radeonsi: fix the top-of-pipe fence on SI
[mesa.git] / src / gallium / drivers / radeonsi / si_fence.c
1 /*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include <libsync.h>
27
28 #include "util/os_time.h"
29 #include "util/u_memory.h"
30 #include "util/u_queue.h"
31 #include "util/u_upload_mgr.h"
32
33 #include "si_build_pm4.h"
34
35 struct si_fine_fence {
36 struct r600_resource *buf;
37 unsigned offset;
38 };
39
40 struct si_multi_fence {
41 struct pipe_reference reference;
42 struct pipe_fence_handle *gfx;
43 struct pipe_fence_handle *sdma;
44 struct tc_unflushed_batch_token *tc_token;
45 struct util_queue_fence ready;
46
47 /* If the context wasn't flushed at fence creation, this is non-NULL. */
48 struct {
49 struct si_context *ctx;
50 unsigned ib_index;
51 } gfx_unflushed;
52
53 struct si_fine_fence fine;
54 };
55
56 /**
57 * Write an EOP event.
58 *
59 * \param event EVENT_TYPE_*
60 * \param event_flags Optional cache flush flags (TC)
61 * \param dst_sel MEM or TC_L2
62 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
63 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
64 * \param buf Buffer
65 * \param va GPU address
66 * \param old_value Previous fence value (for a bug workaround)
67 * \param new_value Fence value to write for this event.
68 */
69 void si_cp_release_mem(struct si_context *ctx,
70 unsigned event, unsigned event_flags,
71 unsigned dst_sel, unsigned int_sel, unsigned data_sel,
72 struct r600_resource *buf, uint64_t va,
73 uint32_t new_fence, unsigned query_type)
74 {
75 struct radeon_cmdbuf *cs = ctx->gfx_cs;
76 unsigned op = EVENT_TYPE(event) |
77 EVENT_INDEX(event == V_028A90_CS_DONE ||
78 event == V_028A90_PS_DONE ? 6 : 5) |
79 event_flags;
80 unsigned sel = EOP_DST_SEL(dst_sel) |
81 EOP_INT_SEL(int_sel) |
82 EOP_DATA_SEL(data_sel);
83
84 if (ctx->chip_class >= GFX9) {
85 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
86 * counters) must immediately precede every timestamp event to
87 * prevent a GPU hang on GFX9.
88 *
89 * Occlusion queries don't need to do it here, because they
90 * always do ZPASS_DONE before the timestamp.
91 */
92 if (ctx->chip_class == GFX9 &&
93 query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
94 query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
95 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
96 struct r600_resource *scratch = ctx->eop_bug_scratch;
97
98 assert(16 * ctx->screen->info.num_render_backends <=
99 scratch->b.b.width0);
100 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
101 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
102 radeon_emit(cs, scratch->gpu_address);
103 radeon_emit(cs, scratch->gpu_address >> 32);
104
105 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
106 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
107 }
108
109 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
110 radeon_emit(cs, op);
111 radeon_emit(cs, sel);
112 radeon_emit(cs, va); /* address lo */
113 radeon_emit(cs, va >> 32); /* address hi */
114 radeon_emit(cs, new_fence); /* immediate data lo */
115 radeon_emit(cs, 0); /* immediate data hi */
116 radeon_emit(cs, 0); /* unused */
117 } else {
118 if (ctx->chip_class == CIK ||
119 ctx->chip_class == VI) {
120 struct r600_resource *scratch = ctx->eop_bug_scratch;
121 uint64_t va = scratch->gpu_address;
122
123 /* Two EOP events are required to make all engines go idle
124 * (and optional cache flushes executed) before the timestamp
125 * is written.
126 */
127 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
128 radeon_emit(cs, op);
129 radeon_emit(cs, va);
130 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
131 radeon_emit(cs, 0); /* immediate data */
132 radeon_emit(cs, 0); /* unused */
133
134 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
135 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
136 }
137
138 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
139 radeon_emit(cs, op);
140 radeon_emit(cs, va);
141 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
142 radeon_emit(cs, new_fence); /* immediate data */
143 radeon_emit(cs, 0); /* unused */
144 }
145
146 if (buf) {
147 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE,
148 RADEON_PRIO_QUERY);
149 }
150 }
151
152 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
153 {
154 unsigned dwords = 6;
155
156 if (screen->info.chip_class == CIK ||
157 screen->info.chip_class == VI)
158 dwords *= 2;
159
160 return dwords;
161 }
162
163 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs,
164 uint64_t va, uint32_t ref, uint32_t mask, unsigned flags)
165 {
166 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
167 radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
168 radeon_emit(cs, va);
169 radeon_emit(cs, va >> 32);
170 radeon_emit(cs, ref); /* reference value */
171 radeon_emit(cs, mask); /* mask */
172 radeon_emit(cs, 4); /* poll interval */
173 }
174
175 static void si_add_fence_dependency(struct si_context *sctx,
176 struct pipe_fence_handle *fence)
177 {
178 struct radeon_winsys *ws = sctx->ws;
179
180 if (sctx->dma_cs)
181 ws->cs_add_fence_dependency(sctx->dma_cs, fence);
182 ws->cs_add_fence_dependency(sctx->gfx_cs, fence);
183 }
184
185 static void si_add_syncobj_signal(struct si_context *sctx,
186 struct pipe_fence_handle *fence)
187 {
188 sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
189 }
190
191 static void si_fence_reference(struct pipe_screen *screen,
192 struct pipe_fence_handle **dst,
193 struct pipe_fence_handle *src)
194 {
195 struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
196 struct si_multi_fence **rdst = (struct si_multi_fence **)dst;
197 struct si_multi_fence *rsrc = (struct si_multi_fence *)src;
198
199 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
200 ws->fence_reference(&(*rdst)->gfx, NULL);
201 ws->fence_reference(&(*rdst)->sdma, NULL);
202 tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL);
203 r600_resource_reference(&(*rdst)->fine.buf, NULL);
204 FREE(*rdst);
205 }
206 *rdst = rsrc;
207 }
208
209 static struct si_multi_fence *si_create_multi_fence()
210 {
211 struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
212 if (!fence)
213 return NULL;
214
215 pipe_reference_init(&fence->reference, 1);
216 util_queue_fence_init(&fence->ready);
217
218 return fence;
219 }
220
221 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
222 struct tc_unflushed_batch_token *tc_token)
223 {
224 struct si_multi_fence *fence = si_create_multi_fence();
225 if (!fence)
226 return NULL;
227
228 util_queue_fence_reset(&fence->ready);
229 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
230
231 return (struct pipe_fence_handle *)fence;
232 }
233
234 static bool si_fine_fence_signaled(struct radeon_winsys *rws,
235 const struct si_fine_fence *fine)
236 {
237 char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
238 PIPE_TRANSFER_UNSYNCHRONIZED);
239 if (!map)
240 return false;
241
242 uint32_t *fence = (uint32_t*)(map + fine->offset);
243 return *fence != 0;
244 }
245
246 static void si_fine_fence_set(struct si_context *ctx,
247 struct si_fine_fence *fine,
248 unsigned flags)
249 {
250 uint32_t *fence_ptr;
251
252 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
253
254 /* Use uncached system memory for the fence. */
255 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4,
256 &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
257 if (!fine->buf)
258 return;
259
260 *fence_ptr = 0;
261
262 uint64_t fence_va = fine->buf->gpu_address + fine->offset;
263
264 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf,
265 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
266 if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
267 struct radeon_cmdbuf *cs = ctx->gfx_cs;
268 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
269 radeon_emit(cs, S_370_DST_SEL(ctx->chip_class >= CIK ? V_370_MEM
270 : V_370_MEM_GRBM) |
271 S_370_WR_CONFIRM(1) |
272 S_370_ENGINE_SEL(V_370_PFP));
273 radeon_emit(cs, fence_va);
274 radeon_emit(cs, fence_va >> 32);
275 radeon_emit(cs, 0x80000000);
276 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
277 si_cp_release_mem(ctx,
278 V_028A90_BOTTOM_OF_PIPE_TS, 0,
279 EOP_DST_SEL_MEM, EOP_INT_SEL_NONE,
280 EOP_DATA_SEL_VALUE_32BIT,
281 NULL, fence_va, 0x80000000,
282 PIPE_QUERY_GPU_FINISHED);
283 } else {
284 assert(false);
285 }
286 }
287
288 static boolean si_fence_finish(struct pipe_screen *screen,
289 struct pipe_context *ctx,
290 struct pipe_fence_handle *fence,
291 uint64_t timeout)
292 {
293 struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
294 struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
295 struct si_context *sctx;
296 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
297
298 ctx = threaded_context_unwrap_sync(ctx);
299 sctx = (struct si_context*)(ctx ? ctx : NULL);
300
301 if (!util_queue_fence_is_signalled(&rfence->ready)) {
302 if (rfence->tc_token) {
303 /* Ensure that si_flush_from_st will be called for
304 * this fence, but only if we're in the API thread
305 * where the context is current.
306 *
307 * Note that the batch containing the flush may already
308 * be in flight in the driver thread, so the fence
309 * may not be ready yet when this call returns.
310 */
311 threaded_context_flush(ctx, rfence->tc_token,
312 timeout == 0);
313 }
314
315 if (!timeout)
316 return false;
317
318 if (timeout == PIPE_TIMEOUT_INFINITE) {
319 util_queue_fence_wait(&rfence->ready);
320 } else {
321 if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout))
322 return false;
323 }
324
325 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
326 int64_t time = os_time_get_nano();
327 timeout = abs_timeout > time ? abs_timeout - time : 0;
328 }
329 }
330
331 if (rfence->sdma) {
332 if (!rws->fence_wait(rws, rfence->sdma, timeout))
333 return false;
334
335 /* Recompute the timeout after waiting. */
336 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
337 int64_t time = os_time_get_nano();
338 timeout = abs_timeout > time ? abs_timeout - time : 0;
339 }
340 }
341
342 if (!rfence->gfx)
343 return true;
344
345 if (rfence->fine.buf &&
346 si_fine_fence_signaled(rws, &rfence->fine)) {
347 rws->fence_reference(&rfence->gfx, NULL);
348 r600_resource_reference(&rfence->fine.buf, NULL);
349 return true;
350 }
351
352 /* Flush the gfx IB if it hasn't been flushed yet. */
353 if (sctx && rfence->gfx_unflushed.ctx == sctx &&
354 rfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
355 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
356 * spec says:
357 *
358 * "If the sync object being blocked upon will not be
359 * signaled in finite time (for example, by an associated
360 * fence command issued previously, but not yet flushed to
361 * the graphics pipeline), then ClientWaitSync may hang
362 * forever. To help prevent this behavior, if
363 * ClientWaitSync is called and all of the following are
364 * true:
365 *
366 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
367 * * sync is unsignaled when ClientWaitSync is called,
368 * * and the calls to ClientWaitSync and FenceSync were
369 * issued from the same context,
370 *
371 * then the GL will behave as if the equivalent of Flush
372 * were inserted immediately after the creation of sync."
373 *
374 * This means we need to flush for such fences even when we're
375 * not going to wait.
376 */
377 si_flush_gfx_cs(sctx,
378 (timeout ? 0 : PIPE_FLUSH_ASYNC) |
379 RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
380 NULL);
381 rfence->gfx_unflushed.ctx = NULL;
382
383 if (!timeout)
384 return false;
385
386 /* Recompute the timeout after all that. */
387 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
388 int64_t time = os_time_get_nano();
389 timeout = abs_timeout > time ? abs_timeout - time : 0;
390 }
391 }
392
393 if (rws->fence_wait(rws, rfence->gfx, timeout))
394 return true;
395
396 /* Re-check in case the GPU is slow or hangs, but the commands before
397 * the fine-grained fence have completed. */
398 if (rfence->fine.buf &&
399 si_fine_fence_signaled(rws, &rfence->fine))
400 return true;
401
402 return false;
403 }
404
405 static void si_create_fence_fd(struct pipe_context *ctx,
406 struct pipe_fence_handle **pfence, int fd,
407 enum pipe_fd_type type)
408 {
409 struct si_screen *sscreen = (struct si_screen*)ctx->screen;
410 struct radeon_winsys *ws = sscreen->ws;
411 struct si_multi_fence *rfence;
412
413 *pfence = NULL;
414
415 rfence = si_create_multi_fence();
416 if (!rfence)
417 return;
418
419 switch (type) {
420 case PIPE_FD_TYPE_NATIVE_SYNC:
421 if (!sscreen->info.has_fence_to_handle)
422 goto finish;
423
424 rfence->gfx = ws->fence_import_sync_file(ws, fd);
425 break;
426
427 case PIPE_FD_TYPE_SYNCOBJ:
428 if (!sscreen->info.has_syncobj)
429 goto finish;
430
431 rfence->gfx = ws->fence_import_syncobj(ws, fd);
432 break;
433
434 default:
435 unreachable("bad fence fd type when importing");
436 }
437
438 finish:
439 if (!rfence->gfx) {
440 FREE(rfence);
441 return;
442 }
443
444 *pfence = (struct pipe_fence_handle*)rfence;
445 }
446
447 static int si_fence_get_fd(struct pipe_screen *screen,
448 struct pipe_fence_handle *fence)
449 {
450 struct si_screen *sscreen = (struct si_screen*)screen;
451 struct radeon_winsys *ws = sscreen->ws;
452 struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
453 int gfx_fd = -1, sdma_fd = -1;
454
455 if (!sscreen->info.has_fence_to_handle)
456 return -1;
457
458 util_queue_fence_wait(&rfence->ready);
459
460 /* Deferred fences aren't supported. */
461 assert(!rfence->gfx_unflushed.ctx);
462 if (rfence->gfx_unflushed.ctx)
463 return -1;
464
465 if (rfence->sdma) {
466 sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma);
467 if (sdma_fd == -1)
468 return -1;
469 }
470 if (rfence->gfx) {
471 gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx);
472 if (gfx_fd == -1) {
473 if (sdma_fd != -1)
474 close(sdma_fd);
475 return -1;
476 }
477 }
478
479 /* If we don't have FDs at this point, it means we don't have fences
480 * either. */
481 if (sdma_fd == -1 && gfx_fd == -1)
482 return ws->export_signalled_sync_file(ws);
483 if (sdma_fd == -1)
484 return gfx_fd;
485 if (gfx_fd == -1)
486 return sdma_fd;
487
488 /* Get a fence that will be a combination of both fences. */
489 sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
490 close(sdma_fd);
491 return gfx_fd;
492 }
493
494 static void si_flush_from_st(struct pipe_context *ctx,
495 struct pipe_fence_handle **fence,
496 unsigned flags)
497 {
498 struct pipe_screen *screen = ctx->screen;
499 struct si_context *sctx = (struct si_context *)ctx;
500 struct radeon_winsys *ws = sctx->ws;
501 struct pipe_fence_handle *gfx_fence = NULL;
502 struct pipe_fence_handle *sdma_fence = NULL;
503 bool deferred_fence = false;
504 struct si_fine_fence fine = {};
505 unsigned rflags = PIPE_FLUSH_ASYNC;
506
507 if (flags & PIPE_FLUSH_END_OF_FRAME)
508 rflags |= PIPE_FLUSH_END_OF_FRAME;
509
510 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
511 assert(flags & PIPE_FLUSH_DEFERRED);
512 assert(fence);
513
514 si_fine_fence_set(sctx, &fine, flags);
515 }
516
517 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
518 if (sctx->dma_cs)
519 si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
520
521 if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
522 if (fence)
523 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
524 if (!(flags & PIPE_FLUSH_DEFERRED))
525 ws->cs_sync_flush(sctx->gfx_cs);
526 } else {
527 /* Instead of flushing, create a deferred fence. Constraints:
528 * - The state tracker must allow a deferred flush.
529 * - The state tracker must request a fence.
530 * - fence_get_fd is not allowed.
531 * Thread safety in fence_finish must be ensured by the state tracker.
532 */
533 if (flags & PIPE_FLUSH_DEFERRED &&
534 !(flags & PIPE_FLUSH_FENCE_FD) &&
535 fence) {
536 gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
537 deferred_fence = true;
538 } else {
539 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
540 }
541 }
542
543 /* Both engines can signal out of order, so we need to keep both fences. */
544 if (fence) {
545 struct si_multi_fence *multi_fence;
546
547 if (flags & TC_FLUSH_ASYNC) {
548 multi_fence = (struct si_multi_fence *)*fence;
549 assert(multi_fence);
550 } else {
551 multi_fence = si_create_multi_fence();
552 if (!multi_fence) {
553 ws->fence_reference(&sdma_fence, NULL);
554 ws->fence_reference(&gfx_fence, NULL);
555 goto finish;
556 }
557
558 screen->fence_reference(screen, fence, NULL);
559 *fence = (struct pipe_fence_handle*)multi_fence;
560 }
561
562 /* If both fences are NULL, fence_finish will always return true. */
563 multi_fence->gfx = gfx_fence;
564 multi_fence->sdma = sdma_fence;
565
566 if (deferred_fence) {
567 multi_fence->gfx_unflushed.ctx = sctx;
568 multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
569 }
570
571 multi_fence->fine = fine;
572 fine.buf = NULL;
573
574 if (flags & TC_FLUSH_ASYNC) {
575 util_queue_fence_signal(&multi_fence->ready);
576 tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
577 }
578 }
579 assert(!fine.buf);
580 finish:
581 if (!(flags & PIPE_FLUSH_DEFERRED)) {
582 if (sctx->dma_cs)
583 ws->cs_sync_flush(sctx->dma_cs);
584 ws->cs_sync_flush(sctx->gfx_cs);
585 }
586 }
587
588 static void si_fence_server_signal(struct pipe_context *ctx,
589 struct pipe_fence_handle *fence)
590 {
591 struct si_context *sctx = (struct si_context *)ctx;
592 struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
593
594 /* We should have at least one syncobj to signal */
595 assert(rfence->sdma || rfence->gfx);
596
597 if (rfence->sdma)
598 si_add_syncobj_signal(sctx, rfence->sdma);
599 if (rfence->gfx)
600 si_add_syncobj_signal(sctx, rfence->gfx);
601
602 /**
603 * The spec does not require a flush here. We insert a flush
604 * because syncobj based signals are not directly placed into
605 * the command stream. Instead the signal happens when the
606 * submission associated with the syncobj finishes execution.
607 *
608 * Therefore, we must make sure that we flush the pipe to avoid
609 * new work being emitted and getting executed before the signal
610 * operation.
611 */
612 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
613 }
614
615 static void si_fence_server_sync(struct pipe_context *ctx,
616 struct pipe_fence_handle *fence)
617 {
618 struct si_context *sctx = (struct si_context *)ctx;
619 struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
620
621 util_queue_fence_wait(&rfence->ready);
622
623 /* Unflushed fences from the same context are no-ops. */
624 if (rfence->gfx_unflushed.ctx &&
625 rfence->gfx_unflushed.ctx == sctx)
626 return;
627
628 /* All unflushed commands will not start execution before
629 * this fence dependency is signalled.
630 *
631 * Therefore we must flush before inserting the dependency
632 */
633 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
634
635 if (rfence->sdma)
636 si_add_fence_dependency(sctx, rfence->sdma);
637 if (rfence->gfx)
638 si_add_fence_dependency(sctx, rfence->gfx);
639 }
640
641 void si_init_fence_functions(struct si_context *ctx)
642 {
643 ctx->b.flush = si_flush_from_st;
644 ctx->b.create_fence_fd = si_create_fence_fd;
645 ctx->b.fence_server_sync = si_fence_server_sync;
646 ctx->b.fence_server_signal = si_fence_server_signal;
647 }
648
649 void si_init_screen_fence_functions(struct si_screen *screen)
650 {
651 screen->b.fence_finish = si_fence_finish;
652 screen->b.fence_reference = si_fence_reference;
653 screen->b.fence_get_fd = si_fence_get_fd;
654 }