00264b57963020059d5de896b189ba58201ba952
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Tom Stellard <thomas.stellard@amd.com>
25 * Michel Dänzer <michel.daenzer@amd.com>
26 * Christian König <christian.koenig@amd.com>
27 */
28
29 #include "gallivm/lp_bld_const.h"
30 #include "gallivm/lp_bld_gather.h"
31 #include "gallivm/lp_bld_intr.h"
32 #include "gallivm/lp_bld_logic.h"
33 #include "gallivm/lp_bld_arit.h"
34 #include "gallivm/lp_bld_flow.h"
35 #include "gallivm/lp_bld_misc.h"
36 #include "util/u_memory.h"
37 #include "util/u_string.h"
38 #include "tgsi/tgsi_build.h"
39 #include "tgsi/tgsi_util.h"
40 #include "tgsi/tgsi_dump.h"
41
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "si_shader_internal.h"
45 #include "si_pipe.h"
46 #include "sid.h"
47
48
49 static const char *scratch_rsrc_dword0_symbol =
50 "SCRATCH_RSRC_DWORD0";
51
52 static const char *scratch_rsrc_dword1_symbol =
53 "SCRATCH_RSRC_DWORD1";
54
55 struct si_shader_output_values
56 {
57 LLVMValueRef values[4];
58 unsigned semantic_name;
59 unsigned semantic_index;
60 ubyte vertex_stream[4];
61 };
62
63 static void si_init_shader_ctx(struct si_shader_context *ctx,
64 struct si_screen *sscreen,
65 struct si_shader *shader,
66 LLVMTargetMachineRef tm);
67
68 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
69 struct lp_build_tgsi_context *bld_base,
70 struct lp_build_emit_data *emit_data);
71
72 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
73 FILE *f);
74
75 static unsigned llvm_get_type_size(LLVMTypeRef type);
76
77 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
78 union si_shader_part_key *key);
79 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
80 union si_shader_part_key *key);
81 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87
88 /* Ideally pass the sample mask input to the PS epilog as v13, which
89 * is its usual location, so that the shader doesn't have to add v_mov.
90 */
91 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 13
92
93 /* The VS location of the PrimitiveID input is the same in the epilog,
94 * so that the main shader part doesn't have to move it.
95 */
96 #define VS_EPILOG_PRIMID_LOC 2
97
98 enum {
99 CONST_ADDR_SPACE = 2,
100 LOCAL_ADDR_SPACE = 3,
101 };
102
103 /**
104 * Returns a unique index for a semantic name and index. The index must be
105 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
106 * calculated.
107 */
108 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
109 {
110 switch (semantic_name) {
111 case TGSI_SEMANTIC_POSITION:
112 return 0;
113 case TGSI_SEMANTIC_PSIZE:
114 return 1;
115 case TGSI_SEMANTIC_CLIPDIST:
116 assert(index <= 1);
117 return 2 + index;
118 case TGSI_SEMANTIC_GENERIC:
119 if (index <= 63-4)
120 return 4 + index;
121
122 assert(!"invalid generic index");
123 return 0;
124
125 /* patch indices are completely separate and thus start from 0 */
126 case TGSI_SEMANTIC_TESSOUTER:
127 return 0;
128 case TGSI_SEMANTIC_TESSINNER:
129 return 1;
130 case TGSI_SEMANTIC_PATCH:
131 return 2 + index;
132
133 default:
134 assert(!"invalid semantic name");
135 return 0;
136 }
137 }
138
139 unsigned si_shader_io_get_unique_index2(unsigned name, unsigned index)
140 {
141 switch (name) {
142 case TGSI_SEMANTIC_FOG:
143 return 0;
144 case TGSI_SEMANTIC_LAYER:
145 return 1;
146 case TGSI_SEMANTIC_VIEWPORT_INDEX:
147 return 2;
148 case TGSI_SEMANTIC_PRIMID:
149 return 3;
150 case TGSI_SEMANTIC_COLOR: /* these alias */
151 case TGSI_SEMANTIC_BCOLOR:
152 return 4 + index;
153 case TGSI_SEMANTIC_TEXCOORD:
154 return 6 + index;
155 default:
156 assert(!"invalid semantic name");
157 return 0;
158 }
159 }
160
161 /**
162 * Get the value of a shader input parameter and extract a bitfield.
163 */
164 static LLVMValueRef unpack_param(struct si_shader_context *ctx,
165 unsigned param, unsigned rshift,
166 unsigned bitwidth)
167 {
168 struct gallivm_state *gallivm = &ctx->gallivm;
169 LLVMValueRef value = LLVMGetParam(ctx->main_fn,
170 param);
171
172 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
173 value = bitcast(&ctx->bld_base,
174 TGSI_TYPE_UNSIGNED, value);
175
176 if (rshift)
177 value = LLVMBuildLShr(gallivm->builder, value,
178 LLVMConstInt(ctx->i32, rshift, 0), "");
179
180 if (rshift + bitwidth < 32) {
181 unsigned mask = (1 << bitwidth) - 1;
182 value = LLVMBuildAnd(gallivm->builder, value,
183 LLVMConstInt(ctx->i32, mask, 0), "");
184 }
185
186 return value;
187 }
188
189 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
190 {
191 switch (ctx->type) {
192 case PIPE_SHADER_TESS_CTRL:
193 return unpack_param(ctx, SI_PARAM_REL_IDS, 0, 8);
194
195 case PIPE_SHADER_TESS_EVAL:
196 return LLVMGetParam(ctx->main_fn,
197 ctx->param_tes_rel_patch_id);
198
199 default:
200 assert(0);
201 return NULL;
202 }
203 }
204
205 /* Tessellation shaders pass outputs to the next shader using LDS.
206 *
207 * LS outputs = TCS inputs
208 * TCS outputs = TES inputs
209 *
210 * The LDS layout is:
211 * - TCS inputs for patch 0
212 * - TCS inputs for patch 1
213 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
214 * - ...
215 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
216 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
217 * - TCS outputs for patch 1
218 * - Per-patch TCS outputs for patch 1
219 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
220 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
221 * - ...
222 *
223 * All three shaders VS(LS), TCS, TES share the same LDS space.
224 */
225
226 static LLVMValueRef
227 get_tcs_in_patch_stride(struct si_shader_context *ctx)
228 {
229 if (ctx->type == PIPE_SHADER_VERTEX)
230 return unpack_param(ctx, SI_PARAM_VS_STATE_BITS, 8, 13);
231 else if (ctx->type == PIPE_SHADER_TESS_CTRL)
232 return unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 8, 13);
233 else {
234 assert(0);
235 return NULL;
236 }
237 }
238
239 static LLVMValueRef
240 get_tcs_out_patch_stride(struct si_shader_context *ctx)
241 {
242 return unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13);
243 }
244
245 static LLVMValueRef
246 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
247 {
248 return lp_build_mul_imm(&ctx->bld_base.uint_bld,
249 unpack_param(ctx,
250 SI_PARAM_TCS_OUT_OFFSETS,
251 0, 16),
252 4);
253 }
254
255 static LLVMValueRef
256 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
257 {
258 return lp_build_mul_imm(&ctx->bld_base.uint_bld,
259 unpack_param(ctx,
260 SI_PARAM_TCS_OUT_OFFSETS,
261 16, 16),
262 4);
263 }
264
265 static LLVMValueRef
266 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
267 {
268 struct gallivm_state *gallivm = &ctx->gallivm;
269 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
270 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
271
272 return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, "");
273 }
274
275 static LLVMValueRef
276 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
277 {
278 struct gallivm_state *gallivm = &ctx->gallivm;
279 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
280 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
281 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
282
283 return LLVMBuildAdd(gallivm->builder, patch0_offset,
284 LLVMBuildMul(gallivm->builder, patch_stride,
285 rel_patch_id, ""),
286 "");
287 }
288
289 static LLVMValueRef
290 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
291 {
292 struct gallivm_state *gallivm = &ctx->gallivm;
293 LLVMValueRef patch0_patch_data_offset =
294 get_tcs_out_patch0_patch_data_offset(ctx);
295 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
296 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
297
298 return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset,
299 LLVMBuildMul(gallivm->builder, patch_stride,
300 rel_patch_id, ""),
301 "");
302 }
303
304 static LLVMValueRef get_instance_index_for_fetch(
305 struct si_shader_context *ctx,
306 unsigned param_start_instance, unsigned divisor)
307 {
308 struct gallivm_state *gallivm = &ctx->gallivm;
309
310 LLVMValueRef result = LLVMGetParam(ctx->main_fn,
311 ctx->param_instance_id);
312
313 /* The division must be done before START_INSTANCE is added. */
314 if (divisor > 1)
315 result = LLVMBuildUDiv(gallivm->builder, result,
316 LLVMConstInt(ctx->i32, divisor, 0), "");
317
318 return LLVMBuildAdd(gallivm->builder, result,
319 LLVMGetParam(ctx->main_fn, param_start_instance), "");
320 }
321
322 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
323 * to float. */
324 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
325 LLVMValueRef vec4,
326 unsigned double_index)
327 {
328 LLVMBuilderRef builder = ctx->gallivm.builder;
329 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->gallivm.context);
330 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
331 LLVMVectorType(f64, 2), "");
332 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
333 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
334 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
335 }
336
337 static void declare_input_vs(
338 struct si_shader_context *ctx,
339 unsigned input_index,
340 const struct tgsi_full_declaration *decl,
341 LLVMValueRef out[4])
342 {
343 struct gallivm_state *gallivm = &ctx->gallivm;
344
345 unsigned chan;
346 unsigned fix_fetch;
347 unsigned num_fetches;
348 unsigned fetch_stride;
349
350 LLVMValueRef t_list_ptr;
351 LLVMValueRef t_offset;
352 LLVMValueRef t_list;
353 LLVMValueRef vertex_index;
354 LLVMValueRef input[3];
355
356 /* Load the T list */
357 t_list_ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_VERTEX_BUFFERS);
358
359 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
360
361 t_list = ac_build_indexed_load_const(&ctx->ac, t_list_ptr, t_offset);
362
363 vertex_index = LLVMGetParam(ctx->main_fn,
364 ctx->param_vertex_index0 +
365 input_index);
366
367 fix_fetch = ctx->shader->key.mono.vs.fix_fetch[input_index];
368
369 /* Do multiple loads for special formats. */
370 switch (fix_fetch) {
371 case SI_FIX_FETCH_RGB_64_FLOAT:
372 num_fetches = 3; /* 3 2-dword loads */
373 fetch_stride = 8;
374 break;
375 case SI_FIX_FETCH_RGBA_64_FLOAT:
376 num_fetches = 2; /* 2 4-dword loads */
377 fetch_stride = 16;
378 break;
379 case SI_FIX_FETCH_RGB_8:
380 case SI_FIX_FETCH_RGB_8_INT:
381 num_fetches = 3;
382 fetch_stride = 1;
383 break;
384 case SI_FIX_FETCH_RGB_16:
385 case SI_FIX_FETCH_RGB_16_INT:
386 num_fetches = 3;
387 fetch_stride = 2;
388 break;
389 default:
390 num_fetches = 1;
391 fetch_stride = 0;
392 }
393
394 for (unsigned i = 0; i < num_fetches; i++) {
395 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
396
397 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
398 vertex_index, voffset,
399 true);
400 }
401
402 /* Break up the vec4 into individual components */
403 for (chan = 0; chan < 4; chan++) {
404 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
405 out[chan] = LLVMBuildExtractElement(gallivm->builder,
406 input[0], llvm_chan, "");
407 }
408
409 switch (fix_fetch) {
410 case SI_FIX_FETCH_A2_SNORM:
411 case SI_FIX_FETCH_A2_SSCALED:
412 case SI_FIX_FETCH_A2_SINT: {
413 /* The hardware returns an unsigned value; convert it to a
414 * signed one.
415 */
416 LLVMValueRef tmp = out[3];
417 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
418
419 /* First, recover the sign-extended signed integer value. */
420 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
421 tmp = LLVMBuildFPToUI(gallivm->builder, tmp, ctx->i32, "");
422 else
423 tmp = LLVMBuildBitCast(gallivm->builder, tmp, ctx->i32, "");
424
425 /* For the integer-like cases, do a natural sign extension.
426 *
427 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
428 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
429 * exponent.
430 */
431 tmp = LLVMBuildShl(gallivm->builder, tmp,
432 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
433 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
434 tmp = LLVMBuildAShr(gallivm->builder, tmp, c30, "");
435
436 /* Convert back to the right type. */
437 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
438 LLVMValueRef clamp;
439 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
440 tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
441 clamp = LLVMBuildFCmp(gallivm->builder, LLVMRealULT, tmp, neg_one, "");
442 tmp = LLVMBuildSelect(gallivm->builder, clamp, neg_one, tmp, "");
443 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
444 tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
445 }
446
447 out[3] = tmp;
448 break;
449 }
450 case SI_FIX_FETCH_RGBA_32_UNORM:
451 case SI_FIX_FETCH_RGBX_32_UNORM:
452 for (chan = 0; chan < 4; chan++) {
453 out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
454 ctx->i32, "");
455 out[chan] = LLVMBuildUIToFP(gallivm->builder,
456 out[chan], ctx->f32, "");
457 out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
458 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
459 }
460 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
461 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
462 out[3] = LLVMConstReal(ctx->f32, 1);
463 break;
464 case SI_FIX_FETCH_RGBA_32_SNORM:
465 case SI_FIX_FETCH_RGBX_32_SNORM:
466 case SI_FIX_FETCH_RGBA_32_FIXED:
467 case SI_FIX_FETCH_RGBX_32_FIXED: {
468 double scale;
469 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
470 scale = 1.0 / 0x10000;
471 else
472 scale = 1.0 / INT_MAX;
473
474 for (chan = 0; chan < 4; chan++) {
475 out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
476 ctx->i32, "");
477 out[chan] = LLVMBuildSIToFP(gallivm->builder,
478 out[chan], ctx->f32, "");
479 out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
480 LLVMConstReal(ctx->f32, scale), "");
481 }
482 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
483 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
484 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
485 out[3] = LLVMConstReal(ctx->f32, 1);
486 break;
487 }
488 case SI_FIX_FETCH_RGBA_32_USCALED:
489 for (chan = 0; chan < 4; chan++) {
490 out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
491 ctx->i32, "");
492 out[chan] = LLVMBuildUIToFP(gallivm->builder,
493 out[chan], ctx->f32, "");
494 }
495 break;
496 case SI_FIX_FETCH_RGBA_32_SSCALED:
497 for (chan = 0; chan < 4; chan++) {
498 out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
499 ctx->i32, "");
500 out[chan] = LLVMBuildSIToFP(gallivm->builder,
501 out[chan], ctx->f32, "");
502 }
503 break;
504 case SI_FIX_FETCH_RG_64_FLOAT:
505 for (chan = 0; chan < 2; chan++)
506 out[chan] = extract_double_to_float(ctx, input[0], chan);
507
508 out[2] = LLVMConstReal(ctx->f32, 0);
509 out[3] = LLVMConstReal(ctx->f32, 1);
510 break;
511 case SI_FIX_FETCH_RGB_64_FLOAT:
512 for (chan = 0; chan < 3; chan++)
513 out[chan] = extract_double_to_float(ctx, input[chan], 0);
514
515 out[3] = LLVMConstReal(ctx->f32, 1);
516 break;
517 case SI_FIX_FETCH_RGBA_64_FLOAT:
518 for (chan = 0; chan < 4; chan++) {
519 out[chan] = extract_double_to_float(ctx, input[chan / 2],
520 chan % 2);
521 }
522 break;
523 case SI_FIX_FETCH_RGB_8:
524 case SI_FIX_FETCH_RGB_8_INT:
525 case SI_FIX_FETCH_RGB_16:
526 case SI_FIX_FETCH_RGB_16_INT:
527 for (chan = 0; chan < 3; chan++) {
528 out[chan] = LLVMBuildExtractElement(gallivm->builder,
529 input[chan],
530 ctx->i32_0, "");
531 }
532 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
533 fix_fetch == SI_FIX_FETCH_RGB_16) {
534 out[3] = LLVMConstReal(ctx->f32, 1);
535 } else {
536 out[3] = LLVMBuildBitCast(gallivm->builder, ctx->i32_1,
537 ctx->f32, "");
538 }
539 break;
540 }
541 }
542
543 static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base,
544 unsigned swizzle)
545 {
546 struct si_shader_context *ctx = si_shader_context(bld_base);
547
548 if (swizzle > 0)
549 return ctx->i32_0;
550
551 switch (ctx->type) {
552 case PIPE_SHADER_VERTEX:
553 return LLVMGetParam(ctx->main_fn,
554 ctx->param_vs_prim_id);
555 case PIPE_SHADER_TESS_CTRL:
556 return LLVMGetParam(ctx->main_fn,
557 SI_PARAM_PATCH_ID);
558 case PIPE_SHADER_TESS_EVAL:
559 return LLVMGetParam(ctx->main_fn,
560 ctx->param_tes_patch_id);
561 case PIPE_SHADER_GEOMETRY:
562 return LLVMGetParam(ctx->main_fn,
563 SI_PARAM_PRIMITIVE_ID);
564 default:
565 assert(0);
566 return ctx->i32_0;
567 }
568 }
569
570 /**
571 * Return the value of tgsi_ind_register for indexing.
572 * This is the indirect index with the constant offset added to it.
573 */
574 static LLVMValueRef get_indirect_index(struct si_shader_context *ctx,
575 const struct tgsi_ind_register *ind,
576 int rel_index)
577 {
578 struct gallivm_state *gallivm = &ctx->gallivm;
579 LLVMValueRef result;
580
581 result = ctx->addrs[ind->Index][ind->Swizzle];
582 result = LLVMBuildLoad(gallivm->builder, result, "");
583 result = LLVMBuildAdd(gallivm->builder, result,
584 LLVMConstInt(ctx->i32, rel_index, 0), "");
585 return result;
586 }
587
588 /**
589 * Like get_indirect_index, but restricts the return value to a (possibly
590 * undefined) value inside [0..num).
591 */
592 static LLVMValueRef get_bounded_indirect_index(struct si_shader_context *ctx,
593 const struct tgsi_ind_register *ind,
594 int rel_index, unsigned num)
595 {
596 LLVMValueRef result = get_indirect_index(ctx, ind, rel_index);
597
598 /* LLVM 3.8: If indirect resource indexing is used:
599 * - SI & CIK hang
600 * - VI crashes
601 */
602 if (HAVE_LLVM == 0x0308)
603 return LLVMGetUndef(ctx->i32);
604
605 return si_llvm_bound_index(ctx, result, num);
606 }
607
608
609 /**
610 * Calculate a dword address given an input or output register and a stride.
611 */
612 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
613 const struct tgsi_full_dst_register *dst,
614 const struct tgsi_full_src_register *src,
615 LLVMValueRef vertex_dw_stride,
616 LLVMValueRef base_addr)
617 {
618 struct gallivm_state *gallivm = &ctx->gallivm;
619 struct tgsi_shader_info *info = &ctx->shader->selector->info;
620 ubyte *name, *index, *array_first;
621 int first, param;
622 struct tgsi_full_dst_register reg;
623
624 /* Set the register description. The address computation is the same
625 * for sources and destinations. */
626 if (src) {
627 reg.Register.File = src->Register.File;
628 reg.Register.Index = src->Register.Index;
629 reg.Register.Indirect = src->Register.Indirect;
630 reg.Register.Dimension = src->Register.Dimension;
631 reg.Indirect = src->Indirect;
632 reg.Dimension = src->Dimension;
633 reg.DimIndirect = src->DimIndirect;
634 } else
635 reg = *dst;
636
637 /* If the register is 2-dimensional (e.g. an array of vertices
638 * in a primitive), calculate the base address of the vertex. */
639 if (reg.Register.Dimension) {
640 LLVMValueRef index;
641
642 if (reg.Dimension.Indirect)
643 index = get_indirect_index(ctx, &reg.DimIndirect,
644 reg.Dimension.Index);
645 else
646 index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
647
648 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
649 LLVMBuildMul(gallivm->builder, index,
650 vertex_dw_stride, ""), "");
651 }
652
653 /* Get information about the register. */
654 if (reg.Register.File == TGSI_FILE_INPUT) {
655 name = info->input_semantic_name;
656 index = info->input_semantic_index;
657 array_first = info->input_array_first;
658 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
659 name = info->output_semantic_name;
660 index = info->output_semantic_index;
661 array_first = info->output_array_first;
662 } else {
663 assert(0);
664 return NULL;
665 }
666
667 if (reg.Register.Indirect) {
668 /* Add the relative address of the element. */
669 LLVMValueRef ind_index;
670
671 if (reg.Indirect.ArrayID)
672 first = array_first[reg.Indirect.ArrayID];
673 else
674 first = reg.Register.Index;
675
676 ind_index = get_indirect_index(ctx, &reg.Indirect,
677 reg.Register.Index - first);
678
679 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
680 LLVMBuildMul(gallivm->builder, ind_index,
681 LLVMConstInt(ctx->i32, 4, 0), ""), "");
682
683 param = si_shader_io_get_unique_index(name[first], index[first]);
684 } else {
685 param = si_shader_io_get_unique_index(name[reg.Register.Index],
686 index[reg.Register.Index]);
687 }
688
689 /* Add the base address of the element. */
690 return LLVMBuildAdd(gallivm->builder, base_addr,
691 LLVMConstInt(ctx->i32, param * 4, 0), "");
692 }
693
694 /* The offchip buffer layout for TCS->TES is
695 *
696 * - attribute 0 of patch 0 vertex 0
697 * - attribute 0 of patch 0 vertex 1
698 * - attribute 0 of patch 0 vertex 2
699 * ...
700 * - attribute 0 of patch 1 vertex 0
701 * - attribute 0 of patch 1 vertex 1
702 * ...
703 * - attribute 1 of patch 0 vertex 0
704 * - attribute 1 of patch 0 vertex 1
705 * ...
706 * - per patch attribute 0 of patch 0
707 * - per patch attribute 0 of patch 1
708 * ...
709 *
710 * Note that every attribute has 4 components.
711 */
712 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
713 LLVMValueRef rel_patch_id,
714 LLVMValueRef vertex_index,
715 LLVMValueRef param_index)
716 {
717 struct gallivm_state *gallivm = &ctx->gallivm;
718 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
719 LLVMValueRef param_stride, constant16;
720
721 vertices_per_patch = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 6);
722 num_patches = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 0, 9);
723 total_vertices = LLVMBuildMul(gallivm->builder, vertices_per_patch,
724 num_patches, "");
725
726 constant16 = LLVMConstInt(ctx->i32, 16, 0);
727 if (vertex_index) {
728 base_addr = LLVMBuildMul(gallivm->builder, rel_patch_id,
729 vertices_per_patch, "");
730
731 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
732 vertex_index, "");
733
734 param_stride = total_vertices;
735 } else {
736 base_addr = rel_patch_id;
737 param_stride = num_patches;
738 }
739
740 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
741 LLVMBuildMul(gallivm->builder, param_index,
742 param_stride, ""), "");
743
744 base_addr = LLVMBuildMul(gallivm->builder, base_addr, constant16, "");
745
746 if (!vertex_index) {
747 LLVMValueRef patch_data_offset =
748 unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 16, 16);
749
750 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
751 patch_data_offset, "");
752 }
753 return base_addr;
754 }
755
756 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
757 struct si_shader_context *ctx,
758 const struct tgsi_full_dst_register *dst,
759 const struct tgsi_full_src_register *src)
760 {
761 struct gallivm_state *gallivm = &ctx->gallivm;
762 struct tgsi_shader_info *info = &ctx->shader->selector->info;
763 ubyte *name, *index, *array_first;
764 struct tgsi_full_src_register reg;
765 LLVMValueRef vertex_index = NULL;
766 LLVMValueRef param_index = NULL;
767 unsigned param_index_base, param_base;
768
769 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
770
771 if (reg.Register.Dimension) {
772
773 if (reg.Dimension.Indirect)
774 vertex_index = get_indirect_index(ctx, &reg.DimIndirect,
775 reg.Dimension.Index);
776 else
777 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
778 }
779
780 /* Get information about the register. */
781 if (reg.Register.File == TGSI_FILE_INPUT) {
782 name = info->input_semantic_name;
783 index = info->input_semantic_index;
784 array_first = info->input_array_first;
785 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
786 name = info->output_semantic_name;
787 index = info->output_semantic_index;
788 array_first = info->output_array_first;
789 } else {
790 assert(0);
791 return NULL;
792 }
793
794 if (reg.Register.Indirect) {
795 if (reg.Indirect.ArrayID)
796 param_base = array_first[reg.Indirect.ArrayID];
797 else
798 param_base = reg.Register.Index;
799
800 param_index = get_indirect_index(ctx, &reg.Indirect,
801 reg.Register.Index - param_base);
802
803 } else {
804 param_base = reg.Register.Index;
805 param_index = ctx->i32_0;
806 }
807
808 param_index_base = si_shader_io_get_unique_index(name[param_base],
809 index[param_base]);
810
811 param_index = LLVMBuildAdd(gallivm->builder, param_index,
812 LLVMConstInt(ctx->i32, param_index_base, 0),
813 "");
814
815 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
816 vertex_index, param_index);
817 }
818
819 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
820 enum tgsi_opcode_type type, unsigned swizzle,
821 LLVMValueRef buffer, LLVMValueRef offset,
822 LLVMValueRef base, bool readonly_memory)
823 {
824 struct si_shader_context *ctx = si_shader_context(bld_base);
825 struct gallivm_state *gallivm = &ctx->gallivm;
826 LLVMValueRef value, value2;
827 LLVMTypeRef llvm_type = tgsi2llvmtype(bld_base, type);
828 LLVMTypeRef vec_type = LLVMVectorType(llvm_type, 4);
829
830 if (swizzle == ~0) {
831 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
832 0, 1, 0, readonly_memory);
833
834 return LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
835 }
836
837 if (!tgsi_type_is_64bit(type)) {
838 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
839 0, 1, 0, readonly_memory);
840
841 value = LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
842 return LLVMBuildExtractElement(gallivm->builder, value,
843 LLVMConstInt(ctx->i32, swizzle, 0), "");
844 }
845
846 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
847 swizzle * 4, 1, 0, readonly_memory);
848
849 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
850 swizzle * 4 + 4, 1, 0, readonly_memory);
851
852 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
853 }
854
855 /**
856 * Load from LDS.
857 *
858 * \param type output value type
859 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
860 * \param dw_addr address in dwords
861 */
862 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
863 enum tgsi_opcode_type type, unsigned swizzle,
864 LLVMValueRef dw_addr)
865 {
866 struct si_shader_context *ctx = si_shader_context(bld_base);
867 struct gallivm_state *gallivm = &ctx->gallivm;
868 LLVMValueRef value;
869
870 if (swizzle == ~0) {
871 LLVMValueRef values[TGSI_NUM_CHANNELS];
872
873 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
874 values[chan] = lds_load(bld_base, type, chan, dw_addr);
875
876 return lp_build_gather_values(gallivm, values,
877 TGSI_NUM_CHANNELS);
878 }
879
880 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
881 LLVMConstInt(ctx->i32, swizzle, 0));
882
883 value = ac_build_indexed_load(&ctx->ac, ctx->lds, dw_addr, false);
884 if (tgsi_type_is_64bit(type)) {
885 LLVMValueRef value2;
886 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
887 ctx->i32_1);
888 value2 = ac_build_indexed_load(&ctx->ac, ctx->lds, dw_addr, false);
889 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
890 }
891
892 return LLVMBuildBitCast(gallivm->builder, value,
893 tgsi2llvmtype(bld_base, type), "");
894 }
895
896 /**
897 * Store to LDS.
898 *
899 * \param swizzle offset (typically 0..3)
900 * \param dw_addr address in dwords
901 * \param value value to store
902 */
903 static void lds_store(struct lp_build_tgsi_context *bld_base,
904 unsigned swizzle, LLVMValueRef dw_addr,
905 LLVMValueRef value)
906 {
907 struct si_shader_context *ctx = si_shader_context(bld_base);
908 struct gallivm_state *gallivm = &ctx->gallivm;
909
910 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
911 LLVMConstInt(ctx->i32, swizzle, 0));
912
913 value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
914 ac_build_indexed_store(&ctx->ac, ctx->lds,
915 dw_addr, value);
916 }
917
918 static LLVMValueRef fetch_input_tcs(
919 struct lp_build_tgsi_context *bld_base,
920 const struct tgsi_full_src_register *reg,
921 enum tgsi_opcode_type type, unsigned swizzle)
922 {
923 struct si_shader_context *ctx = si_shader_context(bld_base);
924 LLVMValueRef dw_addr, stride;
925
926 stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 24, 8);
927 dw_addr = get_tcs_in_current_patch_offset(ctx);
928 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
929
930 return lds_load(bld_base, type, swizzle, dw_addr);
931 }
932
933 static LLVMValueRef fetch_output_tcs(
934 struct lp_build_tgsi_context *bld_base,
935 const struct tgsi_full_src_register *reg,
936 enum tgsi_opcode_type type, unsigned swizzle)
937 {
938 struct si_shader_context *ctx = si_shader_context(bld_base);
939 LLVMValueRef dw_addr, stride;
940
941 if (reg->Register.Dimension) {
942 stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
943 dw_addr = get_tcs_out_current_patch_offset(ctx);
944 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
945 } else {
946 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
947 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
948 }
949
950 return lds_load(bld_base, type, swizzle, dw_addr);
951 }
952
953 static LLVMValueRef fetch_input_tes(
954 struct lp_build_tgsi_context *bld_base,
955 const struct tgsi_full_src_register *reg,
956 enum tgsi_opcode_type type, unsigned swizzle)
957 {
958 struct si_shader_context *ctx = si_shader_context(bld_base);
959 LLVMValueRef rw_buffers, buffer, base, addr;
960
961 rw_buffers = LLVMGetParam(ctx->main_fn,
962 SI_PARAM_RW_BUFFERS);
963 buffer = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
964 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_OFFCHIP, 0));
965
966 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
967 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
968
969 return buffer_load(bld_base, type, swizzle, buffer, base, addr, true);
970 }
971
972 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
973 const struct tgsi_full_instruction *inst,
974 const struct tgsi_opcode_info *info,
975 LLVMValueRef dst[4])
976 {
977 struct si_shader_context *ctx = si_shader_context(bld_base);
978 struct gallivm_state *gallivm = &ctx->gallivm;
979 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
980 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
981 unsigned chan_index;
982 LLVMValueRef dw_addr, stride;
983 LLVMValueRef rw_buffers, buffer, base, buf_addr;
984 LLVMValueRef values[4];
985 bool skip_lds_store;
986 bool is_tess_factor = false;
987
988 /* Only handle per-patch and per-vertex outputs here.
989 * Vectors will be lowered to scalars and this function will be called again.
990 */
991 if (reg->Register.File != TGSI_FILE_OUTPUT ||
992 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
993 si_llvm_emit_store(bld_base, inst, info, dst);
994 return;
995 }
996
997 if (reg->Register.Dimension) {
998 stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
999 dw_addr = get_tcs_out_current_patch_offset(ctx);
1000 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1001 skip_lds_store = !sh_info->reads_pervertex_outputs;
1002 } else {
1003 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1004 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1005 skip_lds_store = !sh_info->reads_perpatch_outputs;
1006
1007 if (!reg->Register.Indirect) {
1008 int name = sh_info->output_semantic_name[reg->Register.Index];
1009
1010 /* Always write tess factors into LDS for the TCS epilog. */
1011 if (name == TGSI_SEMANTIC_TESSINNER ||
1012 name == TGSI_SEMANTIC_TESSOUTER) {
1013 skip_lds_store = false;
1014 is_tess_factor = true;
1015 }
1016 }
1017 }
1018
1019 rw_buffers = LLVMGetParam(ctx->main_fn,
1020 SI_PARAM_RW_BUFFERS);
1021 buffer = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
1022 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_OFFCHIP, 0));
1023
1024 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1025 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1026
1027
1028 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
1029 LLVMValueRef value = dst[chan_index];
1030
1031 if (inst->Instruction.Saturate)
1032 value = ac_build_clamp(&ctx->ac, value);
1033
1034 /* Skip LDS stores if there is no LDS read of this output. */
1035 if (!skip_lds_store)
1036 lds_store(bld_base, chan_index, dw_addr, value);
1037
1038 value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
1039 values[chan_index] = value;
1040
1041 if (inst->Dst[0].Register.WriteMask != 0xF && !is_tess_factor) {
1042 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1043 buf_addr, base,
1044 4 * chan_index, 1, 0, true, false);
1045 }
1046 }
1047
1048 if (inst->Dst[0].Register.WriteMask == 0xF && !is_tess_factor) {
1049 LLVMValueRef value = lp_build_gather_values(gallivm,
1050 values, 4);
1051 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1052 base, 0, 1, 0, true, false);
1053 }
1054 }
1055
1056 static LLVMValueRef fetch_input_gs(
1057 struct lp_build_tgsi_context *bld_base,
1058 const struct tgsi_full_src_register *reg,
1059 enum tgsi_opcode_type type,
1060 unsigned swizzle)
1061 {
1062 struct si_shader_context *ctx = si_shader_context(bld_base);
1063 struct si_shader *shader = ctx->shader;
1064 struct lp_build_context *uint = &ctx->bld_base.uint_bld;
1065 struct gallivm_state *gallivm = &ctx->gallivm;
1066 LLVMValueRef vtx_offset, soffset;
1067 unsigned vtx_offset_param;
1068 struct tgsi_shader_info *info = &shader->selector->info;
1069 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1070 unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
1071 unsigned param;
1072 LLVMValueRef value;
1073
1074 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1075 return get_primitive_id(bld_base, swizzle);
1076
1077 if (!reg->Register.Dimension)
1078 return NULL;
1079
1080 if (swizzle == ~0) {
1081 LLVMValueRef values[TGSI_NUM_CHANNELS];
1082 unsigned chan;
1083 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1084 values[chan] = fetch_input_gs(bld_base, reg, type, chan);
1085 }
1086 return lp_build_gather_values(gallivm, values,
1087 TGSI_NUM_CHANNELS);
1088 }
1089
1090 /* Get the vertex offset parameter */
1091 vtx_offset_param = reg->Dimension.Index;
1092 if (vtx_offset_param < 2) {
1093 vtx_offset_param += SI_PARAM_VTX0_OFFSET;
1094 } else {
1095 assert(vtx_offset_param < 6);
1096 vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
1097 }
1098 vtx_offset = lp_build_mul_imm(uint,
1099 LLVMGetParam(ctx->main_fn,
1100 vtx_offset_param),
1101 4);
1102
1103 param = si_shader_io_get_unique_index(semantic_name, semantic_index);
1104 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1105
1106 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1107 vtx_offset, soffset, 0, 1, 0, true);
1108 if (tgsi_type_is_64bit(type)) {
1109 LLVMValueRef value2;
1110 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1111
1112 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1113 ctx->i32_0, vtx_offset, soffset,
1114 0, 1, 0, true);
1115 return si_llvm_emit_fetch_64bit(bld_base, type,
1116 value, value2);
1117 }
1118 return LLVMBuildBitCast(gallivm->builder,
1119 value,
1120 tgsi2llvmtype(bld_base, type), "");
1121 }
1122
1123 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1124 {
1125 switch (interpolate) {
1126 case TGSI_INTERPOLATE_CONSTANT:
1127 return 0;
1128
1129 case TGSI_INTERPOLATE_LINEAR:
1130 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1131 return SI_PARAM_LINEAR_SAMPLE;
1132 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1133 return SI_PARAM_LINEAR_CENTROID;
1134 else
1135 return SI_PARAM_LINEAR_CENTER;
1136 break;
1137 case TGSI_INTERPOLATE_COLOR:
1138 case TGSI_INTERPOLATE_PERSPECTIVE:
1139 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1140 return SI_PARAM_PERSP_SAMPLE;
1141 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1142 return SI_PARAM_PERSP_CENTROID;
1143 else
1144 return SI_PARAM_PERSP_CENTER;
1145 break;
1146 default:
1147 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1148 return -1;
1149 }
1150 }
1151
1152 /**
1153 * Interpolate a fragment shader input.
1154 *
1155 * @param ctx context
1156 * @param input_index index of the input in hardware
1157 * @param semantic_name TGSI_SEMANTIC_*
1158 * @param semantic_index semantic index
1159 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1160 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1161 * @param interp_param interpolation weights (i,j)
1162 * @param prim_mask SI_PARAM_PRIM_MASK
1163 * @param face SI_PARAM_FRONT_FACE
1164 * @param result the return value (4 components)
1165 */
1166 static void interp_fs_input(struct si_shader_context *ctx,
1167 unsigned input_index,
1168 unsigned semantic_name,
1169 unsigned semantic_index,
1170 unsigned num_interp_inputs,
1171 unsigned colors_read_mask,
1172 LLVMValueRef interp_param,
1173 LLVMValueRef prim_mask,
1174 LLVMValueRef face,
1175 LLVMValueRef result[4])
1176 {
1177 struct gallivm_state *gallivm = &ctx->gallivm;
1178 LLVMValueRef attr_number;
1179 LLVMValueRef i, j;
1180
1181 unsigned chan;
1182
1183 /* fs.constant returns the param from the middle vertex, so it's not
1184 * really useful for flat shading. It's meant to be used for custom
1185 * interpolation (but the intrinsic can't fetch from the other two
1186 * vertices).
1187 *
1188 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1189 * to do the right thing. The only reason we use fs.constant is that
1190 * fs.interp cannot be used on integers, because they can be equal
1191 * to NaN.
1192 *
1193 * When interp is false we will use fs.constant or for newer llvm,
1194 * amdgcn.interp.mov.
1195 */
1196 bool interp = interp_param != NULL;
1197
1198 attr_number = LLVMConstInt(ctx->i32, input_index, 0);
1199
1200 if (interp) {
1201 interp_param = LLVMBuildBitCast(gallivm->builder, interp_param,
1202 LLVMVectorType(ctx->f32, 2), "");
1203
1204 i = LLVMBuildExtractElement(gallivm->builder, interp_param,
1205 ctx->i32_0, "");
1206 j = LLVMBuildExtractElement(gallivm->builder, interp_param,
1207 ctx->i32_1, "");
1208 }
1209
1210 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1211 ctx->shader->key.part.ps.prolog.color_two_side) {
1212 LLVMValueRef is_face_positive;
1213 LLVMValueRef back_attr_number;
1214
1215 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1216 * otherwise it's at offset "num_inputs".
1217 */
1218 unsigned back_attr_offset = num_interp_inputs;
1219 if (semantic_index == 1 && colors_read_mask & 0xf)
1220 back_attr_offset += 1;
1221
1222 back_attr_number = LLVMConstInt(ctx->i32, back_attr_offset, 0);
1223
1224 is_face_positive = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
1225 face, ctx->i32_0, "");
1226
1227 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1228 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
1229 LLVMValueRef front, back;
1230
1231 if (interp) {
1232 front = ac_build_fs_interp(&ctx->ac, llvm_chan,
1233 attr_number, prim_mask,
1234 i, j);
1235 back = ac_build_fs_interp(&ctx->ac, llvm_chan,
1236 back_attr_number, prim_mask,
1237 i, j);
1238 } else {
1239 front = ac_build_fs_interp_mov(&ctx->ac,
1240 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1241 llvm_chan, attr_number, prim_mask);
1242 back = ac_build_fs_interp_mov(&ctx->ac,
1243 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1244 llvm_chan, back_attr_number, prim_mask);
1245 }
1246
1247 result[chan] = LLVMBuildSelect(gallivm->builder,
1248 is_face_positive,
1249 front,
1250 back,
1251 "");
1252 }
1253 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1254 if (interp) {
1255 result[0] = ac_build_fs_interp(&ctx->ac, ctx->i32_0,
1256 attr_number, prim_mask, i, j);
1257 } else {
1258 result[0] = ac_build_fs_interp_mov(&ctx->ac, ctx->i32_0,
1259 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1260 attr_number, prim_mask);
1261 }
1262 result[1] =
1263 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1264 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1265 } else {
1266 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1267 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
1268
1269 if (interp) {
1270 result[chan] = ac_build_fs_interp(&ctx->ac,
1271 llvm_chan, attr_number, prim_mask, i, j);
1272 } else {
1273 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
1274 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1275 llvm_chan, attr_number, prim_mask);
1276 }
1277 }
1278 }
1279 }
1280
1281 static void declare_input_fs(
1282 struct si_shader_context *ctx,
1283 unsigned input_index,
1284 const struct tgsi_full_declaration *decl,
1285 LLVMValueRef out[4])
1286 {
1287 struct lp_build_context *base = &ctx->bld_base.base;
1288 struct si_shader *shader = ctx->shader;
1289 LLVMValueRef main_fn = ctx->main_fn;
1290 LLVMValueRef interp_param = NULL;
1291 int interp_param_idx;
1292
1293 /* Get colors from input VGPRs (set by the prolog). */
1294 if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR) {
1295 unsigned i = decl->Semantic.Index;
1296 unsigned colors_read = shader->selector->info.colors_read;
1297 unsigned mask = colors_read >> (i * 4);
1298 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1299 (i ? util_bitcount(colors_read & 0xf) : 0);
1300
1301 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
1302 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
1303 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
1304 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
1305 return;
1306 }
1307
1308 interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate,
1309 decl->Interp.Location);
1310 if (interp_param_idx == -1)
1311 return;
1312 else if (interp_param_idx) {
1313 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1314 }
1315
1316 if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
1317 decl->Interp.Interpolate == TGSI_INTERPOLATE_COLOR &&
1318 ctx->shader->key.part.ps.prolog.flatshade_colors)
1319 interp_param = NULL; /* load the constant color */
1320
1321 interp_fs_input(ctx, input_index, decl->Semantic.Name,
1322 decl->Semantic.Index, shader->selector->info.num_inputs,
1323 shader->selector->info.colors_read, interp_param,
1324 LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1325 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1326 &out[0]);
1327 }
1328
1329 static LLVMValueRef get_sample_id(struct si_shader_context *ctx)
1330 {
1331 return unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1332 }
1333
1334
1335 /**
1336 * Load a dword from a constant buffer.
1337 */
1338 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1339 LLVMValueRef resource,
1340 LLVMValueRef offset)
1341 {
1342 LLVMBuilderRef builder = ctx->gallivm.builder;
1343 LLVMValueRef args[2] = {resource, offset};
1344
1345 return lp_build_intrinsic(builder, "llvm.SI.load.const", ctx->f32, args, 2,
1346 LP_FUNC_ATTR_READNONE |
1347 LP_FUNC_ATTR_LEGACY);
1348 }
1349
1350 static LLVMValueRef load_sample_position(struct si_shader_context *ctx, LLVMValueRef sample_id)
1351 {
1352 struct lp_build_context *uint_bld = &ctx->bld_base.uint_bld;
1353 struct gallivm_state *gallivm = &ctx->gallivm;
1354 LLVMBuilderRef builder = gallivm->builder;
1355 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1356 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1357 LLVMValueRef resource = ac_build_indexed_load_const(&ctx->ac, desc, buf_index);
1358
1359 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1360 LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1361 LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1362
1363 LLVMValueRef pos[4] = {
1364 buffer_load_const(ctx, resource, offset0),
1365 buffer_load_const(ctx, resource, offset1),
1366 LLVMConstReal(ctx->f32, 0),
1367 LLVMConstReal(ctx->f32, 0)
1368 };
1369
1370 return lp_build_gather_values(gallivm, pos, 4);
1371 }
1372
1373 static void declare_system_value(struct si_shader_context *ctx,
1374 unsigned index,
1375 const struct tgsi_full_declaration *decl)
1376 {
1377 struct lp_build_context *bld = &ctx->bld_base.base;
1378 struct gallivm_state *gallivm = &ctx->gallivm;
1379 LLVMValueRef value = 0;
1380
1381 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
1382
1383 switch (decl->Semantic.Name) {
1384 case TGSI_SEMANTIC_INSTANCEID:
1385 value = LLVMGetParam(ctx->main_fn,
1386 ctx->param_instance_id);
1387 break;
1388
1389 case TGSI_SEMANTIC_VERTEXID:
1390 value = LLVMBuildAdd(gallivm->builder,
1391 LLVMGetParam(ctx->main_fn,
1392 ctx->param_vertex_id),
1393 LLVMGetParam(ctx->main_fn,
1394 SI_PARAM_BASE_VERTEX), "");
1395 break;
1396
1397 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1398 /* Unused. Clarify the meaning in indexed vs. non-indexed
1399 * draws if this is ever used again. */
1400 assert(false);
1401 break;
1402
1403 case TGSI_SEMANTIC_BASEVERTEX:
1404 {
1405 /* For non-indexed draws, the base vertex set by the driver
1406 * (for direct draws) or the CP (for indirect draws) is the
1407 * first vertex ID, but GLSL expects 0 to be returned.
1408 */
1409 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn, SI_PARAM_VS_STATE_BITS);
1410 LLVMValueRef indexed;
1411
1412 indexed = LLVMBuildLShr(gallivm->builder, vs_state, ctx->i32_1, "");
1413 indexed = LLVMBuildTrunc(gallivm->builder, indexed, ctx->i1, "");
1414
1415 value = LLVMBuildSelect(gallivm->builder, indexed,
1416 LLVMGetParam(ctx->main_fn, SI_PARAM_BASE_VERTEX),
1417 ctx->i32_0, "");
1418 break;
1419 }
1420
1421 case TGSI_SEMANTIC_BASEINSTANCE:
1422 value = LLVMGetParam(ctx->main_fn,
1423 SI_PARAM_START_INSTANCE);
1424 break;
1425
1426 case TGSI_SEMANTIC_DRAWID:
1427 value = LLVMGetParam(ctx->main_fn,
1428 SI_PARAM_DRAWID);
1429 break;
1430
1431 case TGSI_SEMANTIC_INVOCATIONID:
1432 if (ctx->type == PIPE_SHADER_TESS_CTRL)
1433 value = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
1434 else if (ctx->type == PIPE_SHADER_GEOMETRY)
1435 value = LLVMGetParam(ctx->main_fn,
1436 SI_PARAM_GS_INSTANCE_ID);
1437 else
1438 assert(!"INVOCATIONID not implemented");
1439 break;
1440
1441 case TGSI_SEMANTIC_POSITION:
1442 {
1443 LLVMValueRef pos[4] = {
1444 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
1445 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
1446 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
1447 lp_build_emit_llvm_unary(&ctx->bld_base, TGSI_OPCODE_RCP,
1448 LLVMGetParam(ctx->main_fn,
1449 SI_PARAM_POS_W_FLOAT)),
1450 };
1451 value = lp_build_gather_values(gallivm, pos, 4);
1452 break;
1453 }
1454
1455 case TGSI_SEMANTIC_FACE:
1456 value = LLVMGetParam(ctx->main_fn, SI_PARAM_FRONT_FACE);
1457 break;
1458
1459 case TGSI_SEMANTIC_SAMPLEID:
1460 value = get_sample_id(ctx);
1461 break;
1462
1463 case TGSI_SEMANTIC_SAMPLEPOS: {
1464 LLVMValueRef pos[4] = {
1465 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
1466 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
1467 LLVMConstReal(ctx->f32, 0),
1468 LLVMConstReal(ctx->f32, 0)
1469 };
1470 pos[0] = lp_build_emit_llvm_unary(&ctx->bld_base,
1471 TGSI_OPCODE_FRC, pos[0]);
1472 pos[1] = lp_build_emit_llvm_unary(&ctx->bld_base,
1473 TGSI_OPCODE_FRC, pos[1]);
1474 value = lp_build_gather_values(gallivm, pos, 4);
1475 break;
1476 }
1477
1478 case TGSI_SEMANTIC_SAMPLEMASK:
1479 /* This can only occur with the OpenGL Core profile, which
1480 * doesn't support smoothing.
1481 */
1482 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
1483 break;
1484
1485 case TGSI_SEMANTIC_TESSCOORD:
1486 {
1487 LLVMValueRef coord[4] = {
1488 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1489 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1490 bld->zero,
1491 bld->zero
1492 };
1493
1494 /* For triangles, the vector should be (u, v, 1-u-v). */
1495 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1496 PIPE_PRIM_TRIANGLES)
1497 coord[2] = lp_build_sub(bld, bld->one,
1498 lp_build_add(bld, coord[0], coord[1]));
1499
1500 value = lp_build_gather_values(gallivm, coord, 4);
1501 break;
1502 }
1503
1504 case TGSI_SEMANTIC_VERTICESIN:
1505 if (ctx->type == PIPE_SHADER_TESS_CTRL)
1506 value = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6);
1507 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
1508 value = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 7);
1509 else
1510 assert(!"invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
1511 break;
1512
1513 case TGSI_SEMANTIC_TESSINNER:
1514 case TGSI_SEMANTIC_TESSOUTER:
1515 {
1516 LLVMValueRef rw_buffers, buffer, base, addr;
1517 int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0);
1518
1519 rw_buffers = LLVMGetParam(ctx->main_fn,
1520 SI_PARAM_RW_BUFFERS);
1521 buffer = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
1522 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_OFFCHIP, 0));
1523
1524 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1525 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1526 LLVMConstInt(ctx->i32, param, 0));
1527
1528 value = buffer_load(&ctx->bld_base, TGSI_TYPE_FLOAT,
1529 ~0, buffer, base, addr, true);
1530
1531 break;
1532 }
1533
1534 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
1535 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
1536 {
1537 LLVMValueRef buf, slot, val[4];
1538 int i, offset;
1539
1540 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
1541 buf = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1542 buf = ac_build_indexed_load_const(&ctx->ac, buf, slot);
1543 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
1544
1545 for (i = 0; i < 4; i++)
1546 val[i] = buffer_load_const(ctx, buf,
1547 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
1548 value = lp_build_gather_values(gallivm, val, 4);
1549 break;
1550 }
1551
1552 case TGSI_SEMANTIC_PRIMID:
1553 value = get_primitive_id(&ctx->bld_base, 0);
1554 break;
1555
1556 case TGSI_SEMANTIC_GRID_SIZE:
1557 value = LLVMGetParam(ctx->main_fn, SI_PARAM_GRID_SIZE);
1558 break;
1559
1560 case TGSI_SEMANTIC_BLOCK_SIZE:
1561 {
1562 LLVMValueRef values[3];
1563 unsigned i;
1564 unsigned *properties = ctx->shader->selector->info.properties;
1565
1566 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1567 unsigned sizes[3] = {
1568 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1569 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1570 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1571 };
1572
1573 for (i = 0; i < 3; ++i)
1574 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1575
1576 value = lp_build_gather_values(gallivm, values, 3);
1577 } else {
1578 value = LLVMGetParam(ctx->main_fn, SI_PARAM_BLOCK_SIZE);
1579 }
1580 break;
1581 }
1582
1583 case TGSI_SEMANTIC_BLOCK_ID:
1584 value = LLVMGetParam(ctx->main_fn, SI_PARAM_BLOCK_ID);
1585 break;
1586
1587 case TGSI_SEMANTIC_THREAD_ID:
1588 value = LLVMGetParam(ctx->main_fn, SI_PARAM_THREAD_ID);
1589 break;
1590
1591 case TGSI_SEMANTIC_HELPER_INVOCATION:
1592 if (HAVE_LLVM >= 0x0309) {
1593 value = lp_build_intrinsic(gallivm->builder,
1594 "llvm.amdgcn.ps.live",
1595 ctx->i1, NULL, 0,
1596 LP_FUNC_ATTR_READNONE);
1597 value = LLVMBuildNot(gallivm->builder, value, "");
1598 value = LLVMBuildSExt(gallivm->builder, value, ctx->i32, "");
1599 } else {
1600 assert(!"TGSI_SEMANTIC_HELPER_INVOCATION unsupported");
1601 return;
1602 }
1603 break;
1604
1605 case TGSI_SEMANTIC_SUBGROUP_SIZE:
1606 value = LLVMConstInt(ctx->i32, 64, 0);
1607 break;
1608
1609 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
1610 value = ac_get_thread_id(&ctx->ac);
1611 break;
1612
1613 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
1614 {
1615 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
1616 id = LLVMBuildZExt(gallivm->builder, id, ctx->i64, "");
1617 value = LLVMBuildShl(gallivm->builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
1618 value = LLVMBuildBitCast(gallivm->builder, value, ctx->v2i32, "");
1619 break;
1620 }
1621
1622 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
1623 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
1624 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
1625 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
1626 {
1627 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
1628 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
1629 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
1630 /* All bits set except LSB */
1631 value = LLVMConstInt(ctx->i64, -2, 0);
1632 } else {
1633 /* All bits set */
1634 value = LLVMConstInt(ctx->i64, -1, 0);
1635 }
1636 id = LLVMBuildZExt(gallivm->builder, id, ctx->i64, "");
1637 value = LLVMBuildShl(gallivm->builder, value, id, "");
1638 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
1639 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
1640 value = LLVMBuildNot(gallivm->builder, value, "");
1641 value = LLVMBuildBitCast(gallivm->builder, value, ctx->v2i32, "");
1642 break;
1643 }
1644
1645 default:
1646 assert(!"unknown system value");
1647 return;
1648 }
1649
1650 ctx->system_values[index] = value;
1651 }
1652
1653 static void declare_compute_memory(struct si_shader_context *ctx,
1654 const struct tgsi_full_declaration *decl)
1655 {
1656 struct si_shader_selector *sel = ctx->shader->selector;
1657 struct gallivm_state *gallivm = &ctx->gallivm;
1658
1659 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
1660 LLVMValueRef var;
1661
1662 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
1663 assert(decl->Range.First == decl->Range.Last);
1664 assert(!ctx->shared_memory);
1665
1666 var = LLVMAddGlobalInAddressSpace(gallivm->module,
1667 LLVMArrayType(ctx->i8, sel->local_size),
1668 "compute_lds",
1669 LOCAL_ADDR_SPACE);
1670 LLVMSetAlignment(var, 4);
1671
1672 ctx->shared_memory = LLVMBuildBitCast(gallivm->builder, var, i8p, "");
1673 }
1674
1675 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
1676 {
1677 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
1678 SI_PARAM_CONST_BUFFERS);
1679
1680 return ac_build_indexed_load_const(&ctx->ac, list_ptr,
1681 LLVMConstInt(ctx->i32, i, 0));
1682 }
1683
1684 static LLVMValueRef fetch_constant(
1685 struct lp_build_tgsi_context *bld_base,
1686 const struct tgsi_full_src_register *reg,
1687 enum tgsi_opcode_type type,
1688 unsigned swizzle)
1689 {
1690 struct si_shader_context *ctx = si_shader_context(bld_base);
1691 struct lp_build_context *base = &bld_base->base;
1692 const struct tgsi_ind_register *ireg = &reg->Indirect;
1693 unsigned buf, idx;
1694
1695 LLVMValueRef addr, bufp;
1696 LLVMValueRef result;
1697
1698 if (swizzle == LP_CHAN_ALL) {
1699 unsigned chan;
1700 LLVMValueRef values[4];
1701 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
1702 values[chan] = fetch_constant(bld_base, reg, type, chan);
1703
1704 return lp_build_gather_values(&ctx->gallivm, values, 4);
1705 }
1706
1707 buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
1708 idx = reg->Register.Index * 4 + swizzle;
1709
1710 if (reg->Register.Dimension && reg->Dimension.Indirect) {
1711 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_CONST_BUFFERS);
1712 LLVMValueRef index;
1713 index = get_bounded_indirect_index(ctx, &reg->DimIndirect,
1714 reg->Dimension.Index,
1715 SI_NUM_CONST_BUFFERS);
1716 bufp = ac_build_indexed_load_const(&ctx->ac, ptr, index);
1717 } else
1718 bufp = load_const_buffer_desc(ctx, buf);
1719
1720 if (reg->Register.Indirect) {
1721 addr = ctx->addrs[ireg->Index][ireg->Swizzle];
1722 addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
1723 addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
1724 addr = lp_build_add(&bld_base->uint_bld, addr,
1725 LLVMConstInt(ctx->i32, idx * 4, 0));
1726 } else {
1727 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
1728 }
1729
1730 result = buffer_load_const(ctx, bufp, addr);
1731
1732 if (!tgsi_type_is_64bit(type))
1733 result = bitcast(bld_base, type, result);
1734 else {
1735 LLVMValueRef addr2, result2;
1736
1737 addr2 = lp_build_add(&bld_base->uint_bld, addr,
1738 LLVMConstInt(ctx->i32, 4, 0));
1739 result2 = buffer_load_const(ctx, bufp, addr2);
1740
1741 result = si_llvm_emit_fetch_64bit(bld_base, type,
1742 result, result2);
1743 }
1744 return result;
1745 }
1746
1747 /* Upper 16 bits must be zero. */
1748 static LLVMValueRef si_llvm_pack_two_int16(struct si_shader_context *ctx,
1749 LLVMValueRef val[2])
1750 {
1751 return LLVMBuildOr(ctx->gallivm.builder, val[0],
1752 LLVMBuildShl(ctx->gallivm.builder, val[1],
1753 LLVMConstInt(ctx->i32, 16, 0),
1754 ""), "");
1755 }
1756
1757 /* Upper 16 bits are ignored and will be dropped. */
1758 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct si_shader_context *ctx,
1759 LLVMValueRef val[2])
1760 {
1761 LLVMValueRef v[2] = {
1762 LLVMBuildAnd(ctx->gallivm.builder, val[0],
1763 LLVMConstInt(ctx->i32, 0xffff, 0), ""),
1764 val[1],
1765 };
1766 return si_llvm_pack_two_int16(ctx, v);
1767 }
1768
1769 /* Initialize arguments for the shader export intrinsic */
1770 static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
1771 LLVMValueRef *values,
1772 unsigned target,
1773 struct ac_export_args *args)
1774 {
1775 struct si_shader_context *ctx = si_shader_context(bld_base);
1776 struct lp_build_context *base = &bld_base->base;
1777 LLVMBuilderRef builder = ctx->gallivm.builder;
1778 LLVMValueRef val[4];
1779 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
1780 unsigned chan;
1781 bool is_int8, is_int10;
1782
1783 /* Default is 0xf. Adjusted below depending on the format. */
1784 args->enabled_channels = 0xf; /* writemask */
1785
1786 /* Specify whether the EXEC mask represents the valid mask */
1787 args->valid_mask = 0;
1788
1789 /* Specify whether this is the last export */
1790 args->done = 0;
1791
1792 /* Specify the target we are exporting */
1793 args->target = target;
1794
1795 if (ctx->type == PIPE_SHADER_FRAGMENT) {
1796 const struct si_shader_key *key = &ctx->shader->key;
1797 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
1798 int cbuf = target - V_008DFC_SQ_EXP_MRT;
1799
1800 assert(cbuf >= 0 && cbuf < 8);
1801 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
1802 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
1803 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
1804 }
1805
1806 args->compr = false;
1807 args->out[0] = base->undef;
1808 args->out[1] = base->undef;
1809 args->out[2] = base->undef;
1810 args->out[3] = base->undef;
1811
1812 switch (spi_shader_col_format) {
1813 case V_028714_SPI_SHADER_ZERO:
1814 args->enabled_channels = 0; /* writemask */
1815 args->target = V_008DFC_SQ_EXP_NULL;
1816 break;
1817
1818 case V_028714_SPI_SHADER_32_R:
1819 args->enabled_channels = 1; /* writemask */
1820 args->out[0] = values[0];
1821 break;
1822
1823 case V_028714_SPI_SHADER_32_GR:
1824 args->enabled_channels = 0x3; /* writemask */
1825 args->out[0] = values[0];
1826 args->out[1] = values[1];
1827 break;
1828
1829 case V_028714_SPI_SHADER_32_AR:
1830 args->enabled_channels = 0x9; /* writemask */
1831 args->out[0] = values[0];
1832 args->out[3] = values[3];
1833 break;
1834
1835 case V_028714_SPI_SHADER_FP16_ABGR:
1836 args->compr = 1; /* COMPR flag */
1837
1838 for (chan = 0; chan < 2; chan++) {
1839 LLVMValueRef pack_args[2] = {
1840 values[2 * chan],
1841 values[2 * chan + 1]
1842 };
1843 LLVMValueRef packed;
1844
1845 packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
1846 args->out[chan] =
1847 LLVMBuildBitCast(ctx->gallivm.builder,
1848 packed, ctx->f32, "");
1849 }
1850 break;
1851
1852 case V_028714_SPI_SHADER_UNORM16_ABGR:
1853 for (chan = 0; chan < 4; chan++) {
1854 val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
1855 val[chan] = LLVMBuildFMul(builder, val[chan],
1856 LLVMConstReal(ctx->f32, 65535), "");
1857 val[chan] = LLVMBuildFAdd(builder, val[chan],
1858 LLVMConstReal(ctx->f32, 0.5), "");
1859 val[chan] = LLVMBuildFPToUI(builder, val[chan],
1860 ctx->i32, "");
1861 }
1862
1863 args->compr = 1; /* COMPR flag */
1864 args->out[0] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1865 si_llvm_pack_two_int16(ctx, val));
1866 args->out[1] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1867 si_llvm_pack_two_int16(ctx, val+2));
1868 break;
1869
1870 case V_028714_SPI_SHADER_SNORM16_ABGR:
1871 for (chan = 0; chan < 4; chan++) {
1872 /* Clamp between [-1, 1]. */
1873 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MIN,
1874 values[chan],
1875 LLVMConstReal(ctx->f32, 1));
1876 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MAX,
1877 val[chan],
1878 LLVMConstReal(ctx->f32, -1));
1879 /* Convert to a signed integer in [-32767, 32767]. */
1880 val[chan] = LLVMBuildFMul(builder, val[chan],
1881 LLVMConstReal(ctx->f32, 32767), "");
1882 /* If positive, add 0.5, else add -0.5. */
1883 val[chan] = LLVMBuildFAdd(builder, val[chan],
1884 LLVMBuildSelect(builder,
1885 LLVMBuildFCmp(builder, LLVMRealOGE,
1886 val[chan], base->zero, ""),
1887 LLVMConstReal(ctx->f32, 0.5),
1888 LLVMConstReal(ctx->f32, -0.5), ""), "");
1889 val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
1890 }
1891
1892 args->compr = 1; /* COMPR flag */
1893 args->out[0] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1894 si_llvm_pack_two_int32_as_int16(ctx, val));
1895 args->out[1] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1896 si_llvm_pack_two_int32_as_int16(ctx, val+2));
1897 break;
1898
1899 case V_028714_SPI_SHADER_UINT16_ABGR: {
1900 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
1901 is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
1902 LLVMValueRef max_alpha =
1903 !is_int10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
1904
1905 /* Clamp. */
1906 for (chan = 0; chan < 4; chan++) {
1907 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
1908 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_UMIN,
1909 val[chan],
1910 chan == 3 ? max_alpha : max_rgb);
1911 }
1912
1913 args->compr = 1; /* COMPR flag */
1914 args->out[0] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1915 si_llvm_pack_two_int16(ctx, val));
1916 args->out[1] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1917 si_llvm_pack_two_int16(ctx, val+2));
1918 break;
1919 }
1920
1921 case V_028714_SPI_SHADER_SINT16_ABGR: {
1922 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
1923 is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
1924 LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
1925 is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
1926 LLVMValueRef max_alpha =
1927 !is_int10 ? max_rgb : ctx->i32_1;
1928 LLVMValueRef min_alpha =
1929 !is_int10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
1930
1931 /* Clamp. */
1932 for (chan = 0; chan < 4; chan++) {
1933 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
1934 val[chan] = lp_build_emit_llvm_binary(bld_base,
1935 TGSI_OPCODE_IMIN,
1936 val[chan], chan == 3 ? max_alpha : max_rgb);
1937 val[chan] = lp_build_emit_llvm_binary(bld_base,
1938 TGSI_OPCODE_IMAX,
1939 val[chan], chan == 3 ? min_alpha : min_rgb);
1940 }
1941
1942 args->compr = 1; /* COMPR flag */
1943 args->out[0] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1944 si_llvm_pack_two_int32_as_int16(ctx, val));
1945 args->out[1] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1946 si_llvm_pack_two_int32_as_int16(ctx, val+2));
1947 break;
1948 }
1949
1950 case V_028714_SPI_SHADER_32_ABGR:
1951 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
1952 break;
1953 }
1954 }
1955
1956 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
1957 LLVMValueRef alpha)
1958 {
1959 struct si_shader_context *ctx = si_shader_context(bld_base);
1960
1961 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
1962 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
1963 SI_PARAM_ALPHA_REF);
1964
1965 LLVMValueRef alpha_pass =
1966 lp_build_cmp(&bld_base->base,
1967 ctx->shader->key.part.ps.epilog.alpha_func,
1968 alpha, alpha_ref);
1969 LLVMValueRef arg =
1970 lp_build_select(&bld_base->base,
1971 alpha_pass,
1972 LLVMConstReal(ctx->f32, 1.0f),
1973 LLVMConstReal(ctx->f32, -1.0f));
1974
1975 ac_build_kill(&ctx->ac, arg);
1976 } else {
1977 ac_build_kill(&ctx->ac, NULL);
1978 }
1979 }
1980
1981 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
1982 LLVMValueRef alpha,
1983 unsigned samplemask_param)
1984 {
1985 struct si_shader_context *ctx = si_shader_context(bld_base);
1986 struct gallivm_state *gallivm = &ctx->gallivm;
1987 LLVMValueRef coverage;
1988
1989 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
1990 coverage = LLVMGetParam(ctx->main_fn,
1991 samplemask_param);
1992 coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage);
1993
1994 coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32",
1995 ctx->i32,
1996 &coverage, 1, LP_FUNC_ATTR_READNONE);
1997
1998 coverage = LLVMBuildUIToFP(gallivm->builder, coverage,
1999 ctx->f32, "");
2000
2001 coverage = LLVMBuildFMul(gallivm->builder, coverage,
2002 LLVMConstReal(ctx->f32,
2003 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2004
2005 return LLVMBuildFMul(gallivm->builder, alpha, coverage, "");
2006 }
2007
2008 static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context *bld_base,
2009 struct ac_export_args *pos, LLVMValueRef *out_elts)
2010 {
2011 struct si_shader_context *ctx = si_shader_context(bld_base);
2012 struct lp_build_context *base = &bld_base->base;
2013 unsigned reg_index;
2014 unsigned chan;
2015 unsigned const_chan;
2016 LLVMValueRef base_elt;
2017 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2018 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2019 SI_VS_CONST_CLIP_PLANES, 0);
2020 LLVMValueRef const_resource = ac_build_indexed_load_const(&ctx->ac, ptr, constbuf_index);
2021
2022 for (reg_index = 0; reg_index < 2; reg_index ++) {
2023 struct ac_export_args *args = &pos[2 + reg_index];
2024
2025 args->out[0] =
2026 args->out[1] =
2027 args->out[2] =
2028 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2029
2030 /* Compute dot products of position and user clip plane vectors */
2031 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2032 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2033 LLVMValueRef addr =
2034 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2035 const_chan) * 4, 0);
2036 base_elt = buffer_load_const(ctx, const_resource,
2037 addr);
2038 args->out[chan] =
2039 lp_build_add(base, args->out[chan],
2040 lp_build_mul(base, base_elt,
2041 out_elts[const_chan]));
2042 }
2043 }
2044
2045 args->enabled_channels = 0xf;
2046 args->valid_mask = 0;
2047 args->done = 0;
2048 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2049 args->compr = 0;
2050 }
2051 }
2052
2053 static void si_dump_streamout(struct pipe_stream_output_info *so)
2054 {
2055 unsigned i;
2056
2057 if (so->num_outputs)
2058 fprintf(stderr, "STREAMOUT\n");
2059
2060 for (i = 0; i < so->num_outputs; i++) {
2061 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2062 so->output[i].start_component;
2063 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2064 i, so->output[i].output_buffer,
2065 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2066 so->output[i].register_index,
2067 mask & 1 ? "x" : "",
2068 mask & 2 ? "y" : "",
2069 mask & 4 ? "z" : "",
2070 mask & 8 ? "w" : "");
2071 }
2072 }
2073
2074 static void emit_streamout_output(struct si_shader_context *ctx,
2075 LLVMValueRef const *so_buffers,
2076 LLVMValueRef const *so_write_offsets,
2077 struct pipe_stream_output *stream_out,
2078 struct si_shader_output_values *shader_out)
2079 {
2080 struct gallivm_state *gallivm = &ctx->gallivm;
2081 LLVMBuilderRef builder = gallivm->builder;
2082 unsigned buf_idx = stream_out->output_buffer;
2083 unsigned start = stream_out->start_component;
2084 unsigned num_comps = stream_out->num_components;
2085 LLVMValueRef out[4];
2086
2087 assert(num_comps && num_comps <= 4);
2088 if (!num_comps || num_comps > 4)
2089 return;
2090
2091 /* Load the output as int. */
2092 for (int j = 0; j < num_comps; j++) {
2093 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2094
2095 out[j] = LLVMBuildBitCast(builder,
2096 shader_out->values[start + j],
2097 ctx->i32, "");
2098 }
2099
2100 /* Pack the output. */
2101 LLVMValueRef vdata = NULL;
2102
2103 switch (num_comps) {
2104 case 1: /* as i32 */
2105 vdata = out[0];
2106 break;
2107 case 2: /* as v2i32 */
2108 case 3: /* as v4i32 (aligned to 4) */
2109 case 4: /* as v4i32 */
2110 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2111 for (int j = 0; j < num_comps; j++) {
2112 vdata = LLVMBuildInsertElement(builder, vdata, out[j],
2113 LLVMConstInt(ctx->i32, j, 0), "");
2114 }
2115 break;
2116 }
2117
2118 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2119 vdata, num_comps,
2120 so_write_offsets[buf_idx],
2121 ctx->i32_0,
2122 stream_out->dst_offset * 4, 1, 1, true, false);
2123 }
2124
2125 /**
2126 * Write streamout data to buffers for vertex stream @p stream (different
2127 * vertex streams can occur for GS copy shaders).
2128 */
2129 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2130 struct si_shader_output_values *outputs,
2131 unsigned noutput, unsigned stream)
2132 {
2133 struct si_shader_selector *sel = ctx->shader->selector;
2134 struct pipe_stream_output_info *so = &sel->so;
2135 struct gallivm_state *gallivm = &ctx->gallivm;
2136 LLVMBuilderRef builder = gallivm->builder;
2137 int i;
2138 struct lp_build_if_state if_ctx;
2139
2140 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2141 LLVMValueRef so_vtx_count =
2142 unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2143
2144 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2145
2146 /* can_emit = tid < so_vtx_count; */
2147 LLVMValueRef can_emit =
2148 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2149
2150 /* Emit the streamout code conditionally. This actually avoids
2151 * out-of-bounds buffer access. The hw tells us via the SGPR
2152 * (so_vtx_count) which threads are allowed to emit streamout data. */
2153 lp_build_if(&if_ctx, gallivm, can_emit);
2154 {
2155 /* The buffer offset is computed as follows:
2156 * ByteOffset = streamout_offset[buffer_id]*4 +
2157 * (streamout_write_index + thread_id)*stride[buffer_id] +
2158 * attrib_offset
2159 */
2160
2161 LLVMValueRef so_write_index =
2162 LLVMGetParam(ctx->main_fn,
2163 ctx->param_streamout_write_index);
2164
2165 /* Compute (streamout_write_index + thread_id). */
2166 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2167
2168 /* Load the descriptor and compute the write offset for each
2169 * enabled buffer. */
2170 LLVMValueRef so_write_offset[4] = {};
2171 LLVMValueRef so_buffers[4];
2172 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2173 SI_PARAM_RW_BUFFERS);
2174
2175 for (i = 0; i < 4; i++) {
2176 if (!so->stride[i])
2177 continue;
2178
2179 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2180 SI_VS_STREAMOUT_BUF0 + i, 0);
2181
2182 so_buffers[i] = ac_build_indexed_load_const(&ctx->ac, buf_ptr, offset);
2183
2184 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2185 ctx->param_streamout_offset[i]);
2186 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2187
2188 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2189 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2190 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2191 }
2192
2193 /* Write streamout data. */
2194 for (i = 0; i < so->num_outputs; i++) {
2195 unsigned reg = so->output[i].register_index;
2196
2197 if (reg >= noutput)
2198 continue;
2199
2200 if (stream != so->output[i].stream)
2201 continue;
2202
2203 emit_streamout_output(ctx, so_buffers, so_write_offset,
2204 &so->output[i], &outputs[reg]);
2205 }
2206 }
2207 lp_build_endif(&if_ctx);
2208 }
2209
2210
2211 /* Generate export instructions for hardware VS shader stage */
2212 static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
2213 struct si_shader_output_values *outputs,
2214 unsigned noutput)
2215 {
2216 struct si_shader_context *ctx = si_shader_context(bld_base);
2217 struct si_shader *shader = ctx->shader;
2218 struct lp_build_context *base = &bld_base->base;
2219 struct ac_export_args args, pos_args[4] = {};
2220 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2221 unsigned semantic_name, semantic_index;
2222 unsigned target;
2223 unsigned param_count = 0;
2224 unsigned pos_idx;
2225 int i;
2226
2227 for (i = 0; i < noutput; i++) {
2228 semantic_name = outputs[i].semantic_name;
2229 semantic_index = outputs[i].semantic_index;
2230 bool export_param = true;
2231
2232 switch (semantic_name) {
2233 case TGSI_SEMANTIC_POSITION: /* ignore these */
2234 case TGSI_SEMANTIC_PSIZE:
2235 case TGSI_SEMANTIC_CLIPVERTEX:
2236 case TGSI_SEMANTIC_EDGEFLAG:
2237 break;
2238 case TGSI_SEMANTIC_GENERIC:
2239 case TGSI_SEMANTIC_CLIPDIST:
2240 if (shader->key.opt.hw_vs.kill_outputs &
2241 (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
2242 export_param = false;
2243 break;
2244 default:
2245 if (shader->key.opt.hw_vs.kill_outputs2 &
2246 (1u << si_shader_io_get_unique_index2(semantic_name, semantic_index)))
2247 export_param = false;
2248 break;
2249 }
2250
2251 if (outputs[i].vertex_stream[0] != 0 &&
2252 outputs[i].vertex_stream[1] != 0 &&
2253 outputs[i].vertex_stream[2] != 0 &&
2254 outputs[i].vertex_stream[3] != 0)
2255 export_param = false;
2256
2257 handle_semantic:
2258 /* Select the correct target */
2259 switch(semantic_name) {
2260 case TGSI_SEMANTIC_PSIZE:
2261 psize_value = outputs[i].values[0];
2262 continue;
2263 case TGSI_SEMANTIC_EDGEFLAG:
2264 edgeflag_value = outputs[i].values[0];
2265 continue;
2266 case TGSI_SEMANTIC_LAYER:
2267 layer_value = outputs[i].values[0];
2268 semantic_name = TGSI_SEMANTIC_GENERIC;
2269 goto handle_semantic;
2270 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2271 viewport_index_value = outputs[i].values[0];
2272 semantic_name = TGSI_SEMANTIC_GENERIC;
2273 goto handle_semantic;
2274 case TGSI_SEMANTIC_POSITION:
2275 target = V_008DFC_SQ_EXP_POS;
2276 break;
2277 case TGSI_SEMANTIC_CLIPDIST:
2278 if (shader->key.opt.hw_vs.clip_disable) {
2279 semantic_name = TGSI_SEMANTIC_GENERIC;
2280 goto handle_semantic;
2281 }
2282 target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
2283 break;
2284 case TGSI_SEMANTIC_CLIPVERTEX:
2285 if (shader->key.opt.hw_vs.clip_disable)
2286 continue;
2287 si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
2288 continue;
2289 case TGSI_SEMANTIC_COLOR:
2290 case TGSI_SEMANTIC_BCOLOR:
2291 case TGSI_SEMANTIC_PRIMID:
2292 case TGSI_SEMANTIC_FOG:
2293 case TGSI_SEMANTIC_TEXCOORD:
2294 case TGSI_SEMANTIC_GENERIC:
2295 if (!export_param)
2296 continue;
2297 target = V_008DFC_SQ_EXP_PARAM + param_count;
2298 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2299 shader->info.vs_output_param_offset[i] = param_count;
2300 param_count++;
2301 break;
2302 default:
2303 target = 0;
2304 fprintf(stderr,
2305 "Warning: SI unhandled vs output type:%d\n",
2306 semantic_name);
2307 }
2308
2309 si_llvm_init_export_args(bld_base, outputs[i].values, target, &args);
2310
2311 if (target >= V_008DFC_SQ_EXP_POS &&
2312 target <= (V_008DFC_SQ_EXP_POS + 3)) {
2313 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2314 &args, sizeof(args));
2315 } else {
2316 ac_build_export(&ctx->ac, &args);
2317 }
2318
2319 if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
2320 semantic_name = TGSI_SEMANTIC_GENERIC;
2321 goto handle_semantic;
2322 }
2323 }
2324
2325 shader->info.nr_param_exports = param_count;
2326
2327 /* We need to add the position output manually if it's missing. */
2328 if (!pos_args[0].out[0]) {
2329 pos_args[0].enabled_channels = 0xf; /* writemask */
2330 pos_args[0].valid_mask = 0; /* EXEC mask */
2331 pos_args[0].done = 0; /* last export? */
2332 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2333 pos_args[0].compr = 0; /* COMPR flag */
2334 pos_args[0].out[0] = base->zero; /* X */
2335 pos_args[0].out[1] = base->zero; /* Y */
2336 pos_args[0].out[2] = base->zero; /* Z */
2337 pos_args[0].out[3] = base->one; /* W */
2338 }
2339
2340 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2341 if (shader->selector->info.writes_psize ||
2342 shader->selector->info.writes_edgeflag ||
2343 shader->selector->info.writes_viewport_index ||
2344 shader->selector->info.writes_layer) {
2345 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2346 (shader->selector->info.writes_edgeflag << 1) |
2347 (shader->selector->info.writes_layer << 2) |
2348 (shader->selector->info.writes_viewport_index << 3);
2349 pos_args[1].valid_mask = 0; /* EXEC mask */
2350 pos_args[1].done = 0; /* last export? */
2351 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2352 pos_args[1].compr = 0; /* COMPR flag */
2353 pos_args[1].out[0] = base->zero; /* X */
2354 pos_args[1].out[1] = base->zero; /* Y */
2355 pos_args[1].out[2] = base->zero; /* Z */
2356 pos_args[1].out[3] = base->zero; /* W */
2357
2358 if (shader->selector->info.writes_psize)
2359 pos_args[1].out[0] = psize_value;
2360
2361 if (shader->selector->info.writes_edgeflag) {
2362 /* The output is a float, but the hw expects an integer
2363 * with the first bit containing the edge flag. */
2364 edgeflag_value = LLVMBuildFPToUI(ctx->gallivm.builder,
2365 edgeflag_value,
2366 ctx->i32, "");
2367 edgeflag_value = lp_build_min(&bld_base->int_bld,
2368 edgeflag_value,
2369 ctx->i32_1);
2370
2371 /* The LLVM intrinsic expects a float. */
2372 pos_args[1].out[1] = LLVMBuildBitCast(ctx->gallivm.builder,
2373 edgeflag_value,
2374 ctx->f32, "");
2375 }
2376
2377 if (shader->selector->info.writes_layer)
2378 pos_args[1].out[2] = layer_value;
2379
2380 if (shader->selector->info.writes_viewport_index)
2381 pos_args[1].out[3] = viewport_index_value;
2382 }
2383
2384 for (i = 0; i < 4; i++)
2385 if (pos_args[i].out[0])
2386 shader->info.nr_pos_exports++;
2387
2388 pos_idx = 0;
2389 for (i = 0; i < 4; i++) {
2390 if (!pos_args[i].out[0])
2391 continue;
2392
2393 /* Specify the target we are exporting */
2394 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2395
2396 if (pos_idx == shader->info.nr_pos_exports)
2397 /* Specify that this is the last export */
2398 pos_args[i].done = 1;
2399
2400 ac_build_export(&ctx->ac, &pos_args[i]);
2401 }
2402 }
2403
2404 /**
2405 * Forward all outputs from the vertex shader to the TES. This is only used
2406 * for the fixed function TCS.
2407 */
2408 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
2409 {
2410 struct si_shader_context *ctx = si_shader_context(bld_base);
2411 struct gallivm_state *gallivm = &ctx->gallivm;
2412 LLVMValueRef invocation_id, rw_buffers, buffer, buffer_offset;
2413 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
2414 uint64_t inputs;
2415
2416 invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2417
2418 rw_buffers = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2419 buffer = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
2420 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_OFFCHIP, 0));
2421
2422 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
2423
2424 lds_vertex_stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 24, 8);
2425 lds_vertex_offset = LLVMBuildMul(gallivm->builder, invocation_id,
2426 lds_vertex_stride, "");
2427 lds_base = get_tcs_in_current_patch_offset(ctx);
2428 lds_base = LLVMBuildAdd(gallivm->builder, lds_base, lds_vertex_offset, "");
2429
2430 inputs = ctx->shader->key.mono.tcs.inputs_to_copy;
2431 while (inputs) {
2432 unsigned i = u_bit_scan64(&inputs);
2433
2434 LLVMValueRef lds_ptr = LLVMBuildAdd(gallivm->builder, lds_base,
2435 LLVMConstInt(ctx->i32, 4 * i, 0),
2436 "");
2437
2438 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
2439 get_rel_patch_id(ctx),
2440 invocation_id,
2441 LLVMConstInt(ctx->i32, i, 0));
2442
2443 LLVMValueRef value = lds_load(bld_base, TGSI_TYPE_SIGNED, ~0,
2444 lds_ptr);
2445
2446 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
2447 buffer_offset, 0, 1, 0, true, false);
2448 }
2449 }
2450
2451 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
2452 LLVMValueRef rel_patch_id,
2453 LLVMValueRef invocation_id,
2454 LLVMValueRef tcs_out_current_patch_data_offset)
2455 {
2456 struct si_shader_context *ctx = si_shader_context(bld_base);
2457 struct gallivm_state *gallivm = &ctx->gallivm;
2458 struct si_shader *shader = ctx->shader;
2459 unsigned tess_inner_index, tess_outer_index;
2460 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
2461 LLVMValueRef out[6], vec0, vec1, rw_buffers, tf_base, inner[4], outer[4];
2462 unsigned stride, outer_comps, inner_comps, i;
2463 struct lp_build_if_state if_ctx, inner_if_ctx;
2464
2465 si_llvm_emit_barrier(NULL, bld_base, NULL);
2466
2467 /* Do this only for invocation 0, because the tess levels are per-patch,
2468 * not per-vertex.
2469 *
2470 * This can't jump, because invocation 0 executes this. It should
2471 * at least mask out the loads and stores for other invocations.
2472 */
2473 lp_build_if(&if_ctx, gallivm,
2474 LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2475 invocation_id, ctx->i32_0, ""));
2476
2477 /* Determine the layout of one tess factor element in the buffer. */
2478 switch (shader->key.part.tcs.epilog.prim_mode) {
2479 case PIPE_PRIM_LINES:
2480 stride = 2; /* 2 dwords, 1 vec2 store */
2481 outer_comps = 2;
2482 inner_comps = 0;
2483 break;
2484 case PIPE_PRIM_TRIANGLES:
2485 stride = 4; /* 4 dwords, 1 vec4 store */
2486 outer_comps = 3;
2487 inner_comps = 1;
2488 break;
2489 case PIPE_PRIM_QUADS:
2490 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
2491 outer_comps = 4;
2492 inner_comps = 2;
2493 break;
2494 default:
2495 assert(0);
2496 return;
2497 }
2498
2499 /* Load tess_inner and tess_outer from LDS.
2500 * Any invocation can write them, so we can't get them from a temporary.
2501 */
2502 tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0);
2503 tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0);
2504
2505 lds_base = tcs_out_current_patch_data_offset;
2506 lds_inner = LLVMBuildAdd(gallivm->builder, lds_base,
2507 LLVMConstInt(ctx->i32,
2508 tess_inner_index * 4, 0), "");
2509 lds_outer = LLVMBuildAdd(gallivm->builder, lds_base,
2510 LLVMConstInt(ctx->i32,
2511 tess_outer_index * 4, 0), "");
2512
2513 for (i = 0; i < 4; i++) {
2514 inner[i] = LLVMGetUndef(ctx->i32);
2515 outer[i] = LLVMGetUndef(ctx->i32);
2516 }
2517
2518 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
2519 /* For isolines, the hardware expects tess factors in the
2520 * reverse order from what GLSL / TGSI specify.
2521 */
2522 outer[0] = out[1] = lds_load(bld_base, TGSI_TYPE_SIGNED, 0, lds_outer);
2523 outer[1] = out[0] = lds_load(bld_base, TGSI_TYPE_SIGNED, 1, lds_outer);
2524 } else {
2525 for (i = 0; i < outer_comps; i++) {
2526 outer[i] = out[i] =
2527 lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer);
2528 }
2529 for (i = 0; i < inner_comps; i++) {
2530 inner[i] = out[outer_comps+i] =
2531 lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner);
2532 }
2533 }
2534
2535 /* Convert the outputs to vectors for stores. */
2536 vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4));
2537 vec1 = NULL;
2538
2539 if (stride > 4)
2540 vec1 = lp_build_gather_values(gallivm, out+4, stride - 4);
2541
2542 /* Get the buffer. */
2543 rw_buffers = LLVMGetParam(ctx->main_fn,
2544 SI_PARAM_RW_BUFFERS);
2545 buffer = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
2546 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_FACTOR, 0));
2547
2548 /* Get the offset. */
2549 tf_base = LLVMGetParam(ctx->main_fn,
2550 SI_PARAM_TESS_FACTOR_OFFSET);
2551 byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id,
2552 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
2553
2554 lp_build_if(&inner_if_ctx, gallivm,
2555 LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2556 rel_patch_id, ctx->i32_0, ""));
2557
2558 /* Store the dynamic HS control word. */
2559 ac_build_buffer_store_dword(&ctx->ac, buffer,
2560 LLVMConstInt(ctx->i32, 0x80000000, 0),
2561 1, ctx->i32_0, tf_base,
2562 0, 1, 0, true, false);
2563
2564 lp_build_endif(&inner_if_ctx);
2565
2566 /* Store the tessellation factors. */
2567 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
2568 MIN2(stride, 4), byteoffset, tf_base,
2569 4, 1, 0, true, false);
2570 if (vec1)
2571 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
2572 stride - 4, byteoffset, tf_base,
2573 20, 1, 0, true, false);
2574
2575 /* Store the tess factors into the offchip buffer if TES reads them. */
2576 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
2577 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
2578 LLVMValueRef tf_inner_offset;
2579 unsigned param_outer, param_inner;
2580
2581 buf = ac_build_indexed_load_const(&ctx->ac, rw_buffers,
2582 LLVMConstInt(ctx->i32, SI_HS_RING_TESS_OFFCHIP, 0));
2583 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
2584
2585 param_outer = si_shader_io_get_unique_index(
2586 TGSI_SEMANTIC_TESSOUTER, 0);
2587 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
2588 LLVMConstInt(ctx->i32, param_outer, 0));
2589
2590 outer_vec = lp_build_gather_values(gallivm, outer,
2591 util_next_power_of_two(outer_comps));
2592
2593 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
2594 outer_comps, tf_outer_offset,
2595 base, 0, 1, 0, true, false);
2596 if (inner_comps) {
2597 param_inner = si_shader_io_get_unique_index(
2598 TGSI_SEMANTIC_TESSINNER, 0);
2599 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
2600 LLVMConstInt(ctx->i32, param_inner, 0));
2601
2602 inner_vec = inner_comps == 1 ? inner[0] :
2603 lp_build_gather_values(gallivm, inner, inner_comps);
2604 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
2605 inner_comps, tf_inner_offset,
2606 base, 0, 1, 0, true, false);
2607 }
2608 }
2609
2610 lp_build_endif(&if_ctx);
2611 }
2612
2613 /* This only writes the tessellation factor levels. */
2614 static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base)
2615 {
2616 struct si_shader_context *ctx = si_shader_context(bld_base);
2617 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
2618 LLVMValueRef offchip_soffset, offchip_layout;
2619
2620 si_copy_tcs_inputs(bld_base);
2621
2622 rel_patch_id = get_rel_patch_id(ctx);
2623 invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2624 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
2625
2626 /* Return epilog parameters from this function. */
2627 LLVMBuilderRef builder = ctx->gallivm.builder;
2628 LLVMValueRef ret = ctx->return_value;
2629 LLVMValueRef rw_buffers, rw0, rw1, tf_soffset;
2630 unsigned vgpr;
2631
2632 /* RW_BUFFERS pointer */
2633 rw_buffers = LLVMGetParam(ctx->main_fn,
2634 SI_PARAM_RW_BUFFERS);
2635 rw_buffers = LLVMBuildPtrToInt(builder, rw_buffers, ctx->i64, "");
2636 rw_buffers = LLVMBuildBitCast(builder, rw_buffers, ctx->v2i32, "");
2637 rw0 = LLVMBuildExtractElement(builder, rw_buffers,
2638 ctx->i32_0, "");
2639 rw1 = LLVMBuildExtractElement(builder, rw_buffers,
2640 ctx->i32_1, "");
2641 ret = LLVMBuildInsertValue(builder, ret, rw0, 0, "");
2642 ret = LLVMBuildInsertValue(builder, ret, rw1, 1, "");
2643
2644 /* Tess offchip and factor buffer soffset are after user SGPRs. */
2645 offchip_layout = LLVMGetParam(ctx->main_fn,
2646 SI_PARAM_TCS_OFFCHIP_LAYOUT);
2647 offchip_soffset = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
2648 tf_soffset = LLVMGetParam(ctx->main_fn,
2649 SI_PARAM_TESS_FACTOR_OFFSET);
2650 ret = LLVMBuildInsertValue(builder, ret, offchip_layout,
2651 SI_SGPR_TCS_OFFCHIP_LAYOUT, "");
2652 ret = LLVMBuildInsertValue(builder, ret, offchip_soffset,
2653 SI_TCS_NUM_USER_SGPR, "");
2654 ret = LLVMBuildInsertValue(builder, ret, tf_soffset,
2655 SI_TCS_NUM_USER_SGPR + 1, "");
2656
2657 /* VGPRs */
2658 rel_patch_id = bitcast(bld_base, TGSI_TYPE_FLOAT, rel_patch_id);
2659 invocation_id = bitcast(bld_base, TGSI_TYPE_FLOAT, invocation_id);
2660 tf_lds_offset = bitcast(bld_base, TGSI_TYPE_FLOAT, tf_lds_offset);
2661
2662 vgpr = SI_TCS_NUM_USER_SGPR + 2;
2663 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
2664 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
2665 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
2666 ctx->return_value = ret;
2667 }
2668
2669 static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context *bld_base)
2670 {
2671 struct si_shader_context *ctx = si_shader_context(bld_base);
2672 struct si_shader *shader = ctx->shader;
2673 struct tgsi_shader_info *info = &shader->selector->info;
2674 struct gallivm_state *gallivm = &ctx->gallivm;
2675 unsigned i, chan;
2676 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
2677 ctx->param_rel_auto_id);
2678 LLVMValueRef vertex_dw_stride =
2679 unpack_param(ctx, SI_PARAM_VS_STATE_BITS, 24, 8);
2680 LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id,
2681 vertex_dw_stride, "");
2682
2683 /* Write outputs to LDS. The next shader (TCS aka HS) will read
2684 * its inputs from it. */
2685 for (i = 0; i < info->num_outputs; i++) {
2686 LLVMValueRef *out_ptr = ctx->outputs[i];
2687 unsigned name = info->output_semantic_name[i];
2688 unsigned index = info->output_semantic_index[i];
2689
2690 /* The ARB_shader_viewport_layer_array spec contains the
2691 * following issue:
2692 *
2693 * 2) What happens if gl_ViewportIndex or gl_Layer is
2694 * written in the vertex shader and a geometry shader is
2695 * present?
2696 *
2697 * RESOLVED: The value written by the last vertex processing
2698 * stage is used. If the last vertex processing stage
2699 * (vertex, tessellation evaluation or geometry) does not
2700 * statically assign to gl_ViewportIndex or gl_Layer, index
2701 * or layer zero is assumed.
2702 *
2703 * So writes to those outputs in VS-as-LS are simply ignored.
2704 */
2705 if (name == TGSI_SEMANTIC_LAYER ||
2706 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
2707 continue;
2708
2709 int param = si_shader_io_get_unique_index(name, index);
2710 LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr,
2711 LLVMConstInt(ctx->i32, param * 4, 0), "");
2712
2713 for (chan = 0; chan < 4; chan++) {
2714 lds_store(bld_base, chan, dw_addr,
2715 LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""));
2716 }
2717 }
2718 }
2719
2720 static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context *bld_base)
2721 {
2722 struct si_shader_context *ctx = si_shader_context(bld_base);
2723 struct gallivm_state *gallivm = &ctx->gallivm;
2724 struct si_shader *es = ctx->shader;
2725 struct tgsi_shader_info *info = &es->selector->info;
2726 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
2727 ctx->param_es2gs_offset);
2728 unsigned chan;
2729 int i;
2730
2731 for (i = 0; i < info->num_outputs; i++) {
2732 LLVMValueRef *out_ptr = ctx->outputs[i];
2733 int param_index;
2734
2735 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
2736 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
2737 continue;
2738
2739 param_index = si_shader_io_get_unique_index(info->output_semantic_name[i],
2740 info->output_semantic_index[i]);
2741
2742 for (chan = 0; chan < 4; chan++) {
2743 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
2744 out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
2745
2746 ac_build_buffer_store_dword(&ctx->ac,
2747 ctx->esgs_ring,
2748 out_val, 1, NULL, soffset,
2749 (4 * param_index + chan) * 4,
2750 1, 1, true, true);
2751 }
2752 }
2753 }
2754
2755 static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
2756 {
2757 struct si_shader_context *ctx = si_shader_context(bld_base);
2758
2759 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
2760 LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID));
2761 }
2762
2763 static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context *bld_base)
2764 {
2765 struct si_shader_context *ctx = si_shader_context(bld_base);
2766 struct gallivm_state *gallivm = &ctx->gallivm;
2767 struct tgsi_shader_info *info = &ctx->shader->selector->info;
2768 struct si_shader_output_values *outputs = NULL;
2769 int i,j;
2770
2771 assert(!ctx->shader->is_gs_copy_shader);
2772
2773 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
2774
2775 /* Vertex color clamping.
2776 *
2777 * This uses a state constant loaded in a user data SGPR and
2778 * an IF statement is added that clamps all colors if the constant
2779 * is true.
2780 */
2781 if (ctx->type == PIPE_SHADER_VERTEX) {
2782 struct lp_build_if_state if_ctx;
2783 LLVMValueRef cond = NULL;
2784 LLVMValueRef addr, val;
2785
2786 for (i = 0; i < info->num_outputs; i++) {
2787 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
2788 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
2789 continue;
2790
2791 /* We've found a color. */
2792 if (!cond) {
2793 /* The state is in the first bit of the user SGPR. */
2794 cond = LLVMGetParam(ctx->main_fn,
2795 SI_PARAM_VS_STATE_BITS);
2796 cond = LLVMBuildTrunc(gallivm->builder, cond,
2797 ctx->i1, "");
2798 lp_build_if(&if_ctx, gallivm, cond);
2799 }
2800
2801 for (j = 0; j < 4; j++) {
2802 addr = ctx->outputs[i][j];
2803 val = LLVMBuildLoad(gallivm->builder, addr, "");
2804 val = ac_build_clamp(&ctx->ac, val);
2805 LLVMBuildStore(gallivm->builder, val, addr);
2806 }
2807 }
2808
2809 if (cond)
2810 lp_build_endif(&if_ctx);
2811 }
2812
2813 for (i = 0; i < info->num_outputs; i++) {
2814 outputs[i].semantic_name = info->output_semantic_name[i];
2815 outputs[i].semantic_index = info->output_semantic_index[i];
2816
2817 for (j = 0; j < 4; j++) {
2818 outputs[i].values[j] =
2819 LLVMBuildLoad(gallivm->builder,
2820 ctx->outputs[i][j],
2821 "");
2822 outputs[i].vertex_stream[j] =
2823 (info->output_streams[i] >> (2 * j)) & 3;
2824 }
2825
2826 }
2827
2828 /* Return the primitive ID from the LLVM function. */
2829 ctx->return_value =
2830 LLVMBuildInsertValue(gallivm->builder,
2831 ctx->return_value,
2832 bitcast(bld_base, TGSI_TYPE_FLOAT,
2833 get_primitive_id(bld_base, 0)),
2834 VS_EPILOG_PRIMID_LOC, "");
2835
2836 if (ctx->shader->selector->so.num_outputs)
2837 si_llvm_emit_streamout(ctx, outputs, i, 0);
2838 si_llvm_export_vs(bld_base, outputs, i);
2839 FREE(outputs);
2840 }
2841
2842 struct si_ps_exports {
2843 unsigned num;
2844 struct ac_export_args args[10];
2845 };
2846
2847 unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
2848 bool writes_samplemask)
2849 {
2850 if (writes_z) {
2851 /* Z needs 32 bits. */
2852 if (writes_samplemask)
2853 return V_028710_SPI_SHADER_32_ABGR;
2854 else if (writes_stencil)
2855 return V_028710_SPI_SHADER_32_GR;
2856 else
2857 return V_028710_SPI_SHADER_32_R;
2858 } else if (writes_stencil || writes_samplemask) {
2859 /* Both stencil and sample mask need only 16 bits. */
2860 return V_028710_SPI_SHADER_UINT16_ABGR;
2861 } else {
2862 return V_028710_SPI_SHADER_ZERO;
2863 }
2864 }
2865
2866 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
2867 LLVMValueRef depth, LLVMValueRef stencil,
2868 LLVMValueRef samplemask, struct si_ps_exports *exp)
2869 {
2870 struct si_shader_context *ctx = si_shader_context(bld_base);
2871 struct lp_build_context *base = &bld_base->base;
2872 struct ac_export_args args;
2873 unsigned mask = 0;
2874 unsigned format = si_get_spi_shader_z_format(depth != NULL,
2875 stencil != NULL,
2876 samplemask != NULL);
2877
2878 assert(depth || stencil || samplemask);
2879
2880 args.valid_mask = 1; /* whether the EXEC mask is valid */
2881 args.done = 1; /* DONE bit */
2882
2883 /* Specify the target we are exporting */
2884 args.target = V_008DFC_SQ_EXP_MRTZ;
2885
2886 args.compr = 0; /* COMP flag */
2887 args.out[0] = base->undef; /* R, depth */
2888 args.out[1] = base->undef; /* G, stencil test value[0:7], stencil op value[8:15] */
2889 args.out[2] = base->undef; /* B, sample mask */
2890 args.out[3] = base->undef; /* A, alpha to mask */
2891
2892 if (format == V_028710_SPI_SHADER_UINT16_ABGR) {
2893 assert(!depth);
2894 args.compr = 1; /* COMPR flag */
2895
2896 if (stencil) {
2897 /* Stencil should be in X[23:16]. */
2898 stencil = bitcast(bld_base, TGSI_TYPE_UNSIGNED, stencil);
2899 stencil = LLVMBuildShl(ctx->gallivm.builder, stencil,
2900 LLVMConstInt(ctx->i32, 16, 0), "");
2901 args.out[0] = bitcast(bld_base, TGSI_TYPE_FLOAT, stencil);
2902 mask |= 0x3;
2903 }
2904 if (samplemask) {
2905 /* SampleMask should be in Y[15:0]. */
2906 args.out[1] = samplemask;
2907 mask |= 0xc;
2908 }
2909 } else {
2910 if (depth) {
2911 args.out[0] = depth;
2912 mask |= 0x1;
2913 }
2914 if (stencil) {
2915 args.out[1] = stencil;
2916 mask |= 0x2;
2917 }
2918 if (samplemask) {
2919 args.out[2] = samplemask;
2920 mask |= 0x4;
2921 }
2922 }
2923
2924 /* SI (except OLAND and HAINAN) has a bug that it only looks
2925 * at the X writemask component. */
2926 if (ctx->screen->b.chip_class == SI &&
2927 ctx->screen->b.family != CHIP_OLAND &&
2928 ctx->screen->b.family != CHIP_HAINAN)
2929 mask |= 0x1;
2930
2931 /* Specify which components to enable */
2932 args.enabled_channels = mask;
2933
2934 memcpy(&exp->args[exp->num++], &args, sizeof(args));
2935 }
2936
2937 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
2938 LLVMValueRef *color, unsigned index,
2939 unsigned samplemask_param,
2940 bool is_last, struct si_ps_exports *exp)
2941 {
2942 struct si_shader_context *ctx = si_shader_context(bld_base);
2943 struct lp_build_context *base = &bld_base->base;
2944 int i;
2945
2946 /* Clamp color */
2947 if (ctx->shader->key.part.ps.epilog.clamp_color)
2948 for (i = 0; i < 4; i++)
2949 color[i] = ac_build_clamp(&ctx->ac, color[i]);
2950
2951 /* Alpha to one */
2952 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
2953 color[3] = base->one;
2954
2955 /* Alpha test */
2956 if (index == 0 &&
2957 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
2958 si_alpha_test(bld_base, color[3]);
2959
2960 /* Line & polygon smoothing */
2961 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
2962 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
2963 samplemask_param);
2964
2965 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
2966 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
2967 struct ac_export_args args[8];
2968 int c, last = -1;
2969
2970 /* Get the export arguments, also find out what the last one is. */
2971 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
2972 si_llvm_init_export_args(bld_base, color,
2973 V_008DFC_SQ_EXP_MRT + c, &args[c]);
2974 if (args[c].enabled_channels)
2975 last = c;
2976 }
2977
2978 /* Emit all exports. */
2979 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
2980 if (is_last && last == c) {
2981 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
2982 args[c].done = 1; /* DONE bit */
2983 } else if (!args[c].enabled_channels)
2984 continue; /* unnecessary NULL export */
2985
2986 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
2987 }
2988 } else {
2989 struct ac_export_args args;
2990
2991 /* Export */
2992 si_llvm_init_export_args(bld_base, color, V_008DFC_SQ_EXP_MRT + index,
2993 &args);
2994 if (is_last) {
2995 args.valid_mask = 1; /* whether the EXEC mask is valid */
2996 args.done = 1; /* DONE bit */
2997 } else if (!args.enabled_channels)
2998 return; /* unnecessary NULL export */
2999
3000 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3001 }
3002 }
3003
3004 static void si_emit_ps_exports(struct si_shader_context *ctx,
3005 struct si_ps_exports *exp)
3006 {
3007 for (unsigned i = 0; i < exp->num; i++)
3008 ac_build_export(&ctx->ac, &exp->args[i]);
3009 }
3010
3011 static void si_export_null(struct lp_build_tgsi_context *bld_base)
3012 {
3013 struct si_shader_context *ctx = si_shader_context(bld_base);
3014 struct lp_build_context *base = &bld_base->base;
3015 struct ac_export_args args;
3016
3017 args.enabled_channels = 0x0; /* enabled channels */
3018 args.valid_mask = 1; /* whether the EXEC mask is valid */
3019 args.done = 1; /* DONE bit */
3020 args.target = V_008DFC_SQ_EXP_NULL;
3021 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
3022 args.out[0] = base->undef; /* R */
3023 args.out[1] = base->undef; /* G */
3024 args.out[2] = base->undef; /* B */
3025 args.out[3] = base->undef; /* A */
3026
3027 ac_build_export(&ctx->ac, &args);
3028 }
3029
3030 /**
3031 * Return PS outputs in this order:
3032 *
3033 * v[0:3] = color0.xyzw
3034 * v[4:7] = color1.xyzw
3035 * ...
3036 * vN+0 = Depth
3037 * vN+1 = Stencil
3038 * vN+2 = SampleMask
3039 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3040 *
3041 * The alpha-ref SGPR is returned via its original location.
3042 */
3043 static void si_llvm_return_fs_outputs(struct lp_build_tgsi_context *bld_base)
3044 {
3045 struct si_shader_context *ctx = si_shader_context(bld_base);
3046 struct si_shader *shader = ctx->shader;
3047 struct tgsi_shader_info *info = &shader->selector->info;
3048 LLVMBuilderRef builder = ctx->gallivm.builder;
3049 unsigned i, j, first_vgpr, vgpr;
3050
3051 LLVMValueRef color[8][4] = {};
3052 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3053 LLVMValueRef ret;
3054
3055 /* Read the output values. */
3056 for (i = 0; i < info->num_outputs; i++) {
3057 unsigned semantic_name = info->output_semantic_name[i];
3058 unsigned semantic_index = info->output_semantic_index[i];
3059
3060 switch (semantic_name) {
3061 case TGSI_SEMANTIC_COLOR:
3062 assert(semantic_index < 8);
3063 for (j = 0; j < 4; j++) {
3064 LLVMValueRef ptr = ctx->outputs[i][j];
3065 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3066 color[semantic_index][j] = result;
3067 }
3068 break;
3069 case TGSI_SEMANTIC_POSITION:
3070 depth = LLVMBuildLoad(builder,
3071 ctx->outputs[i][2], "");
3072 break;
3073 case TGSI_SEMANTIC_STENCIL:
3074 stencil = LLVMBuildLoad(builder,
3075 ctx->outputs[i][1], "");
3076 break;
3077 case TGSI_SEMANTIC_SAMPLEMASK:
3078 samplemask = LLVMBuildLoad(builder,
3079 ctx->outputs[i][0], "");
3080 break;
3081 default:
3082 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3083 semantic_name);
3084 }
3085 }
3086
3087 /* Fill the return structure. */
3088 ret = ctx->return_value;
3089
3090 /* Set SGPRs. */
3091 ret = LLVMBuildInsertValue(builder, ret,
3092 bitcast(bld_base, TGSI_TYPE_SIGNED,
3093 LLVMGetParam(ctx->main_fn,
3094 SI_PARAM_ALPHA_REF)),
3095 SI_SGPR_ALPHA_REF, "");
3096
3097 /* Set VGPRs */
3098 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3099 for (i = 0; i < ARRAY_SIZE(color); i++) {
3100 if (!color[i][0])
3101 continue;
3102
3103 for (j = 0; j < 4; j++)
3104 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3105 }
3106 if (depth)
3107 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3108 if (stencil)
3109 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3110 if (samplemask)
3111 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3112
3113 /* Add the input sample mask for smoothing at the end. */
3114 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3115 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3116 ret = LLVMBuildInsertValue(builder, ret,
3117 LLVMGetParam(ctx->main_fn,
3118 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3119
3120 ctx->return_value = ret;
3121 }
3122
3123 /**
3124 * Given a v8i32 resource descriptor for a buffer, extract the size of the
3125 * buffer in number of elements and return it as an i32.
3126 */
3127 static LLVMValueRef get_buffer_size(
3128 struct lp_build_tgsi_context *bld_base,
3129 LLVMValueRef descriptor)
3130 {
3131 struct si_shader_context *ctx = si_shader_context(bld_base);
3132 struct gallivm_state *gallivm = &ctx->gallivm;
3133 LLVMBuilderRef builder = gallivm->builder;
3134 LLVMValueRef size =
3135 LLVMBuildExtractElement(builder, descriptor,
3136 LLVMConstInt(ctx->i32, 2, 0), "");
3137
3138 if (ctx->screen->b.chip_class == VI) {
3139 /* On VI, the descriptor contains the size in bytes,
3140 * but TXQ must return the size in elements.
3141 * The stride is always non-zero for resources using TXQ.
3142 */
3143 LLVMValueRef stride =
3144 LLVMBuildExtractElement(builder, descriptor,
3145 ctx->i32_1, "");
3146 stride = LLVMBuildLShr(builder, stride,
3147 LLVMConstInt(ctx->i32, 16, 0), "");
3148 stride = LLVMBuildAnd(builder, stride,
3149 LLVMConstInt(ctx->i32, 0x3FFF, 0), "");
3150
3151 size = LLVMBuildUDiv(builder, size, stride, "");
3152 }
3153
3154 return size;
3155 }
3156
3157 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
3158 struct lp_build_tgsi_context *bld_base,
3159 struct lp_build_emit_data *emit_data);
3160
3161 /* Prevent optimizations (at least of memory accesses) across the current
3162 * point in the program by emitting empty inline assembly that is marked as
3163 * having side effects.
3164 *
3165 * Optionally, a value can be passed through the inline assembly to prevent
3166 * LLVM from hoisting calls to ReadNone functions.
3167 */
3168 static void emit_optimization_barrier(struct si_shader_context *ctx,
3169 LLVMValueRef *pvgpr)
3170 {
3171 static int counter = 0;
3172
3173 LLVMBuilderRef builder = ctx->gallivm.builder;
3174 char code[16];
3175
3176 snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
3177
3178 if (!pvgpr) {
3179 LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
3180 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
3181 LLVMBuildCall(builder, inlineasm, NULL, 0, "");
3182 } else {
3183 LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
3184 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
3185 LLVMValueRef vgpr = *pvgpr;
3186 LLVMTypeRef vgpr_type = LLVMTypeOf(vgpr);
3187 unsigned vgpr_size = llvm_get_type_size(vgpr_type);
3188 LLVMValueRef vgpr0;
3189
3190 assert(vgpr_size % 4 == 0);
3191
3192 vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
3193 vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
3194 vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
3195 vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
3196 vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
3197
3198 *pvgpr = vgpr;
3199 }
3200 }
3201
3202 /* Combine these with & instead of |. */
3203 #define NOOP_WAITCNT 0xf7f
3204 #define LGKM_CNT 0x07f
3205 #define VM_CNT 0xf70
3206
3207 static void emit_waitcnt(struct si_shader_context *ctx, unsigned simm16)
3208 {
3209 struct gallivm_state *gallivm = &ctx->gallivm;
3210 LLVMBuilderRef builder = gallivm->builder;
3211 LLVMValueRef args[1] = {
3212 LLVMConstInt(ctx->i32, simm16, 0)
3213 };
3214 lp_build_intrinsic(builder, "llvm.amdgcn.s.waitcnt",
3215 ctx->voidt, args, 1, 0);
3216 }
3217
3218 static void membar_emit(
3219 const struct lp_build_tgsi_action *action,
3220 struct lp_build_tgsi_context *bld_base,
3221 struct lp_build_emit_data *emit_data)
3222 {
3223 struct si_shader_context *ctx = si_shader_context(bld_base);
3224 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3225 unsigned flags = LLVMConstIntGetZExtValue(src0);
3226 unsigned waitcnt = NOOP_WAITCNT;
3227
3228 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3229 waitcnt &= VM_CNT & LGKM_CNT;
3230
3231 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3232 TGSI_MEMBAR_SHADER_BUFFER |
3233 TGSI_MEMBAR_SHADER_IMAGE))
3234 waitcnt &= VM_CNT;
3235
3236 if (flags & TGSI_MEMBAR_SHARED)
3237 waitcnt &= LGKM_CNT;
3238
3239 if (waitcnt != NOOP_WAITCNT)
3240 emit_waitcnt(ctx, waitcnt);
3241 }
3242
3243 static void clock_emit(
3244 const struct lp_build_tgsi_action *action,
3245 struct lp_build_tgsi_context *bld_base,
3246 struct lp_build_emit_data *emit_data)
3247 {
3248 struct si_shader_context *ctx = si_shader_context(bld_base);
3249 struct gallivm_state *gallivm = &ctx->gallivm;
3250 LLVMValueRef tmp;
3251
3252 tmp = lp_build_intrinsic(gallivm->builder, "llvm.readcyclecounter",
3253 ctx->i64, NULL, 0, 0);
3254 tmp = LLVMBuildBitCast(gallivm->builder, tmp, ctx->v2i32, "");
3255
3256 emit_data->output[0] =
3257 LLVMBuildExtractElement(gallivm->builder, tmp, ctx->i32_0, "");
3258 emit_data->output[1] =
3259 LLVMBuildExtractElement(gallivm->builder, tmp, ctx->i32_1, "");
3260 }
3261
3262 static LLVMValueRef
3263 shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
3264 const struct tgsi_full_src_register *reg)
3265 {
3266 LLVMValueRef index;
3267 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3268 SI_PARAM_SHADER_BUFFERS);
3269
3270 if (!reg->Register.Indirect)
3271 index = LLVMConstInt(ctx->i32, reg->Register.Index, 0);
3272 else
3273 index = get_bounded_indirect_index(ctx, &reg->Indirect,
3274 reg->Register.Index,
3275 SI_NUM_SHADER_BUFFERS);
3276
3277 return ac_build_indexed_load_const(&ctx->ac, rsrc_ptr, index);
3278 }
3279
3280 static bool tgsi_is_array_sampler(unsigned target)
3281 {
3282 return target == TGSI_TEXTURE_1D_ARRAY ||
3283 target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
3284 target == TGSI_TEXTURE_2D_ARRAY ||
3285 target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
3286 target == TGSI_TEXTURE_CUBE_ARRAY ||
3287 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
3288 target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3289 }
3290
3291 static bool tgsi_is_array_image(unsigned target)
3292 {
3293 return target == TGSI_TEXTURE_3D ||
3294 target == TGSI_TEXTURE_CUBE ||
3295 target == TGSI_TEXTURE_1D_ARRAY ||
3296 target == TGSI_TEXTURE_2D_ARRAY ||
3297 target == TGSI_TEXTURE_CUBE_ARRAY ||
3298 target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3299 }
3300
3301 /**
3302 * Given a 256-bit resource descriptor, force the DCC enable bit to off.
3303 *
3304 * At least on Tonga, executing image stores on images with DCC enabled and
3305 * non-trivial can eventually lead to lockups. This can occur when an
3306 * application binds an image as read-only but then uses a shader that writes
3307 * to it. The OpenGL spec allows almost arbitrarily bad behavior (including
3308 * program termination) in this case, but it doesn't cost much to be a bit
3309 * nicer: disabling DCC in the shader still leads to undefined results but
3310 * avoids the lockup.
3311 */
3312 static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
3313 LLVMValueRef rsrc)
3314 {
3315 if (ctx->screen->b.chip_class <= CIK) {
3316 return rsrc;
3317 } else {
3318 LLVMBuilderRef builder = ctx->gallivm.builder;
3319 LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
3320 LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
3321 LLVMValueRef tmp;
3322
3323 tmp = LLVMBuildExtractElement(builder, rsrc, i32_6, "");
3324 tmp = LLVMBuildAnd(builder, tmp, i32_C, "");
3325 return LLVMBuildInsertElement(builder, rsrc, tmp, i32_6, "");
3326 }
3327 }
3328
3329 static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
3330 {
3331 return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3332 CONST_ADDR_SPACE);
3333 }
3334
3335 static LLVMValueRef load_image_desc(struct si_shader_context *ctx,
3336 LLVMValueRef list, LLVMValueRef index,
3337 unsigned target)
3338 {
3339 LLVMBuilderRef builder = ctx->gallivm.builder;
3340
3341 if (target == TGSI_TEXTURE_BUFFER) {
3342 index = LLVMBuildMul(builder, index,
3343 LLVMConstInt(ctx->i32, 2, 0), "");
3344 index = LLVMBuildAdd(builder, index,
3345 ctx->i32_1, "");
3346 list = LLVMBuildPointerCast(builder, list,
3347 const_array(ctx->v4i32, 0), "");
3348 }
3349
3350 return ac_build_indexed_load_const(&ctx->ac, list, index);
3351 }
3352
3353 /**
3354 * Load the resource descriptor for \p image.
3355 */
3356 static void
3357 image_fetch_rsrc(
3358 struct lp_build_tgsi_context *bld_base,
3359 const struct tgsi_full_src_register *image,
3360 bool is_store, unsigned target,
3361 LLVMValueRef *rsrc)
3362 {
3363 struct si_shader_context *ctx = si_shader_context(bld_base);
3364 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3365 SI_PARAM_IMAGES);
3366 LLVMValueRef index;
3367 bool dcc_off = is_store;
3368
3369 assert(image->Register.File == TGSI_FILE_IMAGE);
3370
3371 if (!image->Register.Indirect) {
3372 const struct tgsi_shader_info *info = bld_base->info;
3373 unsigned images_writemask = info->images_store |
3374 info->images_atomic;
3375
3376 index = LLVMConstInt(ctx->i32, image->Register.Index, 0);
3377
3378 if (images_writemask & (1 << image->Register.Index))
3379 dcc_off = true;
3380 } else {
3381 /* From the GL_ARB_shader_image_load_store extension spec:
3382 *
3383 * If a shader performs an image load, store, or atomic
3384 * operation using an image variable declared as an array,
3385 * and if the index used to select an individual element is
3386 * negative or greater than or equal to the size of the
3387 * array, the results of the operation are undefined but may
3388 * not lead to termination.
3389 */
3390 index = get_bounded_indirect_index(ctx, &image->Indirect,
3391 image->Register.Index,
3392 SI_NUM_IMAGES);
3393 }
3394
3395 *rsrc = load_image_desc(ctx, rsrc_ptr, index, target);
3396 if (dcc_off && target != TGSI_TEXTURE_BUFFER)
3397 *rsrc = force_dcc_off(ctx, *rsrc);
3398 }
3399
3400 static LLVMValueRef image_fetch_coords(
3401 struct lp_build_tgsi_context *bld_base,
3402 const struct tgsi_full_instruction *inst,
3403 unsigned src)
3404 {
3405 struct si_shader_context *ctx = si_shader_context(bld_base);
3406 struct gallivm_state *gallivm = &ctx->gallivm;
3407 LLVMBuilderRef builder = gallivm->builder;
3408 unsigned target = inst->Memory.Texture;
3409 unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
3410 LLVMValueRef coords[4];
3411 LLVMValueRef tmp;
3412 int chan;
3413
3414 for (chan = 0; chan < num_coords; ++chan) {
3415 tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
3416 tmp = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
3417 coords[chan] = tmp;
3418 }
3419
3420 /* 1D textures are allocated and used as 2D on GFX9. */
3421 if (ctx->screen->b.chip_class >= GFX9) {
3422 if (target == TGSI_TEXTURE_1D) {
3423 coords[1] = ctx->i32_0;
3424 num_coords++;
3425 } else if (target == TGSI_TEXTURE_1D_ARRAY) {
3426 coords[2] = coords[1];
3427 coords[1] = ctx->i32_0;
3428 }
3429 }
3430
3431 if (num_coords == 1)
3432 return coords[0];
3433
3434 if (num_coords == 3) {
3435 /* LLVM has difficulties lowering 3-element vectors. */
3436 coords[3] = bld_base->uint_bld.undef;
3437 num_coords = 4;
3438 }
3439
3440 return lp_build_gather_values(gallivm, coords, num_coords);
3441 }
3442
3443 /**
3444 * Append the extra mode bits that are used by image load and store.
3445 */
3446 static void image_append_args(
3447 struct si_shader_context *ctx,
3448 struct lp_build_emit_data * emit_data,
3449 unsigned target,
3450 bool atomic,
3451 bool force_glc)
3452 {
3453 const struct tgsi_full_instruction *inst = emit_data->inst;
3454 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3455 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3456 LLVMValueRef r128 = i1false;
3457 LLVMValueRef da = tgsi_is_array_image(target) ? i1true : i1false;
3458 LLVMValueRef glc =
3459 force_glc ||
3460 inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3461 i1true : i1false;
3462 LLVMValueRef slc = i1false;
3463 LLVMValueRef lwe = i1false;
3464
3465 if (atomic || (HAVE_LLVM <= 0x0309)) {
3466 emit_data->args[emit_data->arg_count++] = r128;
3467 emit_data->args[emit_data->arg_count++] = da;
3468 if (!atomic) {
3469 emit_data->args[emit_data->arg_count++] = glc;
3470 }
3471 emit_data->args[emit_data->arg_count++] = slc;
3472 return;
3473 }
3474
3475 /* HAVE_LLVM >= 0x0400 */
3476 emit_data->args[emit_data->arg_count++] = glc;
3477 emit_data->args[emit_data->arg_count++] = slc;
3478 emit_data->args[emit_data->arg_count++] = lwe;
3479 emit_data->args[emit_data->arg_count++] = da;
3480 }
3481
3482 /**
3483 * Append the resource and indexing arguments for buffer intrinsics.
3484 *
3485 * \param rsrc the v4i32 buffer resource
3486 * \param index index into the buffer (stride-based)
3487 * \param offset byte offset into the buffer
3488 */
3489 static void buffer_append_args(
3490 struct si_shader_context *ctx,
3491 struct lp_build_emit_data *emit_data,
3492 LLVMValueRef rsrc,
3493 LLVMValueRef index,
3494 LLVMValueRef offset,
3495 bool atomic,
3496 bool force_glc)
3497 {
3498 const struct tgsi_full_instruction *inst = emit_data->inst;
3499 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3500 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3501
3502 emit_data->args[emit_data->arg_count++] = rsrc;
3503 emit_data->args[emit_data->arg_count++] = index; /* vindex */
3504 emit_data->args[emit_data->arg_count++] = offset; /* voffset */
3505 if (!atomic) {
3506 emit_data->args[emit_data->arg_count++] =
3507 force_glc ||
3508 inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3509 i1true : i1false; /* glc */
3510 }
3511 emit_data->args[emit_data->arg_count++] = i1false; /* slc */
3512 }
3513
3514 static void load_fetch_args(
3515 struct lp_build_tgsi_context * bld_base,
3516 struct lp_build_emit_data * emit_data)
3517 {
3518 struct si_shader_context *ctx = si_shader_context(bld_base);
3519 struct gallivm_state *gallivm = &ctx->gallivm;
3520 const struct tgsi_full_instruction * inst = emit_data->inst;
3521 unsigned target = inst->Memory.Texture;
3522 LLVMValueRef rsrc;
3523
3524 emit_data->dst_type = ctx->v4f32;
3525
3526 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3527 LLVMBuilderRef builder = gallivm->builder;
3528 LLVMValueRef offset;
3529 LLVMValueRef tmp;
3530
3531 rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
3532
3533 tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
3534 offset = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
3535
3536 buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
3537 offset, false, false);
3538 } else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
3539 LLVMValueRef coords;
3540
3541 image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &rsrc);
3542 coords = image_fetch_coords(bld_base, inst, 1);
3543
3544 if (target == TGSI_TEXTURE_BUFFER) {
3545 buffer_append_args(ctx, emit_data, rsrc, coords,
3546 ctx->i32_0, false, false);
3547 } else {
3548 emit_data->args[0] = coords;
3549 emit_data->args[1] = rsrc;
3550 emit_data->args[2] = LLVMConstInt(ctx->i32, 15, 0); /* dmask */
3551 emit_data->arg_count = 3;
3552
3553 image_append_args(ctx, emit_data, target, false, false);
3554 }
3555 }
3556 }
3557
3558 static unsigned get_load_intr_attribs(bool readonly_memory)
3559 {
3560 /* READNONE means writes can't affect it, while READONLY means that
3561 * writes can affect it. */
3562 return readonly_memory && HAVE_LLVM >= 0x0400 ?
3563 LP_FUNC_ATTR_READNONE :
3564 LP_FUNC_ATTR_READONLY;
3565 }
3566
3567 static unsigned get_store_intr_attribs(bool writeonly_memory)
3568 {
3569 return writeonly_memory && HAVE_LLVM >= 0x0400 ?
3570 LP_FUNC_ATTR_INACCESSIBLE_MEM_ONLY :
3571 LP_FUNC_ATTR_WRITEONLY;
3572 }
3573
3574 static void load_emit_buffer(struct si_shader_context *ctx,
3575 struct lp_build_emit_data *emit_data,
3576 bool readonly_memory)
3577 {
3578 const struct tgsi_full_instruction *inst = emit_data->inst;
3579 struct gallivm_state *gallivm = &ctx->gallivm;
3580 LLVMBuilderRef builder = gallivm->builder;
3581 uint writemask = inst->Dst[0].Register.WriteMask;
3582 uint count = util_last_bit(writemask);
3583 const char *intrinsic_name;
3584 LLVMTypeRef dst_type;
3585
3586 switch (count) {
3587 case 1:
3588 intrinsic_name = "llvm.amdgcn.buffer.load.f32";
3589 dst_type = ctx->f32;
3590 break;
3591 case 2:
3592 intrinsic_name = "llvm.amdgcn.buffer.load.v2f32";
3593 dst_type = LLVMVectorType(ctx->f32, 2);
3594 break;
3595 default: // 3 & 4
3596 intrinsic_name = "llvm.amdgcn.buffer.load.v4f32";
3597 dst_type = ctx->v4f32;
3598 count = 4;
3599 }
3600
3601 emit_data->output[emit_data->chan] = lp_build_intrinsic(
3602 builder, intrinsic_name, dst_type,
3603 emit_data->args, emit_data->arg_count,
3604 get_load_intr_attribs(readonly_memory));
3605 }
3606
3607 static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
3608 const struct tgsi_full_instruction *inst,
3609 LLVMTypeRef type, int arg)
3610 {
3611 struct gallivm_state *gallivm = &ctx->gallivm;
3612 LLVMBuilderRef builder = gallivm->builder;
3613 LLVMValueRef offset, ptr;
3614 int addr_space;
3615
3616 offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
3617 offset = LLVMBuildBitCast(builder, offset, ctx->i32, "");
3618
3619 ptr = ctx->shared_memory;
3620 ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
3621 addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3622 ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
3623
3624 return ptr;
3625 }
3626
3627 static void load_emit_memory(
3628 struct si_shader_context *ctx,
3629 struct lp_build_emit_data *emit_data)
3630 {
3631 const struct tgsi_full_instruction *inst = emit_data->inst;
3632 struct gallivm_state *gallivm = &ctx->gallivm;
3633 LLVMBuilderRef builder = gallivm->builder;
3634 unsigned writemask = inst->Dst[0].Register.WriteMask;
3635 LLVMValueRef channels[4], ptr, derived_ptr, index;
3636 int chan;
3637
3638 ptr = get_memory_ptr(ctx, inst, ctx->f32, 1);
3639
3640 for (chan = 0; chan < 4; ++chan) {
3641 if (!(writemask & (1 << chan))) {
3642 channels[chan] = LLVMGetUndef(ctx->f32);
3643 continue;
3644 }
3645
3646 index = LLVMConstInt(ctx->i32, chan, 0);
3647 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3648 channels[chan] = LLVMBuildLoad(builder, derived_ptr, "");
3649 }
3650 emit_data->output[emit_data->chan] = lp_build_gather_values(gallivm, channels, 4);
3651 }
3652
3653 /**
3654 * Return true if the memory accessed by a LOAD or STORE instruction is
3655 * read-only or write-only, respectively.
3656 *
3657 * \param shader_buffers_reverse_access_mask
3658 * For LOAD, set this to (store | atomic) slot usage in the shader.
3659 * For STORE, set this to (load | atomic) slot usage in the shader.
3660 * \param images_reverse_access_mask Same as above, but for images.
3661 */
3662 static bool is_oneway_access_only(const struct tgsi_full_instruction *inst,
3663 const struct tgsi_shader_info *info,
3664 unsigned shader_buffers_reverse_access_mask,
3665 unsigned images_reverse_access_mask)
3666 {
3667 /* RESTRICT means NOALIAS.
3668 * If there are no writes, we can assume the accessed memory is read-only.
3669 * If there are no reads, we can assume the accessed memory is write-only.
3670 */
3671 if (inst->Memory.Qualifier & TGSI_MEMORY_RESTRICT) {
3672 unsigned reverse_access_mask;
3673
3674 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3675 reverse_access_mask = shader_buffers_reverse_access_mask;
3676 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
3677 reverse_access_mask = info->images_buffers &
3678 images_reverse_access_mask;
3679 } else {
3680 reverse_access_mask = ~info->images_buffers &
3681 images_reverse_access_mask;
3682 }
3683
3684 if (inst->Src[0].Register.Indirect) {
3685 if (!reverse_access_mask)
3686 return true;
3687 } else {
3688 if (!(reverse_access_mask &
3689 (1u << inst->Src[0].Register.Index)))
3690 return true;
3691 }
3692 }
3693
3694 /* If there are no buffer writes (for both shader buffers & image
3695 * buffers), it implies that buffer memory is read-only.
3696 * If there are no buffer reads (for both shader buffers & image
3697 * buffers), it implies that buffer memory is write-only.
3698 *
3699 * Same for the case when there are no writes/reads for non-buffer
3700 * images.
3701 */
3702 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
3703 (inst->Src[0].Register.File == TGSI_FILE_IMAGE &&
3704 inst->Memory.Texture == TGSI_TEXTURE_BUFFER)) {
3705 if (!shader_buffers_reverse_access_mask &&
3706 !(info->images_buffers & images_reverse_access_mask))
3707 return true;
3708 } else {
3709 if (!(~info->images_buffers & images_reverse_access_mask))
3710 return true;
3711 }
3712 return false;
3713 }
3714
3715 static void load_emit(
3716 const struct lp_build_tgsi_action *action,
3717 struct lp_build_tgsi_context *bld_base,
3718 struct lp_build_emit_data *emit_data)
3719 {
3720 struct si_shader_context *ctx = si_shader_context(bld_base);
3721 struct gallivm_state *gallivm = &ctx->gallivm;
3722 LLVMBuilderRef builder = gallivm->builder;
3723 const struct tgsi_full_instruction * inst = emit_data->inst;
3724 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
3725 char intrinsic_name[64];
3726 bool readonly_memory = false;
3727
3728 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
3729 load_emit_memory(ctx, emit_data);
3730 return;
3731 }
3732
3733 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
3734 emit_waitcnt(ctx, VM_CNT);
3735
3736 readonly_memory = !(inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE) &&
3737 is_oneway_access_only(inst, info,
3738 info->shader_buffers_store |
3739 info->shader_buffers_atomic,
3740 info->images_store |
3741 info->images_atomic);
3742
3743 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3744 load_emit_buffer(ctx, emit_data, readonly_memory);
3745 return;
3746 }
3747
3748 if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
3749 emit_data->output[emit_data->chan] =
3750 lp_build_intrinsic(
3751 builder, "llvm.amdgcn.buffer.load.format.v4f32", emit_data->dst_type,
3752 emit_data->args, emit_data->arg_count,
3753 get_load_intr_attribs(readonly_memory));
3754 } else {
3755 ac_get_image_intr_name("llvm.amdgcn.image.load",
3756 emit_data->dst_type, /* vdata */
3757 LLVMTypeOf(emit_data->args[0]), /* coords */
3758 LLVMTypeOf(emit_data->args[1]), /* rsrc */
3759 intrinsic_name, sizeof(intrinsic_name));
3760
3761 emit_data->output[emit_data->chan] =
3762 lp_build_intrinsic(
3763 builder, intrinsic_name, emit_data->dst_type,
3764 emit_data->args, emit_data->arg_count,
3765 get_load_intr_attribs(readonly_memory));
3766 }
3767 }
3768
3769 static void store_fetch_args(
3770 struct lp_build_tgsi_context * bld_base,
3771 struct lp_build_emit_data * emit_data)
3772 {
3773 struct si_shader_context *ctx = si_shader_context(bld_base);
3774 struct gallivm_state *gallivm = &ctx->gallivm;
3775 LLVMBuilderRef builder = gallivm->builder;
3776 const struct tgsi_full_instruction * inst = emit_data->inst;
3777 struct tgsi_full_src_register memory;
3778 LLVMValueRef chans[4];
3779 LLVMValueRef data;
3780 LLVMValueRef rsrc;
3781 unsigned chan;
3782
3783 emit_data->dst_type = LLVMVoidTypeInContext(gallivm->context);
3784
3785 for (chan = 0; chan < 4; ++chan) {
3786 chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
3787 }
3788 data = lp_build_gather_values(gallivm, chans, 4);
3789
3790 emit_data->args[emit_data->arg_count++] = data;
3791
3792 memory = tgsi_full_src_register_from_dst(&inst->Dst[0]);
3793
3794 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
3795 LLVMValueRef offset;
3796 LLVMValueRef tmp;
3797
3798 rsrc = shader_buffer_fetch_rsrc(ctx, &memory);
3799
3800 tmp = lp_build_emit_fetch(bld_base, inst, 0, 0);
3801 offset = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
3802
3803 buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
3804 offset, false, false);
3805 } else if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE) {
3806 unsigned target = inst->Memory.Texture;
3807 LLVMValueRef coords;
3808
3809 /* 8bit/16bit TC L1 write corruption bug on SI.
3810 * All store opcodes not aligned to a dword are affected.
3811 *
3812 * The only way to get unaligned stores in radeonsi is through
3813 * shader images.
3814 */
3815 bool force_glc = ctx->screen->b.chip_class == SI;
3816
3817 coords = image_fetch_coords(bld_base, inst, 0);
3818
3819 if (target == TGSI_TEXTURE_BUFFER) {
3820 image_fetch_rsrc(bld_base, &memory, true, target, &rsrc);
3821 buffer_append_args(ctx, emit_data, rsrc, coords,
3822 ctx->i32_0, false, force_glc);
3823 } else {
3824 emit_data->args[1] = coords;
3825 image_fetch_rsrc(bld_base, &memory, true, target,
3826 &emit_data->args[2]);
3827 emit_data->args[3] = LLVMConstInt(ctx->i32, 15, 0); /* dmask */
3828 emit_data->arg_count = 4;
3829
3830 image_append_args(ctx, emit_data, target, false, force_glc);
3831 }
3832 }
3833 }
3834
3835 static void store_emit_buffer(
3836 struct si_shader_context *ctx,
3837 struct lp_build_emit_data *emit_data,
3838 bool writeonly_memory)
3839 {
3840 const struct tgsi_full_instruction *inst = emit_data->inst;
3841 struct gallivm_state *gallivm = &ctx->gallivm;
3842 LLVMBuilderRef builder = gallivm->builder;
3843 LLVMValueRef base_data = emit_data->args[0];
3844 LLVMValueRef base_offset = emit_data->args[3];
3845 unsigned writemask = inst->Dst[0].Register.WriteMask;
3846
3847 while (writemask) {
3848 int start, count;
3849 const char *intrinsic_name;
3850 LLVMValueRef data;
3851 LLVMValueRef offset;
3852 LLVMValueRef tmp;
3853
3854 u_bit_scan_consecutive_range(&writemask, &start, &count);
3855
3856 /* Due to an LLVM limitation, split 3-element writes
3857 * into a 2-element and a 1-element write. */
3858 if (count == 3) {
3859 writemask |= 1 << (start + 2);
3860 count = 2;
3861 }
3862
3863 if (count == 4) {
3864 data = base_data;
3865 intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
3866 } else if (count == 2) {
3867 LLVMTypeRef v2f32 = LLVMVectorType(ctx->f32, 2);
3868
3869 tmp = LLVMBuildExtractElement(
3870 builder, base_data,
3871 LLVMConstInt(ctx->i32, start, 0), "");
3872 data = LLVMBuildInsertElement(
3873 builder, LLVMGetUndef(v2f32), tmp,
3874 ctx->i32_0, "");
3875
3876 tmp = LLVMBuildExtractElement(
3877 builder, base_data,
3878 LLVMConstInt(ctx->i32, start + 1, 0), "");
3879 data = LLVMBuildInsertElement(
3880 builder, data, tmp, ctx->i32_1, "");
3881
3882 intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
3883 } else {
3884 assert(count == 1);
3885 data = LLVMBuildExtractElement(
3886 builder, base_data,
3887 LLVMConstInt(ctx->i32, start, 0), "");
3888 intrinsic_name = "llvm.amdgcn.buffer.store.f32";
3889 }
3890
3891 offset = base_offset;
3892 if (start != 0) {
3893 offset = LLVMBuildAdd(
3894 builder, offset,
3895 LLVMConstInt(ctx->i32, start * 4, 0), "");
3896 }
3897
3898 emit_data->args[0] = data;
3899 emit_data->args[3] = offset;
3900
3901 lp_build_intrinsic(
3902 builder, intrinsic_name, emit_data->dst_type,
3903 emit_data->args, emit_data->arg_count,
3904 get_store_intr_attribs(writeonly_memory));
3905 }
3906 }
3907
3908 static void store_emit_memory(
3909 struct si_shader_context *ctx,
3910 struct lp_build_emit_data *emit_data)
3911 {
3912 const struct tgsi_full_instruction *inst = emit_data->inst;
3913 struct gallivm_state *gallivm = &ctx->gallivm;
3914 LLVMBuilderRef builder = gallivm->builder;
3915 unsigned writemask = inst->Dst[0].Register.WriteMask;
3916 LLVMValueRef ptr, derived_ptr, data, index;
3917 int chan;
3918
3919 ptr = get_memory_ptr(ctx, inst, ctx->f32, 0);
3920
3921 for (chan = 0; chan < 4; ++chan) {
3922 if (!(writemask & (1 << chan))) {
3923 continue;
3924 }
3925 data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
3926 index = LLVMConstInt(ctx->i32, chan, 0);
3927 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3928 LLVMBuildStore(builder, data, derived_ptr);
3929 }
3930 }
3931
3932 static void store_emit(
3933 const struct lp_build_tgsi_action *action,
3934 struct lp_build_tgsi_context *bld_base,
3935 struct lp_build_emit_data *emit_data)
3936 {
3937 struct si_shader_context *ctx = si_shader_context(bld_base);
3938 struct gallivm_state *gallivm = &ctx->gallivm;
3939 LLVMBuilderRef builder = gallivm->builder;
3940 const struct tgsi_full_instruction * inst = emit_data->inst;
3941 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
3942 unsigned target = inst->Memory.Texture;
3943 char intrinsic_name[64];
3944 bool writeonly_memory = false;
3945
3946 if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
3947 store_emit_memory(ctx, emit_data);
3948 return;
3949 }
3950
3951 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
3952 emit_waitcnt(ctx, VM_CNT);
3953
3954 writeonly_memory = is_oneway_access_only(inst, info,
3955 info->shader_buffers_load |
3956 info->shader_buffers_atomic,
3957 info->images_load |
3958 info->images_atomic);
3959
3960 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
3961 store_emit_buffer(ctx, emit_data, writeonly_memory);
3962 return;
3963 }
3964
3965 if (target == TGSI_TEXTURE_BUFFER) {
3966 emit_data->output[emit_data->chan] = lp_build_intrinsic(
3967 builder, "llvm.amdgcn.buffer.store.format.v4f32",
3968 emit_data->dst_type, emit_data->args,
3969 emit_data->arg_count,
3970 get_store_intr_attribs(writeonly_memory));
3971 } else {
3972 ac_get_image_intr_name("llvm.amdgcn.image.store",
3973 LLVMTypeOf(emit_data->args[0]), /* vdata */
3974 LLVMTypeOf(emit_data->args[1]), /* coords */
3975 LLVMTypeOf(emit_data->args[2]), /* rsrc */
3976 intrinsic_name, sizeof(intrinsic_name));
3977
3978 emit_data->output[emit_data->chan] =
3979 lp_build_intrinsic(
3980 builder, intrinsic_name, emit_data->dst_type,
3981 emit_data->args, emit_data->arg_count,
3982 get_store_intr_attribs(writeonly_memory));
3983 }
3984 }
3985
3986 static void atomic_fetch_args(
3987 struct lp_build_tgsi_context * bld_base,
3988 struct lp_build_emit_data * emit_data)
3989 {
3990 struct si_shader_context *ctx = si_shader_context(bld_base);
3991 struct gallivm_state *gallivm = &ctx->gallivm;
3992 LLVMBuilderRef builder = gallivm->builder;
3993 const struct tgsi_full_instruction * inst = emit_data->inst;
3994 LLVMValueRef data1, data2;
3995 LLVMValueRef rsrc;
3996 LLVMValueRef tmp;
3997
3998 emit_data->dst_type = ctx->f32;
3999
4000 tmp = lp_build_emit_fetch(bld_base, inst, 2, 0);
4001 data1 = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4002
4003 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4004 tmp = lp_build_emit_fetch(bld_base, inst, 3, 0);
4005 data2 = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4006 }
4007
4008 /* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
4009 * of arguments, which is reversed relative to TGSI (and GLSL)
4010 */
4011 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4012 emit_data->args[emit_data->arg_count++] = data2;
4013 emit_data->args[emit_data->arg_count++] = data1;
4014
4015 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4016 LLVMValueRef offset;
4017
4018 rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
4019
4020 tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
4021 offset = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4022
4023 buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
4024 offset, true, false);
4025 } else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
4026 unsigned target = inst->Memory.Texture;
4027 LLVMValueRef coords;
4028
4029 image_fetch_rsrc(bld_base, &inst->Src[0], true, target, &rsrc);
4030 coords = image_fetch_coords(bld_base, inst, 1);
4031
4032 if (target == TGSI_TEXTURE_BUFFER) {
4033 buffer_append_args(ctx, emit_data, rsrc, coords,
4034 ctx->i32_0, true, false);
4035 } else {
4036 emit_data->args[emit_data->arg_count++] = coords;
4037 emit_data->args[emit_data->arg_count++] = rsrc;
4038
4039 image_append_args(ctx, emit_data, target, true, false);
4040 }
4041 }
4042 }
4043
4044 static void atomic_emit_memory(struct si_shader_context *ctx,
4045 struct lp_build_emit_data *emit_data) {
4046 struct gallivm_state *gallivm = &ctx->gallivm;
4047 LLVMBuilderRef builder = gallivm->builder;
4048 const struct tgsi_full_instruction * inst = emit_data->inst;
4049 LLVMValueRef ptr, result, arg;
4050
4051 ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
4052
4053 arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
4054 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
4055
4056 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4057 LLVMValueRef new_data;
4058 new_data = lp_build_emit_fetch(&ctx->bld_base,
4059 inst, 3, 0);
4060
4061 new_data = LLVMBuildBitCast(builder, new_data, ctx->i32, "");
4062
4063 #if HAVE_LLVM >= 0x309
4064 result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
4065 LLVMAtomicOrderingSequentiallyConsistent,
4066 LLVMAtomicOrderingSequentiallyConsistent,
4067 false);
4068 #endif
4069
4070 result = LLVMBuildExtractValue(builder, result, 0, "");
4071 } else {
4072 LLVMAtomicRMWBinOp op;
4073
4074 switch(inst->Instruction.Opcode) {
4075 case TGSI_OPCODE_ATOMUADD:
4076 op = LLVMAtomicRMWBinOpAdd;
4077 break;
4078 case TGSI_OPCODE_ATOMXCHG:
4079 op = LLVMAtomicRMWBinOpXchg;
4080 break;
4081 case TGSI_OPCODE_ATOMAND:
4082 op = LLVMAtomicRMWBinOpAnd;
4083 break;
4084 case TGSI_OPCODE_ATOMOR:
4085 op = LLVMAtomicRMWBinOpOr;
4086 break;
4087 case TGSI_OPCODE_ATOMXOR:
4088 op = LLVMAtomicRMWBinOpXor;
4089 break;
4090 case TGSI_OPCODE_ATOMUMIN:
4091 op = LLVMAtomicRMWBinOpUMin;
4092 break;
4093 case TGSI_OPCODE_ATOMUMAX:
4094 op = LLVMAtomicRMWBinOpUMax;
4095 break;
4096 case TGSI_OPCODE_ATOMIMIN:
4097 op = LLVMAtomicRMWBinOpMin;
4098 break;
4099 case TGSI_OPCODE_ATOMIMAX:
4100 op = LLVMAtomicRMWBinOpMax;
4101 break;
4102 default:
4103 unreachable("unknown atomic opcode");
4104 }
4105
4106 result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
4107 LLVMAtomicOrderingSequentiallyConsistent,
4108 false);
4109 }
4110 emit_data->output[emit_data->chan] = LLVMBuildBitCast(builder, result, emit_data->dst_type, "");
4111 }
4112
4113 static void atomic_emit(
4114 const struct lp_build_tgsi_action *action,
4115 struct lp_build_tgsi_context *bld_base,
4116 struct lp_build_emit_data *emit_data)
4117 {
4118 struct si_shader_context *ctx = si_shader_context(bld_base);
4119 struct gallivm_state *gallivm = &ctx->gallivm;
4120 LLVMBuilderRef builder = gallivm->builder;
4121 const struct tgsi_full_instruction * inst = emit_data->inst;
4122 char intrinsic_name[40];
4123 LLVMValueRef tmp;
4124
4125 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
4126 atomic_emit_memory(ctx, emit_data);
4127 return;
4128 }
4129
4130 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
4131 inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4132 snprintf(intrinsic_name, sizeof(intrinsic_name),
4133 "llvm.amdgcn.buffer.atomic.%s", action->intr_name);
4134 } else {
4135 LLVMValueRef coords;
4136 char coords_type[8];
4137
4138 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4139 coords = emit_data->args[2];
4140 else
4141 coords = emit_data->args[1];
4142
4143 ac_build_type_name_for_intr(LLVMTypeOf(coords), coords_type, sizeof(coords_type));
4144 snprintf(intrinsic_name, sizeof(intrinsic_name),
4145 "llvm.amdgcn.image.atomic.%s.%s",
4146 action->intr_name, coords_type);
4147 }
4148
4149 tmp = lp_build_intrinsic(
4150 builder, intrinsic_name, ctx->i32,
4151 emit_data->args, emit_data->arg_count, 0);
4152 emit_data->output[emit_data->chan] =
4153 LLVMBuildBitCast(builder, tmp, ctx->f32, "");
4154 }
4155
4156 static void set_tex_fetch_args(struct si_shader_context *ctx,
4157 struct lp_build_emit_data *emit_data,
4158 unsigned target,
4159 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
4160 LLVMValueRef *param, unsigned count,
4161 unsigned dmask)
4162 {
4163 struct gallivm_state *gallivm = &ctx->gallivm;
4164 struct ac_image_args args = {};
4165
4166 /* Pad to power of two vector */
4167 while (count < util_next_power_of_two(count))
4168 param[count++] = LLVMGetUndef(ctx->i32);
4169
4170 if (count > 1)
4171 args.addr = lp_build_gather_values(gallivm, param, count);
4172 else
4173 args.addr = param[0];
4174
4175 args.resource = res_ptr;
4176 args.sampler = samp_ptr;
4177 args.dmask = dmask;
4178 args.unorm = target == TGSI_TEXTURE_RECT ||
4179 target == TGSI_TEXTURE_SHADOWRECT;
4180 args.da = tgsi_is_array_sampler(target);
4181
4182 /* Ugly, but we seem to have no other choice right now. */
4183 STATIC_ASSERT(sizeof(args) <= sizeof(emit_data->args));
4184 memcpy(emit_data->args, &args, sizeof(args));
4185 }
4186
4187 static LLVMValueRef fix_resinfo(struct si_shader_context *ctx,
4188 unsigned target, LLVMValueRef out)
4189 {
4190 LLVMBuilderRef builder = ctx->gallivm.builder;
4191
4192 /* 1D textures are allocated and used as 2D on GFX9. */
4193 if (ctx->screen->b.chip_class >= GFX9 &&
4194 (target == TGSI_TEXTURE_1D_ARRAY ||
4195 target == TGSI_TEXTURE_SHADOW1D_ARRAY)) {
4196 LLVMValueRef layers =
4197 LLVMBuildExtractElement(builder, out,
4198 LLVMConstInt(ctx->i32, 2, 0), "");
4199 out = LLVMBuildInsertElement(builder, out, layers,
4200 ctx->i32_1, "");
4201 }
4202
4203 /* Divide the number of layers by 6 to get the number of cubes. */
4204 if (target == TGSI_TEXTURE_CUBE_ARRAY ||
4205 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4206 LLVMValueRef imm2 = LLVMConstInt(ctx->i32, 2, 0);
4207
4208 LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
4209 z = LLVMBuildSDiv(builder, z, LLVMConstInt(ctx->i32, 6, 0), "");
4210
4211 out = LLVMBuildInsertElement(builder, out, z, imm2, "");
4212 }
4213 return out;
4214 }
4215
4216 static void resq_fetch_args(
4217 struct lp_build_tgsi_context * bld_base,
4218 struct lp_build_emit_data * emit_data)
4219 {
4220 struct si_shader_context *ctx = si_shader_context(bld_base);
4221 const struct tgsi_full_instruction *inst = emit_data->inst;
4222 const struct tgsi_full_src_register *reg = &inst->Src[0];
4223
4224 emit_data->dst_type = ctx->v4i32;
4225
4226 if (reg->Register.File == TGSI_FILE_BUFFER) {
4227 emit_data->args[0] = shader_buffer_fetch_rsrc(ctx, reg);
4228 emit_data->arg_count = 1;
4229 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4230 image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4231 &emit_data->args[0]);
4232 emit_data->arg_count = 1;
4233 } else {
4234 LLVMValueRef res_ptr;
4235 unsigned image_target;
4236
4237 if (inst->Memory.Texture == TGSI_TEXTURE_3D)
4238 image_target = TGSI_TEXTURE_2D_ARRAY;
4239 else
4240 image_target = inst->Memory.Texture;
4241
4242 image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4243 &res_ptr);
4244 set_tex_fetch_args(ctx, emit_data, image_target,
4245 res_ptr, NULL, &ctx->i32_0, 1,
4246 0xf);
4247 }
4248 }
4249
4250 static void resq_emit(
4251 const struct lp_build_tgsi_action *action,
4252 struct lp_build_tgsi_context *bld_base,
4253 struct lp_build_emit_data *emit_data)
4254 {
4255 struct si_shader_context *ctx = si_shader_context(bld_base);
4256 struct gallivm_state *gallivm = &ctx->gallivm;
4257 LLVMBuilderRef builder = gallivm->builder;
4258 const struct tgsi_full_instruction *inst = emit_data->inst;
4259 LLVMValueRef out;
4260
4261 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4262 out = LLVMBuildExtractElement(builder, emit_data->args[0],
4263 LLVMConstInt(ctx->i32, 2, 0), "");
4264 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4265 out = get_buffer_size(bld_base, emit_data->args[0]);
4266 } else {
4267 struct ac_image_args args;
4268
4269 memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
4270 args.opcode = ac_image_get_resinfo;
4271 out = ac_build_image_opcode(&ctx->ac, &args);
4272
4273 out = fix_resinfo(ctx, inst->Memory.Texture, out);
4274 }
4275
4276 emit_data->output[emit_data->chan] = out;
4277 }
4278
4279 static const struct lp_build_tgsi_action tex_action;
4280
4281 enum desc_type {
4282 DESC_IMAGE,
4283 DESC_BUFFER,
4284 DESC_FMASK,
4285 DESC_SAMPLER,
4286 };
4287
4288 /**
4289 * Load an image view, fmask view. or sampler state descriptor.
4290 */
4291 static LLVMValueRef load_sampler_desc(struct si_shader_context *ctx,
4292 LLVMValueRef list, LLVMValueRef index,
4293 enum desc_type type)
4294 {
4295 struct gallivm_state *gallivm = &ctx->gallivm;
4296 LLVMBuilderRef builder = gallivm->builder;
4297
4298 switch (type) {
4299 case DESC_IMAGE:
4300 /* The image is at [0:7]. */
4301 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4302 break;
4303 case DESC_BUFFER:
4304 /* The buffer is in [4:7]. */
4305 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4306 index = LLVMBuildAdd(builder, index, ctx->i32_1, "");
4307 list = LLVMBuildPointerCast(builder, list,
4308 const_array(ctx->v4i32, 0), "");
4309 break;
4310 case DESC_FMASK:
4311 /* The FMASK is at [8:15]. */
4312 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4313 index = LLVMBuildAdd(builder, index, ctx->i32_1, "");
4314 break;
4315 case DESC_SAMPLER:
4316 /* The sampler state is at [12:15]. */
4317 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4318 index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 3, 0), "");
4319 list = LLVMBuildPointerCast(builder, list,
4320 const_array(ctx->v4i32, 0), "");
4321 break;
4322 }
4323
4324 return ac_build_indexed_load_const(&ctx->ac, list, index);
4325 }
4326
4327 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
4328 *
4329 * SI-CI:
4330 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
4331 * filtering manually. The driver sets img7 to a mask clearing
4332 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
4333 * s_and_b32 samp0, samp0, img7
4334 *
4335 * VI:
4336 * The ANISO_OVERRIDE sampler field enables this fix in TA.
4337 */
4338 static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
4339 LLVMValueRef res, LLVMValueRef samp)
4340 {
4341 LLVMBuilderRef builder = ctx->gallivm.builder;
4342 LLVMValueRef img7, samp0;
4343
4344 if (ctx->screen->b.chip_class >= VI)
4345 return samp;
4346
4347 img7 = LLVMBuildExtractElement(builder, res,
4348 LLVMConstInt(ctx->i32, 7, 0), "");
4349 samp0 = LLVMBuildExtractElement(builder, samp,
4350 ctx->i32_0, "");
4351 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
4352 return LLVMBuildInsertElement(builder, samp, samp0,
4353 ctx->i32_0, "");
4354 }
4355
4356 static void tex_fetch_ptrs(
4357 struct lp_build_tgsi_context *bld_base,
4358 struct lp_build_emit_data *emit_data,
4359 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
4360 {
4361 struct si_shader_context *ctx = si_shader_context(bld_base);
4362 LLVMValueRef list = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLERS);
4363 const struct tgsi_full_instruction *inst = emit_data->inst;
4364 const struct tgsi_full_src_register *reg;
4365 unsigned target = inst->Texture.Texture;
4366 unsigned sampler_src;
4367 LLVMValueRef index;
4368
4369 sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
4370 reg = &emit_data->inst->Src[sampler_src];
4371
4372 if (reg->Register.Indirect) {
4373 index = get_bounded_indirect_index(ctx,
4374 &reg->Indirect,
4375 reg->Register.Index,
4376 SI_NUM_SAMPLERS);
4377 } else {
4378 index = LLVMConstInt(ctx->i32, reg->Register.Index, 0);
4379 }
4380
4381 if (target == TGSI_TEXTURE_BUFFER)
4382 *res_ptr = load_sampler_desc(ctx, list, index, DESC_BUFFER);
4383 else
4384 *res_ptr = load_sampler_desc(ctx, list, index, DESC_IMAGE);
4385
4386 if (samp_ptr)
4387 *samp_ptr = NULL;
4388 if (fmask_ptr)
4389 *fmask_ptr = NULL;
4390
4391 if (target == TGSI_TEXTURE_2D_MSAA ||
4392 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4393 if (fmask_ptr)
4394 *fmask_ptr = load_sampler_desc(ctx, list, index,
4395 DESC_FMASK);
4396 } else if (target != TGSI_TEXTURE_BUFFER) {
4397 if (samp_ptr) {
4398 *samp_ptr = load_sampler_desc(ctx, list, index,
4399 DESC_SAMPLER);
4400 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
4401 }
4402 }
4403 }
4404
4405 static void txq_fetch_args(
4406 struct lp_build_tgsi_context *bld_base,
4407 struct lp_build_emit_data *emit_data)
4408 {
4409 struct si_shader_context *ctx = si_shader_context(bld_base);
4410 const struct tgsi_full_instruction *inst = emit_data->inst;
4411 unsigned target = inst->Texture.Texture;
4412 LLVMValueRef res_ptr;
4413 LLVMValueRef address;
4414
4415 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, NULL, NULL);
4416
4417 if (target == TGSI_TEXTURE_BUFFER) {
4418 /* Read the size from the buffer descriptor directly. */
4419 emit_data->args[0] = get_buffer_size(bld_base, res_ptr);
4420 return;
4421 }
4422
4423 /* Textures - set the mip level. */
4424 address = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
4425
4426 set_tex_fetch_args(ctx, emit_data, target, res_ptr,
4427 NULL, &address, 1, 0xf);
4428 }
4429
4430 static void txq_emit(const struct lp_build_tgsi_action *action,
4431 struct lp_build_tgsi_context *bld_base,
4432 struct lp_build_emit_data *emit_data)
4433 {
4434 struct si_shader_context *ctx = si_shader_context(bld_base);
4435 struct ac_image_args args;
4436 unsigned target = emit_data->inst->Texture.Texture;
4437
4438 if (target == TGSI_TEXTURE_BUFFER) {
4439 /* Just return the buffer size. */
4440 emit_data->output[emit_data->chan] = emit_data->args[0];
4441 return;
4442 }
4443
4444 memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
4445
4446 args.opcode = ac_image_get_resinfo;
4447 LLVMValueRef result = ac_build_image_opcode(&ctx->ac, &args);
4448
4449 emit_data->output[emit_data->chan] = fix_resinfo(ctx, target, result);
4450 }
4451
4452 static void tex_fetch_args(
4453 struct lp_build_tgsi_context *bld_base,
4454 struct lp_build_emit_data *emit_data)
4455 {
4456 struct si_shader_context *ctx = si_shader_context(bld_base);
4457 struct gallivm_state *gallivm = &ctx->gallivm;
4458 const struct tgsi_full_instruction *inst = emit_data->inst;
4459 unsigned opcode = inst->Instruction.Opcode;
4460 unsigned target = inst->Texture.Texture;
4461 LLVMValueRef coords[5], derivs[6];
4462 LLVMValueRef address[16];
4463 unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
4464 int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
4465 unsigned count = 0;
4466 unsigned chan;
4467 unsigned num_deriv_channels = 0;
4468 bool has_offset = inst->Texture.NumOffsets > 0;
4469 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
4470 unsigned dmask = 0xf;
4471
4472 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
4473
4474 if (target == TGSI_TEXTURE_BUFFER) {
4475 emit_data->dst_type = ctx->v4f32;
4476 emit_data->args[0] = LLVMBuildBitCast(gallivm->builder, res_ptr,
4477 ctx->v16i8, "");
4478 emit_data->args[1] = ctx->i32_0;
4479 emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4480 emit_data->arg_count = 3;
4481 return;
4482 }
4483
4484 /* Fetch and project texture coordinates */
4485 coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
4486 for (chan = 0; chan < 3; chan++ ) {
4487 coords[chan] = lp_build_emit_fetch(bld_base,
4488 emit_data->inst, 0,
4489 chan);
4490 if (opcode == TGSI_OPCODE_TXP)
4491 coords[chan] = lp_build_emit_llvm_binary(bld_base,
4492 TGSI_OPCODE_DIV,
4493 coords[chan],
4494 coords[3]);
4495 }
4496
4497 if (opcode == TGSI_OPCODE_TXP)
4498 coords[3] = bld_base->base.one;
4499
4500 /* Pack offsets. */
4501 if (has_offset &&
4502 opcode != TGSI_OPCODE_TXF &&
4503 opcode != TGSI_OPCODE_TXF_LZ) {
4504 /* The offsets are six-bit signed integers packed like this:
4505 * X=[5:0], Y=[13:8], and Z=[21:16].
4506 */
4507 LLVMValueRef offset[3], pack;
4508
4509 assert(inst->Texture.NumOffsets == 1);
4510
4511 for (chan = 0; chan < 3; chan++) {
4512 offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
4513 emit_data->inst, 0, chan);
4514 offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
4515 LLVMConstInt(ctx->i32, 0x3f, 0), "");
4516 if (chan)
4517 offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
4518 LLVMConstInt(ctx->i32, chan*8, 0), "");
4519 }
4520
4521 pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
4522 pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
4523 address[count++] = pack;
4524 }
4525
4526 /* Pack LOD bias value */
4527 if (opcode == TGSI_OPCODE_TXB)
4528 address[count++] = coords[3];
4529 if (opcode == TGSI_OPCODE_TXB2)
4530 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4531
4532 /* Pack depth comparison value */
4533 if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
4534 LLVMValueRef z;
4535
4536 if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4537 z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4538 } else {
4539 assert(ref_pos >= 0);
4540 z = coords[ref_pos];
4541 }
4542
4543 /* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
4544 * so the depth comparison value isn't clamped for Z16 and
4545 * Z24 anymore. Do it manually here.
4546 *
4547 * It's unnecessary if the original texture format was
4548 * Z32_FLOAT, but we don't know that here.
4549 */
4550 if (ctx->screen->b.chip_class == VI)
4551 z = ac_build_clamp(&ctx->ac, z);
4552
4553 address[count++] = z;
4554 }
4555
4556 /* Pack user derivatives */
4557 if (opcode == TGSI_OPCODE_TXD) {
4558 int param, num_src_deriv_channels, num_dst_deriv_channels;
4559
4560 switch (target) {
4561 case TGSI_TEXTURE_3D:
4562 num_src_deriv_channels = 3;
4563 num_dst_deriv_channels = 3;
4564 num_deriv_channels = 3;
4565 break;
4566 case TGSI_TEXTURE_2D:
4567 case TGSI_TEXTURE_SHADOW2D:
4568 case TGSI_TEXTURE_RECT:
4569 case TGSI_TEXTURE_SHADOWRECT:
4570 case TGSI_TEXTURE_2D_ARRAY:
4571 case TGSI_TEXTURE_SHADOW2D_ARRAY:
4572 num_src_deriv_channels = 2;
4573 num_dst_deriv_channels = 2;
4574 num_deriv_channels = 2;
4575 break;
4576 case TGSI_TEXTURE_CUBE:
4577 case TGSI_TEXTURE_SHADOWCUBE:
4578 case TGSI_TEXTURE_CUBE_ARRAY:
4579 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
4580 /* Cube derivatives will be converted to 2D. */
4581 num_src_deriv_channels = 3;
4582 num_dst_deriv_channels = 3;
4583 num_deriv_channels = 2;
4584 break;
4585 case TGSI_TEXTURE_1D:
4586 case TGSI_TEXTURE_SHADOW1D:
4587 case TGSI_TEXTURE_1D_ARRAY:
4588 case TGSI_TEXTURE_SHADOW1D_ARRAY:
4589 num_src_deriv_channels = 1;
4590
4591 /* 1D textures are allocated and used as 2D on GFX9. */
4592 if (ctx->screen->b.chip_class >= GFX9) {
4593 num_dst_deriv_channels = 2;
4594 num_deriv_channels = 2;
4595 } else {
4596 num_dst_deriv_channels = 1;
4597 num_deriv_channels = 1;
4598 }
4599 break;
4600 default:
4601 unreachable("invalid target");
4602 }
4603
4604 for (param = 0; param < 2; param++) {
4605 for (chan = 0; chan < num_src_deriv_channels; chan++)
4606 derivs[param * num_dst_deriv_channels + chan] =
4607 lp_build_emit_fetch(bld_base, inst, param+1, chan);
4608
4609 /* Fill in the rest with zeros. */
4610 for (chan = num_src_deriv_channels;
4611 chan < num_dst_deriv_channels; chan++)
4612 derivs[param * num_dst_deriv_channels + chan] =
4613 bld_base->base.zero;
4614 }
4615 }
4616
4617 if (target == TGSI_TEXTURE_CUBE ||
4618 target == TGSI_TEXTURE_CUBE_ARRAY ||
4619 target == TGSI_TEXTURE_SHADOWCUBE ||
4620 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
4621 ac_prepare_cube_coords(&ctx->ac,
4622 opcode == TGSI_OPCODE_TXD,
4623 target == TGSI_TEXTURE_CUBE_ARRAY ||
4624 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
4625 coords, derivs);
4626
4627 if (opcode == TGSI_OPCODE_TXD)
4628 for (int i = 0; i < num_deriv_channels * 2; i++)
4629 address[count++] = derivs[i];
4630
4631 /* Pack texture coordinates */
4632 address[count++] = coords[0];
4633 if (num_coords > 1)
4634 address[count++] = coords[1];
4635 if (num_coords > 2)
4636 address[count++] = coords[2];
4637
4638 /* 1D textures are allocated and used as 2D on GFX9. */
4639 if (ctx->screen->b.chip_class >= GFX9) {
4640 LLVMValueRef filler;
4641
4642 /* Use 0.5, so that we don't sample the border color. */
4643 if (opcode == TGSI_OPCODE_TXF)
4644 filler = ctx->i32_0;
4645 else
4646 filler = LLVMConstReal(ctx->f32, 0.5);
4647
4648 if (target == TGSI_TEXTURE_1D ||
4649 target == TGSI_TEXTURE_SHADOW1D) {
4650 address[count++] = filler;
4651 } else if (target == TGSI_TEXTURE_1D_ARRAY ||
4652 target == TGSI_TEXTURE_SHADOW1D_ARRAY) {
4653 address[count] = address[count - 1];
4654 address[count - 1] = filler;
4655 count++;
4656 }
4657 }
4658
4659 /* Pack LOD or sample index */
4660 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
4661 address[count++] = coords[3];
4662 else if (opcode == TGSI_OPCODE_TXL2)
4663 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4664
4665 if (count > 16) {
4666 assert(!"Cannot handle more than 16 texture address parameters");
4667 count = 16;
4668 }
4669
4670 for (chan = 0; chan < count; chan++ ) {
4671 address[chan] = LLVMBuildBitCast(gallivm->builder,
4672 address[chan], ctx->i32, "");
4673 }
4674
4675 /* Adjust the sample index according to FMASK.
4676 *
4677 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4678 * which is the identity mapping. Each nibble says which physical sample
4679 * should be fetched to get that sample.
4680 *
4681 * For example, 0x11111100 means there are only 2 samples stored and
4682 * the second sample covers 3/4 of the pixel. When reading samples 0
4683 * and 1, return physical sample 0 (determined by the first two 0s
4684 * in FMASK), otherwise return physical sample 1.
4685 *
4686 * The sample index should be adjusted as follows:
4687 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4688 */
4689 if (target == TGSI_TEXTURE_2D_MSAA ||
4690 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4691 struct lp_build_emit_data txf_emit_data = *emit_data;
4692 LLVMValueRef txf_address[4];
4693 /* We only need .xy for non-arrays, and .xyz for arrays. */
4694 unsigned txf_count = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
4695 struct tgsi_full_instruction inst = {};
4696
4697 memcpy(txf_address, address, sizeof(txf_address));
4698
4699 /* Read FMASK using TXF_LZ. */
4700 inst.Instruction.Opcode = TGSI_OPCODE_TXF_LZ;
4701 inst.Texture.Texture = target;
4702 txf_emit_data.inst = &inst;
4703 txf_emit_data.chan = 0;
4704 set_tex_fetch_args(ctx, &txf_emit_data,
4705 target, fmask_ptr, NULL,
4706 txf_address, txf_count, 0xf);
4707 build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
4708
4709 /* Initialize some constants. */
4710 LLVMValueRef four = LLVMConstInt(ctx->i32, 4, 0);
4711 LLVMValueRef F = LLVMConstInt(ctx->i32, 0xF, 0);
4712
4713 /* Apply the formula. */
4714 LLVMValueRef fmask =
4715 LLVMBuildExtractElement(gallivm->builder,
4716 txf_emit_data.output[0],
4717 ctx->i32_0, "");
4718
4719 unsigned sample_chan = txf_count; /* the sample index is last */
4720
4721 LLVMValueRef sample_index4 =
4722 LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
4723
4724 LLVMValueRef shifted_fmask =
4725 LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
4726
4727 LLVMValueRef final_sample =
4728 LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
4729
4730 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4731 * resource descriptor is 0 (invalid),
4732 */
4733 LLVMValueRef fmask_desc =
4734 LLVMBuildBitCast(gallivm->builder, fmask_ptr,
4735 ctx->v8i32, "");
4736
4737 LLVMValueRef fmask_word1 =
4738 LLVMBuildExtractElement(gallivm->builder, fmask_desc,
4739 ctx->i32_1, "");
4740
4741 LLVMValueRef word1_is_nonzero =
4742 LLVMBuildICmp(gallivm->builder, LLVMIntNE,
4743 fmask_word1, ctx->i32_0, "");
4744
4745 /* Replace the MSAA sample index. */
4746 address[sample_chan] =
4747 LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
4748 final_sample, address[sample_chan], "");
4749 }
4750
4751 if (opcode == TGSI_OPCODE_TXF ||
4752 opcode == TGSI_OPCODE_TXF_LZ) {
4753 /* add tex offsets */
4754 if (inst->Texture.NumOffsets) {
4755 struct lp_build_context *uint_bld = &bld_base->uint_bld;
4756 const struct tgsi_texture_offset *off = inst->TexOffsets;
4757
4758 assert(inst->Texture.NumOffsets == 1);
4759
4760 switch (target) {
4761 case TGSI_TEXTURE_3D:
4762 address[2] = lp_build_add(uint_bld, address[2],
4763 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ]);
4764 /* fall through */
4765 case TGSI_TEXTURE_2D:
4766 case TGSI_TEXTURE_SHADOW2D:
4767 case TGSI_TEXTURE_RECT:
4768 case TGSI_TEXTURE_SHADOWRECT:
4769 case TGSI_TEXTURE_2D_ARRAY:
4770 case TGSI_TEXTURE_SHADOW2D_ARRAY:
4771 address[1] =
4772 lp_build_add(uint_bld, address[1],
4773 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY]);
4774 /* fall through */
4775 case TGSI_TEXTURE_1D:
4776 case TGSI_TEXTURE_SHADOW1D:
4777 case TGSI_TEXTURE_1D_ARRAY:
4778 case TGSI_TEXTURE_SHADOW1D_ARRAY:
4779 address[0] =
4780 lp_build_add(uint_bld, address[0],
4781 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX]);
4782 break;
4783 /* texture offsets do not apply to other texture targets */
4784 }
4785 }
4786 }
4787
4788 if (opcode == TGSI_OPCODE_TG4) {
4789 unsigned gather_comp = 0;
4790
4791 /* DMASK was repurposed for GATHER4. 4 components are always
4792 * returned and DMASK works like a swizzle - it selects
4793 * the component to fetch. The only valid DMASK values are
4794 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
4795 * (red,red,red,red) etc.) The ISA document doesn't mention
4796 * this.
4797 */
4798
4799 /* Get the component index from src1.x for Gather4. */
4800 if (!tgsi_is_shadow_target(target)) {
4801 LLVMValueRef comp_imm;
4802 struct tgsi_src_register src1 = inst->Src[1].Register;
4803
4804 assert(src1.File == TGSI_FILE_IMMEDIATE);
4805
4806 comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
4807 gather_comp = LLVMConstIntGetZExtValue(comp_imm);
4808 gather_comp = CLAMP(gather_comp, 0, 3);
4809 }
4810
4811 dmask = 1 << gather_comp;
4812 }
4813
4814 set_tex_fetch_args(ctx, emit_data, target, res_ptr,
4815 samp_ptr, address, count, dmask);
4816 }
4817
4818 /* Gather4 should follow the same rules as bilinear filtering, but the hardware
4819 * incorrectly forces nearest filtering if the texture format is integer.
4820 * The only effect it has on Gather4, which always returns 4 texels for
4821 * bilinear filtering, is that the final coordinates are off by 0.5 of
4822 * the texel size.
4823 *
4824 * The workaround is to subtract 0.5 from the unnormalized coordinates,
4825 * or (0.5 / size) from the normalized coordinates.
4826 */
4827 static void si_lower_gather4_integer(struct si_shader_context *ctx,
4828 struct ac_image_args *args,
4829 unsigned target)
4830 {
4831 LLVMBuilderRef builder = ctx->gallivm.builder;
4832 LLVMValueRef coord = args->addr;
4833 LLVMValueRef half_texel[2];
4834 /* Texture coordinates start after:
4835 * {offset, bias, z-compare, derivatives}
4836 * Only the offset and z-compare can occur here.
4837 */
4838 unsigned coord_vgpr_index = (int)args->offset + (int)args->compare;
4839 int c;
4840
4841 if (target == TGSI_TEXTURE_RECT ||
4842 target == TGSI_TEXTURE_SHADOWRECT) {
4843 half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
4844 } else {
4845 struct tgsi_full_instruction txq_inst = {};
4846 struct lp_build_emit_data txq_emit_data = {};
4847
4848 /* Query the texture size. */
4849 txq_inst.Texture.Texture = target;
4850 txq_emit_data.inst = &txq_inst;
4851 txq_emit_data.dst_type = ctx->v4i32;
4852 set_tex_fetch_args(ctx, &txq_emit_data, target,
4853 args->resource, NULL, &ctx->i32_0,
4854 1, 0xf);
4855 txq_emit(NULL, &ctx->bld_base, &txq_emit_data);
4856
4857 /* Compute -0.5 / size. */
4858 for (c = 0; c < 2; c++) {
4859 half_texel[c] =
4860 LLVMBuildExtractElement(builder, txq_emit_data.output[0],
4861 LLVMConstInt(ctx->i32, c, 0), "");
4862 half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
4863 half_texel[c] =
4864 lp_build_emit_llvm_unary(&ctx->bld_base,
4865 TGSI_OPCODE_RCP, half_texel[c]);
4866 half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
4867 LLVMConstReal(ctx->f32, -0.5), "");
4868 }
4869 }
4870
4871 for (c = 0; c < 2; c++) {
4872 LLVMValueRef tmp;
4873 LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
4874
4875 tmp = LLVMBuildExtractElement(builder, coord, index, "");
4876 tmp = LLVMBuildBitCast(builder, tmp, ctx->f32, "");
4877 tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
4878 tmp = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4879 coord = LLVMBuildInsertElement(builder, coord, tmp, index, "");
4880 }
4881
4882 args->addr = coord;
4883 }
4884
4885 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
4886 struct lp_build_tgsi_context *bld_base,
4887 struct lp_build_emit_data *emit_data)
4888 {
4889 struct si_shader_context *ctx = si_shader_context(bld_base);
4890 const struct tgsi_full_instruction *inst = emit_data->inst;
4891 struct ac_image_args args;
4892 unsigned opcode = inst->Instruction.Opcode;
4893 unsigned target = inst->Texture.Texture;
4894
4895 if (target == TGSI_TEXTURE_BUFFER) {
4896 emit_data->output[emit_data->chan] =
4897 ac_build_buffer_load_format(&ctx->ac,
4898 emit_data->args[0],
4899 emit_data->args[2],
4900 emit_data->args[1],
4901 true);
4902 return;
4903 }
4904
4905 memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
4906
4907 args.opcode = ac_image_sample;
4908 args.compare = tgsi_is_shadow_target(target);
4909 args.offset = inst->Texture.NumOffsets > 0;
4910
4911 switch (opcode) {
4912 case TGSI_OPCODE_TXF:
4913 case TGSI_OPCODE_TXF_LZ:
4914 args.opcode = opcode == TGSI_OPCODE_TXF_LZ ||
4915 target == TGSI_TEXTURE_2D_MSAA ||
4916 target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
4917 ac_image_load : ac_image_load_mip;
4918 args.compare = false;
4919 args.offset = false;
4920 break;
4921 case TGSI_OPCODE_LODQ:
4922 args.opcode = ac_image_get_lod;
4923 args.compare = false;
4924 args.offset = false;
4925 break;
4926 case TGSI_OPCODE_TEX:
4927 case TGSI_OPCODE_TEX2:
4928 case TGSI_OPCODE_TXP:
4929 if (ctx->type != PIPE_SHADER_FRAGMENT)
4930 args.level_zero = true;
4931 break;
4932 case TGSI_OPCODE_TEX_LZ:
4933 args.level_zero = true;
4934 break;
4935 case TGSI_OPCODE_TXB:
4936 case TGSI_OPCODE_TXB2:
4937 assert(ctx->type == PIPE_SHADER_FRAGMENT);
4938 args.bias = true;
4939 break;
4940 case TGSI_OPCODE_TXL:
4941 case TGSI_OPCODE_TXL2:
4942 args.lod = true;
4943 break;
4944 case TGSI_OPCODE_TXD:
4945 args.deriv = true;
4946 break;
4947 case TGSI_OPCODE_TG4:
4948 args.opcode = ac_image_gather4;
4949 args.level_zero = true;
4950 break;
4951 default:
4952 assert(0);
4953 return;
4954 }
4955
4956 /* The hardware needs special lowering for Gather4 with integer formats. */
4957 if (ctx->screen->b.chip_class <= VI &&
4958 opcode == TGSI_OPCODE_TG4) {
4959 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4960 /* This will also work with non-constant indexing because of how
4961 * glsl_to_tgsi works and we intent to preserve that behavior.
4962 */
4963 const unsigned src_idx = 2;
4964 unsigned sampler = inst->Src[src_idx].Register.Index;
4965
4966 assert(inst->Src[src_idx].Register.File == TGSI_FILE_SAMPLER);
4967
4968 if (info->sampler_type[sampler] == TGSI_RETURN_TYPE_SINT ||
4969 info->sampler_type[sampler] == TGSI_RETURN_TYPE_UINT)
4970 si_lower_gather4_integer(ctx, &args, target);
4971 }
4972
4973 emit_data->output[emit_data->chan] =
4974 ac_build_image_opcode(&ctx->ac, &args);
4975 }
4976
4977 static void si_llvm_emit_txqs(
4978 const struct lp_build_tgsi_action *action,
4979 struct lp_build_tgsi_context *bld_base,
4980 struct lp_build_emit_data *emit_data)
4981 {
4982 struct si_shader_context *ctx = si_shader_context(bld_base);
4983 struct gallivm_state *gallivm = &ctx->gallivm;
4984 LLVMBuilderRef builder = gallivm->builder;
4985 LLVMValueRef res, samples;
4986 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
4987
4988 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
4989
4990
4991 /* Read the samples from the descriptor directly. */
4992 res = LLVMBuildBitCast(builder, res_ptr, ctx->v8i32, "");
4993 samples = LLVMBuildExtractElement(
4994 builder, res,
4995 LLVMConstInt(ctx->i32, 3, 0), "");
4996 samples = LLVMBuildLShr(builder, samples,
4997 LLVMConstInt(ctx->i32, 16, 0), "");
4998 samples = LLVMBuildAnd(builder, samples,
4999 LLVMConstInt(ctx->i32, 0xf, 0), "");
5000 samples = LLVMBuildShl(builder, ctx->i32_1,
5001 samples, "");
5002
5003 emit_data->output[emit_data->chan] = samples;
5004 }
5005
5006 static void si_llvm_emit_ddxy(
5007 const struct lp_build_tgsi_action *action,
5008 struct lp_build_tgsi_context *bld_base,
5009 struct lp_build_emit_data *emit_data)
5010 {
5011 struct si_shader_context *ctx = si_shader_context(bld_base);
5012 struct gallivm_state *gallivm = &ctx->gallivm;
5013 unsigned opcode = emit_data->info->opcode;
5014 LLVMValueRef val;
5015 int idx;
5016 unsigned mask;
5017
5018 if (opcode == TGSI_OPCODE_DDX_FINE)
5019 mask = AC_TID_MASK_LEFT;
5020 else if (opcode == TGSI_OPCODE_DDY_FINE)
5021 mask = AC_TID_MASK_TOP;
5022 else
5023 mask = AC_TID_MASK_TOP_LEFT;
5024
5025 /* for DDX we want to next X pixel, DDY next Y pixel. */
5026 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
5027
5028 val = LLVMBuildBitCast(gallivm->builder, emit_data->args[0], ctx->i32, "");
5029 val = ac_build_ddxy(&ctx->ac, ctx->screen->has_ds_bpermute,
5030 mask, idx, ctx->lds, val);
5031 emit_data->output[emit_data->chan] = val;
5032 }
5033
5034 /*
5035 * this takes an I,J coordinate pair,
5036 * and works out the X and Y derivatives.
5037 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
5038 */
5039 static LLVMValueRef si_llvm_emit_ddxy_interp(
5040 struct lp_build_tgsi_context *bld_base,
5041 LLVMValueRef interp_ij)
5042 {
5043 struct si_shader_context *ctx = si_shader_context(bld_base);
5044 struct gallivm_state *gallivm = &ctx->gallivm;
5045 LLVMValueRef result[4], a;
5046 unsigned i;
5047
5048 for (i = 0; i < 2; i++) {
5049 a = LLVMBuildExtractElement(gallivm->builder, interp_ij,
5050 LLVMConstInt(ctx->i32, i, 0), "");
5051 result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
5052 result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
5053 }
5054
5055 return lp_build_gather_values(gallivm, result, 4);
5056 }
5057
5058 static void interp_fetch_args(
5059 struct lp_build_tgsi_context *bld_base,
5060 struct lp_build_emit_data *emit_data)
5061 {
5062 struct si_shader_context *ctx = si_shader_context(bld_base);
5063 struct gallivm_state *gallivm = &ctx->gallivm;
5064 const struct tgsi_full_instruction *inst = emit_data->inst;
5065
5066 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
5067 /* offset is in second src, first two channels */
5068 emit_data->args[0] = lp_build_emit_fetch(bld_base,
5069 emit_data->inst, 1,
5070 TGSI_CHAN_X);
5071 emit_data->args[1] = lp_build_emit_fetch(bld_base,
5072 emit_data->inst, 1,
5073 TGSI_CHAN_Y);
5074 emit_data->arg_count = 2;
5075 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5076 LLVMValueRef sample_position;
5077 LLVMValueRef sample_id;
5078 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
5079
5080 /* fetch sample ID, then fetch its sample position,
5081 * and place into first two channels.
5082 */
5083 sample_id = lp_build_emit_fetch(bld_base,
5084 emit_data->inst, 1, TGSI_CHAN_X);
5085 sample_id = LLVMBuildBitCast(gallivm->builder, sample_id,
5086 ctx->i32, "");
5087 sample_position = load_sample_position(ctx, sample_id);
5088
5089 emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder,
5090 sample_position,
5091 ctx->i32_0, "");
5092
5093 emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, "");
5094 emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder,
5095 sample_position,
5096 ctx->i32_1, "");
5097 emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, "");
5098 emit_data->arg_count = 2;
5099 }
5100 }
5101
5102 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
5103 struct lp_build_tgsi_context *bld_base,
5104 struct lp_build_emit_data *emit_data)
5105 {
5106 struct si_shader_context *ctx = si_shader_context(bld_base);
5107 struct si_shader *shader = ctx->shader;
5108 struct gallivm_state *gallivm = &ctx->gallivm;
5109 LLVMValueRef interp_param;
5110 const struct tgsi_full_instruction *inst = emit_data->inst;
5111 int input_index = inst->Src[0].Register.Index;
5112 int chan;
5113 int i;
5114 LLVMValueRef attr_number;
5115 LLVMValueRef params = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
5116 int interp_param_idx;
5117 unsigned interp = shader->selector->info.input_interpolate[input_index];
5118 unsigned location;
5119
5120 assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
5121
5122 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5123 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
5124 location = TGSI_INTERPOLATE_LOC_CENTER;
5125 else
5126 location = TGSI_INTERPOLATE_LOC_CENTROID;
5127
5128 interp_param_idx = lookup_interp_param_index(interp, location);
5129 if (interp_param_idx == -1)
5130 return;
5131 else if (interp_param_idx)
5132 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
5133 else
5134 interp_param = NULL;
5135
5136 attr_number = LLVMConstInt(ctx->i32, input_index, 0);
5137
5138 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5139 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5140 LLVMValueRef ij_out[2];
5141 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
5142
5143 /*
5144 * take the I then J parameters, and the DDX/Y for it, and
5145 * calculate the IJ inputs for the interpolator.
5146 * temp1 = ddx * offset/sample.x + I;
5147 * interp_param.I = ddy * offset/sample.y + temp1;
5148 * temp1 = ddx * offset/sample.x + J;
5149 * interp_param.J = ddy * offset/sample.y + temp1;
5150 */
5151 for (i = 0; i < 2; i++) {
5152 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
5153 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
5154 LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder,
5155 ddxy_out, ix_ll, "");
5156 LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder,
5157 ddxy_out, iy_ll, "");
5158 LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder,
5159 interp_param, ix_ll, "");
5160 LLVMValueRef temp1, temp2;
5161
5162 interp_el = LLVMBuildBitCast(gallivm->builder, interp_el,
5163 ctx->f32, "");
5164
5165 temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], "");
5166
5167 temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, "");
5168
5169 temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], "");
5170
5171 ij_out[i] = LLVMBuildFAdd(gallivm->builder, temp2, temp1, "");
5172 }
5173 interp_param = lp_build_gather_values(gallivm, ij_out, 2);
5174 }
5175
5176 for (chan = 0; chan < 4; chan++) {
5177 LLVMValueRef llvm_chan;
5178 unsigned schan;
5179
5180 schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
5181 llvm_chan = LLVMConstInt(ctx->i32, schan, 0);
5182
5183 if (interp_param) {
5184 interp_param = LLVMBuildBitCast(gallivm->builder,
5185 interp_param, LLVMVectorType(ctx->f32, 2), "");
5186 LLVMValueRef i = LLVMBuildExtractElement(
5187 gallivm->builder, interp_param, ctx->i32_0, "");
5188 LLVMValueRef j = LLVMBuildExtractElement(
5189 gallivm->builder, interp_param, ctx->i32_1, "");
5190 emit_data->output[chan] = ac_build_fs_interp(&ctx->ac,
5191 llvm_chan, attr_number, params,
5192 i, j);
5193 } else {
5194 emit_data->output[chan] = ac_build_fs_interp_mov(&ctx->ac,
5195 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
5196 llvm_chan, attr_number, params);
5197 }
5198 }
5199 }
5200
5201 static LLVMValueRef si_emit_ballot(struct si_shader_context *ctx,
5202 LLVMValueRef value)
5203 {
5204 struct gallivm_state *gallivm = &ctx->gallivm;
5205 LLVMValueRef args[3] = {
5206 value,
5207 ctx->i32_0,
5208 LLVMConstInt(ctx->i32, LLVMIntNE, 0)
5209 };
5210
5211 /* We currently have no other way to prevent LLVM from lifting the icmp
5212 * calls to a dominating basic block.
5213 */
5214 emit_optimization_barrier(ctx, &args[0]);
5215
5216 if (LLVMTypeOf(args[0]) != ctx->i32)
5217 args[0] = LLVMBuildBitCast(gallivm->builder, args[0], ctx->i32, "");
5218
5219 return lp_build_intrinsic(gallivm->builder,
5220 "llvm.amdgcn.icmp.i32",
5221 ctx->i64, args, 3,
5222 LP_FUNC_ATTR_NOUNWIND |
5223 LP_FUNC_ATTR_READNONE |
5224 LP_FUNC_ATTR_CONVERGENT);
5225 }
5226
5227 static void vote_all_emit(
5228 const struct lp_build_tgsi_action *action,
5229 struct lp_build_tgsi_context *bld_base,
5230 struct lp_build_emit_data *emit_data)
5231 {
5232 struct si_shader_context *ctx = si_shader_context(bld_base);
5233 struct gallivm_state *gallivm = &ctx->gallivm;
5234 LLVMValueRef active_set, vote_set;
5235 LLVMValueRef tmp;
5236
5237 active_set = si_emit_ballot(ctx, ctx->i32_1);
5238 vote_set = si_emit_ballot(ctx, emit_data->args[0]);
5239
5240 tmp = LLVMBuildICmp(gallivm->builder, LLVMIntEQ, vote_set, active_set, "");
5241 emit_data->output[emit_data->chan] =
5242 LLVMBuildSExt(gallivm->builder, tmp, ctx->i32, "");
5243 }
5244
5245 static void vote_any_emit(
5246 const struct lp_build_tgsi_action *action,
5247 struct lp_build_tgsi_context *bld_base,
5248 struct lp_build_emit_data *emit_data)
5249 {
5250 struct si_shader_context *ctx = si_shader_context(bld_base);
5251 struct gallivm_state *gallivm = &ctx->gallivm;
5252 LLVMValueRef vote_set;
5253 LLVMValueRef tmp;
5254
5255 vote_set = si_emit_ballot(ctx, emit_data->args[0]);
5256
5257 tmp = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
5258 vote_set, LLVMConstInt(ctx->i64, 0, 0), "");
5259 emit_data->output[emit_data->chan] =
5260 LLVMBuildSExt(gallivm->builder, tmp, ctx->i32, "");
5261 }
5262
5263 static void vote_eq_emit(
5264 const struct lp_build_tgsi_action *action,
5265 struct lp_build_tgsi_context *bld_base,
5266 struct lp_build_emit_data *emit_data)
5267 {
5268 struct si_shader_context *ctx = si_shader_context(bld_base);
5269 struct gallivm_state *gallivm = &ctx->gallivm;
5270 LLVMValueRef active_set, vote_set;
5271 LLVMValueRef all, none, tmp;
5272
5273 active_set = si_emit_ballot(ctx, ctx->i32_1);
5274 vote_set = si_emit_ballot(ctx, emit_data->args[0]);
5275
5276 all = LLVMBuildICmp(gallivm->builder, LLVMIntEQ, vote_set, active_set, "");
5277 none = LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
5278 vote_set, LLVMConstInt(ctx->i64, 0, 0), "");
5279 tmp = LLVMBuildOr(gallivm->builder, all, none, "");
5280 emit_data->output[emit_data->chan] =
5281 LLVMBuildSExt(gallivm->builder, tmp, ctx->i32, "");
5282 }
5283
5284 static void ballot_emit(
5285 const struct lp_build_tgsi_action *action,
5286 struct lp_build_tgsi_context *bld_base,
5287 struct lp_build_emit_data *emit_data)
5288 {
5289 struct si_shader_context *ctx = si_shader_context(bld_base);
5290 LLVMBuilderRef builder = ctx->gallivm.builder;
5291 LLVMValueRef tmp;
5292
5293 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
5294 tmp = si_emit_ballot(ctx, tmp);
5295 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
5296
5297 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
5298 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
5299 }
5300
5301 static void read_invoc_fetch_args(
5302 struct lp_build_tgsi_context *bld_base,
5303 struct lp_build_emit_data *emit_data)
5304 {
5305 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
5306 0, emit_data->src_chan);
5307
5308 /* Always read the source invocation (= lane) from the X channel. */
5309 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
5310 1, TGSI_CHAN_X);
5311 emit_data->arg_count = 2;
5312 }
5313
5314 static void read_lane_emit(
5315 const struct lp_build_tgsi_action *action,
5316 struct lp_build_tgsi_context *bld_base,
5317 struct lp_build_emit_data *emit_data)
5318 {
5319 struct si_shader_context *ctx = si_shader_context(bld_base);
5320 LLVMBuilderRef builder = ctx->gallivm.builder;
5321
5322 /* We currently have no other way to prevent LLVM from lifting the icmp
5323 * calls to a dominating basic block.
5324 */
5325 emit_optimization_barrier(ctx, &emit_data->args[0]);
5326
5327 for (unsigned i = 0; i < emit_data->arg_count; ++i) {
5328 emit_data->args[i] = LLVMBuildBitCast(builder, emit_data->args[i],
5329 ctx->i32, "");
5330 }
5331
5332 emit_data->output[emit_data->chan] =
5333 ac_build_intrinsic(&ctx->ac, action->intr_name,
5334 ctx->i32, emit_data->args, emit_data->arg_count,
5335 AC_FUNC_ATTR_READNONE |
5336 AC_FUNC_ATTR_CONVERGENT);
5337 }
5338
5339 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
5340 struct lp_build_emit_data *emit_data)
5341 {
5342 struct si_shader_context *ctx = si_shader_context(bld_base);
5343 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
5344 LLVMValueRef imm;
5345 unsigned stream;
5346
5347 assert(src0.File == TGSI_FILE_IMMEDIATE);
5348
5349 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
5350 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
5351 return stream;
5352 }
5353
5354 /* Emit one vertex from the geometry shader */
5355 static void si_llvm_emit_vertex(
5356 const struct lp_build_tgsi_action *action,
5357 struct lp_build_tgsi_context *bld_base,
5358 struct lp_build_emit_data *emit_data)
5359 {
5360 struct si_shader_context *ctx = si_shader_context(bld_base);
5361 struct lp_build_context *uint = &bld_base->uint_bld;
5362 struct si_shader *shader = ctx->shader;
5363 struct tgsi_shader_info *info = &shader->selector->info;
5364 struct gallivm_state *gallivm = &ctx->gallivm;
5365 struct lp_build_if_state if_state;
5366 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
5367 SI_PARAM_GS2VS_OFFSET);
5368 LLVMValueRef gs_next_vertex;
5369 LLVMValueRef can_emit, kill;
5370 unsigned chan, offset;
5371 int i;
5372 unsigned stream;
5373
5374 stream = si_llvm_get_stream(bld_base, emit_data);
5375
5376 /* Write vertex attribute values to GSVS ring */
5377 gs_next_vertex = LLVMBuildLoad(gallivm->builder,
5378 ctx->gs_next_vertex[stream],
5379 "");
5380
5381 /* If this thread has already emitted the declared maximum number of
5382 * vertices, skip the write: excessive vertex emissions are not
5383 * supposed to have any effect.
5384 *
5385 * If the shader has no writes to memory, kill it instead. This skips
5386 * further memory loads and may allow LLVM to skip to the end
5387 * altogether.
5388 */
5389 can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULT, gs_next_vertex,
5390 LLVMConstInt(ctx->i32,
5391 shader->selector->gs_max_out_vertices, 0), "");
5392
5393 bool use_kill = !info->writes_memory;
5394 if (use_kill) {
5395 kill = lp_build_select(&bld_base->base, can_emit,
5396 LLVMConstReal(ctx->f32, 1.0f),
5397 LLVMConstReal(ctx->f32, -1.0f));
5398
5399 ac_build_kill(&ctx->ac, kill);
5400 } else {
5401 lp_build_if(&if_state, gallivm, can_emit);
5402 }
5403
5404 offset = 0;
5405 for (i = 0; i < info->num_outputs; i++) {
5406 LLVMValueRef *out_ptr = ctx->outputs[i];
5407
5408 for (chan = 0; chan < 4; chan++) {
5409 if (!(info->output_usagemask[i] & (1 << chan)) ||
5410 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
5411 continue;
5412
5413 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
5414 LLVMValueRef voffset =
5415 LLVMConstInt(ctx->i32, offset *
5416 shader->selector->gs_max_out_vertices, 0);
5417 offset++;
5418
5419 voffset = lp_build_add(uint, voffset, gs_next_vertex);
5420 voffset = lp_build_mul_imm(uint, voffset, 4);
5421
5422 out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
5423
5424 ac_build_buffer_store_dword(&ctx->ac,
5425 ctx->gsvs_ring[stream],
5426 out_val, 1,
5427 voffset, soffset, 0,
5428 1, 1, true, true);
5429 }
5430 }
5431
5432 gs_next_vertex = lp_build_add(uint, gs_next_vertex,
5433 ctx->i32_1);
5434
5435 LLVMBuildStore(gallivm->builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
5436
5437 /* Signal vertex emission */
5438 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
5439 LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID));
5440 if (!use_kill)
5441 lp_build_endif(&if_state);
5442 }
5443
5444 /* Cut one primitive from the geometry shader */
5445 static void si_llvm_emit_primitive(
5446 const struct lp_build_tgsi_action *action,
5447 struct lp_build_tgsi_context *bld_base,
5448 struct lp_build_emit_data *emit_data)
5449 {
5450 struct si_shader_context *ctx = si_shader_context(bld_base);
5451 unsigned stream;
5452
5453 /* Signal primitive cut */
5454 stream = si_llvm_get_stream(bld_base, emit_data);
5455 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
5456 LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID));
5457 }
5458
5459 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
5460 struct lp_build_tgsi_context *bld_base,
5461 struct lp_build_emit_data *emit_data)
5462 {
5463 struct si_shader_context *ctx = si_shader_context(bld_base);
5464 struct gallivm_state *gallivm = &ctx->gallivm;
5465
5466 /* SI only (thanks to a hw bug workaround):
5467 * The real barrier instruction isn’t needed, because an entire patch
5468 * always fits into a single wave.
5469 */
5470 if (HAVE_LLVM >= 0x0309 &&
5471 ctx->screen->b.chip_class == SI &&
5472 ctx->type == PIPE_SHADER_TESS_CTRL) {
5473 emit_waitcnt(ctx, LGKM_CNT & VM_CNT);
5474 return;
5475 }
5476
5477 lp_build_intrinsic(gallivm->builder,
5478 HAVE_LLVM >= 0x0309 ? "llvm.amdgcn.s.barrier"
5479 : "llvm.AMDGPU.barrier.local",
5480 ctx->voidt, NULL, 0, LP_FUNC_ATTR_CONVERGENT);
5481 }
5482
5483 static const struct lp_build_tgsi_action tex_action = {
5484 .fetch_args = tex_fetch_args,
5485 .emit = build_tex_intrinsic,
5486 };
5487
5488 static const struct lp_build_tgsi_action interp_action = {
5489 .fetch_args = interp_fetch_args,
5490 .emit = build_interp_intrinsic,
5491 };
5492
5493 static void si_create_function(struct si_shader_context *ctx,
5494 const char *name,
5495 LLVMTypeRef *returns, unsigned num_returns,
5496 LLVMTypeRef *params, unsigned num_params,
5497 int last_sgpr)
5498 {
5499 int i;
5500
5501 si_llvm_create_func(ctx, name, returns, num_returns,
5502 params, num_params);
5503 si_llvm_shader_type(ctx->main_fn, ctx->type);
5504 ctx->return_value = LLVMGetUndef(ctx->return_type);
5505
5506 for (i = 0; i <= last_sgpr; ++i) {
5507 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
5508
5509 /* The combination of:
5510 * - ByVal
5511 * - dereferenceable
5512 * - invariant.load
5513 * allows the optimization passes to move loads and reduces
5514 * SGPR spilling significantly.
5515 */
5516 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
5517 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
5518 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_NOALIAS);
5519 ac_add_attr_dereferenceable(P, UINT64_MAX);
5520 } else
5521 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
5522 }
5523
5524 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5525 "no-signed-zeros-fp-math",
5526 "true");
5527
5528 if (ctx->screen->b.debug_flags & DBG_UNSAFE_MATH) {
5529 /* These were copied from some LLVM test. */
5530 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5531 "less-precise-fpmad",
5532 "true");
5533 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5534 "no-infs-fp-math",
5535 "true");
5536 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5537 "no-nans-fp-math",
5538 "true");
5539 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5540 "unsafe-fp-math",
5541 "true");
5542 }
5543 }
5544
5545 static void declare_streamout_params(struct si_shader_context *ctx,
5546 struct pipe_stream_output_info *so,
5547 LLVMTypeRef *params, LLVMTypeRef i32,
5548 unsigned *num_params)
5549 {
5550 int i;
5551
5552 /* Streamout SGPRs. */
5553 if (so->num_outputs) {
5554 if (ctx->type != PIPE_SHADER_TESS_EVAL)
5555 params[ctx->param_streamout_config = (*num_params)++] = i32;
5556 else
5557 ctx->param_streamout_config = *num_params - 1;
5558
5559 params[ctx->param_streamout_write_index = (*num_params)++] = i32;
5560 }
5561 /* A streamout buffer offset is loaded if the stride is non-zero. */
5562 for (i = 0; i < 4; i++) {
5563 if (!so->stride[i])
5564 continue;
5565
5566 params[ctx->param_streamout_offset[i] = (*num_params)++] = i32;
5567 }
5568 }
5569
5570 static unsigned llvm_get_type_size(LLVMTypeRef type)
5571 {
5572 LLVMTypeKind kind = LLVMGetTypeKind(type);
5573
5574 switch (kind) {
5575 case LLVMIntegerTypeKind:
5576 return LLVMGetIntTypeWidth(type) / 8;
5577 case LLVMFloatTypeKind:
5578 return 4;
5579 case LLVMPointerTypeKind:
5580 return 8;
5581 case LLVMVectorTypeKind:
5582 return LLVMGetVectorSize(type) *
5583 llvm_get_type_size(LLVMGetElementType(type));
5584 case LLVMArrayTypeKind:
5585 return LLVMGetArrayLength(type) *
5586 llvm_get_type_size(LLVMGetElementType(type));
5587 default:
5588 assert(0);
5589 return 0;
5590 }
5591 }
5592
5593 static void declare_tess_lds(struct si_shader_context *ctx)
5594 {
5595 struct gallivm_state *gallivm = &ctx->gallivm;
5596
5597 unsigned lds_size = ctx->screen->b.chip_class >= CIK ? 65536 : 32768;
5598 ctx->lds = LLVMBuildIntToPtr(gallivm->builder, ctx->i32_0,
5599 LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), LOCAL_ADDR_SPACE),
5600 "tess_lds");
5601 }
5602
5603 static unsigned si_get_max_workgroup_size(struct si_shader *shader)
5604 {
5605 const unsigned *properties = shader->selector->info.properties;
5606 unsigned max_work_group_size =
5607 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
5608 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
5609 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
5610
5611 if (!max_work_group_size) {
5612 /* This is a variable group size compute shader,
5613 * compile it for the maximum possible group size.
5614 */
5615 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
5616 }
5617 return max_work_group_size;
5618 }
5619
5620 static void create_function(struct si_shader_context *ctx)
5621 {
5622 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5623 struct gallivm_state *gallivm = &ctx->gallivm;
5624 struct si_shader *shader = ctx->shader;
5625 LLVMTypeRef params[SI_NUM_PARAMS + SI_MAX_ATTRIBS], v3i32;
5626 LLVMTypeRef returns[16+32*4];
5627 unsigned i, last_sgpr, num_params, num_return_sgprs;
5628 unsigned num_returns = 0;
5629 unsigned num_prolog_vgprs = 0;
5630
5631 v3i32 = LLVMVectorType(ctx->i32, 3);
5632
5633 params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
5634 params[SI_PARAM_CONST_BUFFERS] = const_array(ctx->v16i8, SI_NUM_CONST_BUFFERS);
5635 params[SI_PARAM_SAMPLERS] = const_array(ctx->v8i32, SI_NUM_SAMPLERS);
5636 params[SI_PARAM_IMAGES] = const_array(ctx->v8i32, SI_NUM_IMAGES);
5637 params[SI_PARAM_SHADER_BUFFERS] = const_array(ctx->v4i32, SI_NUM_SHADER_BUFFERS);
5638
5639 switch (ctx->type) {
5640 case PIPE_SHADER_VERTEX:
5641 params[SI_PARAM_VERTEX_BUFFERS] = const_array(ctx->v16i8, SI_MAX_ATTRIBS);
5642 params[SI_PARAM_BASE_VERTEX] = ctx->i32;
5643 params[SI_PARAM_START_INSTANCE] = ctx->i32;
5644 params[SI_PARAM_DRAWID] = ctx->i32;
5645 params[SI_PARAM_VS_STATE_BITS] = ctx->i32;
5646 num_params = SI_PARAM_VS_STATE_BITS+1;
5647
5648 if (shader->key.as_es) {
5649 params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5650 } else if (shader->key.as_ls) {
5651 /* no extra parameters */
5652 } else {
5653 if (shader->is_gs_copy_shader) {
5654 num_params = SI_PARAM_RW_BUFFERS+1;
5655 }
5656
5657 /* The locations of the other parameters are assigned dynamically. */
5658 declare_streamout_params(ctx, &shader->selector->so,
5659 params, ctx->i32, &num_params);
5660 }
5661
5662 last_sgpr = num_params-1;
5663
5664 /* VGPRs */
5665 params[ctx->param_vertex_id = num_params++] = ctx->i32;
5666 params[ctx->param_rel_auto_id = num_params++] = ctx->i32;
5667 params[ctx->param_vs_prim_id = num_params++] = ctx->i32;
5668 params[ctx->param_instance_id = num_params++] = ctx->i32;
5669
5670 if (!shader->is_gs_copy_shader) {
5671 /* Vertex load indices. */
5672 ctx->param_vertex_index0 = num_params;
5673
5674 for (i = 0; i < shader->selector->info.num_inputs; i++)
5675 params[num_params++] = ctx->i32;
5676
5677 num_prolog_vgprs += shader->selector->info.num_inputs;
5678
5679 /* PrimitiveID output. */
5680 if (!shader->key.as_es && !shader->key.as_ls)
5681 for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5682 returns[num_returns++] = ctx->f32;
5683 }
5684 break;
5685
5686 case PIPE_SHADER_TESS_CTRL:
5687 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5688 params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
5689 params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
5690 params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
5691 params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
5692 params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
5693 last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
5694
5695 /* VGPRs */
5696 params[SI_PARAM_PATCH_ID] = ctx->i32;
5697 params[SI_PARAM_REL_IDS] = ctx->i32;
5698 num_params = SI_PARAM_REL_IDS+1;
5699
5700 /* SI_PARAM_TCS_OC_LDS and PARAM_TESS_FACTOR_OFFSET are
5701 * placed after the user SGPRs.
5702 */
5703 for (i = 0; i < SI_TCS_NUM_USER_SGPR + 2; i++)
5704 returns[num_returns++] = ctx->i32; /* SGPRs */
5705
5706 for (i = 0; i < 3; i++)
5707 returns[num_returns++] = ctx->f32; /* VGPRs */
5708 break;
5709
5710 case PIPE_SHADER_TESS_EVAL:
5711 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5712 num_params = SI_PARAM_TCS_OFFCHIP_LAYOUT+1;
5713
5714 if (shader->key.as_es) {
5715 params[ctx->param_oc_lds = num_params++] = ctx->i32;
5716 params[num_params++] = ctx->i32;
5717 params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5718 } else {
5719 params[num_params++] = ctx->i32;
5720 declare_streamout_params(ctx, &shader->selector->so,
5721 params, ctx->i32, &num_params);
5722 params[ctx->param_oc_lds = num_params++] = ctx->i32;
5723 }
5724 last_sgpr = num_params - 1;
5725
5726 /* VGPRs */
5727 params[ctx->param_tes_u = num_params++] = ctx->f32;
5728 params[ctx->param_tes_v = num_params++] = ctx->f32;
5729 params[ctx->param_tes_rel_patch_id = num_params++] = ctx->i32;
5730 params[ctx->param_tes_patch_id = num_params++] = ctx->i32;
5731
5732 /* PrimitiveID output. */
5733 if (!shader->key.as_es)
5734 for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5735 returns[num_returns++] = ctx->f32;
5736 break;
5737
5738 case PIPE_SHADER_GEOMETRY:
5739 params[SI_PARAM_GS2VS_OFFSET] = ctx->i32;
5740 params[SI_PARAM_GS_WAVE_ID] = ctx->i32;
5741 last_sgpr = SI_PARAM_GS_WAVE_ID;
5742
5743 /* VGPRs */
5744 params[SI_PARAM_VTX0_OFFSET] = ctx->i32;
5745 params[SI_PARAM_VTX1_OFFSET] = ctx->i32;
5746 params[SI_PARAM_PRIMITIVE_ID] = ctx->i32;
5747 params[SI_PARAM_VTX2_OFFSET] = ctx->i32;
5748 params[SI_PARAM_VTX3_OFFSET] = ctx->i32;
5749 params[SI_PARAM_VTX4_OFFSET] = ctx->i32;
5750 params[SI_PARAM_VTX5_OFFSET] = ctx->i32;
5751 params[SI_PARAM_GS_INSTANCE_ID] = ctx->i32;
5752 num_params = SI_PARAM_GS_INSTANCE_ID+1;
5753 break;
5754
5755 case PIPE_SHADER_FRAGMENT:
5756 params[SI_PARAM_ALPHA_REF] = ctx->f32;
5757 params[SI_PARAM_PRIM_MASK] = ctx->i32;
5758 last_sgpr = SI_PARAM_PRIM_MASK;
5759 params[SI_PARAM_PERSP_SAMPLE] = ctx->v2i32;
5760 params[SI_PARAM_PERSP_CENTER] = ctx->v2i32;
5761 params[SI_PARAM_PERSP_CENTROID] = ctx->v2i32;
5762 params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
5763 params[SI_PARAM_LINEAR_SAMPLE] = ctx->v2i32;
5764 params[SI_PARAM_LINEAR_CENTER] = ctx->v2i32;
5765 params[SI_PARAM_LINEAR_CENTROID] = ctx->v2i32;
5766 params[SI_PARAM_LINE_STIPPLE_TEX] = ctx->f32;
5767 params[SI_PARAM_POS_X_FLOAT] = ctx->f32;
5768 params[SI_PARAM_POS_Y_FLOAT] = ctx->f32;
5769 params[SI_PARAM_POS_Z_FLOAT] = ctx->f32;
5770 params[SI_PARAM_POS_W_FLOAT] = ctx->f32;
5771 params[SI_PARAM_FRONT_FACE] = ctx->i32;
5772 shader->info.face_vgpr_index = 20;
5773 params[SI_PARAM_ANCILLARY] = ctx->i32;
5774 params[SI_PARAM_SAMPLE_COVERAGE] = ctx->f32;
5775 params[SI_PARAM_POS_FIXED_PT] = ctx->i32;
5776 num_params = SI_PARAM_POS_FIXED_PT+1;
5777
5778 /* Color inputs from the prolog. */
5779 if (shader->selector->info.colors_read) {
5780 unsigned num_color_elements =
5781 util_bitcount(shader->selector->info.colors_read);
5782
5783 assert(num_params + num_color_elements <= ARRAY_SIZE(params));
5784 for (i = 0; i < num_color_elements; i++)
5785 params[num_params++] = ctx->f32;
5786
5787 num_prolog_vgprs += num_color_elements;
5788 }
5789
5790 /* Outputs for the epilog. */
5791 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
5792 num_returns =
5793 num_return_sgprs +
5794 util_bitcount(shader->selector->info.colors_written) * 4 +
5795 shader->selector->info.writes_z +
5796 shader->selector->info.writes_stencil +
5797 shader->selector->info.writes_samplemask +
5798 1 /* SampleMaskIn */;
5799
5800 num_returns = MAX2(num_returns,
5801 num_return_sgprs +
5802 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
5803
5804 for (i = 0; i < num_return_sgprs; i++)
5805 returns[i] = ctx->i32;
5806 for (; i < num_returns; i++)
5807 returns[i] = ctx->f32;
5808 break;
5809
5810 case PIPE_SHADER_COMPUTE:
5811 params[SI_PARAM_GRID_SIZE] = v3i32;
5812 params[SI_PARAM_BLOCK_SIZE] = v3i32;
5813 params[SI_PARAM_BLOCK_ID] = v3i32;
5814 last_sgpr = SI_PARAM_BLOCK_ID;
5815
5816 params[SI_PARAM_THREAD_ID] = v3i32;
5817 num_params = SI_PARAM_THREAD_ID + 1;
5818 break;
5819 default:
5820 assert(0 && "unimplemented shader");
5821 return;
5822 }
5823
5824 assert(num_params <= ARRAY_SIZE(params));
5825
5826 si_create_function(ctx, "main", returns, num_returns, params,
5827 num_params, last_sgpr);
5828
5829 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5830 if (ctx->type == PIPE_SHADER_FRAGMENT &&
5831 ctx->separate_prolog) {
5832 si_llvm_add_attribute(ctx->main_fn,
5833 "InitialPSInputAddr",
5834 S_0286D0_PERSP_SAMPLE_ENA(1) |
5835 S_0286D0_PERSP_CENTER_ENA(1) |
5836 S_0286D0_PERSP_CENTROID_ENA(1) |
5837 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5838 S_0286D0_LINEAR_CENTER_ENA(1) |
5839 S_0286D0_LINEAR_CENTROID_ENA(1) |
5840 S_0286D0_FRONT_FACE_ENA(1) |
5841 S_0286D0_POS_FIXED_PT_ENA(1));
5842 } else if (ctx->type == PIPE_SHADER_COMPUTE) {
5843 si_llvm_add_attribute(ctx->main_fn,
5844 "amdgpu-max-work-group-size",
5845 si_get_max_workgroup_size(shader));
5846 }
5847
5848 shader->info.num_input_sgprs = 0;
5849 shader->info.num_input_vgprs = 0;
5850
5851 for (i = 0; i <= last_sgpr; ++i)
5852 shader->info.num_input_sgprs += llvm_get_type_size(params[i]) / 4;
5853
5854 for (; i < num_params; ++i)
5855 shader->info.num_input_vgprs += llvm_get_type_size(params[i]) / 4;
5856
5857 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5858 shader->info.num_input_vgprs -= num_prolog_vgprs;
5859
5860 if (!ctx->screen->has_ds_bpermute &&
5861 bld_base->info &&
5862 (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
5863 bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 ||
5864 bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 ||
5865 bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 ||
5866 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 ||
5867 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0))
5868 ctx->lds =
5869 LLVMAddGlobalInAddressSpace(gallivm->module,
5870 LLVMArrayType(ctx->i32, 64),
5871 "ddxy_lds",
5872 LOCAL_ADDR_SPACE);
5873
5874 if ((ctx->type == PIPE_SHADER_VERTEX && shader->key.as_ls) ||
5875 ctx->type == PIPE_SHADER_TESS_CTRL)
5876 declare_tess_lds(ctx);
5877 }
5878
5879 /**
5880 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5881 * for later use.
5882 */
5883 static void preload_ring_buffers(struct si_shader_context *ctx)
5884 {
5885 struct gallivm_state *gallivm = &ctx->gallivm;
5886 LLVMBuilderRef builder = gallivm->builder;
5887
5888 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5889 SI_PARAM_RW_BUFFERS);
5890
5891 if ((ctx->type == PIPE_SHADER_VERTEX &&
5892 ctx->shader->key.as_es) ||
5893 (ctx->type == PIPE_SHADER_TESS_EVAL &&
5894 ctx->shader->key.as_es) ||
5895 ctx->type == PIPE_SHADER_GEOMETRY) {
5896 unsigned ring =
5897 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5898 : SI_ES_RING_ESGS;
5899 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5900
5901 ctx->esgs_ring =
5902 ac_build_indexed_load_const(&ctx->ac, buf_ptr, offset);
5903 }
5904
5905 if (ctx->shader->is_gs_copy_shader) {
5906 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5907
5908 ctx->gsvs_ring[0] =
5909 ac_build_indexed_load_const(&ctx->ac, buf_ptr, offset);
5910 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5911 const struct si_shader_selector *sel = ctx->shader->selector;
5912 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5913 LLVMValueRef base_ring;
5914
5915 base_ring = ac_build_indexed_load_const(&ctx->ac, buf_ptr, offset);
5916
5917 /* The conceptual layout of the GSVS ring is
5918 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5919 * but the real memory layout is swizzled across
5920 * threads:
5921 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5922 * t16v0c0 ..
5923 * Override the buffer descriptor accordingly.
5924 */
5925 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5926 uint64_t stream_offset = 0;
5927
5928 for (unsigned stream = 0; stream < 4; ++stream) {
5929 unsigned num_components;
5930 unsigned stride;
5931 unsigned num_records;
5932 LLVMValueRef ring, tmp;
5933
5934 num_components = sel->info.num_stream_output_components[stream];
5935 if (!num_components)
5936 continue;
5937
5938 stride = 4 * num_components * sel->gs_max_out_vertices;
5939
5940 /* Limit on the stride field for <= CIK. */
5941 assert(stride < (1 << 14));
5942
5943 num_records = 64;
5944
5945 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5946 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5947 tmp = LLVMBuildAdd(builder, tmp,
5948 LLVMConstInt(ctx->i64,
5949 stream_offset, 0), "");
5950 stream_offset += stride * 64;
5951
5952 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5953 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5954 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5955 tmp = LLVMBuildOr(builder, tmp,
5956 LLVMConstInt(ctx->i32,
5957 S_008F04_STRIDE(stride) |
5958 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5959 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5960 ring = LLVMBuildInsertElement(builder, ring,
5961 LLVMConstInt(ctx->i32, num_records, 0),
5962 LLVMConstInt(ctx->i32, 2, 0), "");
5963 ring = LLVMBuildInsertElement(builder, ring,
5964 LLVMConstInt(ctx->i32,
5965 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5966 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5967 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5968 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5969 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5970 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5971 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5972 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5973 S_008F0C_ADD_TID_ENABLE(1),
5974 0),
5975 LLVMConstInt(ctx->i32, 3, 0), "");
5976 ring = LLVMBuildBitCast(builder, ring, ctx->v16i8, "");
5977
5978 ctx->gsvs_ring[stream] = ring;
5979 }
5980 }
5981 }
5982
5983 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5984 LLVMValueRef param_rw_buffers,
5985 unsigned param_pos_fixed_pt)
5986 {
5987 struct gallivm_state *gallivm = &ctx->gallivm;
5988 LLVMBuilderRef builder = gallivm->builder;
5989 LLVMValueRef slot, desc, offset, row, bit, address[2];
5990
5991 /* Use the fixed-point gl_FragCoord input.
5992 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5993 * per coordinate to get the repeating effect.
5994 */
5995 address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5996 address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5997
5998 /* Load the buffer descriptor. */
5999 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
6000 desc = ac_build_indexed_load_const(&ctx->ac, param_rw_buffers, slot);
6001
6002 /* The stipple pattern is 32x32, each row has 32 bits. */
6003 offset = LLVMBuildMul(builder, address[1],
6004 LLVMConstInt(ctx->i32, 4, 0), "");
6005 row = buffer_load_const(ctx, desc, offset);
6006 row = LLVMBuildBitCast(builder, row, ctx->i32, "");
6007 bit = LLVMBuildLShr(builder, row, address[0], "");
6008 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
6009
6010 /* The intrinsic kills the thread if arg < 0. */
6011 bit = LLVMBuildSelect(builder, bit, LLVMConstReal(ctx->f32, 0),
6012 LLVMConstReal(ctx->f32, -1), "");
6013 ac_build_kill(&ctx->ac, bit);
6014 }
6015
6016 void si_shader_binary_read_config(struct ac_shader_binary *binary,
6017 struct si_shader_config *conf,
6018 unsigned symbol_offset)
6019 {
6020 unsigned i;
6021 const unsigned char *config =
6022 ac_shader_binary_config_start(binary, symbol_offset);
6023 bool really_needs_scratch = false;
6024
6025 /* LLVM adds SGPR spills to the scratch size.
6026 * Find out if we really need the scratch buffer.
6027 */
6028 for (i = 0; i < binary->reloc_count; i++) {
6029 const struct ac_shader_reloc *reloc = &binary->relocs[i];
6030
6031 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
6032 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
6033 really_needs_scratch = true;
6034 break;
6035 }
6036 }
6037
6038 /* XXX: We may be able to emit some of these values directly rather than
6039 * extracting fields to be emitted later.
6040 */
6041
6042 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
6043 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
6044 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
6045 switch (reg) {
6046 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
6047 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
6048 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
6049 case R_00B848_COMPUTE_PGM_RSRC1:
6050 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
6051 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
6052 conf->float_mode = G_00B028_FLOAT_MODE(value);
6053 conf->rsrc1 = value;
6054 break;
6055 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
6056 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
6057 break;
6058 case R_00B84C_COMPUTE_PGM_RSRC2:
6059 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
6060 conf->rsrc2 = value;
6061 break;
6062 case R_0286CC_SPI_PS_INPUT_ENA:
6063 conf->spi_ps_input_ena = value;
6064 break;
6065 case R_0286D0_SPI_PS_INPUT_ADDR:
6066 conf->spi_ps_input_addr = value;
6067 break;
6068 case R_0286E8_SPI_TMPRING_SIZE:
6069 case R_00B860_COMPUTE_TMPRING_SIZE:
6070 /* WAVESIZE is in units of 256 dwords. */
6071 if (really_needs_scratch)
6072 conf->scratch_bytes_per_wave =
6073 G_00B860_WAVESIZE(value) * 256 * 4;
6074 break;
6075 case 0x4: /* SPILLED_SGPRS */
6076 conf->spilled_sgprs = value;
6077 break;
6078 case 0x8: /* SPILLED_VGPRS */
6079 conf->spilled_vgprs = value;
6080 break;
6081 default:
6082 {
6083 static bool printed;
6084
6085 if (!printed) {
6086 fprintf(stderr, "Warning: LLVM emitted unknown "
6087 "config register: 0x%x\n", reg);
6088 printed = true;
6089 }
6090 }
6091 break;
6092 }
6093 }
6094
6095 if (!conf->spi_ps_input_addr)
6096 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
6097 }
6098
6099 void si_shader_apply_scratch_relocs(struct si_context *sctx,
6100 struct si_shader *shader,
6101 struct si_shader_config *config,
6102 uint64_t scratch_va)
6103 {
6104 unsigned i;
6105 uint32_t scratch_rsrc_dword0 = scratch_va;
6106 uint32_t scratch_rsrc_dword1 =
6107 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
6108
6109 /* Enable scratch coalescing if LLVM sets ELEMENT_SIZE & INDEX_STRIDE
6110 * correctly.
6111 */
6112 if (HAVE_LLVM >= 0x0309)
6113 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
6114 else
6115 scratch_rsrc_dword1 |=
6116 S_008F04_STRIDE(config->scratch_bytes_per_wave / 64);
6117
6118 for (i = 0 ; i < shader->binary.reloc_count; i++) {
6119 const struct ac_shader_reloc *reloc =
6120 &shader->binary.relocs[i];
6121 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
6122 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
6123 &scratch_rsrc_dword0, 4);
6124 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
6125 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
6126 &scratch_rsrc_dword1, 4);
6127 }
6128 }
6129 }
6130
6131 static unsigned si_get_shader_binary_size(struct si_shader *shader)
6132 {
6133 unsigned size = shader->binary.code_size;
6134
6135 if (shader->prolog)
6136 size += shader->prolog->binary.code_size;
6137 if (shader->epilog)
6138 size += shader->epilog->binary.code_size;
6139 return size;
6140 }
6141
6142 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
6143 {
6144 const struct ac_shader_binary *prolog =
6145 shader->prolog ? &shader->prolog->binary : NULL;
6146 const struct ac_shader_binary *epilog =
6147 shader->epilog ? &shader->epilog->binary : NULL;
6148 const struct ac_shader_binary *mainb = &shader->binary;
6149 unsigned bo_size = si_get_shader_binary_size(shader) +
6150 (!epilog ? mainb->rodata_size : 0);
6151 unsigned char *ptr;
6152
6153 assert(!prolog || !prolog->rodata_size);
6154 assert((!prolog && !epilog) || !mainb->rodata_size);
6155 assert(!epilog || !epilog->rodata_size);
6156
6157 /* GFX9 can fetch at most 128 bytes past the end of the shader.
6158 * Prevent VM faults.
6159 */
6160 if (sscreen->b.chip_class >= GFX9)
6161 bo_size += 128;
6162
6163 r600_resource_reference(&shader->bo, NULL);
6164 shader->bo = (struct r600_resource*)
6165 pipe_buffer_create(&sscreen->b.b, 0,
6166 PIPE_USAGE_IMMUTABLE,
6167 align(bo_size, SI_CPDMA_ALIGNMENT));
6168 if (!shader->bo)
6169 return -ENOMEM;
6170
6171 /* Upload. */
6172 ptr = sscreen->b.ws->buffer_map(shader->bo->buf, NULL,
6173 PIPE_TRANSFER_READ_WRITE);
6174
6175 if (prolog) {
6176 util_memcpy_cpu_to_le32(ptr, prolog->code, prolog->code_size);
6177 ptr += prolog->code_size;
6178 }
6179
6180 util_memcpy_cpu_to_le32(ptr, mainb->code, mainb->code_size);
6181 ptr += mainb->code_size;
6182
6183 if (epilog)
6184 util_memcpy_cpu_to_le32(ptr, epilog->code, epilog->code_size);
6185 else if (mainb->rodata_size > 0)
6186 util_memcpy_cpu_to_le32(ptr, mainb->rodata, mainb->rodata_size);
6187
6188 sscreen->b.ws->buffer_unmap(shader->bo->buf);
6189 return 0;
6190 }
6191
6192 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
6193 struct pipe_debug_callback *debug,
6194 const char *name, FILE *file)
6195 {
6196 char *line, *p;
6197 unsigned i, count;
6198
6199 if (binary->disasm_string) {
6200 fprintf(file, "Shader %s disassembly:\n", name);
6201 fprintf(file, "%s", binary->disasm_string);
6202
6203 if (debug && debug->debug_message) {
6204 /* Very long debug messages are cut off, so send the
6205 * disassembly one line at a time. This causes more
6206 * overhead, but on the plus side it simplifies
6207 * parsing of resulting logs.
6208 */
6209 pipe_debug_message(debug, SHADER_INFO,
6210 "Shader Disassembly Begin");
6211
6212 line = binary->disasm_string;
6213 while (*line) {
6214 p = util_strchrnul(line, '\n');
6215 count = p - line;
6216
6217 if (count) {
6218 pipe_debug_message(debug, SHADER_INFO,
6219 "%.*s", count, line);
6220 }
6221
6222 if (!*p)
6223 break;
6224 line = p + 1;
6225 }
6226
6227 pipe_debug_message(debug, SHADER_INFO,
6228 "Shader Disassembly End");
6229 }
6230 } else {
6231 fprintf(file, "Shader %s binary:\n", name);
6232 for (i = 0; i < binary->code_size; i += 4) {
6233 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
6234 binary->code[i + 3], binary->code[i + 2],
6235 binary->code[i + 1], binary->code[i]);
6236 }
6237 }
6238 }
6239
6240 static void si_shader_dump_stats(struct si_screen *sscreen,
6241 struct si_shader *shader,
6242 struct pipe_debug_callback *debug,
6243 unsigned processor,
6244 FILE *file,
6245 bool check_debug_option)
6246 {
6247 struct si_shader_config *conf = &shader->config;
6248 unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
6249 unsigned code_size = si_get_shader_binary_size(shader);
6250 unsigned lds_increment = sscreen->b.chip_class >= CIK ? 512 : 256;
6251 unsigned lds_per_wave = 0;
6252 unsigned max_simd_waves = 10;
6253
6254 /* Compute LDS usage for PS. */
6255 switch (processor) {
6256 case PIPE_SHADER_FRAGMENT:
6257 /* The minimum usage per wave is (num_inputs * 48). The maximum
6258 * usage is (num_inputs * 48 * 16).
6259 * We can get anything in between and it varies between waves.
6260 *
6261 * The 48 bytes per input for a single primitive is equal to
6262 * 4 bytes/component * 4 components/input * 3 points.
6263 *
6264 * Other stages don't know the size at compile time or don't
6265 * allocate LDS per wave, but instead they do it per thread group.
6266 */
6267 lds_per_wave = conf->lds_size * lds_increment +
6268 align(num_inputs * 48, lds_increment);
6269 break;
6270 case PIPE_SHADER_COMPUTE:
6271 if (shader->selector) {
6272 unsigned max_workgroup_size =
6273 si_get_max_workgroup_size(shader);
6274 lds_per_wave = (conf->lds_size * lds_increment) /
6275 DIV_ROUND_UP(max_workgroup_size, 64);
6276 }
6277 break;
6278 }
6279
6280 /* Compute the per-SIMD wave counts. */
6281 if (conf->num_sgprs) {
6282 if (sscreen->b.chip_class >= VI)
6283 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
6284 else
6285 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
6286 }
6287
6288 if (conf->num_vgprs)
6289 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
6290
6291 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
6292 * 16KB makes some SIMDs unoccupied). */
6293 if (lds_per_wave)
6294 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
6295
6296 if (!check_debug_option ||
6297 r600_can_dump_shader(&sscreen->b, processor)) {
6298 if (processor == PIPE_SHADER_FRAGMENT) {
6299 fprintf(file, "*** SHADER CONFIG ***\n"
6300 "SPI_PS_INPUT_ADDR = 0x%04x\n"
6301 "SPI_PS_INPUT_ENA = 0x%04x\n",
6302 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
6303 }
6304
6305 fprintf(file, "*** SHADER STATS ***\n"
6306 "SGPRS: %d\n"
6307 "VGPRS: %d\n"
6308 "Spilled SGPRs: %d\n"
6309 "Spilled VGPRs: %d\n"
6310 "Private memory VGPRs: %d\n"
6311 "Code Size: %d bytes\n"
6312 "LDS: %d blocks\n"
6313 "Scratch: %d bytes per wave\n"
6314 "Max Waves: %d\n"
6315 "********************\n\n\n",
6316 conf->num_sgprs, conf->num_vgprs,
6317 conf->spilled_sgprs, conf->spilled_vgprs,
6318 conf->private_mem_vgprs, code_size,
6319 conf->lds_size, conf->scratch_bytes_per_wave,
6320 max_simd_waves);
6321 }
6322
6323 pipe_debug_message(debug, SHADER_INFO,
6324 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
6325 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
6326 "Spilled VGPRs: %d PrivMem VGPRs: %d",
6327 conf->num_sgprs, conf->num_vgprs, code_size,
6328 conf->lds_size, conf->scratch_bytes_per_wave,
6329 max_simd_waves, conf->spilled_sgprs,
6330 conf->spilled_vgprs, conf->private_mem_vgprs);
6331 }
6332
6333 const char *si_get_shader_name(struct si_shader *shader, unsigned processor)
6334 {
6335 switch (processor) {
6336 case PIPE_SHADER_VERTEX:
6337 if (shader->key.as_es)
6338 return "Vertex Shader as ES";
6339 else if (shader->key.as_ls)
6340 return "Vertex Shader as LS";
6341 else
6342 return "Vertex Shader as VS";
6343 case PIPE_SHADER_TESS_CTRL:
6344 return "Tessellation Control Shader";
6345 case PIPE_SHADER_TESS_EVAL:
6346 if (shader->key.as_es)
6347 return "Tessellation Evaluation Shader as ES";
6348 else
6349 return "Tessellation Evaluation Shader as VS";
6350 case PIPE_SHADER_GEOMETRY:
6351 if (shader->is_gs_copy_shader)
6352 return "GS Copy Shader as VS";
6353 else
6354 return "Geometry Shader";
6355 case PIPE_SHADER_FRAGMENT:
6356 return "Pixel Shader";
6357 case PIPE_SHADER_COMPUTE:
6358 return "Compute Shader";
6359 default:
6360 return "Unknown Shader";
6361 }
6362 }
6363
6364 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
6365 struct pipe_debug_callback *debug, unsigned processor,
6366 FILE *file, bool check_debug_option)
6367 {
6368 if (!check_debug_option ||
6369 r600_can_dump_shader(&sscreen->b, processor))
6370 si_dump_shader_key(processor, &shader->key, file);
6371
6372 if (!check_debug_option && shader->binary.llvm_ir_string) {
6373 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
6374 si_get_shader_name(shader, processor));
6375 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
6376 }
6377
6378 if (!check_debug_option ||
6379 (r600_can_dump_shader(&sscreen->b, processor) &&
6380 !(sscreen->b.debug_flags & DBG_NO_ASM))) {
6381 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
6382
6383 if (shader->prolog)
6384 si_shader_dump_disassembly(&shader->prolog->binary,
6385 debug, "prolog", file);
6386
6387 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
6388
6389 if (shader->epilog)
6390 si_shader_dump_disassembly(&shader->epilog->binary,
6391 debug, "epilog", file);
6392 fprintf(file, "\n");
6393 }
6394
6395 si_shader_dump_stats(sscreen, shader, debug, processor, file,
6396 check_debug_option);
6397 }
6398
6399 int si_compile_llvm(struct si_screen *sscreen,
6400 struct ac_shader_binary *binary,
6401 struct si_shader_config *conf,
6402 LLVMTargetMachineRef tm,
6403 LLVMModuleRef mod,
6404 struct pipe_debug_callback *debug,
6405 unsigned processor,
6406 const char *name)
6407 {
6408 int r = 0;
6409 unsigned count = p_atomic_inc_return(&sscreen->b.num_compilations);
6410
6411 if (r600_can_dump_shader(&sscreen->b, processor)) {
6412 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
6413
6414 if (!(sscreen->b.debug_flags & (DBG_NO_IR | DBG_PREOPT_IR))) {
6415 fprintf(stderr, "%s LLVM IR:\n\n", name);
6416 ac_dump_module(mod);
6417 fprintf(stderr, "\n");
6418 }
6419 }
6420
6421 if (sscreen->record_llvm_ir) {
6422 char *ir = LLVMPrintModuleToString(mod);
6423 binary->llvm_ir_string = strdup(ir);
6424 LLVMDisposeMessage(ir);
6425 }
6426
6427 if (!si_replace_shader(count, binary)) {
6428 r = si_llvm_compile(mod, binary, tm, debug);
6429 if (r)
6430 return r;
6431 }
6432
6433 si_shader_binary_read_config(binary, conf, 0);
6434
6435 /* Enable 64-bit and 16-bit denormals, because there is no performance
6436 * cost.
6437 *
6438 * If denormals are enabled, all floating-point output modifiers are
6439 * ignored.
6440 *
6441 * Don't enable denormals for 32-bit floats, because:
6442 * - Floating-point output modifiers would be ignored by the hw.
6443 * - Some opcodes don't support denormals, such as v_mad_f32. We would
6444 * have to stop using those.
6445 * - SI & CI would be very slow.
6446 */
6447 conf->float_mode |= V_00B028_FP_64_DENORMS;
6448
6449 FREE(binary->config);
6450 FREE(binary->global_symbol_offsets);
6451 binary->config = NULL;
6452 binary->global_symbol_offsets = NULL;
6453
6454 /* Some shaders can't have rodata because their binaries can be
6455 * concatenated.
6456 */
6457 if (binary->rodata_size &&
6458 (processor == PIPE_SHADER_VERTEX ||
6459 processor == PIPE_SHADER_TESS_CTRL ||
6460 processor == PIPE_SHADER_TESS_EVAL ||
6461 processor == PIPE_SHADER_FRAGMENT)) {
6462 fprintf(stderr, "radeonsi: The shader can't have rodata.");
6463 return -EINVAL;
6464 }
6465
6466 return r;
6467 }
6468
6469 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
6470 {
6471 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6472 LLVMBuildRetVoid(ctx->gallivm.builder);
6473 else
6474 LLVMBuildRet(ctx->gallivm.builder, ret);
6475 }
6476
6477 /* Generate code for the hardware VS shader stage to go with a geometry shader */
6478 struct si_shader *
6479 si_generate_gs_copy_shader(struct si_screen *sscreen,
6480 LLVMTargetMachineRef tm,
6481 struct si_shader_selector *gs_selector,
6482 struct pipe_debug_callback *debug)
6483 {
6484 struct si_shader_context ctx;
6485 struct si_shader *shader;
6486 struct gallivm_state *gallivm = &ctx.gallivm;
6487 LLVMBuilderRef builder;
6488 struct lp_build_tgsi_context *bld_base = &ctx.bld_base;
6489 struct lp_build_context *uint = &bld_base->uint_bld;
6490 struct si_shader_output_values *outputs;
6491 struct tgsi_shader_info *gsinfo = &gs_selector->info;
6492 int i, r;
6493
6494 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
6495
6496 if (!outputs)
6497 return NULL;
6498
6499 shader = CALLOC_STRUCT(si_shader);
6500 if (!shader) {
6501 FREE(outputs);
6502 return NULL;
6503 }
6504
6505
6506 shader->selector = gs_selector;
6507 shader->is_gs_copy_shader = true;
6508
6509 si_init_shader_ctx(&ctx, sscreen, shader, tm);
6510 ctx.type = PIPE_SHADER_VERTEX;
6511
6512 builder = gallivm->builder;
6513
6514 create_function(&ctx);
6515 preload_ring_buffers(&ctx);
6516
6517 LLVMValueRef voffset =
6518 lp_build_mul_imm(uint, LLVMGetParam(ctx.main_fn,
6519 ctx.param_vertex_id), 4);
6520
6521 /* Fetch the vertex stream ID.*/
6522 LLVMValueRef stream_id;
6523
6524 if (gs_selector->so.num_outputs)
6525 stream_id = unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
6526 else
6527 stream_id = ctx.i32_0;
6528
6529 /* Fill in output information. */
6530 for (i = 0; i < gsinfo->num_outputs; ++i) {
6531 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
6532 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
6533
6534 for (int chan = 0; chan < 4; chan++) {
6535 outputs[i].vertex_stream[chan] =
6536 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
6537 }
6538 }
6539
6540 LLVMBasicBlockRef end_bb;
6541 LLVMValueRef switch_inst;
6542
6543 end_bb = LLVMAppendBasicBlockInContext(gallivm->context, ctx.main_fn, "end");
6544 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
6545
6546 for (int stream = 0; stream < 4; stream++) {
6547 LLVMBasicBlockRef bb;
6548 unsigned offset;
6549
6550 if (!gsinfo->num_stream_output_components[stream])
6551 continue;
6552
6553 if (stream > 0 && !gs_selector->so.num_outputs)
6554 continue;
6555
6556 bb = LLVMInsertBasicBlockInContext(gallivm->context, end_bb, "out");
6557 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
6558 LLVMPositionBuilderAtEnd(builder, bb);
6559
6560 /* Fetch vertex data from GSVS ring */
6561 offset = 0;
6562 for (i = 0; i < gsinfo->num_outputs; ++i) {
6563 for (unsigned chan = 0; chan < 4; chan++) {
6564 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
6565 outputs[i].vertex_stream[chan] != stream) {
6566 outputs[i].values[chan] = ctx.bld_base.base.undef;
6567 continue;
6568 }
6569
6570 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
6571 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
6572 offset++;
6573
6574 outputs[i].values[chan] =
6575 ac_build_buffer_load(&ctx.ac,
6576 ctx.gsvs_ring[0], 1,
6577 ctx.i32_0, voffset,
6578 soffset, 0, 1, 1, true);
6579 }
6580 }
6581
6582 /* Streamout and exports. */
6583 if (gs_selector->so.num_outputs) {
6584 si_llvm_emit_streamout(&ctx, outputs,
6585 gsinfo->num_outputs,
6586 stream);
6587 }
6588
6589 if (stream == 0)
6590 si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
6591
6592 LLVMBuildBr(builder, end_bb);
6593 }
6594
6595 LLVMPositionBuilderAtEnd(builder, end_bb);
6596
6597 LLVMBuildRetVoid(gallivm->builder);
6598
6599 /* Dump LLVM IR before any optimization passes */
6600 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
6601 r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6602 ac_dump_module(ctx.gallivm.module);
6603
6604 si_llvm_finalize_module(&ctx,
6605 r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_GEOMETRY));
6606
6607 r = si_compile_llvm(sscreen, &ctx.shader->binary,
6608 &ctx.shader->config, ctx.tm,
6609 ctx.gallivm.module,
6610 debug, PIPE_SHADER_GEOMETRY,
6611 "GS Copy Shader");
6612 if (!r) {
6613 if (r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6614 fprintf(stderr, "GS Copy Shader:\n");
6615 si_shader_dump(sscreen, ctx.shader, debug,
6616 PIPE_SHADER_GEOMETRY, stderr, true);
6617 r = si_shader_binary_upload(sscreen, ctx.shader);
6618 }
6619
6620 si_llvm_dispose(&ctx);
6621
6622 FREE(outputs);
6623
6624 if (r != 0) {
6625 FREE(shader);
6626 shader = NULL;
6627 }
6628 return shader;
6629 }
6630
6631 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
6632 FILE *f)
6633 {
6634 int i;
6635
6636 fprintf(f, "SHADER KEY\n");
6637
6638 switch (shader) {
6639 case PIPE_SHADER_VERTEX:
6640 fprintf(f, " part.vs.prolog.instance_divisors = {");
6641 for (i = 0; i < ARRAY_SIZE(key->part.vs.prolog.instance_divisors); i++)
6642 fprintf(f, !i ? "%u" : ", %u",
6643 key->part.vs.prolog.instance_divisors[i]);
6644 fprintf(f, "}\n");
6645 fprintf(f, " part.vs.epilog.export_prim_id = %u\n", key->part.vs.epilog.export_prim_id);
6646 fprintf(f, " as_es = %u\n", key->as_es);
6647 fprintf(f, " as_ls = %u\n", key->as_ls);
6648
6649 fprintf(f, " mono.vs.fix_fetch = {");
6650 for (i = 0; i < SI_MAX_ATTRIBS; i++)
6651 fprintf(f, !i ? "%u" : ", %u", key->mono.vs.fix_fetch[i]);
6652 fprintf(f, "}\n");
6653 break;
6654
6655 case PIPE_SHADER_TESS_CTRL:
6656 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
6657 fprintf(f, " mono.tcs.inputs_to_copy = 0x%"PRIx64"\n", key->mono.tcs.inputs_to_copy);
6658 break;
6659
6660 case PIPE_SHADER_TESS_EVAL:
6661 fprintf(f, " part.tes.epilog.export_prim_id = %u\n", key->part.tes.epilog.export_prim_id);
6662 fprintf(f, " as_es = %u\n", key->as_es);
6663 break;
6664
6665 case PIPE_SHADER_GEOMETRY:
6666 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
6667 break;
6668
6669 case PIPE_SHADER_COMPUTE:
6670 break;
6671
6672 case PIPE_SHADER_FRAGMENT:
6673 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
6674 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
6675 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
6676 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
6677 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
6678 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
6679 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
6680 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
6681 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
6682 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
6683 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
6684 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
6685 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
6686 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
6687 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
6688 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
6689 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
6690 break;
6691
6692 default:
6693 assert(0);
6694 }
6695
6696 if ((shader == PIPE_SHADER_GEOMETRY ||
6697 shader == PIPE_SHADER_TESS_EVAL ||
6698 shader == PIPE_SHADER_VERTEX) &&
6699 !key->as_es && !key->as_ls) {
6700 fprintf(f, " opt.hw_vs.kill_outputs = 0x%"PRIx64"\n", key->opt.hw_vs.kill_outputs);
6701 fprintf(f, " opt.hw_vs.kill_outputs2 = 0x%x\n", key->opt.hw_vs.kill_outputs2);
6702 fprintf(f, " opt.hw_vs.clip_disable = %u\n", key->opt.hw_vs.clip_disable);
6703 }
6704 }
6705
6706 static void si_init_shader_ctx(struct si_shader_context *ctx,
6707 struct si_screen *sscreen,
6708 struct si_shader *shader,
6709 LLVMTargetMachineRef tm)
6710 {
6711 struct lp_build_tgsi_context *bld_base;
6712 struct lp_build_tgsi_action tmpl = {};
6713
6714 si_llvm_context_init(ctx, sscreen, shader, tm,
6715 (shader && shader->selector) ? &shader->selector->info : NULL,
6716 (shader && shader->selector) ? shader->selector->tokens : NULL);
6717
6718 bld_base = &ctx->bld_base;
6719 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
6720
6721 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
6722 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
6723 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
6724
6725 bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
6726 bld_base->op_actions[TGSI_OPCODE_TEX_LZ] = tex_action;
6727 bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
6728 bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
6729 bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
6730 bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
6731 bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
6732 bld_base->op_actions[TGSI_OPCODE_TXF_LZ] = tex_action;
6733 bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
6734 bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
6735 bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
6736 bld_base->op_actions[TGSI_OPCODE_TXQ].fetch_args = txq_fetch_args;
6737 bld_base->op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
6738 bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
6739 bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
6740 bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
6741
6742 bld_base->op_actions[TGSI_OPCODE_LOAD].fetch_args = load_fetch_args;
6743 bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
6744 bld_base->op_actions[TGSI_OPCODE_STORE].fetch_args = store_fetch_args;
6745 bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
6746 bld_base->op_actions[TGSI_OPCODE_RESQ].fetch_args = resq_fetch_args;
6747 bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
6748
6749 tmpl.fetch_args = atomic_fetch_args;
6750 tmpl.emit = atomic_emit;
6751 bld_base->op_actions[TGSI_OPCODE_ATOMUADD] = tmpl;
6752 bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
6753 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG] = tmpl;
6754 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
6755 bld_base->op_actions[TGSI_OPCODE_ATOMCAS] = tmpl;
6756 bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
6757 bld_base->op_actions[TGSI_OPCODE_ATOMAND] = tmpl;
6758 bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
6759 bld_base->op_actions[TGSI_OPCODE_ATOMOR] = tmpl;
6760 bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
6761 bld_base->op_actions[TGSI_OPCODE_ATOMXOR] = tmpl;
6762 bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
6763 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN] = tmpl;
6764 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
6765 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX] = tmpl;
6766 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
6767 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN] = tmpl;
6768 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
6769 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX] = tmpl;
6770 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
6771
6772 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
6773
6774 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
6775
6776 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
6777 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
6778 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
6779 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
6780
6781 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
6782 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
6783 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
6784 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
6785 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
6786 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
6787 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6788 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
6789 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6790
6791 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
6792 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
6793 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6794 }
6795
6796 #define EXP_TARGET (HAVE_LLVM >= 0x0500 ? 0 : 3)
6797 #define EXP_OUT0 (HAVE_LLVM >= 0x0500 ? 2 : 5)
6798
6799 /* Return true if the PARAM export has been eliminated. */
6800 static bool si_eliminate_const_output(struct si_shader_context *ctx,
6801 LLVMValueRef inst, unsigned offset)
6802 {
6803 struct si_shader *shader = ctx->shader;
6804 unsigned num_outputs = shader->selector->info.num_outputs;
6805 unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
6806 bool is_zero[4] = {}, is_one[4] = {};
6807
6808 for (i = 0; i < 4; i++) {
6809 LLVMBool loses_info;
6810 LLVMValueRef p = LLVMGetOperand(inst, EXP_OUT0 + i);
6811
6812 /* It's a constant expression. Undef outputs are eliminated too. */
6813 if (LLVMIsUndef(p)) {
6814 is_zero[i] = true;
6815 is_one[i] = true;
6816 } else if (LLVMIsAConstantFP(p)) {
6817 double a = LLVMConstRealGetDouble(p, &loses_info);
6818
6819 if (a == 0)
6820 is_zero[i] = true;
6821 else if (a == 1)
6822 is_one[i] = true;
6823 else
6824 return false; /* other constant */
6825 } else
6826 return false;
6827 }
6828
6829 /* Only certain combinations of 0 and 1 can be eliminated. */
6830 if (is_zero[0] && is_zero[1] && is_zero[2])
6831 default_val = is_zero[3] ? 0 : 1;
6832 else if (is_one[0] && is_one[1] && is_one[2])
6833 default_val = is_zero[3] ? 2 : 3;
6834 else
6835 return false;
6836
6837 /* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
6838 LLVMInstructionEraseFromParent(inst);
6839
6840 /* Change OFFSET to DEFAULT_VAL. */
6841 for (i = 0; i < num_outputs; i++) {
6842 if (shader->info.vs_output_param_offset[i] == offset) {
6843 shader->info.vs_output_param_offset[i] =
6844 EXP_PARAM_DEFAULT_VAL_0000 + default_val;
6845 break;
6846 }
6847 }
6848 return true;
6849 }
6850
6851 struct si_vs_exports {
6852 unsigned num;
6853 unsigned offset[SI_MAX_VS_OUTPUTS];
6854 LLVMValueRef inst[SI_MAX_VS_OUTPUTS];
6855 };
6856
6857 static void si_eliminate_const_vs_outputs(struct si_shader_context *ctx)
6858 {
6859 struct si_shader *shader = ctx->shader;
6860 struct tgsi_shader_info *info = &shader->selector->info;
6861 LLVMBasicBlockRef bb;
6862 struct si_vs_exports exports;
6863 bool removed_any = false;
6864
6865 exports.num = 0;
6866
6867 if (ctx->type == PIPE_SHADER_FRAGMENT ||
6868 ctx->type == PIPE_SHADER_COMPUTE ||
6869 shader->key.as_es ||
6870 shader->key.as_ls)
6871 return;
6872
6873 /* Process all LLVM instructions. */
6874 bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6875 while (bb) {
6876 LLVMValueRef inst = LLVMGetFirstInstruction(bb);
6877
6878 while (inst) {
6879 LLVMValueRef cur = inst;
6880 inst = LLVMGetNextInstruction(inst);
6881
6882 if (LLVMGetInstructionOpcode(cur) != LLVMCall)
6883 continue;
6884
6885 LLVMValueRef callee = lp_get_called_value(cur);
6886
6887 if (!lp_is_function(callee))
6888 continue;
6889
6890 const char *name = LLVMGetValueName(callee);
6891 unsigned num_args = LLVMCountParams(callee);
6892
6893 /* Check if this is an export instruction. */
6894 if ((num_args != 9 && num_args != 8) ||
6895 (strcmp(name, "llvm.SI.export") &&
6896 strcmp(name, "llvm.amdgcn.exp.f32")))
6897 continue;
6898
6899 LLVMValueRef arg = LLVMGetOperand(cur, EXP_TARGET);
6900 unsigned target = LLVMConstIntGetZExtValue(arg);
6901
6902 if (target < V_008DFC_SQ_EXP_PARAM)
6903 continue;
6904
6905 target -= V_008DFC_SQ_EXP_PARAM;
6906
6907 /* Eliminate constant value PARAM exports. */
6908 if (si_eliminate_const_output(ctx, cur, target)) {
6909 removed_any = true;
6910 } else {
6911 exports.offset[exports.num] = target;
6912 exports.inst[exports.num] = cur;
6913 exports.num++;
6914 }
6915 }
6916 bb = LLVMGetNextBasicBlock(bb);
6917 }
6918
6919 /* Remove holes in export memory due to removed PARAM exports.
6920 * This is done by renumbering all PARAM exports.
6921 */
6922 if (removed_any) {
6923 ubyte current_offset[SI_MAX_VS_OUTPUTS];
6924 unsigned new_count = 0;
6925 unsigned out, i;
6926
6927 /* Make a copy of the offsets. We need the old version while
6928 * we are modifying some of them. */
6929 assert(sizeof(current_offset) ==
6930 sizeof(shader->info.vs_output_param_offset));
6931 memcpy(current_offset, shader->info.vs_output_param_offset,
6932 sizeof(current_offset));
6933
6934 for (i = 0; i < exports.num; i++) {
6935 unsigned offset = exports.offset[i];
6936
6937 for (out = 0; out < info->num_outputs; out++) {
6938 if (current_offset[out] != offset)
6939 continue;
6940
6941 LLVMSetOperand(exports.inst[i], EXP_TARGET,
6942 LLVMConstInt(ctx->i32,
6943 V_008DFC_SQ_EXP_PARAM + new_count, 0));
6944 shader->info.vs_output_param_offset[out] = new_count;
6945 new_count++;
6946 break;
6947 }
6948 }
6949 shader->info.nr_param_exports = new_count;
6950 }
6951 }
6952
6953 static void si_count_scratch_private_memory(struct si_shader_context *ctx)
6954 {
6955 ctx->shader->config.private_mem_vgprs = 0;
6956
6957 /* Process all LLVM instructions. */
6958 LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6959 while (bb) {
6960 LLVMValueRef next = LLVMGetFirstInstruction(bb);
6961
6962 while (next) {
6963 LLVMValueRef inst = next;
6964 next = LLVMGetNextInstruction(next);
6965
6966 if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
6967 continue;
6968
6969 LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
6970 /* No idea why LLVM aligns allocas to 4 elements. */
6971 unsigned alignment = LLVMGetAlignment(inst);
6972 unsigned dw_size = align(llvm_get_type_size(type) / 4, alignment);
6973 ctx->shader->config.private_mem_vgprs += dw_size;
6974 }
6975 bb = LLVMGetNextBasicBlock(bb);
6976 }
6977 }
6978
6979 static bool si_compile_tgsi_main(struct si_shader_context *ctx,
6980 struct si_shader *shader)
6981 {
6982 struct si_shader_selector *sel = shader->selector;
6983 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6984
6985 switch (ctx->type) {
6986 case PIPE_SHADER_VERTEX:
6987 ctx->load_input = declare_input_vs;
6988 if (shader->key.as_ls)
6989 bld_base->emit_epilogue = si_llvm_emit_ls_epilogue;
6990 else if (shader->key.as_es)
6991 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
6992 else
6993 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
6994 break;
6995 case PIPE_SHADER_TESS_CTRL:
6996 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6997 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6998 bld_base->emit_store = store_output_tcs;
6999 bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue;
7000 break;
7001 case PIPE_SHADER_TESS_EVAL:
7002 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
7003 if (shader->key.as_es)
7004 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
7005 else
7006 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
7007 break;
7008 case PIPE_SHADER_GEOMETRY:
7009 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
7010 bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
7011 break;
7012 case PIPE_SHADER_FRAGMENT:
7013 ctx->load_input = declare_input_fs;
7014 bld_base->emit_epilogue = si_llvm_return_fs_outputs;
7015 break;
7016 case PIPE_SHADER_COMPUTE:
7017 ctx->declare_memory_region = declare_compute_memory;
7018 break;
7019 default:
7020 assert(!"Unsupported shader type");
7021 return false;
7022 }
7023
7024 create_function(ctx);
7025 preload_ring_buffers(ctx);
7026
7027 if (ctx->type == PIPE_SHADER_GEOMETRY) {
7028 int i;
7029 for (i = 0; i < 4; i++) {
7030 ctx->gs_next_vertex[i] =
7031 lp_build_alloca(&ctx->gallivm,
7032 ctx->i32, "");
7033 }
7034 }
7035
7036 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
7037 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
7038 return false;
7039 }
7040
7041 si_llvm_build_ret(ctx, ctx->return_value);
7042 return true;
7043 }
7044
7045 /**
7046 * Compute the VS prolog key, which contains all the information needed to
7047 * build the VS prolog function, and set shader->info bits where needed.
7048 */
7049 static void si_get_vs_prolog_key(struct si_shader *shader,
7050 union si_shader_part_key *key)
7051 {
7052 struct tgsi_shader_info *info = &shader->selector->info;
7053
7054 memset(key, 0, sizeof(*key));
7055 key->vs_prolog.states = shader->key.part.vs.prolog;
7056 key->vs_prolog.num_input_sgprs = shader->info.num_input_sgprs;
7057 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
7058
7059 /* Set the instanceID flag. */
7060 for (unsigned i = 0; i < info->num_inputs; i++)
7061 if (key->vs_prolog.states.instance_divisors[i])
7062 shader->info.uses_instanceid = true;
7063 }
7064
7065 /**
7066 * Compute the VS epilog key, which contains all the information needed to
7067 * build the VS epilog function, and set the PrimitiveID output offset.
7068 */
7069 static void si_get_vs_epilog_key(struct si_shader *shader,
7070 struct si_vs_epilog_bits *states,
7071 union si_shader_part_key *key)
7072 {
7073 memset(key, 0, sizeof(*key));
7074 key->vs_epilog.states = *states;
7075
7076 /* Set up the PrimitiveID output. */
7077 if (shader->key.part.vs.epilog.export_prim_id) {
7078 unsigned index = shader->selector->info.num_outputs;
7079 unsigned offset = shader->info.nr_param_exports++;
7080
7081 key->vs_epilog.prim_id_param_offset = offset;
7082 assert(index < ARRAY_SIZE(shader->info.vs_output_param_offset));
7083 shader->info.vs_output_param_offset[index] = offset;
7084 }
7085 }
7086
7087 /**
7088 * Compute the PS prolog key, which contains all the information needed to
7089 * build the PS prolog function, and set related bits in shader->config.
7090 */
7091 static void si_get_ps_prolog_key(struct si_shader *shader,
7092 union si_shader_part_key *key,
7093 bool separate_prolog)
7094 {
7095 struct tgsi_shader_info *info = &shader->selector->info;
7096
7097 memset(key, 0, sizeof(*key));
7098 key->ps_prolog.states = shader->key.part.ps.prolog;
7099 key->ps_prolog.colors_read = info->colors_read;
7100 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
7101 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
7102 key->ps_prolog.wqm = info->uses_derivatives &&
7103 (key->ps_prolog.colors_read ||
7104 key->ps_prolog.states.force_persp_sample_interp ||
7105 key->ps_prolog.states.force_linear_sample_interp ||
7106 key->ps_prolog.states.force_persp_center_interp ||
7107 key->ps_prolog.states.force_linear_center_interp ||
7108 key->ps_prolog.states.bc_optimize_for_persp ||
7109 key->ps_prolog.states.bc_optimize_for_linear);
7110
7111 if (info->colors_read) {
7112 unsigned *color = shader->selector->color_attr_index;
7113
7114 if (shader->key.part.ps.prolog.color_two_side) {
7115 /* BCOLORs are stored after the last input. */
7116 key->ps_prolog.num_interp_inputs = info->num_inputs;
7117 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
7118 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
7119 }
7120
7121 for (unsigned i = 0; i < 2; i++) {
7122 unsigned interp = info->input_interpolate[color[i]];
7123 unsigned location = info->input_interpolate_loc[color[i]];
7124
7125 if (!(info->colors_read & (0xf << i*4)))
7126 continue;
7127
7128 key->ps_prolog.color_attr_index[i] = color[i];
7129
7130 if (shader->key.part.ps.prolog.flatshade_colors &&
7131 interp == TGSI_INTERPOLATE_COLOR)
7132 interp = TGSI_INTERPOLATE_CONSTANT;
7133
7134 switch (interp) {
7135 case TGSI_INTERPOLATE_CONSTANT:
7136 key->ps_prolog.color_interp_vgpr_index[i] = -1;
7137 break;
7138 case TGSI_INTERPOLATE_PERSPECTIVE:
7139 case TGSI_INTERPOLATE_COLOR:
7140 /* Force the interpolation location for colors here. */
7141 if (shader->key.part.ps.prolog.force_persp_sample_interp)
7142 location = TGSI_INTERPOLATE_LOC_SAMPLE;
7143 if (shader->key.part.ps.prolog.force_persp_center_interp)
7144 location = TGSI_INTERPOLATE_LOC_CENTER;
7145
7146 switch (location) {
7147 case TGSI_INTERPOLATE_LOC_SAMPLE:
7148 key->ps_prolog.color_interp_vgpr_index[i] = 0;
7149 shader->config.spi_ps_input_ena |=
7150 S_0286CC_PERSP_SAMPLE_ENA(1);
7151 break;
7152 case TGSI_INTERPOLATE_LOC_CENTER:
7153 key->ps_prolog.color_interp_vgpr_index[i] = 2;
7154 shader->config.spi_ps_input_ena |=
7155 S_0286CC_PERSP_CENTER_ENA(1);
7156 break;
7157 case TGSI_INTERPOLATE_LOC_CENTROID:
7158 key->ps_prolog.color_interp_vgpr_index[i] = 4;
7159 shader->config.spi_ps_input_ena |=
7160 S_0286CC_PERSP_CENTROID_ENA(1);
7161 break;
7162 default:
7163 assert(0);
7164 }
7165 break;
7166 case TGSI_INTERPOLATE_LINEAR:
7167 /* Force the interpolation location for colors here. */
7168 if (shader->key.part.ps.prolog.force_linear_sample_interp)
7169 location = TGSI_INTERPOLATE_LOC_SAMPLE;
7170 if (shader->key.part.ps.prolog.force_linear_center_interp)
7171 location = TGSI_INTERPOLATE_LOC_CENTER;
7172
7173 /* The VGPR assignment for non-monolithic shaders
7174 * works because InitialPSInputAddr is set on the
7175 * main shader and PERSP_PULL_MODEL is never used.
7176 */
7177 switch (location) {
7178 case TGSI_INTERPOLATE_LOC_SAMPLE:
7179 key->ps_prolog.color_interp_vgpr_index[i] =
7180 separate_prolog ? 6 : 9;
7181 shader->config.spi_ps_input_ena |=
7182 S_0286CC_LINEAR_SAMPLE_ENA(1);
7183 break;
7184 case TGSI_INTERPOLATE_LOC_CENTER:
7185 key->ps_prolog.color_interp_vgpr_index[i] =
7186 separate_prolog ? 8 : 11;
7187 shader->config.spi_ps_input_ena |=
7188 S_0286CC_LINEAR_CENTER_ENA(1);
7189 break;
7190 case TGSI_INTERPOLATE_LOC_CENTROID:
7191 key->ps_prolog.color_interp_vgpr_index[i] =
7192 separate_prolog ? 10 : 13;
7193 shader->config.spi_ps_input_ena |=
7194 S_0286CC_LINEAR_CENTROID_ENA(1);
7195 break;
7196 default:
7197 assert(0);
7198 }
7199 break;
7200 default:
7201 assert(0);
7202 }
7203 }
7204 }
7205 }
7206
7207 /**
7208 * Check whether a PS prolog is required based on the key.
7209 */
7210 static bool si_need_ps_prolog(const union si_shader_part_key *key)
7211 {
7212 return key->ps_prolog.colors_read ||
7213 key->ps_prolog.states.force_persp_sample_interp ||
7214 key->ps_prolog.states.force_linear_sample_interp ||
7215 key->ps_prolog.states.force_persp_center_interp ||
7216 key->ps_prolog.states.force_linear_center_interp ||
7217 key->ps_prolog.states.bc_optimize_for_persp ||
7218 key->ps_prolog.states.bc_optimize_for_linear ||
7219 key->ps_prolog.states.poly_stipple;
7220 }
7221
7222 /**
7223 * Compute the PS epilog key, which contains all the information needed to
7224 * build the PS epilog function.
7225 */
7226 static void si_get_ps_epilog_key(struct si_shader *shader,
7227 union si_shader_part_key *key)
7228 {
7229 struct tgsi_shader_info *info = &shader->selector->info;
7230 memset(key, 0, sizeof(*key));
7231 key->ps_epilog.colors_written = info->colors_written;
7232 key->ps_epilog.writes_z = info->writes_z;
7233 key->ps_epilog.writes_stencil = info->writes_stencil;
7234 key->ps_epilog.writes_samplemask = info->writes_samplemask;
7235 key->ps_epilog.states = shader->key.part.ps.epilog;
7236 }
7237
7238 /**
7239 * Build the GS prolog function. Rotate the input vertices for triangle strips
7240 * with adjacency.
7241 */
7242 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
7243 union si_shader_part_key *key)
7244 {
7245 const unsigned num_sgprs = SI_GS_NUM_USER_SGPR + 2;
7246 const unsigned num_vgprs = 8;
7247 struct gallivm_state *gallivm = &ctx->gallivm;
7248 LLVMBuilderRef builder = gallivm->builder;
7249 LLVMTypeRef params[32];
7250 LLVMTypeRef returns[32];
7251 LLVMValueRef func, ret;
7252
7253 for (unsigned i = 0; i < num_sgprs; ++i) {
7254 params[i] = ctx->i32;
7255 returns[i] = ctx->i32;
7256 }
7257
7258 for (unsigned i = 0; i < num_vgprs; ++i) {
7259 params[num_sgprs + i] = ctx->i32;
7260 returns[num_sgprs + i] = ctx->f32;
7261 }
7262
7263 /* Create the function. */
7264 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
7265 params, num_sgprs + num_vgprs, num_sgprs - 1);
7266 func = ctx->main_fn;
7267
7268 /* Copy inputs to outputs. This should be no-op, as the registers match,
7269 * but it will prevent the compiler from overwriting them unintentionally.
7270 */
7271 ret = ctx->return_value;
7272 for (unsigned i = 0; i < num_sgprs; i++) {
7273 LLVMValueRef p = LLVMGetParam(func, i);
7274 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
7275 }
7276 for (unsigned i = 0; i < num_vgprs; i++) {
7277 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
7278 p = LLVMBuildBitCast(builder, p, ctx->f32, "");
7279 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
7280 }
7281
7282 if (key->gs_prolog.states.tri_strip_adj_fix) {
7283 /* Remap the input vertices for every other primitive. */
7284 const unsigned vtx_params[6] = {
7285 num_sgprs,
7286 num_sgprs + 1,
7287 num_sgprs + 3,
7288 num_sgprs + 4,
7289 num_sgprs + 5,
7290 num_sgprs + 6
7291 };
7292 LLVMValueRef prim_id, rotate;
7293
7294 prim_id = LLVMGetParam(func, num_sgprs + 2);
7295 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
7296
7297 for (unsigned i = 0; i < 6; ++i) {
7298 LLVMValueRef base, rotated, actual;
7299 base = LLVMGetParam(func, vtx_params[i]);
7300 rotated = LLVMGetParam(func, vtx_params[(i + 4) % 6]);
7301 actual = LLVMBuildSelect(builder, rotate, rotated, base, "");
7302 actual = LLVMBuildBitCast(builder, actual, ctx->f32, "");
7303 ret = LLVMBuildInsertValue(builder, ret, actual, vtx_params[i], "");
7304 }
7305 }
7306
7307 LLVMBuildRet(builder, ret);
7308 }
7309
7310 /**
7311 * Given a list of shader part functions, build a wrapper function that
7312 * runs them in sequence to form a monolithic shader.
7313 */
7314 static void si_build_wrapper_function(struct si_shader_context *ctx,
7315 LLVMValueRef *parts,
7316 unsigned num_parts,
7317 unsigned main_part)
7318 {
7319 struct gallivm_state *gallivm = &ctx->gallivm;
7320 LLVMBuilderRef builder = ctx->gallivm.builder;
7321 /* PS epilog has one arg per color component */
7322 LLVMTypeRef param_types[48];
7323 LLVMValueRef out[48];
7324 LLVMTypeRef function_type;
7325 unsigned num_params;
7326 unsigned num_out;
7327 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
7328 unsigned num_sgprs, num_vgprs;
7329 unsigned last_sgpr_param;
7330 unsigned gprs;
7331
7332 for (unsigned i = 0; i < num_parts; ++i) {
7333 lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
7334 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
7335 }
7336
7337 /* The parameters of the wrapper function correspond to those of the
7338 * first part in terms of SGPRs and VGPRs, but we use the types of the
7339 * main part to get the right types. This is relevant for the
7340 * dereferenceable attribute on descriptor table pointers.
7341 */
7342 num_sgprs = 0;
7343 num_vgprs = 0;
7344
7345 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
7346 num_params = LLVMCountParamTypes(function_type);
7347
7348 for (unsigned i = 0; i < num_params; ++i) {
7349 LLVMValueRef param = LLVMGetParam(parts[0], i);
7350
7351 if (ac_is_sgpr_param(param)) {
7352 assert(num_vgprs == 0);
7353 num_sgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7354 } else {
7355 num_vgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7356 }
7357 }
7358 assert(num_vgprs + num_sgprs <= ARRAY_SIZE(param_types));
7359
7360 num_params = 0;
7361 last_sgpr_param = 0;
7362 gprs = 0;
7363 while (gprs < num_sgprs + num_vgprs) {
7364 LLVMValueRef param = LLVMGetParam(parts[main_part], num_params);
7365 unsigned size;
7366
7367 param_types[num_params] = LLVMTypeOf(param);
7368 if (gprs < num_sgprs)
7369 last_sgpr_param = num_params;
7370 size = llvm_get_type_size(param_types[num_params]) / 4;
7371 num_params++;
7372
7373 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
7374 assert(gprs + size <= num_sgprs + num_vgprs &&
7375 (gprs >= num_sgprs || gprs + size <= num_sgprs));
7376
7377 gprs += size;
7378 }
7379
7380 si_create_function(ctx, "wrapper", NULL, 0, param_types, num_params, last_sgpr_param);
7381
7382 /* Record the arguments of the function as if they were an output of
7383 * a previous part.
7384 */
7385 num_out = 0;
7386 num_out_sgpr = 0;
7387
7388 for (unsigned i = 0; i < num_params; ++i) {
7389 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
7390 LLVMTypeRef param_type = LLVMTypeOf(param);
7391 LLVMTypeRef out_type = i <= last_sgpr_param ? ctx->i32 : ctx->f32;
7392 unsigned size = llvm_get_type_size(param_type) / 4;
7393
7394 if (size == 1) {
7395 if (param_type != out_type)
7396 param = LLVMBuildBitCast(builder, param, out_type, "");
7397 out[num_out++] = param;
7398 } else {
7399 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
7400
7401 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7402 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
7403 param_type = ctx->i64;
7404 }
7405
7406 if (param_type != vector_type)
7407 param = LLVMBuildBitCast(builder, param, vector_type, "");
7408
7409 for (unsigned j = 0; j < size; ++j)
7410 out[num_out++] = LLVMBuildExtractElement(
7411 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
7412 }
7413
7414 if (i <= last_sgpr_param)
7415 num_out_sgpr = num_out;
7416 }
7417
7418 /* Now chain the parts. */
7419 for (unsigned part = 0; part < num_parts; ++part) {
7420 LLVMValueRef in[48];
7421 LLVMValueRef ret;
7422 LLVMTypeRef ret_type;
7423 unsigned out_idx = 0;
7424
7425 num_params = LLVMCountParams(parts[part]);
7426 assert(num_params <= ARRAY_SIZE(param_types));
7427
7428 /* Derive arguments for the next part from outputs of the
7429 * previous one.
7430 */
7431 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
7432 LLVMValueRef param;
7433 LLVMTypeRef param_type;
7434 bool is_sgpr;
7435 unsigned param_size;
7436 LLVMValueRef arg = NULL;
7437
7438 param = LLVMGetParam(parts[part], param_idx);
7439 param_type = LLVMTypeOf(param);
7440 param_size = llvm_get_type_size(param_type) / 4;
7441 is_sgpr = ac_is_sgpr_param(param);
7442
7443 if (is_sgpr) {
7444 #if HAVE_LLVM < 0x0400
7445 LLVMRemoveAttribute(param, LLVMByValAttribute);
7446 #else
7447 unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
7448 LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
7449 #endif
7450 lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
7451 }
7452
7453 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
7454 assert(is_sgpr || out_idx >= num_out_sgpr);
7455
7456 if (param_size == 1)
7457 arg = out[out_idx];
7458 else
7459 arg = lp_build_gather_values(gallivm, &out[out_idx], param_size);
7460
7461 if (LLVMTypeOf(arg) != param_type) {
7462 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7463 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
7464 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
7465 } else {
7466 arg = LLVMBuildBitCast(builder, arg, param_type, "");
7467 }
7468 }
7469
7470 in[param_idx] = arg;
7471 out_idx += param_size;
7472 }
7473
7474 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
7475 ret_type = LLVMTypeOf(ret);
7476
7477 /* Extract the returned GPRs. */
7478 num_out = 0;
7479 num_out_sgpr = 0;
7480
7481 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
7482 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
7483
7484 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
7485
7486 for (unsigned i = 0; i < ret_size; ++i) {
7487 LLVMValueRef val =
7488 LLVMBuildExtractValue(builder, ret, i, "");
7489
7490 out[num_out++] = val;
7491
7492 if (LLVMTypeOf(val) == ctx->i32) {
7493 assert(num_out_sgpr + 1 == num_out);
7494 num_out_sgpr = num_out;
7495 }
7496 }
7497 }
7498 }
7499
7500 LLVMBuildRetVoid(builder);
7501 }
7502
7503 int si_compile_tgsi_shader(struct si_screen *sscreen,
7504 LLVMTargetMachineRef tm,
7505 struct si_shader *shader,
7506 bool is_monolithic,
7507 struct pipe_debug_callback *debug)
7508 {
7509 struct si_shader_selector *sel = shader->selector;
7510 struct si_shader_context ctx;
7511 LLVMModuleRef mod;
7512 int r = -1;
7513
7514 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
7515 * conversion fails. */
7516 if (r600_can_dump_shader(&sscreen->b, sel->info.processor) &&
7517 !(sscreen->b.debug_flags & DBG_NO_TGSI)) {
7518 tgsi_dump(sel->tokens, 0);
7519 si_dump_streamout(&sel->so);
7520 }
7521
7522 si_init_shader_ctx(&ctx, sscreen, shader, tm);
7523 ctx.separate_prolog = !is_monolithic;
7524
7525 memset(shader->info.vs_output_param_offset, EXP_PARAM_UNDEFINED,
7526 sizeof(shader->info.vs_output_param_offset));
7527
7528 shader->info.uses_instanceid = sel->info.uses_instanceid;
7529
7530 ctx.load_system_value = declare_system_value;
7531
7532 if (!si_compile_tgsi_main(&ctx, shader)) {
7533 si_llvm_dispose(&ctx);
7534 return -1;
7535 }
7536
7537 if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
7538 LLVMValueRef parts[3];
7539 bool need_prolog;
7540 bool need_epilog;
7541
7542 need_prolog = sel->info.num_inputs;
7543 need_epilog = !shader->key.as_es && !shader->key.as_ls;
7544
7545 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7546
7547 if (need_prolog) {
7548 union si_shader_part_key prolog_key;
7549 si_get_vs_prolog_key(shader, &prolog_key);
7550 si_build_vs_prolog_function(&ctx, &prolog_key);
7551 parts[0] = ctx.main_fn;
7552 }
7553
7554 if (need_epilog) {
7555 union si_shader_part_key epilog_key;
7556 si_get_vs_epilog_key(shader, &shader->key.part.vs.epilog, &epilog_key);
7557 si_build_vs_epilog_function(&ctx, &epilog_key);
7558 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7559 }
7560
7561 si_build_wrapper_function(&ctx, parts, 1 + need_prolog + need_epilog,
7562 need_prolog ? 1 : 0);
7563 } else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
7564 LLVMValueRef parts[2];
7565 union si_shader_part_key epilog_key;
7566
7567 parts[0] = ctx.main_fn;
7568
7569 memset(&epilog_key, 0, sizeof(epilog_key));
7570 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7571 si_build_tcs_epilog_function(&ctx, &epilog_key);
7572 parts[1] = ctx.main_fn;
7573
7574 si_build_wrapper_function(&ctx, parts, 2, 0);
7575 } else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_EVAL &&
7576 !shader->key.as_es) {
7577 LLVMValueRef parts[2];
7578 union si_shader_part_key epilog_key;
7579
7580 parts[0] = ctx.main_fn;
7581
7582 si_get_vs_epilog_key(shader, &shader->key.part.tes.epilog, &epilog_key);
7583 si_build_vs_epilog_function(&ctx, &epilog_key);
7584 parts[1] = ctx.main_fn;
7585
7586 si_build_wrapper_function(&ctx, parts, 2, 0);
7587 } else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7588 LLVMValueRef parts[2];
7589 union si_shader_part_key prolog_key;
7590
7591 parts[1] = ctx.main_fn;
7592
7593 memset(&prolog_key, 0, sizeof(prolog_key));
7594 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7595 si_build_gs_prolog_function(&ctx, &prolog_key);
7596 parts[0] = ctx.main_fn;
7597
7598 si_build_wrapper_function(&ctx, parts, 2, 1);
7599 } else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7600 LLVMValueRef parts[3];
7601 union si_shader_part_key prolog_key;
7602 union si_shader_part_key epilog_key;
7603 bool need_prolog;
7604
7605 si_get_ps_prolog_key(shader, &prolog_key, false);
7606 need_prolog = si_need_ps_prolog(&prolog_key);
7607
7608 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7609
7610 if (need_prolog) {
7611 si_build_ps_prolog_function(&ctx, &prolog_key);
7612 parts[0] = ctx.main_fn;
7613 }
7614
7615 si_get_ps_epilog_key(shader, &epilog_key);
7616 si_build_ps_epilog_function(&ctx, &epilog_key);
7617 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7618
7619 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2, need_prolog ? 1 : 0);
7620 }
7621
7622 mod = ctx.gallivm.module;
7623
7624 /* Dump LLVM IR before any optimization passes */
7625 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
7626 r600_can_dump_shader(&sscreen->b, ctx.type))
7627 ac_dump_module(mod);
7628
7629 si_llvm_finalize_module(&ctx,
7630 r600_extra_shader_checks(&sscreen->b, ctx.type));
7631
7632 /* Post-optimization transformations and analysis. */
7633 si_eliminate_const_vs_outputs(&ctx);
7634
7635 if ((debug && debug->debug_message) ||
7636 r600_can_dump_shader(&sscreen->b, ctx.type))
7637 si_count_scratch_private_memory(&ctx);
7638
7639 /* Compile to bytecode. */
7640 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
7641 mod, debug, ctx.type, "TGSI shader");
7642 si_llvm_dispose(&ctx);
7643 if (r) {
7644 fprintf(stderr, "LLVM failed to compile shader\n");
7645 return r;
7646 }
7647
7648 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7649 * LLVM 3.9svn has this bug.
7650 */
7651 if (sel->type == PIPE_SHADER_COMPUTE) {
7652 unsigned wave_size = 64;
7653 unsigned max_vgprs = 256;
7654 unsigned max_sgprs = sscreen->b.chip_class >= VI ? 800 : 512;
7655 unsigned max_sgprs_per_wave = 128;
7656 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7657 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7658 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7659
7660 max_vgprs = max_vgprs / min_waves_per_simd;
7661 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7662
7663 if (shader->config.num_sgprs > max_sgprs ||
7664 shader->config.num_vgprs > max_vgprs) {
7665 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7666 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7667 shader->config.num_sgprs, shader->config.num_vgprs,
7668 max_sgprs, max_vgprs);
7669
7670 /* Just terminate the process, because dependent
7671 * shaders can hang due to bad input data, but use
7672 * the env var to allow shader-db to work.
7673 */
7674 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7675 abort();
7676 }
7677 }
7678
7679 /* Add the scratch offset to input SGPRs. */
7680 if (shader->config.scratch_bytes_per_wave)
7681 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7682
7683 /* Calculate the number of fragment input VGPRs. */
7684 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7685 shader->info.num_input_vgprs = 0;
7686 shader->info.face_vgpr_index = -1;
7687
7688 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7689 shader->info.num_input_vgprs += 2;
7690 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7691 shader->info.num_input_vgprs += 2;
7692 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7693 shader->info.num_input_vgprs += 2;
7694 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7695 shader->info.num_input_vgprs += 3;
7696 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7697 shader->info.num_input_vgprs += 2;
7698 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7699 shader->info.num_input_vgprs += 2;
7700 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7701 shader->info.num_input_vgprs += 2;
7702 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7703 shader->info.num_input_vgprs += 1;
7704 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7705 shader->info.num_input_vgprs += 1;
7706 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7707 shader->info.num_input_vgprs += 1;
7708 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7709 shader->info.num_input_vgprs += 1;
7710 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7711 shader->info.num_input_vgprs += 1;
7712 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7713 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7714 shader->info.num_input_vgprs += 1;
7715 }
7716 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr))
7717 shader->info.num_input_vgprs += 1;
7718 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7719 shader->info.num_input_vgprs += 1;
7720 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7721 shader->info.num_input_vgprs += 1;
7722 }
7723
7724 return 0;
7725 }
7726
7727 /**
7728 * Create, compile and return a shader part (prolog or epilog).
7729 *
7730 * \param sscreen screen
7731 * \param list list of shader parts of the same category
7732 * \param type shader type
7733 * \param key shader part key
7734 * \param prolog whether the part being requested is a prolog
7735 * \param tm LLVM target machine
7736 * \param debug debug callback
7737 * \param build the callback responsible for building the main function
7738 * \return non-NULL on success
7739 */
7740 static struct si_shader_part *
7741 si_get_shader_part(struct si_screen *sscreen,
7742 struct si_shader_part **list,
7743 enum pipe_shader_type type,
7744 bool prolog,
7745 union si_shader_part_key *key,
7746 LLVMTargetMachineRef tm,
7747 struct pipe_debug_callback *debug,
7748 void (*build)(struct si_shader_context *,
7749 union si_shader_part_key *),
7750 const char *name)
7751 {
7752 struct si_shader_part *result;
7753
7754 mtx_lock(&sscreen->shader_parts_mutex);
7755
7756 /* Find existing. */
7757 for (result = *list; result; result = result->next) {
7758 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7759 mtx_unlock(&sscreen->shader_parts_mutex);
7760 return result;
7761 }
7762 }
7763
7764 /* Compile a new one. */
7765 result = CALLOC_STRUCT(si_shader_part);
7766 result->key = *key;
7767
7768 struct si_shader shader = {};
7769 struct si_shader_context ctx;
7770 struct gallivm_state *gallivm = &ctx.gallivm;
7771
7772 si_init_shader_ctx(&ctx, sscreen, &shader, tm);
7773 ctx.type = type;
7774
7775 switch (type) {
7776 case PIPE_SHADER_VERTEX:
7777 break;
7778 case PIPE_SHADER_TESS_CTRL:
7779 assert(!prolog);
7780 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7781 break;
7782 case PIPE_SHADER_GEOMETRY:
7783 assert(prolog);
7784 break;
7785 case PIPE_SHADER_FRAGMENT:
7786 if (prolog)
7787 shader.key.part.ps.prolog = key->ps_prolog.states;
7788 else
7789 shader.key.part.ps.epilog = key->ps_epilog.states;
7790 break;
7791 default:
7792 unreachable("bad shader part");
7793 }
7794
7795 build(&ctx, key);
7796
7797 /* Compile. */
7798 si_llvm_finalize_module(&ctx,
7799 r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_FRAGMENT));
7800
7801 if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
7802 gallivm->module, debug, ctx.type, name)) {
7803 FREE(result);
7804 result = NULL;
7805 goto out;
7806 }
7807
7808 result->next = *list;
7809 *list = result;
7810
7811 out:
7812 si_llvm_dispose(&ctx);
7813 mtx_unlock(&sscreen->shader_parts_mutex);
7814 return result;
7815 }
7816
7817 /**
7818 * Build the vertex shader prolog function.
7819 *
7820 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7821 * All inputs are returned unmodified. The vertex load indices are
7822 * stored after them, which will be used by the API VS for fetching inputs.
7823 *
7824 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7825 * input_v0,
7826 * input_v1,
7827 * input_v2,
7828 * input_v3,
7829 * (VertexID + BaseVertex),
7830 * (InstanceID + StartInstance),
7831 * (InstanceID / 2 + StartInstance)
7832 */
7833 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7834 union si_shader_part_key *key)
7835 {
7836 struct gallivm_state *gallivm = &ctx->gallivm;
7837 LLVMTypeRef *params, *returns;
7838 LLVMValueRef ret, func;
7839 int last_sgpr, num_params, num_returns, i;
7840
7841 ctx->param_vertex_id = key->vs_prolog.num_input_sgprs;
7842 ctx->param_instance_id = key->vs_prolog.num_input_sgprs + 3;
7843
7844 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7845 params = alloca((key->vs_prolog.num_input_sgprs + 4) *
7846 sizeof(LLVMTypeRef));
7847 returns = alloca((key->vs_prolog.num_input_sgprs + 4 +
7848 key->vs_prolog.last_input + 1) *
7849 sizeof(LLVMTypeRef));
7850 num_params = 0;
7851 num_returns = 0;
7852
7853 /* Declare input and output SGPRs. */
7854 num_params = 0;
7855 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7856 params[num_params++] = ctx->i32;
7857 returns[num_returns++] = ctx->i32;
7858 }
7859 last_sgpr = num_params - 1;
7860
7861 /* 4 preloaded VGPRs (outputs must be floats) */
7862 for (i = 0; i < 4; i++) {
7863 params[num_params++] = ctx->i32;
7864 returns[num_returns++] = ctx->f32;
7865 }
7866
7867 /* Vertex load indices. */
7868 for (i = 0; i <= key->vs_prolog.last_input; i++)
7869 returns[num_returns++] = ctx->f32;
7870
7871 /* Create the function. */
7872 si_create_function(ctx, "vs_prolog", returns, num_returns, params,
7873 num_params, last_sgpr);
7874 func = ctx->main_fn;
7875
7876 /* Copy inputs to outputs. This should be no-op, as the registers match,
7877 * but it will prevent the compiler from overwriting them unintentionally.
7878 */
7879 ret = ctx->return_value;
7880 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7881 LLVMValueRef p = LLVMGetParam(func, i);
7882 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7883 }
7884 for (i = num_params - 4; i < num_params; i++) {
7885 LLVMValueRef p = LLVMGetParam(func, i);
7886 p = LLVMBuildBitCast(gallivm->builder, p, ctx->f32, "");
7887 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7888 }
7889
7890 /* Compute vertex load indices from instance divisors. */
7891 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7892 unsigned divisor = key->vs_prolog.states.instance_divisors[i];
7893 LLVMValueRef index;
7894
7895 if (divisor) {
7896 /* InstanceID / Divisor + StartInstance */
7897 index = get_instance_index_for_fetch(ctx,
7898 SI_SGPR_START_INSTANCE,
7899 divisor);
7900 } else {
7901 /* VertexID + BaseVertex */
7902 index = LLVMBuildAdd(gallivm->builder,
7903 LLVMGetParam(func, ctx->param_vertex_id),
7904 LLVMGetParam(func, SI_SGPR_BASE_VERTEX), "");
7905 }
7906
7907 index = LLVMBuildBitCast(gallivm->builder, index, ctx->f32, "");
7908 ret = LLVMBuildInsertValue(gallivm->builder, ret, index,
7909 num_params++, "");
7910 }
7911
7912 si_llvm_build_ret(ctx, ret);
7913 }
7914
7915 /**
7916 * Build the vertex shader epilog function. This is also used by the tessellation
7917 * evaluation shader compiled as VS.
7918 *
7919 * The input is PrimitiveID.
7920 *
7921 * If PrimitiveID is required by the pixel shader, export it.
7922 * Otherwise, do nothing.
7923 */
7924 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
7925 union si_shader_part_key *key)
7926 {
7927 struct gallivm_state *gallivm = &ctx->gallivm;
7928 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7929 LLVMTypeRef params[5];
7930 int num_params, i;
7931
7932 /* Declare input VGPRs. */
7933 num_params = key->vs_epilog.states.export_prim_id ?
7934 (VS_EPILOG_PRIMID_LOC + 1) : 0;
7935 assert(num_params <= ARRAY_SIZE(params));
7936
7937 for (i = 0; i < num_params; i++)
7938 params[i] = ctx->f32;
7939
7940 /* Create the function. */
7941 si_create_function(ctx, "vs_epilog", NULL, 0, params, num_params, -1);
7942
7943 /* Emit exports. */
7944 if (key->vs_epilog.states.export_prim_id) {
7945 struct lp_build_context *base = &bld_base->base;
7946 struct ac_export_args args;
7947
7948 args.enabled_channels = 0x1; /* enabled channels */
7949 args.valid_mask = 0; /* whether the EXEC mask is valid */
7950 args.done = 0; /* DONE bit */
7951 args.target = V_008DFC_SQ_EXP_PARAM +
7952 key->vs_epilog.prim_id_param_offset;
7953 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
7954 args.out[0] = LLVMGetParam(ctx->main_fn,
7955 VS_EPILOG_PRIMID_LOC); /* X */
7956 args.out[1] = base->undef; /* Y */
7957 args.out[2] = base->undef; /* Z */
7958 args.out[3] = base->undef; /* W */
7959
7960 ac_build_export(&ctx->ac, &args);
7961 }
7962
7963 LLVMBuildRetVoid(gallivm->builder);
7964 }
7965
7966 /**
7967 * Create & compile a vertex shader epilog. This a helper used by VS and TES.
7968 */
7969 static bool si_get_vs_epilog(struct si_screen *sscreen,
7970 LLVMTargetMachineRef tm,
7971 struct si_shader *shader,
7972 struct pipe_debug_callback *debug,
7973 struct si_vs_epilog_bits *states)
7974 {
7975 union si_shader_part_key epilog_key;
7976
7977 si_get_vs_epilog_key(shader, states, &epilog_key);
7978
7979 shader->epilog = si_get_shader_part(sscreen, &sscreen->vs_epilogs,
7980 PIPE_SHADER_VERTEX, true,
7981 &epilog_key, tm, debug,
7982 si_build_vs_epilog_function,
7983 "Vertex Shader Epilog");
7984 return shader->epilog != NULL;
7985 }
7986
7987 /**
7988 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7989 */
7990 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7991 LLVMTargetMachineRef tm,
7992 struct si_shader *shader,
7993 struct pipe_debug_callback *debug)
7994 {
7995 struct tgsi_shader_info *info = &shader->selector->info;
7996 union si_shader_part_key prolog_key;
7997
7998 /* Get the prolog. */
7999 si_get_vs_prolog_key(shader, &prolog_key);
8000
8001 /* The prolog is a no-op if there are no inputs. */
8002 if (info->num_inputs) {
8003 shader->prolog =
8004 si_get_shader_part(sscreen, &sscreen->vs_prologs,
8005 PIPE_SHADER_VERTEX, true,
8006 &prolog_key, tm, debug,
8007 si_build_vs_prolog_function,
8008 "Vertex Shader Prolog");
8009 if (!shader->prolog)
8010 return false;
8011 }
8012
8013 /* Get the epilog. */
8014 if (!shader->key.as_es && !shader->key.as_ls &&
8015 !si_get_vs_epilog(sscreen, tm, shader, debug,
8016 &shader->key.part.vs.epilog))
8017 return false;
8018
8019 return true;
8020 }
8021
8022 /**
8023 * Select and compile (or reuse) TES parts (epilog).
8024 */
8025 static bool si_shader_select_tes_parts(struct si_screen *sscreen,
8026 LLVMTargetMachineRef tm,
8027 struct si_shader *shader,
8028 struct pipe_debug_callback *debug)
8029 {
8030 if (shader->key.as_es)
8031 return true;
8032
8033 /* TES compiled as VS. */
8034 return si_get_vs_epilog(sscreen, tm, shader, debug,
8035 &shader->key.part.tes.epilog);
8036 }
8037
8038 /**
8039 * Compile the TCS epilog function. This writes tesselation factors to memory
8040 * based on the output primitive type of the tesselator (determined by TES).
8041 */
8042 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
8043 union si_shader_part_key *key)
8044 {
8045 struct gallivm_state *gallivm = &ctx->gallivm;
8046 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8047 LLVMTypeRef params[16];
8048 LLVMValueRef func;
8049 int last_sgpr, num_params;
8050
8051 /* Declare inputs. Only RW_BUFFERS and TESS_FACTOR_OFFSET are used. */
8052 params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
8053 params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
8054 params[SI_PARAM_SAMPLERS] = ctx->i64;
8055 params[SI_PARAM_IMAGES] = ctx->i64;
8056 params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
8057 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
8058 params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
8059 params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
8060 params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
8061 params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
8062 params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
8063 last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
8064 num_params = last_sgpr + 1;
8065
8066 params[num_params++] = ctx->i32; /* patch index within the wave (REL_PATCH_ID) */
8067 params[num_params++] = ctx->i32; /* invocation ID within the patch */
8068 params[num_params++] = ctx->i32; /* LDS offset where tess factors should be loaded from */
8069
8070 /* Create the function. */
8071 si_create_function(ctx, "tcs_epilog", NULL, 0, params, num_params, last_sgpr);
8072 declare_tess_lds(ctx);
8073 func = ctx->main_fn;
8074
8075 si_write_tess_factors(bld_base,
8076 LLVMGetParam(func, last_sgpr + 1),
8077 LLVMGetParam(func, last_sgpr + 2),
8078 LLVMGetParam(func, last_sgpr + 3));
8079
8080 LLVMBuildRetVoid(gallivm->builder);
8081 }
8082
8083 /**
8084 * Select and compile (or reuse) TCS parts (epilog).
8085 */
8086 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
8087 LLVMTargetMachineRef tm,
8088 struct si_shader *shader,
8089 struct pipe_debug_callback *debug)
8090 {
8091 union si_shader_part_key epilog_key;
8092
8093 /* Get the epilog. */
8094 memset(&epilog_key, 0, sizeof(epilog_key));
8095 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
8096
8097 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
8098 PIPE_SHADER_TESS_CTRL, false,
8099 &epilog_key, tm, debug,
8100 si_build_tcs_epilog_function,
8101 "Tessellation Control Shader Epilog");
8102 return shader->epilog != NULL;
8103 }
8104
8105 /**
8106 * Select and compile (or reuse) GS parts (prolog).
8107 */
8108 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
8109 LLVMTargetMachineRef tm,
8110 struct si_shader *shader,
8111 struct pipe_debug_callback *debug)
8112 {
8113 union si_shader_part_key prolog_key;
8114
8115 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
8116 return true;
8117
8118 memset(&prolog_key, 0, sizeof(prolog_key));
8119 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
8120
8121 shader->prolog = si_get_shader_part(sscreen, &sscreen->gs_prologs,
8122 PIPE_SHADER_GEOMETRY, true,
8123 &prolog_key, tm, debug,
8124 si_build_gs_prolog_function,
8125 "Geometry Shader Prolog");
8126 return shader->prolog != NULL;
8127 }
8128
8129 /**
8130 * Build the pixel shader prolog function. This handles:
8131 * - two-side color selection and interpolation
8132 * - overriding interpolation parameters for the API PS
8133 * - polygon stippling
8134 *
8135 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
8136 * overriden by other states. (e.g. per-sample interpolation)
8137 * Interpolated colors are stored after the preloaded VGPRs.
8138 */
8139 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
8140 union si_shader_part_key *key)
8141 {
8142 struct gallivm_state *gallivm = &ctx->gallivm;
8143 LLVMTypeRef *params;
8144 LLVMValueRef ret, func;
8145 int last_sgpr, num_params, num_returns, i, num_color_channels;
8146
8147 assert(si_need_ps_prolog(key));
8148
8149 /* Number of inputs + 8 color elements. */
8150 params = alloca((key->ps_prolog.num_input_sgprs +
8151 key->ps_prolog.num_input_vgprs + 8) *
8152 sizeof(LLVMTypeRef));
8153
8154 /* Declare inputs. */
8155 num_params = 0;
8156 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
8157 params[num_params++] = ctx->i32;
8158 last_sgpr = num_params - 1;
8159
8160 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
8161 params[num_params++] = ctx->f32;
8162
8163 /* Declare outputs (same as inputs + add colors if needed) */
8164 num_returns = num_params;
8165 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
8166 for (i = 0; i < num_color_channels; i++)
8167 params[num_returns++] = ctx->f32;
8168
8169 /* Create the function. */
8170 si_create_function(ctx, "ps_prolog", params, num_returns, params,
8171 num_params, last_sgpr);
8172 func = ctx->main_fn;
8173
8174 /* Copy inputs to outputs. This should be no-op, as the registers match,
8175 * but it will prevent the compiler from overwriting them unintentionally.
8176 */
8177 ret = ctx->return_value;
8178 for (i = 0; i < num_params; i++) {
8179 LLVMValueRef p = LLVMGetParam(func, i);
8180 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
8181 }
8182
8183 /* Polygon stippling. */
8184 if (key->ps_prolog.states.poly_stipple) {
8185 /* POS_FIXED_PT is always last. */
8186 unsigned pos = key->ps_prolog.num_input_sgprs +
8187 key->ps_prolog.num_input_vgprs - 1;
8188 LLVMValueRef ptr[2], list;
8189
8190 /* Get the pointer to rw buffers. */
8191 ptr[0] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS);
8192 ptr[1] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS_HI);
8193 list = lp_build_gather_values(gallivm, ptr, 2);
8194 list = LLVMBuildBitCast(gallivm->builder, list, ctx->i64, "");
8195 list = LLVMBuildIntToPtr(gallivm->builder, list,
8196 const_array(ctx->v16i8, SI_NUM_RW_BUFFERS), "");
8197
8198 si_llvm_emit_polygon_stipple(ctx, list, pos);
8199 }
8200
8201 if (key->ps_prolog.states.bc_optimize_for_persp ||
8202 key->ps_prolog.states.bc_optimize_for_linear) {
8203 unsigned i, base = key->ps_prolog.num_input_sgprs;
8204 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
8205
8206 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
8207 * The hw doesn't compute CENTROID if the whole wave only
8208 * contains fully-covered quads.
8209 *
8210 * PRIM_MASK is after user SGPRs.
8211 */
8212 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8213 bc_optimize = LLVMBuildLShr(gallivm->builder, bc_optimize,
8214 LLVMConstInt(ctx->i32, 31, 0), "");
8215 bc_optimize = LLVMBuildTrunc(gallivm->builder, bc_optimize,
8216 ctx->i1, "");
8217
8218 if (key->ps_prolog.states.bc_optimize_for_persp) {
8219 /* Read PERSP_CENTER. */
8220 for (i = 0; i < 2; i++)
8221 center[i] = LLVMGetParam(func, base + 2 + i);
8222 /* Read PERSP_CENTROID. */
8223 for (i = 0; i < 2; i++)
8224 centroid[i] = LLVMGetParam(func, base + 4 + i);
8225 /* Select PERSP_CENTROID. */
8226 for (i = 0; i < 2; i++) {
8227 tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8228 center[i], centroid[i], "");
8229 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8230 tmp, base + 4 + i, "");
8231 }
8232 }
8233 if (key->ps_prolog.states.bc_optimize_for_linear) {
8234 /* Read LINEAR_CENTER. */
8235 for (i = 0; i < 2; i++)
8236 center[i] = LLVMGetParam(func, base + 8 + i);
8237 /* Read LINEAR_CENTROID. */
8238 for (i = 0; i < 2; i++)
8239 centroid[i] = LLVMGetParam(func, base + 10 + i);
8240 /* Select LINEAR_CENTROID. */
8241 for (i = 0; i < 2; i++) {
8242 tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8243 center[i], centroid[i], "");
8244 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8245 tmp, base + 10 + i, "");
8246 }
8247 }
8248 }
8249
8250 /* Force per-sample interpolation. */
8251 if (key->ps_prolog.states.force_persp_sample_interp) {
8252 unsigned i, base = key->ps_prolog.num_input_sgprs;
8253 LLVMValueRef persp_sample[2];
8254
8255 /* Read PERSP_SAMPLE. */
8256 for (i = 0; i < 2; i++)
8257 persp_sample[i] = LLVMGetParam(func, base + i);
8258 /* Overwrite PERSP_CENTER. */
8259 for (i = 0; i < 2; i++)
8260 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8261 persp_sample[i], base + 2 + i, "");
8262 /* Overwrite PERSP_CENTROID. */
8263 for (i = 0; i < 2; i++)
8264 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8265 persp_sample[i], base + 4 + i, "");
8266 }
8267 if (key->ps_prolog.states.force_linear_sample_interp) {
8268 unsigned i, base = key->ps_prolog.num_input_sgprs;
8269 LLVMValueRef linear_sample[2];
8270
8271 /* Read LINEAR_SAMPLE. */
8272 for (i = 0; i < 2; i++)
8273 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
8274 /* Overwrite LINEAR_CENTER. */
8275 for (i = 0; i < 2; i++)
8276 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8277 linear_sample[i], base + 8 + i, "");
8278 /* Overwrite LINEAR_CENTROID. */
8279 for (i = 0; i < 2; i++)
8280 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8281 linear_sample[i], base + 10 + i, "");
8282 }
8283
8284 /* Force center interpolation. */
8285 if (key->ps_prolog.states.force_persp_center_interp) {
8286 unsigned i, base = key->ps_prolog.num_input_sgprs;
8287 LLVMValueRef persp_center[2];
8288
8289 /* Read PERSP_CENTER. */
8290 for (i = 0; i < 2; i++)
8291 persp_center[i] = LLVMGetParam(func, base + 2 + i);
8292 /* Overwrite PERSP_SAMPLE. */
8293 for (i = 0; i < 2; i++)
8294 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8295 persp_center[i], base + i, "");
8296 /* Overwrite PERSP_CENTROID. */
8297 for (i = 0; i < 2; i++)
8298 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8299 persp_center[i], base + 4 + i, "");
8300 }
8301 if (key->ps_prolog.states.force_linear_center_interp) {
8302 unsigned i, base = key->ps_prolog.num_input_sgprs;
8303 LLVMValueRef linear_center[2];
8304
8305 /* Read LINEAR_CENTER. */
8306 for (i = 0; i < 2; i++)
8307 linear_center[i] = LLVMGetParam(func, base + 8 + i);
8308 /* Overwrite LINEAR_SAMPLE. */
8309 for (i = 0; i < 2; i++)
8310 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8311 linear_center[i], base + 6 + i, "");
8312 /* Overwrite LINEAR_CENTROID. */
8313 for (i = 0; i < 2; i++)
8314 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8315 linear_center[i], base + 10 + i, "");
8316 }
8317
8318 /* Interpolate colors. */
8319 for (i = 0; i < 2; i++) {
8320 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
8321 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
8322 key->ps_prolog.face_vgpr_index;
8323 LLVMValueRef interp[2], color[4];
8324 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
8325
8326 if (!writemask)
8327 continue;
8328
8329 /* If the interpolation qualifier is not CONSTANT (-1). */
8330 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
8331 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
8332 key->ps_prolog.color_interp_vgpr_index[i];
8333
8334 /* Get the (i,j) updated by bc_optimize handling. */
8335 interp[0] = LLVMBuildExtractValue(gallivm->builder, ret,
8336 interp_vgpr, "");
8337 interp[1] = LLVMBuildExtractValue(gallivm->builder, ret,
8338 interp_vgpr + 1, "");
8339 interp_ij = lp_build_gather_values(gallivm, interp, 2);
8340 }
8341
8342 /* Use the absolute location of the input. */
8343 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8344
8345 if (key->ps_prolog.states.color_two_side) {
8346 face = LLVMGetParam(func, face_vgpr);
8347 face = LLVMBuildBitCast(gallivm->builder, face, ctx->i32, "");
8348 }
8349
8350 interp_fs_input(ctx,
8351 key->ps_prolog.color_attr_index[i],
8352 TGSI_SEMANTIC_COLOR, i,
8353 key->ps_prolog.num_interp_inputs,
8354 key->ps_prolog.colors_read, interp_ij,
8355 prim_mask, face, color);
8356
8357 while (writemask) {
8358 unsigned chan = u_bit_scan(&writemask);
8359 ret = LLVMBuildInsertValue(gallivm->builder, ret, color[chan],
8360 num_params++, "");
8361 }
8362 }
8363
8364 /* Tell LLVM to insert WQM instruction sequence when needed. */
8365 if (key->ps_prolog.wqm) {
8366 LLVMAddTargetDependentFunctionAttr(func,
8367 "amdgpu-ps-wqm-outputs", "");
8368 }
8369
8370 si_llvm_build_ret(ctx, ret);
8371 }
8372
8373 /**
8374 * Build the pixel shader epilog function. This handles everything that must be
8375 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
8376 */
8377 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8378 union si_shader_part_key *key)
8379 {
8380 struct gallivm_state *gallivm = &ctx->gallivm;
8381 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8382 LLVMTypeRef params[16+8*4+3];
8383 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8384 int last_sgpr, num_params, i;
8385 struct si_ps_exports exp = {};
8386
8387 /* Declare input SGPRs. */
8388 params[SI_PARAM_RW_BUFFERS] = ctx->i64;
8389 params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
8390 params[SI_PARAM_SAMPLERS] = ctx->i64;
8391 params[SI_PARAM_IMAGES] = ctx->i64;
8392 params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
8393 params[SI_PARAM_ALPHA_REF] = ctx->f32;
8394 last_sgpr = SI_PARAM_ALPHA_REF;
8395
8396 /* Declare input VGPRs. */
8397 num_params = (last_sgpr + 1) +
8398 util_bitcount(key->ps_epilog.colors_written) * 4 +
8399 key->ps_epilog.writes_z +
8400 key->ps_epilog.writes_stencil +
8401 key->ps_epilog.writes_samplemask;
8402
8403 num_params = MAX2(num_params,
8404 last_sgpr + 1 + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8405
8406 assert(num_params <= ARRAY_SIZE(params));
8407
8408 for (i = last_sgpr + 1; i < num_params; i++)
8409 params[i] = ctx->f32;
8410
8411 /* Create the function. */
8412 si_create_function(ctx, "ps_epilog", NULL, 0, params, num_params, last_sgpr);
8413 /* Disable elimination of unused inputs. */
8414 si_llvm_add_attribute(ctx->main_fn,
8415 "InitialPSInputAddr", 0xffffff);
8416
8417 /* Process colors. */
8418 unsigned vgpr = last_sgpr + 1;
8419 unsigned colors_written = key->ps_epilog.colors_written;
8420 int last_color_export = -1;
8421
8422 /* Find the last color export. */
8423 if (!key->ps_epilog.writes_z &&
8424 !key->ps_epilog.writes_stencil &&
8425 !key->ps_epilog.writes_samplemask) {
8426 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8427
8428 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8429 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8430 /* Just set this if any of the colorbuffers are enabled. */
8431 if (spi_format &
8432 ((1llu << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8433 last_color_export = 0;
8434 } else {
8435 for (i = 0; i < 8; i++)
8436 if (colors_written & (1 << i) &&
8437 (spi_format >> (i * 4)) & 0xf)
8438 last_color_export = i;
8439 }
8440 }
8441
8442 while (colors_written) {
8443 LLVMValueRef color[4];
8444 int mrt = u_bit_scan(&colors_written);
8445
8446 for (i = 0; i < 4; i++)
8447 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8448
8449 si_export_mrt_color(bld_base, color, mrt,
8450 num_params - 1,
8451 mrt == last_color_export, &exp);
8452 }
8453
8454 /* Process depth, stencil, samplemask. */
8455 if (key->ps_epilog.writes_z)
8456 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8457 if (key->ps_epilog.writes_stencil)
8458 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8459 if (key->ps_epilog.writes_samplemask)
8460 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8461
8462 if (depth || stencil || samplemask)
8463 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8464 else if (last_color_export == -1)
8465 si_export_null(bld_base);
8466
8467 if (exp.num)
8468 si_emit_ps_exports(ctx, &exp);
8469
8470 /* Compile. */
8471 LLVMBuildRetVoid(gallivm->builder);
8472 }
8473
8474 /**
8475 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8476 */
8477 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8478 LLVMTargetMachineRef tm,
8479 struct si_shader *shader,
8480 struct pipe_debug_callback *debug)
8481 {
8482 union si_shader_part_key prolog_key;
8483 union si_shader_part_key epilog_key;
8484
8485 /* Get the prolog. */
8486 si_get_ps_prolog_key(shader, &prolog_key, true);
8487
8488 /* The prolog is a no-op if these aren't set. */
8489 if (si_need_ps_prolog(&prolog_key)) {
8490 shader->prolog =
8491 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8492 PIPE_SHADER_FRAGMENT, true,
8493 &prolog_key, tm, debug,
8494 si_build_ps_prolog_function,
8495 "Fragment Shader Prolog");
8496 if (!shader->prolog)
8497 return false;
8498 }
8499
8500 /* Get the epilog. */
8501 si_get_ps_epilog_key(shader, &epilog_key);
8502
8503 shader->epilog =
8504 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8505 PIPE_SHADER_FRAGMENT, false,
8506 &epilog_key, tm, debug,
8507 si_build_ps_epilog_function,
8508 "Fragment Shader Epilog");
8509 if (!shader->epilog)
8510 return false;
8511
8512 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8513 if (shader->key.part.ps.prolog.poly_stipple) {
8514 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8515 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8516 }
8517
8518 /* Set up the enable bits for per-sample shading if needed. */
8519 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8520 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8521 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8522 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8523 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8524 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8525 }
8526 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8527 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8528 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8529 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8530 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8531 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8532 }
8533 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8534 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8535 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8536 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8537 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8538 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8539 }
8540 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8541 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8542 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8543 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8544 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8545 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8546 }
8547
8548 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8549 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8550 !(shader->config.spi_ps_input_ena & 0xf)) {
8551 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8552 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8553 }
8554
8555 /* At least one pair of interpolation weights must be enabled. */
8556 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8557 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8558 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8559 }
8560
8561 /* The sample mask input is always enabled, because the API shader always
8562 * passes it through to the epilog. Disable it here if it's unused.
8563 */
8564 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8565 !shader->selector->info.reads_samplemask)
8566 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8567
8568 return true;
8569 }
8570
8571 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8572 unsigned *lds_size)
8573 {
8574 /* SPI barrier management bug:
8575 * Make sure we have at least 4k of LDS in use to avoid the bug.
8576 * It applies to workgroup sizes of more than one wavefront.
8577 */
8578 if (sscreen->b.family == CHIP_BONAIRE ||
8579 sscreen->b.family == CHIP_KABINI ||
8580 sscreen->b.family == CHIP_MULLINS)
8581 *lds_size = MAX2(*lds_size, 8);
8582 }
8583
8584 static void si_fix_resource_usage(struct si_screen *sscreen,
8585 struct si_shader *shader)
8586 {
8587 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8588
8589 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8590
8591 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8592 si_get_max_workgroup_size(shader) > 64) {
8593 si_multiwave_lds_size_workaround(sscreen,
8594 &shader->config.lds_size);
8595 }
8596 }
8597
8598 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
8599 struct si_shader *shader,
8600 struct pipe_debug_callback *debug)
8601 {
8602 struct si_shader_selector *sel = shader->selector;
8603 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8604 int r;
8605
8606 /* LS, ES, VS are compiled on demand if the main part hasn't been
8607 * compiled for that stage.
8608 *
8609 * Vertex shaders are compiled on demand when a vertex fetch
8610 * workaround must be applied.
8611 */
8612 if (shader->is_monolithic) {
8613 /* Monolithic shader (compiled as a whole, has many variants,
8614 * may take a long time to compile).
8615 */
8616 r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
8617 if (r)
8618 return r;
8619 } else {
8620 /* The shader consists of 2-3 parts:
8621 *
8622 * - the middle part is the user shader, it has 1 variant only
8623 * and it was compiled during the creation of the shader
8624 * selector
8625 * - the prolog part is inserted at the beginning
8626 * - the epilog part is inserted at the end
8627 *
8628 * The prolog and epilog have many (but simple) variants.
8629 */
8630
8631 /* Copy the compiled TGSI shader data over. */
8632 shader->is_binary_shared = true;
8633 shader->binary = mainp->binary;
8634 shader->config = mainp->config;
8635 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8636 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8637 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8638 memcpy(shader->info.vs_output_param_offset,
8639 mainp->info.vs_output_param_offset,
8640 sizeof(mainp->info.vs_output_param_offset));
8641 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8642 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8643 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8644
8645 /* Select prologs and/or epilogs. */
8646 switch (sel->type) {
8647 case PIPE_SHADER_VERTEX:
8648 if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
8649 return -1;
8650 break;
8651 case PIPE_SHADER_TESS_CTRL:
8652 if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
8653 return -1;
8654 break;
8655 case PIPE_SHADER_TESS_EVAL:
8656 if (!si_shader_select_tes_parts(sscreen, tm, shader, debug))
8657 return -1;
8658 break;
8659 case PIPE_SHADER_GEOMETRY:
8660 if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
8661 return -1;
8662 break;
8663 case PIPE_SHADER_FRAGMENT:
8664 if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
8665 return -1;
8666
8667 /* Make sure we have at least as many VGPRs as there
8668 * are allocated inputs.
8669 */
8670 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8671 shader->info.num_input_vgprs);
8672 break;
8673 }
8674
8675 /* Update SGPR and VGPR counts. */
8676 if (shader->prolog) {
8677 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8678 shader->prolog->config.num_sgprs);
8679 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8680 shader->prolog->config.num_vgprs);
8681 }
8682 if (shader->epilog) {
8683 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8684 shader->epilog->config.num_sgprs);
8685 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8686 shader->epilog->config.num_vgprs);
8687 }
8688 }
8689
8690 si_fix_resource_usage(sscreen, shader);
8691 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8692 stderr, true);
8693
8694 /* Upload. */
8695 r = si_shader_binary_upload(sscreen, shader);
8696 if (r) {
8697 fprintf(stderr, "LLVM failed to upload shader\n");
8698 return r;
8699 }
8700
8701 return 0;
8702 }
8703
8704 void si_shader_destroy(struct si_shader *shader)
8705 {
8706 if (shader->scratch_bo)
8707 r600_resource_reference(&shader->scratch_bo, NULL);
8708
8709 r600_resource_reference(&shader->bo, NULL);
8710
8711 if (!shader->is_binary_shared)
8712 radeon_shader_binary_clean(&shader->binary);
8713
8714 free(shader->shader_log);
8715 }