gallium: add cap to export device pointer size
[mesa.git] / src / gallium / drivers / radeon / r600_pipe_common.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45
46 struct r600_multi_fence {
47 struct pipe_reference reference;
48 struct pipe_fence_handle *gfx;
49 struct pipe_fence_handle *sdma;
50
51 /* If the context wasn't flushed at fence creation, this is non-NULL. */
52 struct {
53 struct r600_common_context *ctx;
54 unsigned ib_index;
55 } gfx_unflushed;
56 };
57
58 /*
59 * shader binary helpers.
60 */
61 void radeon_shader_binary_init(struct radeon_shader_binary *b)
62 {
63 memset(b, 0, sizeof(*b));
64 }
65
66 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
67 {
68 if (!b)
69 return;
70 FREE(b->code);
71 FREE(b->config);
72 FREE(b->rodata);
73 FREE(b->global_symbol_offsets);
74 FREE(b->relocs);
75 FREE(b->disasm_string);
76 FREE(b->llvm_ir_string);
77 }
78
79 /*
80 * pipe_context
81 */
82
83 void r600_draw_rectangle(struct blitter_context *blitter,
84 int x1, int y1, int x2, int y2, float depth,
85 enum blitter_attrib_type type,
86 const union pipe_color_union *attrib)
87 {
88 struct r600_common_context *rctx =
89 (struct r600_common_context*)util_blitter_get_pipe(blitter);
90 struct pipe_viewport_state viewport;
91 struct pipe_resource *buf = NULL;
92 unsigned offset = 0;
93 float *vb;
94
95 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
96 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
97 return;
98 }
99
100 /* Some operations (like color resolve on r6xx) don't work
101 * with the conventional primitive types.
102 * One that works is PT_RECTLIST, which we use here. */
103
104 /* setup viewport */
105 viewport.scale[0] = 1.0f;
106 viewport.scale[1] = 1.0f;
107 viewport.scale[2] = 1.0f;
108 viewport.translate[0] = 0.0f;
109 viewport.translate[1] = 0.0f;
110 viewport.translate[2] = 0.0f;
111 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
112
113 /* Upload vertices. The hw rectangle has only 3 vertices,
114 * I guess the 4th one is derived from the first 3.
115 * The vertex specification should match u_blitter's vertex element state. */
116 u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
117 if (!buf)
118 return;
119
120 vb[0] = x1;
121 vb[1] = y1;
122 vb[2] = depth;
123 vb[3] = 1;
124
125 vb[8] = x1;
126 vb[9] = y2;
127 vb[10] = depth;
128 vb[11] = 1;
129
130 vb[16] = x2;
131 vb[17] = y1;
132 vb[18] = depth;
133 vb[19] = 1;
134
135 if (attrib) {
136 memcpy(vb+4, attrib->f, sizeof(float)*4);
137 memcpy(vb+12, attrib->f, sizeof(float)*4);
138 memcpy(vb+20, attrib->f, sizeof(float)*4);
139 }
140
141 /* draw */
142 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
143 R600_PRIM_RECTANGLE_LIST, 3, 2);
144 pipe_resource_reference(&buf, NULL);
145 }
146
147 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
148 struct r600_resource *dst, struct r600_resource *src)
149 {
150 uint64_t vram = 0, gtt = 0;
151
152 if (dst) {
153 vram += dst->vram_usage;
154 gtt += dst->gart_usage;
155 }
156 if (src) {
157 vram += src->vram_usage;
158 gtt += src->gart_usage;
159 }
160
161 /* Flush the GFX IB if DMA depends on it. */
162 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
163 ((dst &&
164 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
165 RADEON_USAGE_READWRITE)) ||
166 (src &&
167 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
168 RADEON_USAGE_WRITE))))
169 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
170
171 /* Flush if there's not enough space, or if the memory usage per IB
172 * is too large.
173 */
174 if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
175 !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
176 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
177 assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
178 }
179
180 /* If GPUVM is not supported, the CS checker needs 2 entries
181 * in the buffer list per packet, which has to be done manually.
182 */
183 if (ctx->screen->info.has_virtual_memory) {
184 if (dst)
185 radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
186 RADEON_USAGE_WRITE,
187 RADEON_PRIO_SDMA_BUFFER);
188 if (src)
189 radeon_add_to_buffer_list(ctx, &ctx->dma, src,
190 RADEON_USAGE_READ,
191 RADEON_PRIO_SDMA_BUFFER);
192 }
193 }
194
195 /* This is required to prevent read-after-write hazards. */
196 void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
197 {
198 struct radeon_winsys_cs *cs = rctx->dma.cs;
199
200 /* done at the end of DMA calls, so increment this. */
201 rctx->num_dma_calls++;
202
203 /* IBs using too little memory are limited by the IB submission overhead.
204 * IBs using too much memory are limited by the kernel/TTM overhead.
205 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
206 *
207 * This heuristic makes sure that DMA requests are executed
208 * very soon after the call is made and lowers memory usage.
209 * It improves texture upload performance by keeping the DMA
210 * engine busy while uploads are being submitted.
211 */
212 if (cs->used_vram + cs->used_gart > 64 * 1024 * 1024) {
213 rctx->dma.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
214 return;
215 }
216
217 r600_need_dma_space(rctx, 1, NULL, NULL);
218
219 if (!radeon_emitted(cs, 0)) /* empty queue */
220 return;
221
222 /* NOP waits for idle on Evergreen and later. */
223 if (rctx->chip_class >= CIK)
224 radeon_emit(cs, 0x00000000); /* NOP */
225 else if (rctx->chip_class >= EVERGREEN)
226 radeon_emit(cs, 0xf0000000); /* NOP */
227 else {
228 /* TODO: R600-R700 should use the FENCE packet.
229 * CS checker support is required. */
230 }
231 }
232
233 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
234 {
235 }
236
237 void r600_preflush_suspend_features(struct r600_common_context *ctx)
238 {
239 /* suspend queries */
240 if (!LIST_IS_EMPTY(&ctx->active_queries))
241 r600_suspend_queries(ctx);
242
243 ctx->streamout.suspended = false;
244 if (ctx->streamout.begin_emitted) {
245 r600_emit_streamout_end(ctx);
246 ctx->streamout.suspended = true;
247 }
248 }
249
250 void r600_postflush_resume_features(struct r600_common_context *ctx)
251 {
252 if (ctx->streamout.suspended) {
253 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
254 r600_streamout_buffers_dirty(ctx);
255 }
256
257 /* resume queries */
258 if (!LIST_IS_EMPTY(&ctx->active_queries))
259 r600_resume_queries(ctx);
260 }
261
262 static void r600_flush_from_st(struct pipe_context *ctx,
263 struct pipe_fence_handle **fence,
264 unsigned flags)
265 {
266 struct pipe_screen *screen = ctx->screen;
267 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
268 struct radeon_winsys *ws = rctx->ws;
269 unsigned rflags = 0;
270 struct pipe_fence_handle *gfx_fence = NULL;
271 struct pipe_fence_handle *sdma_fence = NULL;
272 bool deferred_fence = false;
273
274 if (flags & PIPE_FLUSH_END_OF_FRAME)
275 rflags |= RADEON_FLUSH_END_OF_FRAME;
276 if (flags & PIPE_FLUSH_DEFERRED)
277 rflags |= RADEON_FLUSH_ASYNC;
278
279 if (rctx->dma.cs) {
280 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
281 }
282
283 if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
284 if (fence)
285 ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
286 if (!(rflags & RADEON_FLUSH_ASYNC))
287 ws->cs_sync_flush(rctx->gfx.cs);
288 } else {
289 /* Instead of flushing, create a deferred fence. Constraints:
290 * - The state tracker must allow a deferred flush.
291 * - The state tracker must request a fence.
292 * Thread safety in fence_finish must be ensured by the state tracker.
293 */
294 if (flags & PIPE_FLUSH_DEFERRED && fence) {
295 gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
296 deferred_fence = true;
297 } else {
298 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
299 }
300 }
301
302 /* Both engines can signal out of order, so we need to keep both fences. */
303 if (fence) {
304 struct r600_multi_fence *multi_fence =
305 CALLOC_STRUCT(r600_multi_fence);
306 if (!multi_fence)
307 return;
308
309 multi_fence->reference.count = 1;
310 /* If both fences are NULL, fence_finish will always return true. */
311 multi_fence->gfx = gfx_fence;
312 multi_fence->sdma = sdma_fence;
313
314 if (deferred_fence) {
315 multi_fence->gfx_unflushed.ctx = rctx;
316 multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
317 }
318
319 screen->fence_reference(screen, fence, NULL);
320 *fence = (struct pipe_fence_handle*)multi_fence;
321 }
322 }
323
324 static void r600_flush_dma_ring(void *ctx, unsigned flags,
325 struct pipe_fence_handle **fence)
326 {
327 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
328 struct radeon_winsys_cs *cs = rctx->dma.cs;
329 struct radeon_saved_cs saved;
330 bool check_vm =
331 (rctx->screen->debug_flags & DBG_CHECK_VM) &&
332 rctx->check_vm_faults;
333
334 if (!radeon_emitted(cs, 0)) {
335 if (fence)
336 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
337 return;
338 }
339
340 if (check_vm)
341 radeon_save_cs(rctx->ws, cs, &saved);
342
343 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
344 if (fence)
345 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
346
347 if (check_vm) {
348 /* Use conservative timeout 800ms, after which we won't wait any
349 * longer and assume the GPU is hung.
350 */
351 rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
352
353 rctx->check_vm_faults(rctx, &saved, RING_DMA);
354 radeon_clear_saved_cs(&saved);
355 }
356 }
357
358 /**
359 * Store a linearized copy of all chunks of \p cs together with the buffer
360 * list in \p saved.
361 */
362 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
363 struct radeon_saved_cs *saved)
364 {
365 void *buf;
366 unsigned i;
367
368 /* Save the IB chunks. */
369 saved->num_dw = cs->prev_dw + cs->current.cdw;
370 saved->ib = MALLOC(4 * saved->num_dw);
371 if (!saved->ib)
372 goto oom;
373
374 buf = saved->ib;
375 for (i = 0; i < cs->num_prev; ++i) {
376 memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
377 buf += cs->prev[i].cdw;
378 }
379 memcpy(buf, cs->current.buf, cs->current.cdw * 4);
380
381 /* Save the buffer list. */
382 saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
383 saved->bo_list = CALLOC(saved->bo_count,
384 sizeof(saved->bo_list[0]));
385 if (!saved->bo_list) {
386 FREE(saved->ib);
387 goto oom;
388 }
389 ws->cs_get_buffer_list(cs, saved->bo_list);
390
391 return;
392
393 oom:
394 fprintf(stderr, "%s: out of memory\n", __func__);
395 memset(saved, 0, sizeof(*saved));
396 }
397
398 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
399 {
400 FREE(saved->ib);
401 FREE(saved->bo_list);
402
403 memset(saved, 0, sizeof(*saved));
404 }
405
406 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
407 {
408 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
409 unsigned latest = rctx->ws->query_value(rctx->ws,
410 RADEON_GPU_RESET_COUNTER);
411
412 if (rctx->gpu_reset_counter == latest)
413 return PIPE_NO_RESET;
414
415 rctx->gpu_reset_counter = latest;
416 return PIPE_UNKNOWN_CONTEXT_RESET;
417 }
418
419 static void r600_set_debug_callback(struct pipe_context *ctx,
420 const struct pipe_debug_callback *cb)
421 {
422 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
423
424 if (cb)
425 rctx->debug = *cb;
426 else
427 memset(&rctx->debug, 0, sizeof(rctx->debug));
428 }
429
430 bool r600_common_context_init(struct r600_common_context *rctx,
431 struct r600_common_screen *rscreen,
432 unsigned context_flags)
433 {
434 util_slab_create(&rctx->pool_transfers,
435 sizeof(struct r600_transfer), 64,
436 UTIL_SLAB_SINGLETHREADED);
437
438 rctx->screen = rscreen;
439 rctx->ws = rscreen->ws;
440 rctx->family = rscreen->family;
441 rctx->chip_class = rscreen->chip_class;
442
443 if (rscreen->chip_class >= CIK)
444 rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
445 else if (rscreen->chip_class >= EVERGREEN)
446 rctx->max_db = 8;
447 else
448 rctx->max_db = 4;
449
450 rctx->b.invalidate_resource = r600_invalidate_resource;
451 rctx->b.transfer_map = u_transfer_map_vtbl;
452 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
453 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
454 rctx->b.texture_subdata = u_default_texture_subdata;
455 rctx->b.memory_barrier = r600_memory_barrier;
456 rctx->b.flush = r600_flush_from_st;
457 rctx->b.set_debug_callback = r600_set_debug_callback;
458
459 /* evergreen_compute.c has a special codepath for global buffers.
460 * Everything else can use the direct path.
461 */
462 if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
463 (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
464 rctx->b.buffer_subdata = u_default_buffer_subdata;
465 else
466 rctx->b.buffer_subdata = r600_buffer_subdata;
467
468 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
469 rctx->b.get_device_reset_status = r600_get_reset_status;
470 rctx->gpu_reset_counter =
471 rctx->ws->query_value(rctx->ws,
472 RADEON_GPU_RESET_COUNTER);
473 }
474
475 LIST_INITHEAD(&rctx->texture_buffers);
476
477 r600_init_context_texture_functions(rctx);
478 r600_init_viewport_functions(rctx);
479 r600_streamout_init(rctx);
480 r600_query_init(rctx);
481 cayman_init_msaa(&rctx->b);
482
483 rctx->allocator_zeroed_memory =
484 u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
485 0, PIPE_USAGE_DEFAULT, true);
486 if (!rctx->allocator_zeroed_memory)
487 return false;
488
489 rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
490 PIPE_BIND_INDEX_BUFFER |
491 PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
492 if (!rctx->uploader)
493 return false;
494
495 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
496 if (!rctx->ctx)
497 return false;
498
499 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
500 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
501 r600_flush_dma_ring,
502 rctx);
503 rctx->dma.flush = r600_flush_dma_ring;
504 }
505
506 return true;
507 }
508
509 void r600_common_context_cleanup(struct r600_common_context *rctx)
510 {
511 unsigned i,j;
512
513 /* Release DCC stats. */
514 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
515 assert(!rctx->dcc_stats[i].query_active);
516
517 for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
518 if (rctx->dcc_stats[i].ps_stats[j])
519 rctx->b.destroy_query(&rctx->b,
520 rctx->dcc_stats[i].ps_stats[j]);
521
522 r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
523 }
524
525 if (rctx->gfx.cs)
526 rctx->ws->cs_destroy(rctx->gfx.cs);
527 if (rctx->dma.cs)
528 rctx->ws->cs_destroy(rctx->dma.cs);
529 if (rctx->ctx)
530 rctx->ws->ctx_destroy(rctx->ctx);
531
532 if (rctx->uploader) {
533 u_upload_destroy(rctx->uploader);
534 }
535
536 util_slab_destroy(&rctx->pool_transfers);
537
538 if (rctx->allocator_zeroed_memory) {
539 u_suballocator_destroy(rctx->allocator_zeroed_memory);
540 }
541 rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
542 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
543 }
544
545 void r600_context_add_resource_size(struct pipe_context *ctx, struct pipe_resource *r)
546 {
547 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
548 struct r600_resource *rr = (struct r600_resource *)r;
549
550 if (!r) {
551 return;
552 }
553
554 /*
555 * The idea is to compute a gross estimate of memory requirement of
556 * each draw call. After each draw call, memory will be precisely
557 * accounted. So the uncertainty is only on the current draw call.
558 * In practice this gave very good estimate (+/- 10% of the target
559 * memory limit).
560 */
561 rctx->vram += rr->vram_usage;
562 rctx->gtt += rr->gart_usage;
563 }
564
565 /*
566 * pipe_screen
567 */
568
569 static const struct debug_named_value common_debug_options[] = {
570 /* logging */
571 { "tex", DBG_TEX, "Print texture info" },
572 { "compute", DBG_COMPUTE, "Print compute info" },
573 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
574 { "info", DBG_INFO, "Print driver information" },
575
576 /* shaders */
577 { "fs", DBG_FS, "Print fetch shaders" },
578 { "vs", DBG_VS, "Print vertex shaders" },
579 { "gs", DBG_GS, "Print geometry shaders" },
580 { "ps", DBG_PS, "Print pixel shaders" },
581 { "cs", DBG_CS, "Print compute shaders" },
582 { "tcs", DBG_TCS, "Print tessellation control shaders" },
583 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
584 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
585 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
586 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
587 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
588
589 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
590
591 /* features */
592 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
593 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
594 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
595 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
596 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
597 { "notiling", DBG_NO_TILING, "Disable tiling" },
598 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
599 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
600 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
601 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
602 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
603 { "nodcc", DBG_NO_DCC, "Disable DCC." },
604 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
605 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
606 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
607 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
608 { "noce", DBG_NO_CE, "Disable the constant engine"},
609 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
610 { "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
611
612 DEBUG_NAMED_VALUE_END /* must be last */
613 };
614
615 static const char* r600_get_vendor(struct pipe_screen* pscreen)
616 {
617 return "X.Org";
618 }
619
620 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
621 {
622 return "AMD";
623 }
624
625 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
626 {
627 switch (rscreen->info.family) {
628 case CHIP_R600: return "AMD R600";
629 case CHIP_RV610: return "AMD RV610";
630 case CHIP_RV630: return "AMD RV630";
631 case CHIP_RV670: return "AMD RV670";
632 case CHIP_RV620: return "AMD RV620";
633 case CHIP_RV635: return "AMD RV635";
634 case CHIP_RS780: return "AMD RS780";
635 case CHIP_RS880: return "AMD RS880";
636 case CHIP_RV770: return "AMD RV770";
637 case CHIP_RV730: return "AMD RV730";
638 case CHIP_RV710: return "AMD RV710";
639 case CHIP_RV740: return "AMD RV740";
640 case CHIP_CEDAR: return "AMD CEDAR";
641 case CHIP_REDWOOD: return "AMD REDWOOD";
642 case CHIP_JUNIPER: return "AMD JUNIPER";
643 case CHIP_CYPRESS: return "AMD CYPRESS";
644 case CHIP_HEMLOCK: return "AMD HEMLOCK";
645 case CHIP_PALM: return "AMD PALM";
646 case CHIP_SUMO: return "AMD SUMO";
647 case CHIP_SUMO2: return "AMD SUMO2";
648 case CHIP_BARTS: return "AMD BARTS";
649 case CHIP_TURKS: return "AMD TURKS";
650 case CHIP_CAICOS: return "AMD CAICOS";
651 case CHIP_CAYMAN: return "AMD CAYMAN";
652 case CHIP_ARUBA: return "AMD ARUBA";
653 case CHIP_TAHITI: return "AMD TAHITI";
654 case CHIP_PITCAIRN: return "AMD PITCAIRN";
655 case CHIP_VERDE: return "AMD CAPE VERDE";
656 case CHIP_OLAND: return "AMD OLAND";
657 case CHIP_HAINAN: return "AMD HAINAN";
658 case CHIP_BONAIRE: return "AMD BONAIRE";
659 case CHIP_KAVERI: return "AMD KAVERI";
660 case CHIP_KABINI: return "AMD KABINI";
661 case CHIP_HAWAII: return "AMD HAWAII";
662 case CHIP_MULLINS: return "AMD MULLINS";
663 case CHIP_TONGA: return "AMD TONGA";
664 case CHIP_ICELAND: return "AMD ICELAND";
665 case CHIP_CARRIZO: return "AMD CARRIZO";
666 case CHIP_FIJI: return "AMD FIJI";
667 case CHIP_POLARIS10: return "AMD POLARIS10";
668 case CHIP_POLARIS11: return "AMD POLARIS11";
669 case CHIP_STONEY: return "AMD STONEY";
670 default: return "AMD unknown";
671 }
672 }
673
674 static const char* r600_get_name(struct pipe_screen* pscreen)
675 {
676 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
677
678 return rscreen->renderer_string;
679 }
680
681 static float r600_get_paramf(struct pipe_screen* pscreen,
682 enum pipe_capf param)
683 {
684 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
685
686 switch (param) {
687 case PIPE_CAPF_MAX_LINE_WIDTH:
688 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
689 case PIPE_CAPF_MAX_POINT_WIDTH:
690 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
691 if (rscreen->family >= CHIP_CEDAR)
692 return 16384.0f;
693 else
694 return 8192.0f;
695 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
696 return 16.0f;
697 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
698 return 16.0f;
699 case PIPE_CAPF_GUARD_BAND_LEFT:
700 case PIPE_CAPF_GUARD_BAND_TOP:
701 case PIPE_CAPF_GUARD_BAND_RIGHT:
702 case PIPE_CAPF_GUARD_BAND_BOTTOM:
703 return 0.0f;
704 }
705 return 0.0f;
706 }
707
708 static int r600_get_video_param(struct pipe_screen *screen,
709 enum pipe_video_profile profile,
710 enum pipe_video_entrypoint entrypoint,
711 enum pipe_video_cap param)
712 {
713 switch (param) {
714 case PIPE_VIDEO_CAP_SUPPORTED:
715 return vl_profile_supported(screen, profile, entrypoint);
716 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
717 return 1;
718 case PIPE_VIDEO_CAP_MAX_WIDTH:
719 case PIPE_VIDEO_CAP_MAX_HEIGHT:
720 return vl_video_buffer_max_size(screen);
721 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
722 return PIPE_FORMAT_NV12;
723 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
724 return false;
725 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
726 return false;
727 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
728 return true;
729 case PIPE_VIDEO_CAP_MAX_LEVEL:
730 return vl_level_supported(screen, profile);
731 default:
732 return 0;
733 }
734 }
735
736 const char *r600_get_llvm_processor_name(enum radeon_family family)
737 {
738 switch (family) {
739 case CHIP_R600:
740 case CHIP_RV630:
741 case CHIP_RV635:
742 case CHIP_RV670:
743 return "r600";
744 case CHIP_RV610:
745 case CHIP_RV620:
746 case CHIP_RS780:
747 case CHIP_RS880:
748 return "rs880";
749 case CHIP_RV710:
750 return "rv710";
751 case CHIP_RV730:
752 return "rv730";
753 case CHIP_RV740:
754 case CHIP_RV770:
755 return "rv770";
756 case CHIP_PALM:
757 case CHIP_CEDAR:
758 return "cedar";
759 case CHIP_SUMO:
760 case CHIP_SUMO2:
761 return "sumo";
762 case CHIP_REDWOOD:
763 return "redwood";
764 case CHIP_JUNIPER:
765 return "juniper";
766 case CHIP_HEMLOCK:
767 case CHIP_CYPRESS:
768 return "cypress";
769 case CHIP_BARTS:
770 return "barts";
771 case CHIP_TURKS:
772 return "turks";
773 case CHIP_CAICOS:
774 return "caicos";
775 case CHIP_CAYMAN:
776 case CHIP_ARUBA:
777 return "cayman";
778
779 case CHIP_TAHITI: return "tahiti";
780 case CHIP_PITCAIRN: return "pitcairn";
781 case CHIP_VERDE: return "verde";
782 case CHIP_OLAND: return "oland";
783 case CHIP_HAINAN: return "hainan";
784 case CHIP_BONAIRE: return "bonaire";
785 case CHIP_KABINI: return "kabini";
786 case CHIP_KAVERI: return "kaveri";
787 case CHIP_HAWAII: return "hawaii";
788 case CHIP_MULLINS:
789 return "mullins";
790 case CHIP_TONGA: return "tonga";
791 case CHIP_ICELAND: return "iceland";
792 case CHIP_CARRIZO: return "carrizo";
793 #if HAVE_LLVM <= 0x0307
794 case CHIP_FIJI: return "tonga";
795 case CHIP_STONEY: return "carrizo";
796 #else
797 case CHIP_FIJI: return "fiji";
798 case CHIP_STONEY: return "stoney";
799 #endif
800 #if HAVE_LLVM <= 0x0308
801 case CHIP_POLARIS10: return "tonga";
802 case CHIP_POLARIS11: return "tonga";
803 #else
804 case CHIP_POLARIS10: return "polaris10";
805 case CHIP_POLARIS11: return "polaris11";
806 #endif
807 default: return "";
808 }
809 }
810
811 static int r600_get_compute_param(struct pipe_screen *screen,
812 enum pipe_shader_ir ir_type,
813 enum pipe_compute_cap param,
814 void *ret)
815 {
816 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
817
818 //TODO: select these params by asic
819 switch (param) {
820 case PIPE_COMPUTE_CAP_IR_TARGET: {
821 const char *gpu;
822 const char *triple;
823 if (rscreen->family <= CHIP_ARUBA) {
824 triple = "r600--";
825 } else {
826 triple = "amdgcn--";
827 }
828 switch(rscreen->family) {
829 /* Clang < 3.6 is missing Hainan in its list of
830 * GPUs, so we need to use the name of a similar GPU.
831 */
832 default:
833 gpu = r600_get_llvm_processor_name(rscreen->family);
834 break;
835 }
836 if (ret) {
837 sprintf(ret, "%s-%s", gpu, triple);
838 }
839 /* +2 for dash and terminating NIL byte */
840 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
841 }
842 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
843 if (ret) {
844 uint64_t *grid_dimension = ret;
845 grid_dimension[0] = 3;
846 }
847 return 1 * sizeof(uint64_t);
848
849 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
850 if (ret) {
851 uint64_t *grid_size = ret;
852 grid_size[0] = 65535;
853 grid_size[1] = 65535;
854 grid_size[2] = 65535;
855 }
856 return 3 * sizeof(uint64_t) ;
857
858 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
859 if (ret) {
860 uint64_t *block_size = ret;
861 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
862 ir_type == PIPE_SHADER_IR_TGSI) {
863 block_size[0] = 2048;
864 block_size[1] = 2048;
865 block_size[2] = 2048;
866 } else {
867 block_size[0] = 256;
868 block_size[1] = 256;
869 block_size[2] = 256;
870 }
871 }
872 return 3 * sizeof(uint64_t);
873
874 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
875 if (ret) {
876 uint64_t *max_threads_per_block = ret;
877 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
878 ir_type == PIPE_SHADER_IR_TGSI)
879 *max_threads_per_block = 2048;
880 else
881 *max_threads_per_block = 256;
882 }
883 return sizeof(uint64_t);
884 case PIPE_COMPUTE_CAP_ADDRESS_BITS:
885 if (ret) {
886 uint32_t *address_bits = ret;
887 address_bits[0] = 32;
888 if (rscreen->chip_class >= SI)
889 address_bits[0] = 64;
890 }
891 return 1 * sizeof(uint32_t);
892
893 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
894 if (ret) {
895 uint64_t *max_global_size = ret;
896 uint64_t max_mem_alloc_size;
897
898 r600_get_compute_param(screen, ir_type,
899 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
900 &max_mem_alloc_size);
901
902 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
903 * 1/4 of the MAX_GLOBAL_SIZE. Since the
904 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
905 * make sure we never report more than
906 * 4 * MAX_MEM_ALLOC_SIZE.
907 */
908 *max_global_size = MIN2(4 * max_mem_alloc_size,
909 MAX2(rscreen->info.gart_size,
910 rscreen->info.vram_size));
911 }
912 return sizeof(uint64_t);
913
914 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
915 if (ret) {
916 uint64_t *max_local_size = ret;
917 /* Value reported by the closed source driver. */
918 *max_local_size = 32768;
919 }
920 return sizeof(uint64_t);
921
922 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
923 if (ret) {
924 uint64_t *max_input_size = ret;
925 /* Value reported by the closed source driver. */
926 *max_input_size = 1024;
927 }
928 return sizeof(uint64_t);
929
930 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
931 if (ret) {
932 uint64_t *max_mem_alloc_size = ret;
933
934 *max_mem_alloc_size = rscreen->info.max_alloc_size;
935 }
936 return sizeof(uint64_t);
937
938 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
939 if (ret) {
940 uint32_t *max_clock_frequency = ret;
941 *max_clock_frequency = rscreen->info.max_shader_clock;
942 }
943 return sizeof(uint32_t);
944
945 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
946 if (ret) {
947 uint32_t *max_compute_units = ret;
948 *max_compute_units = rscreen->info.num_good_compute_units;
949 }
950 return sizeof(uint32_t);
951
952 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
953 if (ret) {
954 uint32_t *images_supported = ret;
955 *images_supported = 0;
956 }
957 return sizeof(uint32_t);
958 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
959 break; /* unused */
960 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
961 if (ret) {
962 uint32_t *subgroup_size = ret;
963 *subgroup_size = r600_wavefront_size(rscreen->family);
964 }
965 return sizeof(uint32_t);
966 }
967
968 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
969 return 0;
970 }
971
972 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
973 {
974 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
975
976 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
977 rscreen->info.clock_crystal_freq;
978 }
979
980 static void r600_fence_reference(struct pipe_screen *screen,
981 struct pipe_fence_handle **dst,
982 struct pipe_fence_handle *src)
983 {
984 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
985 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
986 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
987
988 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
989 ws->fence_reference(&(*rdst)->gfx, NULL);
990 ws->fence_reference(&(*rdst)->sdma, NULL);
991 FREE(*rdst);
992 }
993 *rdst = rsrc;
994 }
995
996 static boolean r600_fence_finish(struct pipe_screen *screen,
997 struct pipe_context *ctx,
998 struct pipe_fence_handle *fence,
999 uint64_t timeout)
1000 {
1001 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1002 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1003 struct r600_common_context *rctx =
1004 ctx ? (struct r600_common_context*)ctx : NULL;
1005 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1006
1007 if (rfence->sdma) {
1008 if (!rws->fence_wait(rws, rfence->sdma, timeout))
1009 return false;
1010
1011 /* Recompute the timeout after waiting. */
1012 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1013 int64_t time = os_time_get_nano();
1014 timeout = abs_timeout > time ? abs_timeout - time : 0;
1015 }
1016 }
1017
1018 if (!rfence->gfx)
1019 return true;
1020
1021 /* Flush the gfx IB if it hasn't been flushed yet. */
1022 if (rctx &&
1023 rfence->gfx_unflushed.ctx == rctx &&
1024 rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1025 rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1026 rfence->gfx_unflushed.ctx = NULL;
1027
1028 if (!timeout)
1029 return false;
1030
1031 /* Recompute the timeout after all that. */
1032 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1033 int64_t time = os_time_get_nano();
1034 timeout = abs_timeout > time ? abs_timeout - time : 0;
1035 }
1036 }
1037
1038 return rws->fence_wait(rws, rfence->gfx, timeout);
1039 }
1040
1041 static void r600_query_memory_info(struct pipe_screen *screen,
1042 struct pipe_memory_info *info)
1043 {
1044 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1045 struct radeon_winsys *ws = rscreen->ws;
1046 unsigned vram_usage, gtt_usage;
1047
1048 info->total_device_memory = rscreen->info.vram_size / 1024;
1049 info->total_staging_memory = rscreen->info.gart_size / 1024;
1050
1051 /* The real TTM memory usage is somewhat random, because:
1052 *
1053 * 1) TTM delays freeing memory, because it can only free it after
1054 * fences expire.
1055 *
1056 * 2) The memory usage can be really low if big VRAM evictions are
1057 * taking place, but the real usage is well above the size of VRAM.
1058 *
1059 * Instead, return statistics of this process.
1060 */
1061 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1062 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1063
1064 info->avail_device_memory =
1065 vram_usage <= info->total_device_memory ?
1066 info->total_device_memory - vram_usage : 0;
1067 info->avail_staging_memory =
1068 gtt_usage <= info->total_staging_memory ?
1069 info->total_staging_memory - gtt_usage : 0;
1070
1071 info->device_memory_evicted =
1072 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1073 /* Just return the number of evicted 64KB pages. */
1074 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1075 }
1076
1077 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1078 const struct pipe_resource *templ)
1079 {
1080 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1081
1082 if (templ->target == PIPE_BUFFER) {
1083 return r600_buffer_create(screen, templ,
1084 rscreen->info.gart_page_size);
1085 } else {
1086 return r600_texture_create(screen, templ);
1087 }
1088 }
1089
1090 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1091 struct radeon_winsys *ws)
1092 {
1093 char llvm_string[32] = {}, kernel_version[128] = {};
1094 struct utsname uname_data;
1095
1096 ws->query_info(ws, &rscreen->info);
1097
1098 if (uname(&uname_data) == 0)
1099 snprintf(kernel_version, sizeof(kernel_version),
1100 " / %s", uname_data.release);
1101
1102 #if HAVE_LLVM
1103 snprintf(llvm_string, sizeof(llvm_string),
1104 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1105 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1106 #endif
1107
1108 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1109 "%s (DRM %i.%i.%i%s%s)",
1110 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1111 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1112 kernel_version, llvm_string);
1113
1114 rscreen->b.get_name = r600_get_name;
1115 rscreen->b.get_vendor = r600_get_vendor;
1116 rscreen->b.get_device_vendor = r600_get_device_vendor;
1117 rscreen->b.get_compute_param = r600_get_compute_param;
1118 rscreen->b.get_paramf = r600_get_paramf;
1119 rscreen->b.get_timestamp = r600_get_timestamp;
1120 rscreen->b.fence_finish = r600_fence_finish;
1121 rscreen->b.fence_reference = r600_fence_reference;
1122 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1123 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1124 rscreen->b.query_memory_info = r600_query_memory_info;
1125
1126 if (rscreen->info.has_uvd) {
1127 rscreen->b.get_video_param = rvid_get_video_param;
1128 rscreen->b.is_video_format_supported = rvid_is_format_supported;
1129 } else {
1130 rscreen->b.get_video_param = r600_get_video_param;
1131 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1132 }
1133
1134 r600_init_screen_texture_functions(rscreen);
1135 r600_init_screen_query_functions(rscreen);
1136
1137 rscreen->ws = ws;
1138 rscreen->family = rscreen->info.family;
1139 rscreen->chip_class = rscreen->info.chip_class;
1140 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1141
1142 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1143 if (rscreen->force_aniso >= 0) {
1144 printf("radeon: Forcing anisotropy filter to %ix\n",
1145 /* round down to a power of two */
1146 1 << util_logbase2(rscreen->force_aniso));
1147 }
1148
1149 util_format_s3tc_init();
1150 pipe_mutex_init(rscreen->aux_context_lock);
1151 pipe_mutex_init(rscreen->gpu_load_mutex);
1152
1153 if (rscreen->debug_flags & DBG_INFO) {
1154 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1155 printf("family = %i (%s)\n", rscreen->info.family,
1156 r600_get_chip_name(rscreen));
1157 printf("chip_class = %i\n", rscreen->info.chip_class);
1158 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1159 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1160 printf("max_alloc_size = %i MB\n",
1161 (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1162 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1163 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1164 printf("has_sdma = %i\n", rscreen->info.has_sdma);
1165 printf("has_uvd = %i\n", rscreen->info.has_uvd);
1166 printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1167 printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1168 printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1169 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1170 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1171 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1172 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1173 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1174 printf("has_userptr = %i\n", rscreen->info.has_userptr);
1175
1176 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1177 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1178 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1179 printf("max_se = %i\n", rscreen->info.max_se);
1180 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1181
1182 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1183 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1184 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1185 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1186 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1187 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1188 }
1189 return true;
1190 }
1191
1192 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1193 {
1194 r600_perfcounters_destroy(rscreen);
1195 r600_gpu_load_kill_thread(rscreen);
1196
1197 pipe_mutex_destroy(rscreen->gpu_load_mutex);
1198 pipe_mutex_destroy(rscreen->aux_context_lock);
1199 rscreen->aux_context->destroy(rscreen->aux_context);
1200
1201 rscreen->ws->destroy(rscreen->ws);
1202 FREE(rscreen);
1203 }
1204
1205 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1206 unsigned processor)
1207 {
1208 switch (processor) {
1209 case PIPE_SHADER_VERTEX:
1210 return (rscreen->debug_flags & DBG_VS) != 0;
1211 case PIPE_SHADER_TESS_CTRL:
1212 return (rscreen->debug_flags & DBG_TCS) != 0;
1213 case PIPE_SHADER_TESS_EVAL:
1214 return (rscreen->debug_flags & DBG_TES) != 0;
1215 case PIPE_SHADER_GEOMETRY:
1216 return (rscreen->debug_flags & DBG_GS) != 0;
1217 case PIPE_SHADER_FRAGMENT:
1218 return (rscreen->debug_flags & DBG_PS) != 0;
1219 case PIPE_SHADER_COMPUTE:
1220 return (rscreen->debug_flags & DBG_CS) != 0;
1221 default:
1222 return false;
1223 }
1224 }
1225
1226 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1227 uint64_t offset, uint64_t size, unsigned value,
1228 enum r600_coherency coher)
1229 {
1230 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1231
1232 pipe_mutex_lock(rscreen->aux_context_lock);
1233 rctx->clear_buffer(&rctx->b, dst, offset, size, value, coher);
1234 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1235 pipe_mutex_unlock(rscreen->aux_context_lock);
1236 }