db9cb0b534611bb3d38419c98e13dfcf1ce2ad00
[mesa.git] / src / gallium / drivers / radeonsi / si_cp_dma.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "sid.h"
27
28 /* Recommended maximum sizes for optimal performance.
29 * Fall back to compute or SDMA if the size is greater.
30 */
31 #define CP_DMA_COPY_PERF_THRESHOLD (64 * 1024) /* copied from Vulkan */
32 #define CP_DMA_CLEAR_PERF_THRESHOLD (32 * 1024) /* guess (clear is much slower) */
33
34 /* Set this if you want the ME to wait until CP DMA is done.
35 * It should be set on the last CP DMA packet. */
36 #define CP_DMA_SYNC (1 << 0)
37
38 /* Set this if the source data was used as a destination in a previous CP DMA
39 * packet. It's for preventing a read-after-write (RAW) hazard between two
40 * CP DMA packets. */
41 #define CP_DMA_RAW_WAIT (1 << 1)
42 #define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
43 #define CP_DMA_CLEAR (1 << 3)
44
45 /* The max number of bytes that can be copied per packet. */
46 static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
47 {
48 unsigned max = sctx->chip_class >= GFX9 ?
49 S_414_BYTE_COUNT_GFX9(~0u) :
50 S_414_BYTE_COUNT_GFX6(~0u);
51
52 /* make it aligned for optimal performance */
53 return max & ~(SI_CPDMA_ALIGNMENT - 1);
54 }
55
56
57 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
58 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
59 * clear value.
60 */
61 static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
62 uint64_t src_va, unsigned size, unsigned flags,
63 enum si_coherency coher)
64 {
65 struct radeon_winsys_cs *cs = sctx->gfx_cs;
66 uint32_t header = 0, command = 0;
67
68 assert(size <= cp_dma_max_byte_count(sctx));
69
70 if (sctx->chip_class >= GFX9)
71 command |= S_414_BYTE_COUNT_GFX9(size);
72 else
73 command |= S_414_BYTE_COUNT_GFX6(size);
74
75 /* Sync flags. */
76 if (flags & CP_DMA_SYNC)
77 header |= S_411_CP_SYNC(1);
78 else {
79 if (sctx->chip_class >= GFX9)
80 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
81 else
82 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
83 }
84
85 if (flags & CP_DMA_RAW_WAIT)
86 command |= S_414_RAW_WAIT(1);
87
88 /* Src and dst flags. */
89 if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
90 src_va == dst_va)
91 header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
92 else if (flags & CP_DMA_USE_L2)
93 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
94
95 if (flags & CP_DMA_CLEAR)
96 header |= S_411_SRC_SEL(V_411_DATA);
97 else if (flags & CP_DMA_USE_L2)
98 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
99
100 if (sctx->chip_class >= CIK) {
101 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
102 radeon_emit(cs, header);
103 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
104 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
105 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
106 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
107 radeon_emit(cs, command);
108 } else {
109 header |= S_411_SRC_ADDR_HI(src_va >> 32);
110
111 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
112 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
113 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
114 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
115 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
116 radeon_emit(cs, command);
117 }
118
119 /* CP DMA is executed in ME, but index buffers are read by PFP.
120 * This ensures that ME (CP DMA) is idle before PFP starts fetching
121 * indices. If we wanted to execute CP DMA in PFP, this packet
122 * should precede it.
123 */
124 if (coher == SI_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
125 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
126 radeon_emit(cs, 0);
127 }
128 }
129
130 void si_cp_dma_wait_for_idle(struct si_context *sctx)
131 {
132 /* Issue a dummy DMA that copies zero bytes.
133 *
134 * The DMA engine will see that there's no work to do and skip this
135 * DMA request, however, the CP will see the sync flag and still wait
136 * for all DMAs to complete.
137 */
138 si_emit_cp_dma(sctx, 0, 0, 0, CP_DMA_SYNC, SI_COHERENCY_NONE);
139 }
140
141 static unsigned get_flush_flags(struct si_context *sctx, enum si_coherency coher)
142 {
143 switch (coher) {
144 default:
145 case SI_COHERENCY_NONE:
146 return 0;
147 case SI_COHERENCY_SHADER:
148 return SI_CONTEXT_INV_SMEM_L1 |
149 SI_CONTEXT_INV_VMEM_L1 |
150 (sctx->chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
151 case SI_COHERENCY_CB_META:
152 return SI_CONTEXT_FLUSH_AND_INV_CB;
153 }
154 }
155
156 static unsigned get_tc_l2_flag(struct si_context *sctx, enum si_coherency coher)
157 {
158 if ((sctx->chip_class >= GFX9 && coher == SI_COHERENCY_CB_META) ||
159 (sctx->chip_class >= CIK && coher == SI_COHERENCY_SHADER))
160 return CP_DMA_USE_L2;
161
162 return 0;
163 }
164
165 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
166 struct pipe_resource *src, unsigned byte_count,
167 uint64_t remaining_size, unsigned user_flags,
168 bool *is_first, unsigned *packet_flags)
169 {
170 /* Fast exit for a CPDMA prefetch. */
171 if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
172 *is_first = false;
173 return;
174 }
175
176 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
177 /* Count memory usage in so that need_cs_space can take it into account. */
178 si_context_add_resource_size(sctx, dst);
179 if (src)
180 si_context_add_resource_size(sctx, src);
181 }
182
183 if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
184 si_need_gfx_cs_space(sctx);
185
186 /* This must be done after need_cs_space. */
187 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
188 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
189 (struct r600_resource*)dst,
190 RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
191 if (src)
192 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
193 (struct r600_resource*)src,
194 RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
195 }
196
197 /* Flush the caches for the first copy only.
198 * Also wait for the previous CP DMA operations.
199 */
200 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
201 si_emit_cache_flush(sctx);
202
203 if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
204 *packet_flags |= CP_DMA_RAW_WAIT;
205
206 *is_first = false;
207
208 /* Do the synchronization after the last dma, so that all data
209 * is written to memory.
210 */
211 if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
212 byte_count == remaining_size)
213 *packet_flags |= CP_DMA_SYNC;
214 }
215
216 void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst,
217 uint64_t offset, uint64_t size, unsigned value,
218 enum si_coherency coher)
219 {
220 struct radeon_winsys *ws = sctx->ws;
221 struct r600_resource *rdst = r600_resource(dst);
222 unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
223 unsigned flush_flags = get_flush_flags(sctx, coher);
224 uint64_t dma_clear_size;
225 bool is_first = true;
226
227 if (!size)
228 return;
229
230 dma_clear_size = size & ~3ull;
231
232 /* Mark the buffer range of destination as valid (initialized),
233 * so that transfer_map knows it should wait for the GPU when mapping
234 * that range. */
235 util_range_add(&rdst->valid_buffer_range, offset,
236 offset + dma_clear_size);
237
238 /* dma_clear_buffer can use clear_buffer on failure. Make sure that
239 * doesn't happen. We don't want an infinite recursion: */
240 if (sctx->dma_cs &&
241 !(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
242 (offset % 4 == 0) &&
243 /* CP DMA is very slow. Always use SDMA for big clears. This
244 * alone improves DeusEx:MD performance by 70%. */
245 (size > CP_DMA_CLEAR_PERF_THRESHOLD ||
246 /* Buffers not used by the GFX IB yet will be cleared by SDMA.
247 * This happens to move most buffer clears to SDMA, including
248 * DCC and CMASK clears, because pipe->clear clears them before
249 * si_emit_framebuffer_state (in a draw call) adds them.
250 * For example, DeusEx:MD has 21 buffer clears per frame and all
251 * of them are moved to SDMA thanks to this. */
252 !ws->cs_is_buffer_referenced(sctx->gfx_cs, rdst->buf,
253 RADEON_USAGE_READWRITE))) {
254 sctx->dma_clear_buffer(sctx, dst, offset, dma_clear_size, value);
255
256 offset += dma_clear_size;
257 size -= dma_clear_size;
258 } else if (dma_clear_size >= 4) {
259 uint64_t va = rdst->gpu_address + offset;
260
261 offset += dma_clear_size;
262 size -= dma_clear_size;
263
264 /* Flush the caches. */
265 sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
266 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
267
268 while (dma_clear_size) {
269 unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
270 unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
271
272 si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
273 &is_first, &dma_flags);
274
275 /* Emit the clear packet. */
276 si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
277
278 dma_clear_size -= byte_count;
279 va += byte_count;
280 }
281
282 if (tc_l2_flag)
283 rdst->TC_L2_dirty = true;
284
285 /* If it's not a framebuffer fast clear... */
286 if (coher == SI_COHERENCY_SHADER)
287 sctx->num_cp_dma_calls++;
288 }
289
290 if (size) {
291 /* Handle non-dword alignment.
292 *
293 * This function is called for embedded texture metadata clears,
294 * but those should always be properly aligned. */
295 assert(dst->target == PIPE_BUFFER);
296 assert(size < 4);
297
298 pipe_buffer_write(&sctx->b, dst, offset, size, &value);
299 }
300 }
301
302 static void si_pipe_clear_buffer(struct pipe_context *ctx,
303 struct pipe_resource *dst,
304 unsigned offset, unsigned size,
305 const void *clear_value_ptr,
306 int clear_value_size)
307 {
308 struct si_context *sctx = (struct si_context*)ctx;
309 uint32_t dword_value;
310 unsigned i;
311
312 assert(offset % clear_value_size == 0);
313 assert(size % clear_value_size == 0);
314
315 if (clear_value_size > 4) {
316 const uint32_t *u32 = clear_value_ptr;
317 bool clear_dword_duplicated = true;
318
319 /* See if we can lower large fills to dword fills. */
320 for (i = 1; i < clear_value_size / 4; i++)
321 if (u32[0] != u32[i]) {
322 clear_dword_duplicated = false;
323 break;
324 }
325
326 if (!clear_dword_duplicated) {
327 /* Use transform feedback for 64-bit, 96-bit, and
328 * 128-bit fills.
329 */
330 union pipe_color_union clear_value;
331
332 memcpy(&clear_value, clear_value_ptr, clear_value_size);
333 si_blitter_begin(sctx, SI_DISABLE_RENDER_COND);
334 util_blitter_clear_buffer(sctx->blitter, dst, offset,
335 size, clear_value_size / 4,
336 &clear_value);
337 si_blitter_end(sctx);
338 return;
339 }
340 }
341
342 /* Expand the clear value to a dword. */
343 switch (clear_value_size) {
344 case 1:
345 dword_value = *(uint8_t*)clear_value_ptr;
346 dword_value |= (dword_value << 8) |
347 (dword_value << 16) |
348 (dword_value << 24);
349 break;
350 case 2:
351 dword_value = *(uint16_t*)clear_value_ptr;
352 dword_value |= dword_value << 16;
353 break;
354 default:
355 dword_value = *(uint32_t*)clear_value_ptr;
356 }
357
358 si_clear_buffer(sctx, dst, offset, size, dword_value,
359 SI_COHERENCY_SHADER);
360 }
361
362 /**
363 * Realign the CP DMA engine. This must be done after a copy with an unaligned
364 * size.
365 *
366 * \param size Remaining size to the CP DMA alignment.
367 */
368 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
369 unsigned user_flags, bool *is_first)
370 {
371 uint64_t va;
372 unsigned dma_flags = 0;
373 unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
374
375 assert(size < SI_CPDMA_ALIGNMENT);
376
377 /* Use the scratch buffer as the dummy buffer. The 3D engine should be
378 * idle at this point.
379 */
380 if (!sctx->scratch_buffer ||
381 sctx->scratch_buffer->b.b.width0 < scratch_size) {
382 r600_resource_reference(&sctx->scratch_buffer, NULL);
383 sctx->scratch_buffer = (struct r600_resource*)
384 si_aligned_buffer_create(&sctx->screen->b,
385 SI_RESOURCE_FLAG_UNMAPPABLE,
386 PIPE_USAGE_DEFAULT,
387 scratch_size, 256);
388 if (!sctx->scratch_buffer)
389 return;
390
391 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
392 }
393
394 si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
395 &sctx->scratch_buffer->b.b, size, size, user_flags,
396 is_first, &dma_flags);
397
398 va = sctx->scratch_buffer->gpu_address;
399 si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
400 SI_COHERENCY_SHADER);
401 }
402
403 /**
404 * Do memcpy between buffers using CP DMA.
405 *
406 * \param user_flags bitmask of SI_CPDMA_*
407 */
408 void si_copy_buffer(struct si_context *sctx,
409 struct pipe_resource *dst, struct pipe_resource *src,
410 uint64_t dst_offset, uint64_t src_offset, unsigned size,
411 unsigned user_flags)
412 {
413 uint64_t main_dst_offset, main_src_offset;
414 unsigned skipped_size = 0;
415 unsigned realign_size = 0;
416 unsigned tc_l2_flag = get_tc_l2_flag(sctx, SI_COHERENCY_SHADER);
417 unsigned flush_flags = get_flush_flags(sctx, SI_COHERENCY_SHADER);
418 bool is_first = true;
419
420 if (!size)
421 return;
422
423 if (dst != src || dst_offset != src_offset) {
424 /* Mark the buffer range of destination as valid (initialized),
425 * so that transfer_map knows it should wait for the GPU when mapping
426 * that range. */
427 util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
428 dst_offset + size);
429 }
430
431 dst_offset += r600_resource(dst)->gpu_address;
432 src_offset += r600_resource(src)->gpu_address;
433
434 /* The workarounds aren't needed on Fiji and beyond. */
435 if (sctx->family <= CHIP_CARRIZO ||
436 sctx->family == CHIP_STONEY) {
437 /* If the size is not aligned, we must add a dummy copy at the end
438 * just to align the internal counter. Otherwise, the DMA engine
439 * would slow down by an order of magnitude for following copies.
440 */
441 if (size % SI_CPDMA_ALIGNMENT)
442 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
443
444 /* If the copy begins unaligned, we must start copying from the next
445 * aligned block and the skipped part should be copied after everything
446 * else has been copied. Only the src alignment matters, not dst.
447 */
448 if (src_offset % SI_CPDMA_ALIGNMENT) {
449 skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
450 /* The main part will be skipped if the size is too small. */
451 skipped_size = MIN2(skipped_size, size);
452 size -= skipped_size;
453 }
454 }
455
456 /* Flush the caches. */
457 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
458 sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
459 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
460
461 /* This is the main part doing the copying. Src is always aligned. */
462 main_dst_offset = dst_offset + skipped_size;
463 main_src_offset = src_offset + skipped_size;
464
465 while (size) {
466 unsigned dma_flags = tc_l2_flag;
467 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
468
469 si_cp_dma_prepare(sctx, dst, src, byte_count,
470 size + skipped_size + realign_size,
471 user_flags, &is_first, &dma_flags);
472
473 si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
474 byte_count, dma_flags, SI_COHERENCY_SHADER);
475
476 size -= byte_count;
477 main_src_offset += byte_count;
478 main_dst_offset += byte_count;
479 }
480
481 /* Copy the part we skipped because src wasn't aligned. */
482 if (skipped_size) {
483 unsigned dma_flags = tc_l2_flag;
484
485 si_cp_dma_prepare(sctx, dst, src, skipped_size,
486 skipped_size + realign_size, user_flags,
487 &is_first, &dma_flags);
488
489 si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
490 dma_flags, SI_COHERENCY_SHADER);
491 }
492
493 /* Finally, realign the engine if the size wasn't aligned. */
494 if (realign_size)
495 si_cp_dma_realign_engine(sctx, realign_size, user_flags,
496 &is_first);
497
498 if (tc_l2_flag)
499 r600_resource(dst)->TC_L2_dirty = true;
500
501 /* If it's not a prefetch... */
502 if (dst_offset != src_offset)
503 sctx->num_cp_dma_calls++;
504 }
505
506 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
507 uint64_t offset, unsigned size)
508 {
509 assert(sctx->chip_class >= CIK);
510
511 si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
512 }
513
514 static void cik_prefetch_shader_async(struct si_context *sctx,
515 struct si_pm4_state *state)
516 {
517 struct pipe_resource *bo = &state->bo[0]->b.b;
518 assert(state->nbo == 1);
519
520 cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
521 }
522
523 static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
524 {
525 if (!sctx->vertex_elements)
526 return;
527
528 cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b,
529 sctx->vb_descriptors_offset,
530 sctx->vertex_elements->desc_list_byte_size);
531 }
532
533 /**
534 * Prefetch shaders and VBO descriptors.
535 *
536 * \param vertex_stage_only Whether only the the API VS and VBO descriptors
537 * should be prefetched.
538 */
539 void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only)
540 {
541 unsigned mask = sctx->prefetch_L2_mask;
542 assert(mask);
543
544 /* Prefetch shaders and VBO descriptors to TC L2. */
545 if (sctx->chip_class >= GFX9) {
546 /* Choose the right spot for the VBO prefetch. */
547 if (sctx->tes_shader.cso) {
548 if (mask & SI_PREFETCH_HS)
549 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
550 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
551 cik_prefetch_VBO_descriptors(sctx);
552 if (vertex_stage_only) {
553 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS |
554 SI_PREFETCH_VBO_DESCRIPTORS);
555 return;
556 }
557
558 if (mask & SI_PREFETCH_GS)
559 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
560 if (mask & SI_PREFETCH_VS)
561 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
562 } else if (sctx->gs_shader.cso) {
563 if (mask & SI_PREFETCH_GS)
564 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
565 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
566 cik_prefetch_VBO_descriptors(sctx);
567 if (vertex_stage_only) {
568 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS |
569 SI_PREFETCH_VBO_DESCRIPTORS);
570 return;
571 }
572
573 if (mask & SI_PREFETCH_VS)
574 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
575 } else {
576 if (mask & SI_PREFETCH_VS)
577 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
578 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
579 cik_prefetch_VBO_descriptors(sctx);
580 if (vertex_stage_only) {
581 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
582 SI_PREFETCH_VBO_DESCRIPTORS);
583 return;
584 }
585 }
586 } else {
587 /* SI-CI-VI */
588 /* Choose the right spot for the VBO prefetch. */
589 if (sctx->tes_shader.cso) {
590 if (mask & SI_PREFETCH_LS)
591 cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
592 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
593 cik_prefetch_VBO_descriptors(sctx);
594 if (vertex_stage_only) {
595 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS |
596 SI_PREFETCH_VBO_DESCRIPTORS);
597 return;
598 }
599
600 if (mask & SI_PREFETCH_HS)
601 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
602 if (mask & SI_PREFETCH_ES)
603 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
604 if (mask & SI_PREFETCH_GS)
605 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
606 if (mask & SI_PREFETCH_VS)
607 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
608 } else if (sctx->gs_shader.cso) {
609 if (mask & SI_PREFETCH_ES)
610 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
611 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
612 cik_prefetch_VBO_descriptors(sctx);
613 if (vertex_stage_only) {
614 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES |
615 SI_PREFETCH_VBO_DESCRIPTORS);
616 return;
617 }
618
619 if (mask & SI_PREFETCH_GS)
620 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
621 if (mask & SI_PREFETCH_VS)
622 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
623 } else {
624 if (mask & SI_PREFETCH_VS)
625 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
626 if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
627 cik_prefetch_VBO_descriptors(sctx);
628 if (vertex_stage_only) {
629 sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
630 SI_PREFETCH_VBO_DESCRIPTORS);
631 return;
632 }
633 }
634 }
635
636 if (mask & SI_PREFETCH_PS)
637 cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
638
639 sctx->prefetch_L2_mask = 0;
640 }
641
642 void si_init_cp_dma_functions(struct si_context *sctx)
643 {
644 sctx->b.clear_buffer = si_pipe_clear_buffer;
645 }