03ea04d48f7c3dd05b05059f8542f85baf67bca2
[mesa.git] / src / gallium / drivers / radeon / r600_query.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 * Copyright 2014 Marek Olšák <marek.olsak@amd.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "r600_query.h"
26 #include "r600_cs.h"
27 #include "util/u_memory.h"
28 #include "util/u_upload_mgr.h"
29 #include "os/os_time.h"
30 #include "tgsi/tgsi_text.h"
31
32 #define R600_MAX_STREAMS 4
33
34 struct r600_hw_query_params {
35 unsigned start_offset;
36 unsigned end_offset;
37 unsigned fence_offset;
38 unsigned pair_stride;
39 unsigned pair_count;
40 };
41
42 /* Queries without buffer handling or suspend/resume. */
43 struct r600_query_sw {
44 struct r600_query b;
45
46 uint64_t begin_result;
47 uint64_t end_result;
48
49 uint64_t begin_time;
50 uint64_t end_time;
51
52 /* Fence for GPU_FINISHED. */
53 struct pipe_fence_handle *fence;
54 };
55
56 static void r600_query_sw_destroy(struct r600_common_screen *rscreen,
57 struct r600_query *rquery)
58 {
59 struct r600_query_sw *query = (struct r600_query_sw *)rquery;
60
61 rscreen->b.fence_reference(&rscreen->b, &query->fence, NULL);
62 FREE(query);
63 }
64
65 static enum radeon_value_id winsys_id_from_type(unsigned type)
66 {
67 switch (type) {
68 case R600_QUERY_REQUESTED_VRAM: return RADEON_REQUESTED_VRAM_MEMORY;
69 case R600_QUERY_REQUESTED_GTT: return RADEON_REQUESTED_GTT_MEMORY;
70 case R600_QUERY_MAPPED_VRAM: return RADEON_MAPPED_VRAM;
71 case R600_QUERY_MAPPED_GTT: return RADEON_MAPPED_GTT;
72 case R600_QUERY_BUFFER_WAIT_TIME: return RADEON_BUFFER_WAIT_TIME_NS;
73 case R600_QUERY_NUM_MAPPED_BUFFERS: return RADEON_NUM_MAPPED_BUFFERS;
74 case R600_QUERY_NUM_GFX_IBS: return RADEON_NUM_GFX_IBS;
75 case R600_QUERY_NUM_SDMA_IBS: return RADEON_NUM_SDMA_IBS;
76 case R600_QUERY_GFX_BO_LIST_SIZE: return RADEON_GFX_BO_LIST_COUNTER;
77 case R600_QUERY_NUM_BYTES_MOVED: return RADEON_NUM_BYTES_MOVED;
78 case R600_QUERY_NUM_EVICTIONS: return RADEON_NUM_EVICTIONS;
79 case R600_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: return RADEON_NUM_VRAM_CPU_PAGE_FAULTS;
80 case R600_QUERY_VRAM_USAGE: return RADEON_VRAM_USAGE;
81 case R600_QUERY_VRAM_VIS_USAGE: return RADEON_VRAM_VIS_USAGE;
82 case R600_QUERY_GTT_USAGE: return RADEON_GTT_USAGE;
83 case R600_QUERY_GPU_TEMPERATURE: return RADEON_GPU_TEMPERATURE;
84 case R600_QUERY_CURRENT_GPU_SCLK: return RADEON_CURRENT_SCLK;
85 case R600_QUERY_CURRENT_GPU_MCLK: return RADEON_CURRENT_MCLK;
86 case R600_QUERY_CS_THREAD_BUSY: return RADEON_CS_THREAD_TIME;
87 default: unreachable("query type does not correspond to winsys id");
88 }
89 }
90
91 static bool r600_query_sw_begin(struct r600_common_context *rctx,
92 struct r600_query *rquery)
93 {
94 struct r600_query_sw *query = (struct r600_query_sw *)rquery;
95 enum radeon_value_id ws_id;
96
97 switch(query->b.type) {
98 case PIPE_QUERY_TIMESTAMP_DISJOINT:
99 case PIPE_QUERY_GPU_FINISHED:
100 break;
101 case R600_QUERY_DRAW_CALLS:
102 query->begin_result = rctx->num_draw_calls;
103 break;
104 case R600_QUERY_DECOMPRESS_CALLS:
105 query->begin_result = rctx->num_decompress_calls;
106 break;
107 case R600_QUERY_MRT_DRAW_CALLS:
108 query->begin_result = rctx->num_mrt_draw_calls;
109 break;
110 case R600_QUERY_PRIM_RESTART_CALLS:
111 query->begin_result = rctx->num_prim_restart_calls;
112 break;
113 case R600_QUERY_SPILL_DRAW_CALLS:
114 query->begin_result = rctx->num_spill_draw_calls;
115 break;
116 case R600_QUERY_COMPUTE_CALLS:
117 query->begin_result = rctx->num_compute_calls;
118 break;
119 case R600_QUERY_SPILL_COMPUTE_CALLS:
120 query->begin_result = rctx->num_spill_compute_calls;
121 break;
122 case R600_QUERY_DMA_CALLS:
123 query->begin_result = rctx->num_dma_calls;
124 break;
125 case R600_QUERY_CP_DMA_CALLS:
126 query->begin_result = rctx->num_cp_dma_calls;
127 break;
128 case R600_QUERY_NUM_VS_FLUSHES:
129 query->begin_result = rctx->num_vs_flushes;
130 break;
131 case R600_QUERY_NUM_PS_FLUSHES:
132 query->begin_result = rctx->num_ps_flushes;
133 break;
134 case R600_QUERY_NUM_CS_FLUSHES:
135 query->begin_result = rctx->num_cs_flushes;
136 break;
137 case R600_QUERY_NUM_CB_CACHE_FLUSHES:
138 query->begin_result = rctx->num_cb_cache_flushes;
139 break;
140 case R600_QUERY_NUM_DB_CACHE_FLUSHES:
141 query->begin_result = rctx->num_db_cache_flushes;
142 break;
143 case R600_QUERY_NUM_L2_INVALIDATES:
144 query->begin_result = rctx->num_L2_invalidates;
145 break;
146 case R600_QUERY_NUM_L2_WRITEBACKS:
147 query->begin_result = rctx->num_L2_writebacks;
148 break;
149 case R600_QUERY_NUM_RESIDENT_HANDLES:
150 query->begin_result = rctx->num_resident_handles;
151 break;
152 case R600_QUERY_TC_OFFLOADED_SLOTS:
153 query->begin_result = rctx->tc ? rctx->tc->num_offloaded_slots : 0;
154 break;
155 case R600_QUERY_TC_DIRECT_SLOTS:
156 query->begin_result = rctx->tc ? rctx->tc->num_direct_slots : 0;
157 break;
158 case R600_QUERY_TC_NUM_SYNCS:
159 query->begin_result = rctx->tc ? rctx->tc->num_syncs : 0;
160 break;
161 case R600_QUERY_REQUESTED_VRAM:
162 case R600_QUERY_REQUESTED_GTT:
163 case R600_QUERY_MAPPED_VRAM:
164 case R600_QUERY_MAPPED_GTT:
165 case R600_QUERY_VRAM_USAGE:
166 case R600_QUERY_VRAM_VIS_USAGE:
167 case R600_QUERY_GTT_USAGE:
168 case R600_QUERY_GPU_TEMPERATURE:
169 case R600_QUERY_CURRENT_GPU_SCLK:
170 case R600_QUERY_CURRENT_GPU_MCLK:
171 case R600_QUERY_BACK_BUFFER_PS_DRAW_RATIO:
172 case R600_QUERY_NUM_MAPPED_BUFFERS:
173 query->begin_result = 0;
174 break;
175 case R600_QUERY_BUFFER_WAIT_TIME:
176 case R600_QUERY_NUM_GFX_IBS:
177 case R600_QUERY_NUM_SDMA_IBS:
178 case R600_QUERY_NUM_BYTES_MOVED:
179 case R600_QUERY_NUM_EVICTIONS:
180 case R600_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: {
181 enum radeon_value_id ws_id = winsys_id_from_type(query->b.type);
182 query->begin_result = rctx->ws->query_value(rctx->ws, ws_id);
183 break;
184 }
185 case R600_QUERY_GFX_BO_LIST_SIZE:
186 ws_id = winsys_id_from_type(query->b.type);
187 query->begin_result = rctx->ws->query_value(rctx->ws, ws_id);
188 query->begin_time = rctx->ws->query_value(rctx->ws,
189 RADEON_NUM_GFX_IBS);
190 break;
191 case R600_QUERY_CS_THREAD_BUSY:
192 ws_id = winsys_id_from_type(query->b.type);
193 query->begin_result = rctx->ws->query_value(rctx->ws, ws_id);
194 query->begin_time = os_time_get_nano();
195 break;
196 case R600_QUERY_GALLIUM_THREAD_BUSY:
197 query->begin_result =
198 rctx->tc ? util_queue_get_thread_time_nano(&rctx->tc->queue, 0) : 0;
199 query->begin_time = os_time_get_nano();
200 break;
201 case R600_QUERY_GPU_LOAD:
202 case R600_QUERY_GPU_SHADERS_BUSY:
203 case R600_QUERY_GPU_TA_BUSY:
204 case R600_QUERY_GPU_GDS_BUSY:
205 case R600_QUERY_GPU_VGT_BUSY:
206 case R600_QUERY_GPU_IA_BUSY:
207 case R600_QUERY_GPU_SX_BUSY:
208 case R600_QUERY_GPU_WD_BUSY:
209 case R600_QUERY_GPU_BCI_BUSY:
210 case R600_QUERY_GPU_SC_BUSY:
211 case R600_QUERY_GPU_PA_BUSY:
212 case R600_QUERY_GPU_DB_BUSY:
213 case R600_QUERY_GPU_CP_BUSY:
214 case R600_QUERY_GPU_CB_BUSY:
215 case R600_QUERY_GPU_SDMA_BUSY:
216 case R600_QUERY_GPU_PFP_BUSY:
217 case R600_QUERY_GPU_MEQ_BUSY:
218 case R600_QUERY_GPU_ME_BUSY:
219 case R600_QUERY_GPU_SURF_SYNC_BUSY:
220 case R600_QUERY_GPU_CP_DMA_BUSY:
221 case R600_QUERY_GPU_SCRATCH_RAM_BUSY:
222 case R600_QUERY_GPU_CE_BUSY:
223 query->begin_result = r600_begin_counter(rctx->screen,
224 query->b.type);
225 break;
226 case R600_QUERY_NUM_COMPILATIONS:
227 query->begin_result = p_atomic_read(&rctx->screen->num_compilations);
228 break;
229 case R600_QUERY_NUM_SHADERS_CREATED:
230 query->begin_result = p_atomic_read(&rctx->screen->num_shaders_created);
231 break;
232 case R600_QUERY_NUM_SHADER_CACHE_HITS:
233 query->begin_result =
234 p_atomic_read(&rctx->screen->num_shader_cache_hits);
235 break;
236 case R600_QUERY_GPIN_ASIC_ID:
237 case R600_QUERY_GPIN_NUM_SIMD:
238 case R600_QUERY_GPIN_NUM_RB:
239 case R600_QUERY_GPIN_NUM_SPI:
240 case R600_QUERY_GPIN_NUM_SE:
241 break;
242 default:
243 unreachable("r600_query_sw_begin: bad query type");
244 }
245
246 return true;
247 }
248
249 static bool r600_query_sw_end(struct r600_common_context *rctx,
250 struct r600_query *rquery)
251 {
252 struct r600_query_sw *query = (struct r600_query_sw *)rquery;
253 enum radeon_value_id ws_id;
254
255 switch(query->b.type) {
256 case PIPE_QUERY_TIMESTAMP_DISJOINT:
257 break;
258 case PIPE_QUERY_GPU_FINISHED:
259 rctx->b.flush(&rctx->b, &query->fence, PIPE_FLUSH_DEFERRED);
260 break;
261 case R600_QUERY_DRAW_CALLS:
262 query->end_result = rctx->num_draw_calls;
263 break;
264 case R600_QUERY_DECOMPRESS_CALLS:
265 query->end_result = rctx->num_decompress_calls;
266 break;
267 case R600_QUERY_MRT_DRAW_CALLS:
268 query->end_result = rctx->num_mrt_draw_calls;
269 break;
270 case R600_QUERY_PRIM_RESTART_CALLS:
271 query->end_result = rctx->num_prim_restart_calls;
272 break;
273 case R600_QUERY_SPILL_DRAW_CALLS:
274 query->end_result = rctx->num_spill_draw_calls;
275 break;
276 case R600_QUERY_COMPUTE_CALLS:
277 query->end_result = rctx->num_compute_calls;
278 break;
279 case R600_QUERY_SPILL_COMPUTE_CALLS:
280 query->end_result = rctx->num_spill_compute_calls;
281 break;
282 case R600_QUERY_DMA_CALLS:
283 query->end_result = rctx->num_dma_calls;
284 break;
285 case R600_QUERY_CP_DMA_CALLS:
286 query->end_result = rctx->num_cp_dma_calls;
287 break;
288 case R600_QUERY_NUM_VS_FLUSHES:
289 query->end_result = rctx->num_vs_flushes;
290 break;
291 case R600_QUERY_NUM_PS_FLUSHES:
292 query->end_result = rctx->num_ps_flushes;
293 break;
294 case R600_QUERY_NUM_CS_FLUSHES:
295 query->end_result = rctx->num_cs_flushes;
296 break;
297 case R600_QUERY_NUM_CB_CACHE_FLUSHES:
298 query->end_result = rctx->num_cb_cache_flushes;
299 break;
300 case R600_QUERY_NUM_DB_CACHE_FLUSHES:
301 query->end_result = rctx->num_db_cache_flushes;
302 break;
303 case R600_QUERY_NUM_L2_INVALIDATES:
304 query->end_result = rctx->num_L2_invalidates;
305 break;
306 case R600_QUERY_NUM_L2_WRITEBACKS:
307 query->end_result = rctx->num_L2_writebacks;
308 break;
309 case R600_QUERY_NUM_RESIDENT_HANDLES:
310 query->end_result = rctx->num_resident_handles;
311 break;
312 case R600_QUERY_TC_OFFLOADED_SLOTS:
313 query->end_result = rctx->tc ? rctx->tc->num_offloaded_slots : 0;
314 break;
315 case R600_QUERY_TC_DIRECT_SLOTS:
316 query->end_result = rctx->tc ? rctx->tc->num_direct_slots : 0;
317 break;
318 case R600_QUERY_TC_NUM_SYNCS:
319 query->end_result = rctx->tc ? rctx->tc->num_syncs : 0;
320 break;
321 case R600_QUERY_REQUESTED_VRAM:
322 case R600_QUERY_REQUESTED_GTT:
323 case R600_QUERY_MAPPED_VRAM:
324 case R600_QUERY_MAPPED_GTT:
325 case R600_QUERY_VRAM_USAGE:
326 case R600_QUERY_VRAM_VIS_USAGE:
327 case R600_QUERY_GTT_USAGE:
328 case R600_QUERY_GPU_TEMPERATURE:
329 case R600_QUERY_CURRENT_GPU_SCLK:
330 case R600_QUERY_CURRENT_GPU_MCLK:
331 case R600_QUERY_BUFFER_WAIT_TIME:
332 case R600_QUERY_NUM_MAPPED_BUFFERS:
333 case R600_QUERY_NUM_GFX_IBS:
334 case R600_QUERY_NUM_SDMA_IBS:
335 case R600_QUERY_NUM_BYTES_MOVED:
336 case R600_QUERY_NUM_EVICTIONS:
337 case R600_QUERY_NUM_VRAM_CPU_PAGE_FAULTS: {
338 enum radeon_value_id ws_id = winsys_id_from_type(query->b.type);
339 query->end_result = rctx->ws->query_value(rctx->ws, ws_id);
340 break;
341 }
342 case R600_QUERY_GFX_BO_LIST_SIZE:
343 ws_id = winsys_id_from_type(query->b.type);
344 query->end_result = rctx->ws->query_value(rctx->ws, ws_id);
345 query->end_time = rctx->ws->query_value(rctx->ws,
346 RADEON_NUM_GFX_IBS);
347 break;
348 case R600_QUERY_CS_THREAD_BUSY:
349 ws_id = winsys_id_from_type(query->b.type);
350 query->end_result = rctx->ws->query_value(rctx->ws, ws_id);
351 query->end_time = os_time_get_nano();
352 break;
353 case R600_QUERY_GALLIUM_THREAD_BUSY:
354 query->end_result =
355 rctx->tc ? util_queue_get_thread_time_nano(&rctx->tc->queue, 0) : 0;
356 query->end_time = os_time_get_nano();
357 break;
358 case R600_QUERY_GPU_LOAD:
359 case R600_QUERY_GPU_SHADERS_BUSY:
360 case R600_QUERY_GPU_TA_BUSY:
361 case R600_QUERY_GPU_GDS_BUSY:
362 case R600_QUERY_GPU_VGT_BUSY:
363 case R600_QUERY_GPU_IA_BUSY:
364 case R600_QUERY_GPU_SX_BUSY:
365 case R600_QUERY_GPU_WD_BUSY:
366 case R600_QUERY_GPU_BCI_BUSY:
367 case R600_QUERY_GPU_SC_BUSY:
368 case R600_QUERY_GPU_PA_BUSY:
369 case R600_QUERY_GPU_DB_BUSY:
370 case R600_QUERY_GPU_CP_BUSY:
371 case R600_QUERY_GPU_CB_BUSY:
372 case R600_QUERY_GPU_SDMA_BUSY:
373 case R600_QUERY_GPU_PFP_BUSY:
374 case R600_QUERY_GPU_MEQ_BUSY:
375 case R600_QUERY_GPU_ME_BUSY:
376 case R600_QUERY_GPU_SURF_SYNC_BUSY:
377 case R600_QUERY_GPU_CP_DMA_BUSY:
378 case R600_QUERY_GPU_SCRATCH_RAM_BUSY:
379 case R600_QUERY_GPU_CE_BUSY:
380 query->end_result = r600_end_counter(rctx->screen,
381 query->b.type,
382 query->begin_result);
383 query->begin_result = 0;
384 break;
385 case R600_QUERY_NUM_COMPILATIONS:
386 query->end_result = p_atomic_read(&rctx->screen->num_compilations);
387 break;
388 case R600_QUERY_NUM_SHADERS_CREATED:
389 query->end_result = p_atomic_read(&rctx->screen->num_shaders_created);
390 break;
391 case R600_QUERY_BACK_BUFFER_PS_DRAW_RATIO:
392 query->end_result = rctx->last_tex_ps_draw_ratio;
393 break;
394 case R600_QUERY_NUM_SHADER_CACHE_HITS:
395 query->end_result =
396 p_atomic_read(&rctx->screen->num_shader_cache_hits);
397 break;
398 case R600_QUERY_GPIN_ASIC_ID:
399 case R600_QUERY_GPIN_NUM_SIMD:
400 case R600_QUERY_GPIN_NUM_RB:
401 case R600_QUERY_GPIN_NUM_SPI:
402 case R600_QUERY_GPIN_NUM_SE:
403 break;
404 default:
405 unreachable("r600_query_sw_end: bad query type");
406 }
407
408 return true;
409 }
410
411 static bool r600_query_sw_get_result(struct r600_common_context *rctx,
412 struct r600_query *rquery,
413 bool wait,
414 union pipe_query_result *result)
415 {
416 struct r600_query_sw *query = (struct r600_query_sw *)rquery;
417
418 switch (query->b.type) {
419 case PIPE_QUERY_TIMESTAMP_DISJOINT:
420 /* Convert from cycles per millisecond to cycles per second (Hz). */
421 result->timestamp_disjoint.frequency =
422 (uint64_t)rctx->screen->info.clock_crystal_freq * 1000;
423 result->timestamp_disjoint.disjoint = false;
424 return true;
425 case PIPE_QUERY_GPU_FINISHED: {
426 struct pipe_screen *screen = rctx->b.screen;
427 struct pipe_context *ctx = rquery->b.flushed ? NULL : &rctx->b;
428
429 result->b = screen->fence_finish(screen, ctx, query->fence,
430 wait ? PIPE_TIMEOUT_INFINITE : 0);
431 return result->b;
432 }
433
434 case R600_QUERY_GFX_BO_LIST_SIZE:
435 result->u64 = (query->end_result - query->begin_result) /
436 (query->end_time - query->begin_time);
437 return true;
438 case R600_QUERY_CS_THREAD_BUSY:
439 case R600_QUERY_GALLIUM_THREAD_BUSY:
440 result->u64 = (query->end_result - query->begin_result) * 100 /
441 (query->end_time - query->begin_time);
442 return true;
443 case R600_QUERY_GPIN_ASIC_ID:
444 result->u32 = 0;
445 return true;
446 case R600_QUERY_GPIN_NUM_SIMD:
447 result->u32 = rctx->screen->info.num_good_compute_units;
448 return true;
449 case R600_QUERY_GPIN_NUM_RB:
450 result->u32 = rctx->screen->info.num_render_backends;
451 return true;
452 case R600_QUERY_GPIN_NUM_SPI:
453 result->u32 = 1; /* all supported chips have one SPI per SE */
454 return true;
455 case R600_QUERY_GPIN_NUM_SE:
456 result->u32 = rctx->screen->info.max_se;
457 return true;
458 }
459
460 result->u64 = query->end_result - query->begin_result;
461
462 switch (query->b.type) {
463 case R600_QUERY_BUFFER_WAIT_TIME:
464 case R600_QUERY_GPU_TEMPERATURE:
465 result->u64 /= 1000;
466 break;
467 case R600_QUERY_CURRENT_GPU_SCLK:
468 case R600_QUERY_CURRENT_GPU_MCLK:
469 result->u64 *= 1000000;
470 break;
471 }
472
473 return true;
474 }
475
476
477 static struct r600_query_ops sw_query_ops = {
478 .destroy = r600_query_sw_destroy,
479 .begin = r600_query_sw_begin,
480 .end = r600_query_sw_end,
481 .get_result = r600_query_sw_get_result,
482 .get_result_resource = NULL
483 };
484
485 static struct pipe_query *r600_query_sw_create(unsigned query_type)
486 {
487 struct r600_query_sw *query;
488
489 query = CALLOC_STRUCT(r600_query_sw);
490 if (!query)
491 return NULL;
492
493 query->b.type = query_type;
494 query->b.ops = &sw_query_ops;
495
496 return (struct pipe_query *)query;
497 }
498
499 void r600_query_hw_destroy(struct r600_common_screen *rscreen,
500 struct r600_query *rquery)
501 {
502 struct r600_query_hw *query = (struct r600_query_hw *)rquery;
503 struct r600_query_buffer *prev = query->buffer.previous;
504
505 /* Release all query buffers. */
506 while (prev) {
507 struct r600_query_buffer *qbuf = prev;
508 prev = prev->previous;
509 r600_resource_reference(&qbuf->buf, NULL);
510 FREE(qbuf);
511 }
512
513 r600_resource_reference(&query->buffer.buf, NULL);
514 r600_resource_reference(&query->workaround_buf, NULL);
515 FREE(rquery);
516 }
517
518 static struct r600_resource *r600_new_query_buffer(struct r600_common_screen *rscreen,
519 struct r600_query_hw *query)
520 {
521 unsigned buf_size = MAX2(query->result_size,
522 rscreen->info.min_alloc_size);
523
524 /* Queries are normally read by the CPU after
525 * being written by the gpu, hence staging is probably a good
526 * usage pattern.
527 */
528 struct r600_resource *buf = (struct r600_resource*)
529 pipe_buffer_create(&rscreen->b, 0,
530 PIPE_USAGE_STAGING, buf_size);
531 if (!buf)
532 return NULL;
533
534 if (!query->ops->prepare_buffer(rscreen, query, buf)) {
535 r600_resource_reference(&buf, NULL);
536 return NULL;
537 }
538
539 return buf;
540 }
541
542 static bool r600_query_hw_prepare_buffer(struct r600_common_screen *rscreen,
543 struct r600_query_hw *query,
544 struct r600_resource *buffer)
545 {
546 /* Callers ensure that the buffer is currently unused by the GPU. */
547 uint32_t *results = rscreen->ws->buffer_map(buffer->buf, NULL,
548 PIPE_TRANSFER_WRITE |
549 PIPE_TRANSFER_UNSYNCHRONIZED);
550 if (!results)
551 return false;
552
553 memset(results, 0, buffer->b.b.width0);
554
555 if (query->b.type == PIPE_QUERY_OCCLUSION_COUNTER ||
556 query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE) {
557 unsigned max_rbs = rscreen->info.num_render_backends;
558 unsigned enabled_rb_mask = rscreen->info.enabled_rb_mask;
559 unsigned num_results;
560 unsigned i, j;
561
562 /* Set top bits for unused backends. */
563 num_results = buffer->b.b.width0 / query->result_size;
564 for (j = 0; j < num_results; j++) {
565 for (i = 0; i < max_rbs; i++) {
566 if (!(enabled_rb_mask & (1<<i))) {
567 results[(i * 4)+1] = 0x80000000;
568 results[(i * 4)+3] = 0x80000000;
569 }
570 }
571 results += 4 * max_rbs;
572 }
573 }
574
575 return true;
576 }
577
578 static void r600_query_hw_get_result_resource(struct r600_common_context *rctx,
579 struct r600_query *rquery,
580 bool wait,
581 enum pipe_query_value_type result_type,
582 int index,
583 struct pipe_resource *resource,
584 unsigned offset);
585
586 static struct r600_query_ops query_hw_ops = {
587 .destroy = r600_query_hw_destroy,
588 .begin = r600_query_hw_begin,
589 .end = r600_query_hw_end,
590 .get_result = r600_query_hw_get_result,
591 .get_result_resource = r600_query_hw_get_result_resource,
592 };
593
594 static void r600_query_hw_do_emit_start(struct r600_common_context *ctx,
595 struct r600_query_hw *query,
596 struct r600_resource *buffer,
597 uint64_t va);
598 static void r600_query_hw_do_emit_stop(struct r600_common_context *ctx,
599 struct r600_query_hw *query,
600 struct r600_resource *buffer,
601 uint64_t va);
602 static void r600_query_hw_add_result(struct r600_common_screen *rscreen,
603 struct r600_query_hw *, void *buffer,
604 union pipe_query_result *result);
605 static void r600_query_hw_clear_result(struct r600_query_hw *,
606 union pipe_query_result *);
607
608 static struct r600_query_hw_ops query_hw_default_hw_ops = {
609 .prepare_buffer = r600_query_hw_prepare_buffer,
610 .emit_start = r600_query_hw_do_emit_start,
611 .emit_stop = r600_query_hw_do_emit_stop,
612 .clear_result = r600_query_hw_clear_result,
613 .add_result = r600_query_hw_add_result,
614 };
615
616 bool r600_query_hw_init(struct r600_common_screen *rscreen,
617 struct r600_query_hw *query)
618 {
619 query->buffer.buf = r600_new_query_buffer(rscreen, query);
620 if (!query->buffer.buf)
621 return false;
622
623 return true;
624 }
625
626 static struct pipe_query *r600_query_hw_create(struct r600_common_screen *rscreen,
627 unsigned query_type,
628 unsigned index)
629 {
630 struct r600_query_hw *query = CALLOC_STRUCT(r600_query_hw);
631 if (!query)
632 return NULL;
633
634 query->b.type = query_type;
635 query->b.ops = &query_hw_ops;
636 query->ops = &query_hw_default_hw_ops;
637
638 switch (query_type) {
639 case PIPE_QUERY_OCCLUSION_COUNTER:
640 case PIPE_QUERY_OCCLUSION_PREDICATE:
641 query->result_size = 16 * rscreen->info.num_render_backends;
642 query->result_size += 16; /* for the fence + alignment */
643 query->num_cs_dw_begin = 6;
644 query->num_cs_dw_end = 6 + r600_gfx_write_fence_dwords(rscreen);
645 break;
646 case PIPE_QUERY_TIME_ELAPSED:
647 query->result_size = 24;
648 query->num_cs_dw_begin = 8;
649 query->num_cs_dw_end = 8 + r600_gfx_write_fence_dwords(rscreen);
650 break;
651 case PIPE_QUERY_TIMESTAMP:
652 query->result_size = 16;
653 query->num_cs_dw_end = 8 + r600_gfx_write_fence_dwords(rscreen);
654 query->flags = R600_QUERY_HW_FLAG_NO_START;
655 break;
656 case PIPE_QUERY_PRIMITIVES_EMITTED:
657 case PIPE_QUERY_PRIMITIVES_GENERATED:
658 case PIPE_QUERY_SO_STATISTICS:
659 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
660 /* NumPrimitivesWritten, PrimitiveStorageNeeded. */
661 query->result_size = 32;
662 query->num_cs_dw_begin = 6;
663 query->num_cs_dw_end = 6;
664 query->stream = index;
665 break;
666 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
667 /* NumPrimitivesWritten, PrimitiveStorageNeeded. */
668 query->result_size = 32 * R600_MAX_STREAMS;
669 query->num_cs_dw_begin = 6 * R600_MAX_STREAMS;
670 query->num_cs_dw_end = 6 * R600_MAX_STREAMS;
671 break;
672 case PIPE_QUERY_PIPELINE_STATISTICS:
673 /* 11 values on EG, 8 on R600. */
674 query->result_size = (rscreen->chip_class >= EVERGREEN ? 11 : 8) * 16;
675 query->result_size += 8; /* for the fence + alignment */
676 query->num_cs_dw_begin = 6;
677 query->num_cs_dw_end = 6 + r600_gfx_write_fence_dwords(rscreen);
678 break;
679 default:
680 assert(0);
681 FREE(query);
682 return NULL;
683 }
684
685 if (!r600_query_hw_init(rscreen, query)) {
686 FREE(query);
687 return NULL;
688 }
689
690 return (struct pipe_query *)query;
691 }
692
693 static void r600_update_occlusion_query_state(struct r600_common_context *rctx,
694 unsigned type, int diff)
695 {
696 if (type == PIPE_QUERY_OCCLUSION_COUNTER ||
697 type == PIPE_QUERY_OCCLUSION_PREDICATE) {
698 bool old_enable = rctx->num_occlusion_queries != 0;
699 bool old_perfect_enable =
700 rctx->num_perfect_occlusion_queries != 0;
701 bool enable, perfect_enable;
702
703 rctx->num_occlusion_queries += diff;
704 assert(rctx->num_occlusion_queries >= 0);
705
706 if (type == PIPE_QUERY_OCCLUSION_COUNTER) {
707 rctx->num_perfect_occlusion_queries += diff;
708 assert(rctx->num_perfect_occlusion_queries >= 0);
709 }
710
711 enable = rctx->num_occlusion_queries != 0;
712 perfect_enable = rctx->num_perfect_occlusion_queries != 0;
713
714 if (enable != old_enable || perfect_enable != old_perfect_enable) {
715 rctx->set_occlusion_query_state(&rctx->b, enable);
716 }
717 }
718 }
719
720 static unsigned event_type_for_stream(unsigned stream)
721 {
722 switch (stream) {
723 default:
724 case 0: return EVENT_TYPE_SAMPLE_STREAMOUTSTATS;
725 case 1: return EVENT_TYPE_SAMPLE_STREAMOUTSTATS1;
726 case 2: return EVENT_TYPE_SAMPLE_STREAMOUTSTATS2;
727 case 3: return EVENT_TYPE_SAMPLE_STREAMOUTSTATS3;
728 }
729 }
730
731 static void emit_sample_streamout(struct radeon_winsys_cs *cs, uint64_t va,
732 unsigned stream)
733 {
734 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
735 radeon_emit(cs, EVENT_TYPE(event_type_for_stream(stream)) | EVENT_INDEX(3));
736 radeon_emit(cs, va);
737 radeon_emit(cs, va >> 32);
738 }
739
740 static void r600_query_hw_do_emit_start(struct r600_common_context *ctx,
741 struct r600_query_hw *query,
742 struct r600_resource *buffer,
743 uint64_t va)
744 {
745 struct radeon_winsys_cs *cs = ctx->gfx.cs;
746
747 switch (query->b.type) {
748 case PIPE_QUERY_OCCLUSION_COUNTER:
749 case PIPE_QUERY_OCCLUSION_PREDICATE:
750 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
751 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
752 radeon_emit(cs, va);
753 radeon_emit(cs, va >> 32);
754 break;
755 case PIPE_QUERY_PRIMITIVES_EMITTED:
756 case PIPE_QUERY_PRIMITIVES_GENERATED:
757 case PIPE_QUERY_SO_STATISTICS:
758 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
759 emit_sample_streamout(cs, va, query->stream);
760 break;
761 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
762 for (unsigned stream = 0; stream < R600_MAX_STREAMS; ++stream)
763 emit_sample_streamout(cs, va + 32 * stream, stream);
764 break;
765 case PIPE_QUERY_TIME_ELAPSED:
766 if (ctx->chip_class >= SI) {
767 /* Write the timestamp from the CP not waiting for
768 * outstanding draws (top-of-pipe).
769 */
770 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
771 radeon_emit(cs, COPY_DATA_COUNT_SEL |
772 COPY_DATA_SRC_SEL(COPY_DATA_TIMESTAMP) |
773 COPY_DATA_DST_SEL(COPY_DATA_MEM_ASYNC));
774 radeon_emit(cs, 0);
775 radeon_emit(cs, 0);
776 radeon_emit(cs, va);
777 radeon_emit(cs, va >> 32);
778 } else {
779 /* Write the timestamp after the last draw is done.
780 * (bottom-of-pipe)
781 */
782 r600_gfx_write_event_eop(ctx, EVENT_TYPE_BOTTOM_OF_PIPE_TS,
783 0, 3, NULL, va, 0, 0);
784 }
785 break;
786 case PIPE_QUERY_PIPELINE_STATISTICS:
787 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
788 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2));
789 radeon_emit(cs, va);
790 radeon_emit(cs, va >> 32);
791 break;
792 default:
793 assert(0);
794 }
795 r600_emit_reloc(ctx, &ctx->gfx, query->buffer.buf, RADEON_USAGE_WRITE,
796 RADEON_PRIO_QUERY);
797 }
798
799 static void r600_query_hw_emit_start(struct r600_common_context *ctx,
800 struct r600_query_hw *query)
801 {
802 uint64_t va;
803
804 if (!query->buffer.buf)
805 return; // previous buffer allocation failure
806
807 r600_update_occlusion_query_state(ctx, query->b.type, 1);
808 r600_update_prims_generated_query_state(ctx, query->b.type, 1);
809
810 ctx->need_gfx_cs_space(&ctx->b, query->num_cs_dw_begin + query->num_cs_dw_end,
811 true);
812
813 /* Get a new query buffer if needed. */
814 if (query->buffer.results_end + query->result_size > query->buffer.buf->b.b.width0) {
815 struct r600_query_buffer *qbuf = MALLOC_STRUCT(r600_query_buffer);
816 *qbuf = query->buffer;
817 query->buffer.results_end = 0;
818 query->buffer.previous = qbuf;
819 query->buffer.buf = r600_new_query_buffer(ctx->screen, query);
820 if (!query->buffer.buf)
821 return;
822 }
823
824 /* emit begin query */
825 va = query->buffer.buf->gpu_address + query->buffer.results_end;
826
827 query->ops->emit_start(ctx, query, query->buffer.buf, va);
828
829 ctx->num_cs_dw_queries_suspend += query->num_cs_dw_end;
830 }
831
832 static void r600_query_hw_do_emit_stop(struct r600_common_context *ctx,
833 struct r600_query_hw *query,
834 struct r600_resource *buffer,
835 uint64_t va)
836 {
837 struct radeon_winsys_cs *cs = ctx->gfx.cs;
838 uint64_t fence_va = 0;
839
840 switch (query->b.type) {
841 case PIPE_QUERY_OCCLUSION_COUNTER:
842 case PIPE_QUERY_OCCLUSION_PREDICATE:
843 va += 8;
844 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
845 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
846 radeon_emit(cs, va);
847 radeon_emit(cs, va >> 32);
848
849 fence_va = va + ctx->screen->info.num_render_backends * 16 - 8;
850 break;
851 case PIPE_QUERY_PRIMITIVES_EMITTED:
852 case PIPE_QUERY_PRIMITIVES_GENERATED:
853 case PIPE_QUERY_SO_STATISTICS:
854 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
855 va += 16;
856 emit_sample_streamout(cs, va, query->stream);
857 break;
858 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
859 va += 16;
860 for (unsigned stream = 0; stream < R600_MAX_STREAMS; ++stream)
861 emit_sample_streamout(cs, va + 32 * stream, stream);
862 break;
863 case PIPE_QUERY_TIME_ELAPSED:
864 va += 8;
865 /* fall through */
866 case PIPE_QUERY_TIMESTAMP:
867 r600_gfx_write_event_eop(ctx, EVENT_TYPE_BOTTOM_OF_PIPE_TS,
868 0, 3, NULL, va, 0, 0);
869 fence_va = va + 8;
870 break;
871 case PIPE_QUERY_PIPELINE_STATISTICS: {
872 unsigned sample_size = (query->result_size - 8) / 2;
873
874 va += sample_size;
875 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
876 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2));
877 radeon_emit(cs, va);
878 radeon_emit(cs, va >> 32);
879
880 fence_va = va + sample_size;
881 break;
882 }
883 default:
884 assert(0);
885 }
886 r600_emit_reloc(ctx, &ctx->gfx, query->buffer.buf, RADEON_USAGE_WRITE,
887 RADEON_PRIO_QUERY);
888
889 if (fence_va)
890 r600_gfx_write_event_eop(ctx, EVENT_TYPE_BOTTOM_OF_PIPE_TS, 0, 1,
891 query->buffer.buf, fence_va, 0, 0x80000000);
892 }
893
894 static void r600_query_hw_emit_stop(struct r600_common_context *ctx,
895 struct r600_query_hw *query)
896 {
897 uint64_t va;
898
899 if (!query->buffer.buf)
900 return; // previous buffer allocation failure
901
902 /* The queries which need begin already called this in begin_query. */
903 if (query->flags & R600_QUERY_HW_FLAG_NO_START) {
904 ctx->need_gfx_cs_space(&ctx->b, query->num_cs_dw_end, false);
905 }
906
907 /* emit end query */
908 va = query->buffer.buf->gpu_address + query->buffer.results_end;
909
910 query->ops->emit_stop(ctx, query, query->buffer.buf, va);
911
912 query->buffer.results_end += query->result_size;
913
914 if (!(query->flags & R600_QUERY_HW_FLAG_NO_START))
915 ctx->num_cs_dw_queries_suspend -= query->num_cs_dw_end;
916
917 r600_update_occlusion_query_state(ctx, query->b.type, -1);
918 r600_update_prims_generated_query_state(ctx, query->b.type, -1);
919 }
920
921 static void emit_set_predicate(struct r600_common_context *ctx,
922 struct r600_resource *buf, uint64_t va,
923 uint32_t op)
924 {
925 struct radeon_winsys_cs *cs = ctx->gfx.cs;
926
927 if (ctx->chip_class >= GFX9) {
928 radeon_emit(cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
929 radeon_emit(cs, op);
930 radeon_emit(cs, va);
931 radeon_emit(cs, va >> 32);
932 } else {
933 radeon_emit(cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
934 radeon_emit(cs, va);
935 radeon_emit(cs, op | ((va >> 32) & 0xFF));
936 }
937 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_READ,
938 RADEON_PRIO_QUERY);
939 }
940
941 static void r600_emit_query_predication(struct r600_common_context *ctx,
942 struct r600_atom *atom)
943 {
944 struct r600_query_hw *query = (struct r600_query_hw *)ctx->render_cond;
945 struct r600_query_buffer *qbuf;
946 uint32_t op;
947 bool flag_wait, invert;
948
949 if (!query)
950 return;
951
952 invert = ctx->render_cond_invert;
953 flag_wait = ctx->render_cond_mode == PIPE_RENDER_COND_WAIT ||
954 ctx->render_cond_mode == PIPE_RENDER_COND_BY_REGION_WAIT;
955
956 if (query->workaround_buf) {
957 op = PRED_OP(PREDICATION_OP_BOOL64);
958 } else {
959 switch (query->b.type) {
960 case PIPE_QUERY_OCCLUSION_COUNTER:
961 case PIPE_QUERY_OCCLUSION_PREDICATE:
962 op = PRED_OP(PREDICATION_OP_ZPASS);
963 break;
964 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
965 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
966 op = PRED_OP(PREDICATION_OP_PRIMCOUNT);
967 invert = !invert;
968 break;
969 default:
970 assert(0);
971 return;
972 }
973 }
974
975 /* if true then invert, see GL_ARB_conditional_render_inverted */
976 if (invert)
977 op |= PREDICATION_DRAW_NOT_VISIBLE; /* Draw if not visible or overflow */
978 else
979 op |= PREDICATION_DRAW_VISIBLE; /* Draw if visible or no overflow */
980
981 /* Use the value written by compute shader as a workaround. Note that
982 * the wait flag does not apply in this predication mode.
983 *
984 * The shader outputs the result value to L2. Workarounds only affect VI
985 * and later, where the CP reads data from L2, so we don't need an
986 * additional flush.
987 */
988 if (query->workaround_buf) {
989 uint64_t va = query->workaround_buf->gpu_address + query->workaround_offset;
990 emit_set_predicate(ctx, query->workaround_buf, va, op);
991 return;
992 }
993
994 op |= flag_wait ? PREDICATION_HINT_WAIT : PREDICATION_HINT_NOWAIT_DRAW;
995
996 /* emit predicate packets for all data blocks */
997 for (qbuf = &query->buffer; qbuf; qbuf = qbuf->previous) {
998 unsigned results_base = 0;
999 uint64_t va_base = qbuf->buf->gpu_address;
1000
1001 while (results_base < qbuf->results_end) {
1002 uint64_t va = va_base + results_base;
1003
1004 if (query->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE) {
1005 for (unsigned stream = 0; stream < R600_MAX_STREAMS; ++stream) {
1006 emit_set_predicate(ctx, qbuf->buf, va + 32 * stream, op);
1007
1008 /* set CONTINUE bit for all packets except the first */
1009 op |= PREDICATION_CONTINUE;
1010 }
1011 } else {
1012 emit_set_predicate(ctx, qbuf->buf, va, op);
1013 op |= PREDICATION_CONTINUE;
1014 }
1015
1016 results_base += query->result_size;
1017 }
1018 }
1019 }
1020
1021 static struct pipe_query *r600_create_query(struct pipe_context *ctx, unsigned query_type, unsigned index)
1022 {
1023 struct r600_common_screen *rscreen =
1024 (struct r600_common_screen *)ctx->screen;
1025
1026 if (query_type == PIPE_QUERY_TIMESTAMP_DISJOINT ||
1027 query_type == PIPE_QUERY_GPU_FINISHED ||
1028 query_type >= PIPE_QUERY_DRIVER_SPECIFIC)
1029 return r600_query_sw_create(query_type);
1030
1031 return r600_query_hw_create(rscreen, query_type, index);
1032 }
1033
1034 static void r600_destroy_query(struct pipe_context *ctx, struct pipe_query *query)
1035 {
1036 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1037 struct r600_query *rquery = (struct r600_query *)query;
1038
1039 rquery->ops->destroy(rctx->screen, rquery);
1040 }
1041
1042 static boolean r600_begin_query(struct pipe_context *ctx,
1043 struct pipe_query *query)
1044 {
1045 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1046 struct r600_query *rquery = (struct r600_query *)query;
1047
1048 return rquery->ops->begin(rctx, rquery);
1049 }
1050
1051 void r600_query_hw_reset_buffers(struct r600_common_context *rctx,
1052 struct r600_query_hw *query)
1053 {
1054 struct r600_query_buffer *prev = query->buffer.previous;
1055
1056 /* Discard the old query buffers. */
1057 while (prev) {
1058 struct r600_query_buffer *qbuf = prev;
1059 prev = prev->previous;
1060 r600_resource_reference(&qbuf->buf, NULL);
1061 FREE(qbuf);
1062 }
1063
1064 query->buffer.results_end = 0;
1065 query->buffer.previous = NULL;
1066
1067 /* Obtain a new buffer if the current one can't be mapped without a stall. */
1068 if (r600_rings_is_buffer_referenced(rctx, query->buffer.buf->buf, RADEON_USAGE_READWRITE) ||
1069 !rctx->ws->buffer_wait(query->buffer.buf->buf, 0, RADEON_USAGE_READWRITE)) {
1070 r600_resource_reference(&query->buffer.buf, NULL);
1071 query->buffer.buf = r600_new_query_buffer(rctx->screen, query);
1072 } else {
1073 if (!query->ops->prepare_buffer(rctx->screen, query, query->buffer.buf))
1074 r600_resource_reference(&query->buffer.buf, NULL);
1075 }
1076 }
1077
1078 bool r600_query_hw_begin(struct r600_common_context *rctx,
1079 struct r600_query *rquery)
1080 {
1081 struct r600_query_hw *query = (struct r600_query_hw *)rquery;
1082
1083 if (query->flags & R600_QUERY_HW_FLAG_NO_START) {
1084 assert(0);
1085 return false;
1086 }
1087
1088 if (!(query->flags & R600_QUERY_HW_FLAG_BEGIN_RESUMES))
1089 r600_query_hw_reset_buffers(rctx, query);
1090
1091 r600_resource_reference(&query->workaround_buf, NULL);
1092
1093 r600_query_hw_emit_start(rctx, query);
1094 if (!query->buffer.buf)
1095 return false;
1096
1097 LIST_ADDTAIL(&query->list, &rctx->active_queries);
1098 return true;
1099 }
1100
1101 static bool r600_end_query(struct pipe_context *ctx, struct pipe_query *query)
1102 {
1103 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1104 struct r600_query *rquery = (struct r600_query *)query;
1105
1106 return rquery->ops->end(rctx, rquery);
1107 }
1108
1109 bool r600_query_hw_end(struct r600_common_context *rctx,
1110 struct r600_query *rquery)
1111 {
1112 struct r600_query_hw *query = (struct r600_query_hw *)rquery;
1113
1114 if (query->flags & R600_QUERY_HW_FLAG_NO_START)
1115 r600_query_hw_reset_buffers(rctx, query);
1116
1117 r600_query_hw_emit_stop(rctx, query);
1118
1119 if (!(query->flags & R600_QUERY_HW_FLAG_NO_START))
1120 LIST_DELINIT(&query->list);
1121
1122 if (!query->buffer.buf)
1123 return false;
1124
1125 return true;
1126 }
1127
1128 static void r600_get_hw_query_params(struct r600_common_context *rctx,
1129 struct r600_query_hw *rquery, int index,
1130 struct r600_hw_query_params *params)
1131 {
1132 unsigned max_rbs = rctx->screen->info.num_render_backends;
1133
1134 params->pair_stride = 0;
1135 params->pair_count = 1;
1136
1137 switch (rquery->b.type) {
1138 case PIPE_QUERY_OCCLUSION_COUNTER:
1139 case PIPE_QUERY_OCCLUSION_PREDICATE:
1140 params->start_offset = 0;
1141 params->end_offset = 8;
1142 params->fence_offset = max_rbs * 16;
1143 params->pair_stride = 16;
1144 params->pair_count = max_rbs;
1145 break;
1146 case PIPE_QUERY_TIME_ELAPSED:
1147 params->start_offset = 0;
1148 params->end_offset = 8;
1149 params->fence_offset = 16;
1150 break;
1151 case PIPE_QUERY_TIMESTAMP:
1152 params->start_offset = 0;
1153 params->end_offset = 0;
1154 params->fence_offset = 8;
1155 break;
1156 case PIPE_QUERY_PRIMITIVES_EMITTED:
1157 params->start_offset = 8;
1158 params->end_offset = 24;
1159 params->fence_offset = params->end_offset + 4;
1160 break;
1161 case PIPE_QUERY_PRIMITIVES_GENERATED:
1162 params->start_offset = 0;
1163 params->end_offset = 16;
1164 params->fence_offset = params->end_offset + 4;
1165 break;
1166 case PIPE_QUERY_SO_STATISTICS:
1167 params->start_offset = 8 - index * 8;
1168 params->end_offset = 24 - index * 8;
1169 params->fence_offset = params->end_offset + 4;
1170 break;
1171 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
1172 params->pair_count = R600_MAX_STREAMS;
1173 params->pair_stride = 32;
1174 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
1175 params->start_offset = 0;
1176 params->end_offset = 16;
1177
1178 /* We can re-use the high dword of the last 64-bit value as a
1179 * fence: it is initialized as 0, and the high bit is set by
1180 * the write of the streamout stats event.
1181 */
1182 params->fence_offset = rquery->result_size - 4;
1183 break;
1184 case PIPE_QUERY_PIPELINE_STATISTICS:
1185 {
1186 /* Offsets apply to EG+ */
1187 static const unsigned offsets[] = {56, 48, 24, 32, 40, 16, 8, 0, 64, 72, 80};
1188 params->start_offset = offsets[index];
1189 params->end_offset = 88 + offsets[index];
1190 params->fence_offset = 2 * 88;
1191 break;
1192 }
1193 default:
1194 unreachable("r600_get_hw_query_params unsupported");
1195 }
1196 }
1197
1198 static unsigned r600_query_read_result(void *map, unsigned start_index, unsigned end_index,
1199 bool test_status_bit)
1200 {
1201 uint32_t *current_result = (uint32_t*)map;
1202 uint64_t start, end;
1203
1204 start = (uint64_t)current_result[start_index] |
1205 (uint64_t)current_result[start_index+1] << 32;
1206 end = (uint64_t)current_result[end_index] |
1207 (uint64_t)current_result[end_index+1] << 32;
1208
1209 if (!test_status_bit ||
1210 ((start & 0x8000000000000000UL) && (end & 0x8000000000000000UL))) {
1211 return end - start;
1212 }
1213 return 0;
1214 }
1215
1216 static void r600_query_hw_add_result(struct r600_common_screen *rscreen,
1217 struct r600_query_hw *query,
1218 void *buffer,
1219 union pipe_query_result *result)
1220 {
1221 unsigned max_rbs = rscreen->info.num_render_backends;
1222
1223 switch (query->b.type) {
1224 case PIPE_QUERY_OCCLUSION_COUNTER: {
1225 for (unsigned i = 0; i < max_rbs; ++i) {
1226 unsigned results_base = i * 16;
1227 result->u64 +=
1228 r600_query_read_result(buffer + results_base, 0, 2, true);
1229 }
1230 break;
1231 }
1232 case PIPE_QUERY_OCCLUSION_PREDICATE: {
1233 for (unsigned i = 0; i < max_rbs; ++i) {
1234 unsigned results_base = i * 16;
1235 result->b = result->b ||
1236 r600_query_read_result(buffer + results_base, 0, 2, true) != 0;
1237 }
1238 break;
1239 }
1240 case PIPE_QUERY_TIME_ELAPSED:
1241 result->u64 += r600_query_read_result(buffer, 0, 2, false);
1242 break;
1243 case PIPE_QUERY_TIMESTAMP:
1244 result->u64 = *(uint64_t*)buffer;
1245 break;
1246 case PIPE_QUERY_PRIMITIVES_EMITTED:
1247 /* SAMPLE_STREAMOUTSTATS stores this structure:
1248 * {
1249 * u64 NumPrimitivesWritten;
1250 * u64 PrimitiveStorageNeeded;
1251 * }
1252 * We only need NumPrimitivesWritten here. */
1253 result->u64 += r600_query_read_result(buffer, 2, 6, true);
1254 break;
1255 case PIPE_QUERY_PRIMITIVES_GENERATED:
1256 /* Here we read PrimitiveStorageNeeded. */
1257 result->u64 += r600_query_read_result(buffer, 0, 4, true);
1258 break;
1259 case PIPE_QUERY_SO_STATISTICS:
1260 result->so_statistics.num_primitives_written +=
1261 r600_query_read_result(buffer, 2, 6, true);
1262 result->so_statistics.primitives_storage_needed +=
1263 r600_query_read_result(buffer, 0, 4, true);
1264 break;
1265 case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
1266 result->b = result->b ||
1267 r600_query_read_result(buffer, 2, 6, true) !=
1268 r600_query_read_result(buffer, 0, 4, true);
1269 break;
1270 case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
1271 for (unsigned stream = 0; stream < R600_MAX_STREAMS; ++stream) {
1272 result->b = result->b ||
1273 r600_query_read_result(buffer, 2, 6, true) !=
1274 r600_query_read_result(buffer, 0, 4, true);
1275 buffer = (char *)buffer + 32;
1276 }
1277 break;
1278 case PIPE_QUERY_PIPELINE_STATISTICS:
1279 if (rscreen->chip_class >= EVERGREEN) {
1280 result->pipeline_statistics.ps_invocations +=
1281 r600_query_read_result(buffer, 0, 22, false);
1282 result->pipeline_statistics.c_primitives +=
1283 r600_query_read_result(buffer, 2, 24, false);
1284 result->pipeline_statistics.c_invocations +=
1285 r600_query_read_result(buffer, 4, 26, false);
1286 result->pipeline_statistics.vs_invocations +=
1287 r600_query_read_result(buffer, 6, 28, false);
1288 result->pipeline_statistics.gs_invocations +=
1289 r600_query_read_result(buffer, 8, 30, false);
1290 result->pipeline_statistics.gs_primitives +=
1291 r600_query_read_result(buffer, 10, 32, false);
1292 result->pipeline_statistics.ia_primitives +=
1293 r600_query_read_result(buffer, 12, 34, false);
1294 result->pipeline_statistics.ia_vertices +=
1295 r600_query_read_result(buffer, 14, 36, false);
1296 result->pipeline_statistics.hs_invocations +=
1297 r600_query_read_result(buffer, 16, 38, false);
1298 result->pipeline_statistics.ds_invocations +=
1299 r600_query_read_result(buffer, 18, 40, false);
1300 result->pipeline_statistics.cs_invocations +=
1301 r600_query_read_result(buffer, 20, 42, false);
1302 } else {
1303 result->pipeline_statistics.ps_invocations +=
1304 r600_query_read_result(buffer, 0, 16, false);
1305 result->pipeline_statistics.c_primitives +=
1306 r600_query_read_result(buffer, 2, 18, false);
1307 result->pipeline_statistics.c_invocations +=
1308 r600_query_read_result(buffer, 4, 20, false);
1309 result->pipeline_statistics.vs_invocations +=
1310 r600_query_read_result(buffer, 6, 22, false);
1311 result->pipeline_statistics.gs_invocations +=
1312 r600_query_read_result(buffer, 8, 24, false);
1313 result->pipeline_statistics.gs_primitives +=
1314 r600_query_read_result(buffer, 10, 26, false);
1315 result->pipeline_statistics.ia_primitives +=
1316 r600_query_read_result(buffer, 12, 28, false);
1317 result->pipeline_statistics.ia_vertices +=
1318 r600_query_read_result(buffer, 14, 30, false);
1319 }
1320 #if 0 /* for testing */
1321 printf("Pipeline stats: IA verts=%llu, IA prims=%llu, VS=%llu, HS=%llu, "
1322 "DS=%llu, GS=%llu, GS prims=%llu, Clipper=%llu, "
1323 "Clipper prims=%llu, PS=%llu, CS=%llu\n",
1324 result->pipeline_statistics.ia_vertices,
1325 result->pipeline_statistics.ia_primitives,
1326 result->pipeline_statistics.vs_invocations,
1327 result->pipeline_statistics.hs_invocations,
1328 result->pipeline_statistics.ds_invocations,
1329 result->pipeline_statistics.gs_invocations,
1330 result->pipeline_statistics.gs_primitives,
1331 result->pipeline_statistics.c_invocations,
1332 result->pipeline_statistics.c_primitives,
1333 result->pipeline_statistics.ps_invocations,
1334 result->pipeline_statistics.cs_invocations);
1335 #endif
1336 break;
1337 default:
1338 assert(0);
1339 }
1340 }
1341
1342 static boolean r600_get_query_result(struct pipe_context *ctx,
1343 struct pipe_query *query, boolean wait,
1344 union pipe_query_result *result)
1345 {
1346 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1347 struct r600_query *rquery = (struct r600_query *)query;
1348
1349 return rquery->ops->get_result(rctx, rquery, wait, result);
1350 }
1351
1352 static void r600_get_query_result_resource(struct pipe_context *ctx,
1353 struct pipe_query *query,
1354 boolean wait,
1355 enum pipe_query_value_type result_type,
1356 int index,
1357 struct pipe_resource *resource,
1358 unsigned offset)
1359 {
1360 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1361 struct r600_query *rquery = (struct r600_query *)query;
1362
1363 rquery->ops->get_result_resource(rctx, rquery, wait, result_type, index,
1364 resource, offset);
1365 }
1366
1367 static void r600_query_hw_clear_result(struct r600_query_hw *query,
1368 union pipe_query_result *result)
1369 {
1370 util_query_clear_result(result, query->b.type);
1371 }
1372
1373 bool r600_query_hw_get_result(struct r600_common_context *rctx,
1374 struct r600_query *rquery,
1375 bool wait, union pipe_query_result *result)
1376 {
1377 struct r600_common_screen *rscreen = rctx->screen;
1378 struct r600_query_hw *query = (struct r600_query_hw *)rquery;
1379 struct r600_query_buffer *qbuf;
1380
1381 query->ops->clear_result(query, result);
1382
1383 for (qbuf = &query->buffer; qbuf; qbuf = qbuf->previous) {
1384 unsigned usage = PIPE_TRANSFER_READ |
1385 (wait ? 0 : PIPE_TRANSFER_DONTBLOCK);
1386 unsigned results_base = 0;
1387 void *map;
1388
1389 if (rquery->b.flushed)
1390 map = rctx->ws->buffer_map(qbuf->buf->buf, NULL, usage);
1391 else
1392 map = r600_buffer_map_sync_with_rings(rctx, qbuf->buf, usage);
1393
1394 if (!map)
1395 return false;
1396
1397 while (results_base != qbuf->results_end) {
1398 query->ops->add_result(rscreen, query, map + results_base,
1399 result);
1400 results_base += query->result_size;
1401 }
1402 }
1403
1404 /* Convert the time to expected units. */
1405 if (rquery->type == PIPE_QUERY_TIME_ELAPSED ||
1406 rquery->type == PIPE_QUERY_TIMESTAMP) {
1407 result->u64 = (1000000 * result->u64) / rscreen->info.clock_crystal_freq;
1408 }
1409 return true;
1410 }
1411
1412 /* Create the compute shader that is used to collect the results.
1413 *
1414 * One compute grid with a single thread is launched for every query result
1415 * buffer. The thread (optionally) reads a previous summary buffer, then
1416 * accumulates data from the query result buffer, and writes the result either
1417 * to a summary buffer to be consumed by the next grid invocation or to the
1418 * user-supplied buffer.
1419 *
1420 * Data layout:
1421 *
1422 * CONST
1423 * 0.x = end_offset
1424 * 0.y = result_stride
1425 * 0.z = result_count
1426 * 0.w = bit field:
1427 * 1: read previously accumulated values
1428 * 2: write accumulated values for chaining
1429 * 4: write result available
1430 * 8: convert result to boolean (0/1)
1431 * 16: only read one dword and use that as result
1432 * 32: apply timestamp conversion
1433 * 64: store full 64 bits result
1434 * 128: store signed 32 bits result
1435 * 256: SO_OVERFLOW mode: take the difference of two successive half-pairs
1436 * 1.x = fence_offset
1437 * 1.y = pair_stride
1438 * 1.z = pair_count
1439 *
1440 * BUFFER[0] = query result buffer
1441 * BUFFER[1] = previous summary buffer
1442 * BUFFER[2] = next summary buffer or user-supplied buffer
1443 */
1444 static void r600_create_query_result_shader(struct r600_common_context *rctx)
1445 {
1446 /* TEMP[0].xy = accumulated result so far
1447 * TEMP[0].z = result not available
1448 *
1449 * TEMP[1].x = current result index
1450 * TEMP[1].y = current pair index
1451 */
1452 static const char text_tmpl[] =
1453 "COMP\n"
1454 "PROPERTY CS_FIXED_BLOCK_WIDTH 1\n"
1455 "PROPERTY CS_FIXED_BLOCK_HEIGHT 1\n"
1456 "PROPERTY CS_FIXED_BLOCK_DEPTH 1\n"
1457 "DCL BUFFER[0]\n"
1458 "DCL BUFFER[1]\n"
1459 "DCL BUFFER[2]\n"
1460 "DCL CONST[0..1]\n"
1461 "DCL TEMP[0..5]\n"
1462 "IMM[0] UINT32 {0, 31, 2147483647, 4294967295}\n"
1463 "IMM[1] UINT32 {1, 2, 4, 8}\n"
1464 "IMM[2] UINT32 {16, 32, 64, 128}\n"
1465 "IMM[3] UINT32 {1000000, 0, %u, 0}\n" /* for timestamp conversion */
1466 "IMM[4] UINT32 {256, 0, 0, 0}\n"
1467
1468 "AND TEMP[5], CONST[0].wwww, IMM[2].xxxx\n"
1469 "UIF TEMP[5]\n"
1470 /* Check result availability. */
1471 "LOAD TEMP[1].x, BUFFER[0], CONST[1].xxxx\n"
1472 "ISHR TEMP[0].z, TEMP[1].xxxx, IMM[0].yyyy\n"
1473 "MOV TEMP[1], TEMP[0].zzzz\n"
1474 "NOT TEMP[0].z, TEMP[0].zzzz\n"
1475
1476 /* Load result if available. */
1477 "UIF TEMP[1]\n"
1478 "LOAD TEMP[0].xy, BUFFER[0], IMM[0].xxxx\n"
1479 "ENDIF\n"
1480 "ELSE\n"
1481 /* Load previously accumulated result if requested. */
1482 "MOV TEMP[0], IMM[0].xxxx\n"
1483 "AND TEMP[4], CONST[0].wwww, IMM[1].xxxx\n"
1484 "UIF TEMP[4]\n"
1485 "LOAD TEMP[0].xyz, BUFFER[1], IMM[0].xxxx\n"
1486 "ENDIF\n"
1487
1488 "MOV TEMP[1].x, IMM[0].xxxx\n"
1489 "BGNLOOP\n"
1490 /* Break if accumulated result so far is not available. */
1491 "UIF TEMP[0].zzzz\n"
1492 "BRK\n"
1493 "ENDIF\n"
1494
1495 /* Break if result_index >= result_count. */
1496 "USGE TEMP[5], TEMP[1].xxxx, CONST[0].zzzz\n"
1497 "UIF TEMP[5]\n"
1498 "BRK\n"
1499 "ENDIF\n"
1500
1501 /* Load fence and check result availability */
1502 "UMAD TEMP[5].x, TEMP[1].xxxx, CONST[0].yyyy, CONST[1].xxxx\n"
1503 "LOAD TEMP[5].x, BUFFER[0], TEMP[5].xxxx\n"
1504 "ISHR TEMP[0].z, TEMP[5].xxxx, IMM[0].yyyy\n"
1505 "NOT TEMP[0].z, TEMP[0].zzzz\n"
1506 "UIF TEMP[0].zzzz\n"
1507 "BRK\n"
1508 "ENDIF\n"
1509
1510 "MOV TEMP[1].y, IMM[0].xxxx\n"
1511 "BGNLOOP\n"
1512 /* Load start and end. */
1513 "UMUL TEMP[5].x, TEMP[1].xxxx, CONST[0].yyyy\n"
1514 "UMAD TEMP[5].x, TEMP[1].yyyy, CONST[1].yyyy, TEMP[5].xxxx\n"
1515 "LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n"
1516
1517 "UADD TEMP[5].y, TEMP[5].xxxx, CONST[0].xxxx\n"
1518 "LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n"
1519
1520 "U64ADD TEMP[4].xy, TEMP[3], -TEMP[2]\n"
1521
1522 "AND TEMP[5].z, CONST[0].wwww, IMM[4].xxxx\n"
1523 "UIF TEMP[5].zzzz\n"
1524 /* Load second start/end half-pair and
1525 * take the difference
1526 */
1527 "UADD TEMP[5].xy, TEMP[5], IMM[1].wwww\n"
1528 "LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n"
1529 "LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n"
1530
1531 "U64ADD TEMP[3].xy, TEMP[3], -TEMP[2]\n"
1532 "U64ADD TEMP[4].xy, TEMP[4], -TEMP[3]\n"
1533 "ENDIF\n"
1534
1535 "U64ADD TEMP[0].xy, TEMP[0], TEMP[4]\n"
1536
1537 /* Increment pair index */
1538 "UADD TEMP[1].y, TEMP[1].yyyy, IMM[1].xxxx\n"
1539 "USGE TEMP[5], TEMP[1].yyyy, CONST[1].zzzz\n"
1540 "UIF TEMP[5]\n"
1541 "BRK\n"
1542 "ENDIF\n"
1543 "ENDLOOP\n"
1544
1545 /* Increment result index */
1546 "UADD TEMP[1].x, TEMP[1].xxxx, IMM[1].xxxx\n"
1547 "ENDLOOP\n"
1548 "ENDIF\n"
1549
1550 "AND TEMP[4], CONST[0].wwww, IMM[1].yyyy\n"
1551 "UIF TEMP[4]\n"
1552 /* Store accumulated data for chaining. */
1553 "STORE BUFFER[2].xyz, IMM[0].xxxx, TEMP[0]\n"
1554 "ELSE\n"
1555 "AND TEMP[4], CONST[0].wwww, IMM[1].zzzz\n"
1556 "UIF TEMP[4]\n"
1557 /* Store result availability. */
1558 "NOT TEMP[0].z, TEMP[0]\n"
1559 "AND TEMP[0].z, TEMP[0].zzzz, IMM[1].xxxx\n"
1560 "STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].zzzz\n"
1561
1562 "AND TEMP[4], CONST[0].wwww, IMM[2].zzzz\n"
1563 "UIF TEMP[4]\n"
1564 "STORE BUFFER[2].y, IMM[0].xxxx, IMM[0].xxxx\n"
1565 "ENDIF\n"
1566 "ELSE\n"
1567 /* Store result if it is available. */
1568 "NOT TEMP[4], TEMP[0].zzzz\n"
1569 "UIF TEMP[4]\n"
1570 /* Apply timestamp conversion */
1571 "AND TEMP[4], CONST[0].wwww, IMM[2].yyyy\n"
1572 "UIF TEMP[4]\n"
1573 "U64MUL TEMP[0].xy, TEMP[0], IMM[3].xyxy\n"
1574 "U64DIV TEMP[0].xy, TEMP[0], IMM[3].zwzw\n"
1575 "ENDIF\n"
1576
1577 /* Convert to boolean */
1578 "AND TEMP[4], CONST[0].wwww, IMM[1].wwww\n"
1579 "UIF TEMP[4]\n"
1580 "U64SNE TEMP[0].x, TEMP[0].xyxy, IMM[4].zwzw\n"
1581 "AND TEMP[0].x, TEMP[0].xxxx, IMM[1].xxxx\n"
1582 "MOV TEMP[0].y, IMM[0].xxxx\n"
1583 "ENDIF\n"
1584
1585 "AND TEMP[4], CONST[0].wwww, IMM[2].zzzz\n"
1586 "UIF TEMP[4]\n"
1587 "STORE BUFFER[2].xy, IMM[0].xxxx, TEMP[0].xyxy\n"
1588 "ELSE\n"
1589 /* Clamping */
1590 "UIF TEMP[0].yyyy\n"
1591 "MOV TEMP[0].x, IMM[0].wwww\n"
1592 "ENDIF\n"
1593
1594 "AND TEMP[4], CONST[0].wwww, IMM[2].wwww\n"
1595 "UIF TEMP[4]\n"
1596 "UMIN TEMP[0].x, TEMP[0].xxxx, IMM[0].zzzz\n"
1597 "ENDIF\n"
1598
1599 "STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].xxxx\n"
1600 "ENDIF\n"
1601 "ENDIF\n"
1602 "ENDIF\n"
1603 "ENDIF\n"
1604
1605 "END\n";
1606
1607 char text[sizeof(text_tmpl) + 32];
1608 struct tgsi_token tokens[1024];
1609 struct pipe_compute_state state = {};
1610
1611 /* Hard code the frequency into the shader so that the backend can
1612 * use the full range of optimizations for divide-by-constant.
1613 */
1614 snprintf(text, sizeof(text), text_tmpl,
1615 rctx->screen->info.clock_crystal_freq);
1616
1617 if (!tgsi_text_translate(text, tokens, ARRAY_SIZE(tokens))) {
1618 assert(false);
1619 return;
1620 }
1621
1622 state.ir_type = PIPE_SHADER_IR_TGSI;
1623 state.prog = tokens;
1624
1625 rctx->query_result_shader = rctx->b.create_compute_state(&rctx->b, &state);
1626 }
1627
1628 static void r600_restore_qbo_state(struct r600_common_context *rctx,
1629 struct r600_qbo_state *st)
1630 {
1631 rctx->b.bind_compute_state(&rctx->b, st->saved_compute);
1632
1633 rctx->b.set_constant_buffer(&rctx->b, PIPE_SHADER_COMPUTE, 0, &st->saved_const0);
1634 pipe_resource_reference(&st->saved_const0.buffer, NULL);
1635
1636 rctx->b.set_shader_buffers(&rctx->b, PIPE_SHADER_COMPUTE, 0, 3, st->saved_ssbo);
1637 for (unsigned i = 0; i < 3; ++i)
1638 pipe_resource_reference(&st->saved_ssbo[i].buffer, NULL);
1639 }
1640
1641 static void r600_query_hw_get_result_resource(struct r600_common_context *rctx,
1642 struct r600_query *rquery,
1643 bool wait,
1644 enum pipe_query_value_type result_type,
1645 int index,
1646 struct pipe_resource *resource,
1647 unsigned offset)
1648 {
1649 struct r600_query_hw *query = (struct r600_query_hw *)rquery;
1650 struct r600_query_buffer *qbuf;
1651 struct r600_query_buffer *qbuf_prev;
1652 struct pipe_resource *tmp_buffer = NULL;
1653 unsigned tmp_buffer_offset = 0;
1654 struct r600_qbo_state saved_state = {};
1655 struct pipe_grid_info grid = {};
1656 struct pipe_constant_buffer constant_buffer = {};
1657 struct pipe_shader_buffer ssbo[3];
1658 struct r600_hw_query_params params;
1659 struct {
1660 uint32_t end_offset;
1661 uint32_t result_stride;
1662 uint32_t result_count;
1663 uint32_t config;
1664 uint32_t fence_offset;
1665 uint32_t pair_stride;
1666 uint32_t pair_count;
1667 } consts;
1668
1669 if (!rctx->query_result_shader) {
1670 r600_create_query_result_shader(rctx);
1671 if (!rctx->query_result_shader)
1672 return;
1673 }
1674
1675 if (query->buffer.previous) {
1676 u_suballocator_alloc(rctx->allocator_zeroed_memory, 16, 16,
1677 &tmp_buffer_offset, &tmp_buffer);
1678 if (!tmp_buffer)
1679 return;
1680 }
1681
1682 rctx->save_qbo_state(&rctx->b, &saved_state);
1683
1684 r600_get_hw_query_params(rctx, query, index >= 0 ? index : 0, &params);
1685 consts.end_offset = params.end_offset - params.start_offset;
1686 consts.fence_offset = params.fence_offset - params.start_offset;
1687 consts.result_stride = query->result_size;
1688 consts.pair_stride = params.pair_stride;
1689 consts.pair_count = params.pair_count;
1690
1691 constant_buffer.buffer_size = sizeof(consts);
1692 constant_buffer.user_buffer = &consts;
1693
1694 ssbo[1].buffer = tmp_buffer;
1695 ssbo[1].buffer_offset = tmp_buffer_offset;
1696 ssbo[1].buffer_size = 16;
1697
1698 ssbo[2] = ssbo[1];
1699
1700 rctx->b.bind_compute_state(&rctx->b, rctx->query_result_shader);
1701
1702 grid.block[0] = 1;
1703 grid.block[1] = 1;
1704 grid.block[2] = 1;
1705 grid.grid[0] = 1;
1706 grid.grid[1] = 1;
1707 grid.grid[2] = 1;
1708
1709 consts.config = 0;
1710 if (index < 0)
1711 consts.config |= 4;
1712 if (query->b.type == PIPE_QUERY_OCCLUSION_PREDICATE)
1713 consts.config |= 8;
1714 else if (query->b.type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
1715 query->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
1716 consts.config |= 8 | 256;
1717 else if (query->b.type == PIPE_QUERY_TIMESTAMP ||
1718 query->b.type == PIPE_QUERY_TIME_ELAPSED)
1719 consts.config |= 32;
1720
1721 switch (result_type) {
1722 case PIPE_QUERY_TYPE_U64:
1723 case PIPE_QUERY_TYPE_I64:
1724 consts.config |= 64;
1725 break;
1726 case PIPE_QUERY_TYPE_I32:
1727 consts.config |= 128;
1728 break;
1729 case PIPE_QUERY_TYPE_U32:
1730 break;
1731 }
1732
1733 rctx->flags |= rctx->screen->barrier_flags.cp_to_L2;
1734
1735 for (qbuf = &query->buffer; qbuf; qbuf = qbuf_prev) {
1736 if (query->b.type != PIPE_QUERY_TIMESTAMP) {
1737 qbuf_prev = qbuf->previous;
1738 consts.result_count = qbuf->results_end / query->result_size;
1739 consts.config &= ~3;
1740 if (qbuf != &query->buffer)
1741 consts.config |= 1;
1742 if (qbuf->previous)
1743 consts.config |= 2;
1744 } else {
1745 /* Only read the last timestamp. */
1746 qbuf_prev = NULL;
1747 consts.result_count = 0;
1748 consts.config |= 16;
1749 params.start_offset += qbuf->results_end - query->result_size;
1750 }
1751
1752 rctx->b.set_constant_buffer(&rctx->b, PIPE_SHADER_COMPUTE, 0, &constant_buffer);
1753
1754 ssbo[0].buffer = &qbuf->buf->b.b;
1755 ssbo[0].buffer_offset = params.start_offset;
1756 ssbo[0].buffer_size = qbuf->results_end - params.start_offset;
1757
1758 if (!qbuf->previous) {
1759 ssbo[2].buffer = resource;
1760 ssbo[2].buffer_offset = offset;
1761 ssbo[2].buffer_size = 8;
1762
1763 ((struct r600_resource *)resource)->TC_L2_dirty = true;
1764 }
1765
1766 rctx->b.set_shader_buffers(&rctx->b, PIPE_SHADER_COMPUTE, 0, 3, ssbo);
1767
1768 if (wait && qbuf == &query->buffer) {
1769 uint64_t va;
1770
1771 /* Wait for result availability. Wait only for readiness
1772 * of the last entry, since the fence writes should be
1773 * serialized in the CP.
1774 */
1775 va = qbuf->buf->gpu_address + qbuf->results_end - query->result_size;
1776 va += params.fence_offset;
1777
1778 r600_gfx_wait_fence(rctx, va, 0x80000000, 0x80000000);
1779 }
1780
1781 rctx->b.launch_grid(&rctx->b, &grid);
1782 rctx->flags |= rctx->screen->barrier_flags.compute_to_L2;
1783 }
1784
1785 r600_restore_qbo_state(rctx, &saved_state);
1786 pipe_resource_reference(&tmp_buffer, NULL);
1787 }
1788
1789 static void r600_render_condition(struct pipe_context *ctx,
1790 struct pipe_query *query,
1791 boolean condition,
1792 enum pipe_render_cond_flag mode)
1793 {
1794 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
1795 struct r600_query_hw *rquery = (struct r600_query_hw *)query;
1796 struct r600_query_buffer *qbuf;
1797 struct r600_atom *atom = &rctx->render_cond_atom;
1798
1799 /* Compute the size of SET_PREDICATION packets. */
1800 atom->num_dw = 0;
1801 if (query) {
1802 bool needs_workaround = false;
1803
1804 /* There is a firmware regression in VI which causes successive
1805 * SET_PREDICATION packets to give the wrong answer for
1806 * non-inverted stream overflow predication.
1807 */
1808 if (rctx->chip_class >= VI && !condition &&
1809 (rquery->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE ||
1810 (rquery->b.type == PIPE_QUERY_SO_OVERFLOW_PREDICATE &&
1811 (rquery->buffer.previous ||
1812 rquery->buffer.results_end > rquery->result_size)))) {
1813 needs_workaround = true;
1814 }
1815
1816 if (needs_workaround && !rquery->workaround_buf) {
1817 bool old_force_off = rctx->render_cond_force_off;
1818 rctx->render_cond_force_off = true;
1819
1820 u_suballocator_alloc(
1821 rctx->allocator_zeroed_memory, 8, 8,
1822 &rquery->workaround_offset,
1823 (struct pipe_resource **)&rquery->workaround_buf);
1824
1825 /* Reset to NULL to avoid a redundant SET_PREDICATION
1826 * from launching the compute grid.
1827 */
1828 rctx->render_cond = NULL;
1829
1830 ctx->get_query_result_resource(
1831 ctx, query, true, PIPE_QUERY_TYPE_U64, 0,
1832 &rquery->workaround_buf->b.b, rquery->workaround_offset);
1833
1834 atom->num_dw = 5;
1835
1836 rctx->render_cond_force_off = old_force_off;
1837 } else {
1838 for (qbuf = &rquery->buffer; qbuf; qbuf = qbuf->previous)
1839 atom->num_dw += (qbuf->results_end / rquery->result_size) * 5;
1840
1841 if (rquery->b.type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
1842 atom->num_dw *= R600_MAX_STREAMS;
1843 }
1844 }
1845
1846 rctx->render_cond = query;
1847 rctx->render_cond_invert = condition;
1848 rctx->render_cond_mode = mode;
1849
1850 rctx->set_atom_dirty(rctx, atom, query != NULL);
1851 }
1852
1853 void r600_suspend_queries(struct r600_common_context *ctx)
1854 {
1855 struct r600_query_hw *query;
1856
1857 LIST_FOR_EACH_ENTRY(query, &ctx->active_queries, list) {
1858 r600_query_hw_emit_stop(ctx, query);
1859 }
1860 assert(ctx->num_cs_dw_queries_suspend == 0);
1861 }
1862
1863 static unsigned r600_queries_num_cs_dw_for_resuming(struct r600_common_context *ctx,
1864 struct list_head *query_list)
1865 {
1866 struct r600_query_hw *query;
1867 unsigned num_dw = 0;
1868
1869 LIST_FOR_EACH_ENTRY(query, query_list, list) {
1870 /* begin + end */
1871 num_dw += query->num_cs_dw_begin + query->num_cs_dw_end;
1872
1873 /* Workaround for the fact that
1874 * num_cs_dw_nontimer_queries_suspend is incremented for every
1875 * resumed query, which raises the bar in need_cs_space for
1876 * queries about to be resumed.
1877 */
1878 num_dw += query->num_cs_dw_end;
1879 }
1880 /* primitives generated query */
1881 num_dw += ctx->streamout.enable_atom.num_dw;
1882 /* guess for ZPASS enable or PERFECT_ZPASS_COUNT enable updates */
1883 num_dw += 13;
1884
1885 return num_dw;
1886 }
1887
1888 void r600_resume_queries(struct r600_common_context *ctx)
1889 {
1890 struct r600_query_hw *query;
1891 unsigned num_cs_dw = r600_queries_num_cs_dw_for_resuming(ctx, &ctx->active_queries);
1892
1893 assert(ctx->num_cs_dw_queries_suspend == 0);
1894
1895 /* Check CS space here. Resuming must not be interrupted by flushes. */
1896 ctx->need_gfx_cs_space(&ctx->b, num_cs_dw, true);
1897
1898 LIST_FOR_EACH_ENTRY(query, &ctx->active_queries, list) {
1899 r600_query_hw_emit_start(ctx, query);
1900 }
1901 }
1902
1903 /* Fix radeon_info::enabled_rb_mask for R600, R700, EVERGREEN, NI. */
1904 void r600_query_fix_enabled_rb_mask(struct r600_common_screen *rscreen)
1905 {
1906 struct r600_common_context *ctx =
1907 (struct r600_common_context*)rscreen->aux_context;
1908 struct radeon_winsys_cs *cs = ctx->gfx.cs;
1909 struct r600_resource *buffer;
1910 uint32_t *results;
1911 unsigned i, mask = 0;
1912 unsigned max_rbs = ctx->screen->info.num_render_backends;
1913
1914 assert(rscreen->chip_class <= CAYMAN);
1915
1916 /* if backend_map query is supported by the kernel */
1917 if (rscreen->info.r600_gb_backend_map_valid) {
1918 unsigned num_tile_pipes = rscreen->info.num_tile_pipes;
1919 unsigned backend_map = rscreen->info.r600_gb_backend_map;
1920 unsigned item_width, item_mask;
1921
1922 if (ctx->chip_class >= EVERGREEN) {
1923 item_width = 4;
1924 item_mask = 0x7;
1925 } else {
1926 item_width = 2;
1927 item_mask = 0x3;
1928 }
1929
1930 while (num_tile_pipes--) {
1931 i = backend_map & item_mask;
1932 mask |= (1<<i);
1933 backend_map >>= item_width;
1934 }
1935 if (mask != 0) {
1936 rscreen->info.enabled_rb_mask = mask;
1937 return;
1938 }
1939 }
1940
1941 /* otherwise backup path for older kernels */
1942
1943 /* create buffer for event data */
1944 buffer = (struct r600_resource*)
1945 pipe_buffer_create(ctx->b.screen, 0,
1946 PIPE_USAGE_STAGING, max_rbs * 16);
1947 if (!buffer)
1948 return;
1949
1950 /* initialize buffer with zeroes */
1951 results = r600_buffer_map_sync_with_rings(ctx, buffer, PIPE_TRANSFER_WRITE);
1952 if (results) {
1953 memset(results, 0, max_rbs * 4 * 4);
1954
1955 /* emit EVENT_WRITE for ZPASS_DONE */
1956 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
1957 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
1958 radeon_emit(cs, buffer->gpu_address);
1959 radeon_emit(cs, buffer->gpu_address >> 32);
1960
1961 r600_emit_reloc(ctx, &ctx->gfx, buffer,
1962 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
1963
1964 /* analyze results */
1965 results = r600_buffer_map_sync_with_rings(ctx, buffer, PIPE_TRANSFER_READ);
1966 if (results) {
1967 for(i = 0; i < max_rbs; i++) {
1968 /* at least highest bit will be set if backend is used */
1969 if (results[i*4 + 1])
1970 mask |= (1<<i);
1971 }
1972 }
1973 }
1974
1975 r600_resource_reference(&buffer, NULL);
1976
1977 if (mask)
1978 rscreen->info.enabled_rb_mask = mask;
1979 }
1980
1981 #define XFULL(name_, query_type_, type_, result_type_, group_id_) \
1982 { \
1983 .name = name_, \
1984 .query_type = R600_QUERY_##query_type_, \
1985 .type = PIPE_DRIVER_QUERY_TYPE_##type_, \
1986 .result_type = PIPE_DRIVER_QUERY_RESULT_TYPE_##result_type_, \
1987 .group_id = group_id_ \
1988 }
1989
1990 #define X(name_, query_type_, type_, result_type_) \
1991 XFULL(name_, query_type_, type_, result_type_, ~(unsigned)0)
1992
1993 #define XG(group_, name_, query_type_, type_, result_type_) \
1994 XFULL(name_, query_type_, type_, result_type_, R600_QUERY_GROUP_##group_)
1995
1996 static struct pipe_driver_query_info r600_driver_query_list[] = {
1997 X("num-compilations", NUM_COMPILATIONS, UINT64, CUMULATIVE),
1998 X("num-shaders-created", NUM_SHADERS_CREATED, UINT64, CUMULATIVE),
1999 X("num-shader-cache-hits", NUM_SHADER_CACHE_HITS, UINT64, CUMULATIVE),
2000 X("draw-calls", DRAW_CALLS, UINT64, AVERAGE),
2001 X("decompress-calls", DECOMPRESS_CALLS, UINT64, AVERAGE),
2002 X("MRT-draw-calls", MRT_DRAW_CALLS, UINT64, AVERAGE),
2003 X("prim-restart-calls", PRIM_RESTART_CALLS, UINT64, AVERAGE),
2004 X("spill-draw-calls", SPILL_DRAW_CALLS, UINT64, AVERAGE),
2005 X("compute-calls", COMPUTE_CALLS, UINT64, AVERAGE),
2006 X("spill-compute-calls", SPILL_COMPUTE_CALLS, UINT64, AVERAGE),
2007 X("dma-calls", DMA_CALLS, UINT64, AVERAGE),
2008 X("cp-dma-calls", CP_DMA_CALLS, UINT64, AVERAGE),
2009 X("num-vs-flushes", NUM_VS_FLUSHES, UINT64, AVERAGE),
2010 X("num-ps-flushes", NUM_PS_FLUSHES, UINT64, AVERAGE),
2011 X("num-cs-flushes", NUM_CS_FLUSHES, UINT64, AVERAGE),
2012 X("num-CB-cache-flushes", NUM_CB_CACHE_FLUSHES, UINT64, AVERAGE),
2013 X("num-DB-cache-flushes", NUM_DB_CACHE_FLUSHES, UINT64, AVERAGE),
2014 X("num-L2-invalidates", NUM_L2_INVALIDATES, UINT64, AVERAGE),
2015 X("num-L2-writebacks", NUM_L2_WRITEBACKS, UINT64, AVERAGE),
2016 X("num-resident-handles", NUM_RESIDENT_HANDLES, UINT64, AVERAGE),
2017 X("tc-offloaded-slots", TC_OFFLOADED_SLOTS, UINT64, AVERAGE),
2018 X("tc-direct-slots", TC_DIRECT_SLOTS, UINT64, AVERAGE),
2019 X("tc-num-syncs", TC_NUM_SYNCS, UINT64, AVERAGE),
2020 X("CS-thread-busy", CS_THREAD_BUSY, UINT64, AVERAGE),
2021 X("gallium-thread-busy", GALLIUM_THREAD_BUSY, UINT64, AVERAGE),
2022 X("requested-VRAM", REQUESTED_VRAM, BYTES, AVERAGE),
2023 X("requested-GTT", REQUESTED_GTT, BYTES, AVERAGE),
2024 X("mapped-VRAM", MAPPED_VRAM, BYTES, AVERAGE),
2025 X("mapped-GTT", MAPPED_GTT, BYTES, AVERAGE),
2026 X("buffer-wait-time", BUFFER_WAIT_TIME, MICROSECONDS, CUMULATIVE),
2027 X("num-mapped-buffers", NUM_MAPPED_BUFFERS, UINT64, AVERAGE),
2028 X("num-GFX-IBs", NUM_GFX_IBS, UINT64, AVERAGE),
2029 X("num-SDMA-IBs", NUM_SDMA_IBS, UINT64, AVERAGE),
2030 X("GFX-BO-list-size", GFX_BO_LIST_SIZE, UINT64, AVERAGE),
2031 X("num-bytes-moved", NUM_BYTES_MOVED, BYTES, CUMULATIVE),
2032 X("num-evictions", NUM_EVICTIONS, UINT64, CUMULATIVE),
2033 X("VRAM-CPU-page-faults", NUM_VRAM_CPU_PAGE_FAULTS, UINT64, CUMULATIVE),
2034 X("VRAM-usage", VRAM_USAGE, BYTES, AVERAGE),
2035 X("VRAM-vis-usage", VRAM_VIS_USAGE, BYTES, AVERAGE),
2036 X("GTT-usage", GTT_USAGE, BYTES, AVERAGE),
2037 X("back-buffer-ps-draw-ratio", BACK_BUFFER_PS_DRAW_RATIO, UINT64, AVERAGE),
2038
2039 /* GPIN queries are for the benefit of old versions of GPUPerfStudio,
2040 * which use it as a fallback path to detect the GPU type.
2041 *
2042 * Note: The names of these queries are significant for GPUPerfStudio
2043 * (and possibly their order as well). */
2044 XG(GPIN, "GPIN_000", GPIN_ASIC_ID, UINT, AVERAGE),
2045 XG(GPIN, "GPIN_001", GPIN_NUM_SIMD, UINT, AVERAGE),
2046 XG(GPIN, "GPIN_002", GPIN_NUM_RB, UINT, AVERAGE),
2047 XG(GPIN, "GPIN_003", GPIN_NUM_SPI, UINT, AVERAGE),
2048 XG(GPIN, "GPIN_004", GPIN_NUM_SE, UINT, AVERAGE),
2049
2050 X("temperature", GPU_TEMPERATURE, UINT64, AVERAGE),
2051 X("shader-clock", CURRENT_GPU_SCLK, HZ, AVERAGE),
2052 X("memory-clock", CURRENT_GPU_MCLK, HZ, AVERAGE),
2053
2054 /* The following queries must be at the end of the list because their
2055 * availability is adjusted dynamically based on the DRM version. */
2056 X("GPU-load", GPU_LOAD, UINT64, AVERAGE),
2057 X("GPU-shaders-busy", GPU_SHADERS_BUSY, UINT64, AVERAGE),
2058 X("GPU-ta-busy", GPU_TA_BUSY, UINT64, AVERAGE),
2059 X("GPU-gds-busy", GPU_GDS_BUSY, UINT64, AVERAGE),
2060 X("GPU-vgt-busy", GPU_VGT_BUSY, UINT64, AVERAGE),
2061 X("GPU-ia-busy", GPU_IA_BUSY, UINT64, AVERAGE),
2062 X("GPU-sx-busy", GPU_SX_BUSY, UINT64, AVERAGE),
2063 X("GPU-wd-busy", GPU_WD_BUSY, UINT64, AVERAGE),
2064 X("GPU-bci-busy", GPU_BCI_BUSY, UINT64, AVERAGE),
2065 X("GPU-sc-busy", GPU_SC_BUSY, UINT64, AVERAGE),
2066 X("GPU-pa-busy", GPU_PA_BUSY, UINT64, AVERAGE),
2067 X("GPU-db-busy", GPU_DB_BUSY, UINT64, AVERAGE),
2068 X("GPU-cp-busy", GPU_CP_BUSY, UINT64, AVERAGE),
2069 X("GPU-cb-busy", GPU_CB_BUSY, UINT64, AVERAGE),
2070 X("GPU-sdma-busy", GPU_SDMA_BUSY, UINT64, AVERAGE),
2071 X("GPU-pfp-busy", GPU_PFP_BUSY, UINT64, AVERAGE),
2072 X("GPU-meq-busy", GPU_MEQ_BUSY, UINT64, AVERAGE),
2073 X("GPU-me-busy", GPU_ME_BUSY, UINT64, AVERAGE),
2074 X("GPU-surf-sync-busy", GPU_SURF_SYNC_BUSY, UINT64, AVERAGE),
2075 X("GPU-cp-dma-busy", GPU_CP_DMA_BUSY, UINT64, AVERAGE),
2076 X("GPU-scratch-ram-busy", GPU_SCRATCH_RAM_BUSY, UINT64, AVERAGE),
2077 X("GPU-ce-busy", GPU_CE_BUSY, UINT64, AVERAGE),
2078 };
2079
2080 #undef X
2081 #undef XG
2082 #undef XFULL
2083
2084 static unsigned r600_get_num_queries(struct r600_common_screen *rscreen)
2085 {
2086 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 42)
2087 return ARRAY_SIZE(r600_driver_query_list);
2088 else if (rscreen->info.drm_major == 3) {
2089 if (rscreen->chip_class >= VI)
2090 return ARRAY_SIZE(r600_driver_query_list);
2091 else
2092 return ARRAY_SIZE(r600_driver_query_list) - 7;
2093 }
2094 else
2095 return ARRAY_SIZE(r600_driver_query_list) - 25;
2096 }
2097
2098 static int r600_get_driver_query_info(struct pipe_screen *screen,
2099 unsigned index,
2100 struct pipe_driver_query_info *info)
2101 {
2102 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
2103 unsigned num_queries = r600_get_num_queries(rscreen);
2104
2105 if (!info) {
2106 unsigned num_perfcounters =
2107 r600_get_perfcounter_info(rscreen, 0, NULL);
2108
2109 return num_queries + num_perfcounters;
2110 }
2111
2112 if (index >= num_queries)
2113 return r600_get_perfcounter_info(rscreen, index - num_queries, info);
2114
2115 *info = r600_driver_query_list[index];
2116
2117 switch (info->query_type) {
2118 case R600_QUERY_REQUESTED_VRAM:
2119 case R600_QUERY_VRAM_USAGE:
2120 case R600_QUERY_MAPPED_VRAM:
2121 info->max_value.u64 = rscreen->info.vram_size;
2122 break;
2123 case R600_QUERY_REQUESTED_GTT:
2124 case R600_QUERY_GTT_USAGE:
2125 case R600_QUERY_MAPPED_GTT:
2126 info->max_value.u64 = rscreen->info.gart_size;
2127 break;
2128 case R600_QUERY_GPU_TEMPERATURE:
2129 info->max_value.u64 = 125;
2130 break;
2131 case R600_QUERY_VRAM_VIS_USAGE:
2132 info->max_value.u64 = rscreen->info.vram_vis_size;
2133 break;
2134 }
2135
2136 if (info->group_id != ~(unsigned)0 && rscreen->perfcounters)
2137 info->group_id += rscreen->perfcounters->num_groups;
2138
2139 return 1;
2140 }
2141
2142 /* Note: Unfortunately, GPUPerfStudio hardcodes the order of hardware
2143 * performance counter groups, so be careful when changing this and related
2144 * functions.
2145 */
2146 static int r600_get_driver_query_group_info(struct pipe_screen *screen,
2147 unsigned index,
2148 struct pipe_driver_query_group_info *info)
2149 {
2150 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
2151 unsigned num_pc_groups = 0;
2152
2153 if (rscreen->perfcounters)
2154 num_pc_groups = rscreen->perfcounters->num_groups;
2155
2156 if (!info)
2157 return num_pc_groups + R600_NUM_SW_QUERY_GROUPS;
2158
2159 if (index < num_pc_groups)
2160 return r600_get_perfcounter_group_info(rscreen, index, info);
2161
2162 index -= num_pc_groups;
2163 if (index >= R600_NUM_SW_QUERY_GROUPS)
2164 return 0;
2165
2166 info->name = "GPIN";
2167 info->max_active_queries = 5;
2168 info->num_queries = 5;
2169 return 1;
2170 }
2171
2172 void r600_query_init(struct r600_common_context *rctx)
2173 {
2174 rctx->b.create_query = r600_create_query;
2175 rctx->b.create_batch_query = r600_create_batch_query;
2176 rctx->b.destroy_query = r600_destroy_query;
2177 rctx->b.begin_query = r600_begin_query;
2178 rctx->b.end_query = r600_end_query;
2179 rctx->b.get_query_result = r600_get_query_result;
2180 rctx->b.get_query_result_resource = r600_get_query_result_resource;
2181 rctx->render_cond_atom.emit = r600_emit_query_predication;
2182
2183 if (((struct r600_common_screen*)rctx->b.screen)->info.num_render_backends > 0)
2184 rctx->b.render_condition = r600_render_condition;
2185
2186 LIST_INITHEAD(&rctx->active_queries);
2187 }
2188
2189 void r600_init_screen_query_functions(struct r600_common_screen *rscreen)
2190 {
2191 rscreen->b.get_driver_query_info = r600_get_driver_query_info;
2192 rscreen->b.get_driver_query_group_info = r600_get_driver_query_group_info;
2193 }