etnaviv: native fence fd support
[mesa.git] / src / gallium / drivers / radeonsi / si_cp_dma.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Marek Olšák <maraeo@gmail.com>
25 */
26
27 #include "si_pipe.h"
28 #include "sid.h"
29 #include "radeon/r600_cs.h"
30
31 /* Set this if you want the ME to wait until CP DMA is done.
32 * It should be set on the last CP DMA packet. */
33 #define CP_DMA_SYNC (1 << 0)
34
35 /* Set this if the source data was used as a destination in a previous CP DMA
36 * packet. It's for preventing a read-after-write (RAW) hazard between two
37 * CP DMA packets. */
38 #define CP_DMA_RAW_WAIT (1 << 1)
39 #define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
40 #define CP_DMA_CLEAR (1 << 3)
41
42 /* The max number of bytes that can be copied per packet. */
43 static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
44 {
45 unsigned max = sctx->b.chip_class >= GFX9 ?
46 S_414_BYTE_COUNT_GFX9(~0u) :
47 S_414_BYTE_COUNT_GFX6(~0u);
48
49 /* make it aligned for optimal performance */
50 return max & ~(SI_CPDMA_ALIGNMENT - 1);
51 }
52
53
54 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
55 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
56 * clear value.
57 */
58 static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
59 uint64_t src_va, unsigned size, unsigned flags,
60 enum r600_coherency coher)
61 {
62 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
63 uint32_t header = 0, command = 0;
64
65 assert(size);
66 assert(size <= cp_dma_max_byte_count(sctx));
67
68 if (sctx->b.chip_class >= GFX9)
69 command |= S_414_BYTE_COUNT_GFX9(size);
70 else
71 command |= S_414_BYTE_COUNT_GFX6(size);
72
73 /* Sync flags. */
74 if (flags & CP_DMA_SYNC)
75 header |= S_411_CP_SYNC(1);
76 else {
77 if (sctx->b.chip_class >= GFX9)
78 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
79 else
80 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
81 }
82
83 if (flags & CP_DMA_RAW_WAIT)
84 command |= S_414_RAW_WAIT(1);
85
86 /* Src and dst flags. */
87 if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
88 src_va == dst_va)
89 header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
90 else if (flags & CP_DMA_USE_L2)
91 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
92
93 if (flags & CP_DMA_CLEAR)
94 header |= S_411_SRC_SEL(V_411_DATA);
95 else if (flags & CP_DMA_USE_L2)
96 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
97
98 if (sctx->b.chip_class >= CIK) {
99 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
100 radeon_emit(cs, header);
101 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
102 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
103 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
104 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
105 radeon_emit(cs, command);
106 } else {
107 header |= S_411_SRC_ADDR_HI(src_va >> 32);
108
109 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
110 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
111 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
112 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
113 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
114 radeon_emit(cs, command);
115 }
116
117 /* CP DMA is executed in ME, but index buffers are read by PFP.
118 * This ensures that ME (CP DMA) is idle before PFP starts fetching
119 * indices. If we wanted to execute CP DMA in PFP, this packet
120 * should precede it.
121 */
122 if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
123 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
124 radeon_emit(cs, 0);
125 }
126 }
127
128 static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
129 {
130 switch (coher) {
131 default:
132 case R600_COHERENCY_NONE:
133 return 0;
134 case R600_COHERENCY_SHADER:
135 return SI_CONTEXT_INV_SMEM_L1 |
136 SI_CONTEXT_INV_VMEM_L1 |
137 (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
138 case R600_COHERENCY_CB_META:
139 return SI_CONTEXT_FLUSH_AND_INV_CB;
140 }
141 }
142
143 static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
144 {
145 return coher == R600_COHERENCY_SHADER &&
146 sctx->b.chip_class >= CIK ? CP_DMA_USE_L2 : 0;
147 }
148
149 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
150 struct pipe_resource *src, unsigned byte_count,
151 uint64_t remaining_size, unsigned user_flags,
152 bool *is_first, unsigned *packet_flags)
153 {
154 /* Fast exit for a CPDMA prefetch. */
155 if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
156 *is_first = false;
157 return;
158 }
159
160 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
161 /* Count memory usage in so that need_cs_space can take it into account. */
162 r600_context_add_resource_size(&sctx->b.b, dst);
163 if (src)
164 r600_context_add_resource_size(&sctx->b.b, src);
165 }
166
167 if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
168 si_need_cs_space(sctx);
169
170 /* This must be done after need_cs_space. */
171 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
172 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
173 (struct r600_resource*)dst,
174 RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
175 if (src)
176 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
177 (struct r600_resource*)src,
178 RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
179 }
180
181 /* Flush the caches for the first copy only.
182 * Also wait for the previous CP DMA operations.
183 */
184 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
185 si_emit_cache_flush(sctx);
186
187 if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
188 *packet_flags |= CP_DMA_RAW_WAIT;
189
190 *is_first = false;
191
192 /* Do the synchronization after the last dma, so that all data
193 * is written to memory.
194 */
195 if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
196 byte_count == remaining_size)
197 *packet_flags |= CP_DMA_SYNC;
198 }
199
200 static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
201 uint64_t offset, uint64_t size, unsigned value,
202 enum r600_coherency coher)
203 {
204 struct si_context *sctx = (struct si_context*)ctx;
205 struct radeon_winsys *ws = sctx->b.ws;
206 struct r600_resource *rdst = r600_resource(dst);
207 unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
208 unsigned flush_flags = get_flush_flags(sctx, coher);
209 uint64_t dma_clear_size;
210 bool is_first = true;
211
212 if (!size)
213 return;
214
215 dma_clear_size = size & ~3llu;
216
217 /* Mark the buffer range of destination as valid (initialized),
218 * so that transfer_map knows it should wait for the GPU when mapping
219 * that range. */
220 util_range_add(&rdst->valid_buffer_range, offset,
221 offset + dma_clear_size);
222
223 /* dma_clear_buffer can use clear_buffer on failure. Make sure that
224 * doesn't happen. We don't want an infinite recursion: */
225 if (sctx->b.dma.cs &&
226 !(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
227 (offset % 4 == 0) &&
228 /* CP DMA is very slow. Always use SDMA for big clears. This
229 * alone improves DeusEx:MD performance by 70%. */
230 (size > 128 * 1024 ||
231 /* Buffers not used by the GFX IB yet will be cleared by SDMA.
232 * This happens to move most buffer clears to SDMA, including
233 * DCC and CMASK clears, because pipe->clear clears them before
234 * si_emit_framebuffer_state (in a draw call) adds them.
235 * For example, DeusEx:MD has 21 buffer clears per frame and all
236 * of them are moved to SDMA thanks to this. */
237 !ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
238 RADEON_USAGE_READWRITE))) {
239 sctx->b.dma_clear_buffer(ctx, dst, offset, dma_clear_size, value);
240
241 offset += dma_clear_size;
242 size -= dma_clear_size;
243 } else if (dma_clear_size >= 4) {
244 uint64_t va = rdst->gpu_address + offset;
245
246 offset += dma_clear_size;
247 size -= dma_clear_size;
248
249 /* Flush the caches. */
250 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
251 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
252
253 while (dma_clear_size) {
254 unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
255 unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
256
257 si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
258 &is_first, &dma_flags);
259
260 /* Emit the clear packet. */
261 si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
262
263 dma_clear_size -= byte_count;
264 va += byte_count;
265 }
266
267 if (tc_l2_flag)
268 rdst->TC_L2_dirty = true;
269
270 /* If it's not a framebuffer fast clear... */
271 if (coher == R600_COHERENCY_SHADER)
272 sctx->b.num_cp_dma_calls++;
273 }
274
275 if (size) {
276 /* Handle non-dword alignment.
277 *
278 * This function is called for embedded texture metadata clears,
279 * but those should always be properly aligned. */
280 assert(dst->target == PIPE_BUFFER);
281 assert(size < 4);
282
283 pipe_buffer_write(ctx, dst, offset, size, &value);
284 }
285 }
286
287 /**
288 * Realign the CP DMA engine. This must be done after a copy with an unaligned
289 * size.
290 *
291 * \param size Remaining size to the CP DMA alignment.
292 */
293 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
294 unsigned user_flags, bool *is_first)
295 {
296 uint64_t va;
297 unsigned dma_flags = 0;
298 unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
299
300 assert(size < SI_CPDMA_ALIGNMENT);
301
302 /* Use the scratch buffer as the dummy buffer. The 3D engine should be
303 * idle at this point.
304 */
305 if (!sctx->scratch_buffer ||
306 sctx->scratch_buffer->b.b.width0 < scratch_size) {
307 r600_resource_reference(&sctx->scratch_buffer, NULL);
308 sctx->scratch_buffer = (struct r600_resource*)
309 r600_aligned_buffer_create(&sctx->screen->b.b,
310 R600_RESOURCE_FLAG_UNMAPPABLE,
311 PIPE_USAGE_DEFAULT,
312 scratch_size, 256);
313 if (!sctx->scratch_buffer)
314 return;
315
316 si_mark_atom_dirty(sctx, &sctx->scratch_state);
317 }
318
319 si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
320 &sctx->scratch_buffer->b.b, size, size, user_flags,
321 is_first, &dma_flags);
322
323 va = sctx->scratch_buffer->gpu_address;
324 si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
325 R600_COHERENCY_SHADER);
326 }
327
328 /**
329 * Do memcpy between buffers using CP DMA.
330 *
331 * \param user_flags bitmask of SI_CPDMA_*
332 */
333 void si_copy_buffer(struct si_context *sctx,
334 struct pipe_resource *dst, struct pipe_resource *src,
335 uint64_t dst_offset, uint64_t src_offset, unsigned size,
336 unsigned user_flags)
337 {
338 uint64_t main_dst_offset, main_src_offset;
339 unsigned skipped_size = 0;
340 unsigned realign_size = 0;
341 unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
342 unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
343 bool is_first = true;
344
345 if (!size)
346 return;
347
348 if (dst != src || dst_offset != src_offset) {
349 /* Mark the buffer range of destination as valid (initialized),
350 * so that transfer_map knows it should wait for the GPU when mapping
351 * that range. */
352 util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
353 dst_offset + size);
354 }
355
356 dst_offset += r600_resource(dst)->gpu_address;
357 src_offset += r600_resource(src)->gpu_address;
358
359 /* The workarounds aren't needed on Fiji and beyond. */
360 if (sctx->b.family <= CHIP_CARRIZO ||
361 sctx->b.family == CHIP_STONEY) {
362 /* If the size is not aligned, we must add a dummy copy at the end
363 * just to align the internal counter. Otherwise, the DMA engine
364 * would slow down by an order of magnitude for following copies.
365 */
366 if (size % SI_CPDMA_ALIGNMENT)
367 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
368
369 /* If the copy begins unaligned, we must start copying from the next
370 * aligned block and the skipped part should be copied after everything
371 * else has been copied. Only the src alignment matters, not dst.
372 */
373 if (src_offset % SI_CPDMA_ALIGNMENT) {
374 skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
375 /* The main part will be skipped if the size is too small. */
376 skipped_size = MIN2(skipped_size, size);
377 size -= skipped_size;
378 }
379 }
380
381 /* Flush the caches. */
382 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
383 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
384 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
385
386 /* This is the main part doing the copying. Src is always aligned. */
387 main_dst_offset = dst_offset + skipped_size;
388 main_src_offset = src_offset + skipped_size;
389
390 while (size) {
391 unsigned dma_flags = tc_l2_flag;
392 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
393
394 si_cp_dma_prepare(sctx, dst, src, byte_count,
395 size + skipped_size + realign_size,
396 user_flags, &is_first, &dma_flags);
397
398 si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
399 byte_count, dma_flags, R600_COHERENCY_SHADER);
400
401 size -= byte_count;
402 main_src_offset += byte_count;
403 main_dst_offset += byte_count;
404 }
405
406 /* Copy the part we skipped because src wasn't aligned. */
407 if (skipped_size) {
408 unsigned dma_flags = tc_l2_flag;
409
410 si_cp_dma_prepare(sctx, dst, src, skipped_size,
411 skipped_size + realign_size, user_flags,
412 &is_first, &dma_flags);
413
414 si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
415 dma_flags, R600_COHERENCY_SHADER);
416 }
417
418 /* Finally, realign the engine if the size wasn't aligned. */
419 if (realign_size)
420 si_cp_dma_realign_engine(sctx, realign_size, user_flags,
421 &is_first);
422
423 if (tc_l2_flag)
424 r600_resource(dst)->TC_L2_dirty = true;
425
426 /* If it's not a prefetch... */
427 if (dst_offset != src_offset)
428 sctx->b.num_cp_dma_calls++;
429 }
430
431 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
432 uint64_t offset, unsigned size)
433 {
434 assert(sctx->b.chip_class >= CIK);
435
436 si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
437 }
438
439 static void cik_prefetch_shader_async(struct si_context *sctx,
440 struct si_pm4_state *state)
441 {
442 if (state) {
443 struct pipe_resource *bo = &state->bo[0]->b.b;
444 assert(state->nbo == 1);
445
446 cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
447 }
448 }
449
450 static void cik_emit_prefetch_L2(struct si_context *sctx, struct r600_atom *atom)
451 {
452 /* Prefetch shaders and VBO descriptors to TC L2. */
453 if (si_pm4_state_changed(sctx, ls))
454 cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
455 if (si_pm4_state_changed(sctx, hs))
456 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
457 if (si_pm4_state_changed(sctx, es))
458 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
459 if (si_pm4_state_changed(sctx, gs))
460 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
461 if (si_pm4_state_changed(sctx, vs))
462 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
463
464 /* Vertex buffer descriptors are uploaded uncached, so prefetch
465 * them right after the VS binary. */
466 if (sctx->vertex_buffer_pointer_dirty) {
467 cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b,
468 sctx->vertex_buffers.buffer_offset,
469 sctx->vertex_elements->desc_list_byte_size);
470 }
471 if (si_pm4_state_changed(sctx, ps))
472 cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
473 }
474
475 void si_init_cp_dma_functions(struct si_context *sctx)
476 {
477 sctx->b.clear_buffer = si_clear_buffer;
478
479 si_init_atom(sctx, &sctx->prefetch_L2, &sctx->atoms.s.prefetch_L2,
480 cik_emit_prefetch_L2);
481 }