radeonsi: add performance thresholds for CP DMA, decrease it for clears
[mesa.git] / src / gallium / drivers / radeonsi / si_cp_dma.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Marek Olšák <maraeo@gmail.com>
25 */
26
27 #include "si_pipe.h"
28 #include "sid.h"
29 #include "radeon/r600_cs.h"
30
31 /* Recommended maximum sizes for optimal performance.
32 * Fall back to compute or SDMA if the size is greater.
33 */
34 #define CP_DMA_COPY_PERF_THRESHOLD (64 * 1024) /* copied from Vulkan */
35 #define CP_DMA_CLEAR_PERF_THRESHOLD (32 * 1024) /* guess (clear is much slower) */
36
37 /* Set this if you want the ME to wait until CP DMA is done.
38 * It should be set on the last CP DMA packet. */
39 #define CP_DMA_SYNC (1 << 0)
40
41 /* Set this if the source data was used as a destination in a previous CP DMA
42 * packet. It's for preventing a read-after-write (RAW) hazard between two
43 * CP DMA packets. */
44 #define CP_DMA_RAW_WAIT (1 << 1)
45 #define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
46 #define CP_DMA_CLEAR (1 << 3)
47
48 /* The max number of bytes that can be copied per packet. */
49 static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
50 {
51 unsigned max = sctx->b.chip_class >= GFX9 ?
52 S_414_BYTE_COUNT_GFX9(~0u) :
53 S_414_BYTE_COUNT_GFX6(~0u);
54
55 /* make it aligned for optimal performance */
56 return max & ~(SI_CPDMA_ALIGNMENT - 1);
57 }
58
59
60 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
61 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
62 * clear value.
63 */
64 static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
65 uint64_t src_va, unsigned size, unsigned flags,
66 enum r600_coherency coher)
67 {
68 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
69 uint32_t header = 0, command = 0;
70
71 assert(size);
72 assert(size <= cp_dma_max_byte_count(sctx));
73
74 if (sctx->b.chip_class >= GFX9)
75 command |= S_414_BYTE_COUNT_GFX9(size);
76 else
77 command |= S_414_BYTE_COUNT_GFX6(size);
78
79 /* Sync flags. */
80 if (flags & CP_DMA_SYNC)
81 header |= S_411_CP_SYNC(1);
82 else {
83 if (sctx->b.chip_class >= GFX9)
84 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
85 else
86 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
87 }
88
89 if (flags & CP_DMA_RAW_WAIT)
90 command |= S_414_RAW_WAIT(1);
91
92 /* Src and dst flags. */
93 if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
94 src_va == dst_va)
95 header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
96 else if (flags & CP_DMA_USE_L2)
97 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
98
99 if (flags & CP_DMA_CLEAR)
100 header |= S_411_SRC_SEL(V_411_DATA);
101 else if (flags & CP_DMA_USE_L2)
102 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
103
104 if (sctx->b.chip_class >= CIK) {
105 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
106 radeon_emit(cs, header);
107 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
108 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
109 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
110 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
111 radeon_emit(cs, command);
112 } else {
113 header |= S_411_SRC_ADDR_HI(src_va >> 32);
114
115 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
116 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
117 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
118 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
119 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
120 radeon_emit(cs, command);
121 }
122
123 /* CP DMA is executed in ME, but index buffers are read by PFP.
124 * This ensures that ME (CP DMA) is idle before PFP starts fetching
125 * indices. If we wanted to execute CP DMA in PFP, this packet
126 * should precede it.
127 */
128 if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
129 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
130 radeon_emit(cs, 0);
131 }
132 }
133
134 static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
135 {
136 switch (coher) {
137 default:
138 case R600_COHERENCY_NONE:
139 return 0;
140 case R600_COHERENCY_SHADER:
141 return SI_CONTEXT_INV_SMEM_L1 |
142 SI_CONTEXT_INV_VMEM_L1 |
143 (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
144 case R600_COHERENCY_CB_META:
145 return SI_CONTEXT_FLUSH_AND_INV_CB;
146 }
147 }
148
149 static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
150 {
151 if ((sctx->b.chip_class >= GFX9 && coher == R600_COHERENCY_CB_META) ||
152 (sctx->b.chip_class >= CIK && coher == R600_COHERENCY_SHADER))
153 return CP_DMA_USE_L2;
154
155 return 0;
156 }
157
158 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
159 struct pipe_resource *src, unsigned byte_count,
160 uint64_t remaining_size, unsigned user_flags,
161 bool *is_first, unsigned *packet_flags)
162 {
163 /* Fast exit for a CPDMA prefetch. */
164 if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
165 *is_first = false;
166 return;
167 }
168
169 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
170 /* Count memory usage in so that need_cs_space can take it into account. */
171 r600_context_add_resource_size(&sctx->b.b, dst);
172 if (src)
173 r600_context_add_resource_size(&sctx->b.b, src);
174 }
175
176 if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
177 si_need_cs_space(sctx);
178
179 /* This must be done after need_cs_space. */
180 if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
181 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
182 (struct r600_resource*)dst,
183 RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
184 if (src)
185 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
186 (struct r600_resource*)src,
187 RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
188 }
189
190 /* Flush the caches for the first copy only.
191 * Also wait for the previous CP DMA operations.
192 */
193 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
194 si_emit_cache_flush(sctx);
195
196 if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
197 *packet_flags |= CP_DMA_RAW_WAIT;
198
199 *is_first = false;
200
201 /* Do the synchronization after the last dma, so that all data
202 * is written to memory.
203 */
204 if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
205 byte_count == remaining_size)
206 *packet_flags |= CP_DMA_SYNC;
207 }
208
209 static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
210 uint64_t offset, uint64_t size, unsigned value,
211 enum r600_coherency coher)
212 {
213 struct si_context *sctx = (struct si_context*)ctx;
214 struct radeon_winsys *ws = sctx->b.ws;
215 struct r600_resource *rdst = r600_resource(dst);
216 unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
217 unsigned flush_flags = get_flush_flags(sctx, coher);
218 uint64_t dma_clear_size;
219 bool is_first = true;
220
221 if (!size)
222 return;
223
224 dma_clear_size = size & ~3ull;
225
226 /* Mark the buffer range of destination as valid (initialized),
227 * so that transfer_map knows it should wait for the GPU when mapping
228 * that range. */
229 util_range_add(&rdst->valid_buffer_range, offset,
230 offset + dma_clear_size);
231
232 /* dma_clear_buffer can use clear_buffer on failure. Make sure that
233 * doesn't happen. We don't want an infinite recursion: */
234 if (sctx->b.dma.cs &&
235 !(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
236 (offset % 4 == 0) &&
237 /* CP DMA is very slow. Always use SDMA for big clears. This
238 * alone improves DeusEx:MD performance by 70%. */
239 (size > CP_DMA_CLEAR_PERF_THRESHOLD ||
240 /* Buffers not used by the GFX IB yet will be cleared by SDMA.
241 * This happens to move most buffer clears to SDMA, including
242 * DCC and CMASK clears, because pipe->clear clears them before
243 * si_emit_framebuffer_state (in a draw call) adds them.
244 * For example, DeusEx:MD has 21 buffer clears per frame and all
245 * of them are moved to SDMA thanks to this. */
246 !ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
247 RADEON_USAGE_READWRITE))) {
248 sctx->b.dma_clear_buffer(ctx, dst, offset, dma_clear_size, value);
249
250 offset += dma_clear_size;
251 size -= dma_clear_size;
252 } else if (dma_clear_size >= 4) {
253 uint64_t va = rdst->gpu_address + offset;
254
255 offset += dma_clear_size;
256 size -= dma_clear_size;
257
258 /* Flush the caches. */
259 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
260 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
261
262 while (dma_clear_size) {
263 unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
264 unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
265
266 si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
267 &is_first, &dma_flags);
268
269 /* Emit the clear packet. */
270 si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
271
272 dma_clear_size -= byte_count;
273 va += byte_count;
274 }
275
276 if (tc_l2_flag)
277 rdst->TC_L2_dirty = true;
278
279 /* If it's not a framebuffer fast clear... */
280 if (coher == R600_COHERENCY_SHADER)
281 sctx->b.num_cp_dma_calls++;
282 }
283
284 if (size) {
285 /* Handle non-dword alignment.
286 *
287 * This function is called for embedded texture metadata clears,
288 * but those should always be properly aligned. */
289 assert(dst->target == PIPE_BUFFER);
290 assert(size < 4);
291
292 pipe_buffer_write(ctx, dst, offset, size, &value);
293 }
294 }
295
296 /**
297 * Realign the CP DMA engine. This must be done after a copy with an unaligned
298 * size.
299 *
300 * \param size Remaining size to the CP DMA alignment.
301 */
302 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
303 unsigned user_flags, bool *is_first)
304 {
305 uint64_t va;
306 unsigned dma_flags = 0;
307 unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
308
309 assert(size < SI_CPDMA_ALIGNMENT);
310
311 /* Use the scratch buffer as the dummy buffer. The 3D engine should be
312 * idle at this point.
313 */
314 if (!sctx->scratch_buffer ||
315 sctx->scratch_buffer->b.b.width0 < scratch_size) {
316 r600_resource_reference(&sctx->scratch_buffer, NULL);
317 sctx->scratch_buffer = (struct r600_resource*)
318 si_aligned_buffer_create(&sctx->screen->b.b,
319 R600_RESOURCE_FLAG_UNMAPPABLE,
320 PIPE_USAGE_DEFAULT,
321 scratch_size, 256);
322 if (!sctx->scratch_buffer)
323 return;
324
325 si_mark_atom_dirty(sctx, &sctx->scratch_state);
326 }
327
328 si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
329 &sctx->scratch_buffer->b.b, size, size, user_flags,
330 is_first, &dma_flags);
331
332 va = sctx->scratch_buffer->gpu_address;
333 si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
334 R600_COHERENCY_SHADER);
335 }
336
337 /**
338 * Do memcpy between buffers using CP DMA.
339 *
340 * \param user_flags bitmask of SI_CPDMA_*
341 */
342 void si_copy_buffer(struct si_context *sctx,
343 struct pipe_resource *dst, struct pipe_resource *src,
344 uint64_t dst_offset, uint64_t src_offset, unsigned size,
345 unsigned user_flags)
346 {
347 uint64_t main_dst_offset, main_src_offset;
348 unsigned skipped_size = 0;
349 unsigned realign_size = 0;
350 unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
351 unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
352 bool is_first = true;
353
354 if (!size)
355 return;
356
357 if (dst != src || dst_offset != src_offset) {
358 /* Mark the buffer range of destination as valid (initialized),
359 * so that transfer_map knows it should wait for the GPU when mapping
360 * that range. */
361 util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
362 dst_offset + size);
363 }
364
365 dst_offset += r600_resource(dst)->gpu_address;
366 src_offset += r600_resource(src)->gpu_address;
367
368 /* The workarounds aren't needed on Fiji and beyond. */
369 if (sctx->b.family <= CHIP_CARRIZO ||
370 sctx->b.family == CHIP_STONEY) {
371 /* If the size is not aligned, we must add a dummy copy at the end
372 * just to align the internal counter. Otherwise, the DMA engine
373 * would slow down by an order of magnitude for following copies.
374 */
375 if (size % SI_CPDMA_ALIGNMENT)
376 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
377
378 /* If the copy begins unaligned, we must start copying from the next
379 * aligned block and the skipped part should be copied after everything
380 * else has been copied. Only the src alignment matters, not dst.
381 */
382 if (src_offset % SI_CPDMA_ALIGNMENT) {
383 skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
384 /* The main part will be skipped if the size is too small. */
385 skipped_size = MIN2(skipped_size, size);
386 size -= skipped_size;
387 }
388 }
389
390 /* Flush the caches. */
391 if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
392 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
393 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
394
395 /* This is the main part doing the copying. Src is always aligned. */
396 main_dst_offset = dst_offset + skipped_size;
397 main_src_offset = src_offset + skipped_size;
398
399 while (size) {
400 unsigned dma_flags = tc_l2_flag;
401 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
402
403 si_cp_dma_prepare(sctx, dst, src, byte_count,
404 size + skipped_size + realign_size,
405 user_flags, &is_first, &dma_flags);
406
407 si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
408 byte_count, dma_flags, R600_COHERENCY_SHADER);
409
410 size -= byte_count;
411 main_src_offset += byte_count;
412 main_dst_offset += byte_count;
413 }
414
415 /* Copy the part we skipped because src wasn't aligned. */
416 if (skipped_size) {
417 unsigned dma_flags = tc_l2_flag;
418
419 si_cp_dma_prepare(sctx, dst, src, skipped_size,
420 skipped_size + realign_size, user_flags,
421 &is_first, &dma_flags);
422
423 si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
424 dma_flags, R600_COHERENCY_SHADER);
425 }
426
427 /* Finally, realign the engine if the size wasn't aligned. */
428 if (realign_size)
429 si_cp_dma_realign_engine(sctx, realign_size, user_flags,
430 &is_first);
431
432 if (tc_l2_flag)
433 r600_resource(dst)->TC_L2_dirty = true;
434
435 /* If it's not a prefetch... */
436 if (dst_offset != src_offset)
437 sctx->b.num_cp_dma_calls++;
438 }
439
440 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
441 uint64_t offset, unsigned size)
442 {
443 assert(sctx->b.chip_class >= CIK);
444
445 si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
446 }
447
448 static void cik_prefetch_shader_async(struct si_context *sctx,
449 struct si_pm4_state *state)
450 {
451 struct pipe_resource *bo = &state->bo[0]->b.b;
452 assert(state->nbo == 1);
453
454 cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
455 }
456
457 static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
458 {
459 if (!sctx->vertex_elements)
460 return;
461
462 cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b,
463 sctx->vertex_buffers.buffer_offset,
464 sctx->vertex_elements->desc_list_byte_size);
465 }
466
467 void cik_emit_prefetch_L2(struct si_context *sctx)
468 {
469 /* Prefetch shaders and VBO descriptors to TC L2. */
470 if (sctx->b.chip_class >= GFX9) {
471 /* Choose the right spot for the VBO prefetch. */
472 if (sctx->tes_shader.cso) {
473 if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
474 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
475 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
476 cik_prefetch_VBO_descriptors(sctx);
477 if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
478 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
479 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
480 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
481 } else if (sctx->gs_shader.cso) {
482 if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
483 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
484 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
485 cik_prefetch_VBO_descriptors(sctx);
486 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
487 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
488 } else {
489 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
490 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
491 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
492 cik_prefetch_VBO_descriptors(sctx);
493 }
494 } else {
495 /* SI-CI-VI */
496 /* Choose the right spot for the VBO prefetch. */
497 if (sctx->tes_shader.cso) {
498 if (sctx->prefetch_L2_mask & SI_PREFETCH_LS)
499 cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
500 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
501 cik_prefetch_VBO_descriptors(sctx);
502 if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
503 cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
504 if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
505 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
506 if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
507 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
508 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
509 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
510 } else if (sctx->gs_shader.cso) {
511 if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
512 cik_prefetch_shader_async(sctx, sctx->queued.named.es);
513 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
514 cik_prefetch_VBO_descriptors(sctx);
515 if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
516 cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
517 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
518 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
519 } else {
520 if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
521 cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
522 if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
523 cik_prefetch_VBO_descriptors(sctx);
524 }
525 }
526
527 if (sctx->prefetch_L2_mask & SI_PREFETCH_PS)
528 cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
529
530 sctx->prefetch_L2_mask = 0;
531 }
532
533 void si_init_cp_dma_functions(struct si_context *sctx)
534 {
535 sctx->b.clear_buffer = si_clear_buffer;
536 }