radeonsi: add a debug flag for unsafe math LLVM optimizations
[mesa.git] / src / gallium / drivers / radeon / r600_pipe_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45
46 struct r600_multi_fence {
47 struct pipe_reference reference;
48 struct pipe_fence_handle *gfx;
49 struct pipe_fence_handle *sdma;
50 };
51
52 /*
53 * shader binary helpers.
54 */
55 void radeon_shader_binary_init(struct radeon_shader_binary *b)
56 {
57 memset(b, 0, sizeof(*b));
58 }
59
60 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
61 {
62 if (!b)
63 return;
64 FREE(b->code);
65 FREE(b->config);
66 FREE(b->rodata);
67 FREE(b->global_symbol_offsets);
68 FREE(b->relocs);
69 FREE(b->disasm_string);
70 }
71
72 /*
73 * pipe_context
74 */
75
76 void r600_draw_rectangle(struct blitter_context *blitter,
77 int x1, int y1, int x2, int y2, float depth,
78 enum blitter_attrib_type type,
79 const union pipe_color_union *attrib)
80 {
81 struct r600_common_context *rctx =
82 (struct r600_common_context*)util_blitter_get_pipe(blitter);
83 struct pipe_viewport_state viewport;
84 struct pipe_resource *buf = NULL;
85 unsigned offset = 0;
86 float *vb;
87
88 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
89 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
90 return;
91 }
92
93 /* Some operations (like color resolve on r6xx) don't work
94 * with the conventional primitive types.
95 * One that works is PT_RECTLIST, which we use here. */
96
97 /* setup viewport */
98 viewport.scale[0] = 1.0f;
99 viewport.scale[1] = 1.0f;
100 viewport.scale[2] = 1.0f;
101 viewport.translate[0] = 0.0f;
102 viewport.translate[1] = 0.0f;
103 viewport.translate[2] = 0.0f;
104 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
105
106 /* Upload vertices. The hw rectangle has only 3 vertices,
107 * I guess the 4th one is derived from the first 3.
108 * The vertex specification should match u_blitter's vertex element state. */
109 u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
110 if (!buf)
111 return;
112
113 vb[0] = x1;
114 vb[1] = y1;
115 vb[2] = depth;
116 vb[3] = 1;
117
118 vb[8] = x1;
119 vb[9] = y2;
120 vb[10] = depth;
121 vb[11] = 1;
122
123 vb[16] = x2;
124 vb[17] = y1;
125 vb[18] = depth;
126 vb[19] = 1;
127
128 if (attrib) {
129 memcpy(vb+4, attrib->f, sizeof(float)*4);
130 memcpy(vb+12, attrib->f, sizeof(float)*4);
131 memcpy(vb+20, attrib->f, sizeof(float)*4);
132 }
133
134 /* draw */
135 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
136 R600_PRIM_RECTANGLE_LIST, 3, 2);
137 pipe_resource_reference(&buf, NULL);
138 }
139
140 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
141 struct r600_resource *dst, struct r600_resource *src)
142 {
143 uint64_t vram = 0, gtt = 0;
144
145 if (dst) {
146 if (dst->domains & RADEON_DOMAIN_VRAM)
147 vram += dst->buf->size;
148 else if (dst->domains & RADEON_DOMAIN_GTT)
149 gtt += dst->buf->size;
150 }
151 if (src) {
152 if (src->domains & RADEON_DOMAIN_VRAM)
153 vram += src->buf->size;
154 else if (src->domains & RADEON_DOMAIN_GTT)
155 gtt += src->buf->size;
156 }
157
158 /* Flush the GFX IB if DMA depends on it. */
159 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
160 ((dst &&
161 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
162 RADEON_USAGE_READWRITE)) ||
163 (src &&
164 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
165 RADEON_USAGE_WRITE))))
166 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
167
168 /* Flush if there's not enough space, or if the memory usage per IB
169 * is too large.
170 */
171 if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
172 !ctx->ws->cs_memory_below_limit(ctx->dma.cs, vram, gtt)) {
173 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
174 assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
175 }
176
177 /* If GPUVM is not supported, the CS checker needs 2 entries
178 * in the buffer list per packet, which has to be done manually.
179 */
180 if (ctx->screen->info.has_virtual_memory) {
181 if (dst)
182 radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
183 RADEON_USAGE_WRITE,
184 RADEON_PRIO_SDMA_BUFFER);
185 if (src)
186 radeon_add_to_buffer_list(ctx, &ctx->dma, src,
187 RADEON_USAGE_READ,
188 RADEON_PRIO_SDMA_BUFFER);
189 }
190 }
191
192 /* This is required to prevent read-after-write hazards. */
193 void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
194 {
195 struct radeon_winsys_cs *cs = rctx->dma.cs;
196
197 /* done at the end of DMA calls, so increment this. */
198 rctx->num_dma_calls++;
199
200 /* IBs using too little memory are limited by the IB submission overhead.
201 * IBs using too much memory are limited by the kernel/TTM overhead.
202 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
203 *
204 * This heuristic makes sure that DMA requests are executed
205 * very soon after the call is made and lowers memory usage.
206 * It improves texture upload performance by keeping the DMA
207 * engine busy while uploads are being submitted.
208 */
209 if (rctx->ws->cs_query_memory_usage(rctx->dma.cs) > 64 * 1024 * 1024) {
210 rctx->dma.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
211 return;
212 }
213
214 r600_need_dma_space(rctx, 1, NULL, NULL);
215
216 if (!radeon_emitted(cs, 0)) /* empty queue */
217 return;
218
219 /* NOP waits for idle on Evergreen and later. */
220 if (rctx->chip_class >= CIK)
221 radeon_emit(cs, 0x00000000); /* NOP */
222 else if (rctx->chip_class >= EVERGREEN)
223 radeon_emit(cs, 0xf0000000); /* NOP */
224 else {
225 /* TODO: R600-R700 should use the FENCE packet.
226 * CS checker support is required. */
227 }
228 }
229
230 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
231 {
232 }
233
234 void r600_preflush_suspend_features(struct r600_common_context *ctx)
235 {
236 /* suspend queries */
237 if (!LIST_IS_EMPTY(&ctx->active_queries))
238 r600_suspend_queries(ctx);
239
240 ctx->streamout.suspended = false;
241 if (ctx->streamout.begin_emitted) {
242 r600_emit_streamout_end(ctx);
243 ctx->streamout.suspended = true;
244 }
245 }
246
247 void r600_postflush_resume_features(struct r600_common_context *ctx)
248 {
249 if (ctx->streamout.suspended) {
250 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
251 r600_streamout_buffers_dirty(ctx);
252 }
253
254 /* resume queries */
255 if (!LIST_IS_EMPTY(&ctx->active_queries))
256 r600_resume_queries(ctx);
257 }
258
259 static void r600_flush_from_st(struct pipe_context *ctx,
260 struct pipe_fence_handle **fence,
261 unsigned flags)
262 {
263 struct pipe_screen *screen = ctx->screen;
264 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
265 unsigned rflags = 0;
266 struct pipe_fence_handle *gfx_fence = NULL;
267 struct pipe_fence_handle *sdma_fence = NULL;
268
269 if (flags & PIPE_FLUSH_END_OF_FRAME)
270 rflags |= RADEON_FLUSH_END_OF_FRAME;
271
272 if (rctx->dma.cs) {
273 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
274 }
275 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
276
277 /* Both engines can signal out of order, so we need to keep both fences. */
278 if (gfx_fence || sdma_fence) {
279 struct r600_multi_fence *multi_fence =
280 CALLOC_STRUCT(r600_multi_fence);
281 if (!multi_fence)
282 return;
283
284 multi_fence->reference.count = 1;
285 multi_fence->gfx = gfx_fence;
286 multi_fence->sdma = sdma_fence;
287
288 screen->fence_reference(screen, fence, NULL);
289 *fence = (struct pipe_fence_handle*)multi_fence;
290 }
291 }
292
293 static void r600_flush_dma_ring(void *ctx, unsigned flags,
294 struct pipe_fence_handle **fence)
295 {
296 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
297 struct radeon_winsys_cs *cs = rctx->dma.cs;
298
299 if (radeon_emitted(cs, 0))
300 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
301 if (fence)
302 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
303 }
304
305 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
306 {
307 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
308 unsigned latest = rctx->ws->query_value(rctx->ws,
309 RADEON_GPU_RESET_COUNTER);
310
311 if (rctx->gpu_reset_counter == latest)
312 return PIPE_NO_RESET;
313
314 rctx->gpu_reset_counter = latest;
315 return PIPE_UNKNOWN_CONTEXT_RESET;
316 }
317
318 static void r600_set_debug_callback(struct pipe_context *ctx,
319 const struct pipe_debug_callback *cb)
320 {
321 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
322
323 if (cb)
324 rctx->debug = *cb;
325 else
326 memset(&rctx->debug, 0, sizeof(rctx->debug));
327 }
328
329 bool r600_common_context_init(struct r600_common_context *rctx,
330 struct r600_common_screen *rscreen)
331 {
332 util_slab_create(&rctx->pool_transfers,
333 sizeof(struct r600_transfer), 64,
334 UTIL_SLAB_SINGLETHREADED);
335
336 rctx->screen = rscreen;
337 rctx->ws = rscreen->ws;
338 rctx->family = rscreen->family;
339 rctx->chip_class = rscreen->chip_class;
340
341 if (rscreen->chip_class >= CIK)
342 rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
343 else if (rscreen->chip_class >= EVERGREEN)
344 rctx->max_db = 8;
345 else
346 rctx->max_db = 4;
347
348 rctx->b.invalidate_resource = r600_invalidate_resource;
349 rctx->b.transfer_map = u_transfer_map_vtbl;
350 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
351 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
352 rctx->b.transfer_inline_write = u_default_transfer_inline_write;
353 rctx->b.memory_barrier = r600_memory_barrier;
354 rctx->b.flush = r600_flush_from_st;
355 rctx->b.set_debug_callback = r600_set_debug_callback;
356
357 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
358 rctx->b.get_device_reset_status = r600_get_reset_status;
359 rctx->gpu_reset_counter =
360 rctx->ws->query_value(rctx->ws,
361 RADEON_GPU_RESET_COUNTER);
362 }
363
364 LIST_INITHEAD(&rctx->texture_buffers);
365
366 r600_init_context_texture_functions(rctx);
367 r600_init_viewport_functions(rctx);
368 r600_streamout_init(rctx);
369 r600_query_init(rctx);
370 cayman_init_msaa(&rctx->b);
371
372 rctx->allocator_zeroed_memory =
373 u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
374 0, PIPE_USAGE_DEFAULT, TRUE);
375 if (!rctx->allocator_zeroed_memory)
376 return false;
377
378 rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
379 PIPE_BIND_INDEX_BUFFER |
380 PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
381 if (!rctx->uploader)
382 return false;
383
384 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
385 if (!rctx->ctx)
386 return false;
387
388 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
389 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
390 r600_flush_dma_ring,
391 rctx);
392 rctx->dma.flush = r600_flush_dma_ring;
393 }
394
395 return true;
396 }
397
398 void r600_common_context_cleanup(struct r600_common_context *rctx)
399 {
400 if (rctx->gfx.cs)
401 rctx->ws->cs_destroy(rctx->gfx.cs);
402 if (rctx->dma.cs)
403 rctx->ws->cs_destroy(rctx->dma.cs);
404 if (rctx->ctx)
405 rctx->ws->ctx_destroy(rctx->ctx);
406
407 if (rctx->uploader) {
408 u_upload_destroy(rctx->uploader);
409 }
410
411 util_slab_destroy(&rctx->pool_transfers);
412
413 if (rctx->allocator_zeroed_memory) {
414 u_suballocator_destroy(rctx->allocator_zeroed_memory);
415 }
416 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
417 }
418
419 void r600_context_add_resource_size(struct pipe_context *ctx, struct pipe_resource *r)
420 {
421 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
422 struct r600_resource *rr = (struct r600_resource *)r;
423
424 if (!r) {
425 return;
426 }
427
428 /*
429 * The idea is to compute a gross estimate of memory requirement of
430 * each draw call. After each draw call, memory will be precisely
431 * accounted. So the uncertainty is only on the current draw call.
432 * In practice this gave very good estimate (+/- 10% of the target
433 * memory limit).
434 */
435 if (rr->domains & RADEON_DOMAIN_VRAM)
436 rctx->vram += rr->buf->size;
437 else if (rr->domains & RADEON_DOMAIN_GTT)
438 rctx->gtt += rr->buf->size;
439 }
440
441 /*
442 * pipe_screen
443 */
444
445 static const struct debug_named_value common_debug_options[] = {
446 /* logging */
447 { "tex", DBG_TEX, "Print texture info" },
448 { "compute", DBG_COMPUTE, "Print compute info" },
449 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
450 { "info", DBG_INFO, "Print driver information" },
451
452 /* shaders */
453 { "fs", DBG_FS, "Print fetch shaders" },
454 { "vs", DBG_VS, "Print vertex shaders" },
455 { "gs", DBG_GS, "Print geometry shaders" },
456 { "ps", DBG_PS, "Print pixel shaders" },
457 { "cs", DBG_CS, "Print compute shaders" },
458 { "tcs", DBG_TCS, "Print tessellation control shaders" },
459 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
460 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
461 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
462 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
463 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
464
465 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
466
467 /* features */
468 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
469 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
470 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
471 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
472 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
473 { "notiling", DBG_NO_TILING, "Disable tiling" },
474 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
475 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
476 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
477 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
478 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
479 { "nodcc", DBG_NO_DCC, "Disable DCC." },
480 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
481 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
482 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
483 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
484 { "noce", DBG_NO_CE, "Disable the constant engine"},
485 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
486
487 DEBUG_NAMED_VALUE_END /* must be last */
488 };
489
490 static const char* r600_get_vendor(struct pipe_screen* pscreen)
491 {
492 return "X.Org";
493 }
494
495 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
496 {
497 return "AMD";
498 }
499
500 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
501 {
502 switch (rscreen->info.family) {
503 case CHIP_R600: return "AMD R600";
504 case CHIP_RV610: return "AMD RV610";
505 case CHIP_RV630: return "AMD RV630";
506 case CHIP_RV670: return "AMD RV670";
507 case CHIP_RV620: return "AMD RV620";
508 case CHIP_RV635: return "AMD RV635";
509 case CHIP_RS780: return "AMD RS780";
510 case CHIP_RS880: return "AMD RS880";
511 case CHIP_RV770: return "AMD RV770";
512 case CHIP_RV730: return "AMD RV730";
513 case CHIP_RV710: return "AMD RV710";
514 case CHIP_RV740: return "AMD RV740";
515 case CHIP_CEDAR: return "AMD CEDAR";
516 case CHIP_REDWOOD: return "AMD REDWOOD";
517 case CHIP_JUNIPER: return "AMD JUNIPER";
518 case CHIP_CYPRESS: return "AMD CYPRESS";
519 case CHIP_HEMLOCK: return "AMD HEMLOCK";
520 case CHIP_PALM: return "AMD PALM";
521 case CHIP_SUMO: return "AMD SUMO";
522 case CHIP_SUMO2: return "AMD SUMO2";
523 case CHIP_BARTS: return "AMD BARTS";
524 case CHIP_TURKS: return "AMD TURKS";
525 case CHIP_CAICOS: return "AMD CAICOS";
526 case CHIP_CAYMAN: return "AMD CAYMAN";
527 case CHIP_ARUBA: return "AMD ARUBA";
528 case CHIP_TAHITI: return "AMD TAHITI";
529 case CHIP_PITCAIRN: return "AMD PITCAIRN";
530 case CHIP_VERDE: return "AMD CAPE VERDE";
531 case CHIP_OLAND: return "AMD OLAND";
532 case CHIP_HAINAN: return "AMD HAINAN";
533 case CHIP_BONAIRE: return "AMD BONAIRE";
534 case CHIP_KAVERI: return "AMD KAVERI";
535 case CHIP_KABINI: return "AMD KABINI";
536 case CHIP_HAWAII: return "AMD HAWAII";
537 case CHIP_MULLINS: return "AMD MULLINS";
538 case CHIP_TONGA: return "AMD TONGA";
539 case CHIP_ICELAND: return "AMD ICELAND";
540 case CHIP_CARRIZO: return "AMD CARRIZO";
541 case CHIP_FIJI: return "AMD FIJI";
542 case CHIP_POLARIS10: return "AMD POLARIS10";
543 case CHIP_POLARIS11: return "AMD POLARIS11";
544 case CHIP_STONEY: return "AMD STONEY";
545 default: return "AMD unknown";
546 }
547 }
548
549 static const char* r600_get_name(struct pipe_screen* pscreen)
550 {
551 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
552
553 return rscreen->renderer_string;
554 }
555
556 static float r600_get_paramf(struct pipe_screen* pscreen,
557 enum pipe_capf param)
558 {
559 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
560
561 switch (param) {
562 case PIPE_CAPF_MAX_LINE_WIDTH:
563 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
564 case PIPE_CAPF_MAX_POINT_WIDTH:
565 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
566 if (rscreen->family >= CHIP_CEDAR)
567 return 16384.0f;
568 else
569 return 8192.0f;
570 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
571 return 16.0f;
572 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
573 return 16.0f;
574 case PIPE_CAPF_GUARD_BAND_LEFT:
575 case PIPE_CAPF_GUARD_BAND_TOP:
576 case PIPE_CAPF_GUARD_BAND_RIGHT:
577 case PIPE_CAPF_GUARD_BAND_BOTTOM:
578 return 0.0f;
579 }
580 return 0.0f;
581 }
582
583 static int r600_get_video_param(struct pipe_screen *screen,
584 enum pipe_video_profile profile,
585 enum pipe_video_entrypoint entrypoint,
586 enum pipe_video_cap param)
587 {
588 switch (param) {
589 case PIPE_VIDEO_CAP_SUPPORTED:
590 return vl_profile_supported(screen, profile, entrypoint);
591 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
592 return 1;
593 case PIPE_VIDEO_CAP_MAX_WIDTH:
594 case PIPE_VIDEO_CAP_MAX_HEIGHT:
595 return vl_video_buffer_max_size(screen);
596 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
597 return PIPE_FORMAT_NV12;
598 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
599 return false;
600 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
601 return false;
602 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
603 return true;
604 case PIPE_VIDEO_CAP_MAX_LEVEL:
605 return vl_level_supported(screen, profile);
606 default:
607 return 0;
608 }
609 }
610
611 const char *r600_get_llvm_processor_name(enum radeon_family family)
612 {
613 switch (family) {
614 case CHIP_R600:
615 case CHIP_RV630:
616 case CHIP_RV635:
617 case CHIP_RV670:
618 return "r600";
619 case CHIP_RV610:
620 case CHIP_RV620:
621 case CHIP_RS780:
622 case CHIP_RS880:
623 return "rs880";
624 case CHIP_RV710:
625 return "rv710";
626 case CHIP_RV730:
627 return "rv730";
628 case CHIP_RV740:
629 case CHIP_RV770:
630 return "rv770";
631 case CHIP_PALM:
632 case CHIP_CEDAR:
633 return "cedar";
634 case CHIP_SUMO:
635 case CHIP_SUMO2:
636 return "sumo";
637 case CHIP_REDWOOD:
638 return "redwood";
639 case CHIP_JUNIPER:
640 return "juniper";
641 case CHIP_HEMLOCK:
642 case CHIP_CYPRESS:
643 return "cypress";
644 case CHIP_BARTS:
645 return "barts";
646 case CHIP_TURKS:
647 return "turks";
648 case CHIP_CAICOS:
649 return "caicos";
650 case CHIP_CAYMAN:
651 case CHIP_ARUBA:
652 return "cayman";
653
654 case CHIP_TAHITI: return "tahiti";
655 case CHIP_PITCAIRN: return "pitcairn";
656 case CHIP_VERDE: return "verde";
657 case CHIP_OLAND: return "oland";
658 case CHIP_HAINAN: return "hainan";
659 case CHIP_BONAIRE: return "bonaire";
660 case CHIP_KABINI: return "kabini";
661 case CHIP_KAVERI: return "kaveri";
662 case CHIP_HAWAII: return "hawaii";
663 case CHIP_MULLINS:
664 return "mullins";
665 case CHIP_TONGA: return "tonga";
666 case CHIP_ICELAND: return "iceland";
667 case CHIP_CARRIZO: return "carrizo";
668 #if HAVE_LLVM <= 0x0307
669 case CHIP_FIJI: return "tonga";
670 case CHIP_STONEY: return "carrizo";
671 #else
672 case CHIP_FIJI: return "fiji";
673 case CHIP_STONEY: return "stoney";
674 #endif
675 #if HAVE_LLVM <= 0x0308
676 case CHIP_POLARIS10: return "tonga";
677 case CHIP_POLARIS11: return "tonga";
678 #else
679 case CHIP_POLARIS10: return "polaris10";
680 case CHIP_POLARIS11: return "polaris11";
681 #endif
682 default: return "";
683 }
684 }
685
686 static int r600_get_compute_param(struct pipe_screen *screen,
687 enum pipe_shader_ir ir_type,
688 enum pipe_compute_cap param,
689 void *ret)
690 {
691 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
692
693 //TODO: select these params by asic
694 switch (param) {
695 case PIPE_COMPUTE_CAP_IR_TARGET: {
696 const char *gpu;
697 const char *triple;
698 if (rscreen->family <= CHIP_ARUBA) {
699 triple = "r600--";
700 } else {
701 triple = "amdgcn--";
702 }
703 switch(rscreen->family) {
704 /* Clang < 3.6 is missing Hainan in its list of
705 * GPUs, so we need to use the name of a similar GPU.
706 */
707 default:
708 gpu = r600_get_llvm_processor_name(rscreen->family);
709 break;
710 }
711 if (ret) {
712 sprintf(ret, "%s-%s", gpu, triple);
713 }
714 /* +2 for dash and terminating NIL byte */
715 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
716 }
717 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
718 if (ret) {
719 uint64_t *grid_dimension = ret;
720 grid_dimension[0] = 3;
721 }
722 return 1 * sizeof(uint64_t);
723
724 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
725 if (ret) {
726 uint64_t *grid_size = ret;
727 grid_size[0] = 65535;
728 grid_size[1] = 65535;
729 grid_size[2] = 65535;
730 }
731 return 3 * sizeof(uint64_t) ;
732
733 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
734 if (ret) {
735 uint64_t *block_size = ret;
736 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
737 ir_type == PIPE_SHADER_IR_TGSI) {
738 block_size[0] = 2048;
739 block_size[1] = 2048;
740 block_size[2] = 2048;
741 } else {
742 block_size[0] = 256;
743 block_size[1] = 256;
744 block_size[2] = 256;
745 }
746 }
747 return 3 * sizeof(uint64_t);
748
749 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
750 if (ret) {
751 uint64_t *max_threads_per_block = ret;
752 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
753 ir_type == PIPE_SHADER_IR_TGSI)
754 *max_threads_per_block = 2048;
755 else
756 *max_threads_per_block = 256;
757 }
758 return sizeof(uint64_t);
759
760 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
761 if (ret) {
762 uint64_t *max_global_size = ret;
763 uint64_t max_mem_alloc_size;
764
765 r600_get_compute_param(screen, ir_type,
766 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
767 &max_mem_alloc_size);
768
769 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
770 * 1/4 of the MAX_GLOBAL_SIZE. Since the
771 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
772 * make sure we never report more than
773 * 4 * MAX_MEM_ALLOC_SIZE.
774 */
775 *max_global_size = MIN2(4 * max_mem_alloc_size,
776 rscreen->info.gart_size +
777 rscreen->info.vram_size);
778 }
779 return sizeof(uint64_t);
780
781 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
782 if (ret) {
783 uint64_t *max_local_size = ret;
784 /* Value reported by the closed source driver. */
785 *max_local_size = 32768;
786 }
787 return sizeof(uint64_t);
788
789 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
790 if (ret) {
791 uint64_t *max_input_size = ret;
792 /* Value reported by the closed source driver. */
793 *max_input_size = 1024;
794 }
795 return sizeof(uint64_t);
796
797 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
798 if (ret) {
799 uint64_t *max_mem_alloc_size = ret;
800
801 /* XXX: The limit in older kernels is 256 MB. We
802 * should add a query here for newer kernels.
803 */
804 *max_mem_alloc_size = 256 * 1024 * 1024;
805 }
806 return sizeof(uint64_t);
807
808 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
809 if (ret) {
810 uint32_t *max_clock_frequency = ret;
811 *max_clock_frequency = rscreen->info.max_shader_clock;
812 }
813 return sizeof(uint32_t);
814
815 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
816 if (ret) {
817 uint32_t *max_compute_units = ret;
818 *max_compute_units = rscreen->info.num_good_compute_units;
819 }
820 return sizeof(uint32_t);
821
822 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
823 if (ret) {
824 uint32_t *images_supported = ret;
825 *images_supported = 0;
826 }
827 return sizeof(uint32_t);
828 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
829 break; /* unused */
830 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
831 if (ret) {
832 uint32_t *subgroup_size = ret;
833 *subgroup_size = r600_wavefront_size(rscreen->family);
834 }
835 return sizeof(uint32_t);
836 }
837
838 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
839 return 0;
840 }
841
842 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
843 {
844 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
845
846 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
847 rscreen->info.clock_crystal_freq;
848 }
849
850 static void r600_fence_reference(struct pipe_screen *screen,
851 struct pipe_fence_handle **dst,
852 struct pipe_fence_handle *src)
853 {
854 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
855 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
856 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
857
858 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
859 ws->fence_reference(&(*rdst)->gfx, NULL);
860 ws->fence_reference(&(*rdst)->sdma, NULL);
861 FREE(*rdst);
862 }
863 *rdst = rsrc;
864 }
865
866 static boolean r600_fence_finish(struct pipe_screen *screen,
867 struct pipe_fence_handle *fence,
868 uint64_t timeout)
869 {
870 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
871 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
872 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
873
874 if (rfence->sdma) {
875 if (!rws->fence_wait(rws, rfence->sdma, timeout))
876 return false;
877
878 /* Recompute the timeout after waiting. */
879 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
880 int64_t time = os_time_get_nano();
881 timeout = abs_timeout > time ? abs_timeout - time : 0;
882 }
883 }
884
885 if (!rfence->gfx)
886 return true;
887
888 return rws->fence_wait(rws, rfence->gfx, timeout);
889 }
890
891 static void r600_query_memory_info(struct pipe_screen *screen,
892 struct pipe_memory_info *info)
893 {
894 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
895 struct radeon_winsys *ws = rscreen->ws;
896 unsigned vram_usage, gtt_usage;
897
898 info->total_device_memory = rscreen->info.vram_size / 1024;
899 info->total_staging_memory = rscreen->info.gart_size / 1024;
900
901 /* The real TTM memory usage is somewhat random, because:
902 *
903 * 1) TTM delays freeing memory, because it can only free it after
904 * fences expire.
905 *
906 * 2) The memory usage can be really low if big VRAM evictions are
907 * taking place, but the real usage is well above the size of VRAM.
908 *
909 * Instead, return statistics of this process.
910 */
911 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
912 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
913
914 info->avail_device_memory =
915 vram_usage <= info->total_device_memory ?
916 info->total_device_memory - vram_usage : 0;
917 info->avail_staging_memory =
918 gtt_usage <= info->total_staging_memory ?
919 info->total_staging_memory - gtt_usage : 0;
920
921 info->device_memory_evicted =
922 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
923 /* Just return the number of evicted 64KB pages. */
924 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
925 }
926
927 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
928 const struct pipe_resource *templ)
929 {
930 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
931
932 if (templ->target == PIPE_BUFFER) {
933 return r600_buffer_create(screen, templ,
934 rscreen->info.gart_page_size);
935 } else {
936 return r600_texture_create(screen, templ);
937 }
938 }
939
940 bool r600_common_screen_init(struct r600_common_screen *rscreen,
941 struct radeon_winsys *ws)
942 {
943 char llvm_string[32] = {}, kernel_version[128] = {};
944 struct utsname uname_data;
945
946 ws->query_info(ws, &rscreen->info);
947
948 if (uname(&uname_data) == 0)
949 snprintf(kernel_version, sizeof(kernel_version),
950 " / %s", uname_data.release);
951
952 #if HAVE_LLVM
953 snprintf(llvm_string, sizeof(llvm_string),
954 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
955 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
956 #endif
957
958 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
959 "%s (DRM %i.%i.%i%s%s)",
960 r600_get_chip_name(rscreen), rscreen->info.drm_major,
961 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
962 kernel_version, llvm_string);
963
964 rscreen->b.get_name = r600_get_name;
965 rscreen->b.get_vendor = r600_get_vendor;
966 rscreen->b.get_device_vendor = r600_get_device_vendor;
967 rscreen->b.get_compute_param = r600_get_compute_param;
968 rscreen->b.get_paramf = r600_get_paramf;
969 rscreen->b.get_timestamp = r600_get_timestamp;
970 rscreen->b.fence_finish = r600_fence_finish;
971 rscreen->b.fence_reference = r600_fence_reference;
972 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
973 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
974 rscreen->b.query_memory_info = r600_query_memory_info;
975
976 if (rscreen->info.has_uvd) {
977 rscreen->b.get_video_param = rvid_get_video_param;
978 rscreen->b.is_video_format_supported = rvid_is_format_supported;
979 } else {
980 rscreen->b.get_video_param = r600_get_video_param;
981 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
982 }
983
984 r600_init_screen_texture_functions(rscreen);
985 r600_init_screen_query_functions(rscreen);
986
987 rscreen->ws = ws;
988 rscreen->family = rscreen->info.family;
989 rscreen->chip_class = rscreen->info.chip_class;
990 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
991
992 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
993 if (rscreen->force_aniso >= 0) {
994 printf("radeon: Forcing anisotropy filter to %ix\n",
995 /* round down to a power of two */
996 1 << util_logbase2(rscreen->force_aniso));
997 }
998
999 util_format_s3tc_init();
1000 pipe_mutex_init(rscreen->aux_context_lock);
1001 pipe_mutex_init(rscreen->gpu_load_mutex);
1002
1003 if (rscreen->debug_flags & DBG_INFO) {
1004 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1005 printf("family = %i (%s)\n", rscreen->info.family,
1006 r600_get_chip_name(rscreen));
1007 printf("chip_class = %i\n", rscreen->info.chip_class);
1008 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1009 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1010 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1011 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1012 printf("has_sdma = %i\n", rscreen->info.has_sdma);
1013 printf("has_uvd = %i\n", rscreen->info.has_uvd);
1014 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1015 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1016 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1017 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1018 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1019 printf("has_userptr = %i\n", rscreen->info.has_userptr);
1020
1021 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1022 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1023 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1024 printf("max_se = %i\n", rscreen->info.max_se);
1025 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1026
1027 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1028 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1029 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1030 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1031 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1032 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1033 }
1034 return true;
1035 }
1036
1037 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1038 {
1039 r600_perfcounters_destroy(rscreen);
1040 r600_gpu_load_kill_thread(rscreen);
1041
1042 pipe_mutex_destroy(rscreen->gpu_load_mutex);
1043 pipe_mutex_destroy(rscreen->aux_context_lock);
1044 rscreen->aux_context->destroy(rscreen->aux_context);
1045
1046 rscreen->ws->destroy(rscreen->ws);
1047 FREE(rscreen);
1048 }
1049
1050 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1051 unsigned processor)
1052 {
1053 switch (processor) {
1054 case PIPE_SHADER_VERTEX:
1055 return (rscreen->debug_flags & DBG_VS) != 0;
1056 case PIPE_SHADER_TESS_CTRL:
1057 return (rscreen->debug_flags & DBG_TCS) != 0;
1058 case PIPE_SHADER_TESS_EVAL:
1059 return (rscreen->debug_flags & DBG_TES) != 0;
1060 case PIPE_SHADER_GEOMETRY:
1061 return (rscreen->debug_flags & DBG_GS) != 0;
1062 case PIPE_SHADER_FRAGMENT:
1063 return (rscreen->debug_flags & DBG_PS) != 0;
1064 case PIPE_SHADER_COMPUTE:
1065 return (rscreen->debug_flags & DBG_CS) != 0;
1066 default:
1067 return false;
1068 }
1069 }
1070
1071 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1072 uint64_t offset, uint64_t size, unsigned value,
1073 enum r600_coherency coher)
1074 {
1075 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1076
1077 pipe_mutex_lock(rscreen->aux_context_lock);
1078 rctx->clear_buffer(&rctx->b, dst, offset, size, value, coher);
1079 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1080 pipe_mutex_unlock(rscreen->aux_context_lock);
1081 }