radeonsi: move scissor and viewport states into gallium/radeon
[mesa.git] / src / gallium / drivers / radeon / r600_pipe_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40
41 #ifndef HAVE_LLVM
42 #define HAVE_LLVM 0
43 #endif
44
45 struct r600_multi_fence {
46 struct pipe_reference reference;
47 struct pipe_fence_handle *gfx;
48 struct pipe_fence_handle *sdma;
49 };
50
51 /*
52 * shader binary helpers.
53 */
54 void radeon_shader_binary_init(struct radeon_shader_binary *b)
55 {
56 memset(b, 0, sizeof(*b));
57 }
58
59 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
60 {
61 if (!b)
62 return;
63 FREE(b->code);
64 FREE(b->config);
65 FREE(b->rodata);
66 FREE(b->global_symbol_offsets);
67 FREE(b->relocs);
68 FREE(b->disasm_string);
69 }
70
71 /*
72 * pipe_context
73 */
74
75 void r600_draw_rectangle(struct blitter_context *blitter,
76 int x1, int y1, int x2, int y2, float depth,
77 enum blitter_attrib_type type,
78 const union pipe_color_union *attrib)
79 {
80 struct r600_common_context *rctx =
81 (struct r600_common_context*)util_blitter_get_pipe(blitter);
82 struct pipe_viewport_state viewport;
83 struct pipe_resource *buf = NULL;
84 unsigned offset = 0;
85 float *vb;
86
87 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
88 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
89 return;
90 }
91
92 /* Some operations (like color resolve on r6xx) don't work
93 * with the conventional primitive types.
94 * One that works is PT_RECTLIST, which we use here. */
95
96 /* setup viewport */
97 viewport.scale[0] = 1.0f;
98 viewport.scale[1] = 1.0f;
99 viewport.scale[2] = 1.0f;
100 viewport.translate[0] = 0.0f;
101 viewport.translate[1] = 0.0f;
102 viewport.translate[2] = 0.0f;
103 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
104
105 /* Upload vertices. The hw rectangle has only 3 vertices,
106 * I guess the 4th one is derived from the first 3.
107 * The vertex specification should match u_blitter's vertex element state. */
108 u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
109 if (!buf)
110 return;
111
112 vb[0] = x1;
113 vb[1] = y1;
114 vb[2] = depth;
115 vb[3] = 1;
116
117 vb[8] = x1;
118 vb[9] = y2;
119 vb[10] = depth;
120 vb[11] = 1;
121
122 vb[16] = x2;
123 vb[17] = y1;
124 vb[18] = depth;
125 vb[19] = 1;
126
127 if (attrib) {
128 memcpy(vb+4, attrib->f, sizeof(float)*4);
129 memcpy(vb+12, attrib->f, sizeof(float)*4);
130 memcpy(vb+20, attrib->f, sizeof(float)*4);
131 }
132
133 /* draw */
134 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
135 R600_PRIM_RECTANGLE_LIST, 3, 2);
136 pipe_resource_reference(&buf, NULL);
137 }
138
139 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw)
140 {
141 /* Flush the GFX IB if it's not empty. */
142 if (ctx->gfx.cs->cdw > ctx->initial_gfx_cs_size)
143 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
144
145 /* Flush if there's not enough space. */
146 if ((num_dw + ctx->dma.cs->cdw) > ctx->dma.cs->max_dw) {
147 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
148 assert((num_dw + ctx->dma.cs->cdw) <= ctx->dma.cs->max_dw);
149 }
150 }
151
152 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
153 {
154 }
155
156 void r600_preflush_suspend_features(struct r600_common_context *ctx)
157 {
158 /* suspend queries */
159 if (!LIST_IS_EMPTY(&ctx->active_queries))
160 r600_suspend_queries(ctx);
161
162 ctx->streamout.suspended = false;
163 if (ctx->streamout.begin_emitted) {
164 r600_emit_streamout_end(ctx);
165 ctx->streamout.suspended = true;
166 }
167 }
168
169 void r600_postflush_resume_features(struct r600_common_context *ctx)
170 {
171 if (ctx->streamout.suspended) {
172 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
173 r600_streamout_buffers_dirty(ctx);
174 }
175
176 /* resume queries */
177 if (!LIST_IS_EMPTY(&ctx->active_queries))
178 r600_resume_queries(ctx);
179 }
180
181 static void r600_flush_from_st(struct pipe_context *ctx,
182 struct pipe_fence_handle **fence,
183 unsigned flags)
184 {
185 struct pipe_screen *screen = ctx->screen;
186 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
187 unsigned rflags = 0;
188 struct pipe_fence_handle *gfx_fence = NULL;
189 struct pipe_fence_handle *sdma_fence = NULL;
190
191 if (flags & PIPE_FLUSH_END_OF_FRAME)
192 rflags |= RADEON_FLUSH_END_OF_FRAME;
193
194 if (rctx->dma.cs) {
195 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
196 }
197 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
198
199 /* Both engines can signal out of order, so we need to keep both fences. */
200 if (gfx_fence || sdma_fence) {
201 struct r600_multi_fence *multi_fence =
202 CALLOC_STRUCT(r600_multi_fence);
203 if (!multi_fence)
204 return;
205
206 multi_fence->reference.count = 1;
207 multi_fence->gfx = gfx_fence;
208 multi_fence->sdma = sdma_fence;
209
210 screen->fence_reference(screen, fence, NULL);
211 *fence = (struct pipe_fence_handle*)multi_fence;
212 }
213 }
214
215 static void r600_flush_dma_ring(void *ctx, unsigned flags,
216 struct pipe_fence_handle **fence)
217 {
218 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
219 struct radeon_winsys_cs *cs = rctx->dma.cs;
220
221 if (cs->cdw)
222 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
223 if (fence)
224 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
225 }
226
227 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
228 {
229 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
230 unsigned latest = rctx->ws->query_value(rctx->ws,
231 RADEON_GPU_RESET_COUNTER);
232
233 if (rctx->gpu_reset_counter == latest)
234 return PIPE_NO_RESET;
235
236 rctx->gpu_reset_counter = latest;
237 return PIPE_UNKNOWN_CONTEXT_RESET;
238 }
239
240 static void r600_set_debug_callback(struct pipe_context *ctx,
241 const struct pipe_debug_callback *cb)
242 {
243 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
244
245 if (cb)
246 rctx->debug = *cb;
247 else
248 memset(&rctx->debug, 0, sizeof(rctx->debug));
249 }
250
251 bool r600_common_context_init(struct r600_common_context *rctx,
252 struct r600_common_screen *rscreen)
253 {
254 util_slab_create(&rctx->pool_transfers,
255 sizeof(struct r600_transfer), 64,
256 UTIL_SLAB_SINGLETHREADED);
257
258 rctx->screen = rscreen;
259 rctx->ws = rscreen->ws;
260 rctx->family = rscreen->family;
261 rctx->chip_class = rscreen->chip_class;
262
263 if (rscreen->chip_class >= CIK)
264 rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
265 else if (rscreen->chip_class >= EVERGREEN)
266 rctx->max_db = 8;
267 else
268 rctx->max_db = 4;
269
270 rctx->b.invalidate_resource = r600_invalidate_resource;
271 rctx->b.transfer_map = u_transfer_map_vtbl;
272 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
273 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
274 rctx->b.transfer_inline_write = u_default_transfer_inline_write;
275 rctx->b.memory_barrier = r600_memory_barrier;
276 rctx->b.flush = r600_flush_from_st;
277 rctx->b.set_debug_callback = r600_set_debug_callback;
278
279 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
280 rctx->b.get_device_reset_status = r600_get_reset_status;
281 rctx->gpu_reset_counter =
282 rctx->ws->query_value(rctx->ws,
283 RADEON_GPU_RESET_COUNTER);
284 }
285
286 LIST_INITHEAD(&rctx->texture_buffers);
287
288 r600_init_context_texture_functions(rctx);
289 r600_init_viewport_functions(rctx);
290 r600_streamout_init(rctx);
291 r600_query_init(rctx);
292 cayman_init_msaa(&rctx->b);
293
294 rctx->allocator_so_filled_size = u_suballocator_create(&rctx->b, 4096, 4,
295 0, PIPE_USAGE_DEFAULT, TRUE);
296 if (!rctx->allocator_so_filled_size)
297 return false;
298
299 rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
300 PIPE_BIND_INDEX_BUFFER |
301 PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
302 if (!rctx->uploader)
303 return false;
304
305 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
306 if (!rctx->ctx)
307 return false;
308
309 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
310 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
311 r600_flush_dma_ring,
312 rctx);
313 rctx->dma.flush = r600_flush_dma_ring;
314 }
315
316 return true;
317 }
318
319 void r600_common_context_cleanup(struct r600_common_context *rctx)
320 {
321 if (rctx->gfx.cs)
322 rctx->ws->cs_destroy(rctx->gfx.cs);
323 if (rctx->dma.cs)
324 rctx->ws->cs_destroy(rctx->dma.cs);
325 if (rctx->ctx)
326 rctx->ws->ctx_destroy(rctx->ctx);
327
328 if (rctx->uploader) {
329 u_upload_destroy(rctx->uploader);
330 }
331
332 util_slab_destroy(&rctx->pool_transfers);
333
334 if (rctx->allocator_so_filled_size) {
335 u_suballocator_destroy(rctx->allocator_so_filled_size);
336 }
337 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
338 }
339
340 void r600_context_add_resource_size(struct pipe_context *ctx, struct pipe_resource *r)
341 {
342 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
343 struct r600_resource *rr = (struct r600_resource *)r;
344
345 if (!r) {
346 return;
347 }
348
349 /*
350 * The idea is to compute a gross estimate of memory requirement of
351 * each draw call. After each draw call, memory will be precisely
352 * accounted. So the uncertainty is only on the current draw call.
353 * In practice this gave very good estimate (+/- 10% of the target
354 * memory limit).
355 */
356 if (rr->domains & RADEON_DOMAIN_GTT) {
357 rctx->gtt += rr->buf->size;
358 }
359 if (rr->domains & RADEON_DOMAIN_VRAM) {
360 rctx->vram += rr->buf->size;
361 }
362 }
363
364 /*
365 * pipe_screen
366 */
367
368 static const struct debug_named_value common_debug_options[] = {
369 /* logging */
370 { "tex", DBG_TEX, "Print texture info" },
371 { "compute", DBG_COMPUTE, "Print compute info" },
372 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
373 { "info", DBG_INFO, "Print driver information" },
374
375 /* shaders */
376 { "fs", DBG_FS, "Print fetch shaders" },
377 { "vs", DBG_VS, "Print vertex shaders" },
378 { "gs", DBG_GS, "Print geometry shaders" },
379 { "ps", DBG_PS, "Print pixel shaders" },
380 { "cs", DBG_CS, "Print compute shaders" },
381 { "tcs", DBG_TCS, "Print tessellation control shaders" },
382 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
383 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
384 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
385 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
386 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
387
388 /* features */
389 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
390 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
391 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
392 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
393 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
394 { "notiling", DBG_NO_TILING, "Disable tiling" },
395 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
396 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
397 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
398 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
399 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
400 { "nodcc", DBG_NO_DCC, "Disable DCC." },
401 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
402 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
403 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
404 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
405
406 DEBUG_NAMED_VALUE_END /* must be last */
407 };
408
409 static const char* r600_get_vendor(struct pipe_screen* pscreen)
410 {
411 return "X.Org";
412 }
413
414 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
415 {
416 return "AMD";
417 }
418
419 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
420 {
421 switch (rscreen->info.family) {
422 case CHIP_R600: return "AMD R600";
423 case CHIP_RV610: return "AMD RV610";
424 case CHIP_RV630: return "AMD RV630";
425 case CHIP_RV670: return "AMD RV670";
426 case CHIP_RV620: return "AMD RV620";
427 case CHIP_RV635: return "AMD RV635";
428 case CHIP_RS780: return "AMD RS780";
429 case CHIP_RS880: return "AMD RS880";
430 case CHIP_RV770: return "AMD RV770";
431 case CHIP_RV730: return "AMD RV730";
432 case CHIP_RV710: return "AMD RV710";
433 case CHIP_RV740: return "AMD RV740";
434 case CHIP_CEDAR: return "AMD CEDAR";
435 case CHIP_REDWOOD: return "AMD REDWOOD";
436 case CHIP_JUNIPER: return "AMD JUNIPER";
437 case CHIP_CYPRESS: return "AMD CYPRESS";
438 case CHIP_HEMLOCK: return "AMD HEMLOCK";
439 case CHIP_PALM: return "AMD PALM";
440 case CHIP_SUMO: return "AMD SUMO";
441 case CHIP_SUMO2: return "AMD SUMO2";
442 case CHIP_BARTS: return "AMD BARTS";
443 case CHIP_TURKS: return "AMD TURKS";
444 case CHIP_CAICOS: return "AMD CAICOS";
445 case CHIP_CAYMAN: return "AMD CAYMAN";
446 case CHIP_ARUBA: return "AMD ARUBA";
447 case CHIP_TAHITI: return "AMD TAHITI";
448 case CHIP_PITCAIRN: return "AMD PITCAIRN";
449 case CHIP_VERDE: return "AMD CAPE VERDE";
450 case CHIP_OLAND: return "AMD OLAND";
451 case CHIP_HAINAN: return "AMD HAINAN";
452 case CHIP_BONAIRE: return "AMD BONAIRE";
453 case CHIP_KAVERI: return "AMD KAVERI";
454 case CHIP_KABINI: return "AMD KABINI";
455 case CHIP_HAWAII: return "AMD HAWAII";
456 case CHIP_MULLINS: return "AMD MULLINS";
457 case CHIP_TONGA: return "AMD TONGA";
458 case CHIP_ICELAND: return "AMD ICELAND";
459 case CHIP_CARRIZO: return "AMD CARRIZO";
460 case CHIP_FIJI: return "AMD FIJI";
461 case CHIP_POLARIS10: return "AMD POLARIS10";
462 case CHIP_POLARIS11: return "AMD POLARIS11";
463 case CHIP_STONEY: return "AMD STONEY";
464 default: return "AMD unknown";
465 }
466 }
467
468 static const char* r600_get_name(struct pipe_screen* pscreen)
469 {
470 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
471
472 return rscreen->renderer_string;
473 }
474
475 static float r600_get_paramf(struct pipe_screen* pscreen,
476 enum pipe_capf param)
477 {
478 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
479
480 switch (param) {
481 case PIPE_CAPF_MAX_LINE_WIDTH:
482 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
483 case PIPE_CAPF_MAX_POINT_WIDTH:
484 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
485 if (rscreen->family >= CHIP_CEDAR)
486 return 16384.0f;
487 else
488 return 8192.0f;
489 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
490 return 16.0f;
491 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
492 return 16.0f;
493 case PIPE_CAPF_GUARD_BAND_LEFT:
494 case PIPE_CAPF_GUARD_BAND_TOP:
495 case PIPE_CAPF_GUARD_BAND_RIGHT:
496 case PIPE_CAPF_GUARD_BAND_BOTTOM:
497 return 0.0f;
498 }
499 return 0.0f;
500 }
501
502 static int r600_get_video_param(struct pipe_screen *screen,
503 enum pipe_video_profile profile,
504 enum pipe_video_entrypoint entrypoint,
505 enum pipe_video_cap param)
506 {
507 switch (param) {
508 case PIPE_VIDEO_CAP_SUPPORTED:
509 return vl_profile_supported(screen, profile, entrypoint);
510 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
511 return 1;
512 case PIPE_VIDEO_CAP_MAX_WIDTH:
513 case PIPE_VIDEO_CAP_MAX_HEIGHT:
514 return vl_video_buffer_max_size(screen);
515 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
516 return PIPE_FORMAT_NV12;
517 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
518 return false;
519 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
520 return false;
521 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
522 return true;
523 case PIPE_VIDEO_CAP_MAX_LEVEL:
524 return vl_level_supported(screen, profile);
525 default:
526 return 0;
527 }
528 }
529
530 const char *r600_get_llvm_processor_name(enum radeon_family family)
531 {
532 switch (family) {
533 case CHIP_R600:
534 case CHIP_RV630:
535 case CHIP_RV635:
536 case CHIP_RV670:
537 return "r600";
538 case CHIP_RV610:
539 case CHIP_RV620:
540 case CHIP_RS780:
541 case CHIP_RS880:
542 return "rs880";
543 case CHIP_RV710:
544 return "rv710";
545 case CHIP_RV730:
546 return "rv730";
547 case CHIP_RV740:
548 case CHIP_RV770:
549 return "rv770";
550 case CHIP_PALM:
551 case CHIP_CEDAR:
552 return "cedar";
553 case CHIP_SUMO:
554 case CHIP_SUMO2:
555 return "sumo";
556 case CHIP_REDWOOD:
557 return "redwood";
558 case CHIP_JUNIPER:
559 return "juniper";
560 case CHIP_HEMLOCK:
561 case CHIP_CYPRESS:
562 return "cypress";
563 case CHIP_BARTS:
564 return "barts";
565 case CHIP_TURKS:
566 return "turks";
567 case CHIP_CAICOS:
568 return "caicos";
569 case CHIP_CAYMAN:
570 case CHIP_ARUBA:
571 return "cayman";
572
573 case CHIP_TAHITI: return "tahiti";
574 case CHIP_PITCAIRN: return "pitcairn";
575 case CHIP_VERDE: return "verde";
576 case CHIP_OLAND: return "oland";
577 case CHIP_HAINAN: return "hainan";
578 case CHIP_BONAIRE: return "bonaire";
579 case CHIP_KABINI: return "kabini";
580 case CHIP_KAVERI: return "kaveri";
581 case CHIP_HAWAII: return "hawaii";
582 case CHIP_MULLINS:
583 return "mullins";
584 case CHIP_TONGA: return "tonga";
585 case CHIP_ICELAND: return "iceland";
586 case CHIP_CARRIZO: return "carrizo";
587 #if HAVE_LLVM <= 0x0307
588 case CHIP_FIJI: return "tonga";
589 case CHIP_STONEY: return "carrizo";
590 #else
591 case CHIP_FIJI: return "fiji";
592 case CHIP_STONEY: return "stoney";
593 #endif
594 #if HAVE_LLVM <= 0x0308
595 case CHIP_POLARIS10: return "tonga";
596 case CHIP_POLARIS11: return "tonga";
597 #else
598 case CHIP_POLARIS10: return "polaris10";
599 case CHIP_POLARIS11: return "polaris11";
600 #endif
601 default: return "";
602 }
603 }
604
605 static int r600_get_compute_param(struct pipe_screen *screen,
606 enum pipe_shader_ir ir_type,
607 enum pipe_compute_cap param,
608 void *ret)
609 {
610 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
611
612 //TODO: select these params by asic
613 switch (param) {
614 case PIPE_COMPUTE_CAP_IR_TARGET: {
615 const char *gpu;
616 const char *triple;
617 if (rscreen->family <= CHIP_ARUBA) {
618 triple = "r600--";
619 } else {
620 triple = "amdgcn--";
621 }
622 switch(rscreen->family) {
623 /* Clang < 3.6 is missing Hainan in its list of
624 * GPUs, so we need to use the name of a similar GPU.
625 */
626 default:
627 gpu = r600_get_llvm_processor_name(rscreen->family);
628 break;
629 }
630 if (ret) {
631 sprintf(ret, "%s-%s", gpu, triple);
632 }
633 /* +2 for dash and terminating NIL byte */
634 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
635 }
636 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
637 if (ret) {
638 uint64_t *grid_dimension = ret;
639 grid_dimension[0] = 3;
640 }
641 return 1 * sizeof(uint64_t);
642
643 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
644 if (ret) {
645 uint64_t *grid_size = ret;
646 grid_size[0] = 65535;
647 grid_size[1] = 65535;
648 grid_size[2] = 1;
649 }
650 return 3 * sizeof(uint64_t) ;
651
652 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
653 if (ret) {
654 uint64_t *block_size = ret;
655 block_size[0] = 256;
656 block_size[1] = 256;
657 block_size[2] = 256;
658 }
659 return 3 * sizeof(uint64_t);
660
661 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
662 if (ret) {
663 uint64_t *max_threads_per_block = ret;
664 *max_threads_per_block = 256;
665 }
666 return sizeof(uint64_t);
667
668 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
669 if (ret) {
670 uint64_t *max_global_size = ret;
671 uint64_t max_mem_alloc_size;
672
673 r600_get_compute_param(screen, ir_type,
674 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
675 &max_mem_alloc_size);
676
677 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
678 * 1/4 of the MAX_GLOBAL_SIZE. Since the
679 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
680 * make sure we never report more than
681 * 4 * MAX_MEM_ALLOC_SIZE.
682 */
683 *max_global_size = MIN2(4 * max_mem_alloc_size,
684 rscreen->info.gart_size +
685 rscreen->info.vram_size);
686 }
687 return sizeof(uint64_t);
688
689 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
690 if (ret) {
691 uint64_t *max_local_size = ret;
692 /* Value reported by the closed source driver. */
693 *max_local_size = 32768;
694 }
695 return sizeof(uint64_t);
696
697 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
698 if (ret) {
699 uint64_t *max_input_size = ret;
700 /* Value reported by the closed source driver. */
701 *max_input_size = 1024;
702 }
703 return sizeof(uint64_t);
704
705 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
706 if (ret) {
707 uint64_t *max_mem_alloc_size = ret;
708
709 /* XXX: The limit in older kernels is 256 MB. We
710 * should add a query here for newer kernels.
711 */
712 *max_mem_alloc_size = 256 * 1024 * 1024;
713 }
714 return sizeof(uint64_t);
715
716 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
717 if (ret) {
718 uint32_t *max_clock_frequency = ret;
719 *max_clock_frequency = rscreen->info.max_shader_clock;
720 }
721 return sizeof(uint32_t);
722
723 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
724 if (ret) {
725 uint32_t *max_compute_units = ret;
726 *max_compute_units = rscreen->info.num_good_compute_units;
727 }
728 return sizeof(uint32_t);
729
730 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
731 if (ret) {
732 uint32_t *images_supported = ret;
733 *images_supported = 0;
734 }
735 return sizeof(uint32_t);
736 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
737 break; /* unused */
738 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
739 if (ret) {
740 uint32_t *subgroup_size = ret;
741 *subgroup_size = r600_wavefront_size(rscreen->family);
742 }
743 return sizeof(uint32_t);
744 }
745
746 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
747 return 0;
748 }
749
750 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
751 {
752 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
753
754 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
755 rscreen->info.clock_crystal_freq;
756 }
757
758 static void r600_fence_reference(struct pipe_screen *screen,
759 struct pipe_fence_handle **dst,
760 struct pipe_fence_handle *src)
761 {
762 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
763 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
764 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
765
766 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
767 ws->fence_reference(&(*rdst)->gfx, NULL);
768 ws->fence_reference(&(*rdst)->sdma, NULL);
769 FREE(*rdst);
770 }
771 *rdst = rsrc;
772 }
773
774 static boolean r600_fence_finish(struct pipe_screen *screen,
775 struct pipe_fence_handle *fence,
776 uint64_t timeout)
777 {
778 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
779 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
780 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
781
782 if (rfence->sdma) {
783 if (!rws->fence_wait(rws, rfence->sdma, timeout))
784 return false;
785
786 /* Recompute the timeout after waiting. */
787 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
788 int64_t time = os_time_get_nano();
789 timeout = abs_timeout > time ? abs_timeout - time : 0;
790 }
791 }
792
793 if (!rfence->gfx)
794 return true;
795
796 return rws->fence_wait(rws, rfence->gfx, timeout);
797 }
798
799 static void r600_query_memory_info(struct pipe_screen *screen,
800 struct pipe_memory_info *info)
801 {
802 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
803 struct radeon_winsys *ws = rscreen->ws;
804 unsigned vram_usage, gtt_usage;
805
806 info->total_device_memory = rscreen->info.vram_size / 1024;
807 info->total_staging_memory = rscreen->info.gart_size / 1024;
808
809 /* The real TTM memory usage is somewhat random, because:
810 *
811 * 1) TTM delays freeing memory, because it can only free it after
812 * fences expire.
813 *
814 * 2) The memory usage can be really low if big VRAM evictions are
815 * taking place, but the real usage is well above the size of VRAM.
816 *
817 * Instead, return statistics of this process.
818 */
819 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
820 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
821
822 info->avail_device_memory =
823 vram_usage <= info->total_device_memory ?
824 info->total_device_memory - vram_usage : 0;
825 info->avail_staging_memory =
826 gtt_usage <= info->total_staging_memory ?
827 info->total_staging_memory - gtt_usage : 0;
828
829 info->device_memory_evicted =
830 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
831 /* Just return the number of evicted 64KB pages. */
832 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
833 }
834
835 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
836 const struct pipe_resource *templ)
837 {
838 if (templ->target == PIPE_BUFFER) {
839 return r600_buffer_create(screen, templ, 4096);
840 } else {
841 return r600_texture_create(screen, templ);
842 }
843 }
844
845 bool r600_common_screen_init(struct r600_common_screen *rscreen,
846 struct radeon_winsys *ws)
847 {
848 char llvm_string[32] = {};
849
850 ws->query_info(ws, &rscreen->info);
851
852 #if HAVE_LLVM
853 snprintf(llvm_string, sizeof(llvm_string),
854 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
855 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
856 #endif
857
858 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
859 "%s (DRM %i.%i.%i%s)",
860 r600_get_chip_name(rscreen), rscreen->info.drm_major,
861 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
862 llvm_string);
863
864 rscreen->b.get_name = r600_get_name;
865 rscreen->b.get_vendor = r600_get_vendor;
866 rscreen->b.get_device_vendor = r600_get_device_vendor;
867 rscreen->b.get_compute_param = r600_get_compute_param;
868 rscreen->b.get_paramf = r600_get_paramf;
869 rscreen->b.get_timestamp = r600_get_timestamp;
870 rscreen->b.fence_finish = r600_fence_finish;
871 rscreen->b.fence_reference = r600_fence_reference;
872 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
873 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
874 rscreen->b.query_memory_info = r600_query_memory_info;
875
876 if (rscreen->info.has_uvd) {
877 rscreen->b.get_video_param = rvid_get_video_param;
878 rscreen->b.is_video_format_supported = rvid_is_format_supported;
879 } else {
880 rscreen->b.get_video_param = r600_get_video_param;
881 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
882 }
883
884 r600_init_screen_texture_functions(rscreen);
885 r600_init_screen_query_functions(rscreen);
886
887 rscreen->ws = ws;
888 rscreen->family = rscreen->info.family;
889 rscreen->chip_class = rscreen->info.chip_class;
890 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
891
892 util_format_s3tc_init();
893 pipe_mutex_init(rscreen->aux_context_lock);
894 pipe_mutex_init(rscreen->gpu_load_mutex);
895
896 if (rscreen->debug_flags & DBG_INFO) {
897 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
898 printf("family = %i (%s)\n", rscreen->info.family,
899 r600_get_chip_name(rscreen));
900 printf("chip_class = %i\n", rscreen->info.chip_class);
901 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
902 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
903 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
904 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
905 printf("has_sdma = %i\n", rscreen->info.has_sdma);
906 printf("has_uvd = %i\n", rscreen->info.has_uvd);
907 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
908 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
909 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
910 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
911 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
912 printf("has_userptr = %i\n", rscreen->info.has_userptr);
913
914 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
915 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
916 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
917 printf("max_se = %i\n", rscreen->info.max_se);
918 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
919
920 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
921 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
922 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
923 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
924 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
925 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
926 printf("si_tile_mode_array_valid = %i\n", rscreen->info.si_tile_mode_array_valid);
927 printf("cik_macrotile_mode_array_valid = %i\n", rscreen->info.cik_macrotile_mode_array_valid);
928 }
929 return true;
930 }
931
932 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
933 {
934 r600_perfcounters_destroy(rscreen);
935 r600_gpu_load_kill_thread(rscreen);
936
937 pipe_mutex_destroy(rscreen->gpu_load_mutex);
938 pipe_mutex_destroy(rscreen->aux_context_lock);
939 rscreen->aux_context->destroy(rscreen->aux_context);
940
941 rscreen->ws->destroy(rscreen->ws);
942 FREE(rscreen);
943 }
944
945 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
946 unsigned processor)
947 {
948 switch (processor) {
949 case TGSI_PROCESSOR_VERTEX:
950 return (rscreen->debug_flags & DBG_VS) != 0;
951 case TGSI_PROCESSOR_TESS_CTRL:
952 return (rscreen->debug_flags & DBG_TCS) != 0;
953 case TGSI_PROCESSOR_TESS_EVAL:
954 return (rscreen->debug_flags & DBG_TES) != 0;
955 case TGSI_PROCESSOR_GEOMETRY:
956 return (rscreen->debug_flags & DBG_GS) != 0;
957 case TGSI_PROCESSOR_FRAGMENT:
958 return (rscreen->debug_flags & DBG_PS) != 0;
959 case TGSI_PROCESSOR_COMPUTE:
960 return (rscreen->debug_flags & DBG_CS) != 0;
961 default:
962 return false;
963 }
964 }
965
966 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
967 uint64_t offset, uint64_t size, unsigned value,
968 bool is_framebuffer)
969 {
970 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
971
972 pipe_mutex_lock(rscreen->aux_context_lock);
973 rctx->clear_buffer(&rctx->b, dst, offset, size, value, is_framebuffer);
974 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
975 pipe_mutex_unlock(rscreen->aux_context_lock);
976 }