radeonsi/gfx10: simplify a streamout loop in gfx10_emit_ngg_epilogue
[mesa.git] / src / gallium / drivers / radeonsi / gfx10_shader_ngg.c
1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_pipe.h"
25 #include "si_shader_internal.h"
26
27 #include "sid.h"
28
29 #include "util/u_memory.h"
30 #include "util/u_prim.h"
31
32 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
33 {
34 return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
35 }
36
37 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
38 {
39 return si_unpack_param(ctx, ctx->param_merged_wave_info, 28, 4);
40 }
41
42 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
43 {
44 LLVMBuilderRef builder = ctx->ac.builder;
45 LLVMValueRef tmp;
46 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
47 LLVMConstInt(ctx->ac.i32, 64, false), "");
48 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
49 }
50
51 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
52 {
53 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
54 LLVMConstInt(ctx->ac.i32, 12, false),
55 LLVMConstInt(ctx->ac.i32, 9, false),
56 false);
57 }
58
59 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
60 {
61 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
62 LLVMConstInt(ctx->ac.i32, 22, false),
63 LLVMConstInt(ctx->ac.i32, 9, false),
64 false);
65 }
66
67 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
68 {
69 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
70 ctx->i32_0,
71 LLVMConstInt(ctx->ac.i32, 11, false),
72 false);
73 }
74
75 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
76 {
77 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
78 ctx->param_rw_buffers);
79
80 return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
81 LLVMConstInt(ctx->i32, GFX10_GS_QUERY_BUF, false));
82 }
83
84 /* Send GS Alloc Req message from the first wave of the group to SPI.
85 * Message payload is:
86 * - bits 0..10: vertices in group
87 * - bits 12..22: primitives in group
88 */
89 static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx,
90 LLVMValueRef vtx_cnt,
91 LLVMValueRef prim_cnt)
92 {
93 LLVMBuilderRef builder = ctx->ac.builder;
94 LLVMValueRef tmp;
95
96 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
97 ac_build_ifcc(&ctx->ac, tmp, 5020);
98
99 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
100 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
101 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
102
103 ac_build_endif(&ctx->ac, 5020);
104 }
105
106 struct ngg_prim {
107 unsigned num_vertices;
108 LLVMValueRef isnull;
109 LLVMValueRef index[3];
110 LLVMValueRef edgeflag[3];
111 };
112
113 static void build_export_prim(struct si_shader_context *ctx,
114 const struct ngg_prim *prim)
115 {
116 LLVMBuilderRef builder = ctx->ac.builder;
117 struct ac_export_args args;
118 LLVMValueRef tmp;
119
120 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
121 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
122
123 for (unsigned i = 0; i < prim->num_vertices; ++i) {
124 tmp = LLVMBuildShl(builder, prim->index[i],
125 LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
126 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
127 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
128 tmp = LLVMBuildShl(builder, tmp,
129 LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
130 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
131 }
132
133 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
134 args.out[1] = LLVMGetUndef(ctx->ac.f32);
135 args.out[2] = LLVMGetUndef(ctx->ac.f32);
136 args.out[3] = LLVMGetUndef(ctx->ac.f32);
137
138 args.target = V_008DFC_SQ_EXP_PRIM;
139 args.enabled_channels = 1;
140 args.done = true;
141 args.valid_mask = false;
142 args.compr = false;
143
144 ac_build_export(&ctx->ac, &args);
145 }
146
147 static void build_streamout_vertex(struct si_shader_context *ctx,
148 LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
149 unsigned stream, LLVMValueRef offset_vtx,
150 LLVMValueRef vertexptr)
151 {
152 struct tgsi_shader_info *info = &ctx->shader->selector->info;
153 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
154 LLVMBuilderRef builder = ctx->ac.builder;
155 LLVMValueRef offset[4] = {};
156 LLVMValueRef tmp;
157
158 for (unsigned buffer = 0; buffer < 4; ++buffer) {
159 if (!wg_offset_dw[buffer])
160 continue;
161
162 tmp = LLVMBuildMul(builder, offset_vtx,
163 LLVMConstInt(ctx->i32, so->stride[buffer], false), "");
164 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
165 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 2, false), "");
166 }
167
168 for (unsigned i = 0; i < so->num_outputs; ++i) {
169 if (so->output[i].stream != stream)
170 continue;
171
172 unsigned reg = so->output[i].register_index;
173 struct si_shader_output_values out;
174 out.semantic_name = info->output_semantic_name[reg];
175 out.semantic_index = info->output_semantic_index[reg];
176
177 for (unsigned comp = 0; comp < 4; comp++) {
178 tmp = ac_build_gep0(&ctx->ac, vertexptr,
179 LLVMConstInt(ctx->i32, 4 * reg + comp, false));
180 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
181 out.vertex_stream[comp] =
182 (info->output_streams[reg] >> (2 * comp)) & 3;
183 }
184
185 si_emit_streamout_output(ctx, so_buffer, offset, &so->output[i], &out);
186 }
187 }
188
189 struct ngg_streamout {
190 LLVMValueRef num_vertices;
191
192 /* per-thread data */
193 LLVMValueRef prim_enable[4]; /* i1 per stream */
194 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
195
196 /* Output */
197 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
198 };
199
200 /**
201 * Build streamout logic.
202 *
203 * Implies a barrier.
204 *
205 * Writes number of emitted primitives to gs_ngg_scratch[4:8].
206 *
207 * Clobbers gs_ngg_scratch[8:].
208 */
209 static void build_streamout(struct si_shader_context *ctx,
210 struct ngg_streamout *nggso)
211 {
212 struct tgsi_shader_info *info = &ctx->shader->selector->info;
213 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
214 LLVMBuilderRef builder = ctx->ac.builder;
215 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
216 LLVMValueRef tid = get_thread_id_in_tg(ctx);
217 LLVMValueRef tmp, tmp2;
218 LLVMValueRef i32_2 = LLVMConstInt(ctx->i32, 2, false);
219 LLVMValueRef i32_4 = LLVMConstInt(ctx->i32, 4, false);
220 LLVMValueRef i32_8 = LLVMConstInt(ctx->i32, 8, false);
221 LLVMValueRef so_buffer[4] = {};
222 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
223 (nggso->vertices[2] ? 1 : 0);
224 LLVMValueRef prim_stride_dw[4] = {};
225 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->i32);
226 int stream_for_buffer[4] = { -1, -1, -1, -1 };
227 unsigned bufmask_for_stream[4] = {};
228 bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
229 unsigned scratch_emit_base = isgs ? 4 : 0;
230 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->i32_0;
231 unsigned scratch_offset_base = isgs ? 8 : 4;
232 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
233
234 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
235
236 /* Determine the mapping of streamout buffers to vertex streams. */
237 for (unsigned i = 0; i < so->num_outputs; ++i) {
238 unsigned buf = so->output[i].output_buffer;
239 unsigned stream = so->output[i].stream;
240 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
241 stream_for_buffer[buf] = stream;
242 bufmask_for_stream[stream] |= 1 << buf;
243 }
244
245 for (unsigned buffer = 0; buffer < 4; ++buffer) {
246 if (stream_for_buffer[buffer] == -1)
247 continue;
248
249 assert(so->stride[buffer]);
250
251 tmp = LLVMConstInt(ctx->i32, so->stride[buffer], false);
252 prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
253 prim_stride_dw_vgpr = ac_build_writelane(
254 &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
255 LLVMConstInt(ctx->i32, buffer, false));
256
257 so_buffer[buffer] = ac_build_load_to_sgpr(
258 &ctx->ac, buf_ptr,
259 LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
260 }
261
262 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->i32_0, "");
263 ac_build_ifcc(&ctx->ac, tmp, 5200);
264 {
265 LLVMTypeRef gdsptr = LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS);
266 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->i32_0, gdsptr, "");
267
268 /* Advance the streamout offsets in GDS. */
269 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
270 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
271
272 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
273 ac_build_ifcc(&ctx->ac, tmp, 5210);
274 {
275 if (isgs) {
276 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
277 tmp = LLVMBuildLoad(builder, tmp, "");
278 } else {
279 tmp = ac_build_writelane(&ctx->ac, ctx->i32_0,
280 ngg_get_prim_cnt(ctx), ctx->i32_0);
281 }
282 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
283
284 unsigned swizzle[4];
285 int unused_stream = -1;
286 for (unsigned stream = 0; stream < 4; ++stream) {
287 if (!info->num_stream_output_components[stream]) {
288 unused_stream = stream;
289 break;
290 }
291 }
292 for (unsigned buffer = 0; buffer < 4; ++buffer) {
293 if (stream_for_buffer[buffer] >= 0) {
294 swizzle[buffer] = stream_for_buffer[buffer];
295 } else {
296 assert(unused_stream >= 0);
297 swizzle[buffer] = unused_stream;
298 }
299 }
300
301 tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
302 swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
303 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
304
305 LLVMValueRef args[] = {
306 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
307 tmp,
308 ctx->i32_0, // ordering
309 ctx->i32_0, // scope
310 ctx->ac.i1false, // isVolatile
311 LLVMConstInt(ctx->i32, 4 << 24, false), // OA index
312 ctx->ac.i1true, // wave release
313 ctx->ac.i1true, // wave done
314 };
315 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
316 ctx->i32, args, ARRAY_SIZE(args), 0);
317
318 /* Keep offsets in a VGPR for quick retrieval via readlane by
319 * the first wave for bounds checking, and also store in LDS
320 * for retrieval by all waves later. */
321 LLVMBuildStore(builder, tmp, offsets_vgpr);
322
323 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
324 scratch_offset_basev, "");
325 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
326 LLVMBuildStore(builder, tmp, tmp2);
327 }
328 ac_build_endif(&ctx->ac, 5210);
329
330 /* Determine the max emit per buffer. This is done via the SALU, in part
331 * because LLVM can't generate divide-by-multiply if we try to do this
332 * via VALU with one lane per buffer.
333 */
334 LLVMValueRef max_emit[4] = {};
335 for (unsigned buffer = 0; buffer < 4; ++buffer) {
336 if (stream_for_buffer[buffer] == -1)
337 continue;
338
339 LLVMValueRef bufsize_dw =
340 LLVMBuildLShr(builder,
341 LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
342 i32_2, "");
343
344 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
345 LLVMValueRef offset_dw =
346 ac_build_readlane(&ctx->ac, tmp,
347 LLVMConstInt(ctx->i32, buffer, false));
348
349 tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
350 tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
351
352 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
353 max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->i32_0, tmp, "");
354 }
355
356 /* Determine the number of emitted primitives per stream and fixup the
357 * GDS counter if necessary.
358 *
359 * This is complicated by the fact that a single stream can emit to
360 * multiple buffers (but luckily not vice versa).
361 */
362 LLVMValueRef emit_vgpr = ctx->i32_0;
363
364 for (unsigned stream = 0; stream < 4; ++stream) {
365 if (!info->num_stream_output_components[stream])
366 continue;
367
368 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
369 LLVMValueRef generated =
370 ac_build_readlane(&ctx->ac, tmp,
371 LLVMConstInt(ctx->i32, stream, false));
372
373 LLVMValueRef emit = generated;
374 for (unsigned buffer = 0; buffer < 4; ++buffer) {
375 if (stream_for_buffer[buffer] == stream)
376 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
377 }
378
379 emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
380 LLVMConstInt(ctx->i32, stream, false));
381
382 /* Fixup the offset using a plain GDS atomic if we overflowed. */
383 tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
384 ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
385 tmp = LLVMBuildLShr(builder,
386 LLVMConstInt(ctx->i32, bufmask_for_stream[stream], false),
387 ac_get_thread_id(&ctx->ac), "");
388 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
389 ac_build_ifcc(&ctx->ac, tmp, 5222);
390 {
391 tmp = LLVMBuildSub(builder, generated, emit, "");
392 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
393 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
394 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
395 LLVMAtomicOrderingMonotonic, false);
396 }
397 ac_build_endif(&ctx->ac, 5222);
398 ac_build_endif(&ctx->ac, 5221);
399 }
400
401 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
402 ac_build_ifcc(&ctx->ac, tmp, 5225);
403 {
404 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
405 scratch_emit_basev, "");
406 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
407 LLVMBuildStore(builder, emit_vgpr, tmp);
408 }
409 ac_build_endif(&ctx->ac, 5225);
410 }
411 ac_build_endif(&ctx->ac, 5200);
412
413 /* Determine the workgroup-relative per-thread / primitive offset into
414 * the streamout buffers */
415 struct ac_wg_scan primemit_scan[4] = {};
416
417 if (isgs) {
418 for (unsigned stream = 0; stream < 4; ++stream) {
419 if (!info->num_stream_output_components[stream])
420 continue;
421
422 primemit_scan[stream].enable_exclusive = true;
423 primemit_scan[stream].op = nir_op_iadd;
424 primemit_scan[stream].src = nggso->prim_enable[stream];
425 primemit_scan[stream].scratch =
426 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
427 LLVMConstInt(ctx->i32, 12 + 8 * stream, false));
428 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
429 primemit_scan[stream].numwaves = get_tgsize(ctx);
430 primemit_scan[stream].maxwaves = 8;
431 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
432 }
433 }
434
435 ac_build_s_barrier(&ctx->ac);
436
437 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
438 LLVMValueRef wgoffset_dw[4] = {};
439
440 {
441 LLVMValueRef scratch_vgpr;
442
443 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
444 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
445
446 for (unsigned buffer = 0; buffer < 4; ++buffer) {
447 if (stream_for_buffer[buffer] >= 0) {
448 wgoffset_dw[buffer] = ac_build_readlane(
449 &ctx->ac, scratch_vgpr,
450 LLVMConstInt(ctx->i32, scratch_offset_base + buffer, false));
451 }
452 }
453
454 for (unsigned stream = 0; stream < 4; ++stream) {
455 if (info->num_stream_output_components[stream]) {
456 nggso->emit[stream] = ac_build_readlane(
457 &ctx->ac, scratch_vgpr,
458 LLVMConstInt(ctx->i32, scratch_emit_base + stream, false));
459 }
460 }
461 }
462
463 /* Write out primitive data */
464 for (unsigned stream = 0; stream < 4; ++stream) {
465 if (!info->num_stream_output_components[stream])
466 continue;
467
468 if (isgs) {
469 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
470 } else {
471 primemit_scan[stream].result_exclusive = tid;
472 }
473
474 tmp = LLVMBuildICmp(builder, LLVMIntULT,
475 primemit_scan[stream].result_exclusive,
476 nggso->emit[stream], "");
477 tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
478 ac_build_ifcc(&ctx->ac, tmp, 5240);
479 {
480 LLVMValueRef offset_vtx =
481 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
482 nggso->num_vertices, "");
483
484 for (unsigned i = 0; i < max_num_vertices; ++i) {
485 tmp = LLVMBuildICmp(builder, LLVMIntULT,
486 LLVMConstInt(ctx->i32, i, false),
487 nggso->num_vertices, "");
488 ac_build_ifcc(&ctx->ac, tmp, 5241);
489 build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
490 stream, offset_vtx, nggso->vertices[i]);
491 ac_build_endif(&ctx->ac, 5241);
492 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->i32_1, "");
493 }
494 }
495 ac_build_endif(&ctx->ac, 5240);
496 }
497 }
498
499 /**
500 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
501 * for the vertex outputs.
502 */
503 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
504 LLVMValueRef vtxid)
505 {
506 /* The extra dword is used to avoid LDS bank conflicts. */
507 unsigned vertex_size = 4 * ctx->shader->selector->info.num_outputs + 1;
508 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, vertex_size);
509 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
510 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
511 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
512 }
513
514 /**
515 * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
516 */
517 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
518 unsigned max_outputs,
519 LLVMValueRef *addrs)
520 {
521 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
522 struct si_shader_selector *sel = ctx->shader->selector;
523 struct tgsi_shader_info *info = &sel->info;
524 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
525 LLVMBuilderRef builder = ctx->ac.builder;
526 struct lp_build_if_state if_state;
527 LLVMValueRef tmp, tmp2;
528
529 assert(!ctx->shader->is_gs_copy_shader);
530 assert(info->num_outputs <= max_outputs);
531
532 LLVMValueRef vertex_ptr = NULL;
533
534 if (sel->so.num_outputs)
535 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
536
537 for (unsigned i = 0; i < info->num_outputs; i++) {
538 outputs[i].semantic_name = info->output_semantic_name[i];
539 outputs[i].semantic_index = info->output_semantic_index[i];
540
541 for (unsigned j = 0; j < 4; j++) {
542 outputs[i].vertex_stream[j] =
543 (info->output_streams[i] >> (2 * j)) & 3;
544
545 /* TODO: we may store more outputs than streamout needs,
546 * but streamout performance isn't that important.
547 */
548 if (sel->so.num_outputs) {
549 tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
550 LLVMConstInt(ctx->i32, 4 * i + j, false));
551 tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
552 tmp2 = ac_to_integer(&ctx->ac, tmp2);
553 LLVMBuildStore(builder, tmp2, tmp);
554 }
555 }
556 }
557
558 lp_build_endif(&ctx->merged_wrap_if_state);
559
560 LLVMValueRef prims_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
561 LLVMValueRef vtx_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
562 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
563 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
564 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
565 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
566 LLVMValueRef vtxindex[] = {
567 si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 0, 16),
568 si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 16, 16),
569 si_unpack_param(ctx, ctx->param_gs_vtx23_offset, 0, 16),
570 };
571
572 /* Determine the number of vertices per primitive. */
573 unsigned num_vertices;
574 LLVMValueRef num_vertices_val;
575
576 if (ctx->type == PIPE_SHADER_VERTEX) {
577 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
578 /* Blits always use axis-aligned rectangles with 3 vertices. */
579 num_vertices = 3;
580 num_vertices_val = LLVMConstInt(ctx->i32, 3, 0);
581 } else {
582 /* Extract OUTPRIM field. */
583 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 2, 2);
584 num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, "");
585 num_vertices = 3; /* TODO: optimize for points & lines */
586 }
587 } else {
588 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
589
590 if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
591 num_vertices = 1;
592 else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
593 num_vertices = 2;
594 else
595 num_vertices = 3;
596
597 num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false);
598 }
599
600 /* Streamout */
601 LLVMValueRef emitted_prims = NULL;
602
603 if (sel->so.num_outputs) {
604 struct ngg_streamout nggso = {};
605
606 nggso.num_vertices = num_vertices_val;
607 nggso.prim_enable[0] = is_gs_thread;
608
609 for (unsigned i = 0; i < num_vertices; ++i)
610 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
611
612 build_streamout(ctx, &nggso);
613 emitted_prims = nggso.emit[0];
614 }
615
616 /* Copy Primitive IDs from GS threads to the LDS address corresponding
617 * to the ES thread of the provoking vertex.
618 */
619 if (ctx->type == PIPE_SHADER_VERTEX &&
620 ctx->shader->key.mono.u.vs_export_prim_id) {
621 /* Streamout uses LDS. We need to wait for it before we can reuse it. */
622 if (sel->so.num_outputs)
623 ac_build_s_barrier(&ctx->ac);
624
625 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
626 /* Extract the PROVOKING_VTX_INDEX field. */
627 LLVMValueRef provoking_vtx_in_prim =
628 si_unpack_param(ctx, ctx->param_vs_state_bits, 4, 2);
629
630 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
631 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
632 LLVMValueRef provoking_vtx_index =
633 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
634
635 LLVMBuildStore(builder, ctx->abi.gs_prim_id,
636 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
637 ac_build_endif(&ctx->ac, 5400);
638 }
639
640 /* TODO: primitive culling */
641
642 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
643
644 /* Update query buffer */
645 /* TODO: this won't catch 96-bit clear_buffer via transform feedback. */
646 if (!info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
647 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1);
648 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
649 ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
650 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
651 ac_build_ifcc(&ctx->ac, tmp, 5030);
652 tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
653 sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
654 ac_build_ifcc(&ctx->ac, tmp, 5031);
655 {
656 LLVMValueRef args[] = {
657 ngg_get_prim_cnt(ctx),
658 ngg_get_query_buf(ctx),
659 LLVMConstInt(ctx->i32, 16, false), /* offset of stream[0].generated_primitives */
660 ctx->i32_0, /* soffset */
661 ctx->i32_0, /* cachepolicy */
662 };
663
664 if (sel->so.num_outputs) {
665 args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->i32_1);
666 args[2] = ac_build_writelane(&ctx->ac, args[2],
667 LLVMConstInt(ctx->i32, 24, false), ctx->i32_1);
668 }
669
670 /* TODO: should this be 64-bit atomics? */
671 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
672 ctx->i32, args, 5, 0);
673 }
674 ac_build_endif(&ctx->ac, 5031);
675 ac_build_endif(&ctx->ac, 5030);
676 ac_build_endif(&ctx->ac, 5029);
677 }
678
679 /* Export primitive data to the index buffer. Format is:
680 * - bits 0..8: index 0
681 * - bit 9: edge flag 0
682 * - bits 10..18: index 1
683 * - bit 19: edge flag 1
684 * - bits 20..28: index 2
685 * - bit 29: edge flag 2
686 * - bit 31: null primitive (skip)
687 *
688 * For the first version, we will always build up all three indices
689 * independent of the primitive type. The additional garbage data
690 * shouldn't hurt.
691 *
692 * TODO: culling depends on the primitive type, so can have some
693 * interaction here.
694 */
695 lp_build_if(&if_state, &ctx->gallivm, is_gs_thread);
696 {
697 struct ngg_prim prim = {};
698
699 prim.num_vertices = num_vertices;
700 prim.isnull = ctx->ac.i1false;
701 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
702
703 for (unsigned i = 0; i < num_vertices; ++i) {
704 tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
705 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
706 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
707 }
708
709 build_export_prim(ctx, &prim);
710 }
711 lp_build_endif(&if_state);
712
713 /* Export per-vertex data (positions and parameters). */
714 lp_build_if(&if_state, &ctx->gallivm, is_es_thread);
715 {
716 unsigned i;
717
718 /* Unconditionally (re-)load the values for proper SSA form. */
719 for (i = 0; i < info->num_outputs; i++) {
720 for (unsigned j = 0; j < 4; j++) {
721 outputs[i].values[j] =
722 LLVMBuildLoad(builder,
723 addrs[4 * i + j],
724 "");
725 }
726 }
727
728 if (ctx->shader->key.mono.u.vs_export_prim_id) {
729 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
730 outputs[i].semantic_index = 0;
731
732 if (ctx->type == PIPE_SHADER_VERTEX) {
733 /* Wait for GS stores to finish. */
734 ac_build_s_barrier(&ctx->ac);
735
736 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
737 get_thread_id_in_tg(ctx));
738 outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
739 } else {
740 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
741 outputs[i].values[0] = si_get_primitive_id(ctx, 0);
742 }
743
744 outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
745 for (unsigned j = 1; j < 4; j++)
746 outputs[i].values[j] = LLVMGetUndef(ctx->f32);
747
748 memset(outputs[i].vertex_stream, 0,
749 sizeof(outputs[i].vertex_stream));
750 i++;
751 }
752
753 si_llvm_export_vs(ctx, outputs, i);
754 }
755 lp_build_endif(&if_state);
756 }
757
758 static LLVMValueRef
759 ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
760 {
761 const struct si_shader_selector *sel = ctx->shader->selector;
762 const struct tgsi_shader_info *info = &sel->info;
763
764 LLVMTypeRef elements[2] = {
765 LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
766 LLVMArrayType(ctx->ac.i8, 4),
767 };
768 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
769 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
770 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
771 }
772
773 /**
774 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
775 * is in emit order; that is:
776 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
777 * - during vertex emit, i.e. while the API GS shader invocation is running,
778 * N = threadidx * gs_max_out_vertices + emitidx
779 *
780 * Goals of the LDS memory layout:
781 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
782 * in uniform control flow
783 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
784 * culling
785 * 3. Agnostic to the number of waves (since we don't know it before compiling)
786 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
787 * 5. Avoid wasting memory.
788 *
789 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
790 * layout, elimination of bank conflicts requires that each vertex occupy an
791 * odd number of dwords. We use the additional dword to store the output stream
792 * index as well as a flag to indicate whether this vertex ends a primitive
793 * for rasterization.
794 *
795 * Swizzling is required to satisfy points 1 and 2 simultaneously.
796 *
797 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
798 * Indices are swizzled in groups of 32, which ensures point 1 without
799 * disturbing point 2.
800 *
801 * \return an LDS pointer to type {[N x i32], [4 x i8]}
802 */
803 static LLVMValueRef
804 ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
805 {
806 struct si_shader_selector *sel = ctx->shader->selector;
807 LLVMBuilderRef builder = ctx->ac.builder;
808 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
809
810 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
811 unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
812 if (write_stride_2exp) {
813 LLVMValueRef row =
814 LLVMBuildLShr(builder, vertexidx,
815 LLVMConstInt(ctx->ac.i32, 5, false), "");
816 LLVMValueRef swizzle =
817 LLVMBuildAnd(builder, row,
818 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
819 false), "");
820 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
821 }
822
823 return ac_build_gep0(&ctx->ac, storage, vertexidx);
824 }
825
826 static LLVMValueRef
827 ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
828 LLVMValueRef emitidx)
829 {
830 struct si_shader_selector *sel = ctx->shader->selector;
831 LLVMBuilderRef builder = ctx->ac.builder;
832 LLVMValueRef tmp;
833
834 tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
835 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
836 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
837 return ngg_gs_vertex_ptr(ctx, vertexidx);
838 }
839
840 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
841 unsigned stream,
842 LLVMValueRef *addrs)
843 {
844 const struct si_shader_selector *sel = ctx->shader->selector;
845 const struct tgsi_shader_info *info = &sel->info;
846 LLVMBuilderRef builder = ctx->ac.builder;
847 struct lp_build_if_state if_state;
848 LLVMValueRef tmp;
849 const LLVMValueRef vertexidx =
850 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
851
852 /* If this thread has already emitted the declared maximum number of
853 * vertices, skip the write: excessive vertex emissions are not
854 * supposed to have any effect.
855 */
856 const LLVMValueRef can_emit =
857 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
858 LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), "");
859
860 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
861 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
862 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
863
864 lp_build_if(&if_state, &ctx->gallivm, can_emit);
865
866 const LLVMValueRef vertexptr =
867 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
868 unsigned out_idx = 0;
869 for (unsigned i = 0; i < info->num_outputs; i++) {
870 for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
871 if (!(info->output_usagemask[i] & (1 << chan)) ||
872 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
873 continue;
874
875 LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
876 LLVMValueRef gep_idx[3] = {
877 ctx->ac.i32_0, /* implied C-style array */
878 ctx->ac.i32_0, /* first entry of struct */
879 LLVMConstInt(ctx->ac.i32, out_idx, false),
880 };
881 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
882
883 out_val = ac_to_integer(&ctx->ac, out_val);
884 LLVMBuildStore(builder, out_val, ptr);
885 }
886 }
887 assert(out_idx * 4 == sel->gsvs_vertex_size);
888
889 /* Determine and store whether this vertex completed a primitive. */
890 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
891
892 tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
893 const LLVMValueRef iscompleteprim =
894 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
895
896 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
897 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
898
899 LLVMValueRef gep_idx[3] = {
900 ctx->ac.i32_0, /* implied C-style array */
901 ctx->ac.i32_1, /* second struct entry */
902 LLVMConstInt(ctx->ac.i32, stream, false),
903 };
904 const LLVMValueRef primflagptr =
905 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
906
907 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
908 LLVMBuildStore(builder, tmp, primflagptr);
909
910 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
911 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
912 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
913
914 lp_build_endif(&if_state);
915 }
916
917 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
918 {
919 /* Zero out the part of LDS scratch that is used to accumulate the
920 * per-stream generated primitive count.
921 */
922 LLVMBuilderRef builder = ctx->ac.builder;
923 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
924 LLVMValueRef tid = get_thread_id_in_tg(ctx);
925 LLVMValueRef tmp;
926
927 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->i32, 4, false), "");
928 ac_build_ifcc(&ctx->ac, tmp, 5090);
929 {
930 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
931 LLVMBuildStore(builder, ctx->i32_0, ptr);
932 }
933 ac_build_endif(&ctx->ac, 5090);
934
935 ac_build_s_barrier(&ctx->ac);
936 }
937
938 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
939 {
940 const struct si_shader_selector *sel = ctx->shader->selector;
941 const struct tgsi_shader_info *info = &sel->info;
942 const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
943 LLVMBuilderRef builder = ctx->ac.builder;
944 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
945 LLVMValueRef tmp, tmp2;
946
947 /* Zero out remaining (non-emitted) primitive flags.
948 *
949 * Note: Alternatively, we could pass the relevant gs_next_vertex to
950 * the emit threads via LDS. This is likely worse in the expected
951 * typical case where each GS thread emits the full set of
952 * vertices.
953 */
954 for (unsigned stream = 0; stream < 4; ++stream) {
955 if (!info->num_stream_output_components[stream])
956 continue;
957
958 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
959
960 ac_build_bgnloop(&ctx->ac, 5100);
961
962 const LLVMValueRef vertexidx =
963 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
964 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
965 LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
966 ac_build_ifcc(&ctx->ac, tmp, 5101);
967 ac_build_break(&ctx->ac);
968 ac_build_endif(&ctx->ac, 5101);
969
970 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
971 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
972
973 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
974 LLVMValueRef gep_idx[3] = {
975 ctx->ac.i32_0, /* implied C-style array */
976 ctx->ac.i32_1, /* second entry of struct */
977 LLVMConstInt(ctx->ac.i32, stream, false),
978 };
979 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
980 LLVMBuildStore(builder, i8_0, tmp);
981
982 ac_build_endloop(&ctx->ac, 5100);
983 }
984
985 /* Accumulate generated primitives counts across the entire threadgroup. */
986 for (unsigned stream = 0; stream < 4; ++stream) {
987 if (!info->num_stream_output_components[stream])
988 continue;
989
990 LLVMValueRef numprims =
991 LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
992 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, 64);
993
994 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->i32_0, "");
995 ac_build_ifcc(&ctx->ac, tmp, 5105);
996 {
997 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
998 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
999 LLVMConstInt(ctx->i32, stream, false)),
1000 numprims, LLVMAtomicOrderingMonotonic, false);
1001 }
1002 ac_build_endif(&ctx->ac, 5105);
1003 }
1004
1005 lp_build_endif(&ctx->merged_wrap_if_state);
1006
1007 ac_build_s_barrier(&ctx->ac);
1008
1009 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
1010 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1011
1012 /* Streamout */
1013 if (sel->so.num_outputs) {
1014 struct ngg_streamout nggso = {};
1015
1016 nggso.num_vertices = LLVMConstInt(ctx->i32, verts_per_prim, false);
1017
1018 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1019 for (unsigned stream = 0; stream < 4; ++stream) {
1020 if (!info->num_stream_output_components[stream])
1021 continue;
1022
1023 LLVMValueRef gep_idx[3] = {
1024 ctx->i32_0, /* implicit C-style array */
1025 ctx->i32_1, /* second value of struct */
1026 LLVMConstInt(ctx->i32, stream, false),
1027 };
1028 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
1029 tmp = LLVMBuildLoad(builder, tmp, "");
1030 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
1031 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1032 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1033 }
1034
1035 for (unsigned i = 0; i < verts_per_prim; ++i) {
1036 tmp = LLVMBuildSub(builder, tid,
1037 LLVMConstInt(ctx->i32, verts_per_prim - i - 1, false), "");
1038 tmp = ngg_gs_vertex_ptr(ctx, tmp);
1039 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0);
1040 }
1041
1042 build_streamout(ctx, &nggso);
1043 }
1044
1045 /* Write shader query data. */
1046 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1);
1047 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
1048 ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1049 unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1050 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1051 LLVMConstInt(ctx->i32, num_query_comps, false), "");
1052 ac_build_ifcc(&ctx->ac, tmp, 5110);
1053 {
1054 LLVMValueRef offset;
1055 tmp = tid;
1056 if (sel->so.num_outputs)
1057 tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->i32, 3, false), "");
1058 offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 32, false), "");
1059 if (sel->so.num_outputs) {
1060 tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->i32, 2, false), "");
1061 tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 8, false), "");
1062 offset = LLVMBuildAdd(builder, offset, tmp, "");
1063 }
1064
1065 tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1066 LLVMValueRef args[] = {
1067 tmp,
1068 ngg_get_query_buf(ctx),
1069 offset,
1070 LLVMConstInt(ctx->i32, 16, false), /* soffset */
1071 ctx->i32_0, /* cachepolicy */
1072 };
1073 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
1074 ctx->i32, args, 5, 0);
1075 }
1076 ac_build_endif(&ctx->ac, 5110);
1077 ac_build_endif(&ctx->ac, 5109);
1078
1079 /* TODO: culling */
1080
1081 /* Determine vertex liveness. */
1082 LLVMValueRef vertliveptr = lp_build_alloca(&ctx->gallivm, ctx->ac.i1, "vertexlive");
1083
1084 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1085 ac_build_ifcc(&ctx->ac, tmp, 5120);
1086 {
1087 for (unsigned i = 0; i < verts_per_prim; ++i) {
1088 const LLVMValueRef primidx =
1089 LLVMBuildAdd(builder, tid,
1090 LLVMConstInt(ctx->ac.i32, i, false), "");
1091
1092 if (i > 0) {
1093 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
1094 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
1095 }
1096
1097 /* Load primitive liveness */
1098 tmp = ngg_gs_vertex_ptr(ctx, primidx);
1099 LLVMValueRef gep_idx[3] = {
1100 ctx->ac.i32_0, /* implicit C-style array */
1101 ctx->ac.i32_1, /* second value of struct */
1102 ctx->ac.i32_0, /* stream 0 */
1103 };
1104 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1105 tmp = LLVMBuildLoad(builder, tmp, "");
1106 const LLVMValueRef primlive =
1107 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1108
1109 tmp = LLVMBuildLoad(builder, vertliveptr, "");
1110 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
1111 LLVMBuildStore(builder, tmp, vertliveptr);
1112
1113 if (i > 0)
1114 ac_build_endif(&ctx->ac, 5121 + i);
1115 }
1116 }
1117 ac_build_endif(&ctx->ac, 5120);
1118
1119 /* Inclusive scan addition across the current wave. */
1120 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
1121 struct ac_wg_scan vertlive_scan = {};
1122 vertlive_scan.op = nir_op_iadd;
1123 vertlive_scan.enable_reduce = true;
1124 vertlive_scan.enable_exclusive = true;
1125 vertlive_scan.src = vertlive;
1126 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0);
1127 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
1128 vertlive_scan.numwaves = get_tgsize(ctx);
1129 vertlive_scan.maxwaves = 8;
1130
1131 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
1132
1133 /* Skip all exports (including index exports) when possible. At least on
1134 * early gfx10 revisions this is also to avoid hangs.
1135 */
1136 LLVMValueRef have_exports =
1137 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
1138 num_emit_threads =
1139 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
1140
1141 /* Allocate export space. Send this message as early as possible, to
1142 * hide the latency of the SQ <-> SPI roundtrip.
1143 *
1144 * Note: We could consider compacting primitives for export as well.
1145 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
1146 * prim data per clock and skips null primitives at no additional
1147 * cost. So compacting primitives can only be beneficial when
1148 * there are 4 or more contiguous null primitives in the export
1149 * (in the common case of single-dword prim exports).
1150 */
1151 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
1152
1153 /* Setup the reverse vertex compaction permutation. We re-use stream 1
1154 * of the primitive liveness flags, relying on the fact that each
1155 * threadgroup can have at most 256 threads. */
1156 ac_build_ifcc(&ctx->ac, vertlive, 5130);
1157 {
1158 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
1159 LLVMValueRef gep_idx[3] = {
1160 ctx->ac.i32_0, /* implicit C-style array */
1161 ctx->ac.i32_1, /* second value of struct */
1162 ctx->ac.i32_1, /* stream 1 */
1163 };
1164 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1165 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
1166 LLVMBuildStore(builder, tmp2, tmp);
1167 }
1168 ac_build_endif(&ctx->ac, 5130);
1169
1170 ac_build_s_barrier(&ctx->ac);
1171
1172 /* Export primitive data */
1173 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1174 ac_build_ifcc(&ctx->ac, tmp, 5140);
1175 {
1176 struct ngg_prim prim = {};
1177 prim.num_vertices = verts_per_prim;
1178
1179 tmp = ngg_gs_vertex_ptr(ctx, tid);
1180 LLVMValueRef gep_idx[3] = {
1181 ctx->ac.i32_0, /* implicit C-style array */
1182 ctx->ac.i32_1, /* second value of struct */
1183 ctx->ac.i32_0, /* primflag */
1184 };
1185 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1186 tmp = LLVMBuildLoad(builder, tmp, "");
1187 prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
1188 LLVMConstInt(ctx->ac.i8, 0, false), "");
1189
1190 for (unsigned i = 0; i < verts_per_prim; ++i) {
1191 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
1192 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1193 prim.edgeflag[i] = ctx->ac.i1false;
1194 }
1195
1196 build_export_prim(ctx, &prim);
1197 }
1198 ac_build_endif(&ctx->ac, 5140);
1199
1200 /* Export position and parameter data */
1201 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
1202 ac_build_ifcc(&ctx->ac, tmp, 5145);
1203 {
1204 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1205
1206 tmp = ngg_gs_vertex_ptr(ctx, tid);
1207 LLVMValueRef gep_idx[3] = {
1208 ctx->ac.i32_0, /* implicit C-style array */
1209 ctx->ac.i32_1, /* second value of struct */
1210 ctx->ac.i32_1, /* stream 1: source data index */
1211 };
1212 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1213 tmp = LLVMBuildLoad(builder, tmp, "");
1214 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1215 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
1216
1217 unsigned out_idx = 0;
1218 gep_idx[1] = ctx->ac.i32_0;
1219 for (unsigned i = 0; i < info->num_outputs; i++) {
1220 outputs[i].semantic_name = info->output_semantic_name[i];
1221 outputs[i].semantic_index = info->output_semantic_index[i];
1222
1223 for (unsigned j = 0; j < 4; j++, out_idx++) {
1224 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
1225 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
1226 tmp = LLVMBuildLoad(builder, tmp, "");
1227 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1228 outputs[i].vertex_stream[j] =
1229 (info->output_streams[i] >> (2 * j)) & 3;
1230 }
1231 }
1232
1233 si_llvm_export_vs(ctx, outputs, info->num_outputs);
1234 }
1235 ac_build_endif(&ctx->ac, 5145);
1236 }
1237
1238 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1239 unsigned min_verts_per_prim, bool use_adjacency)
1240 {
1241 unsigned max_reuse = max_esverts - min_verts_per_prim;
1242 if (use_adjacency)
1243 max_reuse /= 2;
1244 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1245 }
1246
1247 /**
1248 * Determine subgroup information like maximum number of vertices and prims.
1249 *
1250 * This happens before the shader is uploaded, since LDS relocations during
1251 * upload depend on the subgroup size.
1252 */
1253 void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
1254 {
1255 const struct si_shader_selector *gs_sel = shader->selector;
1256 const struct si_shader_selector *es_sel =
1257 shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
1258 const enum pipe_shader_type gs_type = gs_sel->type;
1259 const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1260 /* TODO: Use QUADS as the worst case because of reuse, but triangles
1261 * will always have 1 additional unoccupied vector lane. We could use
1262 * that lane if the worst case was TRIANGLES. */
1263 const unsigned input_prim = si_get_input_prim(gs_sel, PIPE_PRIM_QUADS);
1264 const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
1265 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
1266 const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
1267 const unsigned min_verts_per_prim =
1268 gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1269
1270 /* All these are in dwords: */
1271 /* We can't allow using the whole LDS, because GS waves compete with
1272 * other shader stages for LDS space.
1273 *
1274 * TODO: We should really take the shader's internal LDS use into
1275 * account. The linker will fail if the size is greater than
1276 * 8K dwords.
1277 */
1278 const unsigned max_lds_size = 8 * 1024 - 768;
1279 const unsigned target_lds_size = max_lds_size;
1280 unsigned esvert_lds_size = 0;
1281 unsigned gsprim_lds_size = 0;
1282
1283 /* All these are per subgroup: */
1284 bool max_vert_out_per_gs_instance = false;
1285 unsigned max_esverts_base = 128;
1286 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1287
1288 /* Hardware has the following non-natural restrictions on the value
1289 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1290 * the draw:
1291 * - at most 252 for any line input primitive type
1292 * - at most 251 for any quad input primitive type
1293 * - at most 251 for triangle strips with adjacency (this happens to
1294 * be the natural limit for triangle *lists* with adjacency)
1295 */
1296 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1297
1298 if (gs_type == PIPE_SHADER_GEOMETRY) {
1299 unsigned max_out_verts_per_gsprim =
1300 gs_sel->gs_max_out_vertices * gs_num_invocations;
1301
1302 if (max_out_verts_per_gsprim <= 256) {
1303 if (max_out_verts_per_gsprim) {
1304 max_gsprims_base = MIN2(max_gsprims_base,
1305 256 / max_out_verts_per_gsprim);
1306 }
1307 } else {
1308 /* Use special multi-cycling mode in which each GS
1309 * instance gets its own subgroup. Does not work with
1310 * tessellation. */
1311 max_vert_out_per_gs_instance = true;
1312 max_gsprims_base = 1;
1313 max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
1314 }
1315
1316 esvert_lds_size = es_sel->esgs_itemsize / 4;
1317 gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1318 } else {
1319 /* TODO: This needs to be adjusted once LDS use for compaction
1320 * after culling is implemented. */
1321 if (es_sel->so.num_outputs)
1322 esvert_lds_size = 4 * es_sel->info.num_outputs + 1;
1323
1324 /* GS stores Primitive IDs into LDS at the address corresponding
1325 * to the ES thread of the provoking vertex. All ES threads
1326 * load and export PrimitiveID for their thread.
1327 */
1328 if (gs_sel->type == PIPE_SHADER_VERTEX &&
1329 shader->key.mono.u.vs_export_prim_id)
1330 esvert_lds_size = MAX2(esvert_lds_size, 1);
1331 }
1332
1333 unsigned max_gsprims = max_gsprims_base;
1334 unsigned max_esverts = max_esverts_base;
1335
1336 if (esvert_lds_size)
1337 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1338 if (gsprim_lds_size)
1339 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1340
1341 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1342 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
1343 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1344
1345 if (esvert_lds_size || gsprim_lds_size) {
1346 /* Now that we have a rough proportionality between esverts
1347 * and gsprims based on the primitive type, scale both of them
1348 * down simultaneously based on required LDS space.
1349 *
1350 * We could be smarter about this if we knew how much vertex
1351 * reuse to expect.
1352 */
1353 unsigned lds_total = max_esverts * esvert_lds_size +
1354 max_gsprims * gsprim_lds_size;
1355 if (lds_total > target_lds_size) {
1356 max_esverts = max_esverts * target_lds_size / lds_total;
1357 max_gsprims = max_gsprims * target_lds_size / lds_total;
1358
1359 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1360 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1361 min_verts_per_prim, use_adjacency);
1362 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1363 }
1364 }
1365
1366 /* Round up towards full wave sizes for better ALU utilization. */
1367 if (!max_vert_out_per_gs_instance) {
1368 const unsigned wavesize = 64;
1369 unsigned orig_max_esverts;
1370 unsigned orig_max_gsprims;
1371 do {
1372 orig_max_esverts = max_esverts;
1373 orig_max_gsprims = max_gsprims;
1374
1375 max_esverts = align(max_esverts, wavesize);
1376 max_esverts = MIN2(max_esverts, max_esverts_base);
1377 if (esvert_lds_size)
1378 max_esverts = MIN2(max_esverts,
1379 (max_lds_size - max_gsprims * gsprim_lds_size) /
1380 esvert_lds_size);
1381 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1382
1383 max_gsprims = align(max_gsprims, wavesize);
1384 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1385 if (gsprim_lds_size)
1386 max_gsprims = MIN2(max_gsprims,
1387 (max_lds_size - max_esverts * esvert_lds_size) /
1388 gsprim_lds_size);
1389 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1390 min_verts_per_prim, use_adjacency);
1391 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1392 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1393 }
1394
1395 /* Hardware restriction: minimum value of max_esverts */
1396 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1397
1398 unsigned max_out_vertices =
1399 max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
1400 gs_type == PIPE_SHADER_GEOMETRY ?
1401 max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
1402 max_esverts;
1403 assert(max_out_vertices <= 256);
1404
1405 unsigned prim_amp_factor = 1;
1406 if (gs_type == PIPE_SHADER_GEOMETRY) {
1407 /* Number of output primitives per GS input primitive after
1408 * GS instancing. */
1409 prim_amp_factor = gs_sel->gs_max_out_vertices;
1410 }
1411
1412 /* The GE only checks against the maximum number of ES verts after
1413 * allocating a full GS primitive. So we need to ensure that whenever
1414 * this check passes, there is enough space for a full primitive without
1415 * vertex reuse.
1416 */
1417 shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1418 shader->ngg.max_gsprims = max_gsprims;
1419 shader->ngg.max_out_verts = max_out_vertices;
1420 shader->ngg.prim_amp_factor = prim_amp_factor;
1421 shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1422
1423 shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1424 shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
1425
1426 assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
1427 }