radeonsi: add TC L2 prefetch for shaders and VBO descriptors
[mesa.git] / src / gallium / drivers / radeonsi / si_cp_dma.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Marek Olšák <maraeo@gmail.com>
25 */
26
27 #include "si_pipe.h"
28 #include "sid.h"
29 #include "radeon/r600_cs.h"
30
31 /* Alignment for optimal performance. */
32 #define CP_DMA_ALIGNMENT 32
33 /* The max number of bytes to copy per packet. */
34 #define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - CP_DMA_ALIGNMENT)
35
36 /* Set this if you want the ME to wait until CP DMA is done.
37 * It should be set on the last CP DMA packet. */
38 #define CP_DMA_SYNC (1 << 0)
39
40 /* Set this if the source data was used as a destination in a previous CP DMA
41 * packet. It's for preventing a read-after-write (RAW) hazard between two
42 * CP DMA packets. */
43 #define CP_DMA_RAW_WAIT (1 << 1)
44 #define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
45 #define CP_DMA_CLEAR (1 << 3)
46
47 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
48 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
49 * clear value.
50 */
51 static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
52 uint64_t src_va, unsigned size, unsigned flags,
53 enum r600_coherency coher)
54 {
55 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
56 uint32_t header = 0, command = S_414_BYTE_COUNT(size);
57
58 assert(size);
59 assert(size <= CP_DMA_MAX_BYTE_COUNT);
60
61 /* Sync flags. */
62 if (flags & CP_DMA_SYNC)
63 header |= S_411_CP_SYNC(1);
64 else
65 command |= S_414_DISABLE_WR_CONFIRM(1);
66
67 if (flags & CP_DMA_RAW_WAIT)
68 command |= S_414_RAW_WAIT(1);
69
70 /* Src and dst flags. */
71 if (flags & CP_DMA_USE_L2)
72 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
73
74 if (flags & CP_DMA_CLEAR)
75 header |= S_411_SRC_SEL(V_411_DATA);
76 else if (flags & CP_DMA_USE_L2)
77 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
78
79 if (sctx->b.chip_class >= CIK) {
80 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
81 radeon_emit(cs, header);
82 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
83 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
84 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
85 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
86 radeon_emit(cs, command);
87 } else {
88 header |= S_411_SRC_ADDR_HI(src_va >> 32);
89
90 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
91 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
92 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
93 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
94 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
95 radeon_emit(cs, command);
96 }
97
98 /* CP DMA is executed in ME, but index buffers are read by PFP.
99 * This ensures that ME (CP DMA) is idle before PFP starts fetching
100 * indices. If we wanted to execute CP DMA in PFP, this packet
101 * should precede it.
102 */
103 if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
104 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
105 radeon_emit(cs, 0);
106 }
107 }
108
109 static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
110 {
111 switch (coher) {
112 default:
113 case R600_COHERENCY_NONE:
114 return 0;
115 case R600_COHERENCY_SHADER:
116 return SI_CONTEXT_INV_SMEM_L1 |
117 SI_CONTEXT_INV_VMEM_L1 |
118 (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
119 case R600_COHERENCY_CB_META:
120 return SI_CONTEXT_FLUSH_AND_INV_CB |
121 SI_CONTEXT_FLUSH_AND_INV_CB_META;
122 }
123 }
124
125 static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
126 {
127 return coher == R600_COHERENCY_SHADER &&
128 sctx->b.chip_class >= CIK ? CP_DMA_USE_L2 : 0;
129 }
130
131 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
132 struct pipe_resource *src, unsigned byte_count,
133 uint64_t remaining_size, unsigned user_flags,
134 bool *is_first, unsigned *packet_flags)
135 {
136 /* Count memory usage in so that need_cs_space can take it into account. */
137 r600_context_add_resource_size(&sctx->b.b, dst);
138 if (src)
139 r600_context_add_resource_size(&sctx->b.b, src);
140
141 if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
142 si_need_cs_space(sctx);
143
144 /* This must be done after need_cs_space. */
145 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
146 (struct r600_resource*)dst,
147 RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
148 if (src)
149 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
150 (struct r600_resource*)src,
151 RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
152
153 /* Flush the caches for the first copy only.
154 * Also wait for the previous CP DMA operations.
155 */
156 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
157 si_emit_cache_flush(sctx);
158
159 if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
160 *packet_flags |= CP_DMA_RAW_WAIT;
161
162 *is_first = false;
163
164 /* Do the synchronization after the last dma, so that all data
165 * is written to memory.
166 */
167 if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
168 byte_count == remaining_size)
169 *packet_flags |= CP_DMA_SYNC;
170 }
171
172 static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
173 uint64_t offset, uint64_t size, unsigned value,
174 enum r600_coherency coher)
175 {
176 struct si_context *sctx = (struct si_context*)ctx;
177 struct radeon_winsys *ws = sctx->b.ws;
178 struct r600_resource *rdst = r600_resource(dst);
179 unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
180 unsigned flush_flags = get_flush_flags(sctx, coher);
181 bool is_first = true;
182
183 if (!size)
184 return;
185
186 /* Mark the buffer range of destination as valid (initialized),
187 * so that transfer_map knows it should wait for the GPU when mapping
188 * that range. */
189 util_range_add(&rdst->valid_buffer_range, offset,
190 offset + size);
191
192 /* Fallback for unaligned clears. */
193 if (offset % 4 != 0 || size % 4 != 0) {
194 uint8_t *map = r600_buffer_map_sync_with_rings(&sctx->b, rdst,
195 PIPE_TRANSFER_WRITE);
196 map += offset;
197 for (uint64_t i = 0; i < size; i++) {
198 unsigned byte_within_dword = (offset + i) % 4;
199 *map++ = (value >> (byte_within_dword * 8)) & 0xff;
200 }
201 return;
202 }
203
204 /* dma_clear_buffer can use clear_buffer on failure. Make sure that
205 * doesn't happen. We don't want an infinite recursion: */
206 if (sctx->b.dma.cs &&
207 /* CP DMA is very slow. Always use SDMA for big clears. This
208 * alone improves DeusEx:MD performance by 70%. */
209 (size > 128 * 1024 ||
210 /* Buffers not used by the GFX IB yet will be cleared by SDMA.
211 * This happens to move most buffer clears to SDMA, including
212 * DCC and CMASK clears, because pipe->clear clears them before
213 * si_emit_framebuffer_state (in a draw call) adds them.
214 * For example, DeusEx:MD has 21 buffer clears per frame and all
215 * of them are moved to SDMA thanks to this. */
216 !ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
217 RADEON_USAGE_READWRITE))) {
218 sctx->b.dma_clear_buffer(ctx, dst, offset, size, value);
219 return;
220 }
221
222 uint64_t va = rdst->gpu_address + offset;
223
224 /* Flush the caches. */
225 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
226 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
227
228 while (size) {
229 unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
230 unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
231
232 si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, 0,
233 &is_first, &dma_flags);
234
235 /* Emit the clear packet. */
236 si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
237
238 size -= byte_count;
239 va += byte_count;
240 }
241
242 if (tc_l2_flag)
243 rdst->TC_L2_dirty = true;
244
245 /* If it's not a framebuffer fast clear... */
246 if (coher == R600_COHERENCY_SHADER)
247 sctx->b.num_cp_dma_calls++;
248 }
249
250 /**
251 * Realign the CP DMA engine. This must be done after a copy with an unaligned
252 * size.
253 *
254 * \param size Remaining size to the CP DMA alignment.
255 */
256 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
257 unsigned user_flags, bool *is_first)
258 {
259 uint64_t va;
260 unsigned dma_flags = 0;
261 unsigned scratch_size = CP_DMA_ALIGNMENT * 2;
262
263 assert(size < CP_DMA_ALIGNMENT);
264
265 /* Use the scratch buffer as the dummy buffer. The 3D engine should be
266 * idle at this point.
267 */
268 if (!sctx->scratch_buffer ||
269 sctx->scratch_buffer->b.b.width0 < scratch_size) {
270 r600_resource_reference(&sctx->scratch_buffer, NULL);
271 sctx->scratch_buffer = (struct r600_resource*)
272 pipe_buffer_create(&sctx->screen->b.b, 0,
273 PIPE_USAGE_DEFAULT, scratch_size);
274 if (!sctx->scratch_buffer)
275 return;
276 sctx->emit_scratch_reloc = true;
277 }
278
279 si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
280 &sctx->scratch_buffer->b.b, size, size, user_flags,
281 is_first, &dma_flags);
282
283 va = sctx->scratch_buffer->gpu_address;
284 si_emit_cp_dma(sctx, va, va + CP_DMA_ALIGNMENT, size, dma_flags,
285 R600_COHERENCY_SHADER);
286 }
287
288 /**
289 * Do memcpy between buffers using CP DMA.
290 *
291 * \param user_flags bitmask of SI_CPDMA_*
292 */
293 void si_copy_buffer(struct si_context *sctx,
294 struct pipe_resource *dst, struct pipe_resource *src,
295 uint64_t dst_offset, uint64_t src_offset, unsigned size,
296 unsigned user_flags)
297 {
298 uint64_t main_dst_offset, main_src_offset;
299 unsigned skipped_size = 0;
300 unsigned realign_size = 0;
301 unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
302 unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
303 bool is_first = true;
304
305 if (!size)
306 return;
307
308 /* Mark the buffer range of destination as valid (initialized),
309 * so that transfer_map knows it should wait for the GPU when mapping
310 * that range. */
311 util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
312 dst_offset + size);
313
314 dst_offset += r600_resource(dst)->gpu_address;
315 src_offset += r600_resource(src)->gpu_address;
316
317 /* The workarounds aren't needed on Fiji and beyond. */
318 if (sctx->b.family <= CHIP_CARRIZO ||
319 sctx->b.family == CHIP_STONEY) {
320 /* If the size is not aligned, we must add a dummy copy at the end
321 * just to align the internal counter. Otherwise, the DMA engine
322 * would slow down by an order of magnitude for following copies.
323 */
324 if (size % CP_DMA_ALIGNMENT)
325 realign_size = CP_DMA_ALIGNMENT - (size % CP_DMA_ALIGNMENT);
326
327 /* If the copy begins unaligned, we must start copying from the next
328 * aligned block and the skipped part should be copied after everything
329 * else has been copied. Only the src alignment matters, not dst.
330 */
331 if (src_offset % CP_DMA_ALIGNMENT) {
332 skipped_size = CP_DMA_ALIGNMENT - (src_offset % CP_DMA_ALIGNMENT);
333 /* The main part will be skipped if the size is too small. */
334 skipped_size = MIN2(skipped_size, size);
335 size -= skipped_size;
336 }
337 }
338
339 /* Flush the caches. */
340 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
341 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
342 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
343
344 /* This is the main part doing the copying. Src is always aligned. */
345 main_dst_offset = dst_offset + skipped_size;
346 main_src_offset = src_offset + skipped_size;
347
348 while (size) {
349 unsigned dma_flags = tc_l2_flag;
350 unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
351
352 si_cp_dma_prepare(sctx, dst, src, byte_count,
353 size + skipped_size + realign_size,
354 user_flags, &is_first, &dma_flags);
355
356 si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
357 byte_count, dma_flags, R600_COHERENCY_SHADER);
358
359 size -= byte_count;
360 main_src_offset += byte_count;
361 main_dst_offset += byte_count;
362 }
363
364 /* Copy the part we skipped because src wasn't aligned. */
365 if (skipped_size) {
366 unsigned dma_flags = tc_l2_flag;
367
368 si_cp_dma_prepare(sctx, dst, src, skipped_size,
369 skipped_size + realign_size, user_flags,
370 &is_first, &dma_flags);
371
372 si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
373 dma_flags, R600_COHERENCY_SHADER);
374 }
375
376 /* Finally, realign the engine if the size wasn't aligned. */
377 if (realign_size)
378 si_cp_dma_realign_engine(sctx, realign_size, user_flags,
379 &is_first);
380
381 if (tc_l2_flag)
382 r600_resource(dst)->TC_L2_dirty = true;
383
384 /* If it's not a prefetch... */
385 if (dst_offset != src_offset)
386 sctx->b.num_cp_dma_calls++;
387 }
388
389 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
390 uint64_t offset, unsigned size)
391 {
392 assert(sctx->b.chip_class >= CIK);
393
394 si_copy_buffer(sctx, buf, buf, offset, offset, size,
395 SI_CPDMA_SKIP_CHECK_CS_SPACE |
396 SI_CPDMA_SKIP_SYNC_AFTER |
397 SI_CPDMA_SKIP_SYNC_BEFORE |
398 SI_CPDMA_SKIP_GFX_SYNC);
399 }
400
401 void si_init_cp_dma_functions(struct si_context *sctx)
402 {
403 sctx->b.clear_buffer = si_clear_buffer;
404 }