gallium/radeon: add enum radeon_micro_mode
[mesa.git] / src / gallium / drivers / radeon / r600_texture.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jerome Glisse
25 * Corbin Simpson
26 */
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "r600_query.h"
30 #include "util/u_format.h"
31 #include "util/u_memory.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_surface.h"
34 #include "os/os_time.h"
35 #include <errno.h>
36 #include <inttypes.h>
37
38 static void r600_texture_discard_cmask(struct r600_common_screen *rscreen,
39 struct r600_texture *rtex);
40 static enum radeon_surf_mode
41 r600_choose_tiling(struct r600_common_screen *rscreen,
42 const struct pipe_resource *templ);
43
44
45 bool r600_prepare_for_dma_blit(struct r600_common_context *rctx,
46 struct r600_texture *rdst,
47 unsigned dst_level, unsigned dstx,
48 unsigned dsty, unsigned dstz,
49 struct r600_texture *rsrc,
50 unsigned src_level,
51 const struct pipe_box *src_box)
52 {
53 if (!rctx->dma.cs)
54 return false;
55
56 if (rdst->surface.bpe != rsrc->surface.bpe)
57 return false;
58
59 /* MSAA: Blits don't exist in the real world. */
60 if (rsrc->resource.b.b.nr_samples > 1 ||
61 rdst->resource.b.b.nr_samples > 1)
62 return false;
63
64 /* Depth-stencil surfaces:
65 * When dst is linear, the DB->CB copy preserves HTILE.
66 * When dst is tiled, the 3D path must be used to update HTILE.
67 */
68 if (rsrc->is_depth || rdst->is_depth)
69 return false;
70
71 /* DCC as:
72 * src: Use the 3D path. DCC decompression is expensive.
73 * dst: Use the 3D path to compress the pixels with DCC.
74 */
75 if ((rsrc->dcc_offset && src_level < rsrc->surface.num_dcc_levels) ||
76 (rdst->dcc_offset && dst_level < rdst->surface.num_dcc_levels))
77 return false;
78
79 /* CMASK as:
80 * src: Both texture and SDMA paths need decompression. Use SDMA.
81 * dst: If overwriting the whole texture, discard CMASK and use
82 * SDMA. Otherwise, use the 3D path.
83 */
84 if (rdst->cmask.size && rdst->dirty_level_mask & (1 << dst_level)) {
85 /* The CMASK clear is only enabled for the first level. */
86 assert(dst_level == 0);
87 if (!util_texrange_covers_whole_level(&rdst->resource.b.b, dst_level,
88 dstx, dsty, dstz, src_box->width,
89 src_box->height, src_box->depth))
90 return false;
91
92 r600_texture_discard_cmask(rctx->screen, rdst);
93 }
94
95 /* All requirements are met. Prepare textures for SDMA. */
96 if (rsrc->cmask.size && rsrc->dirty_level_mask & (1 << src_level))
97 rctx->b.flush_resource(&rctx->b, &rsrc->resource.b.b);
98
99 assert(!(rsrc->dirty_level_mask & (1 << src_level)));
100 assert(!(rdst->dirty_level_mask & (1 << dst_level)));
101
102 return true;
103 }
104
105 /* Same as resource_copy_region, except that both upsampling and downsampling are allowed. */
106 static void r600_copy_region_with_blit(struct pipe_context *pipe,
107 struct pipe_resource *dst,
108 unsigned dst_level,
109 unsigned dstx, unsigned dsty, unsigned dstz,
110 struct pipe_resource *src,
111 unsigned src_level,
112 const struct pipe_box *src_box)
113 {
114 struct pipe_blit_info blit;
115
116 memset(&blit, 0, sizeof(blit));
117 blit.src.resource = src;
118 blit.src.format = src->format;
119 blit.src.level = src_level;
120 blit.src.box = *src_box;
121 blit.dst.resource = dst;
122 blit.dst.format = dst->format;
123 blit.dst.level = dst_level;
124 blit.dst.box.x = dstx;
125 blit.dst.box.y = dsty;
126 blit.dst.box.z = dstz;
127 blit.dst.box.width = src_box->width;
128 blit.dst.box.height = src_box->height;
129 blit.dst.box.depth = src_box->depth;
130 blit.mask = util_format_get_mask(src->format) &
131 util_format_get_mask(dst->format);
132 blit.filter = PIPE_TEX_FILTER_NEAREST;
133
134 if (blit.mask) {
135 pipe->blit(pipe, &blit);
136 }
137 }
138
139 /* Copy from a full GPU texture to a transfer's staging one. */
140 static void r600_copy_to_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer)
141 {
142 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
143 struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer;
144 struct pipe_resource *dst = &rtransfer->staging->b.b;
145 struct pipe_resource *src = transfer->resource;
146
147 if (src->nr_samples > 1) {
148 r600_copy_region_with_blit(ctx, dst, 0, 0, 0, 0,
149 src, transfer->level, &transfer->box);
150 return;
151 }
152
153 rctx->dma_copy(ctx, dst, 0, 0, 0, 0, src, transfer->level,
154 &transfer->box);
155 }
156
157 /* Copy from a transfer's staging texture to a full GPU one. */
158 static void r600_copy_from_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer)
159 {
160 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
161 struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer;
162 struct pipe_resource *dst = transfer->resource;
163 struct pipe_resource *src = &rtransfer->staging->b.b;
164 struct pipe_box sbox;
165
166 u_box_3d(0, 0, 0, transfer->box.width, transfer->box.height, transfer->box.depth, &sbox);
167
168 if (dst->nr_samples > 1) {
169 r600_copy_region_with_blit(ctx, dst, transfer->level,
170 transfer->box.x, transfer->box.y, transfer->box.z,
171 src, 0, &sbox);
172 return;
173 }
174
175 rctx->dma_copy(ctx, dst, transfer->level,
176 transfer->box.x, transfer->box.y, transfer->box.z,
177 src, 0, &sbox);
178 }
179
180 static unsigned r600_texture_get_offset(struct r600_texture *rtex, unsigned level,
181 const struct pipe_box *box)
182 {
183 return rtex->surface.level[level].offset +
184 box->z * rtex->surface.level[level].slice_size +
185 (box->y / rtex->surface.blk_h *
186 rtex->surface.level[level].nblk_x +
187 box->x / rtex->surface.blk_w) * rtex->surface.bpe;
188 }
189
190 static int r600_init_surface(struct r600_common_screen *rscreen,
191 struct radeon_surf *surface,
192 const struct pipe_resource *ptex,
193 enum radeon_surf_mode array_mode,
194 unsigned pitch_in_bytes_override,
195 unsigned offset,
196 bool is_imported,
197 bool is_scanout,
198 bool is_flushed_depth,
199 bool tc_compatible_htile)
200 {
201 const struct util_format_description *desc =
202 util_format_description(ptex->format);
203 bool is_depth, is_stencil;
204 int r;
205 unsigned i, bpe, flags = 0;
206
207 is_depth = util_format_has_depth(desc);
208 is_stencil = util_format_has_stencil(desc);
209
210 if (rscreen->chip_class >= EVERGREEN && !is_flushed_depth &&
211 ptex->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) {
212 bpe = 4; /* stencil is allocated separately on evergreen */
213 } else {
214 bpe = util_format_get_blocksize(ptex->format);
215 /* align byte per element on dword */
216 if (bpe == 3) {
217 bpe = 4;
218 }
219 }
220
221 if (!is_flushed_depth && is_depth) {
222 flags |= RADEON_SURF_ZBUFFER;
223
224 if (tc_compatible_htile &&
225 array_mode == RADEON_SURF_MODE_2D) {
226 /* TC-compatible HTILE only supports Z32_FLOAT.
227 * Promote Z16 to Z32. DB->CB copies will convert
228 * the format for transfers.
229 */
230 bpe = 4;
231 flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
232 }
233
234 if (is_stencil)
235 flags |= RADEON_SURF_SBUFFER;
236 }
237
238 if (rscreen->chip_class >= VI &&
239 (ptex->flags & R600_RESOURCE_FLAG_DISABLE_DCC ||
240 ptex->format == PIPE_FORMAT_R9G9B9E5_FLOAT))
241 flags |= RADEON_SURF_DISABLE_DCC;
242
243 if (ptex->bind & PIPE_BIND_SCANOUT || is_scanout) {
244 /* This should catch bugs in gallium users setting incorrect flags. */
245 assert(ptex->nr_samples <= 1 &&
246 ptex->array_size == 1 &&
247 ptex->depth0 == 1 &&
248 ptex->last_level == 0 &&
249 !(flags & RADEON_SURF_Z_OR_SBUFFER));
250
251 flags |= RADEON_SURF_SCANOUT;
252 }
253
254 if (is_imported)
255 flags |= RADEON_SURF_IMPORTED;
256
257 r = rscreen->ws->surface_init(rscreen->ws, ptex, flags, bpe,
258 array_mode, surface);
259 if (r) {
260 return r;
261 }
262
263 if (pitch_in_bytes_override &&
264 pitch_in_bytes_override != surface->level[0].nblk_x * bpe) {
265 /* old ddx on evergreen over estimate alignment for 1d, only 1 level
266 * for those
267 */
268 surface->level[0].nblk_x = pitch_in_bytes_override / bpe;
269 surface->level[0].slice_size = pitch_in_bytes_override * surface->level[0].nblk_y;
270 }
271
272 if (offset) {
273 for (i = 0; i < ARRAY_SIZE(surface->level); ++i)
274 surface->level[i].offset += offset;
275 }
276 return 0;
277 }
278
279 static void r600_texture_init_metadata(struct r600_texture *rtex,
280 struct radeon_bo_metadata *metadata)
281 {
282 struct radeon_surf *surface = &rtex->surface;
283
284 memset(metadata, 0, sizeof(*metadata));
285 metadata->microtile = surface->level[0].mode >= RADEON_SURF_MODE_1D ?
286 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
287 metadata->macrotile = surface->level[0].mode >= RADEON_SURF_MODE_2D ?
288 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
289 metadata->pipe_config = surface->pipe_config;
290 metadata->bankw = surface->bankw;
291 metadata->bankh = surface->bankh;
292 metadata->tile_split = surface->tile_split;
293 metadata->mtilea = surface->mtilea;
294 metadata->num_banks = surface->num_banks;
295 metadata->stride = surface->level[0].nblk_x * surface->bpe;
296 metadata->scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
297 }
298
299 static void r600_dirty_all_framebuffer_states(struct r600_common_screen *rscreen)
300 {
301 p_atomic_inc(&rscreen->dirty_fb_counter);
302 }
303
304 static void r600_eliminate_fast_color_clear(struct r600_common_context *rctx,
305 struct r600_texture *rtex)
306 {
307 struct r600_common_screen *rscreen = rctx->screen;
308 struct pipe_context *ctx = &rctx->b;
309
310 if (ctx == rscreen->aux_context)
311 pipe_mutex_lock(rscreen->aux_context_lock);
312
313 ctx->flush_resource(ctx, &rtex->resource.b.b);
314 ctx->flush(ctx, NULL, 0);
315
316 if (ctx == rscreen->aux_context)
317 pipe_mutex_unlock(rscreen->aux_context_lock);
318 }
319
320 static void r600_texture_discard_cmask(struct r600_common_screen *rscreen,
321 struct r600_texture *rtex)
322 {
323 if (!rtex->cmask.size)
324 return;
325
326 assert(rtex->resource.b.b.nr_samples <= 1);
327
328 /* Disable CMASK. */
329 memset(&rtex->cmask, 0, sizeof(rtex->cmask));
330 rtex->cmask.base_address_reg = rtex->resource.gpu_address >> 8;
331 rtex->dirty_level_mask = 0;
332
333 if (rscreen->chip_class >= SI)
334 rtex->cb_color_info &= ~SI_S_028C70_FAST_CLEAR(1);
335 else
336 rtex->cb_color_info &= ~EG_S_028C70_FAST_CLEAR(1);
337
338 if (rtex->cmask_buffer != &rtex->resource)
339 r600_resource_reference(&rtex->cmask_buffer, NULL);
340
341 /* Notify all contexts about the change. */
342 r600_dirty_all_framebuffer_states(rscreen);
343 p_atomic_inc(&rscreen->compressed_colortex_counter);
344 }
345
346 static bool r600_can_disable_dcc(struct r600_texture *rtex)
347 {
348 /* We can't disable DCC if it can be written by another process. */
349 return rtex->dcc_offset &&
350 (!rtex->resource.is_shared ||
351 !(rtex->resource.external_usage & PIPE_HANDLE_USAGE_WRITE));
352 }
353
354 static bool r600_texture_discard_dcc(struct r600_common_screen *rscreen,
355 struct r600_texture *rtex)
356 {
357 if (!r600_can_disable_dcc(rtex))
358 return false;
359
360 assert(rtex->dcc_separate_buffer == NULL);
361
362 /* Disable DCC. */
363 rtex->dcc_offset = 0;
364
365 /* Notify all contexts about the change. */
366 r600_dirty_all_framebuffer_states(rscreen);
367 return true;
368 }
369
370 /**
371 * Disable DCC for the texture. (first decompress, then discard metadata).
372 *
373 * There is unresolved multi-context synchronization issue between
374 * screen::aux_context and the current context. If applications do this with
375 * multiple contexts, it's already undefined behavior for them and we don't
376 * have to worry about that. The scenario is:
377 *
378 * If context 1 disables DCC and context 2 has queued commands that write
379 * to the texture via CB with DCC enabled, and the order of operations is
380 * as follows:
381 * context 2 queues draw calls rendering to the texture, but doesn't flush
382 * context 1 disables DCC and flushes
383 * context 1 & 2 reset descriptors and FB state
384 * context 2 flushes (new compressed tiles written by the draw calls)
385 * context 1 & 2 read garbage, because DCC is disabled, yet there are
386 * compressed tiled
387 *
388 * \param rctx the current context if you have one, or rscreen->aux_context
389 * if you don't.
390 */
391 bool r600_texture_disable_dcc(struct r600_common_context *rctx,
392 struct r600_texture *rtex)
393 {
394 struct r600_common_screen *rscreen = rctx->screen;
395
396 if (!r600_can_disable_dcc(rtex))
397 return false;
398
399 if (&rctx->b == rscreen->aux_context)
400 pipe_mutex_lock(rscreen->aux_context_lock);
401
402 /* Decompress DCC. */
403 rctx->decompress_dcc(&rctx->b, rtex);
404 rctx->b.flush(&rctx->b, NULL, 0);
405
406 if (&rctx->b == rscreen->aux_context)
407 pipe_mutex_unlock(rscreen->aux_context_lock);
408
409 return r600_texture_discard_dcc(rscreen, rtex);
410 }
411
412 static void r600_degrade_tile_mode_to_linear(struct r600_common_context *rctx,
413 struct r600_texture *rtex,
414 bool invalidate_storage)
415 {
416 struct pipe_screen *screen = rctx->b.screen;
417 struct r600_texture *new_tex;
418 struct pipe_resource templ = rtex->resource.b.b;
419 unsigned i;
420
421 templ.bind |= PIPE_BIND_LINEAR;
422
423 /* r600g doesn't react to dirty_tex_descriptor_counter */
424 if (rctx->chip_class < SI)
425 return;
426
427 if (rtex->resource.is_shared ||
428 rtex->surface.is_linear)
429 return;
430
431 /* This fails with MSAA, depth, and compressed textures. */
432 if (r600_choose_tiling(rctx->screen, &templ) !=
433 RADEON_SURF_MODE_LINEAR_ALIGNED)
434 return;
435
436 new_tex = (struct r600_texture*)screen->resource_create(screen, &templ);
437 if (!new_tex)
438 return;
439
440 /* Copy the pixels to the new texture. */
441 if (!invalidate_storage) {
442 for (i = 0; i <= templ.last_level; i++) {
443 struct pipe_box box;
444
445 u_box_3d(0, 0, 0,
446 u_minify(templ.width0, i), u_minify(templ.height0, i),
447 util_max_layer(&templ, i) + 1, &box);
448
449 rctx->dma_copy(&rctx->b, &new_tex->resource.b.b, i, 0, 0, 0,
450 &rtex->resource.b.b, i, &box);
451 }
452 }
453
454 r600_texture_discard_cmask(rctx->screen, rtex);
455 r600_texture_discard_dcc(rctx->screen, rtex);
456
457 /* Replace the structure fields of rtex. */
458 rtex->resource.b.b.bind = templ.bind;
459 pb_reference(&rtex->resource.buf, new_tex->resource.buf);
460 rtex->resource.gpu_address = new_tex->resource.gpu_address;
461 rtex->resource.vram_usage = new_tex->resource.vram_usage;
462 rtex->resource.gart_usage = new_tex->resource.gart_usage;
463 rtex->resource.bo_size = new_tex->resource.bo_size;
464 rtex->resource.bo_alignment = new_tex->resource.bo_alignment;
465 rtex->resource.domains = new_tex->resource.domains;
466 rtex->resource.flags = new_tex->resource.flags;
467 rtex->size = new_tex->size;
468 rtex->surface = new_tex->surface;
469 rtex->non_disp_tiling = new_tex->non_disp_tiling;
470 rtex->cb_color_info = new_tex->cb_color_info;
471 rtex->cmask = new_tex->cmask; /* needed even without CMASK */
472
473 assert(!rtex->htile_buffer);
474 assert(!rtex->cmask.size);
475 assert(!rtex->fmask.size);
476 assert(!rtex->dcc_offset);
477 assert(!rtex->is_depth);
478
479 r600_texture_reference(&new_tex, NULL);
480
481 r600_dirty_all_framebuffer_states(rctx->screen);
482 p_atomic_inc(&rctx->screen->dirty_tex_descriptor_counter);
483 }
484
485 static boolean r600_texture_get_handle(struct pipe_screen* screen,
486 struct pipe_context *ctx,
487 struct pipe_resource *resource,
488 struct winsys_handle *whandle,
489 unsigned usage)
490 {
491 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
492 struct r600_common_context *rctx = (struct r600_common_context*)
493 (ctx ? ctx : rscreen->aux_context);
494 struct r600_resource *res = (struct r600_resource*)resource;
495 struct r600_texture *rtex = (struct r600_texture*)resource;
496 struct radeon_bo_metadata metadata;
497 bool update_metadata = false;
498
499 /* This is not supported now, but it might be required for OpenCL
500 * interop in the future.
501 */
502 if (resource->target != PIPE_BUFFER &&
503 (resource->nr_samples > 1 || rtex->is_depth))
504 return false;
505
506 if (resource->target != PIPE_BUFFER) {
507 /* Since shader image stores don't support DCC on VI,
508 * disable it for external clients that want write
509 * access.
510 */
511 if (usage & PIPE_HANDLE_USAGE_WRITE && rtex->dcc_offset) {
512 if (r600_texture_disable_dcc(rctx, rtex))
513 update_metadata = true;
514 }
515
516 if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) &&
517 (rtex->cmask.size || rtex->dcc_offset)) {
518 /* Eliminate fast clear (both CMASK and DCC) */
519 r600_eliminate_fast_color_clear(rctx, rtex);
520
521 /* Disable CMASK if flush_resource isn't going
522 * to be called.
523 */
524 if (rtex->cmask.size)
525 r600_texture_discard_cmask(rscreen, rtex);
526 }
527
528 /* Set metadata. */
529 if (!res->is_shared || update_metadata) {
530 r600_texture_init_metadata(rtex, &metadata);
531 if (rscreen->query_opaque_metadata)
532 rscreen->query_opaque_metadata(rscreen, rtex,
533 &metadata);
534
535 rscreen->ws->buffer_set_metadata(res->buf, &metadata);
536 }
537 }
538
539 if (res->is_shared) {
540 /* USAGE_EXPLICIT_FLUSH must be cleared if at least one user
541 * doesn't set it.
542 */
543 res->external_usage |= usage & ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
544 if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
545 res->external_usage &= ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
546 } else {
547 res->is_shared = true;
548 res->external_usage = usage;
549 }
550
551 return rscreen->ws->buffer_get_handle(res->buf,
552 rtex->surface.level[0].nblk_x *
553 rtex->surface.bpe,
554 rtex->surface.level[0].offset,
555 rtex->surface.level[0].slice_size,
556 whandle);
557 }
558
559 static void r600_texture_destroy(struct pipe_screen *screen,
560 struct pipe_resource *ptex)
561 {
562 struct r600_texture *rtex = (struct r600_texture*)ptex;
563 struct r600_resource *resource = &rtex->resource;
564
565 r600_texture_reference(&rtex->flushed_depth_texture, NULL);
566
567 r600_resource_reference(&rtex->htile_buffer, NULL);
568 if (rtex->cmask_buffer != &rtex->resource) {
569 r600_resource_reference(&rtex->cmask_buffer, NULL);
570 }
571 pb_reference(&resource->buf, NULL);
572 r600_resource_reference(&rtex->dcc_separate_buffer, NULL);
573 r600_resource_reference(&rtex->last_dcc_separate_buffer, NULL);
574 FREE(rtex);
575 }
576
577 static const struct u_resource_vtbl r600_texture_vtbl;
578
579 /* The number of samples can be specified independently of the texture. */
580 void r600_texture_get_fmask_info(struct r600_common_screen *rscreen,
581 struct r600_texture *rtex,
582 unsigned nr_samples,
583 struct r600_fmask_info *out)
584 {
585 /* FMASK is allocated like an ordinary texture. */
586 struct pipe_resource templ = rtex->resource.b.b;
587 struct radeon_surf fmask = {};
588 unsigned flags, bpe;
589
590 memset(out, 0, sizeof(*out));
591
592 templ.nr_samples = 1;
593 flags = rtex->surface.flags | RADEON_SURF_FMASK;
594
595 if (rscreen->chip_class <= CAYMAN) {
596 /* Use the same parameters and tile mode. */
597 fmask.bankw = rtex->surface.bankw;
598 fmask.bankh = rtex->surface.bankh;
599 fmask.mtilea = rtex->surface.mtilea;
600 fmask.tile_split = rtex->surface.tile_split;
601
602 if (nr_samples <= 4)
603 fmask.bankh = 4;
604 }
605
606 switch (nr_samples) {
607 case 2:
608 case 4:
609 bpe = 1;
610 break;
611 case 8:
612 bpe = 4;
613 break;
614 default:
615 R600_ERR("Invalid sample count for FMASK allocation.\n");
616 return;
617 }
618
619 /* Overallocate FMASK on R600-R700 to fix colorbuffer corruption.
620 * This can be fixed by writing a separate FMASK allocator specifically
621 * for R600-R700 asics. */
622 if (rscreen->chip_class <= R700) {
623 bpe *= 2;
624 }
625
626 if (rscreen->ws->surface_init(rscreen->ws, &templ, flags, bpe,
627 RADEON_SURF_MODE_2D, &fmask)) {
628 R600_ERR("Got error in surface_init while allocating FMASK.\n");
629 return;
630 }
631
632 assert(fmask.level[0].mode == RADEON_SURF_MODE_2D);
633
634 out->slice_tile_max = (fmask.level[0].nblk_x * fmask.level[0].nblk_y) / 64;
635 if (out->slice_tile_max)
636 out->slice_tile_max -= 1;
637
638 out->tile_mode_index = fmask.tiling_index[0];
639 out->pitch_in_pixels = fmask.level[0].nblk_x;
640 out->bank_height = fmask.bankh;
641 out->alignment = MAX2(256, fmask.surf_alignment);
642 out->size = fmask.surf_size;
643 }
644
645 static void r600_texture_allocate_fmask(struct r600_common_screen *rscreen,
646 struct r600_texture *rtex)
647 {
648 r600_texture_get_fmask_info(rscreen, rtex,
649 rtex->resource.b.b.nr_samples, &rtex->fmask);
650
651 rtex->fmask.offset = align64(rtex->size, rtex->fmask.alignment);
652 rtex->size = rtex->fmask.offset + rtex->fmask.size;
653 }
654
655 void r600_texture_get_cmask_info(struct r600_common_screen *rscreen,
656 struct r600_texture *rtex,
657 struct r600_cmask_info *out)
658 {
659 unsigned cmask_tile_width = 8;
660 unsigned cmask_tile_height = 8;
661 unsigned cmask_tile_elements = cmask_tile_width * cmask_tile_height;
662 unsigned element_bits = 4;
663 unsigned cmask_cache_bits = 1024;
664 unsigned num_pipes = rscreen->info.num_tile_pipes;
665 unsigned pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes;
666
667 unsigned elements_per_macro_tile = (cmask_cache_bits / element_bits) * num_pipes;
668 unsigned pixels_per_macro_tile = elements_per_macro_tile * cmask_tile_elements;
669 unsigned sqrt_pixels_per_macro_tile = sqrt(pixels_per_macro_tile);
670 unsigned macro_tile_width = util_next_power_of_two(sqrt_pixels_per_macro_tile);
671 unsigned macro_tile_height = pixels_per_macro_tile / macro_tile_width;
672
673 unsigned pitch_elements = align(rtex->resource.b.b.width0, macro_tile_width);
674 unsigned height = align(rtex->resource.b.b.height0, macro_tile_height);
675
676 unsigned base_align = num_pipes * pipe_interleave_bytes;
677 unsigned slice_bytes =
678 ((pitch_elements * height * element_bits + 7) / 8) / cmask_tile_elements;
679
680 assert(macro_tile_width % 128 == 0);
681 assert(macro_tile_height % 128 == 0);
682
683 out->slice_tile_max = ((pitch_elements * height) / (128*128)) - 1;
684 out->alignment = MAX2(256, base_align);
685 out->size = (util_max_layer(&rtex->resource.b.b, 0) + 1) *
686 align(slice_bytes, base_align);
687 }
688
689 static void si_texture_get_cmask_info(struct r600_common_screen *rscreen,
690 struct r600_texture *rtex,
691 struct r600_cmask_info *out)
692 {
693 unsigned pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes;
694 unsigned num_pipes = rscreen->info.num_tile_pipes;
695 unsigned cl_width, cl_height;
696
697 switch (num_pipes) {
698 case 2:
699 cl_width = 32;
700 cl_height = 16;
701 break;
702 case 4:
703 cl_width = 32;
704 cl_height = 32;
705 break;
706 case 8:
707 cl_width = 64;
708 cl_height = 32;
709 break;
710 case 16: /* Hawaii */
711 cl_width = 64;
712 cl_height = 64;
713 break;
714 default:
715 assert(0);
716 return;
717 }
718
719 unsigned base_align = num_pipes * pipe_interleave_bytes;
720
721 unsigned width = align(rtex->resource.b.b.width0, cl_width*8);
722 unsigned height = align(rtex->resource.b.b.height0, cl_height*8);
723 unsigned slice_elements = (width * height) / (8*8);
724
725 /* Each element of CMASK is a nibble. */
726 unsigned slice_bytes = slice_elements / 2;
727
728 out->slice_tile_max = (width * height) / (128*128);
729 if (out->slice_tile_max)
730 out->slice_tile_max -= 1;
731
732 out->alignment = MAX2(256, base_align);
733 out->size = (util_max_layer(&rtex->resource.b.b, 0) + 1) *
734 align(slice_bytes, base_align);
735 }
736
737 static void r600_texture_allocate_cmask(struct r600_common_screen *rscreen,
738 struct r600_texture *rtex)
739 {
740 if (rscreen->chip_class >= SI) {
741 si_texture_get_cmask_info(rscreen, rtex, &rtex->cmask);
742 } else {
743 r600_texture_get_cmask_info(rscreen, rtex, &rtex->cmask);
744 }
745
746 rtex->cmask.offset = align64(rtex->size, rtex->cmask.alignment);
747 rtex->size = rtex->cmask.offset + rtex->cmask.size;
748
749 if (rscreen->chip_class >= SI)
750 rtex->cb_color_info |= SI_S_028C70_FAST_CLEAR(1);
751 else
752 rtex->cb_color_info |= EG_S_028C70_FAST_CLEAR(1);
753 }
754
755 static void r600_texture_alloc_cmask_separate(struct r600_common_screen *rscreen,
756 struct r600_texture *rtex)
757 {
758 if (rtex->cmask_buffer)
759 return;
760
761 assert(rtex->cmask.size == 0);
762
763 if (rscreen->chip_class >= SI) {
764 si_texture_get_cmask_info(rscreen, rtex, &rtex->cmask);
765 } else {
766 r600_texture_get_cmask_info(rscreen, rtex, &rtex->cmask);
767 }
768
769 rtex->cmask_buffer = (struct r600_resource *)
770 r600_aligned_buffer_create(&rscreen->b, 0, PIPE_USAGE_DEFAULT,
771 rtex->cmask.size,
772 rtex->cmask.alignment);
773 if (rtex->cmask_buffer == NULL) {
774 rtex->cmask.size = 0;
775 return;
776 }
777
778 /* update colorbuffer state bits */
779 rtex->cmask.base_address_reg = rtex->cmask_buffer->gpu_address >> 8;
780
781 if (rscreen->chip_class >= SI)
782 rtex->cb_color_info |= SI_S_028C70_FAST_CLEAR(1);
783 else
784 rtex->cb_color_info |= EG_S_028C70_FAST_CLEAR(1);
785
786 p_atomic_inc(&rscreen->compressed_colortex_counter);
787 }
788
789 static void r600_texture_get_htile_size(struct r600_common_screen *rscreen,
790 struct r600_texture *rtex)
791 {
792 unsigned cl_width, cl_height, width, height;
793 unsigned slice_elements, slice_bytes, pipe_interleave_bytes, base_align;
794 unsigned num_pipes = rscreen->info.num_tile_pipes;
795
796 rtex->surface.htile_size = 0;
797
798 if (rscreen->chip_class <= EVERGREEN &&
799 rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 26)
800 return;
801
802 /* HW bug on R6xx. */
803 if (rscreen->chip_class == R600 &&
804 (rtex->resource.b.b.width0 > 7680 ||
805 rtex->resource.b.b.height0 > 7680))
806 return;
807
808 /* HTILE is broken with 1D tiling on old kernels and CIK. */
809 if (rscreen->chip_class >= CIK &&
810 rtex->surface.level[0].mode == RADEON_SURF_MODE_1D &&
811 rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 38)
812 return;
813
814 /* Overalign HTILE on P2 configs to work around GPU hangs in
815 * piglit/depthstencil-render-miplevels 585.
816 *
817 * This has been confirmed to help Kabini & Stoney, where the hangs
818 * are always reproducible. I think I have seen the test hang
819 * on Carrizo too, though it was very rare there.
820 */
821 if (rscreen->chip_class >= CIK && num_pipes < 4)
822 num_pipes = 4;
823
824 switch (num_pipes) {
825 case 1:
826 cl_width = 32;
827 cl_height = 16;
828 break;
829 case 2:
830 cl_width = 32;
831 cl_height = 32;
832 break;
833 case 4:
834 cl_width = 64;
835 cl_height = 32;
836 break;
837 case 8:
838 cl_width = 64;
839 cl_height = 64;
840 break;
841 case 16:
842 cl_width = 128;
843 cl_height = 64;
844 break;
845 default:
846 assert(0);
847 return;
848 }
849
850 width = align(rtex->resource.b.b.width0, cl_width * 8);
851 height = align(rtex->resource.b.b.height0, cl_height * 8);
852
853 slice_elements = (width * height) / (8 * 8);
854 slice_bytes = slice_elements * 4;
855
856 pipe_interleave_bytes = rscreen->info.pipe_interleave_bytes;
857 base_align = num_pipes * pipe_interleave_bytes;
858
859 rtex->surface.htile_alignment = base_align;
860 rtex->surface.htile_size =
861 (util_max_layer(&rtex->resource.b.b, 0) + 1) *
862 align(slice_bytes, base_align);
863 }
864
865 static void r600_texture_allocate_htile(struct r600_common_screen *rscreen,
866 struct r600_texture *rtex)
867 {
868 uint32_t clear_value;
869
870 if (rtex->tc_compatible_htile) {
871 clear_value = 0x0000030F;
872 } else {
873 r600_texture_get_htile_size(rscreen, rtex);
874 clear_value = 0;
875 }
876
877 if (!rtex->surface.htile_size)
878 return;
879
880 rtex->htile_buffer = (struct r600_resource*)
881 r600_aligned_buffer_create(&rscreen->b, 0, PIPE_USAGE_DEFAULT,
882 rtex->surface.htile_size,
883 rtex->surface.htile_alignment);
884 if (rtex->htile_buffer == NULL) {
885 /* this is not a fatal error as we can still keep rendering
886 * without htile buffer */
887 R600_ERR("Failed to create buffer object for htile buffer.\n");
888 } else {
889 r600_screen_clear_buffer(rscreen, &rtex->htile_buffer->b.b,
890 0, rtex->surface.htile_size,
891 clear_value, R600_COHERENCY_NONE);
892 }
893 }
894
895 void r600_print_texture_info(struct r600_texture *rtex, FILE *f)
896 {
897 int i;
898
899 fprintf(f, " Info: npix_x=%u, npix_y=%u, npix_z=%u, blk_w=%u, "
900 "blk_h=%u, array_size=%u, last_level=%u, "
901 "bpe=%u, nsamples=%u, flags=0x%x, %s\n",
902 rtex->resource.b.b.width0, rtex->resource.b.b.height0,
903 rtex->resource.b.b.depth0, rtex->surface.blk_w,
904 rtex->surface.blk_h,
905 rtex->resource.b.b.array_size, rtex->resource.b.b.last_level,
906 rtex->surface.bpe, rtex->resource.b.b.nr_samples,
907 rtex->surface.flags, util_format_short_name(rtex->resource.b.b.format));
908
909 fprintf(f, " Layout: size=%"PRIu64", alignment=%u, bankw=%u, "
910 "bankh=%u, nbanks=%u, mtilea=%u, tilesplit=%u, pipeconfig=%u, scanout=%u\n",
911 rtex->surface.surf_size, rtex->surface.surf_alignment, rtex->surface.bankw,
912 rtex->surface.bankh, rtex->surface.num_banks, rtex->surface.mtilea,
913 rtex->surface.tile_split, rtex->surface.pipe_config,
914 (rtex->surface.flags & RADEON_SURF_SCANOUT) != 0);
915
916 if (rtex->fmask.size)
917 fprintf(f, " FMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, pitch_in_pixels=%u, "
918 "bankh=%u, slice_tile_max=%u, tile_mode_index=%u\n",
919 rtex->fmask.offset, rtex->fmask.size, rtex->fmask.alignment,
920 rtex->fmask.pitch_in_pixels, rtex->fmask.bank_height,
921 rtex->fmask.slice_tile_max, rtex->fmask.tile_mode_index);
922
923 if (rtex->cmask.size)
924 fprintf(f, " CMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, "
925 "slice_tile_max=%u\n",
926 rtex->cmask.offset, rtex->cmask.size, rtex->cmask.alignment,
927 rtex->cmask.slice_tile_max);
928
929 if (rtex->htile_buffer)
930 fprintf(f, " HTile: size=%u, alignment=%u, TC_compatible = %u\n",
931 rtex->htile_buffer->b.b.width0,
932 rtex->htile_buffer->buf->alignment,
933 rtex->tc_compatible_htile);
934
935 if (rtex->dcc_offset) {
936 fprintf(f, " DCC: offset=%"PRIu64", size=%"PRIu64", alignment=%u\n",
937 rtex->dcc_offset, rtex->surface.dcc_size,
938 rtex->surface.dcc_alignment);
939 for (i = 0; i <= rtex->resource.b.b.last_level; i++)
940 fprintf(f, " DCCLevel[%i]: enabled=%u, offset=%"PRIu64", "
941 "fast_clear_size=%"PRIu64"\n",
942 i, i < rtex->surface.num_dcc_levels,
943 rtex->surface.level[i].dcc_offset,
944 rtex->surface.level[i].dcc_fast_clear_size);
945 }
946
947 for (i = 0; i <= rtex->resource.b.b.last_level; i++)
948 fprintf(f, " Level[%i]: offset=%"PRIu64", slice_size=%"PRIu64", "
949 "npix_x=%u, npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
950 "mode=%u, tiling_index = %u\n",
951 i, rtex->surface.level[i].offset,
952 rtex->surface.level[i].slice_size,
953 u_minify(rtex->resource.b.b.width0, i),
954 u_minify(rtex->resource.b.b.height0, i),
955 u_minify(rtex->resource.b.b.depth0, i),
956 rtex->surface.level[i].nblk_x,
957 rtex->surface.level[i].nblk_y,
958 rtex->surface.level[i].mode,
959 rtex->surface.tiling_index[i]);
960
961 if (rtex->surface.flags & RADEON_SURF_SBUFFER) {
962 fprintf(f, " StencilLayout: tilesplit=%u\n",
963 rtex->surface.stencil_tile_split);
964 for (i = 0; i <= rtex->resource.b.b.last_level; i++) {
965 fprintf(f, " StencilLevel[%i]: offset=%"PRIu64", "
966 "slice_size=%"PRIu64", npix_x=%u, "
967 "npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
968 "mode=%u, tiling_index = %u\n",
969 i, rtex->surface.stencil_level[i].offset,
970 rtex->surface.stencil_level[i].slice_size,
971 u_minify(rtex->resource.b.b.width0, i),
972 u_minify(rtex->resource.b.b.height0, i),
973 u_minify(rtex->resource.b.b.depth0, i),
974 rtex->surface.stencil_level[i].nblk_x,
975 rtex->surface.stencil_level[i].nblk_y,
976 rtex->surface.stencil_level[i].mode,
977 rtex->surface.stencil_tiling_index[i]);
978 }
979 }
980 }
981
982 /* Common processing for r600_texture_create and r600_texture_from_handle */
983 static struct r600_texture *
984 r600_texture_create_object(struct pipe_screen *screen,
985 const struct pipe_resource *base,
986 struct pb_buffer *buf,
987 struct radeon_surf *surface)
988 {
989 struct r600_texture *rtex;
990 struct r600_resource *resource;
991 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
992
993 rtex = CALLOC_STRUCT(r600_texture);
994 if (!rtex)
995 return NULL;
996
997 resource = &rtex->resource;
998 resource->b.b = *base;
999 resource->b.b.next = NULL;
1000 resource->b.vtbl = &r600_texture_vtbl;
1001 pipe_reference_init(&resource->b.b.reference, 1);
1002 resource->b.b.screen = screen;
1003
1004 /* don't include stencil-only formats which we don't support for rendering */
1005 rtex->is_depth = util_format_has_depth(util_format_description(rtex->resource.b.b.format));
1006
1007 rtex->surface = *surface;
1008 rtex->size = rtex->surface.surf_size;
1009
1010 rtex->tc_compatible_htile = rtex->surface.htile_size != 0;
1011 assert(!!(rtex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE) ==
1012 rtex->tc_compatible_htile);
1013
1014 /* TC-compatible HTILE only supports Z32_FLOAT. */
1015 if (rtex->tc_compatible_htile)
1016 rtex->db_render_format = PIPE_FORMAT_Z32_FLOAT;
1017 else
1018 rtex->db_render_format = base->format;
1019
1020 /* Tiled depth textures utilize the non-displayable tile order.
1021 * This must be done after r600_setup_surface.
1022 * Applies to R600-Cayman. */
1023 rtex->non_disp_tiling = rtex->is_depth && rtex->surface.level[0].mode >= RADEON_SURF_MODE_1D;
1024 /* Applies to GCN. */
1025 rtex->last_msaa_resolve_target_micro_mode = rtex->surface.micro_tile_mode;
1026
1027 /* Disable separate DCC at the beginning. DRI2 doesn't reuse buffers
1028 * between frames, so the only thing that can enable separate DCC
1029 * with DRI2 is multiple slow clears within a frame.
1030 */
1031 rtex->ps_draw_ratio = 0;
1032
1033 if (rtex->is_depth) {
1034 if (base->flags & (R600_RESOURCE_FLAG_TRANSFER |
1035 R600_RESOURCE_FLAG_FLUSHED_DEPTH) ||
1036 rscreen->chip_class >= EVERGREEN) {
1037 rtex->can_sample_z = !rtex->surface.depth_adjusted;
1038 rtex->can_sample_s = !rtex->surface.stencil_adjusted;
1039 } else {
1040 if (rtex->resource.b.b.nr_samples <= 1 &&
1041 (rtex->resource.b.b.format == PIPE_FORMAT_Z16_UNORM ||
1042 rtex->resource.b.b.format == PIPE_FORMAT_Z32_FLOAT))
1043 rtex->can_sample_z = true;
1044 }
1045
1046 if (!(base->flags & (R600_RESOURCE_FLAG_TRANSFER |
1047 R600_RESOURCE_FLAG_FLUSHED_DEPTH))) {
1048 rtex->db_compatible = true;
1049
1050 if (!(rscreen->debug_flags & DBG_NO_HYPERZ))
1051 r600_texture_allocate_htile(rscreen, rtex);
1052 }
1053 } else {
1054 if (base->nr_samples > 1) {
1055 if (!buf) {
1056 r600_texture_allocate_fmask(rscreen, rtex);
1057 r600_texture_allocate_cmask(rscreen, rtex);
1058 rtex->cmask_buffer = &rtex->resource;
1059 }
1060 if (!rtex->fmask.size || !rtex->cmask.size) {
1061 FREE(rtex);
1062 return NULL;
1063 }
1064 }
1065
1066 /* Shared textures must always set up DCC here.
1067 * If it's not present, it will be disabled by
1068 * apply_opaque_metadata later.
1069 */
1070 if (rtex->surface.dcc_size &&
1071 (buf || !(rscreen->debug_flags & DBG_NO_DCC)) &&
1072 !(rtex->surface.flags & RADEON_SURF_SCANOUT)) {
1073 /* Reserve space for the DCC buffer. */
1074 rtex->dcc_offset = align64(rtex->size, rtex->surface.dcc_alignment);
1075 rtex->size = rtex->dcc_offset + rtex->surface.dcc_size;
1076 }
1077 }
1078
1079 /* Now create the backing buffer. */
1080 if (!buf) {
1081 r600_init_resource_fields(rscreen, resource, rtex->size,
1082 rtex->surface.surf_alignment);
1083
1084 resource->flags |= RADEON_FLAG_HANDLE;
1085
1086 if (!r600_alloc_resource(rscreen, resource)) {
1087 FREE(rtex);
1088 return NULL;
1089 }
1090 } else {
1091 resource->buf = buf;
1092 resource->gpu_address = rscreen->ws->buffer_get_virtual_address(resource->buf);
1093 resource->bo_size = buf->size;
1094 resource->bo_alignment = buf->alignment;
1095 resource->domains = rscreen->ws->buffer_get_initial_domain(resource->buf);
1096 if (resource->domains & RADEON_DOMAIN_VRAM)
1097 resource->vram_usage = buf->size;
1098 else if (resource->domains & RADEON_DOMAIN_GTT)
1099 resource->gart_usage = buf->size;
1100 }
1101
1102 if (rtex->cmask.size) {
1103 /* Initialize the cmask to 0xCC (= compressed state). */
1104 r600_screen_clear_buffer(rscreen, &rtex->cmask_buffer->b.b,
1105 rtex->cmask.offset, rtex->cmask.size,
1106 0xCCCCCCCC, R600_COHERENCY_NONE);
1107 }
1108
1109 /* Initialize DCC only if the texture is not being imported. */
1110 if (!buf && rtex->dcc_offset) {
1111 r600_screen_clear_buffer(rscreen, &rtex->resource.b.b,
1112 rtex->dcc_offset,
1113 rtex->surface.dcc_size,
1114 0xFFFFFFFF, R600_COHERENCY_NONE);
1115 }
1116
1117 /* Initialize the CMASK base register value. */
1118 rtex->cmask.base_address_reg =
1119 (rtex->resource.gpu_address + rtex->cmask.offset) >> 8;
1120
1121 if (rscreen->debug_flags & DBG_VM) {
1122 fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Texture %ix%ix%i, %i levels, %i samples, %s\n",
1123 rtex->resource.gpu_address,
1124 rtex->resource.gpu_address + rtex->resource.buf->size,
1125 base->width0, base->height0, util_max_layer(base, 0)+1, base->last_level+1,
1126 base->nr_samples ? base->nr_samples : 1, util_format_short_name(base->format));
1127 }
1128
1129 if (rscreen->debug_flags & DBG_TEX) {
1130 puts("Texture:");
1131 r600_print_texture_info(rtex, stdout);
1132 fflush(stdout);
1133 }
1134
1135 return rtex;
1136 }
1137
1138 static enum radeon_surf_mode
1139 r600_choose_tiling(struct r600_common_screen *rscreen,
1140 const struct pipe_resource *templ)
1141 {
1142 const struct util_format_description *desc = util_format_description(templ->format);
1143 bool force_tiling = templ->flags & R600_RESOURCE_FLAG_FORCE_TILING;
1144
1145 /* MSAA resources must be 2D tiled. */
1146 if (templ->nr_samples > 1)
1147 return RADEON_SURF_MODE_2D;
1148
1149 /* Transfer resources should be linear. */
1150 if (templ->flags & R600_RESOURCE_FLAG_TRANSFER)
1151 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1152
1153 /* r600g: force tiling on TEXTURE_2D and TEXTURE_3D compute resources. */
1154 if (rscreen->chip_class >= R600 && rscreen->chip_class <= CAYMAN &&
1155 (templ->bind & PIPE_BIND_COMPUTE_RESOURCE) &&
1156 (templ->target == PIPE_TEXTURE_2D ||
1157 templ->target == PIPE_TEXTURE_3D))
1158 force_tiling = true;
1159
1160 /* Handle common candidates for the linear mode.
1161 * Compressed textures and DB surfaces must always be tiled.
1162 */
1163 if (!force_tiling && !util_format_is_compressed(templ->format) &&
1164 (!util_format_is_depth_or_stencil(templ->format) ||
1165 templ->flags & R600_RESOURCE_FLAG_FLUSHED_DEPTH)) {
1166 if (rscreen->debug_flags & DBG_NO_TILING)
1167 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1168
1169 /* Tiling doesn't work with the 422 (SUBSAMPLED) formats on R600+. */
1170 if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED)
1171 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1172
1173 /* Cursors are linear on SI.
1174 * (XXX double-check, maybe also use RADEON_SURF_SCANOUT) */
1175 if (rscreen->chip_class >= SI &&
1176 (templ->bind & PIPE_BIND_CURSOR))
1177 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1178
1179 if (templ->bind & PIPE_BIND_LINEAR)
1180 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1181
1182 /* Textures with a very small height are recommended to be linear. */
1183 if (templ->target == PIPE_TEXTURE_1D ||
1184 templ->target == PIPE_TEXTURE_1D_ARRAY ||
1185 templ->height0 <= 4)
1186 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1187
1188 /* Textures likely to be mapped often. */
1189 if (templ->usage == PIPE_USAGE_STAGING ||
1190 templ->usage == PIPE_USAGE_STREAM)
1191 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1192 }
1193
1194 /* Make small textures 1D tiled. */
1195 if (templ->width0 <= 16 || templ->height0 <= 16 ||
1196 (rscreen->debug_flags & DBG_NO_2D_TILING))
1197 return RADEON_SURF_MODE_1D;
1198
1199 /* The allocator will switch to 1D if needed. */
1200 return RADEON_SURF_MODE_2D;
1201 }
1202
1203 struct pipe_resource *r600_texture_create(struct pipe_screen *screen,
1204 const struct pipe_resource *templ)
1205 {
1206 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1207 struct radeon_surf surface = {0};
1208 bool is_flushed_depth = templ->flags & R600_RESOURCE_FLAG_FLUSHED_DEPTH;
1209 bool tc_compatible_htile =
1210 rscreen->chip_class >= VI &&
1211 (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY) &&
1212 !(rscreen->debug_flags & DBG_NO_HYPERZ) &&
1213 !is_flushed_depth &&
1214 templ->nr_samples <= 1 && /* TC-compat HTILE is less efficient with MSAA */
1215 util_format_is_depth_or_stencil(templ->format);
1216
1217 int r;
1218
1219 r = r600_init_surface(rscreen, &surface, templ,
1220 r600_choose_tiling(rscreen, templ), 0, 0,
1221 false, false, is_flushed_depth,
1222 tc_compatible_htile);
1223 if (r) {
1224 return NULL;
1225 }
1226
1227 return (struct pipe_resource *)
1228 r600_texture_create_object(screen, templ, NULL, &surface);
1229 }
1230
1231 static struct pipe_resource *r600_texture_from_handle(struct pipe_screen *screen,
1232 const struct pipe_resource *templ,
1233 struct winsys_handle *whandle,
1234 unsigned usage)
1235 {
1236 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1237 struct pb_buffer *buf = NULL;
1238 unsigned stride = 0, offset = 0;
1239 unsigned array_mode;
1240 struct radeon_surf surface;
1241 int r;
1242 struct radeon_bo_metadata metadata = {};
1243 struct r600_texture *rtex;
1244
1245 /* Support only 2D textures without mipmaps */
1246 if ((templ->target != PIPE_TEXTURE_2D && templ->target != PIPE_TEXTURE_RECT) ||
1247 templ->depth0 != 1 || templ->last_level != 0)
1248 return NULL;
1249
1250 buf = rscreen->ws->buffer_from_handle(rscreen->ws, whandle, &stride, &offset);
1251 if (!buf)
1252 return NULL;
1253
1254 rscreen->ws->buffer_get_metadata(buf, &metadata);
1255
1256 surface.pipe_config = metadata.pipe_config;
1257 surface.bankw = metadata.bankw;
1258 surface.bankh = metadata.bankh;
1259 surface.tile_split = metadata.tile_split;
1260 surface.mtilea = metadata.mtilea;
1261 surface.num_banks = metadata.num_banks;
1262
1263 if (metadata.macrotile == RADEON_LAYOUT_TILED)
1264 array_mode = RADEON_SURF_MODE_2D;
1265 else if (metadata.microtile == RADEON_LAYOUT_TILED)
1266 array_mode = RADEON_SURF_MODE_1D;
1267 else
1268 array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
1269
1270 r = r600_init_surface(rscreen, &surface, templ, array_mode, stride,
1271 offset, true, metadata.scanout, false, false);
1272 if (r) {
1273 return NULL;
1274 }
1275
1276 rtex = r600_texture_create_object(screen, templ, buf, &surface);
1277 if (!rtex)
1278 return NULL;
1279
1280 rtex->resource.is_shared = true;
1281 rtex->resource.external_usage = usage;
1282
1283 if (rscreen->apply_opaque_metadata)
1284 rscreen->apply_opaque_metadata(rscreen, rtex, &metadata);
1285
1286 return &rtex->resource.b.b;
1287 }
1288
1289 bool r600_init_flushed_depth_texture(struct pipe_context *ctx,
1290 struct pipe_resource *texture,
1291 struct r600_texture **staging)
1292 {
1293 struct r600_texture *rtex = (struct r600_texture*)texture;
1294 struct pipe_resource resource;
1295 struct r600_texture **flushed_depth_texture = staging ?
1296 staging : &rtex->flushed_depth_texture;
1297 enum pipe_format pipe_format = texture->format;
1298
1299 if (!staging) {
1300 if (rtex->flushed_depth_texture)
1301 return true; /* it's ready */
1302
1303 if (!rtex->can_sample_z && rtex->can_sample_s) {
1304 switch (pipe_format) {
1305 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
1306 /* Save memory by not allocating the S plane. */
1307 pipe_format = PIPE_FORMAT_Z32_FLOAT;
1308 break;
1309 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
1310 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
1311 /* Save memory bandwidth by not copying the
1312 * stencil part during flush.
1313 *
1314 * This potentially increases memory bandwidth
1315 * if an application uses both Z and S texturing
1316 * simultaneously (a flushed Z24S8 texture
1317 * would be stored compactly), but how often
1318 * does that really happen?
1319 */
1320 pipe_format = PIPE_FORMAT_Z24X8_UNORM;
1321 break;
1322 default:;
1323 }
1324 } else if (!rtex->can_sample_s && rtex->can_sample_z) {
1325 assert(util_format_has_stencil(util_format_description(pipe_format)));
1326
1327 /* DB->CB copies to an 8bpp surface don't work. */
1328 pipe_format = PIPE_FORMAT_X24S8_UINT;
1329 }
1330 }
1331
1332 memset(&resource, 0, sizeof(resource));
1333 resource.target = texture->target;
1334 resource.format = pipe_format;
1335 resource.width0 = texture->width0;
1336 resource.height0 = texture->height0;
1337 resource.depth0 = texture->depth0;
1338 resource.array_size = texture->array_size;
1339 resource.last_level = texture->last_level;
1340 resource.nr_samples = texture->nr_samples;
1341 resource.usage = staging ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT;
1342 resource.bind = texture->bind & ~PIPE_BIND_DEPTH_STENCIL;
1343 resource.flags = texture->flags | R600_RESOURCE_FLAG_FLUSHED_DEPTH;
1344
1345 if (staging)
1346 resource.flags |= R600_RESOURCE_FLAG_TRANSFER;
1347
1348 *flushed_depth_texture = (struct r600_texture *)ctx->screen->resource_create(ctx->screen, &resource);
1349 if (*flushed_depth_texture == NULL) {
1350 R600_ERR("failed to create temporary texture to hold flushed depth\n");
1351 return false;
1352 }
1353
1354 (*flushed_depth_texture)->non_disp_tiling = false;
1355 return true;
1356 }
1357
1358 /**
1359 * Initialize the pipe_resource descriptor to be of the same size as the box,
1360 * which is supposed to hold a subregion of the texture "orig" at the given
1361 * mipmap level.
1362 */
1363 static void r600_init_temp_resource_from_box(struct pipe_resource *res,
1364 struct pipe_resource *orig,
1365 const struct pipe_box *box,
1366 unsigned level, unsigned flags)
1367 {
1368 memset(res, 0, sizeof(*res));
1369 res->format = orig->format;
1370 res->width0 = box->width;
1371 res->height0 = box->height;
1372 res->depth0 = 1;
1373 res->array_size = 1;
1374 res->usage = flags & R600_RESOURCE_FLAG_TRANSFER ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT;
1375 res->flags = flags;
1376
1377 /* We must set the correct texture target and dimensions for a 3D box. */
1378 if (box->depth > 1 && util_max_layer(orig, level) > 0) {
1379 res->target = PIPE_TEXTURE_2D_ARRAY;
1380 res->array_size = box->depth;
1381 } else {
1382 res->target = PIPE_TEXTURE_2D;
1383 }
1384 }
1385
1386 static bool r600_can_invalidate_texture(struct r600_common_screen *rscreen,
1387 struct r600_texture *rtex,
1388 unsigned transfer_usage,
1389 const struct pipe_box *box)
1390 {
1391 /* r600g doesn't react to dirty_tex_descriptor_counter */
1392 return rscreen->chip_class >= SI &&
1393 !rtex->resource.is_shared &&
1394 !(transfer_usage & PIPE_TRANSFER_READ) &&
1395 rtex->resource.b.b.last_level == 0 &&
1396 util_texrange_covers_whole_level(&rtex->resource.b.b, 0,
1397 box->x, box->y, box->z,
1398 box->width, box->height,
1399 box->depth);
1400 }
1401
1402 static void r600_texture_invalidate_storage(struct r600_common_context *rctx,
1403 struct r600_texture *rtex)
1404 {
1405 struct r600_common_screen *rscreen = rctx->screen;
1406
1407 /* There is no point in discarding depth and tiled buffers. */
1408 assert(!rtex->is_depth);
1409 assert(rtex->surface.is_linear);
1410
1411 /* Reallocate the buffer in the same pipe_resource. */
1412 r600_alloc_resource(rscreen, &rtex->resource);
1413
1414 /* Initialize the CMASK base address (needed even without CMASK). */
1415 rtex->cmask.base_address_reg =
1416 (rtex->resource.gpu_address + rtex->cmask.offset) >> 8;
1417
1418 r600_dirty_all_framebuffer_states(rscreen);
1419 p_atomic_inc(&rscreen->dirty_tex_descriptor_counter);
1420
1421 rctx->num_alloc_tex_transfer_bytes += rtex->size;
1422 }
1423
1424 static void *r600_texture_transfer_map(struct pipe_context *ctx,
1425 struct pipe_resource *texture,
1426 unsigned level,
1427 unsigned usage,
1428 const struct pipe_box *box,
1429 struct pipe_transfer **ptransfer)
1430 {
1431 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
1432 struct r600_texture *rtex = (struct r600_texture*)texture;
1433 struct r600_transfer *trans;
1434 struct r600_resource *buf;
1435 unsigned offset = 0;
1436 char *map;
1437 bool use_staging_texture = false;
1438
1439 assert(!(texture->flags & R600_RESOURCE_FLAG_TRANSFER));
1440
1441 /* Depth textures use staging unconditionally. */
1442 if (!rtex->is_depth) {
1443 /* Degrade the tile mode if we get too many transfers on APUs.
1444 * On dGPUs, the staging texture is always faster.
1445 * Only count uploads that are at least 4x4 pixels large.
1446 */
1447 if (!rctx->screen->info.has_dedicated_vram &&
1448 level == 0 &&
1449 box->width >= 4 && box->height >= 4 &&
1450 p_atomic_inc_return(&rtex->num_level0_transfers) == 10) {
1451 bool can_invalidate =
1452 r600_can_invalidate_texture(rctx->screen, rtex,
1453 usage, box);
1454
1455 r600_degrade_tile_mode_to_linear(rctx, rtex,
1456 can_invalidate);
1457 }
1458
1459 /* Tiled textures need to be converted into a linear texture for CPU
1460 * access. The staging texture is always linear and is placed in GART.
1461 *
1462 * Reading from VRAM is slow, always use the staging texture in
1463 * this case.
1464 *
1465 * Use the staging texture for uploads if the underlying BO
1466 * is busy.
1467 */
1468 if (!rtex->surface.is_linear)
1469 use_staging_texture = true;
1470 else if (usage & PIPE_TRANSFER_READ)
1471 use_staging_texture = (rtex->resource.domains &
1472 RADEON_DOMAIN_VRAM) != 0;
1473 /* Write & linear only: */
1474 else if (r600_rings_is_buffer_referenced(rctx, rtex->resource.buf,
1475 RADEON_USAGE_READWRITE) ||
1476 !rctx->ws->buffer_wait(rtex->resource.buf, 0,
1477 RADEON_USAGE_READWRITE)) {
1478 /* It's busy. */
1479 if (r600_can_invalidate_texture(rctx->screen, rtex,
1480 usage, box))
1481 r600_texture_invalidate_storage(rctx, rtex);
1482 else
1483 use_staging_texture = true;
1484 }
1485 }
1486
1487 trans = CALLOC_STRUCT(r600_transfer);
1488 if (!trans)
1489 return NULL;
1490 trans->transfer.resource = texture;
1491 trans->transfer.level = level;
1492 trans->transfer.usage = usage;
1493 trans->transfer.box = *box;
1494
1495 if (rtex->is_depth) {
1496 struct r600_texture *staging_depth;
1497
1498 if (rtex->resource.b.b.nr_samples > 1) {
1499 /* MSAA depth buffers need to be converted to single sample buffers.
1500 *
1501 * Mapping MSAA depth buffers can occur if ReadPixels is called
1502 * with a multisample GLX visual.
1503 *
1504 * First downsample the depth buffer to a temporary texture,
1505 * then decompress the temporary one to staging.
1506 *
1507 * Only the region being mapped is transfered.
1508 */
1509 struct pipe_resource resource;
1510
1511 r600_init_temp_resource_from_box(&resource, texture, box, level, 0);
1512
1513 if (!r600_init_flushed_depth_texture(ctx, &resource, &staging_depth)) {
1514 R600_ERR("failed to create temporary texture to hold untiled copy\n");
1515 FREE(trans);
1516 return NULL;
1517 }
1518
1519 if (usage & PIPE_TRANSFER_READ) {
1520 struct pipe_resource *temp = ctx->screen->resource_create(ctx->screen, &resource);
1521 if (!temp) {
1522 R600_ERR("failed to create a temporary depth texture\n");
1523 FREE(trans);
1524 return NULL;
1525 }
1526
1527 r600_copy_region_with_blit(ctx, temp, 0, 0, 0, 0, texture, level, box);
1528 rctx->blit_decompress_depth(ctx, (struct r600_texture*)temp, staging_depth,
1529 0, 0, 0, box->depth, 0, 0);
1530 pipe_resource_reference(&temp, NULL);
1531 }
1532 }
1533 else {
1534 /* XXX: only readback the rectangle which is being mapped? */
1535 /* XXX: when discard is true, no need to read back from depth texture */
1536 if (!r600_init_flushed_depth_texture(ctx, texture, &staging_depth)) {
1537 R600_ERR("failed to create temporary texture to hold untiled copy\n");
1538 FREE(trans);
1539 return NULL;
1540 }
1541
1542 rctx->blit_decompress_depth(ctx, rtex, staging_depth,
1543 level, level,
1544 box->z, box->z + box->depth - 1,
1545 0, 0);
1546
1547 offset = r600_texture_get_offset(staging_depth, level, box);
1548 }
1549
1550 trans->transfer.stride = staging_depth->surface.level[level].nblk_x *
1551 staging_depth->surface.bpe;
1552 trans->transfer.layer_stride = staging_depth->surface.level[level].slice_size;
1553 trans->staging = (struct r600_resource*)staging_depth;
1554 buf = trans->staging;
1555 } else if (use_staging_texture) {
1556 struct pipe_resource resource;
1557 struct r600_texture *staging;
1558
1559 r600_init_temp_resource_from_box(&resource, texture, box, level,
1560 R600_RESOURCE_FLAG_TRANSFER);
1561 resource.usage = (usage & PIPE_TRANSFER_READ) ?
1562 PIPE_USAGE_STAGING : PIPE_USAGE_STREAM;
1563
1564 /* Create the temporary texture. */
1565 staging = (struct r600_texture*)ctx->screen->resource_create(ctx->screen, &resource);
1566 if (!staging) {
1567 R600_ERR("failed to create temporary texture to hold untiled copy\n");
1568 FREE(trans);
1569 return NULL;
1570 }
1571 trans->staging = &staging->resource;
1572 trans->transfer.stride = staging->surface.level[0].nblk_x *
1573 staging->surface.bpe;
1574 trans->transfer.layer_stride = staging->surface.level[0].slice_size;
1575
1576 if (usage & PIPE_TRANSFER_READ)
1577 r600_copy_to_staging_texture(ctx, trans);
1578 else
1579 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
1580
1581 buf = trans->staging;
1582 } else {
1583 /* the resource is mapped directly */
1584 trans->transfer.stride = rtex->surface.level[level].nblk_x *
1585 rtex->surface.bpe;
1586 trans->transfer.layer_stride = rtex->surface.level[level].slice_size;
1587 offset = r600_texture_get_offset(rtex, level, box);
1588 buf = &rtex->resource;
1589 }
1590
1591 if (!(map = r600_buffer_map_sync_with_rings(rctx, buf, usage))) {
1592 r600_resource_reference(&trans->staging, NULL);
1593 FREE(trans);
1594 return NULL;
1595 }
1596
1597 *ptransfer = &trans->transfer;
1598 return map + offset;
1599 }
1600
1601 static void r600_texture_transfer_unmap(struct pipe_context *ctx,
1602 struct pipe_transfer* transfer)
1603 {
1604 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
1605 struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
1606 struct pipe_resource *texture = transfer->resource;
1607 struct r600_texture *rtex = (struct r600_texture*)texture;
1608
1609 if ((transfer->usage & PIPE_TRANSFER_WRITE) && rtransfer->staging) {
1610 if (rtex->is_depth && rtex->resource.b.b.nr_samples <= 1) {
1611 ctx->resource_copy_region(ctx, texture, transfer->level,
1612 transfer->box.x, transfer->box.y, transfer->box.z,
1613 &rtransfer->staging->b.b, transfer->level,
1614 &transfer->box);
1615 } else {
1616 r600_copy_from_staging_texture(ctx, rtransfer);
1617 }
1618 }
1619
1620 if (rtransfer->staging) {
1621 rctx->num_alloc_tex_transfer_bytes += rtransfer->staging->buf->size;
1622 r600_resource_reference(&rtransfer->staging, NULL);
1623 }
1624
1625 /* Heuristic for {upload, draw, upload, draw, ..}:
1626 *
1627 * Flush the gfx IB if we've allocated too much texture storage.
1628 *
1629 * The idea is that we don't want to build IBs that use too much
1630 * memory and put pressure on the kernel memory manager and we also
1631 * want to make temporary and invalidated buffers go idle ASAP to
1632 * decrease the total memory usage or make them reusable. The memory
1633 * usage will be slightly higher than given here because of the buffer
1634 * cache in the winsys.
1635 *
1636 * The result is that the kernel memory manager is never a bottleneck.
1637 */
1638 if (rctx->num_alloc_tex_transfer_bytes > rctx->screen->info.gart_size / 4) {
1639 rctx->gfx.flush(rctx, RADEON_FLUSH_ASYNC, NULL);
1640 rctx->num_alloc_tex_transfer_bytes = 0;
1641 }
1642
1643 FREE(transfer);
1644 }
1645
1646 static const struct u_resource_vtbl r600_texture_vtbl =
1647 {
1648 NULL, /* get_handle */
1649 r600_texture_destroy, /* resource_destroy */
1650 r600_texture_transfer_map, /* transfer_map */
1651 u_default_transfer_flush_region, /* transfer_flush_region */
1652 r600_texture_transfer_unmap, /* transfer_unmap */
1653 };
1654
1655 /* DCC channel type categories within which formats can be reinterpreted
1656 * while keeping the same DCC encoding. The swizzle must also match. */
1657 enum dcc_channel_type {
1658 dcc_channel_float32,
1659 dcc_channel_uint32,
1660 dcc_channel_sint32,
1661 dcc_channel_float16,
1662 dcc_channel_uint16,
1663 dcc_channel_sint16,
1664 dcc_channel_uint_10_10_10_2,
1665 dcc_channel_uint8,
1666 dcc_channel_sint8,
1667 dcc_channel_incompatible,
1668 };
1669
1670 /* Return the type of DCC encoding. */
1671 static enum dcc_channel_type
1672 vi_get_dcc_channel_type(const struct util_format_description *desc)
1673 {
1674 int i;
1675
1676 /* Find the first non-void channel. */
1677 for (i = 0; i < desc->nr_channels; i++)
1678 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1679 break;
1680 if (i == desc->nr_channels)
1681 return dcc_channel_incompatible;
1682
1683 switch (desc->channel[i].size) {
1684 case 32:
1685 if (desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT)
1686 return dcc_channel_float32;
1687 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED)
1688 return dcc_channel_uint32;
1689 return dcc_channel_sint32;
1690 case 16:
1691 if (desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT)
1692 return dcc_channel_float16;
1693 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED)
1694 return dcc_channel_uint16;
1695 return dcc_channel_sint16;
1696 case 10:
1697 return dcc_channel_uint_10_10_10_2;
1698 case 8:
1699 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED)
1700 return dcc_channel_uint8;
1701 return dcc_channel_sint8;
1702 default:
1703 return dcc_channel_incompatible;
1704 }
1705 }
1706
1707 /* Return if it's allowed to reinterpret one format as another with DCC enabled. */
1708 bool vi_dcc_formats_compatible(enum pipe_format format1,
1709 enum pipe_format format2)
1710 {
1711 const struct util_format_description *desc1, *desc2;
1712 enum dcc_channel_type type1, type2;
1713 int i;
1714
1715 if (format1 == format2)
1716 return true;
1717
1718 desc1 = util_format_description(format1);
1719 desc2 = util_format_description(format2);
1720
1721 if (desc1->nr_channels != desc2->nr_channels)
1722 return false;
1723
1724 /* Swizzles must be the same. */
1725 for (i = 0; i < desc1->nr_channels; i++)
1726 if (desc1->swizzle[i] <= PIPE_SWIZZLE_W &&
1727 desc2->swizzle[i] <= PIPE_SWIZZLE_W &&
1728 desc1->swizzle[i] != desc2->swizzle[i])
1729 return false;
1730
1731 type1 = vi_get_dcc_channel_type(desc1);
1732 type2 = vi_get_dcc_channel_type(desc2);
1733
1734 return type1 != dcc_channel_incompatible &&
1735 type2 != dcc_channel_incompatible &&
1736 type1 == type2;
1737 }
1738
1739 void vi_dcc_disable_if_incompatible_format(struct r600_common_context *rctx,
1740 struct pipe_resource *tex,
1741 unsigned level,
1742 enum pipe_format view_format)
1743 {
1744 struct r600_texture *rtex = (struct r600_texture *)tex;
1745
1746 if (rtex->dcc_offset &&
1747 level < rtex->surface.num_dcc_levels &&
1748 !vi_dcc_formats_compatible(tex->format, view_format))
1749 if (!r600_texture_disable_dcc(rctx, (struct r600_texture*)tex))
1750 rctx->decompress_dcc(&rctx->b, rtex);
1751 }
1752
1753 struct pipe_surface *r600_create_surface_custom(struct pipe_context *pipe,
1754 struct pipe_resource *texture,
1755 const struct pipe_surface *templ,
1756 unsigned width, unsigned height)
1757 {
1758 struct r600_common_context *rctx = (struct r600_common_context*)pipe;
1759 struct r600_surface *surface = CALLOC_STRUCT(r600_surface);
1760
1761 if (!surface)
1762 return NULL;
1763
1764 assert(templ->u.tex.first_layer <= util_max_layer(texture, templ->u.tex.level));
1765 assert(templ->u.tex.last_layer <= util_max_layer(texture, templ->u.tex.level));
1766
1767 pipe_reference_init(&surface->base.reference, 1);
1768 pipe_resource_reference(&surface->base.texture, texture);
1769 surface->base.context = pipe;
1770 surface->base.format = templ->format;
1771 surface->base.width = width;
1772 surface->base.height = height;
1773 surface->base.u = templ->u;
1774
1775 if (texture->target != PIPE_BUFFER)
1776 vi_dcc_disable_if_incompatible_format(rctx, texture,
1777 templ->u.tex.level,
1778 templ->format);
1779
1780 return &surface->base;
1781 }
1782
1783 static struct pipe_surface *r600_create_surface(struct pipe_context *pipe,
1784 struct pipe_resource *tex,
1785 const struct pipe_surface *templ)
1786 {
1787 unsigned level = templ->u.tex.level;
1788 unsigned width = u_minify(tex->width0, level);
1789 unsigned height = u_minify(tex->height0, level);
1790
1791 if (tex->target != PIPE_BUFFER && templ->format != tex->format) {
1792 const struct util_format_description *tex_desc
1793 = util_format_description(tex->format);
1794 const struct util_format_description *templ_desc
1795 = util_format_description(templ->format);
1796
1797 assert(tex_desc->block.bits == templ_desc->block.bits);
1798
1799 /* Adjust size of surface if and only if the block width or
1800 * height is changed. */
1801 if (tex_desc->block.width != templ_desc->block.width ||
1802 tex_desc->block.height != templ_desc->block.height) {
1803 unsigned nblks_x = util_format_get_nblocksx(tex->format, width);
1804 unsigned nblks_y = util_format_get_nblocksy(tex->format, height);
1805
1806 width = nblks_x * templ_desc->block.width;
1807 height = nblks_y * templ_desc->block.height;
1808 }
1809 }
1810
1811 return r600_create_surface_custom(pipe, tex, templ, width, height);
1812 }
1813
1814 static void r600_surface_destroy(struct pipe_context *pipe,
1815 struct pipe_surface *surface)
1816 {
1817 struct r600_surface *surf = (struct r600_surface*)surface;
1818 r600_resource_reference(&surf->cb_buffer_fmask, NULL);
1819 r600_resource_reference(&surf->cb_buffer_cmask, NULL);
1820 pipe_resource_reference(&surface->texture, NULL);
1821 FREE(surface);
1822 }
1823
1824 static void r600_clear_texture(struct pipe_context *pipe,
1825 struct pipe_resource *tex,
1826 unsigned level,
1827 const struct pipe_box *box,
1828 const void *data)
1829 {
1830 struct pipe_screen *screen = pipe->screen;
1831 struct r600_texture *rtex = (struct r600_texture*)tex;
1832 struct pipe_surface tmpl = {{0}};
1833 struct pipe_surface *sf;
1834 const struct util_format_description *desc =
1835 util_format_description(tex->format);
1836
1837 tmpl.format = tex->format;
1838 tmpl.u.tex.first_layer = box->z;
1839 tmpl.u.tex.last_layer = box->z + box->depth - 1;
1840 tmpl.u.tex.level = level;
1841 sf = pipe->create_surface(pipe, tex, &tmpl);
1842 if (!sf)
1843 return;
1844
1845 if (rtex->is_depth) {
1846 unsigned clear;
1847 float depth;
1848 uint8_t stencil = 0;
1849
1850 /* Depth is always present. */
1851 clear = PIPE_CLEAR_DEPTH;
1852 desc->unpack_z_float(&depth, 0, data, 0, 1, 1);
1853
1854 if (rtex->surface.flags & RADEON_SURF_SBUFFER) {
1855 clear |= PIPE_CLEAR_STENCIL;
1856 desc->unpack_s_8uint(&stencil, 0, data, 0, 1, 1);
1857 }
1858
1859 pipe->clear_depth_stencil(pipe, sf, clear, depth, stencil,
1860 box->x, box->y,
1861 box->width, box->height, false);
1862 } else {
1863 union pipe_color_union color;
1864
1865 /* pipe_color_union requires the full vec4 representation. */
1866 if (util_format_is_pure_uint(tex->format))
1867 desc->unpack_rgba_uint(color.ui, 0, data, 0, 1, 1);
1868 else if (util_format_is_pure_sint(tex->format))
1869 desc->unpack_rgba_sint(color.i, 0, data, 0, 1, 1);
1870 else
1871 desc->unpack_rgba_float(color.f, 0, data, 0, 1, 1);
1872
1873 if (screen->is_format_supported(screen, tex->format,
1874 tex->target, 0,
1875 PIPE_BIND_RENDER_TARGET)) {
1876 pipe->clear_render_target(pipe, sf, &color,
1877 box->x, box->y,
1878 box->width, box->height, false);
1879 } else {
1880 /* Software fallback - just for R9G9B9E5_FLOAT */
1881 util_clear_render_target(pipe, sf, &color,
1882 box->x, box->y,
1883 box->width, box->height);
1884 }
1885 }
1886 pipe_surface_reference(&sf, NULL);
1887 }
1888
1889 unsigned r600_translate_colorswap(enum pipe_format format, bool do_endian_swap)
1890 {
1891 const struct util_format_description *desc = util_format_description(format);
1892
1893 #define HAS_SWIZZLE(chan,swz) (desc->swizzle[chan] == PIPE_SWIZZLE_##swz)
1894
1895 if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */
1896 return V_0280A0_SWAP_STD;
1897
1898 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
1899 return ~0U;
1900
1901 switch (desc->nr_channels) {
1902 case 1:
1903 if (HAS_SWIZZLE(0,X))
1904 return V_0280A0_SWAP_STD; /* X___ */
1905 else if (HAS_SWIZZLE(3,X))
1906 return V_0280A0_SWAP_ALT_REV; /* ___X */
1907 break;
1908 case 2:
1909 if ((HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,Y)) ||
1910 (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,NONE)) ||
1911 (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,Y)))
1912 return V_0280A0_SWAP_STD; /* XY__ */
1913 else if ((HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,X)) ||
1914 (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,NONE)) ||
1915 (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,X)))
1916 /* YX__ */
1917 return (do_endian_swap ? V_0280A0_SWAP_STD : V_0280A0_SWAP_STD_REV);
1918 else if (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(3,Y))
1919 return V_0280A0_SWAP_ALT; /* X__Y */
1920 else if (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(3,X))
1921 return V_0280A0_SWAP_ALT_REV; /* Y__X */
1922 break;
1923 case 3:
1924 if (HAS_SWIZZLE(0,X))
1925 return (do_endian_swap ? V_0280A0_SWAP_STD_REV : V_0280A0_SWAP_STD);
1926 else if (HAS_SWIZZLE(0,Z))
1927 return V_0280A0_SWAP_STD_REV; /* ZYX */
1928 break;
1929 case 4:
1930 /* check the middle channels, the 1st and 4th channel can be NONE */
1931 if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,Z)) {
1932 return V_0280A0_SWAP_STD; /* XYZW */
1933 } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,Y)) {
1934 return V_0280A0_SWAP_STD_REV; /* WZYX */
1935 } else if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,X)) {
1936 return V_0280A0_SWAP_ALT; /* ZYXW */
1937 } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,W)) {
1938 /* YZWX */
1939 if (desc->is_array)
1940 return V_0280A0_SWAP_ALT_REV;
1941 else
1942 return (do_endian_swap ? V_0280A0_SWAP_ALT : V_0280A0_SWAP_ALT_REV);
1943 }
1944 break;
1945 }
1946 return ~0U;
1947 }
1948
1949 /* PIPELINE_STAT-BASED DCC ENABLEMENT FOR DISPLAYABLE SURFACES */
1950
1951 static void vi_dcc_clean_up_context_slot(struct r600_common_context *rctx,
1952 int slot)
1953 {
1954 int i;
1955
1956 if (rctx->dcc_stats[slot].query_active)
1957 vi_separate_dcc_stop_query(&rctx->b,
1958 rctx->dcc_stats[slot].tex);
1959
1960 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats[slot].ps_stats); i++)
1961 if (rctx->dcc_stats[slot].ps_stats[i]) {
1962 rctx->b.destroy_query(&rctx->b,
1963 rctx->dcc_stats[slot].ps_stats[i]);
1964 rctx->dcc_stats[slot].ps_stats[i] = NULL;
1965 }
1966
1967 r600_texture_reference(&rctx->dcc_stats[slot].tex, NULL);
1968 }
1969
1970 /**
1971 * Return the per-context slot where DCC statistics queries for the texture live.
1972 */
1973 static unsigned vi_get_context_dcc_stats_index(struct r600_common_context *rctx,
1974 struct r600_texture *tex)
1975 {
1976 int i, empty_slot = -1;
1977
1978 /* Remove zombie textures (textures kept alive by this array only). */
1979 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++)
1980 if (rctx->dcc_stats[i].tex &&
1981 rctx->dcc_stats[i].tex->resource.b.b.reference.count == 1)
1982 vi_dcc_clean_up_context_slot(rctx, i);
1983
1984 /* Find the texture. */
1985 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
1986 /* Return if found. */
1987 if (rctx->dcc_stats[i].tex == tex) {
1988 rctx->dcc_stats[i].last_use_timestamp = os_time_get();
1989 return i;
1990 }
1991
1992 /* Record the first seen empty slot. */
1993 if (empty_slot == -1 && !rctx->dcc_stats[i].tex)
1994 empty_slot = i;
1995 }
1996
1997 /* Not found. Remove the oldest member to make space in the array. */
1998 if (empty_slot == -1) {
1999 int oldest_slot = 0;
2000
2001 /* Find the oldest slot. */
2002 for (i = 1; i < ARRAY_SIZE(rctx->dcc_stats); i++)
2003 if (rctx->dcc_stats[oldest_slot].last_use_timestamp >
2004 rctx->dcc_stats[i].last_use_timestamp)
2005 oldest_slot = i;
2006
2007 /* Clean up the oldest slot. */
2008 vi_dcc_clean_up_context_slot(rctx, oldest_slot);
2009 empty_slot = oldest_slot;
2010 }
2011
2012 /* Add the texture to the new slot. */
2013 r600_texture_reference(&rctx->dcc_stats[empty_slot].tex, tex);
2014 rctx->dcc_stats[empty_slot].last_use_timestamp = os_time_get();
2015 return empty_slot;
2016 }
2017
2018 static struct pipe_query *
2019 vi_create_resuming_pipestats_query(struct pipe_context *ctx)
2020 {
2021 struct r600_query_hw *query = (struct r600_query_hw*)
2022 ctx->create_query(ctx, PIPE_QUERY_PIPELINE_STATISTICS, 0);
2023
2024 query->flags |= R600_QUERY_HW_FLAG_BEGIN_RESUMES;
2025 return (struct pipe_query*)query;
2026 }
2027
2028 /**
2029 * Called when binding a color buffer.
2030 */
2031 void vi_separate_dcc_start_query(struct pipe_context *ctx,
2032 struct r600_texture *tex)
2033 {
2034 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
2035 unsigned i = vi_get_context_dcc_stats_index(rctx, tex);
2036
2037 assert(!rctx->dcc_stats[i].query_active);
2038
2039 if (!rctx->dcc_stats[i].ps_stats[0])
2040 rctx->dcc_stats[i].ps_stats[0] = vi_create_resuming_pipestats_query(ctx);
2041
2042 /* begin or resume the query */
2043 ctx->begin_query(ctx, rctx->dcc_stats[i].ps_stats[0]);
2044 rctx->dcc_stats[i].query_active = true;
2045 }
2046
2047 /**
2048 * Called when unbinding a color buffer.
2049 */
2050 void vi_separate_dcc_stop_query(struct pipe_context *ctx,
2051 struct r600_texture *tex)
2052 {
2053 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
2054 unsigned i = vi_get_context_dcc_stats_index(rctx, tex);
2055
2056 assert(rctx->dcc_stats[i].query_active);
2057 assert(rctx->dcc_stats[i].ps_stats[0]);
2058
2059 /* pause or end the query */
2060 ctx->end_query(ctx, rctx->dcc_stats[i].ps_stats[0]);
2061 rctx->dcc_stats[i].query_active = false;
2062 }
2063
2064 static bool vi_should_enable_separate_dcc(struct r600_texture *tex)
2065 {
2066 /* The minimum number of fullscreen draws per frame that is required
2067 * to enable DCC. */
2068 return tex->ps_draw_ratio + tex->num_slow_clears >= 5;
2069 }
2070
2071 /* Called by fast clear. */
2072 static void vi_separate_dcc_try_enable(struct r600_common_context *rctx,
2073 struct r600_texture *tex)
2074 {
2075 /* The intent is to use this with shared displayable back buffers,
2076 * but it's not strictly limited only to them.
2077 */
2078 if (!tex->resource.is_shared ||
2079 !(tex->resource.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) ||
2080 tex->resource.b.b.target != PIPE_TEXTURE_2D ||
2081 tex->resource.b.b.last_level > 0 ||
2082 !tex->surface.dcc_size)
2083 return;
2084
2085 if (tex->dcc_offset)
2086 return; /* already enabled */
2087
2088 /* Enable the DCC stat gathering. */
2089 if (!tex->dcc_gather_statistics) {
2090 tex->dcc_gather_statistics = true;
2091 vi_separate_dcc_start_query(&rctx->b, tex);
2092 }
2093
2094 if (!vi_should_enable_separate_dcc(tex))
2095 return; /* stats show that DCC decompression is too expensive */
2096
2097 assert(tex->surface.num_dcc_levels);
2098 assert(!tex->dcc_separate_buffer);
2099
2100 r600_texture_discard_cmask(rctx->screen, tex);
2101
2102 /* Get a DCC buffer. */
2103 if (tex->last_dcc_separate_buffer) {
2104 assert(tex->dcc_gather_statistics);
2105 assert(!tex->dcc_separate_buffer);
2106 tex->dcc_separate_buffer = tex->last_dcc_separate_buffer;
2107 tex->last_dcc_separate_buffer = NULL;
2108 } else {
2109 tex->dcc_separate_buffer = (struct r600_resource*)
2110 r600_aligned_buffer_create(rctx->b.screen, 0,
2111 PIPE_USAGE_DEFAULT,
2112 tex->surface.dcc_size,
2113 tex->surface.dcc_alignment);
2114 if (!tex->dcc_separate_buffer)
2115 return;
2116 }
2117
2118 /* dcc_offset is the absolute GPUVM address. */
2119 tex->dcc_offset = tex->dcc_separate_buffer->gpu_address;
2120
2121 /* no need to flag anything since this is called by fast clear that
2122 * flags framebuffer state
2123 */
2124 }
2125
2126 /**
2127 * Called by pipe_context::flush_resource, the place where DCC decompression
2128 * takes place.
2129 */
2130 void vi_separate_dcc_process_and_reset_stats(struct pipe_context *ctx,
2131 struct r600_texture *tex)
2132 {
2133 struct r600_common_context *rctx = (struct r600_common_context*)ctx;
2134 struct pipe_query *tmp;
2135 unsigned i = vi_get_context_dcc_stats_index(rctx, tex);
2136 bool query_active = rctx->dcc_stats[i].query_active;
2137 bool disable = false;
2138
2139 if (rctx->dcc_stats[i].ps_stats[2]) {
2140 union pipe_query_result result;
2141
2142 /* Read the results. */
2143 ctx->get_query_result(ctx, rctx->dcc_stats[i].ps_stats[2],
2144 true, &result);
2145 r600_query_hw_reset_buffers(rctx,
2146 (struct r600_query_hw*)
2147 rctx->dcc_stats[i].ps_stats[2]);
2148
2149 /* Compute the approximate number of fullscreen draws. */
2150 tex->ps_draw_ratio =
2151 result.pipeline_statistics.ps_invocations /
2152 (tex->resource.b.b.width0 * tex->resource.b.b.height0);
2153 rctx->last_tex_ps_draw_ratio = tex->ps_draw_ratio;
2154
2155 disable = tex->dcc_separate_buffer &&
2156 !vi_should_enable_separate_dcc(tex);
2157 }
2158
2159 tex->num_slow_clears = 0;
2160
2161 /* stop the statistics query for ps_stats[0] */
2162 if (query_active)
2163 vi_separate_dcc_stop_query(ctx, tex);
2164
2165 /* Move the queries in the queue by one. */
2166 tmp = rctx->dcc_stats[i].ps_stats[2];
2167 rctx->dcc_stats[i].ps_stats[2] = rctx->dcc_stats[i].ps_stats[1];
2168 rctx->dcc_stats[i].ps_stats[1] = rctx->dcc_stats[i].ps_stats[0];
2169 rctx->dcc_stats[i].ps_stats[0] = tmp;
2170
2171 /* create and start a new query as ps_stats[0] */
2172 if (query_active)
2173 vi_separate_dcc_start_query(ctx, tex);
2174
2175 if (disable) {
2176 assert(!tex->last_dcc_separate_buffer);
2177 tex->last_dcc_separate_buffer = tex->dcc_separate_buffer;
2178 tex->dcc_separate_buffer = NULL;
2179 tex->dcc_offset = 0;
2180 /* no need to flag anything since this is called after
2181 * decompression that re-sets framebuffer state
2182 */
2183 }
2184 }
2185
2186 /* FAST COLOR CLEAR */
2187
2188 static void evergreen_set_clear_color(struct r600_texture *rtex,
2189 enum pipe_format surface_format,
2190 const union pipe_color_union *color)
2191 {
2192 union util_color uc;
2193
2194 memset(&uc, 0, sizeof(uc));
2195
2196 if (rtex->surface.bpe == 16) {
2197 /* DCC fast clear only:
2198 * CLEAR_WORD0 = R = G = B
2199 * CLEAR_WORD1 = A
2200 */
2201 assert(color->ui[0] == color->ui[1] &&
2202 color->ui[0] == color->ui[2]);
2203 uc.ui[0] = color->ui[0];
2204 uc.ui[1] = color->ui[3];
2205 } else if (util_format_is_pure_uint(surface_format)) {
2206 util_format_write_4ui(surface_format, color->ui, 0, &uc, 0, 0, 0, 1, 1);
2207 } else if (util_format_is_pure_sint(surface_format)) {
2208 util_format_write_4i(surface_format, color->i, 0, &uc, 0, 0, 0, 1, 1);
2209 } else {
2210 util_pack_color(color->f, surface_format, &uc);
2211 }
2212
2213 memcpy(rtex->color_clear_value, &uc, 2 * sizeof(uint32_t));
2214 }
2215
2216 static bool vi_get_fast_clear_parameters(enum pipe_format surface_format,
2217 const union pipe_color_union *color,
2218 uint32_t* reset_value,
2219 bool* clear_words_needed)
2220 {
2221 bool values[4] = {};
2222 int i;
2223 bool main_value = false;
2224 bool extra_value = false;
2225 int extra_channel;
2226 const struct util_format_description *desc = util_format_description(surface_format);
2227
2228 if (desc->block.bits == 128 &&
2229 (color->ui[0] != color->ui[1] ||
2230 color->ui[0] != color->ui[2]))
2231 return false;
2232
2233 *clear_words_needed = true;
2234 *reset_value = 0x20202020U;
2235
2236 /* If we want to clear without needing a fast clear eliminate step, we
2237 * can set each channel to 0 or 1 (or 0/max for integer formats). We
2238 * have two sets of flags, one for the last or first channel(extra) and
2239 * one for the other channels(main).
2240 */
2241
2242 if (surface_format == PIPE_FORMAT_R11G11B10_FLOAT ||
2243 surface_format == PIPE_FORMAT_B5G6R5_UNORM ||
2244 surface_format == PIPE_FORMAT_B5G6R5_SRGB) {
2245 extra_channel = -1;
2246 } else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) {
2247 if(r600_translate_colorswap(surface_format, false) <= 1)
2248 extra_channel = desc->nr_channels - 1;
2249 else
2250 extra_channel = 0;
2251 } else
2252 return true;
2253
2254 for (i = 0; i < 4; ++i) {
2255 int index = desc->swizzle[i] - PIPE_SWIZZLE_X;
2256
2257 if (desc->swizzle[i] < PIPE_SWIZZLE_X ||
2258 desc->swizzle[i] > PIPE_SWIZZLE_W)
2259 continue;
2260
2261 if (desc->channel[i].pure_integer &&
2262 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2263 /* Use the maximum value for clamping the clear color. */
2264 int max = u_bit_consecutive(0, desc->channel[i].size - 1);
2265
2266 values[i] = color->i[i] != 0;
2267 if (color->i[i] != 0 && MIN2(color->i[i], max) != max)
2268 return true;
2269 } else if (desc->channel[i].pure_integer &&
2270 desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
2271 /* Use the maximum value for clamping the clear color. */
2272 unsigned max = u_bit_consecutive(0, desc->channel[i].size);
2273
2274 values[i] = color->ui[i] != 0U;
2275 if (color->ui[i] != 0U && MIN2(color->ui[i], max) != max)
2276 return true;
2277 } else {
2278 values[i] = color->f[i] != 0.0F;
2279 if (color->f[i] != 0.0F && color->f[i] != 1.0F)
2280 return true;
2281 }
2282
2283 if (index == extra_channel)
2284 extra_value = values[i];
2285 else
2286 main_value = values[i];
2287 }
2288
2289 for (int i = 0; i < 4; ++i)
2290 if (values[i] != main_value &&
2291 desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel &&
2292 desc->swizzle[i] >= PIPE_SWIZZLE_X &&
2293 desc->swizzle[i] <= PIPE_SWIZZLE_W)
2294 return true;
2295
2296 *clear_words_needed = false;
2297 if (main_value)
2298 *reset_value |= 0x80808080U;
2299
2300 if (extra_value)
2301 *reset_value |= 0x40404040U;
2302 return true;
2303 }
2304
2305 void vi_dcc_clear_level(struct r600_common_context *rctx,
2306 struct r600_texture *rtex,
2307 unsigned level, unsigned clear_value)
2308 {
2309 struct pipe_resource *dcc_buffer;
2310 uint64_t dcc_offset;
2311
2312 assert(rtex->dcc_offset && level < rtex->surface.num_dcc_levels);
2313
2314 if (rtex->dcc_separate_buffer) {
2315 dcc_buffer = &rtex->dcc_separate_buffer->b.b;
2316 dcc_offset = 0;
2317 } else {
2318 dcc_buffer = &rtex->resource.b.b;
2319 dcc_offset = rtex->dcc_offset;
2320 }
2321
2322 dcc_offset += rtex->surface.level[level].dcc_offset;
2323
2324 rctx->clear_buffer(&rctx->b, dcc_buffer, dcc_offset,
2325 rtex->surface.level[level].dcc_fast_clear_size,
2326 clear_value, R600_COHERENCY_CB_META);
2327 }
2328
2329 /* Set the same micro tile mode as the destination of the last MSAA resolve.
2330 * This allows hitting the MSAA resolve fast path, which requires that both
2331 * src and dst micro tile modes match.
2332 */
2333 static void si_set_optimal_micro_tile_mode(struct r600_common_screen *rscreen,
2334 struct r600_texture *rtex)
2335 {
2336 if (rtex->resource.is_shared ||
2337 rtex->resource.b.b.nr_samples <= 1 ||
2338 rtex->surface.micro_tile_mode == rtex->last_msaa_resolve_target_micro_mode)
2339 return;
2340
2341 assert(rtex->surface.level[0].mode == RADEON_SURF_MODE_2D);
2342 assert(rtex->resource.b.b.last_level == 0);
2343
2344 /* These magic numbers were copied from addrlib. It doesn't use any
2345 * definitions for them either. They are all 2D_TILED_THIN1 modes with
2346 * different bpp and micro tile mode.
2347 */
2348 if (rscreen->chip_class >= CIK) {
2349 switch (rtex->last_msaa_resolve_target_micro_mode) {
2350 case RADEON_MICRO_MODE_DISPLAY:
2351 rtex->surface.tiling_index[0] = 10;
2352 break;
2353 case RADEON_MICRO_MODE_THIN:
2354 rtex->surface.tiling_index[0] = 14;
2355 break;
2356 case RADEON_MICRO_MODE_ROTATED:
2357 rtex->surface.tiling_index[0] = 28;
2358 break;
2359 default: /* depth, thick */
2360 assert(!"unexpected micro mode");
2361 return;
2362 }
2363 } else { /* SI */
2364 switch (rtex->last_msaa_resolve_target_micro_mode) {
2365 case RADEON_MICRO_MODE_DISPLAY:
2366 switch (rtex->surface.bpe) {
2367 case 1:
2368 rtex->surface.tiling_index[0] = 10;
2369 break;
2370 case 2:
2371 rtex->surface.tiling_index[0] = 11;
2372 break;
2373 default: /* 4, 8 */
2374 rtex->surface.tiling_index[0] = 12;
2375 break;
2376 }
2377 break;
2378 case RADEON_MICRO_MODE_THIN:
2379 switch (rtex->surface.bpe) {
2380 case 1:
2381 rtex->surface.tiling_index[0] = 14;
2382 break;
2383 case 2:
2384 rtex->surface.tiling_index[0] = 15;
2385 break;
2386 case 4:
2387 rtex->surface.tiling_index[0] = 16;
2388 break;
2389 default: /* 8, 16 */
2390 rtex->surface.tiling_index[0] = 17;
2391 break;
2392 }
2393 break;
2394 default: /* depth, thick */
2395 assert(!"unexpected micro mode");
2396 return;
2397 }
2398 }
2399
2400 rtex->surface.micro_tile_mode = rtex->last_msaa_resolve_target_micro_mode;
2401
2402 p_atomic_inc(&rscreen->dirty_fb_counter);
2403 p_atomic_inc(&rscreen->dirty_tex_descriptor_counter);
2404 }
2405
2406 void evergreen_do_fast_color_clear(struct r600_common_context *rctx,
2407 struct pipe_framebuffer_state *fb,
2408 struct r600_atom *fb_state,
2409 unsigned *buffers, unsigned *dirty_cbufs,
2410 const union pipe_color_union *color)
2411 {
2412 int i;
2413
2414 /* This function is broken in BE, so just disable this path for now */
2415 #ifdef PIPE_ARCH_BIG_ENDIAN
2416 return;
2417 #endif
2418
2419 if (rctx->render_cond)
2420 return;
2421
2422 for (i = 0; i < fb->nr_cbufs; i++) {
2423 struct r600_texture *tex;
2424 unsigned clear_bit = PIPE_CLEAR_COLOR0 << i;
2425
2426 if (!fb->cbufs[i])
2427 continue;
2428
2429 /* if this colorbuffer is not being cleared */
2430 if (!(*buffers & clear_bit))
2431 continue;
2432
2433 tex = (struct r600_texture *)fb->cbufs[i]->texture;
2434
2435 /* the clear is allowed if all layers are bound */
2436 if (fb->cbufs[i]->u.tex.first_layer != 0 ||
2437 fb->cbufs[i]->u.tex.last_layer != util_max_layer(&tex->resource.b.b, 0)) {
2438 continue;
2439 }
2440
2441 /* cannot clear mipmapped textures */
2442 if (fb->cbufs[i]->texture->last_level != 0) {
2443 continue;
2444 }
2445
2446 /* only supported on tiled surfaces */
2447 if (tex->surface.is_linear) {
2448 continue;
2449 }
2450
2451 /* shared textures can't use fast clear without an explicit flush,
2452 * because there is no way to communicate the clear color among
2453 * all clients
2454 */
2455 if (tex->resource.is_shared &&
2456 !(tex->resource.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
2457 continue;
2458
2459 /* fast color clear with 1D tiling doesn't work on old kernels and CIK */
2460 if (rctx->chip_class == CIK &&
2461 tex->surface.level[0].mode == RADEON_SURF_MODE_1D &&
2462 rctx->screen->info.drm_major == 2 &&
2463 rctx->screen->info.drm_minor < 38) {
2464 continue;
2465 }
2466
2467 /* Fast clear is the most appropriate place to enable DCC for
2468 * displayable surfaces.
2469 */
2470 if (rctx->chip_class >= VI &&
2471 !(rctx->screen->debug_flags & DBG_NO_DCC_FB)) {
2472 vi_separate_dcc_try_enable(rctx, tex);
2473
2474 /* Stoney can't do a CMASK-based clear, so all clears are
2475 * considered to be hypothetically slow clears, which
2476 * is weighed when determining to enable separate DCC.
2477 */
2478 if (tex->dcc_gather_statistics &&
2479 rctx->family == CHIP_STONEY)
2480 tex->num_slow_clears++;
2481 }
2482
2483 /* Try to clear DCC first, otherwise try CMASK. */
2484 if (tex->dcc_offset && tex->surface.num_dcc_levels) {
2485 uint32_t reset_value;
2486 bool clear_words_needed;
2487
2488 if (rctx->screen->debug_flags & DBG_NO_DCC_CLEAR)
2489 continue;
2490
2491 if (!vi_get_fast_clear_parameters(fb->cbufs[i]->format,
2492 color, &reset_value,
2493 &clear_words_needed))
2494 continue;
2495
2496 vi_dcc_clear_level(rctx, tex, 0, reset_value);
2497
2498 if (clear_words_needed)
2499 tex->dirty_level_mask |= 1 << fb->cbufs[i]->u.tex.level;
2500 tex->separate_dcc_dirty = true;
2501 } else {
2502 /* 128-bit formats are unusupported */
2503 if (tex->surface.bpe > 8) {
2504 continue;
2505 }
2506
2507 /* Stoney/RB+ doesn't work with CMASK fast clear. */
2508 if (rctx->family == CHIP_STONEY)
2509 continue;
2510
2511 /* ensure CMASK is enabled */
2512 r600_texture_alloc_cmask_separate(rctx->screen, tex);
2513 if (tex->cmask.size == 0) {
2514 continue;
2515 }
2516
2517 /* Do the fast clear. */
2518 rctx->clear_buffer(&rctx->b, &tex->cmask_buffer->b.b,
2519 tex->cmask.offset, tex->cmask.size, 0,
2520 R600_COHERENCY_CB_META);
2521
2522 tex->dirty_level_mask |= 1 << fb->cbufs[i]->u.tex.level;
2523 }
2524
2525 /* We can change the micro tile mode before a full clear. */
2526 if (rctx->screen->chip_class >= SI)
2527 si_set_optimal_micro_tile_mode(rctx->screen, tex);
2528
2529 evergreen_set_clear_color(tex, fb->cbufs[i]->format, color);
2530
2531 if (dirty_cbufs)
2532 *dirty_cbufs |= 1 << i;
2533 rctx->set_atom_dirty(rctx, fb_state, true);
2534 *buffers &= ~clear_bit;
2535 }
2536 }
2537
2538 void r600_init_screen_texture_functions(struct r600_common_screen *rscreen)
2539 {
2540 rscreen->b.resource_from_handle = r600_texture_from_handle;
2541 rscreen->b.resource_get_handle = r600_texture_get_handle;
2542 }
2543
2544 void r600_init_context_texture_functions(struct r600_common_context *rctx)
2545 {
2546 rctx->b.create_surface = r600_create_surface;
2547 rctx->b.surface_destroy = r600_surface_destroy;
2548 rctx->b.clear_texture = r600_clear_texture;
2549 }