radeonsi: add support for PIPE_RESOURCE_FLAG_ENCRYPTED
[mesa.git] / src / gallium / drivers / radeonsi / si_cp_dma.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "sid.h"
27
28 /* Set this if you want the ME to wait until CP DMA is done.
29 * It should be set on the last CP DMA packet. */
30 #define CP_DMA_SYNC (1 << 0)
31
32 /* Set this if the source data was used as a destination in a previous CP DMA
33 * packet. It's for preventing a read-after-write (RAW) hazard between two
34 * CP DMA packets. */
35 #define CP_DMA_RAW_WAIT (1 << 1)
36 #define CP_DMA_DST_IS_GDS (1 << 2)
37 #define CP_DMA_CLEAR (1 << 3)
38 #define CP_DMA_PFP_SYNC_ME (1 << 4)
39 #define CP_DMA_SRC_IS_GDS (1 << 5)
40
41 /* The max number of bytes that can be copied per packet. */
42 static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
43 {
44 unsigned max =
45 sctx->chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u);
46
47 /* make it aligned for optimal performance */
48 return max & ~(SI_CPDMA_ALIGNMENT - 1);
49 }
50
51 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
52 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
53 * clear value.
54 */
55 static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs, uint64_t dst_va,
56 uint64_t src_va, unsigned size, unsigned flags,
57 enum si_cache_policy cache_policy)
58 {
59 uint32_t header = 0, command = 0;
60
61 assert(size <= cp_dma_max_byte_count(sctx));
62 assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS);
63
64 if (sctx->chip_class >= GFX9)
65 command |= S_414_BYTE_COUNT_GFX9(size);
66 else
67 command |= S_414_BYTE_COUNT_GFX6(size);
68
69 /* Sync flags. */
70 if (flags & CP_DMA_SYNC)
71 header |= S_411_CP_SYNC(1);
72 else {
73 if (sctx->chip_class >= GFX9)
74 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
75 else
76 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
77 }
78
79 if (flags & CP_DMA_RAW_WAIT)
80 command |= S_414_RAW_WAIT(1);
81
82 /* Src and dst flags. */
83 if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) {
84 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
85 } else if (flags & CP_DMA_DST_IS_GDS) {
86 header |= S_411_DST_SEL(V_411_GDS);
87 /* GDS increments the address, not CP. */
88 command |= S_414_DAS(V_414_REGISTER) | S_414_DAIC(V_414_NO_INCREMENT);
89 } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
90 header |=
91 S_411_DST_SEL(V_411_DST_ADDR_TC_L2) | S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM);
92 }
93
94 if (flags & CP_DMA_CLEAR) {
95 header |= S_411_SRC_SEL(V_411_DATA);
96 } else if (flags & CP_DMA_SRC_IS_GDS) {
97 header |= S_411_SRC_SEL(V_411_GDS);
98 /* Both of these are required for GDS. It does increment the address. */
99 command |= S_414_SAS(V_414_REGISTER) | S_414_SAIC(V_414_NO_INCREMENT);
100 } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
101 header |=
102 S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM);
103 }
104
105 if (sctx->chip_class >= GFX7) {
106 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
107 radeon_emit(cs, header);
108 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
109 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
110 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
111 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
112 radeon_emit(cs, command);
113 } else {
114 header |= S_411_SRC_ADDR_HI(src_va >> 32);
115
116 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
117 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
118 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
119 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
120 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
121 radeon_emit(cs, command);
122 }
123
124 /* CP DMA is executed in ME, but index buffers are read by PFP.
125 * This ensures that ME (CP DMA) is idle before PFP starts fetching
126 * indices. If we wanted to execute CP DMA in PFP, this packet
127 * should precede it.
128 */
129 if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) {
130 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
131 radeon_emit(cs, 0);
132 }
133 }
134
135 void si_cp_dma_wait_for_idle(struct si_context *sctx)
136 {
137 /* Issue a dummy DMA that copies zero bytes.
138 *
139 * The DMA engine will see that there's no work to do and skip this
140 * DMA request, however, the CP will see the sync flag and still wait
141 * for all DMAs to complete.
142 */
143 si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS);
144 }
145
146 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
147 struct pipe_resource *src, unsigned byte_count,
148 uint64_t remaining_size, unsigned user_flags, enum si_coherency coher,
149 bool *is_first, unsigned *packet_flags)
150 {
151 /* Fast exit for a CPDMA prefetch. */
152 if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
153 *is_first = false;
154 return;
155 }
156
157 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
158 /* Count memory usage in so that need_cs_space can take it into account. */
159 if (dst)
160 si_context_add_resource_size(sctx, dst);
161 if (src)
162 si_context_add_resource_size(sctx, src);
163 }
164
165 if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
166 si_need_gfx_cs_space(sctx);
167
168 /* This must be done after need_cs_space. */
169 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
170 if (dst)
171 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(dst), RADEON_USAGE_WRITE,
172 RADEON_PRIO_CP_DMA);
173 if (src)
174 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(src), RADEON_USAGE_READ,
175 RADEON_PRIO_CP_DMA);
176 }
177
178 /* Flush the caches for the first copy only.
179 * Also wait for the previous CP DMA operations.
180 */
181 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
182 sctx->emit_cache_flush(sctx);
183
184 if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first && !(*packet_flags & CP_DMA_CLEAR))
185 *packet_flags |= CP_DMA_RAW_WAIT;
186
187 *is_first = false;
188
189 /* Do the synchronization after the last dma, so that all data
190 * is written to memory.
191 */
192 if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && byte_count == remaining_size) {
193 *packet_flags |= CP_DMA_SYNC;
194
195 if (coher == SI_COHERENCY_SHADER)
196 *packet_flags |= CP_DMA_PFP_SYNC_ME;
197 }
198 }
199
200 void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs,
201 struct pipe_resource *dst, uint64_t offset, uint64_t size,
202 unsigned value, unsigned user_flags, enum si_coherency coher,
203 enum si_cache_policy cache_policy)
204 {
205 struct si_resource *sdst = si_resource(dst);
206 uint64_t va = (sdst ? sdst->gpu_address : 0) + offset;
207 bool is_first = true;
208
209 assert(size && size % 4 == 0);
210
211 /* Mark the buffer range of destination as valid (initialized),
212 * so that transfer_map knows it should wait for the GPU when mapping
213 * that range. */
214 if (sdst)
215 util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size);
216
217 /* Flush the caches. */
218 if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
219 sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
220 si_get_flush_flags(sctx, coher, cache_policy);
221 }
222
223 while (size) {
224 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
225 unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS);
226
227 si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags, coher, &is_first,
228 &dma_flags);
229
230 /* Emit the clear packet. */
231 si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy);
232
233 size -= byte_count;
234 va += byte_count;
235 }
236
237 if (sdst && cache_policy != L2_BYPASS)
238 sdst->TC_L2_dirty = true;
239
240 /* If it's not a framebuffer fast clear... */
241 if (coher == SI_COHERENCY_SHADER) {
242 sctx->num_cp_dma_calls++;
243 si_prim_discard_signal_next_compute_ib_start(sctx);
244 }
245 }
246
247 /**
248 * Realign the CP DMA engine. This must be done after a copy with an unaligned
249 * size.
250 *
251 * \param size Remaining size to the CP DMA alignment.
252 */
253 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, unsigned user_flags,
254 enum si_coherency coher, enum si_cache_policy cache_policy,
255 bool *is_first)
256 {
257 uint64_t va;
258 unsigned dma_flags = 0;
259 unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
260
261 assert(size < SI_CPDMA_ALIGNMENT);
262
263 /* Use the scratch buffer as the dummy buffer. The 3D engine should be
264 * idle at this point.
265 */
266 if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) {
267 si_resource_reference(&sctx->scratch_buffer, NULL);
268 sctx->scratch_buffer = si_aligned_buffer_create(&sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE,
269 PIPE_USAGE_DEFAULT, scratch_size, 256);
270 if (!sctx->scratch_buffer)
271 return;
272
273 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
274 }
275
276 si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size,
277 user_flags, coher, is_first, &dma_flags);
278
279 va = sctx->scratch_buffer->gpu_address;
280 si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, cache_policy);
281 }
282
283 /**
284 * Do memcpy between buffers using CP DMA.
285 * If src or dst is NULL, it means read or write GDS, respectively.
286 *
287 * \param user_flags bitmask of SI_CPDMA_*
288 */
289 void si_cp_dma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst,
290 struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset,
291 unsigned size, unsigned user_flags, enum si_coherency coher,
292 enum si_cache_policy cache_policy)
293 {
294 uint64_t main_dst_offset, main_src_offset;
295 unsigned skipped_size = 0;
296 unsigned realign_size = 0;
297 unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) | (src ? 0 : CP_DMA_SRC_IS_GDS);
298 bool is_first = true;
299
300 assert(size);
301
302 if (dst) {
303 /* Skip this for the L2 prefetch. */
304 if (dst != src || dst_offset != src_offset) {
305 /* Mark the buffer range of destination as valid (initialized),
306 * so that transfer_map knows it should wait for the GPU when mapping
307 * that range. */
308 util_range_add(dst, &si_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size);
309 }
310
311 dst_offset += si_resource(dst)->gpu_address;
312 }
313 if (src)
314 src_offset += si_resource(src)->gpu_address;
315
316 /* The workarounds aren't needed on Fiji and beyond. */
317 if (sctx->family <= CHIP_CARRIZO || sctx->family == CHIP_STONEY) {
318 /* If the size is not aligned, we must add a dummy copy at the end
319 * just to align the internal counter. Otherwise, the DMA engine
320 * would slow down by an order of magnitude for following copies.
321 */
322 if (size % SI_CPDMA_ALIGNMENT)
323 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
324
325 /* If the copy begins unaligned, we must start copying from the next
326 * aligned block and the skipped part should be copied after everything
327 * else has been copied. Only the src alignment matters, not dst.
328 *
329 * GDS doesn't need the source address to be aligned.
330 */
331 if (src && src_offset % SI_CPDMA_ALIGNMENT) {
332 skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
333 /* The main part will be skipped if the size is too small. */
334 skipped_size = MIN2(skipped_size, size);
335 size -= skipped_size;
336 }
337 }
338
339 /* Flush the caches. */
340 if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
341 sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
342 si_get_flush_flags(sctx, coher, cache_policy);
343 }
344
345 /* This is the main part doing the copying. Src is always aligned. */
346 main_dst_offset = dst_offset + skipped_size;
347 main_src_offset = src_offset + skipped_size;
348
349 while (size) {
350 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
351 unsigned dma_flags = gds_flags;
352
353 si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, user_flags,
354 coher, &is_first, &dma_flags);
355
356 si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset, byte_count, dma_flags,
357 cache_policy);
358
359 size -= byte_count;
360 main_src_offset += byte_count;
361 main_dst_offset += byte_count;
362 }
363
364 /* Copy the part we skipped because src wasn't aligned. */
365 if (skipped_size) {
366 unsigned dma_flags = gds_flags;
367
368 si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, user_flags,
369 coher, &is_first, &dma_flags);
370
371 si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size, dma_flags,
372 cache_policy);
373 }
374
375 /* Finally, realign the engine if the size wasn't aligned. */
376 if (realign_size) {
377 si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher, cache_policy, &is_first);
378 }
379
380 if (dst && cache_policy != L2_BYPASS)
381 si_resource(dst)->TC_L2_dirty = true;
382
383 /* If it's not a prefetch or GDS copy... */
384 if (dst && src && (dst != src || dst_offset != src_offset)) {
385 sctx->num_cp_dma_calls++;
386 si_prim_discard_signal_next_compute_ib_start(sctx);
387 }
388 }
389
390 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, uint64_t offset,
391 unsigned size)
392 {
393 assert(sctx->chip_class >= GFX7);
394
395 si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL,
396 SI_COHERENCY_SHADER, L2_LRU);
397 }
398
399 static void cik_prefetch_shader_async(struct si_context *sctx, struct si_pm4_state *state)
400 {
401 struct pipe_resource *bo = &state->bo[0]->b.b;
402 assert(state->nbo == 1);
403
404 cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
405 }
406
407 static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
408 {
409 if (!sctx->vertex_elements || !sctx->vertex_elements->vb_desc_list_alloc_size)
410 return;
411
412 cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset,
413 sctx->vertex_elements->vb_desc_list_alloc_size);
414 }
415
416 /**
417 * Prefetch shaders and VBO descriptors.
418 *
419 * \param vertex_stage_only Whether only the the API VS and VBO descriptors
420 * should be prefetched.
421 */
422 void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only)
423 {
424 unsigned mask = sctx->prefetch_L2_mask;
425 assert(mask);
426
427 /* Prefetch shaders and VBO descriptors to TC L2. */
428 if (sctx->chip_class >= GFX9) {
429 /* Choose the right spot for the VBO prefetch. */
430 if (sctx->queued.named.hs) {
431 if (mask & SI_PREFETCH_HS)
432 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
433 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
434 cik_prefetch_VBO_descriptors(sctx);
435 if (vertex_stage_only) {
436 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS | SI_PREFETCH_VBO_DESCRIPTORS);
437 return;
438 }
439
440 if (mask & SI_PREFETCH_GS)
441 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
442 if (mask & SI_PREFETCH_VS)
443 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
444 } else if (sctx->queued.named.gs) {
445 if (mask & SI_PREFETCH_GS)
446 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
447 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
448 cik_prefetch_VBO_descriptors(sctx);
449 if (vertex_stage_only) {
450 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS | SI_PREFETCH_VBO_DESCRIPTORS);
451 return;
452 }
453
454 if (mask & SI_PREFETCH_VS)
455 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
456 } else {
457 if (mask & SI_PREFETCH_VS)
458 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
459 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
460 cik_prefetch_VBO_descriptors(sctx);
461 if (vertex_stage_only) {
462 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
463 return;
464 }
465 }
466 } else {
467 /* GFX6-GFX8 */
468 /* Choose the right spot for the VBO prefetch. */
469 if (sctx->tes_shader.cso) {
470 if (mask & SI_PREFETCH_LS)
471 cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
472 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
473 cik_prefetch_VBO_descriptors(sctx);
474 if (vertex_stage_only) {
475 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS | SI_PREFETCH_VBO_DESCRIPTORS);
476 return;
477 }
478
479 if (mask & SI_PREFETCH_HS)
480 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
481 if (mask & SI_PREFETCH_ES)
482 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
483 if (mask & SI_PREFETCH_GS)
484 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
485 if (mask & SI_PREFETCH_VS)
486 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
487 } else if (sctx->gs_shader.cso) {
488 if (mask & SI_PREFETCH_ES)
489 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
490 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
491 cik_prefetch_VBO_descriptors(sctx);
492 if (vertex_stage_only) {
493 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES | SI_PREFETCH_VBO_DESCRIPTORS);
494 return;
495 }
496
497 if (mask & SI_PREFETCH_GS)
498 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
499 if (mask & SI_PREFETCH_VS)
500 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
501 } else {
502 if (mask & SI_PREFETCH_VS)
503 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
504 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
505 cik_prefetch_VBO_descriptors(sctx);
506 if (vertex_stage_only) {
507 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
508 return;
509 }
510 }
511 }
512
513 if (mask & SI_PREFETCH_PS)
514 cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
515
516 sctx->prefetch_L2_mask = 0;
517 }
518
519 void si_test_gds(struct si_context *sctx)
520 {
521 struct pipe_context *ctx = &sctx->b;
522 struct pipe_resource *src, *dst;
523 unsigned r[4] = {};
524 unsigned offset = debug_get_num_option("OFFSET", 16);
525
526 src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
527 dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
528 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER,
529 L2_BYPASS);
530 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER,
531 L2_BYPASS);
532 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER,
533 L2_BYPASS);
534 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER,
535 L2_BYPASS);
536 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER,
537 L2_BYPASS);
538
539 si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
540 si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
541
542 pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
543 printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
544 r[0] == 0xabcdef01 && r[1] == 0x23456789 && r[2] == 0x87654321 && r[3] == 0xfedcba98
545 ? "pass"
546 : "fail");
547
548 si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE,
549 L2_BYPASS);
550 si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
551
552 pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
553 printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
554 r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 && r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146
555 ? "pass"
556 : "fail");
557
558 pipe_resource_reference(&src, NULL);
559 pipe_resource_reference(&dst, NULL);
560 exit(0);
561 }
562
563 void si_cp_write_data(struct si_context *sctx, struct si_resource *buf, unsigned offset,
564 unsigned size, unsigned dst_sel, unsigned engine, const void *data)
565 {
566 struct radeon_cmdbuf *cs = sctx->gfx_cs;
567
568 assert(offset % 4 == 0);
569 assert(size % 4 == 0);
570
571 if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM)
572 dst_sel = V_370_MEM_GRBM;
573
574 radeon_add_to_buffer_list(sctx, cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
575 uint64_t va = buf->gpu_address + offset;
576
577 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size / 4, 0));
578 radeon_emit(cs, S_370_DST_SEL(dst_sel) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine));
579 radeon_emit(cs, va);
580 radeon_emit(cs, va >> 32);
581 radeon_emit_array(cs, (const uint32_t *)data, size / 4);
582 }
583
584 void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned dst_sel,
585 struct si_resource *dst, unsigned dst_offset, unsigned src_sel,
586 struct si_resource *src, unsigned src_offset)
587 {
588 /* cs can point to the compute IB, which has the buffer list in gfx_cs. */
589 if (dst) {
590 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
591 }
592 if (src) {
593 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
594 }
595
596 uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset;
597 uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset;
598
599 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
600 radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) | COPY_DATA_DST_SEL(dst_sel) | COPY_DATA_WR_CONFIRM);
601 radeon_emit(cs, src_va);
602 radeon_emit(cs, src_va >> 32);
603 radeon_emit(cs, dst_va);
604 radeon_emit(cs, dst_va >> 32);
605 }