signal out of order, so we need to keep both fences. */
401 if (fence) {
402 struct r600_multi_fence *multi_fence =
403 CALLOC_STRUCT(r600_multi_fence);
404 if (!multi_fence)
405 return;
406
407 multi_fence->reference.count = 1;
408 /* If both fences are NULL, fence_finish will always return true. */
409 multi_fence->gfx = gfx_fence;
410 multi_fence->sdma = sdma_fence;
411
412 if (deferred_fence) {
413 multi_fence->gfx_unflushed.ctx = rctx;
414 multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
415 }
416
417 screen->fence_reference(screen, fence, NULL);
418 *fence = (struct pipe_fence_handle*)multi_fence;
419 }
420
421 if (!(flags & PIPE_FLUSH_DEFERRED)) {
422 if (rctx->dma.cs)
423 ws->cs_sync_flush(rctx->dma.cs);
424 ws->cs_sync_flush(rctx->gfx.cs);
425 }
426 }
427
428 static void r600_flush_dma_ring(void *ctx, unsigned flags,
429 struct pipe_fence_handle **fence)
430 {
431 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
432 struct radeon_winsys_cs *cs = rctx->dma.cs;
433 struct radeon_saved_cs saved;
434 bool check_vm =
435 (rctx->screen->debug_flags & DBG_CHECK_VM) &&
436 rctx->check_vm_faults;
437
438 if (!radeon_emitted(cs, 0)) {
439 if (fence)
440 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
441 return;
442 }
443
444 if (check_vm)
445 radeon_save_cs(rctx->ws, cs, &saved);
446
447 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
448 if (fence)
449 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
450
451 if (check_vm) {
452 /* Use conservative timeout 800ms, after which we won't wait any
453 * longer and assume the GPU is hung.
454 */
455 rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
456
457 rctx->check_vm_faults(rctx, &saved, RING_DMA);
458 radeon_clear_saved_cs(&saved);
459 }
460 }
461
462 /**
463 * Store a linearized copy of all chunks of \p cs together with the buffer
464 * list in \p saved.
465 */
466 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
467 struct radeon_saved_cs *saved)
468 {
469 void *buf;
470 unsigned i;
471
472 /* Save the IB chunks. */
473 saved->num_dw = cs->prev_dw + cs->current.cdw;
474 saved->ib = MALLOC(4 * saved->num_dw);
475 if (!saved->ib)
476 goto oom;
477
478 buf = saved->ib;
479 for (i = 0; i < cs->num_prev; ++i) {
480 memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
481 buf += cs->prev[i].cdw;
482 }
483 memcpy(buf, cs->current.buf, cs->current.cdw * 4);
484
485 /* Save the buffer list. */
486 saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
487 saved->bo_list = CALLOC(saved->bo_count,
488 sizeof(saved->bo_list[0]));
489 if (!saved->bo_list) {
490 FREE(saved->ib);
491 goto oom;
492 }
493 ws->cs_get_buffer_list(cs, saved->bo_list);
494
495 return;
496
497 oom:
498 fprintf(stderr, "%s: out of memory\n", __func__);
499 memset(saved, 0, sizeof(*saved));
500 }
501
502 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
503 {
504 FREE(saved->ib);
505 FREE(saved->bo_list);
506
507 memset(saved, 0, sizeof(*saved));
508 }
509
510 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
511 {
512 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
513 unsigned latest = rctx->ws->query_value(rctx->ws,
514 RADEON_GPU_RESET_COUNTER);
515
516 if (rctx->gpu_reset_counter == latest)
517 return PIPE_NO_RESET;
518
519 rctx->gpu_reset_counter = latest;
520 return PIPE_UNKNOWN_CONTEXT_RESET;
521 }
522
523 static void r600_set_debug_callback(struct pipe_context *ctx,
524 const struct pipe_debug_callback *cb)
525 {
526 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
527
528 if (cb)
529 rctx->debug = *cb;
530 else
531 memset(&rctx->debug, 0, sizeof(rctx->debug));
532 }
533
534 static void r600_set_device_reset_callback(struct pipe_context *ctx,
535 const struct pipe_device_reset_callback *cb)
536 {
537 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
538
539 if (cb)
540 rctx->device_reset_callback = *cb;
541 else
542 memset(&rctx->device_reset_callback, 0,
543 sizeof(rctx->device_reset_callback));
544 }
545
546 bool r600_check_device_reset(struct r600_common_context *rctx)
547 {
548 enum pipe_reset_status status;
549
550 if (!rctx->device_reset_callback.reset)
551 return false;
552
553 if (!rctx->b.get_device_reset_status)
554 return false;
555
556 status = rctx->b.get_device_reset_status(&rctx->b);
557 if (status == PIPE_NO_RESET)
558 return false;
559
560 rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
561 return true;
562 }
563
564 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
565 struct pipe_resource *dst,
566 uint64_t offset, uint64_t size,
567 unsigned value)
568 {
569 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
570
571 rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
572 }
573
574 static bool r600_resource_commit(struct pipe_context *pctx,
575 struct pipe_resource *resource,
576 unsigned level, struct pipe_box *box,
577 bool commit)
578 {
579 struct r600_common_context *ctx = (struct r600_common_context *)pctx;
580 struct r600_resource *res = r600_resource(resource);
581
582 /*
583 * Since buffer commitment changes cannot be pipelined, we need to
584 * (a) flush any pending commands that refer to the buffer we're about
585 * to change, and
586 * (b) wait for threaded submit to finish, including those that were
587 * triggered by some other, earlier operation.
588 */
589 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
590 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs,
591 res->buf, RADEON_USAGE_READWRITE)) {
592 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
593 }
594 if (radeon_emitted(ctx->dma.cs, 0) &&
595 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs,
596 res->buf, RADEON_USAGE_READWRITE)) {
597 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
598 }
599
600 ctx->ws->cs_sync_flush(ctx->dma.cs);
601 ctx->ws->cs_sync_flush(ctx->gfx.cs);
602
603 assert(resource->target == PIPE_BUFFER);
604
605 return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit);
606 }
607
608 bool r600_common_context_init(struct r600_common_context *rctx,
609 struct r600_common_screen *rscreen,
610 unsigned context_flags)
611 {
612 slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
613
614 rctx->screen = rscreen;
615 rctx->ws = rscreen->ws;
616 rctx->family = rscreen->family;
617 rctx->chip_class = rscreen->chip_class;
618
619 rctx->b.invalidate_resource = r600_invalidate_resource;
620 rctx->b.resource_commit = r600_resource_commit;
621 rctx->b.transfer_map = u_transfer_map_vtbl;
622 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
623 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
624 rctx->b.texture_subdata = u_default_texture_subdata;
625 rctx->b.memory_barrier = r600_memory_barrier;
626 rctx->b.flush = r600_flush_from_st;
627 rctx->b.set_debug_callback = r600_set_debug_callback;
628 rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
629
630 /* evergreen_compute.c has a special codepath for global buffers.
631 * Everything else can use the direct path.
632 */
633 if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
634 (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
635 rctx->b.buffer_subdata = u_default_buffer_subdata;
636 else
637 rctx->b.buffer_subdata = r600_buffer_subdata;
638
639 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
640 rctx->b.get_device_reset_status = r600_get_reset_status;
641 rctx->gpu_reset_counter =
642 rctx->ws->query_value(rctx->ws,
643 RADEON_GPU_RESET_COUNTER);
644 }
645
646 rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
647
648 r600_init_context_texture_functions(rctx);
649 r600_init_viewport_functions(rctx);
650 r600_streamout_init(rctx);
651 r600_query_init(rctx);
652 cayman_init_msaa(&rctx->b);
653
654 rctx->allocator_zeroed_memory =
655 u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
656 0, PIPE_USAGE_DEFAULT, 0, true);
657 if (!rctx->allocator_zeroed_memory)
658 return false;
659
660 rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024,
661 0, PIPE_USAGE_STREAM);
662 if (!rctx->b.stream_uploader)
663 return false;
664
665 rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024,
666 0, PIPE_USAGE_DEFAULT);
667 if (!rctx->b.const_uploader)
668 return false;
669
670 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
671 if (!rctx->ctx)
672 return false;
673
674 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
675 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
676 r600_flush_dma_ring,
677 rctx);
678 rctx->dma.flush = r600_flush_dma_ring;
679 }
680
681 return true;
682 }
683
684 void r600_common_context_cleanup(struct r600_common_context *rctx)
685 {
686 unsigned i,j;
687
688 /* Release DCC stats. */
689 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
690 assert(!rctx->dcc_stats[i].query_active);
691
692 for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
693 if (rctx->dcc_stats[i].ps_stats[j])
694 rctx->b.destroy_query(&rctx->b,
695 rctx->dcc_stats[i].ps_stats[j]);
696
697 r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
698 }
699
700 if (rctx->query_result_shader)
701 rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
702
703 if (rctx->gfx.cs)
704 rctx->ws->cs_destroy(rctx->gfx.cs);
705 if (rctx->dma.cs)
706 rctx->ws->cs_destroy(rctx->dma.cs);
707 if (rctx->ctx)
708 rctx->ws->ctx_destroy(rctx->ctx);
709
710 if (rctx->b.stream_uploader)
711 u_upload_destroy(rctx->b.stream_uploader);
712 if (rctx->b.const_uploader)
713 u_upload_destroy(rctx->b.const_uploader);
714
715 slab_destroy_child(&rctx->pool_transfers);
716
717 if (rctx->allocator_zeroed_memory) {
718 u_suballocator_destroy(rctx->allocator_zeroed_memory);
719 }
720 rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
721 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
722 }
723
724 /*
725 * pipe_screen
726 */
727
728 static const struct debug_named_value common_debug_options[] = {
729 /* logging */
730 { "tex", DBG_TEX, "Print texture info" },
731 { "compute", DBG_COMPUTE, "Print compute info" },
732 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
733 { "info", DBG_INFO, "Print driver information" },
734
735 /* shaders */
736 { "fs", DBG_FS, "Print fetch shaders" },
737 { "vs", DBG_VS, "Print vertex shaders" },
738 { "gs", DBG_GS, "Print geometry shaders" },
739 { "ps", DBG_PS, "Print pixel shaders" },
740 { "cs", DBG_CS, "Print compute shaders" },
741 { "tcs", DBG_TCS, "Print tessellation control shaders" },
742 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
743 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
744 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
745 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
746 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
747 { "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
748 { "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
749
750 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
751 { "testvmfaultcp", DBG_TEST_VMFAULT_CP, "Invoke a CP VM fault test and exit." },
752 { "testvmfaultsdma", DBG_TEST_VMFAULT_SDMA, "Invoke a SDMA VM fault test and exit." },
753 { "testvmfaultshader", DBG_TEST_VMFAULT_SHADER, "Invoke a shader VM fault test and exit." },
754
755 /* features */
756 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
757 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
758 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
759 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
760 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
761 { "notiling", DBG_NO_TILING, "Disable tiling" },
762 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
763 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
764 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
765 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
766 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
767 { "nodcc", DBG_NO_DCC, "Disable DCC." },
768 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
769 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+." },
770 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
771 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
772 { "noce", DBG_NO_CE, "Disable the constant engine"},
773 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
774 { "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
775
776 DEBUG_NAMED_VALUE_END /* must be last */
777 };
778
779 static const char* r600_get_vendor(struct pipe_screen* pscreen)
780 {
781 return "X.Org";
782 }
783
784 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
785 {
786 return "AMD";
787 }
788
789 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
790 {
791 switch (rscreen->info.family) {
792 case CHIP_R600: return "AMD R600";
793 case CHIP_RV610: return "AMD RV610";
794 case CHIP_RV630: return "AMD RV630";
795 case CHIP_RV670: return "AMD RV670";
796 case CHIP_RV620: return "AMD RV620";
797 case CHIP_RV635: return "AMD RV635";
798 case CHIP_RS780: return "AMD RS780";
799 case CHIP_RS880: return "AMD RS880";
800 case CHIP_RV770: return "AMD RV770";
801 case CHIP_RV730: return "AMD RV730";
802 case CHIP_RV710: return "AMD RV710";
803 case CHIP_RV740: return "AMD RV740";
804 case CHIP_CEDAR: return "AMD CEDAR";
805 case CHIP_REDWOOD: return "AMD REDWOOD";
806 case CHIP_JUNIPER: return "AMD JUNIPER";
807 case CHIP_CYPRESS: return "AMD CYPRESS";
808 case CHIP_HEMLOCK: return "AMD HEMLOCK";
809 case CHIP_PALM: return "AMD PALM";
810 case CHIP_SUMO: return "AMD SUMO";
811 case CHIP_SUMO2: return "AMD SUMO2";
812 case CHIP_BARTS: return "AMD BARTS";
813 case CHIP_TURKS: return "AMD TURKS";
814 case CHIP_CAICOS: return "AMD CAICOS";
815 case CHIP_CAYMAN: return "AMD CAYMAN";
816 case CHIP_ARUBA: return "AMD ARUBA";
817 case CHIP_TAHITI: return "AMD TAHITI";
818 case CHIP_PITCAIRN: return "AMD PITCAIRN";
819 case CHIP_VERDE: return "AMD CAPE VERDE";
820 case CHIP_OLAND: return "AMD OLAND";
821 case CHIP_HAINAN: return "AMD HAINAN";
822 case CHIP_BONAIRE: return "AMD BONAIRE";
823 case CHIP_KAVERI: return "AMD KAVERI";
824 case CHIP_KABINI: return "AMD KABINI";
825 case CHIP_HAWAII: return "AMD HAWAII";
826 case CHIP_MULLINS: return "AMD MULLINS";
827 case CHIP_TONGA: return "AMD TONGA";
828 case CHIP_ICELAND: return "AMD ICELAND";
829 case CHIP_CARRIZO: return "AMD CARRIZO";
830 case CHIP_FIJI: return "AMD FIJI";
831 case CHIP_POLARIS10: return "AMD POLARIS10";
832 case CHIP_POLARIS11: return "AMD POLARIS11";
833 case CHIP_POLARIS12: return "AMD POLARIS12";
834 case CHIP_STONEY: return "AMD STONEY";
835 case CHIP_VEGA10: return "AMD VEGA10";
836 default: return "AMD unknown";
837 }
838 }
839
840 static void r600_disk_cache_create(struct r600_common_screen *rscreen)
841 {
842 /* Don't use the cache if shader dumping is enabled. */
843 if (rscreen->debug_flags &
844 (DBG_FS | DBG_VS | DBG_TCS | DBG_TES | DBG_GS | DBG_PS | DBG_CS))
845 return;
846
847 uint32_t mesa_timestamp;
848 if (disk_cache_get_function_timestamp(r600_disk_cache_create,
849 &mesa_timestamp)) {
850 char *timestamp_str;
851 int res = -1;
852 if (rscreen->chip_class < SI) {
853 res = asprintf(&timestamp_str, "%u",mesa_timestamp);
854 }
855 #if HAVE_LLVM
856 else {
857 uint32_t llvm_timestamp;
858 if (disk_cache_get_function_timestamp(LLVMInitializeAMDGPUTargetInfo,
859 &llvm_timestamp)) {
860 res = asprintf(&timestamp_str, "%u_%u",
861 mesa_timestamp, llvm_timestamp);
862 }
863 }
864 #endif
865 if (res != -1) {
866 rscreen->disk_shader_cache =
867 disk_cache_create(r600_get_chip_name(rscreen),
868 timestamp_str);
869 free(timestamp_str);
870 }
871 }
872 }
873
874 static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen)
875 {
876 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
877 return rscreen->disk_shader_cache;
878 }
879
880 static const char* r600_get_name(struct pipe_screen* pscreen)
881 {
882 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
883
884 return rscreen->renderer_string;
885 }
886
887 static float r600_get_paramf(struct pipe_screen* pscreen,
888 enum pipe_capf param)
889 {
890 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
891
892 switch (param) {
893 case PIPE_CAPF_MAX_LINE_WIDTH:
894 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
895 case PIPE_CAPF_MAX_POINT_WIDTH:
896 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
897 if (rscreen->family >= CHIP_CEDAR)
898 return 16384.0f;
899 else
900 return 8192.0f;
901 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
902 return 16.0f;
903 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
904 return 16.0f;
905 case PIPE_CAPF_GUARD_BAND_LEFT:
906 case PIPE_CAPF_GUARD_BAND_TOP:
907 case PIPE_CAPF_GUARD_BAND_RIGHT:
908 case PIPE_CAPF_GUARD_BAND_BOTTOM:
909 return 0.0f;
910 }
911 return 0.0f;
912 }
913
914 static int r600_get_video_param(struct pipe_screen *screen,
915 enum pipe_video_profile profile,
916 enum pipe_video_entrypoint entrypoint,
917 enum pipe_video_cap param)
918 {
919 switch (param) {
920 case PIPE_VIDEO_CAP_SUPPORTED:
921 return vl_profile_supported(screen, profile, entrypoint);
922 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
923 return 1;
924 case PIPE_VIDEO_CAP_MAX_WIDTH:
925 case PIPE_VIDEO_CAP_MAX_HEIGHT:
926 return vl_video_buffer_max_size(screen);
927 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
928 return PIPE_FORMAT_NV12;
929 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
930 return false;
931 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
932 return false;
933 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
934 return true;
935 case PIPE_VIDEO_CAP_MAX_LEVEL:
936 return vl_level_supported(screen, profile);
937 default:
938 return 0;
939 }
940 }
941
942 const char *r600_get_llvm_processor_name(enum radeon_family family)
943 {
944 switch (family) {
945 case CHIP_R600:
946 case CHIP_RV630:
947 case CHIP_RV635:
948 case CHIP_RV670:
949 return "r600";
950 case CHIP_RV610:
951 case CHIP_RV620:
952 case CHIP_RS780:
953 case CHIP_RS880:
954 return "rs880";
955 case CHIP_RV710:
956 return "rv710";
957 case CHIP_RV730:
958 return "rv730";
959 case CHIP_RV740:
960 case CHIP_RV770:
961 return "rv770";
962 case CHIP_PALM:
963 case CHIP_CEDAR:
964 return "cedar";
965 case CHIP_SUMO:
966 case CHIP_SUMO2:
967 return "sumo";
968 case CHIP_REDWOOD:
969 return "redwood";
970 case CHIP_JUNIPER:
971 return "juniper";
972 case CHIP_HEMLOCK:
973 case CHIP_CYPRESS:
974 return "cypress";
975 case CHIP_BARTS:
976 return "barts";
977 case CHIP_TURKS:
978 return "turks";
979 case CHIP_CAICOS:
980 return "caicos";
981 case CHIP_CAYMAN:
982 case CHIP_ARUBA:
983 return "cayman";
984
985 case CHIP_TAHITI: return "tahiti";
986 case CHIP_PITCAIRN: return "pitcairn";
987 case CHIP_VERDE: return "verde";
988 case CHIP_OLAND: return "oland";
989 case CHIP_HAINAN: return "hainan";
990 case CHIP_BONAIRE: return "bonaire";
991 case CHIP_KABINI: return "kabini";
992 case CHIP_KAVERI: return "kaveri";
993 case CHIP_HAWAII: return "hawaii";
994 case CHIP_MULLINS:
995 return "mullins";
996 case CHIP_TONGA: return "tonga";
997 case CHIP_ICELAND: return "iceland";
998 case CHIP_CARRIZO: return "carrizo";
999 case CHIP_FIJI:
1000 return "fiji";
1001 case CHIP_STONEY:
1002 return "stoney";
1003 case CHIP_POLARIS10:
1004 return "polaris10";
1005 case CHIP_POLARIS11:
1006 case CHIP_POLARIS12: /* same as polaris11 */
1007 return "polaris11";
1008 case CHIP_VEGA10:
1009 return "gfx900";
1010 default:
1011 return "";
1012 }
1013 }
1014
1015 static int r600_get_compute_param(struct pipe_screen *screen,
1016 enum pipe_shader_ir ir_type,
1017 enum pipe_compute_cap param,
1018 void *ret)
1019 {
1020 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
1021
1022 //TODO: select these params by asic
1023 switch (param) {
1024 case PIPE_COMPUTE_CAP_IR_TARGET: {
1025 const char *gpu;
1026 const char *triple;
1027 if (rscreen->family <= CHIP_ARUBA) {
1028 triple = "r600--";
1029 } else {
1030 if (HAVE_LLVM < 0x0400) {
1031 triple = "amdgcn--";
1032 } else {
1033 triple = "amdgcn-mesa-mesa3d";
1034 }
1035 }
1036 switch(rscreen->family) {
1037 /* Clang < 3.6 is missing Hainan in its list of
1038 * GPUs, so we need to use the name of a similar GPU.
1039 */
1040 default:
1041 gpu = r600_get_llvm_processor_name(rscreen->family);
1042 break;
1043 }
1044 if (ret) {
1045 sprintf(ret, "%s-%s", gpu, triple);
1046 }
1047 /* +2 for dash and terminating NIL byte */
1048 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
1049 }
1050 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
1051 if (ret) {
1052 uint64_t *grid_dimension = ret;
1053 grid_dimension[0] = 3;
1054 }
1055 return 1 * sizeof(uint64_t);
1056
1057 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
1058 if (ret) {
1059 uint64_t *grid_size = ret;
1060 grid_size[0] = 65535;
1061 grid_size[1] = 65535;
1062 grid_size[2] = 65535;
1063 }
1064 return 3 * sizeof(uint64_t) ;
1065
1066 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
1067 if (ret) {
1068 uint64_t *block_size = ret;
1069 if (rscreen->chip_class >= SI &&
1070 ir_type == PIPE_SHADER_IR_TGSI) {
1071 block_size[0] = 2048;
1072 block_size[1] = 2048;
1073 block_size[2] = 2048;
1074 } else {
1075 block_size[0] = 256;
1076 block_size[1] = 256;
1077 block_size[2] = 256;
1078 }
1079 }
1080 return 3 * sizeof(uint64_t);
1081
1082 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
1083 if (ret) {
1084 uint64_t *max_threads_per_block = ret;
1085 if (rscreen->chip_class >= SI &&
1086 ir_type == PIPE_SHADER_IR_TGSI)
1087 *max_threads_per_block = 2048;
1088 else
1089 *max_threads_per_block = 256;
1090 }
1091 return sizeof(uint64_t);
1092 case PIPE_COMPUTE_CAP_ADDRESS_BITS:
1093 if (ret) {
1094 uint32_t *address_bits = ret;
1095 address_bits[0] = 32;
1096 if (rscreen->chip_class >= SI)
1097 address_bits[0] = 64;
1098 }
1099 return 1 * sizeof(uint32_t);
1100
1101 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
1102 if (ret) {
1103 uint64_t *max_global_size = ret;
1104 uint64_t max_mem_alloc_size;
1105
1106 r600_get_compute_param(screen, ir_type,
1107 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
1108 &max_mem_alloc_size);
1109
1110 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
1111 * 1/4 of the MAX_GLOBAL_SIZE. Since the
1112 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
1113 * make sure we never report more than
1114 * 4 * MAX_MEM_ALLOC_SIZE.
1115 */
1116 *max_global_size = MIN2(4 * max_mem_alloc_size,
1117 MAX2(rscreen->info.gart_size,
1118 rscreen->info.vram_size));
1119 }
1120 return sizeof(uint64_t);
1121
1122 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1123 if (ret) {
1124 uint64_t *max_local_size = ret;
1125 /* Value reported by the closed source driver. */
1126 *max_local_size = 32768;
1127 }
1128 return sizeof(uint64_t);
1129
1130 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1131 if (ret) {
1132 uint64_t *max_input_size = ret;
1133 /* Value reported by the closed source driver. */
1134 *max_input_size = 1024;
1135 }
1136 return sizeof(uint64_t);
1137
1138 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1139 if (ret) {
1140 uint64_t *max_mem_alloc_size = ret;
1141
1142 *max_mem_alloc_size = rscreen->info.max_alloc_size;
1143 }
1144 return sizeof(uint64_t);
1145
1146 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1147 if (ret) {
1148 uint32_t *max_clock_frequency = ret;
1149 *max_clock_frequency = rscreen->info.max_shader_clock;
1150 }
1151 return sizeof(uint32_t);
1152
1153 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1154 if (ret) {
1155 uint32_t *max_compute_units = ret;
1156 *max_compute_units = rscreen->info.num_good_compute_units;
1157 }
1158 return sizeof(uint32_t);
1159
1160 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1161 if (ret) {
1162 uint32_t *images_supported = ret;
1163 *images_supported = 0;
1164 }
1165 return sizeof(uint32_t);
1166 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1167 break; /* unused */
1168 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1169 if (ret) {
1170 uint32_t *subgroup_size = ret;
1171 *subgroup_size = r600_wavefront_size(rscreen->family);
1172 }
1173 return sizeof(uint32_t);
1174 case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1175 if (ret) {
1176 uint64_t *max_variable_threads_per_block = ret;
1177 if (rscreen->chip_class >= SI &&
1178 ir_type == PIPE_SHADER_IR_TGSI)
1179 *max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
1180 else
1181 *max_variable_threads_per_block = 0;
1182 }
1183 return sizeof(uint64_t);
1184 }
1185
1186 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1187 return 0;
1188 }
1189
1190 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1191 {
1192 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1193
1194 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1195 rscreen->info.clock_crystal_freq;
1196 }
1197
1198 static void r600_fence_reference(struct pipe_screen *screen,
1199 struct pipe_fence_handle **dst,
1200 struct pipe_fence_handle *src)
1201 {
1202 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1203 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1204 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1205
1206 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1207 ws->fence_reference(&(*rdst)->gfx, NULL);
1208 ws->fence_reference(&(*rdst)->sdma, NULL);
1209 FREE(*rdst);
1210 }
1211 *rdst = rsrc;
1212 }
1213
1214 static boolean r600_fence_finish(struct pipe_screen *screen,
1215 struct pipe_context *ctx,
1216 struct pipe_fence_handle *fence,
1217 uint64_t timeout)
1218 {
1219 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1220 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1221 struct r600_common_context *rctx =
1222 ctx ? (struct r600_common_context*)ctx : NULL;
1223 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1224
1225 if (rfence->sdma) {
1226 if (!rws->fence_wait(rws, rfence->sdma, timeout))
1227 return false;
1228
1229 /* Recompute the timeout after waiting. */
1230 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1231 int64_t time = os_time_get_nano();
1232 timeout = abs_timeout > time ? abs_timeout - time : 0;
1233 }
1234 }
1235
1236 if (!rfence->gfx)
1237 return true;
1238
1239 /* Flush the gfx IB if it hasn't been flushed yet. */
1240 if (rctx &&
1241 rfence->gfx_unflushed.ctx == rctx &&
1242 rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1243 rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1244 rfence->gfx_unflushed.ctx = NULL;
1245
1246 if (!timeout)
1247 return false;
1248
1249 /* Recompute the timeout after all that. */
1250 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1251 int64_t time = os_time_get_nano();
1252 timeout = abs_timeout > time ? abs_timeout - time : 0;
1253 }
1254 }
1255
1256 return rws->fence_wait(rws, rfence->gfx, timeout);
1257 }
1258
1259 static void r600_query_memory_info(struct pipe_screen *screen,
1260 struct pipe_memory_info *info)
1261 {
1262 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1263 struct radeon_winsys *ws = rscreen->ws;
1264 unsigned vram_usage, gtt_usage;
1265
1266 info->total_device_memory = rscreen->info.vram_size / 1024;
1267 info->total_staging_memory = rscreen->info.gart_size / 1024;
1268
1269 /* The real TTM memory usage is somewhat random, because:
1270 *
1271 * 1) TTM delays freeing memory, because it can only free it after
1272 * fences expire.
1273 *
1274 * 2) The memory usage can be really low if big VRAM evictions are
1275 * taking place, but the real usage is well above the size of VRAM.
1276 *
1277 * Instead, return statistics of this process.
1278 */
1279 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1280 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1281
1282 info->avail_device_memory =
1283 vram_usage <= info->total_device_memory ?
1284 info->total_device_memory - vram_usage : 0;
1285 info->avail_staging_memory =
1286 gtt_usage <= info->total_staging_memory ?
1287 info->total_staging_memory - gtt_usage : 0;
1288
1289 info->device_memory_evicted =
1290 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1291
1292 if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1293 info->nr_device_memory_evictions =
1294 ws->query_value(ws, RADEON_NUM_EVICTIONS);
1295 else
1296 /* Just return the number of evicted 64KB pages. */
1297 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1298 }
1299
1300 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1301 const struct pipe_resource *templ)
1302 {
1303 if (templ->target == PIPE_BUFFER) {
1304 return r600_buffer_create(screen, templ, 256);
1305 } else {
1306 return r600_texture_create(screen, templ);
1307 }
1308 }
1309
1310 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1311 struct radeon_winsys *ws)
1312 {
1313 char llvm_string[32] = {}, kernel_version[128] = {};
1314 struct utsname uname_data;
1315
1316 ws->query_info(ws, &rscreen->info);
1317
1318 if (uname(&uname_data) == 0)
1319 snprintf(kernel_version, sizeof(kernel_version),
1320 " / %s", uname_data.release);
1321
1322 if (HAVE_LLVM > 0) {
1323 snprintf(llvm_string, sizeof(llvm_string),
1324 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1325 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1326 }
1327
1328 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1329 "%s (DRM %i.%i.%i%s%s)",
1330 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1331 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1332 kernel_version, llvm_string);
1333
1334 rscreen->b.get_name = r600_get_name;
1335 rscreen->b.get_vendor = r600_get_vendor;
1336 rscreen->b.get_device_vendor = r600_get_device_vendor;
1337 rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache;
1338 rscreen->b.get_compute_param = r600_get_compute_param;
1339 rscreen->b.get_paramf = r600_get_paramf;
1340 rscreen->b.get_timestamp = r600_get_timestamp;
1341 rscreen->b.fence_finish = r600_fence_finish;
1342 rscreen->b.fence_reference = r600_fence_reference;
1343 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1344 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1345 rscreen->b.query_memory_info = r600_query_memory_info;
1346
1347 if (rscreen->info.has_uvd) {
1348 rscreen->b.get_video_param = rvid_get_video_param;
1349 rscreen->b.is_video_format_supported = rvid_is_format_supported;
1350 } else {
1351 rscreen->b.get_video_param = r600_get_video_param;
1352 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1353 }
1354
1355 r600_init_screen_texture_functions(rscreen);
1356 r600_init_screen_query_functions(rscreen);
1357
1358 rscreen->ws = ws;
1359 rscreen->family = rscreen->info.family;
1360 rscreen->chip_class = rscreen->info.chip_class;
1361 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1362 rscreen->has_rbplus = false;
1363 rscreen->rbplus_allowed = false;
1364
1365 r600_disk_cache_create(rscreen);
1366
1367 slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1368
1369 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1370 if (rscreen->force_aniso >= 0) {
1371 printf("radeon: Forcing anisotropy filter to %ix\n",
1372 /* round down to a power of two */
1373 1 << util_logbase2(rscreen->force_aniso));
1374 }
1375
1376 util_format_s3tc_init();
1377 (void) mtx_init(&rscreen->aux_context_lock, mtx_plain);
1378 (void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain);
1379
1380 if (rscreen->debug_flags & DBG_INFO) {
1381 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1382 printf("family = %i (%s)\n", rscreen->info.family,
1383 r600_get_chip_name(rscreen));
1384 printf("chip_class = %i\n", rscreen->info.chip_class);
1385 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1386 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1387 printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size, 1024*1024));
1388 printf("max_alloc_size = %i MB\n",
1389 (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1390 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1391 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1392 printf("has_sdma = %i\n", rscreen->info.has_sdma);
1393 printf("has_uvd = %i\n", rscreen->info.has_uvd);
1394 printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1395 printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1396 printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1397 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1398 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1399 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1400 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1401 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1402 printf("has_userptr = %i\n", rscreen->info.has_userptr);
1403
1404 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1405 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1406 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1407 printf("max_se = %i\n", rscreen->info.max_se);
1408 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1409
1410 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1411 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1412 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1413 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1414 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1415 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1416 printf("enabled_rb_mask = 0x%x\n", rscreen->info.enabled_rb_mask);
1417 }
1418 return true;
1419 }
1420
1421 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1422 {
1423 r600_perfcounters_destroy(rscreen);
1424 r600_gpu_load_kill_thread(rscreen);
1425
1426 mtx_destroy(&rscreen->gpu_load_mutex);
1427 mtx_destroy(&rscreen->aux_context_lock);
1428 rscreen->aux_context->destroy(rscreen->aux_context);
1429
1430 slab_destroy_parent(&rscreen->pool_transfers);
1431
1432 disk_cache_destroy(rscreen->disk_shader_cache);
1433 rscreen->ws->destroy(rscreen->ws);
1434 FREE(rscreen);
1435 }
1436
1437 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1438 unsigned processor)
1439 {
1440 switch (processor) {
1441 case PIPE_SHADER_VERTEX:
1442 return (rscreen->debug_flags & DBG_VS) != 0;
1443 case PIPE_SHADER_TESS_CTRL:
1444 return (rscreen->debug_flags & DBG_TCS) != 0;
1445 case PIPE_SHADER_TESS_EVAL:
1446 return (rscreen->debug_flags & DBG_TES) != 0;
1447 case PIPE_SHADER_GEOMETRY:
1448 return (rscreen->debug_flags & DBG_GS) != 0;
1449 case PIPE_SHADER_FRAGMENT:
1450 return (rscreen->debug_flags & DBG_PS) != 0;
1451 case PIPE_SHADER_COMPUTE:
1452 return (rscreen->debug_flags & DBG_CS) != 0;
1453 default:
1454 return false;
1455 }
1456 }
1457
1458 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1459 {
1460 return (rscreen->debug_flags & DBG_CHECK_IR) ||
1461 r600_can_dump_shader(rscreen, processor);
1462 }
1463
1464 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1465 uint64_t offset, uint64_t size, unsigned value)
1466 {
1467 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1468
1469 mtx_lock(&rscreen->aux_context_lock);
1470 rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1471 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1472 mtx_unlock(&rscreen->aux_context_lock);
1473 }