radeonsi: move internal TGSI shaders into si_shaderlib_tgsi.c
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_util.h"
29 #include "tgsi/tgsi_dump.h"
30
31 #include "ac_exp_param.h"
32 #include "ac_shader_util.h"
33 #include "ac_llvm_util.h"
34 #include "si_shader_internal.h"
35 #include "si_pipe.h"
36 #include "sid.h"
37
38 #include "compiler/nir/nir.h"
39
40 static const char *scratch_rsrc_dword0_symbol =
41 "SCRATCH_RSRC_DWORD0";
42
43 static const char *scratch_rsrc_dword1_symbol =
44 "SCRATCH_RSRC_DWORD1";
45
46 struct si_shader_output_values
47 {
48 LLVMValueRef values[4];
49 unsigned semantic_name;
50 unsigned semantic_index;
51 ubyte vertex_stream[4];
52 };
53
54 /**
55 * Used to collect types and other info about arguments of the LLVM function
56 * before the function is created.
57 */
58 struct si_function_info {
59 LLVMTypeRef types[100];
60 LLVMValueRef *assign[100];
61 unsigned num_sgpr_params;
62 unsigned num_params;
63 };
64
65 enum si_arg_regfile {
66 ARG_SGPR,
67 ARG_VGPR
68 };
69
70 static void si_init_shader_ctx(struct si_shader_context *ctx,
71 struct si_screen *sscreen,
72 struct ac_llvm_compiler *compiler);
73
74 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
75 struct lp_build_tgsi_context *bld_base,
76 struct lp_build_emit_data *emit_data);
77
78 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
79 FILE *f);
80
81 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
88 union si_shader_part_key *key);
89
90 /* Ideally pass the sample mask input to the PS epilog as v14, which
91 * is its usual location, so that the shader doesn't have to add v_mov.
92 */
93 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
94
95 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
96 LLVMTypeRef type)
97 {
98 if (type == ctx->ac.i64 || type == ctx->ac.f64)
99 return true;
100
101 return false;
102 }
103
104 static bool is_merged_shader(struct si_shader *shader)
105 {
106 if (shader->selector->screen->info.chip_class <= VI)
107 return false;
108
109 return shader->key.as_ls ||
110 shader->key.as_es ||
111 shader->selector->type == PIPE_SHADER_TESS_CTRL ||
112 shader->selector->type == PIPE_SHADER_GEOMETRY;
113 }
114
115 static void si_init_function_info(struct si_function_info *fninfo)
116 {
117 fninfo->num_params = 0;
118 fninfo->num_sgpr_params = 0;
119 }
120
121 static unsigned add_arg_assign(struct si_function_info *fninfo,
122 enum si_arg_regfile regfile, LLVMTypeRef type,
123 LLVMValueRef *assign)
124 {
125 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
126
127 unsigned idx = fninfo->num_params++;
128 assert(idx < ARRAY_SIZE(fninfo->types));
129
130 if (regfile == ARG_SGPR)
131 fninfo->num_sgpr_params = fninfo->num_params;
132
133 fninfo->types[idx] = type;
134 fninfo->assign[idx] = assign;
135 return idx;
136 }
137
138 static unsigned add_arg(struct si_function_info *fninfo,
139 enum si_arg_regfile regfile, LLVMTypeRef type)
140 {
141 return add_arg_assign(fninfo, regfile, type, NULL);
142 }
143
144 static void add_arg_assign_checked(struct si_function_info *fninfo,
145 enum si_arg_regfile regfile, LLVMTypeRef type,
146 LLVMValueRef *assign, unsigned idx)
147 {
148 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
149 assert(actual == idx);
150 }
151
152 static void add_arg_checked(struct si_function_info *fninfo,
153 enum si_arg_regfile regfile, LLVMTypeRef type,
154 unsigned idx)
155 {
156 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
157 }
158
159 /**
160 * Returns a unique index for a per-patch semantic name and index. The index
161 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
162 * can be calculated.
163 */
164 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
165 {
166 switch (semantic_name) {
167 case TGSI_SEMANTIC_TESSOUTER:
168 return 0;
169 case TGSI_SEMANTIC_TESSINNER:
170 return 1;
171 case TGSI_SEMANTIC_PATCH:
172 assert(index < 30);
173 return 2 + index;
174
175 default:
176 assert(!"invalid semantic name");
177 return 0;
178 }
179 }
180
181 /**
182 * Returns a unique index for a semantic name and index. The index must be
183 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
184 * calculated.
185 */
186 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
187 unsigned is_varying)
188 {
189 switch (semantic_name) {
190 case TGSI_SEMANTIC_POSITION:
191 return 0;
192 case TGSI_SEMANTIC_GENERIC:
193 /* Since some shader stages use the the highest used IO index
194 * to determine the size to allocate for inputs/outputs
195 * (in LDS, tess and GS rings). GENERIC should be placed right
196 * after POSITION to make that size as small as possible.
197 */
198 if (index < SI_MAX_IO_GENERIC)
199 return 1 + index;
200
201 assert(!"invalid generic index");
202 return 0;
203 case TGSI_SEMANTIC_PSIZE:
204 return SI_MAX_IO_GENERIC + 1;
205 case TGSI_SEMANTIC_CLIPDIST:
206 assert(index <= 1);
207 return SI_MAX_IO_GENERIC + 2 + index;
208 case TGSI_SEMANTIC_FOG:
209 return SI_MAX_IO_GENERIC + 4;
210 case TGSI_SEMANTIC_LAYER:
211 return SI_MAX_IO_GENERIC + 5;
212 case TGSI_SEMANTIC_VIEWPORT_INDEX:
213 return SI_MAX_IO_GENERIC + 6;
214 case TGSI_SEMANTIC_PRIMID:
215 return SI_MAX_IO_GENERIC + 7;
216 case TGSI_SEMANTIC_COLOR:
217 assert(index < 2);
218 return SI_MAX_IO_GENERIC + 8 + index;
219 case TGSI_SEMANTIC_BCOLOR:
220 assert(index < 2);
221 /* If it's a varying, COLOR and BCOLOR alias. */
222 if (is_varying)
223 return SI_MAX_IO_GENERIC + 8 + index;
224 else
225 return SI_MAX_IO_GENERIC + 10 + index;
226 case TGSI_SEMANTIC_TEXCOORD:
227 assert(index < 8);
228 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
229 return SI_MAX_IO_GENERIC + 12 + index;
230 case TGSI_SEMANTIC_CLIPVERTEX:
231 return 63;
232 default:
233 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
234 assert(!"invalid semantic name");
235 return 0;
236 }
237 }
238
239 /**
240 * Get the value of a shader input parameter and extract a bitfield.
241 */
242 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
243 LLVMValueRef value, unsigned rshift,
244 unsigned bitwidth)
245 {
246 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
247 value = ac_to_integer(&ctx->ac, value);
248
249 if (rshift)
250 value = LLVMBuildLShr(ctx->ac.builder, value,
251 LLVMConstInt(ctx->i32, rshift, 0), "");
252
253 if (rshift + bitwidth < 32) {
254 unsigned mask = (1 << bitwidth) - 1;
255 value = LLVMBuildAnd(ctx->ac.builder, value,
256 LLVMConstInt(ctx->i32, mask, 0), "");
257 }
258
259 return value;
260 }
261
262 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
263 unsigned param, unsigned rshift,
264 unsigned bitwidth)
265 {
266 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
267
268 return unpack_llvm_param(ctx, value, rshift, bitwidth);
269 }
270
271 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
272 {
273 switch (ctx->type) {
274 case PIPE_SHADER_TESS_CTRL:
275 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
276
277 case PIPE_SHADER_TESS_EVAL:
278 return LLVMGetParam(ctx->main_fn,
279 ctx->param_tes_rel_patch_id);
280
281 default:
282 assert(0);
283 return NULL;
284 }
285 }
286
287 /* Tessellation shaders pass outputs to the next shader using LDS.
288 *
289 * LS outputs = TCS inputs
290 * TCS outputs = TES inputs
291 *
292 * The LDS layout is:
293 * - TCS inputs for patch 0
294 * - TCS inputs for patch 1
295 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
296 * - ...
297 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
298 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
299 * - TCS outputs for patch 1
300 * - Per-patch TCS outputs for patch 1
301 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
302 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
303 * - ...
304 *
305 * All three shaders VS(LS), TCS, TES share the same LDS space.
306 */
307
308 static LLVMValueRef
309 get_tcs_in_patch_stride(struct si_shader_context *ctx)
310 {
311 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
312 }
313
314 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
315 {
316 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
317
318 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
319 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
320
321 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
322 }
323
324 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
325 {
326 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
327
328 return LLVMConstInt(ctx->i32, stride, 0);
329 }
330
331 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
332 {
333 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
334 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
335
336 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
337 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
338 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
339 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
340 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
341 num_patch_outputs * 4;
342 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
343 }
344
345 static LLVMValueRef
346 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
347 {
348 return LLVMBuildMul(ctx->ac.builder,
349 si_unpack_param(ctx,
350 ctx->param_tcs_out_lds_offsets,
351 0, 16),
352 LLVMConstInt(ctx->i32, 4, 0), "");
353 }
354
355 static LLVMValueRef
356 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
357 {
358 return LLVMBuildMul(ctx->ac.builder,
359 si_unpack_param(ctx,
360 ctx->param_tcs_out_lds_offsets,
361 16, 16),
362 LLVMConstInt(ctx->i32, 4, 0), "");
363 }
364
365 static LLVMValueRef
366 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
367 {
368 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
369 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
370
371 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
372 }
373
374 static LLVMValueRef
375 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
376 {
377 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
382 LLVMBuildMul(ctx->ac.builder, patch_stride,
383 rel_patch_id, ""),
384 "");
385 }
386
387 static LLVMValueRef
388 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
389 {
390 LLVMValueRef patch0_patch_data_offset =
391 get_tcs_out_patch0_patch_data_offset(ctx);
392 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
393 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
394
395 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
396 LLVMBuildMul(ctx->ac.builder, patch_stride,
397 rel_patch_id, ""),
398 "");
399 }
400
401 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
402 {
403 unsigned tcs_out_vertices =
404 ctx->shader->selector ?
405 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
406
407 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
408 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
409 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
410
411 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
412 }
413
414 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
415 {
416 unsigned stride;
417
418 switch (ctx->type) {
419 case PIPE_SHADER_VERTEX:
420 stride = ctx->shader->selector->lshs_vertex_stride / 4;
421 return LLVMConstInt(ctx->i32, stride, 0);
422
423 case PIPE_SHADER_TESS_CTRL:
424 if (ctx->screen->info.chip_class >= GFX9 &&
425 ctx->shader->is_monolithic) {
426 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
427 return LLVMConstInt(ctx->i32, stride, 0);
428 }
429 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
430
431 default:
432 assert(0);
433 return NULL;
434 }
435 }
436
437 static LLVMValueRef get_instance_index_for_fetch(
438 struct si_shader_context *ctx,
439 unsigned param_start_instance, LLVMValueRef divisor)
440 {
441 LLVMValueRef result = ctx->abi.instance_id;
442
443 /* The division must be done before START_INSTANCE is added. */
444 if (divisor != ctx->i32_1)
445 result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
446
447 return LLVMBuildAdd(ctx->ac.builder, result,
448 LLVMGetParam(ctx->main_fn, param_start_instance), "");
449 }
450
451 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
452 * to float. */
453 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
454 LLVMValueRef vec4,
455 unsigned double_index)
456 {
457 LLVMBuilderRef builder = ctx->ac.builder;
458 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
459 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
460 LLVMVectorType(f64, 2), "");
461 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
462 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
463 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
464 }
465
466 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
467 LLVMValueRef i32, unsigned index)
468 {
469 assert(index <= 1);
470
471 if (index == 1)
472 return LLVMBuildAShr(ctx->ac.builder, i32,
473 LLVMConstInt(ctx->i32, 16, 0), "");
474
475 return LLVMBuildSExt(ctx->ac.builder,
476 LLVMBuildTrunc(ctx->ac.builder, i32,
477 ctx->ac.i16, ""),
478 ctx->i32, "");
479 }
480
481 void si_llvm_load_input_vs(
482 struct si_shader_context *ctx,
483 unsigned input_index,
484 LLVMValueRef out[4])
485 {
486 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
487 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
488
489 if (vs_blit_property) {
490 LLVMValueRef vertex_id = ctx->abi.vertex_id;
491 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
492 LLVMIntULE, vertex_id,
493 ctx->i32_1, "");
494 /* Use LLVMIntNE, because we have 3 vertices and only
495 * the middle one should use y2.
496 */
497 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
498 LLVMIntNE, vertex_id,
499 ctx->i32_1, "");
500
501 if (input_index == 0) {
502 /* Position: */
503 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs);
505 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 1);
507
508 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
509 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
510 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
511 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
512
513 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
514 x1, x2, "");
515 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
516 y1, y2, "");
517
518 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
519 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
520 out[2] = LLVMGetParam(ctx->main_fn,
521 ctx->param_vs_blit_inputs + 2);
522 out[3] = ctx->ac.f32_1;
523 return;
524 }
525
526 /* Color or texture coordinates: */
527 assert(input_index == 1);
528
529 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
530 for (int i = 0; i < 4; i++) {
531 out[i] = LLVMGetParam(ctx->main_fn,
532 ctx->param_vs_blit_inputs + 3 + i);
533 }
534 } else {
535 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
536 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
537 ctx->param_vs_blit_inputs + 3);
538 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
539 ctx->param_vs_blit_inputs + 4);
540 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
541 ctx->param_vs_blit_inputs + 5);
542 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
543 ctx->param_vs_blit_inputs + 6);
544
545 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
546 x1, x2, "");
547 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
548 y1, y2, "");
549 out[2] = LLVMGetParam(ctx->main_fn,
550 ctx->param_vs_blit_inputs + 7);
551 out[3] = LLVMGetParam(ctx->main_fn,
552 ctx->param_vs_blit_inputs + 8);
553 }
554 return;
555 }
556
557 unsigned chan;
558 unsigned fix_fetch;
559 unsigned num_fetches;
560 unsigned fetch_stride;
561 unsigned num_channels;
562
563 LLVMValueRef t_list_ptr;
564 LLVMValueRef t_offset;
565 LLVMValueRef t_list;
566 LLVMValueRef vertex_index;
567 LLVMValueRef input[3];
568
569 /* Load the T list */
570 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
571
572 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
573
574 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
575
576 vertex_index = LLVMGetParam(ctx->main_fn,
577 ctx->param_vertex_index0 +
578 input_index);
579
580 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
581
582 /* Do multiple loads for special formats. */
583 switch (fix_fetch) {
584 case SI_FIX_FETCH_RGB_64_FLOAT:
585 num_fetches = 3; /* 3 2-dword loads */
586 fetch_stride = 8;
587 num_channels = 2;
588 break;
589 case SI_FIX_FETCH_RGBA_64_FLOAT:
590 num_fetches = 2; /* 2 4-dword loads */
591 fetch_stride = 16;
592 num_channels = 4;
593 break;
594 case SI_FIX_FETCH_RGB_8:
595 case SI_FIX_FETCH_RGB_8_INT:
596 num_fetches = 3;
597 fetch_stride = 1;
598 num_channels = 1;
599 break;
600 case SI_FIX_FETCH_RGB_16:
601 case SI_FIX_FETCH_RGB_16_INT:
602 num_fetches = 3;
603 fetch_stride = 2;
604 num_channels = 1;
605 break;
606 default:
607 num_fetches = 1;
608 fetch_stride = 0;
609 num_channels = util_last_bit(info->input_usage_mask[input_index]);
610 }
611
612 for (unsigned i = 0; i < num_fetches; i++) {
613 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
614
615 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
616 vertex_index, voffset,
617 num_channels, false, true);
618 input[i] = ac_build_expand_to_vec4(&ctx->ac, input[i], num_channels);
619 }
620
621 /* Break up the vec4 into individual components */
622 for (chan = 0; chan < 4; chan++) {
623 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
624 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
625 input[0], llvm_chan, "");
626 }
627
628 switch (fix_fetch) {
629 case SI_FIX_FETCH_A2_SNORM:
630 case SI_FIX_FETCH_A2_SSCALED:
631 case SI_FIX_FETCH_A2_SINT: {
632 /* The hardware returns an unsigned value; convert it to a
633 * signed one.
634 */
635 LLVMValueRef tmp = out[3];
636 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
637
638 /* First, recover the sign-extended signed integer value. */
639 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
640 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
641 else
642 tmp = ac_to_integer(&ctx->ac, tmp);
643
644 /* For the integer-like cases, do a natural sign extension.
645 *
646 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
647 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
648 * exponent.
649 */
650 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
651 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
652 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
653 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
654
655 /* Convert back to the right type. */
656 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
657 LLVMValueRef clamp;
658 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
659 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
660 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
661 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
662 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
663 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
664 }
665
666 out[3] = tmp;
667 break;
668 }
669 case SI_FIX_FETCH_RGBA_32_UNORM:
670 case SI_FIX_FETCH_RGBX_32_UNORM:
671 for (chan = 0; chan < 4; chan++) {
672 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
673 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
674 out[chan], ctx->f32, "");
675 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
676 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
677 }
678 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
679 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
680 out[3] = LLVMConstReal(ctx->f32, 1);
681 break;
682 case SI_FIX_FETCH_RGBA_32_SNORM:
683 case SI_FIX_FETCH_RGBX_32_SNORM:
684 case SI_FIX_FETCH_RGBA_32_FIXED:
685 case SI_FIX_FETCH_RGBX_32_FIXED: {
686 double scale;
687 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
688 scale = 1.0 / 0x10000;
689 else
690 scale = 1.0 / INT_MAX;
691
692 for (chan = 0; chan < 4; chan++) {
693 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
694 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
695 out[chan], ctx->f32, "");
696 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
697 LLVMConstReal(ctx->f32, scale), "");
698 }
699 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
700 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
701 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
702 out[3] = LLVMConstReal(ctx->f32, 1);
703 break;
704 }
705 case SI_FIX_FETCH_RGBA_32_USCALED:
706 for (chan = 0; chan < 4; chan++) {
707 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
708 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
709 out[chan], ctx->f32, "");
710 }
711 break;
712 case SI_FIX_FETCH_RGBA_32_SSCALED:
713 for (chan = 0; chan < 4; chan++) {
714 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
715 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
716 out[chan], ctx->f32, "");
717 }
718 break;
719 case SI_FIX_FETCH_RG_64_FLOAT:
720 for (chan = 0; chan < 2; chan++)
721 out[chan] = extract_double_to_float(ctx, input[0], chan);
722
723 out[2] = LLVMConstReal(ctx->f32, 0);
724 out[3] = LLVMConstReal(ctx->f32, 1);
725 break;
726 case SI_FIX_FETCH_RGB_64_FLOAT:
727 for (chan = 0; chan < 3; chan++)
728 out[chan] = extract_double_to_float(ctx, input[chan], 0);
729
730 out[3] = LLVMConstReal(ctx->f32, 1);
731 break;
732 case SI_FIX_FETCH_RGBA_64_FLOAT:
733 for (chan = 0; chan < 4; chan++) {
734 out[chan] = extract_double_to_float(ctx, input[chan / 2],
735 chan % 2);
736 }
737 break;
738 case SI_FIX_FETCH_RGB_8:
739 case SI_FIX_FETCH_RGB_8_INT:
740 case SI_FIX_FETCH_RGB_16:
741 case SI_FIX_FETCH_RGB_16_INT:
742 for (chan = 0; chan < 3; chan++) {
743 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
744 input[chan],
745 ctx->i32_0, "");
746 }
747 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
748 fix_fetch == SI_FIX_FETCH_RGB_16) {
749 out[3] = LLVMConstReal(ctx->f32, 1);
750 } else {
751 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
752 }
753 break;
754 }
755 }
756
757 static void declare_input_vs(
758 struct si_shader_context *ctx,
759 unsigned input_index,
760 const struct tgsi_full_declaration *decl,
761 LLVMValueRef out[4])
762 {
763 si_llvm_load_input_vs(ctx, input_index, out);
764 }
765
766 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
767 unsigned swizzle)
768 {
769 if (swizzle > 0)
770 return ctx->i32_0;
771
772 switch (ctx->type) {
773 case PIPE_SHADER_VERTEX:
774 return LLVMGetParam(ctx->main_fn,
775 ctx->param_vs_prim_id);
776 case PIPE_SHADER_TESS_CTRL:
777 return ctx->abi.tcs_patch_id;
778 case PIPE_SHADER_TESS_EVAL:
779 return ctx->abi.tes_patch_id;
780 case PIPE_SHADER_GEOMETRY:
781 return ctx->abi.gs_prim_id;
782 default:
783 assert(0);
784 return ctx->i32_0;
785 }
786 }
787
788 /**
789 * Return the value of tgsi_ind_register for indexing.
790 * This is the indirect index with the constant offset added to it.
791 */
792 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
793 const struct tgsi_ind_register *ind,
794 unsigned addr_mul,
795 int rel_index)
796 {
797 LLVMValueRef result;
798
799 if (ind->File == TGSI_FILE_ADDRESS) {
800 result = ctx->addrs[ind->Index][ind->Swizzle];
801 result = LLVMBuildLoad(ctx->ac.builder, result, "");
802 } else {
803 struct tgsi_full_src_register src = {};
804
805 src.Register.File = ind->File;
806 src.Register.Index = ind->Index;
807
808 /* Set the second index to 0 for constants. */
809 if (ind->File == TGSI_FILE_CONSTANT)
810 src.Register.Dimension = 1;
811
812 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
813 TGSI_TYPE_SIGNED,
814 ind->Swizzle);
815 result = ac_to_integer(&ctx->ac, result);
816 }
817
818 if (addr_mul != 1)
819 result = LLVMBuildMul(ctx->ac.builder, result,
820 LLVMConstInt(ctx->i32, addr_mul, 0), "");
821 result = LLVMBuildAdd(ctx->ac.builder, result,
822 LLVMConstInt(ctx->i32, rel_index, 0), "");
823 return result;
824 }
825
826 /**
827 * Like si_get_indirect_index, but restricts the return value to a (possibly
828 * undefined) value inside [0..num).
829 */
830 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
831 const struct tgsi_ind_register *ind,
832 int rel_index, unsigned num)
833 {
834 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
835
836 return si_llvm_bound_index(ctx, result, num);
837 }
838
839 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
840 LLVMValueRef vertex_dw_stride,
841 LLVMValueRef base_addr,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index,
844 unsigned input_index,
845 ubyte *name,
846 ubyte *index,
847 bool is_patch)
848 {
849 if (vertex_dw_stride) {
850 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
851 LLVMBuildMul(ctx->ac.builder, vertex_index,
852 vertex_dw_stride, ""), "");
853 }
854
855 if (param_index) {
856 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
857 LLVMBuildMul(ctx->ac.builder, param_index,
858 LLVMConstInt(ctx->i32, 4, 0), ""), "");
859 }
860
861 int param = is_patch ?
862 si_shader_io_get_unique_index_patch(name[input_index],
863 index[input_index]) :
864 si_shader_io_get_unique_index(name[input_index],
865 index[input_index], false);
866
867 /* Add the base address of the element. */
868 return LLVMBuildAdd(ctx->ac.builder, base_addr,
869 LLVMConstInt(ctx->i32, param * 4, 0), "");
870 }
871
872 /**
873 * Calculate a dword address given an input or output register and a stride.
874 */
875 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
876 const struct tgsi_full_dst_register *dst,
877 const struct tgsi_full_src_register *src,
878 LLVMValueRef vertex_dw_stride,
879 LLVMValueRef base_addr)
880 {
881 struct tgsi_shader_info *info = &ctx->shader->selector->info;
882 ubyte *name, *index, *array_first;
883 int input_index;
884 struct tgsi_full_dst_register reg;
885 LLVMValueRef vertex_index = NULL;
886 LLVMValueRef ind_index = NULL;
887
888 /* Set the register description. The address computation is the same
889 * for sources and destinations. */
890 if (src) {
891 reg.Register.File = src->Register.File;
892 reg.Register.Index = src->Register.Index;
893 reg.Register.Indirect = src->Register.Indirect;
894 reg.Register.Dimension = src->Register.Dimension;
895 reg.Indirect = src->Indirect;
896 reg.Dimension = src->Dimension;
897 reg.DimIndirect = src->DimIndirect;
898 } else
899 reg = *dst;
900
901 /* If the register is 2-dimensional (e.g. an array of vertices
902 * in a primitive), calculate the base address of the vertex. */
903 if (reg.Register.Dimension) {
904 if (reg.Dimension.Indirect)
905 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
906 1, reg.Dimension.Index);
907 else
908 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
909 }
910
911 /* Get information about the register. */
912 if (reg.Register.File == TGSI_FILE_INPUT) {
913 name = info->input_semantic_name;
914 index = info->input_semantic_index;
915 array_first = info->input_array_first;
916 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
917 name = info->output_semantic_name;
918 index = info->output_semantic_index;
919 array_first = info->output_array_first;
920 } else {
921 assert(0);
922 return NULL;
923 }
924
925 if (reg.Register.Indirect) {
926 /* Add the relative address of the element. */
927 if (reg.Indirect.ArrayID)
928 input_index = array_first[reg.Indirect.ArrayID];
929 else
930 input_index = reg.Register.Index;
931
932 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
933 1, reg.Register.Index - input_index);
934 } else {
935 input_index = reg.Register.Index;
936 }
937
938 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
939 base_addr, vertex_index,
940 ind_index, input_index,
941 name, index,
942 !reg.Register.Dimension);
943 }
944
945 /* The offchip buffer layout for TCS->TES is
946 *
947 * - attribute 0 of patch 0 vertex 0
948 * - attribute 0 of patch 0 vertex 1
949 * - attribute 0 of patch 0 vertex 2
950 * ...
951 * - attribute 0 of patch 1 vertex 0
952 * - attribute 0 of patch 1 vertex 1
953 * ...
954 * - attribute 1 of patch 0 vertex 0
955 * - attribute 1 of patch 0 vertex 1
956 * ...
957 * - per patch attribute 0 of patch 0
958 * - per patch attribute 0 of patch 1
959 * ...
960 *
961 * Note that every attribute has 4 components.
962 */
963 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
964 LLVMValueRef rel_patch_id,
965 LLVMValueRef vertex_index,
966 LLVMValueRef param_index)
967 {
968 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
969 LLVMValueRef param_stride, constant16;
970
971 vertices_per_patch = get_num_tcs_out_vertices(ctx);
972 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
973 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
974 num_patches, "");
975
976 constant16 = LLVMConstInt(ctx->i32, 16, 0);
977 if (vertex_index) {
978 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
979 vertices_per_patch, "");
980
981 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
982 vertex_index, "");
983
984 param_stride = total_vertices;
985 } else {
986 base_addr = rel_patch_id;
987 param_stride = num_patches;
988 }
989
990 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
991 LLVMBuildMul(ctx->ac.builder, param_index,
992 param_stride, ""), "");
993
994 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
995
996 if (!vertex_index) {
997 LLVMValueRef patch_data_offset =
998 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
999
1000 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1001 patch_data_offset, "");
1002 }
1003 return base_addr;
1004 }
1005
1006 /* This is a generic helper that can be shared by the NIR and TGSI backends */
1007 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1008 struct si_shader_context *ctx,
1009 LLVMValueRef vertex_index,
1010 LLVMValueRef param_index,
1011 unsigned param_base,
1012 ubyte *name,
1013 ubyte *index,
1014 bool is_patch)
1015 {
1016 unsigned param_index_base;
1017
1018 param_index_base = is_patch ?
1019 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1020 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
1021
1022 if (param_index) {
1023 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1024 LLVMConstInt(ctx->i32, param_index_base, 0),
1025 "");
1026 } else {
1027 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1028 }
1029
1030 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1031 vertex_index, param_index);
1032 }
1033
1034 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1035 struct si_shader_context *ctx,
1036 const struct tgsi_full_dst_register *dst,
1037 const struct tgsi_full_src_register *src)
1038 {
1039 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1040 ubyte *name, *index, *array_first;
1041 struct tgsi_full_src_register reg;
1042 LLVMValueRef vertex_index = NULL;
1043 LLVMValueRef param_index = NULL;
1044 unsigned param_base;
1045
1046 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1047
1048 if (reg.Register.Dimension) {
1049
1050 if (reg.Dimension.Indirect)
1051 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1052 1, reg.Dimension.Index);
1053 else
1054 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1055 }
1056
1057 /* Get information about the register. */
1058 if (reg.Register.File == TGSI_FILE_INPUT) {
1059 name = info->input_semantic_name;
1060 index = info->input_semantic_index;
1061 array_first = info->input_array_first;
1062 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1063 name = info->output_semantic_name;
1064 index = info->output_semantic_index;
1065 array_first = info->output_array_first;
1066 } else {
1067 assert(0);
1068 return NULL;
1069 }
1070
1071 if (reg.Register.Indirect) {
1072 if (reg.Indirect.ArrayID)
1073 param_base = array_first[reg.Indirect.ArrayID];
1074 else
1075 param_base = reg.Register.Index;
1076
1077 param_index = si_get_indirect_index(ctx, &reg.Indirect,
1078 1, reg.Register.Index - param_base);
1079
1080 } else {
1081 param_base = reg.Register.Index;
1082 }
1083
1084 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1085 param_index, param_base,
1086 name, index, !reg.Register.Dimension);
1087 }
1088
1089 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1090 LLVMTypeRef type, unsigned swizzle,
1091 LLVMValueRef buffer, LLVMValueRef offset,
1092 LLVMValueRef base, bool can_speculate)
1093 {
1094 struct si_shader_context *ctx = si_shader_context(bld_base);
1095 LLVMValueRef value, value2;
1096 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1097
1098 if (swizzle == ~0) {
1099 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1100 0, 1, 0, can_speculate, false);
1101
1102 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1103 }
1104
1105 if (!llvm_type_is_64bit(ctx, type)) {
1106 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1107 0, 1, 0, can_speculate, false);
1108
1109 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1110 return LLVMBuildExtractElement(ctx->ac.builder, value,
1111 LLVMConstInt(ctx->i32, swizzle, 0), "");
1112 }
1113
1114 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1115 swizzle * 4, 1, 0, can_speculate, false);
1116
1117 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1118 swizzle * 4 + 4, 1, 0, can_speculate, false);
1119
1120 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1121 }
1122
1123 /**
1124 * Load from LDS.
1125 *
1126 * \param type output value type
1127 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1128 * \param dw_addr address in dwords
1129 */
1130 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1131 LLVMTypeRef type, unsigned swizzle,
1132 LLVMValueRef dw_addr)
1133 {
1134 struct si_shader_context *ctx = si_shader_context(bld_base);
1135 LLVMValueRef value;
1136
1137 if (swizzle == ~0) {
1138 LLVMValueRef values[TGSI_NUM_CHANNELS];
1139
1140 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1141 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1142
1143 return ac_build_gather_values(&ctx->ac, values,
1144 TGSI_NUM_CHANNELS);
1145 }
1146
1147 /* Split 64-bit loads. */
1148 if (llvm_type_is_64bit(ctx, type)) {
1149 LLVMValueRef lo, hi;
1150
1151 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1152 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1153 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1154 }
1155
1156 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1157 LLVMConstInt(ctx->i32, swizzle, 0), "");
1158
1159 value = ac_lds_load(&ctx->ac, dw_addr);
1160
1161 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1162 }
1163
1164 /**
1165 * Store to LDS.
1166 *
1167 * \param swizzle offset (typically 0..3)
1168 * \param dw_addr address in dwords
1169 * \param value value to store
1170 */
1171 static void lds_store(struct si_shader_context *ctx,
1172 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1173 LLVMValueRef value)
1174 {
1175 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1176 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1177
1178 ac_lds_store(&ctx->ac, dw_addr, value);
1179 }
1180
1181 enum si_tess_ring {
1182 TCS_FACTOR_RING,
1183 TESS_OFFCHIP_RING_TCS,
1184 TESS_OFFCHIP_RING_TES,
1185 };
1186
1187 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1188 enum si_tess_ring ring)
1189 {
1190 LLVMBuilderRef builder = ctx->ac.builder;
1191 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1192 ctx->param_tcs_out_lds_layout;
1193 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1194
1195 /* TCS only receives high 13 bits of the address. */
1196 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1197 addr = LLVMBuildAnd(builder, addr,
1198 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1199 }
1200
1201 if (ring == TCS_FACTOR_RING) {
1202 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1203 addr = LLVMBuildAdd(builder, addr,
1204 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1205 }
1206
1207 LLVMValueRef desc[4];
1208 desc[0] = addr;
1209 desc[1] = LLVMConstInt(ctx->i32,
1210 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1211 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1212 desc[3] = LLVMConstInt(ctx->i32,
1213 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1214 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1215 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1216 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1217 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1218 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0);
1219
1220 return ac_build_gather_values(&ctx->ac, desc, 4);
1221 }
1222
1223 static LLVMValueRef fetch_input_tcs(
1224 struct lp_build_tgsi_context *bld_base,
1225 const struct tgsi_full_src_register *reg,
1226 enum tgsi_opcode_type type, unsigned swizzle)
1227 {
1228 struct si_shader_context *ctx = si_shader_context(bld_base);
1229 LLVMValueRef dw_addr, stride;
1230
1231 stride = get_tcs_in_vertex_dw_stride(ctx);
1232 dw_addr = get_tcs_in_current_patch_offset(ctx);
1233 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1234
1235 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1236 }
1237
1238 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1239 LLVMTypeRef type,
1240 LLVMValueRef vertex_index,
1241 LLVMValueRef param_index,
1242 unsigned const_index,
1243 unsigned location,
1244 unsigned driver_location,
1245 unsigned component,
1246 unsigned num_components,
1247 bool is_patch,
1248 bool is_compact,
1249 bool load_input)
1250 {
1251 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1252 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1253 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1254 LLVMValueRef dw_addr, stride;
1255
1256 driver_location = driver_location / 4;
1257
1258 if (load_input) {
1259 stride = get_tcs_in_vertex_dw_stride(ctx);
1260 dw_addr = get_tcs_in_current_patch_offset(ctx);
1261 } else {
1262 if (is_patch) {
1263 stride = NULL;
1264 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1265 } else {
1266 stride = get_tcs_out_vertex_dw_stride(ctx);
1267 dw_addr = get_tcs_out_current_patch_offset(ctx);
1268 }
1269 }
1270
1271 if (param_index) {
1272 /* Add the constant index to the indirect index */
1273 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1274 LLVMConstInt(ctx->i32, const_index, 0), "");
1275 } else {
1276 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1277 }
1278
1279 ubyte *names;
1280 ubyte *indices;
1281 if (load_input) {
1282 names = info->input_semantic_name;
1283 indices = info->input_semantic_index;
1284 } else {
1285 names = info->output_semantic_name;
1286 indices = info->output_semantic_index;
1287 }
1288
1289 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1290 vertex_index, param_index,
1291 driver_location,
1292 names, indices,
1293 is_patch);
1294
1295 LLVMValueRef value[4];
1296 for (unsigned i = 0; i < num_components; i++) {
1297 unsigned offset = i;
1298 if (llvm_type_is_64bit(ctx, type))
1299 offset *= 2;
1300
1301 offset += component;
1302 value[i + component] = lds_load(bld_base, type, offset, dw_addr);
1303 }
1304
1305 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1306 }
1307
1308 static LLVMValueRef fetch_output_tcs(
1309 struct lp_build_tgsi_context *bld_base,
1310 const struct tgsi_full_src_register *reg,
1311 enum tgsi_opcode_type type, unsigned swizzle)
1312 {
1313 struct si_shader_context *ctx = si_shader_context(bld_base);
1314 LLVMValueRef dw_addr, stride;
1315
1316 if (reg->Register.Dimension) {
1317 stride = get_tcs_out_vertex_dw_stride(ctx);
1318 dw_addr = get_tcs_out_current_patch_offset(ctx);
1319 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1320 } else {
1321 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1322 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1323 }
1324
1325 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1326 }
1327
1328 static LLVMValueRef fetch_input_tes(
1329 struct lp_build_tgsi_context *bld_base,
1330 const struct tgsi_full_src_register *reg,
1331 enum tgsi_opcode_type type, unsigned swizzle)
1332 {
1333 struct si_shader_context *ctx = si_shader_context(bld_base);
1334 LLVMValueRef base, addr;
1335
1336 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1337 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1338
1339 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1340 ctx->tess_offchip_ring, base, addr, true);
1341 }
1342
1343 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1344 LLVMTypeRef type,
1345 LLVMValueRef vertex_index,
1346 LLVMValueRef param_index,
1347 unsigned const_index,
1348 unsigned location,
1349 unsigned driver_location,
1350 unsigned component,
1351 unsigned num_components,
1352 bool is_patch,
1353 bool is_compact,
1354 bool load_input)
1355 {
1356 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1357 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1358 LLVMValueRef base, addr;
1359
1360 driver_location = driver_location / 4;
1361
1362 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1363
1364 if (param_index) {
1365 /* Add the constant index to the indirect index */
1366 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1367 LLVMConstInt(ctx->i32, const_index, 0), "");
1368 } else {
1369 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1370 }
1371
1372 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1373 param_index, driver_location,
1374 info->input_semantic_name,
1375 info->input_semantic_index,
1376 is_patch);
1377
1378 /* TODO: This will generate rather ordinary llvm code, although it
1379 * should be easy for the optimiser to fix up. In future we might want
1380 * to refactor buffer_load(), but for now this maximises code sharing
1381 * between the NIR and TGSI backends.
1382 */
1383 LLVMValueRef value[4];
1384 for (unsigned i = 0; i < num_components; i++) {
1385 unsigned offset = i;
1386 if (llvm_type_is_64bit(ctx, type))
1387 offset *= 2;
1388
1389 offset += component;
1390 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1391 ctx->tess_offchip_ring, base, addr, true);
1392 }
1393
1394 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1395 }
1396
1397 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1398 const struct tgsi_full_instruction *inst,
1399 const struct tgsi_opcode_info *info,
1400 unsigned index,
1401 LLVMValueRef dst[4])
1402 {
1403 struct si_shader_context *ctx = si_shader_context(bld_base);
1404 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1405 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1406 unsigned chan_index;
1407 LLVMValueRef dw_addr, stride;
1408 LLVMValueRef buffer, base, buf_addr;
1409 LLVMValueRef values[4];
1410 bool skip_lds_store;
1411 bool is_tess_factor = false, is_tess_inner = false;
1412
1413 /* Only handle per-patch and per-vertex outputs here.
1414 * Vectors will be lowered to scalars and this function will be called again.
1415 */
1416 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1417 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1418 si_llvm_emit_store(bld_base, inst, info, index, dst);
1419 return;
1420 }
1421
1422 if (reg->Register.Dimension) {
1423 stride = get_tcs_out_vertex_dw_stride(ctx);
1424 dw_addr = get_tcs_out_current_patch_offset(ctx);
1425 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1426 skip_lds_store = !sh_info->reads_pervertex_outputs;
1427 } else {
1428 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1429 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1430 skip_lds_store = !sh_info->reads_perpatch_outputs;
1431
1432 if (!reg->Register.Indirect) {
1433 int name = sh_info->output_semantic_name[reg->Register.Index];
1434
1435 /* Always write tess factors into LDS for the TCS epilog. */
1436 if (name == TGSI_SEMANTIC_TESSINNER ||
1437 name == TGSI_SEMANTIC_TESSOUTER) {
1438 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1439 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1440 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1441 is_tess_factor = true;
1442 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1443 }
1444 }
1445 }
1446
1447 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1448
1449 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1450 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1451
1452 uint32_t writemask = reg->Register.WriteMask;
1453 while (writemask) {
1454 chan_index = u_bit_scan(&writemask);
1455 LLVMValueRef value = dst[chan_index];
1456
1457 if (inst->Instruction.Saturate)
1458 value = ac_build_clamp(&ctx->ac, value);
1459
1460 /* Skip LDS stores if there is no LDS read of this output. */
1461 if (!skip_lds_store)
1462 lds_store(ctx, chan_index, dw_addr, value);
1463
1464 value = ac_to_integer(&ctx->ac, value);
1465 values[chan_index] = value;
1466
1467 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1468 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1469 buf_addr, base,
1470 4 * chan_index, 1, 0, true, false);
1471 }
1472
1473 /* Write tess factors into VGPRs for the epilog. */
1474 if (is_tess_factor &&
1475 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1476 if (!is_tess_inner) {
1477 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1478 ctx->invoc0_tess_factors[chan_index]);
1479 } else if (chan_index < 2) {
1480 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1481 ctx->invoc0_tess_factors[4 + chan_index]);
1482 }
1483 }
1484 }
1485
1486 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1487 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1488 values, 4);
1489 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1490 base, 0, 1, 0, true, false);
1491 }
1492 }
1493
1494 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1495 const struct nir_variable *var,
1496 LLVMValueRef vertex_index,
1497 LLVMValueRef param_index,
1498 unsigned const_index,
1499 LLVMValueRef src,
1500 unsigned writemask)
1501 {
1502 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1503 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1504 const unsigned component = var->data.location_frac;
1505 const bool is_patch = var->data.patch;
1506 unsigned driver_location = var->data.driver_location;
1507 LLVMValueRef dw_addr, stride;
1508 LLVMValueRef buffer, base, addr;
1509 LLVMValueRef values[4];
1510 bool skip_lds_store;
1511 bool is_tess_factor = false, is_tess_inner = false;
1512
1513 driver_location = driver_location / 4;
1514
1515 if (param_index) {
1516 /* Add the constant index to the indirect index */
1517 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1518 LLVMConstInt(ctx->i32, const_index, 0), "");
1519 } else {
1520 if (const_index != 0)
1521 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1522 }
1523
1524 if (!is_patch) {
1525 stride = get_tcs_out_vertex_dw_stride(ctx);
1526 dw_addr = get_tcs_out_current_patch_offset(ctx);
1527 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1528 vertex_index, param_index,
1529 driver_location,
1530 info->output_semantic_name,
1531 info->output_semantic_index,
1532 is_patch);
1533
1534 skip_lds_store = !info->reads_pervertex_outputs;
1535 } else {
1536 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1537 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1538 vertex_index, param_index,
1539 driver_location,
1540 info->output_semantic_name,
1541 info->output_semantic_index,
1542 is_patch);
1543
1544 skip_lds_store = !info->reads_perpatch_outputs;
1545
1546 if (!param_index) {
1547 int name = info->output_semantic_name[driver_location];
1548
1549 /* Always write tess factors into LDS for the TCS epilog. */
1550 if (name == TGSI_SEMANTIC_TESSINNER ||
1551 name == TGSI_SEMANTIC_TESSOUTER) {
1552 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1553 skip_lds_store = !info->reads_tessfactor_outputs &&
1554 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1555 is_tess_factor = true;
1556 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1557 }
1558 }
1559 }
1560
1561 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1562
1563 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1564
1565 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1566 param_index, driver_location,
1567 info->output_semantic_name,
1568 info->output_semantic_index,
1569 is_patch);
1570
1571 for (unsigned chan = 0; chan < 4; chan++) {
1572 if (!(writemask & (1 << chan)))
1573 continue;
1574 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1575
1576 /* Skip LDS stores if there is no LDS read of this output. */
1577 if (!skip_lds_store)
1578 lds_store(ctx, chan, dw_addr, value);
1579
1580 value = ac_to_integer(&ctx->ac, value);
1581 values[chan] = value;
1582
1583 if (writemask != 0xF && !is_tess_factor) {
1584 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1585 addr, base,
1586 4 * chan, 1, 0, true, false);
1587 }
1588
1589 /* Write tess factors into VGPRs for the epilog. */
1590 if (is_tess_factor &&
1591 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1592 if (!is_tess_inner) {
1593 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1594 ctx->invoc0_tess_factors[chan]);
1595 } else if (chan < 2) {
1596 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1597 ctx->invoc0_tess_factors[4 + chan]);
1598 }
1599 }
1600 }
1601
1602 if (writemask == 0xF && !is_tess_factor) {
1603 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1604 values, 4);
1605 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1606 base, 0, 1, 0, true, false);
1607 }
1608 }
1609
1610 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1611 unsigned input_index,
1612 unsigned vtx_offset_param,
1613 LLVMTypeRef type,
1614 unsigned swizzle)
1615 {
1616 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1617 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1618 struct si_shader *shader = ctx->shader;
1619 LLVMValueRef vtx_offset, soffset;
1620 struct tgsi_shader_info *info = &shader->selector->info;
1621 unsigned semantic_name = info->input_semantic_name[input_index];
1622 unsigned semantic_index = info->input_semantic_index[input_index];
1623 unsigned param;
1624 LLVMValueRef value;
1625
1626 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1627
1628 /* GFX9 has the ESGS ring in LDS. */
1629 if (ctx->screen->info.chip_class >= GFX9) {
1630 unsigned index = vtx_offset_param;
1631
1632 switch (index / 2) {
1633 case 0:
1634 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1635 index % 2 ? 16 : 0, 16);
1636 break;
1637 case 1:
1638 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1639 index % 2 ? 16 : 0, 16);
1640 break;
1641 case 2:
1642 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1643 index % 2 ? 16 : 0, 16);
1644 break;
1645 default:
1646 assert(0);
1647 return NULL;
1648 }
1649
1650 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1651 LLVMConstInt(ctx->i32, param * 4, 0), "");
1652 return lds_load(bld_base, type, swizzle, vtx_offset);
1653 }
1654
1655 /* GFX6: input load from the ESGS ring in memory. */
1656 if (swizzle == ~0) {
1657 LLVMValueRef values[TGSI_NUM_CHANNELS];
1658 unsigned chan;
1659 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1660 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1661 type, chan);
1662 }
1663 return ac_build_gather_values(&ctx->ac, values,
1664 TGSI_NUM_CHANNELS);
1665 }
1666
1667 /* Get the vertex offset parameter on GFX6. */
1668 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1669
1670 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1671 LLVMConstInt(ctx->i32, 4, 0), "");
1672
1673 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1674
1675 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1676 vtx_offset, soffset, 0, 1, 0, true, false);
1677 if (llvm_type_is_64bit(ctx, type)) {
1678 LLVMValueRef value2;
1679 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1680
1681 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1682 ctx->i32_0, vtx_offset, soffset,
1683 0, 1, 0, true, false);
1684 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1685 }
1686 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1687 }
1688
1689 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1690 unsigned location,
1691 unsigned driver_location,
1692 unsigned component,
1693 unsigned num_components,
1694 unsigned vertex_index,
1695 unsigned const_index,
1696 LLVMTypeRef type)
1697 {
1698 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1699
1700 LLVMValueRef value[4];
1701 for (unsigned i = 0; i < num_components; i++) {
1702 unsigned offset = i;
1703 if (llvm_type_is_64bit(ctx, type))
1704 offset *= 2;
1705
1706 offset += component;
1707 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1708 vertex_index, type, offset);
1709 }
1710
1711 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1712 }
1713
1714 static LLVMValueRef fetch_input_gs(
1715 struct lp_build_tgsi_context *bld_base,
1716 const struct tgsi_full_src_register *reg,
1717 enum tgsi_opcode_type type,
1718 unsigned swizzle)
1719 {
1720 struct si_shader_context *ctx = si_shader_context(bld_base);
1721 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1722
1723 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1724 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1725 return get_primitive_id(ctx, swizzle);
1726
1727 if (!reg->Register.Dimension)
1728 return NULL;
1729
1730 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1731 reg->Dimension.Index,
1732 tgsi2llvmtype(bld_base, type),
1733 swizzle);
1734 }
1735
1736 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1737 {
1738 switch (interpolate) {
1739 case TGSI_INTERPOLATE_CONSTANT:
1740 return 0;
1741
1742 case TGSI_INTERPOLATE_LINEAR:
1743 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1744 return SI_PARAM_LINEAR_SAMPLE;
1745 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1746 return SI_PARAM_LINEAR_CENTROID;
1747 else
1748 return SI_PARAM_LINEAR_CENTER;
1749 break;
1750 case TGSI_INTERPOLATE_COLOR:
1751 case TGSI_INTERPOLATE_PERSPECTIVE:
1752 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1753 return SI_PARAM_PERSP_SAMPLE;
1754 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1755 return SI_PARAM_PERSP_CENTROID;
1756 else
1757 return SI_PARAM_PERSP_CENTER;
1758 break;
1759 default:
1760 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1761 return -1;
1762 }
1763 }
1764
1765 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1766 unsigned attr_index, unsigned chan,
1767 LLVMValueRef prim_mask,
1768 LLVMValueRef i, LLVMValueRef j)
1769 {
1770 if (i || j) {
1771 return ac_build_fs_interp(&ctx->ac,
1772 LLVMConstInt(ctx->i32, chan, 0),
1773 LLVMConstInt(ctx->i32, attr_index, 0),
1774 prim_mask, i, j);
1775 }
1776 return ac_build_fs_interp_mov(&ctx->ac,
1777 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1778 LLVMConstInt(ctx->i32, chan, 0),
1779 LLVMConstInt(ctx->i32, attr_index, 0),
1780 prim_mask);
1781 }
1782
1783 /**
1784 * Interpolate a fragment shader input.
1785 *
1786 * @param ctx context
1787 * @param input_index index of the input in hardware
1788 * @param semantic_name TGSI_SEMANTIC_*
1789 * @param semantic_index semantic index
1790 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1791 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1792 * @param interp_param interpolation weights (i,j)
1793 * @param prim_mask SI_PARAM_PRIM_MASK
1794 * @param face SI_PARAM_FRONT_FACE
1795 * @param result the return value (4 components)
1796 */
1797 static void interp_fs_input(struct si_shader_context *ctx,
1798 unsigned input_index,
1799 unsigned semantic_name,
1800 unsigned semantic_index,
1801 unsigned num_interp_inputs,
1802 unsigned colors_read_mask,
1803 LLVMValueRef interp_param,
1804 LLVMValueRef prim_mask,
1805 LLVMValueRef face,
1806 LLVMValueRef result[4])
1807 {
1808 LLVMValueRef i = NULL, j = NULL;
1809 unsigned chan;
1810
1811 /* fs.constant returns the param from the middle vertex, so it's not
1812 * really useful for flat shading. It's meant to be used for custom
1813 * interpolation (but the intrinsic can't fetch from the other two
1814 * vertices).
1815 *
1816 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1817 * to do the right thing. The only reason we use fs.constant is that
1818 * fs.interp cannot be used on integers, because they can be equal
1819 * to NaN.
1820 *
1821 * When interp is false we will use fs.constant or for newer llvm,
1822 * amdgcn.interp.mov.
1823 */
1824 bool interp = interp_param != NULL;
1825
1826 if (interp) {
1827 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1828 LLVMVectorType(ctx->f32, 2), "");
1829
1830 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1831 ctx->i32_0, "");
1832 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1833 ctx->i32_1, "");
1834 }
1835
1836 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1837 ctx->shader->key.part.ps.prolog.color_two_side) {
1838 LLVMValueRef is_face_positive;
1839
1840 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1841 * otherwise it's at offset "num_inputs".
1842 */
1843 unsigned back_attr_offset = num_interp_inputs;
1844 if (semantic_index == 1 && colors_read_mask & 0xf)
1845 back_attr_offset += 1;
1846
1847 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1848 face, ctx->i32_0, "");
1849
1850 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1851 LLVMValueRef front, back;
1852
1853 front = si_build_fs_interp(ctx,
1854 input_index, chan,
1855 prim_mask, i, j);
1856 back = si_build_fs_interp(ctx,
1857 back_attr_offset, chan,
1858 prim_mask, i, j);
1859
1860 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1861 is_face_positive,
1862 front,
1863 back,
1864 "");
1865 }
1866 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1867 result[0] = si_build_fs_interp(ctx, input_index,
1868 0, prim_mask, i, j);
1869 result[1] =
1870 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1871 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1872 } else {
1873 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1874 result[chan] = si_build_fs_interp(ctx,
1875 input_index, chan,
1876 prim_mask, i, j);
1877 }
1878 }
1879 }
1880
1881 void si_llvm_load_input_fs(
1882 struct si_shader_context *ctx,
1883 unsigned input_index,
1884 LLVMValueRef out[4])
1885 {
1886 struct si_shader *shader = ctx->shader;
1887 struct tgsi_shader_info *info = &shader->selector->info;
1888 LLVMValueRef main_fn = ctx->main_fn;
1889 LLVMValueRef interp_param = NULL;
1890 int interp_param_idx;
1891 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1892 unsigned semantic_index = info->input_semantic_index[input_index];
1893 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1894 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1895
1896 /* Get colors from input VGPRs (set by the prolog). */
1897 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1898 unsigned colors_read = shader->selector->info.colors_read;
1899 unsigned mask = colors_read >> (semantic_index * 4);
1900 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1901 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1902 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1903
1904 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1905 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1906 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1907 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1908 return;
1909 }
1910
1911 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1912 if (interp_param_idx == -1)
1913 return;
1914 else if (interp_param_idx) {
1915 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1916 }
1917
1918 interp_fs_input(ctx, input_index, semantic_name,
1919 semantic_index, 0, /* this param is unused */
1920 shader->selector->info.colors_read, interp_param,
1921 ctx->abi.prim_mask,
1922 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1923 &out[0]);
1924 }
1925
1926 static void declare_input_fs(
1927 struct si_shader_context *ctx,
1928 unsigned input_index,
1929 const struct tgsi_full_declaration *decl,
1930 LLVMValueRef out[4])
1931 {
1932 si_llvm_load_input_fs(ctx, input_index, out);
1933 }
1934
1935 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1936 {
1937 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1938 }
1939
1940 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1941 {
1942 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1943
1944 /* For non-indexed draws, the base vertex set by the driver
1945 * (for direct draws) or the CP (for indirect draws) is the
1946 * first vertex ID, but GLSL expects 0 to be returned.
1947 */
1948 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1949 ctx->param_vs_state_bits);
1950 LLVMValueRef indexed;
1951
1952 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1953 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1954
1955 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1956 ctx->i32_0, "");
1957 }
1958
1959 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1960 {
1961 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1962
1963 LLVMValueRef values[3];
1964 LLVMValueRef result;
1965 unsigned i;
1966 unsigned *properties = ctx->shader->selector->info.properties;
1967
1968 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1969 unsigned sizes[3] = {
1970 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1971 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1972 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1973 };
1974
1975 for (i = 0; i < 3; ++i)
1976 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1977
1978 result = ac_build_gather_values(&ctx->ac, values, 3);
1979 } else {
1980 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1981 }
1982
1983 return result;
1984 }
1985
1986 /**
1987 * Load a dword from a constant buffer.
1988 */
1989 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1990 LLVMValueRef resource,
1991 LLVMValueRef offset)
1992 {
1993 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1994 0, 0, 0, true, true);
1995 }
1996
1997 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1998 {
1999 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2000 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2001 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
2002 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
2003
2004 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
2005 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
2006 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
2007
2008 LLVMValueRef pos[4] = {
2009 buffer_load_const(ctx, resource, offset0),
2010 buffer_load_const(ctx, resource, offset1),
2011 LLVMConstReal(ctx->f32, 0),
2012 LLVMConstReal(ctx->f32, 0)
2013 };
2014
2015 return ac_build_gather_values(&ctx->ac, pos, 4);
2016 }
2017
2018 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
2019 {
2020 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2021 return ac_to_integer(&ctx->ac, abi->sample_coverage);
2022 }
2023
2024 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
2025 {
2026 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2027 LLVMValueRef coord[4] = {
2028 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
2029 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
2030 ctx->ac.f32_0,
2031 ctx->ac.f32_0
2032 };
2033
2034 /* For triangles, the vector should be (u, v, 1-u-v). */
2035 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
2036 PIPE_PRIM_TRIANGLES) {
2037 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
2038 LLVMBuildFAdd(ctx->ac.builder,
2039 coord[0], coord[1], ""), "");
2040 }
2041 return ac_build_gather_values(&ctx->ac, coord, 4);
2042 }
2043
2044 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
2045 unsigned semantic_name)
2046 {
2047 LLVMValueRef base, addr;
2048
2049 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
2050
2051 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
2052 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
2053 LLVMConstInt(ctx->i32, param, 0));
2054
2055 return buffer_load(&ctx->bld_base, ctx->f32,
2056 ~0, ctx->tess_offchip_ring, base, addr, true);
2057
2058 }
2059
2060 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
2061 unsigned varying_id)
2062 {
2063 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2064 unsigned semantic_name;
2065
2066 switch (varying_id) {
2067 case VARYING_SLOT_TESS_LEVEL_INNER:
2068 semantic_name = TGSI_SEMANTIC_TESSINNER;
2069 break;
2070 case VARYING_SLOT_TESS_LEVEL_OUTER:
2071 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2072 break;
2073 default:
2074 unreachable("unknown tess level");
2075 }
2076
2077 return load_tess_level(ctx, semantic_name);
2078
2079 }
2080
2081 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2082 {
2083 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2084 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2085 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2086 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2087 return get_num_tcs_out_vertices(ctx);
2088 else
2089 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2090 }
2091
2092 void si_load_system_value(struct si_shader_context *ctx,
2093 unsigned index,
2094 const struct tgsi_full_declaration *decl)
2095 {
2096 LLVMValueRef value = 0;
2097
2098 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2099
2100 switch (decl->Semantic.Name) {
2101 case TGSI_SEMANTIC_INSTANCEID:
2102 value = ctx->abi.instance_id;
2103 break;
2104
2105 case TGSI_SEMANTIC_VERTEXID:
2106 value = LLVMBuildAdd(ctx->ac.builder,
2107 ctx->abi.vertex_id,
2108 ctx->abi.base_vertex, "");
2109 break;
2110
2111 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2112 /* Unused. Clarify the meaning in indexed vs. non-indexed
2113 * draws if this is ever used again. */
2114 assert(false);
2115 break;
2116
2117 case TGSI_SEMANTIC_BASEVERTEX:
2118 value = get_base_vertex(&ctx->abi);
2119 break;
2120
2121 case TGSI_SEMANTIC_BASEINSTANCE:
2122 value = ctx->abi.start_instance;
2123 break;
2124
2125 case TGSI_SEMANTIC_DRAWID:
2126 value = ctx->abi.draw_id;
2127 break;
2128
2129 case TGSI_SEMANTIC_INVOCATIONID:
2130 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2131 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2132 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2133 value = ctx->abi.gs_invocation_id;
2134 else
2135 assert(!"INVOCATIONID not implemented");
2136 break;
2137
2138 case TGSI_SEMANTIC_POSITION:
2139 {
2140 LLVMValueRef pos[4] = {
2141 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2142 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2143 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2144 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2145 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2146 };
2147 value = ac_build_gather_values(&ctx->ac, pos, 4);
2148 break;
2149 }
2150
2151 case TGSI_SEMANTIC_FACE:
2152 value = ctx->abi.front_face;
2153 break;
2154
2155 case TGSI_SEMANTIC_SAMPLEID:
2156 value = si_get_sample_id(ctx);
2157 break;
2158
2159 case TGSI_SEMANTIC_SAMPLEPOS: {
2160 LLVMValueRef pos[4] = {
2161 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2162 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2163 LLVMConstReal(ctx->f32, 0),
2164 LLVMConstReal(ctx->f32, 0)
2165 };
2166 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2167 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2168 value = ac_build_gather_values(&ctx->ac, pos, 4);
2169 break;
2170 }
2171
2172 case TGSI_SEMANTIC_SAMPLEMASK:
2173 /* This can only occur with the OpenGL Core profile, which
2174 * doesn't support smoothing.
2175 */
2176 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2177 break;
2178
2179 case TGSI_SEMANTIC_TESSCOORD:
2180 value = si_load_tess_coord(&ctx->abi);
2181 break;
2182
2183 case TGSI_SEMANTIC_VERTICESIN:
2184 value = si_load_patch_vertices_in(&ctx->abi);
2185 break;
2186
2187 case TGSI_SEMANTIC_TESSINNER:
2188 case TGSI_SEMANTIC_TESSOUTER:
2189 value = load_tess_level(ctx, decl->Semantic.Name);
2190 break;
2191
2192 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2193 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2194 {
2195 LLVMValueRef buf, slot, val[4];
2196 int i, offset;
2197
2198 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2199 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2200 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2201 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2202
2203 for (i = 0; i < 4; i++)
2204 val[i] = buffer_load_const(ctx, buf,
2205 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2206 value = ac_build_gather_values(&ctx->ac, val, 4);
2207 break;
2208 }
2209
2210 case TGSI_SEMANTIC_PRIMID:
2211 value = get_primitive_id(ctx, 0);
2212 break;
2213
2214 case TGSI_SEMANTIC_GRID_SIZE:
2215 value = ctx->abi.num_work_groups;
2216 break;
2217
2218 case TGSI_SEMANTIC_BLOCK_SIZE:
2219 value = get_block_size(&ctx->abi);
2220 break;
2221
2222 case TGSI_SEMANTIC_BLOCK_ID:
2223 {
2224 LLVMValueRef values[3];
2225
2226 for (int i = 0; i < 3; i++) {
2227 values[i] = ctx->i32_0;
2228 if (ctx->abi.workgroup_ids[i]) {
2229 values[i] = ctx->abi.workgroup_ids[i];
2230 }
2231 }
2232 value = ac_build_gather_values(&ctx->ac, values, 3);
2233 break;
2234 }
2235
2236 case TGSI_SEMANTIC_THREAD_ID:
2237 value = ctx->abi.local_invocation_ids;
2238 break;
2239
2240 case TGSI_SEMANTIC_HELPER_INVOCATION:
2241 value = ac_build_intrinsic(&ctx->ac,
2242 "llvm.amdgcn.ps.live",
2243 ctx->i1, NULL, 0,
2244 AC_FUNC_ATTR_READNONE);
2245 value = LLVMBuildNot(ctx->ac.builder, value, "");
2246 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2247 break;
2248
2249 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2250 value = LLVMConstInt(ctx->i32, 64, 0);
2251 break;
2252
2253 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2254 value = ac_get_thread_id(&ctx->ac);
2255 break;
2256
2257 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2258 {
2259 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2260 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2261 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2262 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2263 break;
2264 }
2265
2266 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2267 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2268 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2269 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2270 {
2271 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2272 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2273 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2274 /* All bits set except LSB */
2275 value = LLVMConstInt(ctx->i64, -2, 0);
2276 } else {
2277 /* All bits set */
2278 value = LLVMConstInt(ctx->i64, -1, 0);
2279 }
2280 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2281 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2282 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2283 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2284 value = LLVMBuildNot(ctx->ac.builder, value, "");
2285 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2286 break;
2287 }
2288
2289 default:
2290 assert(!"unknown system value");
2291 return;
2292 }
2293
2294 ctx->system_values[index] = value;
2295 }
2296
2297 void si_declare_compute_memory(struct si_shader_context *ctx)
2298 {
2299 struct si_shader_selector *sel = ctx->shader->selector;
2300 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2301
2302 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_LOCAL_ADDR_SPACE);
2303 LLVMValueRef var;
2304
2305 assert(!ctx->ac.lds);
2306
2307 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2308 LLVMArrayType(ctx->i8, lds_size),
2309 "compute_lds",
2310 AC_LOCAL_ADDR_SPACE);
2311 LLVMSetAlignment(var, 4);
2312
2313 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2314 }
2315
2316 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2317 const struct tgsi_full_declaration *decl)
2318 {
2319 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2320 assert(decl->Range.First == decl->Range.Last);
2321
2322 si_declare_compute_memory(ctx);
2323 }
2324
2325 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2326 {
2327 LLVMValueRef ptr =
2328 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2329 struct si_shader_selector *sel = ctx->shader->selector;
2330
2331 /* Do the bounds checking with a descriptor, because
2332 * doing computation and manual bounds checking of 64-bit
2333 * addresses generates horrible VALU code with very high
2334 * VGPR usage and very low SIMD occupancy.
2335 */
2336 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2337
2338 LLVMValueRef desc0, desc1;
2339 if (HAVE_32BIT_POINTERS) {
2340 desc0 = ptr;
2341 desc1 = LLVMConstInt(ctx->i32,
2342 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2343 } else {
2344 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2345 desc0 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, "");
2346 desc1 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, "");
2347 /* Mask out all bits except BASE_ADDRESS_HI. */
2348 desc1 = LLVMBuildAnd(ctx->ac.builder, desc1,
2349 LLVMConstInt(ctx->i32, ~C_008F04_BASE_ADDRESS_HI, 0), "");
2350 }
2351
2352 LLVMValueRef desc_elems[] = {
2353 desc0,
2354 desc1,
2355 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2356 LLVMConstInt(ctx->i32,
2357 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2358 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2359 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2360 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2361 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2362 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2363 };
2364
2365 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2366 }
2367
2368 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2369 {
2370 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2371 ctx->param_const_and_shader_buffers);
2372
2373 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2374 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2375 }
2376
2377 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2378 {
2379 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2380 struct si_shader_selector *sel = ctx->shader->selector;
2381
2382 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2383
2384 if (sel->info.const_buffers_declared == 1 &&
2385 sel->info.shader_buffers_declared == 0) {
2386 return load_const_buffer_desc_fast_path(ctx);
2387 }
2388
2389 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2390 index = LLVMBuildAdd(ctx->ac.builder, index,
2391 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2392
2393 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2394 }
2395
2396 static LLVMValueRef
2397 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2398 {
2399 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2400 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2401 ctx->param_const_and_shader_buffers);
2402
2403 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2404 index = LLVMBuildSub(ctx->ac.builder,
2405 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2406 index, "");
2407
2408 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2409 }
2410
2411 static LLVMValueRef fetch_constant(
2412 struct lp_build_tgsi_context *bld_base,
2413 const struct tgsi_full_src_register *reg,
2414 enum tgsi_opcode_type type,
2415 unsigned swizzle)
2416 {
2417 struct si_shader_context *ctx = si_shader_context(bld_base);
2418 struct si_shader_selector *sel = ctx->shader->selector;
2419 const struct tgsi_ind_register *ireg = &reg->Indirect;
2420 unsigned buf, idx;
2421
2422 LLVMValueRef addr, bufp;
2423
2424 if (swizzle == LP_CHAN_ALL) {
2425 unsigned chan;
2426 LLVMValueRef values[4];
2427 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2428 values[chan] = fetch_constant(bld_base, reg, type, chan);
2429
2430 return ac_build_gather_values(&ctx->ac, values, 4);
2431 }
2432
2433 /* Split 64-bit loads. */
2434 if (tgsi_type_is_64bit(type)) {
2435 LLVMValueRef lo, hi;
2436
2437 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2438 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2439 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2440 lo, hi);
2441 }
2442
2443 idx = reg->Register.Index * 4 + swizzle;
2444 if (reg->Register.Indirect) {
2445 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2446 } else {
2447 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2448 }
2449
2450 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2451 if (sel->info.const_buffers_declared == 1 &&
2452 sel->info.shader_buffers_declared == 0) {
2453 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2454 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2455 return bitcast(bld_base, type, result);
2456 }
2457
2458 assert(reg->Register.Dimension);
2459 buf = reg->Dimension.Index;
2460
2461 if (reg->Dimension.Indirect) {
2462 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2463 LLVMValueRef index;
2464 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2465 reg->Dimension.Index,
2466 ctx->num_const_buffers);
2467 index = LLVMBuildAdd(ctx->ac.builder, index,
2468 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2469 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2470 } else
2471 bufp = load_const_buffer_desc(ctx, buf);
2472
2473 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2474 }
2475
2476 /* Initialize arguments for the shader export intrinsic */
2477 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2478 LLVMValueRef *values,
2479 unsigned target,
2480 struct ac_export_args *args)
2481 {
2482 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2483 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2484 unsigned chan;
2485 bool is_int8, is_int10;
2486
2487 /* Default is 0xf. Adjusted below depending on the format. */
2488 args->enabled_channels = 0xf; /* writemask */
2489
2490 /* Specify whether the EXEC mask represents the valid mask */
2491 args->valid_mask = 0;
2492
2493 /* Specify whether this is the last export */
2494 args->done = 0;
2495
2496 /* Specify the target we are exporting */
2497 args->target = target;
2498
2499 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2500 const struct si_shader_key *key = &ctx->shader->key;
2501 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2502 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2503
2504 assert(cbuf >= 0 && cbuf < 8);
2505 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2506 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2507 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2508 }
2509
2510 args->compr = false;
2511 args->out[0] = f32undef;
2512 args->out[1] = f32undef;
2513 args->out[2] = f32undef;
2514 args->out[3] = f32undef;
2515
2516 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2517 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2518 unsigned bits, bool hi) = NULL;
2519
2520 switch (spi_shader_col_format) {
2521 case V_028714_SPI_SHADER_ZERO:
2522 args->enabled_channels = 0; /* writemask */
2523 args->target = V_008DFC_SQ_EXP_NULL;
2524 break;
2525
2526 case V_028714_SPI_SHADER_32_R:
2527 args->enabled_channels = 1; /* writemask */
2528 args->out[0] = values[0];
2529 break;
2530
2531 case V_028714_SPI_SHADER_32_GR:
2532 args->enabled_channels = 0x3; /* writemask */
2533 args->out[0] = values[0];
2534 args->out[1] = values[1];
2535 break;
2536
2537 case V_028714_SPI_SHADER_32_AR:
2538 args->enabled_channels = 0x9; /* writemask */
2539 args->out[0] = values[0];
2540 args->out[3] = values[3];
2541 break;
2542
2543 case V_028714_SPI_SHADER_FP16_ABGR:
2544 packf = ac_build_cvt_pkrtz_f16;
2545 break;
2546
2547 case V_028714_SPI_SHADER_UNORM16_ABGR:
2548 packf = ac_build_cvt_pknorm_u16;
2549 break;
2550
2551 case V_028714_SPI_SHADER_SNORM16_ABGR:
2552 packf = ac_build_cvt_pknorm_i16;
2553 break;
2554
2555 case V_028714_SPI_SHADER_UINT16_ABGR:
2556 packi = ac_build_cvt_pk_u16;
2557 break;
2558
2559 case V_028714_SPI_SHADER_SINT16_ABGR:
2560 packi = ac_build_cvt_pk_i16;
2561 break;
2562
2563 case V_028714_SPI_SHADER_32_ABGR:
2564 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2565 break;
2566 }
2567
2568 /* Pack f16 or norm_i16/u16. */
2569 if (packf) {
2570 for (chan = 0; chan < 2; chan++) {
2571 LLVMValueRef pack_args[2] = {
2572 values[2 * chan],
2573 values[2 * chan + 1]
2574 };
2575 LLVMValueRef packed;
2576
2577 packed = packf(&ctx->ac, pack_args);
2578 args->out[chan] = ac_to_float(&ctx->ac, packed);
2579 }
2580 args->compr = 1; /* COMPR flag */
2581 }
2582 /* Pack i16/u16. */
2583 if (packi) {
2584 for (chan = 0; chan < 2; chan++) {
2585 LLVMValueRef pack_args[2] = {
2586 ac_to_integer(&ctx->ac, values[2 * chan]),
2587 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2588 };
2589 LLVMValueRef packed;
2590
2591 packed = packi(&ctx->ac, pack_args,
2592 is_int8 ? 8 : is_int10 ? 10 : 16,
2593 chan == 1);
2594 args->out[chan] = ac_to_float(&ctx->ac, packed);
2595 }
2596 args->compr = 1; /* COMPR flag */
2597 }
2598 }
2599
2600 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2601 LLVMValueRef alpha)
2602 {
2603 struct si_shader_context *ctx = si_shader_context(bld_base);
2604
2605 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2606 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2607 [PIPE_FUNC_LESS] = LLVMRealOLT,
2608 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2609 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2610 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2611 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2612 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2613 };
2614 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2615 assert(cond);
2616
2617 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2618 SI_PARAM_ALPHA_REF);
2619 LLVMValueRef alpha_pass =
2620 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2621 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2622 } else {
2623 ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2624 }
2625 }
2626
2627 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2628 LLVMValueRef alpha,
2629 unsigned samplemask_param)
2630 {
2631 struct si_shader_context *ctx = si_shader_context(bld_base);
2632 LLVMValueRef coverage;
2633
2634 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2635 coverage = LLVMGetParam(ctx->main_fn,
2636 samplemask_param);
2637 coverage = ac_to_integer(&ctx->ac, coverage);
2638
2639 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2640 ctx->i32,
2641 &coverage, 1, AC_FUNC_ATTR_READNONE);
2642
2643 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2644 ctx->f32, "");
2645
2646 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2647 LLVMConstReal(ctx->f32,
2648 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2649
2650 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2651 }
2652
2653 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2654 struct ac_export_args *pos, LLVMValueRef *out_elts)
2655 {
2656 unsigned reg_index;
2657 unsigned chan;
2658 unsigned const_chan;
2659 LLVMValueRef base_elt;
2660 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2661 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2662 SI_VS_CONST_CLIP_PLANES, 0);
2663 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2664
2665 for (reg_index = 0; reg_index < 2; reg_index ++) {
2666 struct ac_export_args *args = &pos[2 + reg_index];
2667
2668 args->out[0] =
2669 args->out[1] =
2670 args->out[2] =
2671 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2672
2673 /* Compute dot products of position and user clip plane vectors */
2674 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2675 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2676 LLVMValueRef addr =
2677 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2678 const_chan) * 4, 0);
2679 base_elt = buffer_load_const(ctx, const_resource,
2680 addr);
2681 args->out[chan] =
2682 LLVMBuildFAdd(ctx->ac.builder, args->out[chan],
2683 LLVMBuildFMul(ctx->ac.builder, base_elt,
2684 out_elts[const_chan], ""), "");
2685 }
2686 }
2687
2688 args->enabled_channels = 0xf;
2689 args->valid_mask = 0;
2690 args->done = 0;
2691 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2692 args->compr = 0;
2693 }
2694 }
2695
2696 static void si_dump_streamout(struct pipe_stream_output_info *so)
2697 {
2698 unsigned i;
2699
2700 if (so->num_outputs)
2701 fprintf(stderr, "STREAMOUT\n");
2702
2703 for (i = 0; i < so->num_outputs; i++) {
2704 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2705 so->output[i].start_component;
2706 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2707 i, so->output[i].output_buffer,
2708 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2709 so->output[i].register_index,
2710 mask & 1 ? "x" : "",
2711 mask & 2 ? "y" : "",
2712 mask & 4 ? "z" : "",
2713 mask & 8 ? "w" : "");
2714 }
2715 }
2716
2717 static void emit_streamout_output(struct si_shader_context *ctx,
2718 LLVMValueRef const *so_buffers,
2719 LLVMValueRef const *so_write_offsets,
2720 struct pipe_stream_output *stream_out,
2721 struct si_shader_output_values *shader_out)
2722 {
2723 unsigned buf_idx = stream_out->output_buffer;
2724 unsigned start = stream_out->start_component;
2725 unsigned num_comps = stream_out->num_components;
2726 LLVMValueRef out[4];
2727
2728 assert(num_comps && num_comps <= 4);
2729 if (!num_comps || num_comps > 4)
2730 return;
2731
2732 /* Load the output as int. */
2733 for (int j = 0; j < num_comps; j++) {
2734 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2735
2736 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2737 }
2738
2739 /* Pack the output. */
2740 LLVMValueRef vdata = NULL;
2741
2742 switch (num_comps) {
2743 case 1: /* as i32 */
2744 vdata = out[0];
2745 break;
2746 case 2: /* as v2i32 */
2747 case 3: /* as v4i32 (aligned to 4) */
2748 case 4: /* as v4i32 */
2749 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2750 for (int j = 0; j < num_comps; j++) {
2751 vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2752 LLVMConstInt(ctx->i32, j, 0), "");
2753 }
2754 break;
2755 }
2756
2757 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2758 vdata, num_comps,
2759 so_write_offsets[buf_idx],
2760 ctx->i32_0,
2761 stream_out->dst_offset * 4, 1, 1, true, false);
2762 }
2763
2764 /**
2765 * Write streamout data to buffers for vertex stream @p stream (different
2766 * vertex streams can occur for GS copy shaders).
2767 */
2768 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2769 struct si_shader_output_values *outputs,
2770 unsigned noutput, unsigned stream)
2771 {
2772 struct si_shader_selector *sel = ctx->shader->selector;
2773 struct pipe_stream_output_info *so = &sel->so;
2774 LLVMBuilderRef builder = ctx->ac.builder;
2775 int i;
2776 struct lp_build_if_state if_ctx;
2777
2778 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2779 LLVMValueRef so_vtx_count =
2780 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2781
2782 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2783
2784 /* can_emit = tid < so_vtx_count; */
2785 LLVMValueRef can_emit =
2786 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2787
2788 /* Emit the streamout code conditionally. This actually avoids
2789 * out-of-bounds buffer access. The hw tells us via the SGPR
2790 * (so_vtx_count) which threads are allowed to emit streamout data. */
2791 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2792 {
2793 /* The buffer offset is computed as follows:
2794 * ByteOffset = streamout_offset[buffer_id]*4 +
2795 * (streamout_write_index + thread_id)*stride[buffer_id] +
2796 * attrib_offset
2797 */
2798
2799 LLVMValueRef so_write_index =
2800 LLVMGetParam(ctx->main_fn,
2801 ctx->param_streamout_write_index);
2802
2803 /* Compute (streamout_write_index + thread_id). */
2804 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2805
2806 /* Load the descriptor and compute the write offset for each
2807 * enabled buffer. */
2808 LLVMValueRef so_write_offset[4] = {};
2809 LLVMValueRef so_buffers[4];
2810 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2811 ctx->param_rw_buffers);
2812
2813 for (i = 0; i < 4; i++) {
2814 if (!so->stride[i])
2815 continue;
2816
2817 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2818 SI_VS_STREAMOUT_BUF0 + i, 0);
2819
2820 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2821
2822 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2823 ctx->param_streamout_offset[i]);
2824 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2825
2826 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2827 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2828 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2829 }
2830
2831 /* Write streamout data. */
2832 for (i = 0; i < so->num_outputs; i++) {
2833 unsigned reg = so->output[i].register_index;
2834
2835 if (reg >= noutput)
2836 continue;
2837
2838 if (stream != so->output[i].stream)
2839 continue;
2840
2841 emit_streamout_output(ctx, so_buffers, so_write_offset,
2842 &so->output[i], &outputs[reg]);
2843 }
2844 }
2845 lp_build_endif(&if_ctx);
2846 }
2847
2848 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2849 LLVMValueRef *values)
2850 {
2851 struct ac_export_args args;
2852
2853 si_llvm_init_export_args(ctx, values,
2854 V_008DFC_SQ_EXP_PARAM + index, &args);
2855 ac_build_export(&ctx->ac, &args);
2856 }
2857
2858 static void si_build_param_exports(struct si_shader_context *ctx,
2859 struct si_shader_output_values *outputs,
2860 unsigned noutput)
2861 {
2862 struct si_shader *shader = ctx->shader;
2863 unsigned param_count = 0;
2864
2865 for (unsigned i = 0; i < noutput; i++) {
2866 unsigned semantic_name = outputs[i].semantic_name;
2867 unsigned semantic_index = outputs[i].semantic_index;
2868
2869 if (outputs[i].vertex_stream[0] != 0 &&
2870 outputs[i].vertex_stream[1] != 0 &&
2871 outputs[i].vertex_stream[2] != 0 &&
2872 outputs[i].vertex_stream[3] != 0)
2873 continue;
2874
2875 switch (semantic_name) {
2876 case TGSI_SEMANTIC_LAYER:
2877 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2878 case TGSI_SEMANTIC_CLIPDIST:
2879 case TGSI_SEMANTIC_COLOR:
2880 case TGSI_SEMANTIC_BCOLOR:
2881 case TGSI_SEMANTIC_PRIMID:
2882 case TGSI_SEMANTIC_FOG:
2883 case TGSI_SEMANTIC_TEXCOORD:
2884 case TGSI_SEMANTIC_GENERIC:
2885 break;
2886 default:
2887 continue;
2888 }
2889
2890 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2891 semantic_index < SI_MAX_IO_GENERIC) &&
2892 shader->key.opt.kill_outputs &
2893 (1ull << si_shader_io_get_unique_index(semantic_name,
2894 semantic_index, true)))
2895 continue;
2896
2897 si_export_param(ctx, param_count, outputs[i].values);
2898
2899 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2900 shader->info.vs_output_param_offset[i] = param_count++;
2901 }
2902
2903 shader->info.nr_param_exports = param_count;
2904 }
2905
2906 /* Generate export instructions for hardware VS shader stage */
2907 static void si_llvm_export_vs(struct si_shader_context *ctx,
2908 struct si_shader_output_values *outputs,
2909 unsigned noutput)
2910 {
2911 struct si_shader *shader = ctx->shader;
2912 struct ac_export_args pos_args[4] = {};
2913 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2914 unsigned pos_idx;
2915 int i;
2916
2917 /* Build position exports. */
2918 for (i = 0; i < noutput; i++) {
2919 switch (outputs[i].semantic_name) {
2920 case TGSI_SEMANTIC_POSITION:
2921 si_llvm_init_export_args(ctx, outputs[i].values,
2922 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2923 break;
2924 case TGSI_SEMANTIC_PSIZE:
2925 psize_value = outputs[i].values[0];
2926 break;
2927 case TGSI_SEMANTIC_LAYER:
2928 layer_value = outputs[i].values[0];
2929 break;
2930 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2931 viewport_index_value = outputs[i].values[0];
2932 break;
2933 case TGSI_SEMANTIC_EDGEFLAG:
2934 edgeflag_value = outputs[i].values[0];
2935 break;
2936 case TGSI_SEMANTIC_CLIPDIST:
2937 if (!shader->key.opt.clip_disable) {
2938 unsigned index = 2 + outputs[i].semantic_index;
2939 si_llvm_init_export_args(ctx, outputs[i].values,
2940 V_008DFC_SQ_EXP_POS + index,
2941 &pos_args[index]);
2942 }
2943 break;
2944 case TGSI_SEMANTIC_CLIPVERTEX:
2945 if (!shader->key.opt.clip_disable) {
2946 si_llvm_emit_clipvertex(ctx, pos_args,
2947 outputs[i].values);
2948 }
2949 break;
2950 }
2951 }
2952
2953 /* We need to add the position output manually if it's missing. */
2954 if (!pos_args[0].out[0]) {
2955 pos_args[0].enabled_channels = 0xf; /* writemask */
2956 pos_args[0].valid_mask = 0; /* EXEC mask */
2957 pos_args[0].done = 0; /* last export? */
2958 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2959 pos_args[0].compr = 0; /* COMPR flag */
2960 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2961 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2962 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2963 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2964 }
2965
2966 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2967 if (shader->selector->info.writes_psize ||
2968 shader->selector->info.writes_edgeflag ||
2969 shader->selector->info.writes_viewport_index ||
2970 shader->selector->info.writes_layer) {
2971 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2972 (shader->selector->info.writes_edgeflag << 1) |
2973 (shader->selector->info.writes_layer << 2);
2974
2975 pos_args[1].valid_mask = 0; /* EXEC mask */
2976 pos_args[1].done = 0; /* last export? */
2977 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2978 pos_args[1].compr = 0; /* COMPR flag */
2979 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2980 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2981 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2982 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2983
2984 if (shader->selector->info.writes_psize)
2985 pos_args[1].out[0] = psize_value;
2986
2987 if (shader->selector->info.writes_edgeflag) {
2988 /* The output is a float, but the hw expects an integer
2989 * with the first bit containing the edge flag. */
2990 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2991 edgeflag_value,
2992 ctx->i32, "");
2993 edgeflag_value = ac_build_umin(&ctx->ac,
2994 edgeflag_value,
2995 ctx->i32_1);
2996
2997 /* The LLVM intrinsic expects a float. */
2998 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2999 }
3000
3001 if (ctx->screen->info.chip_class >= GFX9) {
3002 /* GFX9 has the layer in out.z[10:0] and the viewport
3003 * index in out.z[19:16].
3004 */
3005 if (shader->selector->info.writes_layer)
3006 pos_args[1].out[2] = layer_value;
3007
3008 if (shader->selector->info.writes_viewport_index) {
3009 LLVMValueRef v = viewport_index_value;
3010
3011 v = ac_to_integer(&ctx->ac, v);
3012 v = LLVMBuildShl(ctx->ac.builder, v,
3013 LLVMConstInt(ctx->i32, 16, 0), "");
3014 v = LLVMBuildOr(ctx->ac.builder, v,
3015 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3016 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3017 pos_args[1].enabled_channels |= 1 << 2;
3018 }
3019 } else {
3020 if (shader->selector->info.writes_layer)
3021 pos_args[1].out[2] = layer_value;
3022
3023 if (shader->selector->info.writes_viewport_index) {
3024 pos_args[1].out[3] = viewport_index_value;
3025 pos_args[1].enabled_channels |= 1 << 3;
3026 }
3027 }
3028 }
3029
3030 for (i = 0; i < 4; i++)
3031 if (pos_args[i].out[0])
3032 shader->info.nr_pos_exports++;
3033
3034 pos_idx = 0;
3035 for (i = 0; i < 4; i++) {
3036 if (!pos_args[i].out[0])
3037 continue;
3038
3039 /* Specify the target we are exporting */
3040 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3041
3042 if (pos_idx == shader->info.nr_pos_exports)
3043 /* Specify that this is the last export */
3044 pos_args[i].done = 1;
3045
3046 ac_build_export(&ctx->ac, &pos_args[i]);
3047 }
3048
3049 /* Build parameter exports. */
3050 si_build_param_exports(ctx, outputs, noutput);
3051 }
3052
3053 /**
3054 * Forward all outputs from the vertex shader to the TES. This is only used
3055 * for the fixed function TCS.
3056 */
3057 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3058 {
3059 struct si_shader_context *ctx = si_shader_context(bld_base);
3060 LLVMValueRef invocation_id, buffer, buffer_offset;
3061 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3062 uint64_t inputs;
3063
3064 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3065 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3066 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3067
3068 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3069 lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3070 lds_vertex_stride, "");
3071 lds_base = get_tcs_in_current_patch_offset(ctx);
3072 lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3073
3074 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3075 while (inputs) {
3076 unsigned i = u_bit_scan64(&inputs);
3077
3078 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3079 LLVMConstInt(ctx->i32, 4 * i, 0),
3080 "");
3081
3082 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3083 get_rel_patch_id(ctx),
3084 invocation_id,
3085 LLVMConstInt(ctx->i32, i, 0));
3086
3087 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3088 lds_ptr);
3089
3090 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3091 buffer_offset, 0, 1, 0, true, false);
3092 }
3093 }
3094
3095 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3096 LLVMValueRef rel_patch_id,
3097 LLVMValueRef invocation_id,
3098 LLVMValueRef tcs_out_current_patch_data_offset,
3099 LLVMValueRef invoc0_tf_outer[4],
3100 LLVMValueRef invoc0_tf_inner[2])
3101 {
3102 struct si_shader_context *ctx = si_shader_context(bld_base);
3103 struct si_shader *shader = ctx->shader;
3104 unsigned tess_inner_index, tess_outer_index;
3105 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3106 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3107 unsigned stride, outer_comps, inner_comps, i, offset;
3108 struct lp_build_if_state if_ctx, inner_if_ctx;
3109
3110 /* Add a barrier before loading tess factors from LDS. */
3111 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3112 si_llvm_emit_barrier(NULL, bld_base, NULL);
3113
3114 /* Do this only for invocation 0, because the tess levels are per-patch,
3115 * not per-vertex.
3116 *
3117 * This can't jump, because invocation 0 executes this. It should
3118 * at least mask out the loads and stores for other invocations.
3119 */
3120 lp_build_if(&if_ctx, &ctx->gallivm,
3121 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3122 invocation_id, ctx->i32_0, ""));
3123
3124 /* Determine the layout of one tess factor element in the buffer. */
3125 switch (shader->key.part.tcs.epilog.prim_mode) {
3126 case PIPE_PRIM_LINES:
3127 stride = 2; /* 2 dwords, 1 vec2 store */
3128 outer_comps = 2;
3129 inner_comps = 0;
3130 break;
3131 case PIPE_PRIM_TRIANGLES:
3132 stride = 4; /* 4 dwords, 1 vec4 store */
3133 outer_comps = 3;
3134 inner_comps = 1;
3135 break;
3136 case PIPE_PRIM_QUADS:
3137 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3138 outer_comps = 4;
3139 inner_comps = 2;
3140 break;
3141 default:
3142 assert(0);
3143 return;
3144 }
3145
3146 for (i = 0; i < 4; i++) {
3147 inner[i] = LLVMGetUndef(ctx->i32);
3148 outer[i] = LLVMGetUndef(ctx->i32);
3149 }
3150
3151 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3152 /* Tess factors are in VGPRs. */
3153 for (i = 0; i < outer_comps; i++)
3154 outer[i] = out[i] = invoc0_tf_outer[i];
3155 for (i = 0; i < inner_comps; i++)
3156 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3157 } else {
3158 /* Load tess_inner and tess_outer from LDS.
3159 * Any invocation can write them, so we can't get them from a temporary.
3160 */
3161 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3162 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3163
3164 lds_base = tcs_out_current_patch_data_offset;
3165 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3166 LLVMConstInt(ctx->i32,
3167 tess_inner_index * 4, 0), "");
3168 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3169 LLVMConstInt(ctx->i32,
3170 tess_outer_index * 4, 0), "");
3171
3172 for (i = 0; i < outer_comps; i++) {
3173 outer[i] = out[i] =
3174 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3175 }
3176 for (i = 0; i < inner_comps; i++) {
3177 inner[i] = out[outer_comps+i] =
3178 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3179 }
3180 }
3181
3182 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3183 /* For isolines, the hardware expects tess factors in the
3184 * reverse order from what GLSL / TGSI specify.
3185 */
3186 LLVMValueRef tmp = out[0];
3187 out[0] = out[1];
3188 out[1] = tmp;
3189 }
3190
3191 /* Convert the outputs to vectors for stores. */
3192 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3193 vec1 = NULL;
3194
3195 if (stride > 4)
3196 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3197
3198 /* Get the buffer. */
3199 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3200
3201 /* Get the offset. */
3202 tf_base = LLVMGetParam(ctx->main_fn,
3203 ctx->param_tcs_factor_offset);
3204 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3205 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3206
3207 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3208 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3209 rel_patch_id, ctx->i32_0, ""));
3210
3211 /* Store the dynamic HS control word. */
3212 offset = 0;
3213 if (ctx->screen->info.chip_class <= VI) {
3214 ac_build_buffer_store_dword(&ctx->ac, buffer,
3215 LLVMConstInt(ctx->i32, 0x80000000, 0),
3216 1, ctx->i32_0, tf_base,
3217 offset, 1, 0, true, false);
3218 offset += 4;
3219 }
3220
3221 lp_build_endif(&inner_if_ctx);
3222
3223 /* Store the tessellation factors. */
3224 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3225 MIN2(stride, 4), byteoffset, tf_base,
3226 offset, 1, 0, true, false);
3227 offset += 16;
3228 if (vec1)
3229 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3230 stride - 4, byteoffset, tf_base,
3231 offset, 1, 0, true, false);
3232
3233 /* Store the tess factors into the offchip buffer if TES reads them. */
3234 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3235 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3236 LLVMValueRef tf_inner_offset;
3237 unsigned param_outer, param_inner;
3238
3239 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3240 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3241
3242 param_outer = si_shader_io_get_unique_index_patch(
3243 TGSI_SEMANTIC_TESSOUTER, 0);
3244 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3245 LLVMConstInt(ctx->i32, param_outer, 0));
3246
3247 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3248 util_next_power_of_two(outer_comps));
3249
3250 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3251 outer_comps, tf_outer_offset,
3252 base, 0, 1, 0, true, false);
3253 if (inner_comps) {
3254 param_inner = si_shader_io_get_unique_index_patch(
3255 TGSI_SEMANTIC_TESSINNER, 0);
3256 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3257 LLVMConstInt(ctx->i32, param_inner, 0));
3258
3259 inner_vec = inner_comps == 1 ? inner[0] :
3260 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3261 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3262 inner_comps, tf_inner_offset,
3263 base, 0, 1, 0, true, false);
3264 }
3265 }
3266
3267 lp_build_endif(&if_ctx);
3268 }
3269
3270 static LLVMValueRef
3271 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3272 unsigned param, unsigned return_index)
3273 {
3274 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3275 LLVMGetParam(ctx->main_fn, param),
3276 return_index, "");
3277 }
3278
3279 static LLVMValueRef
3280 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3281 unsigned param, unsigned return_index)
3282 {
3283 LLVMBuilderRef builder = ctx->ac.builder;
3284 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3285
3286 return LLVMBuildInsertValue(builder, ret,
3287 ac_to_float(&ctx->ac, p),
3288 return_index, "");
3289 }
3290
3291 static LLVMValueRef
3292 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3293 unsigned param, unsigned return_index)
3294 {
3295 LLVMBuilderRef builder = ctx->ac.builder;
3296 LLVMValueRef ptr, lo, hi;
3297
3298 if (HAVE_32BIT_POINTERS) {
3299 ptr = LLVMGetParam(ctx->main_fn, param);
3300 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3301 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3302 }
3303
3304 ptr = LLVMGetParam(ctx->main_fn, param);
3305 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3306 ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3307 lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3308 hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3309 ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3310 return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3311 }
3312
3313 /* This only writes the tessellation factor levels. */
3314 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3315 unsigned max_outputs,
3316 LLVMValueRef *addrs)
3317 {
3318 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3319 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3320 LLVMBuilderRef builder = ctx->ac.builder;
3321 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3322
3323 si_copy_tcs_inputs(bld_base);
3324
3325 rel_patch_id = get_rel_patch_id(ctx);
3326 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3327 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3328
3329 if (ctx->screen->info.chip_class >= GFX9) {
3330 LLVMBasicBlockRef blocks[2] = {
3331 LLVMGetInsertBlock(builder),
3332 ctx->merged_wrap_if_state.entry_block
3333 };
3334 LLVMValueRef values[2];
3335
3336 lp_build_endif(&ctx->merged_wrap_if_state);
3337
3338 values[0] = rel_patch_id;
3339 values[1] = LLVMGetUndef(ctx->i32);
3340 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3341
3342 values[0] = tf_lds_offset;
3343 values[1] = LLVMGetUndef(ctx->i32);
3344 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3345
3346 values[0] = invocation_id;
3347 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3348 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3349 }
3350
3351 /* Return epilog parameters from this function. */
3352 LLVMValueRef ret = ctx->return_value;
3353 unsigned vgpr;
3354
3355 if (ctx->screen->info.chip_class >= GFX9) {
3356 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3357 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3358 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3359 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3360 /* Tess offchip and tess factor offsets are at the beginning. */
3361 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3362 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3363 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3364 } else {
3365 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3366 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3367 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3368 GFX6_SGPR_TCS_OUT_LAYOUT);
3369 /* Tess offchip and tess factor offsets are after user SGPRs. */
3370 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3371 GFX6_TCS_NUM_USER_SGPR);
3372 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3373 GFX6_TCS_NUM_USER_SGPR + 1);
3374 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3375 }
3376
3377 /* VGPRs */
3378 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3379 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3380 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3381
3382 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3383 * the invocation_id output does not alias the tcs_rel_ids input,
3384 * which saves a V_MOV on gfx9.
3385 */
3386 vgpr += 2;
3387
3388 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3389 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3390
3391 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3392 vgpr++; /* skip the tess factor LDS offset */
3393 for (unsigned i = 0; i < 6; i++) {
3394 LLVMValueRef value =
3395 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3396 value = ac_to_float(&ctx->ac, value);
3397 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3398 }
3399 } else {
3400 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3401 }
3402 ctx->return_value = ret;
3403 }
3404
3405 /* Pass TCS inputs from LS to TCS on GFX9. */
3406 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3407 {
3408 LLVMValueRef ret = ctx->return_value;
3409
3410 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3411 if (HAVE_32BIT_POINTERS)
3412 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3413 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3414 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3415 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3416 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3417
3418 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3419 8 + SI_SGPR_RW_BUFFERS);
3420 ret = si_insert_input_ptr(ctx, ret,
3421 ctx->param_bindless_samplers_and_images,
3422 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3423
3424 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3425 8 + SI_SGPR_VS_STATE_BITS);
3426
3427 #if !HAVE_32BIT_POINTERS
3428 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 4,
3429 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3430 #endif
3431
3432 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3433 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3434 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3435 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3436 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3437 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3438
3439 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3440 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3441 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3442 vgpr++, "");
3443 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3444 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3445 vgpr++, "");
3446 ctx->return_value = ret;
3447 }
3448
3449 /* Pass GS inputs from ES to GS on GFX9. */
3450 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3451 {
3452 LLVMValueRef ret = ctx->return_value;
3453
3454 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3455 if (HAVE_32BIT_POINTERS)
3456 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3457 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3458 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3459 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3460
3461 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3462 8 + SI_SGPR_RW_BUFFERS);
3463 ret = si_insert_input_ptr(ctx, ret,
3464 ctx->param_bindless_samplers_and_images,
3465 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3466
3467 #if !HAVE_32BIT_POINTERS
3468 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 4,
3469 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3470 #endif
3471
3472 unsigned vgpr;
3473 if (ctx->type == PIPE_SHADER_VERTEX)
3474 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3475 else
3476 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3477
3478 for (unsigned i = 0; i < 5; i++) {
3479 unsigned param = ctx->param_gs_vtx01_offset + i;
3480 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3481 }
3482 ctx->return_value = ret;
3483 }
3484
3485 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3486 unsigned max_outputs,
3487 LLVMValueRef *addrs)
3488 {
3489 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3490 struct si_shader *shader = ctx->shader;
3491 struct tgsi_shader_info *info = &shader->selector->info;
3492 unsigned i, chan;
3493 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3494 ctx->param_rel_auto_id);
3495 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3496 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3497 vertex_dw_stride, "");
3498
3499 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3500 * its inputs from it. */
3501 for (i = 0; i < info->num_outputs; i++) {
3502 unsigned name = info->output_semantic_name[i];
3503 unsigned index = info->output_semantic_index[i];
3504
3505 /* The ARB_shader_viewport_layer_array spec contains the
3506 * following issue:
3507 *
3508 * 2) What happens if gl_ViewportIndex or gl_Layer is
3509 * written in the vertex shader and a geometry shader is
3510 * present?
3511 *
3512 * RESOLVED: The value written by the last vertex processing
3513 * stage is used. If the last vertex processing stage
3514 * (vertex, tessellation evaluation or geometry) does not
3515 * statically assign to gl_ViewportIndex or gl_Layer, index
3516 * or layer zero is assumed.
3517 *
3518 * So writes to those outputs in VS-as-LS are simply ignored.
3519 */
3520 if (name == TGSI_SEMANTIC_LAYER ||
3521 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3522 continue;
3523
3524 int param = si_shader_io_get_unique_index(name, index, false);
3525 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3526 LLVMConstInt(ctx->i32, param * 4, 0), "");
3527
3528 for (chan = 0; chan < 4; chan++) {
3529 if (!(info->output_usagemask[i] & (1 << chan)))
3530 continue;
3531
3532 lds_store(ctx, chan, dw_addr,
3533 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3534 }
3535 }
3536
3537 if (ctx->screen->info.chip_class >= GFX9)
3538 si_set_ls_return_value_for_tcs(ctx);
3539 }
3540
3541 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3542 unsigned max_outputs,
3543 LLVMValueRef *addrs)
3544 {
3545 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3546 struct si_shader *es = ctx->shader;
3547 struct tgsi_shader_info *info = &es->selector->info;
3548 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3549 ctx->param_es2gs_offset);
3550 LLVMValueRef lds_base = NULL;
3551 unsigned chan;
3552 int i;
3553
3554 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3555 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3556 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3557 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3558 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3559 LLVMBuildMul(ctx->ac.builder, wave_idx,
3560 LLVMConstInt(ctx->i32, 64, false), ""), "");
3561 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3562 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3563 }
3564
3565 for (i = 0; i < info->num_outputs; i++) {
3566 int param;
3567
3568 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3569 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3570 continue;
3571
3572 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3573 info->output_semantic_index[i], false);
3574
3575 for (chan = 0; chan < 4; chan++) {
3576 if (!(info->output_usagemask[i] & (1 << chan)))
3577 continue;
3578
3579 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3580 out_val = ac_to_integer(&ctx->ac, out_val);
3581
3582 /* GFX9 has the ESGS ring in LDS. */
3583 if (ctx->screen->info.chip_class >= GFX9) {
3584 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3585 continue;
3586 }
3587
3588 ac_build_buffer_store_dword(&ctx->ac,
3589 ctx->esgs_ring,
3590 out_val, 1, NULL, soffset,
3591 (4 * param + chan) * 4,
3592 1, 1, true, true);
3593 }
3594 }
3595
3596 if (ctx->screen->info.chip_class >= GFX9)
3597 si_set_es_return_value_for_gs(ctx);
3598 }
3599
3600 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3601 {
3602 if (ctx->screen->info.chip_class >= GFX9)
3603 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3604 else
3605 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3606 }
3607
3608 static void emit_gs_epilogue(struct si_shader_context *ctx)
3609 {
3610 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3611 si_get_gs_wave_id(ctx));
3612
3613 if (ctx->screen->info.chip_class >= GFX9)
3614 lp_build_endif(&ctx->merged_wrap_if_state);
3615 }
3616
3617 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3618 unsigned max_outputs,
3619 LLVMValueRef *addrs)
3620 {
3621 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3622 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3623
3624 assert(info->num_outputs <= max_outputs);
3625
3626 emit_gs_epilogue(ctx);
3627 }
3628
3629 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3630 {
3631 struct si_shader_context *ctx = si_shader_context(bld_base);
3632 emit_gs_epilogue(ctx);
3633 }
3634
3635 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3636 unsigned max_outputs,
3637 LLVMValueRef *addrs)
3638 {
3639 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3640 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3641 struct si_shader_output_values *outputs = NULL;
3642 int i,j;
3643
3644 assert(!ctx->shader->is_gs_copy_shader);
3645 assert(info->num_outputs <= max_outputs);
3646
3647 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3648
3649 /* Vertex color clamping.
3650 *
3651 * This uses a state constant loaded in a user data SGPR and
3652 * an IF statement is added that clamps all colors if the constant
3653 * is true.
3654 */
3655 struct lp_build_if_state if_ctx;
3656 LLVMValueRef cond = NULL;
3657 LLVMValueRef addr, val;
3658
3659 for (i = 0; i < info->num_outputs; i++) {
3660 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3661 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3662 continue;
3663
3664 /* We've found a color. */
3665 if (!cond) {
3666 /* The state is in the first bit of the user SGPR. */
3667 cond = LLVMGetParam(ctx->main_fn,
3668 ctx->param_vs_state_bits);
3669 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3670 ctx->i1, "");
3671 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3672 }
3673
3674 for (j = 0; j < 4; j++) {
3675 addr = addrs[4 * i + j];
3676 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3677 val = ac_build_clamp(&ctx->ac, val);
3678 LLVMBuildStore(ctx->ac.builder, val, addr);
3679 }
3680 }
3681
3682 if (cond)
3683 lp_build_endif(&if_ctx);
3684
3685 for (i = 0; i < info->num_outputs; i++) {
3686 outputs[i].semantic_name = info->output_semantic_name[i];
3687 outputs[i].semantic_index = info->output_semantic_index[i];
3688
3689 for (j = 0; j < 4; j++) {
3690 outputs[i].values[j] =
3691 LLVMBuildLoad(ctx->ac.builder,
3692 addrs[4 * i + j],
3693 "");
3694 outputs[i].vertex_stream[j] =
3695 (info->output_streams[i] >> (2 * j)) & 3;
3696 }
3697 }
3698
3699 if (ctx->shader->selector->so.num_outputs)
3700 si_llvm_emit_streamout(ctx, outputs, i, 0);
3701
3702 /* Export PrimitiveID. */
3703 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3704 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3705 outputs[i].semantic_index = 0;
3706 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3707 for (j = 1; j < 4; j++)
3708 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3709
3710 memset(outputs[i].vertex_stream, 0,
3711 sizeof(outputs[i].vertex_stream));
3712 i++;
3713 }
3714
3715 si_llvm_export_vs(ctx, outputs, i);
3716 FREE(outputs);
3717 }
3718
3719 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3720 {
3721 struct si_shader_context *ctx = si_shader_context(bld_base);
3722
3723 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3724 &ctx->outputs[0][0]);
3725 }
3726
3727 struct si_ps_exports {
3728 unsigned num;
3729 struct ac_export_args args[10];
3730 };
3731
3732 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3733 LLVMValueRef depth, LLVMValueRef stencil,
3734 LLVMValueRef samplemask, struct si_ps_exports *exp)
3735 {
3736 struct si_shader_context *ctx = si_shader_context(bld_base);
3737 struct ac_export_args args;
3738
3739 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3740
3741 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3742 }
3743
3744 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3745 LLVMValueRef *color, unsigned index,
3746 unsigned samplemask_param,
3747 bool is_last, struct si_ps_exports *exp)
3748 {
3749 struct si_shader_context *ctx = si_shader_context(bld_base);
3750 int i;
3751
3752 /* Clamp color */
3753 if (ctx->shader->key.part.ps.epilog.clamp_color)
3754 for (i = 0; i < 4; i++)
3755 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3756
3757 /* Alpha to one */
3758 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3759 color[3] = ctx->ac.f32_1;
3760
3761 /* Alpha test */
3762 if (index == 0 &&
3763 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3764 si_alpha_test(bld_base, color[3]);
3765
3766 /* Line & polygon smoothing */
3767 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3768 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3769 samplemask_param);
3770
3771 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3772 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3773 struct ac_export_args args[8];
3774 int c, last = -1;
3775
3776 /* Get the export arguments, also find out what the last one is. */
3777 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3778 si_llvm_init_export_args(ctx, color,
3779 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3780 if (args[c].enabled_channels)
3781 last = c;
3782 }
3783
3784 /* Emit all exports. */
3785 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3786 if (is_last && last == c) {
3787 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3788 args[c].done = 1; /* DONE bit */
3789 } else if (!args[c].enabled_channels)
3790 continue; /* unnecessary NULL export */
3791
3792 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3793 }
3794 } else {
3795 struct ac_export_args args;
3796
3797 /* Export */
3798 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3799 &args);
3800 if (is_last) {
3801 args.valid_mask = 1; /* whether the EXEC mask is valid */
3802 args.done = 1; /* DONE bit */
3803 } else if (!args.enabled_channels)
3804 return; /* unnecessary NULL export */
3805
3806 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3807 }
3808 }
3809
3810 static void si_emit_ps_exports(struct si_shader_context *ctx,
3811 struct si_ps_exports *exp)
3812 {
3813 for (unsigned i = 0; i < exp->num; i++)
3814 ac_build_export(&ctx->ac, &exp->args[i]);
3815 }
3816
3817 /**
3818 * Return PS outputs in this order:
3819 *
3820 * v[0:3] = color0.xyzw
3821 * v[4:7] = color1.xyzw
3822 * ...
3823 * vN+0 = Depth
3824 * vN+1 = Stencil
3825 * vN+2 = SampleMask
3826 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3827 *
3828 * The alpha-ref SGPR is returned via its original location.
3829 */
3830 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3831 unsigned max_outputs,
3832 LLVMValueRef *addrs)
3833 {
3834 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3835 struct si_shader *shader = ctx->shader;
3836 struct tgsi_shader_info *info = &shader->selector->info;
3837 LLVMBuilderRef builder = ctx->ac.builder;
3838 unsigned i, j, first_vgpr, vgpr;
3839
3840 LLVMValueRef color[8][4] = {};
3841 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3842 LLVMValueRef ret;
3843
3844 if (ctx->postponed_kill)
3845 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3846
3847 /* Read the output values. */
3848 for (i = 0; i < info->num_outputs; i++) {
3849 unsigned semantic_name = info->output_semantic_name[i];
3850 unsigned semantic_index = info->output_semantic_index[i];
3851
3852 switch (semantic_name) {
3853 case TGSI_SEMANTIC_COLOR:
3854 assert(semantic_index < 8);
3855 for (j = 0; j < 4; j++) {
3856 LLVMValueRef ptr = addrs[4 * i + j];
3857 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3858 color[semantic_index][j] = result;
3859 }
3860 break;
3861 case TGSI_SEMANTIC_POSITION:
3862 depth = LLVMBuildLoad(builder,
3863 addrs[4 * i + 2], "");
3864 break;
3865 case TGSI_SEMANTIC_STENCIL:
3866 stencil = LLVMBuildLoad(builder,
3867 addrs[4 * i + 1], "");
3868 break;
3869 case TGSI_SEMANTIC_SAMPLEMASK:
3870 samplemask = LLVMBuildLoad(builder,
3871 addrs[4 * i + 0], "");
3872 break;
3873 default:
3874 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3875 semantic_name);
3876 }
3877 }
3878
3879 /* Fill the return structure. */
3880 ret = ctx->return_value;
3881
3882 /* Set SGPRs. */
3883 ret = LLVMBuildInsertValue(builder, ret,
3884 ac_to_integer(&ctx->ac,
3885 LLVMGetParam(ctx->main_fn,
3886 SI_PARAM_ALPHA_REF)),
3887 SI_SGPR_ALPHA_REF, "");
3888
3889 /* Set VGPRs */
3890 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3891 for (i = 0; i < ARRAY_SIZE(color); i++) {
3892 if (!color[i][0])
3893 continue;
3894
3895 for (j = 0; j < 4; j++)
3896 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3897 }
3898 if (depth)
3899 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3900 if (stencil)
3901 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3902 if (samplemask)
3903 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3904
3905 /* Add the input sample mask for smoothing at the end. */
3906 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3907 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3908 ret = LLVMBuildInsertValue(builder, ret,
3909 LLVMGetParam(ctx->main_fn,
3910 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3911
3912 ctx->return_value = ret;
3913 }
3914
3915 static void membar_emit(
3916 const struct lp_build_tgsi_action *action,
3917 struct lp_build_tgsi_context *bld_base,
3918 struct lp_build_emit_data *emit_data)
3919 {
3920 struct si_shader_context *ctx = si_shader_context(bld_base);
3921 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3922 unsigned flags = LLVMConstIntGetZExtValue(src0);
3923 unsigned waitcnt = NOOP_WAITCNT;
3924
3925 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3926 waitcnt &= VM_CNT & LGKM_CNT;
3927
3928 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3929 TGSI_MEMBAR_SHADER_BUFFER |
3930 TGSI_MEMBAR_SHADER_IMAGE))
3931 waitcnt &= VM_CNT;
3932
3933 if (flags & TGSI_MEMBAR_SHARED)
3934 waitcnt &= LGKM_CNT;
3935
3936 if (waitcnt != NOOP_WAITCNT)
3937 ac_build_waitcnt(&ctx->ac, waitcnt);
3938 }
3939
3940 static void clock_emit(
3941 const struct lp_build_tgsi_action *action,
3942 struct lp_build_tgsi_context *bld_base,
3943 struct lp_build_emit_data *emit_data)
3944 {
3945 struct si_shader_context *ctx = si_shader_context(bld_base);
3946 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3947
3948 emit_data->output[0] =
3949 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3950 emit_data->output[1] =
3951 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3952 }
3953
3954 static void si_llvm_emit_ddxy(
3955 const struct lp_build_tgsi_action *action,
3956 struct lp_build_tgsi_context *bld_base,
3957 struct lp_build_emit_data *emit_data)
3958 {
3959 struct si_shader_context *ctx = si_shader_context(bld_base);
3960 unsigned opcode = emit_data->info->opcode;
3961 LLVMValueRef val;
3962 int idx;
3963 unsigned mask;
3964
3965 if (opcode == TGSI_OPCODE_DDX_FINE)
3966 mask = AC_TID_MASK_LEFT;
3967 else if (opcode == TGSI_OPCODE_DDY_FINE)
3968 mask = AC_TID_MASK_TOP;
3969 else
3970 mask = AC_TID_MASK_TOP_LEFT;
3971
3972 /* for DDX we want to next X pixel, DDY next Y pixel. */
3973 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3974
3975 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3976 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3977 emit_data->output[emit_data->chan] = val;
3978 }
3979
3980 /*
3981 * this takes an I,J coordinate pair,
3982 * and works out the X and Y derivatives.
3983 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
3984 */
3985 static LLVMValueRef si_llvm_emit_ddxy_interp(
3986 struct lp_build_tgsi_context *bld_base,
3987 LLVMValueRef interp_ij)
3988 {
3989 struct si_shader_context *ctx = si_shader_context(bld_base);
3990 LLVMValueRef result[4], a;
3991 unsigned i;
3992
3993 for (i = 0; i < 2; i++) {
3994 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
3995 LLVMConstInt(ctx->i32, i, 0), "");
3996 result[i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 1,
3997 ac_to_integer(&ctx->ac, a)); /* DDX */
3998 result[2+i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 2,
3999 ac_to_integer(&ctx->ac, a)); /* DDY */
4000 }
4001
4002 return ac_build_gather_values(&ctx->ac, result, 4);
4003 }
4004
4005 static void interp_fetch_args(
4006 struct lp_build_tgsi_context *bld_base,
4007 struct lp_build_emit_data *emit_data)
4008 {
4009 struct si_shader_context *ctx = si_shader_context(bld_base);
4010 const struct tgsi_full_instruction *inst = emit_data->inst;
4011
4012 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4013 /* offset is in second src, first two channels */
4014 emit_data->args[0] = lp_build_emit_fetch(bld_base,
4015 emit_data->inst, 1,
4016 TGSI_CHAN_X);
4017 emit_data->args[1] = lp_build_emit_fetch(bld_base,
4018 emit_data->inst, 1,
4019 TGSI_CHAN_Y);
4020 emit_data->arg_count = 2;
4021 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4022 LLVMValueRef sample_position;
4023 LLVMValueRef sample_id;
4024 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4025
4026 /* fetch sample ID, then fetch its sample position,
4027 * and place into first two channels.
4028 */
4029 sample_id = lp_build_emit_fetch(bld_base,
4030 emit_data->inst, 1, TGSI_CHAN_X);
4031 sample_id = ac_to_integer(&ctx->ac, sample_id);
4032
4033 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4034 * Language 4.50 spec says about interpolateAtSample:
4035 *
4036 * "Returns the value of the input interpolant variable at
4037 * the location of sample number sample. If multisample
4038 * buffers are not available, the input variable will be
4039 * evaluated at the center of the pixel. If sample sample
4040 * does not exist, the position used to interpolate the
4041 * input variable is undefined."
4042 *
4043 * This means that sample_id values outside of the valid are
4044 * in fact valid input, and the usual mechanism for loading the
4045 * sample position doesn't work.
4046 */
4047 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4048 LLVMValueRef center[4] = {
4049 LLVMConstReal(ctx->f32, 0.5),
4050 LLVMConstReal(ctx->f32, 0.5),
4051 ctx->ac.f32_0,
4052 ctx->ac.f32_0,
4053 };
4054
4055 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4056 } else {
4057 sample_position = load_sample_position(&ctx->abi, sample_id);
4058 }
4059
4060 emit_data->args[0] = LLVMBuildExtractElement(ctx->ac.builder,
4061 sample_position,
4062 ctx->i32_0, "");
4063
4064 emit_data->args[0] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[0], halfval, "");
4065 emit_data->args[1] = LLVMBuildExtractElement(ctx->ac.builder,
4066 sample_position,
4067 ctx->i32_1, "");
4068 emit_data->args[1] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[1], halfval, "");
4069 emit_data->arg_count = 2;
4070 }
4071 }
4072
4073 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4074 struct lp_build_tgsi_context *bld_base,
4075 struct lp_build_emit_data *emit_data)
4076 {
4077 struct si_shader_context *ctx = si_shader_context(bld_base);
4078 struct si_shader *shader = ctx->shader;
4079 const struct tgsi_shader_info *info = &shader->selector->info;
4080 LLVMValueRef interp_param;
4081 const struct tgsi_full_instruction *inst = emit_data->inst;
4082 const struct tgsi_full_src_register *input = &inst->Src[0];
4083 int input_base, input_array_size;
4084 int chan;
4085 int i;
4086 LLVMValueRef prim_mask = ctx->abi.prim_mask;
4087 LLVMValueRef array_idx;
4088 int interp_param_idx;
4089 unsigned interp;
4090 unsigned location;
4091
4092 assert(input->Register.File == TGSI_FILE_INPUT);
4093
4094 if (input->Register.Indirect) {
4095 unsigned array_id = input->Indirect.ArrayID;
4096
4097 if (array_id) {
4098 input_base = info->input_array_first[array_id];
4099 input_array_size = info->input_array_last[array_id] - input_base + 1;
4100 } else {
4101 input_base = inst->Src[0].Register.Index;
4102 input_array_size = info->num_inputs - input_base;
4103 }
4104
4105 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4106 1, input->Register.Index - input_base);
4107 } else {
4108 input_base = inst->Src[0].Register.Index;
4109 input_array_size = 1;
4110 array_idx = ctx->i32_0;
4111 }
4112
4113 interp = shader->selector->info.input_interpolate[input_base];
4114
4115 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4116 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4117 location = TGSI_INTERPOLATE_LOC_CENTER;
4118 else
4119 location = TGSI_INTERPOLATE_LOC_CENTROID;
4120
4121 interp_param_idx = lookup_interp_param_index(interp, location);
4122 if (interp_param_idx == -1)
4123 return;
4124 else if (interp_param_idx)
4125 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4126 else
4127 interp_param = NULL;
4128
4129 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4130 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4131 LLVMValueRef ij_out[2];
4132 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4133
4134 /*
4135 * take the I then J parameters, and the DDX/Y for it, and
4136 * calculate the IJ inputs for the interpolator.
4137 * temp1 = ddx * offset/sample.x + I;
4138 * interp_param.I = ddy * offset/sample.y + temp1;
4139 * temp1 = ddx * offset/sample.x + J;
4140 * interp_param.J = ddy * offset/sample.y + temp1;
4141 */
4142 for (i = 0; i < 2; i++) {
4143 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4144 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4145 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4146 ddxy_out, ix_ll, "");
4147 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4148 ddxy_out, iy_ll, "");
4149 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4150 interp_param, ix_ll, "");
4151 LLVMValueRef temp1, temp2;
4152
4153 interp_el = ac_to_float(&ctx->ac, interp_el);
4154
4155 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, emit_data->args[0], "");
4156
4157 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4158
4159 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, emit_data->args[1], "");
4160
4161 ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4162 }
4163 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4164 }
4165
4166 if (interp_param)
4167 interp_param = ac_to_float(&ctx->ac, interp_param);
4168
4169 for (chan = 0; chan < 4; chan++) {
4170 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4171 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4172
4173 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4174 LLVMValueRef v, i = NULL, j = NULL;
4175
4176 if (interp_param) {
4177 i = LLVMBuildExtractElement(
4178 ctx->ac.builder, interp_param, ctx->i32_0, "");
4179 j = LLVMBuildExtractElement(
4180 ctx->ac.builder, interp_param, ctx->i32_1, "");
4181 }
4182 v = si_build_fs_interp(ctx, input_base + idx, schan,
4183 prim_mask, i, j);
4184
4185 gather = LLVMBuildInsertElement(ctx->ac.builder,
4186 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4187 }
4188
4189 emit_data->output[chan] = LLVMBuildExtractElement(
4190 ctx->ac.builder, gather, array_idx, "");
4191 }
4192 }
4193
4194 static void vote_all_emit(
4195 const struct lp_build_tgsi_action *action,
4196 struct lp_build_tgsi_context *bld_base,
4197 struct lp_build_emit_data *emit_data)
4198 {
4199 struct si_shader_context *ctx = si_shader_context(bld_base);
4200
4201 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4202 emit_data->output[emit_data->chan] =
4203 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4204 }
4205
4206 static void vote_any_emit(
4207 const struct lp_build_tgsi_action *action,
4208 struct lp_build_tgsi_context *bld_base,
4209 struct lp_build_emit_data *emit_data)
4210 {
4211 struct si_shader_context *ctx = si_shader_context(bld_base);
4212
4213 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4214 emit_data->output[emit_data->chan] =
4215 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4216 }
4217
4218 static void vote_eq_emit(
4219 const struct lp_build_tgsi_action *action,
4220 struct lp_build_tgsi_context *bld_base,
4221 struct lp_build_emit_data *emit_data)
4222 {
4223 struct si_shader_context *ctx = si_shader_context(bld_base);
4224
4225 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4226 emit_data->output[emit_data->chan] =
4227 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4228 }
4229
4230 static void ballot_emit(
4231 const struct lp_build_tgsi_action *action,
4232 struct lp_build_tgsi_context *bld_base,
4233 struct lp_build_emit_data *emit_data)
4234 {
4235 struct si_shader_context *ctx = si_shader_context(bld_base);
4236 LLVMBuilderRef builder = ctx->ac.builder;
4237 LLVMValueRef tmp;
4238
4239 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4240 tmp = ac_build_ballot(&ctx->ac, tmp);
4241 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4242
4243 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4244 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4245 }
4246
4247 static void read_invoc_fetch_args(
4248 struct lp_build_tgsi_context *bld_base,
4249 struct lp_build_emit_data *emit_data)
4250 {
4251 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4252 0, emit_data->src_chan);
4253
4254 /* Always read the source invocation (= lane) from the X channel. */
4255 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4256 1, TGSI_CHAN_X);
4257 emit_data->arg_count = 2;
4258 }
4259
4260 static void read_lane_emit(
4261 const struct lp_build_tgsi_action *action,
4262 struct lp_build_tgsi_context *bld_base,
4263 struct lp_build_emit_data *emit_data)
4264 {
4265 struct si_shader_context *ctx = si_shader_context(bld_base);
4266
4267 /* We currently have no other way to prevent LLVM from lifting the icmp
4268 * calls to a dominating basic block.
4269 */
4270 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4271
4272 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4273 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4274
4275 emit_data->output[emit_data->chan] =
4276 ac_build_intrinsic(&ctx->ac, action->intr_name,
4277 ctx->i32, emit_data->args, emit_data->arg_count,
4278 AC_FUNC_ATTR_READNONE |
4279 AC_FUNC_ATTR_CONVERGENT);
4280 }
4281
4282 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4283 struct lp_build_emit_data *emit_data)
4284 {
4285 struct si_shader_context *ctx = si_shader_context(bld_base);
4286 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4287 LLVMValueRef imm;
4288 unsigned stream;
4289
4290 assert(src0.File == TGSI_FILE_IMMEDIATE);
4291
4292 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4293 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4294 return stream;
4295 }
4296
4297 /* Emit one vertex from the geometry shader */
4298 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4299 unsigned stream,
4300 LLVMValueRef *addrs)
4301 {
4302 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4303 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4304 struct si_shader *shader = ctx->shader;
4305 struct lp_build_if_state if_state;
4306 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4307 ctx->param_gs2vs_offset);
4308 LLVMValueRef gs_next_vertex;
4309 LLVMValueRef can_emit;
4310 unsigned chan, offset;
4311 int i;
4312
4313 /* Write vertex attribute values to GSVS ring */
4314 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4315 ctx->gs_next_vertex[stream],
4316 "");
4317
4318 /* If this thread has already emitted the declared maximum number of
4319 * vertices, skip the write: excessive vertex emissions are not
4320 * supposed to have any effect.
4321 *
4322 * If the shader has no writes to memory, kill it instead. This skips
4323 * further memory loads and may allow LLVM to skip to the end
4324 * altogether.
4325 */
4326 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4327 LLVMConstInt(ctx->i32,
4328 shader->selector->gs_max_out_vertices, 0), "");
4329
4330 bool use_kill = !info->writes_memory;
4331 if (use_kill) {
4332 ac_build_kill_if_false(&ctx->ac, can_emit);
4333 } else {
4334 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4335 }
4336
4337 offset = 0;
4338 for (i = 0; i < info->num_outputs; i++) {
4339 for (chan = 0; chan < 4; chan++) {
4340 if (!(info->output_usagemask[i] & (1 << chan)) ||
4341 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4342 continue;
4343
4344 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4345 LLVMValueRef voffset =
4346 LLVMConstInt(ctx->i32, offset *
4347 shader->selector->gs_max_out_vertices, 0);
4348 offset++;
4349
4350 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4351 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4352 LLVMConstInt(ctx->i32, 4, 0), "");
4353
4354 out_val = ac_to_integer(&ctx->ac, out_val);
4355
4356 ac_build_buffer_store_dword(&ctx->ac,
4357 ctx->gsvs_ring[stream],
4358 out_val, 1,
4359 voffset, soffset, 0,
4360 1, 1, true, true);
4361 }
4362 }
4363
4364 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4365 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4366
4367 /* Signal vertex emission */
4368 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4369 si_get_gs_wave_id(ctx));
4370 if (!use_kill)
4371 lp_build_endif(&if_state);
4372 }
4373
4374 /* Emit one vertex from the geometry shader */
4375 static void si_tgsi_emit_vertex(
4376 const struct lp_build_tgsi_action *action,
4377 struct lp_build_tgsi_context *bld_base,
4378 struct lp_build_emit_data *emit_data)
4379 {
4380 struct si_shader_context *ctx = si_shader_context(bld_base);
4381 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4382
4383 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4384 }
4385
4386 /* Cut one primitive from the geometry shader */
4387 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4388 unsigned stream)
4389 {
4390 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4391
4392 /* Signal primitive cut */
4393 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4394 si_get_gs_wave_id(ctx));
4395 }
4396
4397 /* Cut one primitive from the geometry shader */
4398 static void si_tgsi_emit_primitive(
4399 const struct lp_build_tgsi_action *action,
4400 struct lp_build_tgsi_context *bld_base,
4401 struct lp_build_emit_data *emit_data)
4402 {
4403 struct si_shader_context *ctx = si_shader_context(bld_base);
4404
4405 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4406 }
4407
4408 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4409 struct lp_build_tgsi_context *bld_base,
4410 struct lp_build_emit_data *emit_data)
4411 {
4412 struct si_shader_context *ctx = si_shader_context(bld_base);
4413
4414 /* SI only (thanks to a hw bug workaround):
4415 * The real barrier instruction isn’t needed, because an entire patch
4416 * always fits into a single wave.
4417 */
4418 if (ctx->screen->info.chip_class == SI &&
4419 ctx->type == PIPE_SHADER_TESS_CTRL) {
4420 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4421 return;
4422 }
4423
4424 ac_build_intrinsic(&ctx->ac,
4425 "llvm.amdgcn.s.barrier",
4426 ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
4427 }
4428
4429 static const struct lp_build_tgsi_action interp_action = {
4430 .fetch_args = interp_fetch_args,
4431 .emit = build_interp_intrinsic,
4432 };
4433
4434 static void si_create_function(struct si_shader_context *ctx,
4435 const char *name,
4436 LLVMTypeRef *returns, unsigned num_returns,
4437 struct si_function_info *fninfo,
4438 unsigned max_workgroup_size)
4439 {
4440 int i;
4441
4442 si_llvm_create_func(ctx, name, returns, num_returns,
4443 fninfo->types, fninfo->num_params);
4444 ctx->return_value = LLVMGetUndef(ctx->return_type);
4445
4446 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4447 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4448
4449 /* The combination of:
4450 * - noalias
4451 * - dereferenceable
4452 * - invariant.load
4453 * allows the optimization passes to move loads and reduces
4454 * SGPR spilling significantly.
4455 */
4456 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4457 AC_FUNC_ATTR_INREG);
4458
4459 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4460 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4461 AC_FUNC_ATTR_NOALIAS);
4462 ac_add_attr_dereferenceable(P, UINT64_MAX);
4463 }
4464 }
4465
4466 for (i = 0; i < fninfo->num_params; ++i) {
4467 if (fninfo->assign[i])
4468 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4469 }
4470
4471 if (ctx->screen->info.address32_hi) {
4472 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4473 "amdgpu-32bit-address-high-bits",
4474 ctx->screen->info.address32_hi);
4475 }
4476
4477 if (max_workgroup_size) {
4478 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4479 "amdgpu-max-work-group-size",
4480 max_workgroup_size);
4481 }
4482 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4483 "no-signed-zeros-fp-math",
4484 "true");
4485
4486 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4487 /* These were copied from some LLVM test. */
4488 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4489 "less-precise-fpmad",
4490 "true");
4491 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4492 "no-infs-fp-math",
4493 "true");
4494 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4495 "no-nans-fp-math",
4496 "true");
4497 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4498 "unsafe-fp-math",
4499 "true");
4500 }
4501 }
4502
4503 static void declare_streamout_params(struct si_shader_context *ctx,
4504 struct pipe_stream_output_info *so,
4505 struct si_function_info *fninfo)
4506 {
4507 int i;
4508
4509 /* Streamout SGPRs. */
4510 if (so->num_outputs) {
4511 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4512 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4513 else
4514 ctx->param_streamout_config = fninfo->num_params - 1;
4515
4516 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4517 }
4518 /* A streamout buffer offset is loaded if the stride is non-zero. */
4519 for (i = 0; i < 4; i++) {
4520 if (!so->stride[i])
4521 continue;
4522
4523 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4524 }
4525 }
4526
4527 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4528 {
4529 switch (shader->selector->type) {
4530 case PIPE_SHADER_TESS_CTRL:
4531 /* Return this so that LLVM doesn't remove s_barrier
4532 * instructions on chips where we use s_barrier. */
4533 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4534
4535 case PIPE_SHADER_GEOMETRY:
4536 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4537
4538 case PIPE_SHADER_COMPUTE:
4539 break; /* see below */
4540
4541 default:
4542 return 0;
4543 }
4544
4545 const unsigned *properties = shader->selector->info.properties;
4546 unsigned max_work_group_size =
4547 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4548 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4549 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4550
4551 if (!max_work_group_size) {
4552 /* This is a variable group size compute shader,
4553 * compile it for the maximum possible group size.
4554 */
4555 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4556 }
4557 return max_work_group_size;
4558 }
4559
4560 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4561 struct si_function_info *fninfo,
4562 bool assign_params)
4563 {
4564 LLVMTypeRef const_shader_buf_type;
4565
4566 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4567 ctx->shader->selector->info.shader_buffers_declared == 0)
4568 const_shader_buf_type = ctx->f32;
4569 else
4570 const_shader_buf_type = ctx->v4i32;
4571
4572 unsigned const_and_shader_buffers =
4573 add_arg(fninfo, ARG_SGPR,
4574 ac_array_in_const32_addr_space(const_shader_buf_type));
4575
4576 if (assign_params)
4577 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4578 }
4579
4580 static void declare_samplers_and_images(struct si_shader_context *ctx,
4581 struct si_function_info *fninfo,
4582 bool assign_params)
4583 {
4584 unsigned samplers_and_images =
4585 add_arg(fninfo, ARG_SGPR,
4586 ac_array_in_const32_addr_space(ctx->v8i32));
4587
4588 if (assign_params)
4589 ctx->param_samplers_and_images = samplers_and_images;
4590 }
4591
4592 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4593 struct si_function_info *fninfo,
4594 bool assign_params)
4595 {
4596 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4597 declare_samplers_and_images(ctx, fninfo, assign_params);
4598 }
4599
4600 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4601 struct si_function_info *fninfo)
4602 {
4603 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4604 ac_array_in_const32_addr_space(ctx->v4i32));
4605 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4606 ac_array_in_const32_addr_space(ctx->v8i32));
4607 }
4608
4609 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4610 struct si_function_info *fninfo)
4611 {
4612 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4613 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4614 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4615 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4616 }
4617
4618 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4619 struct si_function_info *fninfo,
4620 unsigned *num_prolog_vgprs)
4621 {
4622 struct si_shader *shader = ctx->shader;
4623
4624 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4625 if (shader->key.as_ls) {
4626 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4627 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4628 } else {
4629 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4630 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4631 }
4632 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4633
4634 if (!shader->is_gs_copy_shader) {
4635 /* Vertex load indices. */
4636 ctx->param_vertex_index0 = fninfo->num_params;
4637 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4638 add_arg(fninfo, ARG_VGPR, ctx->i32);
4639 *num_prolog_vgprs += shader->selector->info.num_inputs;
4640 }
4641 }
4642
4643 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4644 struct si_function_info *fninfo)
4645 {
4646 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4647 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4648 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4649 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4650 }
4651
4652 enum {
4653 /* Convenient merged shader definitions. */
4654 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4655 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4656 };
4657
4658 static void create_function(struct si_shader_context *ctx)
4659 {
4660 struct si_shader *shader = ctx->shader;
4661 struct si_function_info fninfo;
4662 LLVMTypeRef returns[16+32*4];
4663 unsigned i, num_return_sgprs;
4664 unsigned num_returns = 0;
4665 unsigned num_prolog_vgprs = 0;
4666 unsigned type = ctx->type;
4667 unsigned vs_blit_property =
4668 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4669
4670 si_init_function_info(&fninfo);
4671
4672 /* Set MERGED shaders. */
4673 if (ctx->screen->info.chip_class >= GFX9) {
4674 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4675 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4676 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4677 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4678 }
4679
4680 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4681
4682 switch (type) {
4683 case PIPE_SHADER_VERTEX:
4684 declare_global_desc_pointers(ctx, &fninfo);
4685
4686 if (vs_blit_property) {
4687 ctx->param_vs_blit_inputs = fninfo.num_params;
4688 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4689 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4690 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4691
4692 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4693 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4694 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4695 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4696 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4697 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4698 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4699 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4700 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4701 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4702 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4703 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4704 }
4705
4706 /* VGPRs */
4707 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4708 break;
4709 }
4710
4711 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4712 declare_vs_specific_input_sgprs(ctx, &fninfo);
4713 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4714 ac_array_in_const32_addr_space(ctx->v4i32));
4715
4716 if (shader->key.as_es) {
4717 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4718 } else if (shader->key.as_ls) {
4719 /* no extra parameters */
4720 } else {
4721 if (shader->is_gs_copy_shader) {
4722 fninfo.num_params = ctx->param_vs_state_bits + 1;
4723 fninfo.num_sgpr_params = fninfo.num_params;
4724 }
4725
4726 /* The locations of the other parameters are assigned dynamically. */
4727 declare_streamout_params(ctx, &shader->selector->so,
4728 &fninfo);
4729 }
4730
4731 /* VGPRs */
4732 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4733 break;
4734
4735 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4736 declare_global_desc_pointers(ctx, &fninfo);
4737 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4738 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4739 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4740 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4741 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4742 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4743 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4744
4745 /* VGPRs */
4746 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4747 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4748
4749 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4750 * placed after the user SGPRs.
4751 */
4752 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4753 returns[num_returns++] = ctx->i32; /* SGPRs */
4754 for (i = 0; i < 11; i++)
4755 returns[num_returns++] = ctx->f32; /* VGPRs */
4756 break;
4757
4758 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4759 /* Merged stages have 8 system SGPRs at the beginning. */
4760 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4761 if (HAVE_32BIT_POINTERS) {
4762 declare_per_stage_desc_pointers(ctx, &fninfo,
4763 ctx->type == PIPE_SHADER_TESS_CTRL);
4764 } else {
4765 declare_const_and_shader_buffers(ctx, &fninfo,
4766 ctx->type == PIPE_SHADER_TESS_CTRL);
4767 }
4768 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4769 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4770 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4771 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4772 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4773 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4774
4775 declare_global_desc_pointers(ctx, &fninfo);
4776 declare_per_stage_desc_pointers(ctx, &fninfo,
4777 ctx->type == PIPE_SHADER_VERTEX);
4778 declare_vs_specific_input_sgprs(ctx, &fninfo);
4779
4780 if (!HAVE_32BIT_POINTERS) {
4781 declare_samplers_and_images(ctx, &fninfo,
4782 ctx->type == PIPE_SHADER_TESS_CTRL);
4783 }
4784 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4785 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4786 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4787 if (!HAVE_32BIT_POINTERS) /* Align to 2 dwords. */
4788 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4789 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4790 ac_array_in_const32_addr_space(ctx->v4i32));
4791
4792 /* VGPRs (first TCS, then VS) */
4793 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4794 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4795
4796 if (ctx->type == PIPE_SHADER_VERTEX) {
4797 declare_vs_input_vgprs(ctx, &fninfo,
4798 &num_prolog_vgprs);
4799
4800 /* LS return values are inputs to the TCS main shader part. */
4801 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4802 returns[num_returns++] = ctx->i32; /* SGPRs */
4803 for (i = 0; i < 2; i++)
4804 returns[num_returns++] = ctx->f32; /* VGPRs */
4805 } else {
4806 /* TCS return values are inputs to the TCS epilog.
4807 *
4808 * param_tcs_offchip_offset, param_tcs_factor_offset,
4809 * param_tcs_offchip_layout, and param_rw_buffers
4810 * should be passed to the epilog.
4811 */
4812 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4813 returns[num_returns++] = ctx->i32; /* SGPRs */
4814 for (i = 0; i < 11; i++)
4815 returns[num_returns++] = ctx->f32; /* VGPRs */
4816 }
4817 break;
4818
4819 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4820 /* Merged stages have 8 system SGPRs at the beginning. */
4821 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4822 if (HAVE_32BIT_POINTERS) {
4823 declare_per_stage_desc_pointers(ctx, &fninfo,
4824 ctx->type == PIPE_SHADER_GEOMETRY);
4825 } else {
4826 declare_const_and_shader_buffers(ctx, &fninfo,
4827 ctx->type == PIPE_SHADER_GEOMETRY);
4828 }
4829 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4830 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4831 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4832 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4833 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4834 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4835
4836 declare_global_desc_pointers(ctx, &fninfo);
4837 declare_per_stage_desc_pointers(ctx, &fninfo,
4838 (ctx->type == PIPE_SHADER_VERTEX ||
4839 ctx->type == PIPE_SHADER_TESS_EVAL));
4840 if (ctx->type == PIPE_SHADER_VERTEX) {
4841 declare_vs_specific_input_sgprs(ctx, &fninfo);
4842 } else {
4843 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4844 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4845 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4846 /* Declare as many input SGPRs as the VS has. */
4847 if (!HAVE_32BIT_POINTERS)
4848 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4849 }
4850
4851 if (!HAVE_32BIT_POINTERS) {
4852 declare_samplers_and_images(ctx, &fninfo,
4853 ctx->type == PIPE_SHADER_GEOMETRY);
4854 }
4855 if (ctx->type == PIPE_SHADER_VERTEX) {
4856 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4857 ac_array_in_const32_addr_space(ctx->v4i32));
4858 }
4859
4860 /* VGPRs (first GS, then VS/TES) */
4861 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4862 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4863 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4864 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4865 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4866
4867 if (ctx->type == PIPE_SHADER_VERTEX) {
4868 declare_vs_input_vgprs(ctx, &fninfo,
4869 &num_prolog_vgprs);
4870 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4871 declare_tes_input_vgprs(ctx, &fninfo);
4872 }
4873
4874 if (ctx->type == PIPE_SHADER_VERTEX ||
4875 ctx->type == PIPE_SHADER_TESS_EVAL) {
4876 unsigned num_user_sgprs;
4877
4878 if (ctx->type == PIPE_SHADER_VERTEX)
4879 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4880 else
4881 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4882
4883 /* ES return values are inputs to GS. */
4884 for (i = 0; i < 8 + num_user_sgprs; i++)
4885 returns[num_returns++] = ctx->i32; /* SGPRs */
4886 for (i = 0; i < 5; i++)
4887 returns[num_returns++] = ctx->f32; /* VGPRs */
4888 }
4889 break;
4890
4891 case PIPE_SHADER_TESS_EVAL:
4892 declare_global_desc_pointers(ctx, &fninfo);
4893 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4894 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4895 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4896 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4897
4898 if (shader->key.as_es) {
4899 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4900 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4901 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4902 } else {
4903 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4904 declare_streamout_params(ctx, &shader->selector->so,
4905 &fninfo);
4906 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4907 }
4908
4909 /* VGPRs */
4910 declare_tes_input_vgprs(ctx, &fninfo);
4911 break;
4912
4913 case PIPE_SHADER_GEOMETRY:
4914 declare_global_desc_pointers(ctx, &fninfo);
4915 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4916 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4917 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4918
4919 /* VGPRs */
4920 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4921 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4922 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4923 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4924 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4925 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4926 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4927 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4928 break;
4929
4930 case PIPE_SHADER_FRAGMENT:
4931 declare_global_desc_pointers(ctx, &fninfo);
4932 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4933 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4934 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4935 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4936
4937 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4938 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4939 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4940 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4941 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4942 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4943 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4944 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4945 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4946 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4947 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4948 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4949 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4950 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4951 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4952 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4953 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4954 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4955 shader->info.face_vgpr_index = 20;
4956 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4957 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4958 shader->info.ancillary_vgpr_index = 21;
4959 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4960 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4961 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4962
4963 /* Color inputs from the prolog. */
4964 if (shader->selector->info.colors_read) {
4965 unsigned num_color_elements =
4966 util_bitcount(shader->selector->info.colors_read);
4967
4968 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4969 for (i = 0; i < num_color_elements; i++)
4970 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4971
4972 num_prolog_vgprs += num_color_elements;
4973 }
4974
4975 /* Outputs for the epilog. */
4976 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4977 num_returns =
4978 num_return_sgprs +
4979 util_bitcount(shader->selector->info.colors_written) * 4 +
4980 shader->selector->info.writes_z +
4981 shader->selector->info.writes_stencil +
4982 shader->selector->info.writes_samplemask +
4983 1 /* SampleMaskIn */;
4984
4985 num_returns = MAX2(num_returns,
4986 num_return_sgprs +
4987 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4988
4989 for (i = 0; i < num_return_sgprs; i++)
4990 returns[i] = ctx->i32;
4991 for (; i < num_returns; i++)
4992 returns[i] = ctx->f32;
4993 break;
4994
4995 case PIPE_SHADER_COMPUTE:
4996 declare_global_desc_pointers(ctx, &fninfo);
4997 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4998 if (shader->selector->info.uses_grid_size)
4999 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
5000 if (shader->selector->info.uses_block_size &&
5001 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
5002 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
5003
5004 for (i = 0; i < 3; i++) {
5005 ctx->abi.workgroup_ids[i] = NULL;
5006 if (shader->selector->info.uses_block_id[i])
5007 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
5008 }
5009
5010 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
5011 break;
5012 default:
5013 assert(0 && "unimplemented shader");
5014 return;
5015 }
5016
5017 si_create_function(ctx, "main", returns, num_returns, &fninfo,
5018 si_get_max_workgroup_size(shader));
5019
5020 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5021 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
5022 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
5023 "InitialPSInputAddr",
5024 S_0286D0_PERSP_SAMPLE_ENA(1) |
5025 S_0286D0_PERSP_CENTER_ENA(1) |
5026 S_0286D0_PERSP_CENTROID_ENA(1) |
5027 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5028 S_0286D0_LINEAR_CENTER_ENA(1) |
5029 S_0286D0_LINEAR_CENTROID_ENA(1) |
5030 S_0286D0_FRONT_FACE_ENA(1) |
5031 S_0286D0_ANCILLARY_ENA(1) |
5032 S_0286D0_POS_FIXED_PT_ENA(1));
5033 }
5034
5035 shader->info.num_input_sgprs = 0;
5036 shader->info.num_input_vgprs = 0;
5037
5038 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5039 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5040
5041 for (; i < fninfo.num_params; ++i)
5042 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5043
5044 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5045 shader->info.num_input_vgprs -= num_prolog_vgprs;
5046
5047 if (shader->key.as_ls ||
5048 ctx->type == PIPE_SHADER_TESS_CTRL ||
5049 /* GFX9 has the ESGS ring buffer in LDS. */
5050 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5051 ac_declare_lds_as_pointer(&ctx->ac);
5052 }
5053
5054 /**
5055 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5056 * for later use.
5057 */
5058 static void preload_ring_buffers(struct si_shader_context *ctx)
5059 {
5060 LLVMBuilderRef builder = ctx->ac.builder;
5061
5062 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5063 ctx->param_rw_buffers);
5064
5065 if (ctx->screen->info.chip_class <= VI &&
5066 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5067 unsigned ring =
5068 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5069 : SI_ES_RING_ESGS;
5070 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5071
5072 ctx->esgs_ring =
5073 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5074 }
5075
5076 if (ctx->shader->is_gs_copy_shader) {
5077 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5078
5079 ctx->gsvs_ring[0] =
5080 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5081 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5082 const struct si_shader_selector *sel = ctx->shader->selector;
5083 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5084 LLVMValueRef base_ring;
5085
5086 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5087
5088 /* The conceptual layout of the GSVS ring is
5089 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5090 * but the real memory layout is swizzled across
5091 * threads:
5092 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5093 * t16v0c0 ..
5094 * Override the buffer descriptor accordingly.
5095 */
5096 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5097 uint64_t stream_offset = 0;
5098
5099 for (unsigned stream = 0; stream < 4; ++stream) {
5100 unsigned num_components;
5101 unsigned stride;
5102 unsigned num_records;
5103 LLVMValueRef ring, tmp;
5104
5105 num_components = sel->info.num_stream_output_components[stream];
5106 if (!num_components)
5107 continue;
5108
5109 stride = 4 * num_components * sel->gs_max_out_vertices;
5110
5111 /* Limit on the stride field for <= CIK. */
5112 assert(stride < (1 << 14));
5113
5114 num_records = 64;
5115
5116 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5117 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5118 tmp = LLVMBuildAdd(builder, tmp,
5119 LLVMConstInt(ctx->i64,
5120 stream_offset, 0), "");
5121 stream_offset += stride * 64;
5122
5123 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5124 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5125 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5126 tmp = LLVMBuildOr(builder, tmp,
5127 LLVMConstInt(ctx->i32,
5128 S_008F04_STRIDE(stride) |
5129 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5130 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5131 ring = LLVMBuildInsertElement(builder, ring,
5132 LLVMConstInt(ctx->i32, num_records, 0),
5133 LLVMConstInt(ctx->i32, 2, 0), "");
5134 ring = LLVMBuildInsertElement(builder, ring,
5135 LLVMConstInt(ctx->i32,
5136 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5137 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5138 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5139 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5140 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5141 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5142 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5143 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5144 S_008F0C_ADD_TID_ENABLE(1),
5145 0),
5146 LLVMConstInt(ctx->i32, 3, 0), "");
5147
5148 ctx->gsvs_ring[stream] = ring;
5149 }
5150 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5151 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5152 }
5153 }
5154
5155 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5156 LLVMValueRef param_rw_buffers,
5157 unsigned param_pos_fixed_pt)
5158 {
5159 LLVMBuilderRef builder = ctx->ac.builder;
5160 LLVMValueRef slot, desc, offset, row, bit, address[2];
5161
5162 /* Use the fixed-point gl_FragCoord input.
5163 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5164 * per coordinate to get the repeating effect.
5165 */
5166 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5167 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5168
5169 /* Load the buffer descriptor. */
5170 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5171 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5172
5173 /* The stipple pattern is 32x32, each row has 32 bits. */
5174 offset = LLVMBuildMul(builder, address[1],
5175 LLVMConstInt(ctx->i32, 4, 0), "");
5176 row = buffer_load_const(ctx, desc, offset);
5177 row = ac_to_integer(&ctx->ac, row);
5178 bit = LLVMBuildLShr(builder, row, address[0], "");
5179 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5180 ac_build_kill_if_false(&ctx->ac, bit);
5181 }
5182
5183 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5184 struct si_shader_config *conf,
5185 unsigned symbol_offset)
5186 {
5187 unsigned i;
5188 const unsigned char *config =
5189 ac_shader_binary_config_start(binary, symbol_offset);
5190 bool really_needs_scratch = false;
5191
5192 /* LLVM adds SGPR spills to the scratch size.
5193 * Find out if we really need the scratch buffer.
5194 */
5195 for (i = 0; i < binary->reloc_count; i++) {
5196 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5197
5198 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5199 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5200 really_needs_scratch = true;
5201 break;
5202 }
5203 }
5204
5205 /* XXX: We may be able to emit some of these values directly rather than
5206 * extracting fields to be emitted later.
5207 */
5208
5209 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5210 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5211 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5212 switch (reg) {
5213 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5214 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5215 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5216 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5217 case R_00B848_COMPUTE_PGM_RSRC1:
5218 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5219 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5220 conf->float_mode = G_00B028_FLOAT_MODE(value);
5221 conf->rsrc1 = value;
5222 break;
5223 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5224 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5225 break;
5226 case R_00B84C_COMPUTE_PGM_RSRC2:
5227 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5228 conf->rsrc2 = value;
5229 break;
5230 case R_0286CC_SPI_PS_INPUT_ENA:
5231 conf->spi_ps_input_ena = value;
5232 break;
5233 case R_0286D0_SPI_PS_INPUT_ADDR:
5234 conf->spi_ps_input_addr = value;
5235 break;
5236 case R_0286E8_SPI_TMPRING_SIZE:
5237 case R_00B860_COMPUTE_TMPRING_SIZE:
5238 /* WAVESIZE is in units of 256 dwords. */
5239 if (really_needs_scratch)
5240 conf->scratch_bytes_per_wave =
5241 G_00B860_WAVESIZE(value) * 256 * 4;
5242 break;
5243 case 0x4: /* SPILLED_SGPRS */
5244 conf->spilled_sgprs = value;
5245 break;
5246 case 0x8: /* SPILLED_VGPRS */
5247 conf->spilled_vgprs = value;
5248 break;
5249 default:
5250 {
5251 static bool printed;
5252
5253 if (!printed) {
5254 fprintf(stderr, "Warning: LLVM emitted unknown "
5255 "config register: 0x%x\n", reg);
5256 printed = true;
5257 }
5258 }
5259 break;
5260 }
5261 }
5262
5263 if (!conf->spi_ps_input_addr)
5264 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5265 }
5266
5267 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5268 uint64_t scratch_va)
5269 {
5270 unsigned i;
5271 uint32_t scratch_rsrc_dword0 = scratch_va;
5272 uint32_t scratch_rsrc_dword1 =
5273 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5274
5275 /* Enable scratch coalescing. */
5276 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5277
5278 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5279 const struct ac_shader_reloc *reloc =
5280 &shader->binary.relocs[i];
5281 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5282 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5283 &scratch_rsrc_dword0, 4);
5284 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5285 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5286 &scratch_rsrc_dword1, 4);
5287 }
5288 }
5289 }
5290
5291 /* For the UMR disassembler. */
5292 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5293 #define DEBUGGER_NUM_MARKERS 5
5294
5295 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5296 {
5297 unsigned size = shader->binary.code_size;
5298
5299 if (shader->prolog)
5300 size += shader->prolog->binary.code_size;
5301 if (shader->previous_stage)
5302 size += shader->previous_stage->binary.code_size;
5303 if (shader->prolog2)
5304 size += shader->prolog2->binary.code_size;
5305 if (shader->epilog)
5306 size += shader->epilog->binary.code_size;
5307 return size + DEBUGGER_NUM_MARKERS * 4;
5308 }
5309
5310 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5311 {
5312 const struct ac_shader_binary *prolog =
5313 shader->prolog ? &shader->prolog->binary : NULL;
5314 const struct ac_shader_binary *previous_stage =
5315 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5316 const struct ac_shader_binary *prolog2 =
5317 shader->prolog2 ? &shader->prolog2->binary : NULL;
5318 const struct ac_shader_binary *epilog =
5319 shader->epilog ? &shader->epilog->binary : NULL;
5320 const struct ac_shader_binary *mainb = &shader->binary;
5321 unsigned bo_size = si_get_shader_binary_size(shader) +
5322 (!epilog ? mainb->rodata_size : 0);
5323 unsigned char *ptr;
5324
5325 assert(!prolog || !prolog->rodata_size);
5326 assert(!previous_stage || !previous_stage->rodata_size);
5327 assert(!prolog2 || !prolog2->rodata_size);
5328 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5329 !mainb->rodata_size);
5330 assert(!epilog || !epilog->rodata_size);
5331
5332 r600_resource_reference(&shader->bo, NULL);
5333 shader->bo = si_aligned_buffer_create(&sscreen->b,
5334 sscreen->cpdma_prefetch_writes_memory ?
5335 0 : SI_RESOURCE_FLAG_READ_ONLY,
5336 PIPE_USAGE_IMMUTABLE,
5337 align(bo_size, SI_CPDMA_ALIGNMENT),
5338 256);
5339 if (!shader->bo)
5340 return -ENOMEM;
5341
5342 /* Upload. */
5343 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5344 PIPE_TRANSFER_READ_WRITE |
5345 PIPE_TRANSFER_UNSYNCHRONIZED);
5346
5347 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5348 * endian-independent. */
5349 if (prolog) {
5350 memcpy(ptr, prolog->code, prolog->code_size);
5351 ptr += prolog->code_size;
5352 }
5353 if (previous_stage) {
5354 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5355 ptr += previous_stage->code_size;
5356 }
5357 if (prolog2) {
5358 memcpy(ptr, prolog2->code, prolog2->code_size);
5359 ptr += prolog2->code_size;
5360 }
5361
5362 memcpy(ptr, mainb->code, mainb->code_size);
5363 ptr += mainb->code_size;
5364
5365 if (epilog) {
5366 memcpy(ptr, epilog->code, epilog->code_size);
5367 ptr += epilog->code_size;
5368 } else if (mainb->rodata_size > 0) {
5369 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5370 ptr += mainb->rodata_size;
5371 }
5372
5373 /* Add end-of-code markers for the UMR disassembler. */
5374 uint32_t *ptr32 = (uint32_t*)ptr;
5375 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
5376 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
5377
5378 sscreen->ws->buffer_unmap(shader->bo->buf);
5379 return 0;
5380 }
5381
5382 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5383 struct pipe_debug_callback *debug,
5384 const char *name, FILE *file)
5385 {
5386 char *line, *p;
5387 unsigned i, count;
5388
5389 if (binary->disasm_string) {
5390 fprintf(file, "Shader %s disassembly:\n", name);
5391 fprintf(file, "%s", binary->disasm_string);
5392
5393 if (debug && debug->debug_message) {
5394 /* Very long debug messages are cut off, so send the
5395 * disassembly one line at a time. This causes more
5396 * overhead, but on the plus side it simplifies
5397 * parsing of resulting logs.
5398 */
5399 pipe_debug_message(debug, SHADER_INFO,
5400 "Shader Disassembly Begin");
5401
5402 line = binary->disasm_string;
5403 while (*line) {
5404 p = util_strchrnul(line, '\n');
5405 count = p - line;
5406
5407 if (count) {
5408 pipe_debug_message(debug, SHADER_INFO,
5409 "%.*s", count, line);
5410 }
5411
5412 if (!*p)
5413 break;
5414 line = p + 1;
5415 }
5416
5417 pipe_debug_message(debug, SHADER_INFO,
5418 "Shader Disassembly End");
5419 }
5420 } else {
5421 fprintf(file, "Shader %s binary:\n", name);
5422 for (i = 0; i < binary->code_size; i += 4) {
5423 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5424 binary->code[i + 3], binary->code[i + 2],
5425 binary->code[i + 1], binary->code[i]);
5426 }
5427 }
5428 }
5429
5430 static void si_calculate_max_simd_waves(struct si_shader *shader)
5431 {
5432 struct si_screen *sscreen = shader->selector->screen;
5433 struct si_shader_config *conf = &shader->config;
5434 unsigned num_inputs = shader->selector->info.num_inputs;
5435 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5436 unsigned lds_per_wave = 0;
5437 unsigned max_simd_waves;
5438
5439 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5440
5441 /* Compute LDS usage for PS. */
5442 switch (shader->selector->type) {
5443 case PIPE_SHADER_FRAGMENT:
5444 /* The minimum usage per wave is (num_inputs * 48). The maximum
5445 * usage is (num_inputs * 48 * 16).
5446 * We can get anything in between and it varies between waves.
5447 *
5448 * The 48 bytes per input for a single primitive is equal to
5449 * 4 bytes/component * 4 components/input * 3 points.
5450 *
5451 * Other stages don't know the size at compile time or don't
5452 * allocate LDS per wave, but instead they do it per thread group.
5453 */
5454 lds_per_wave = conf->lds_size * lds_increment +
5455 align(num_inputs * 48, lds_increment);
5456 break;
5457 case PIPE_SHADER_COMPUTE:
5458 if (shader->selector) {
5459 unsigned max_workgroup_size =
5460 si_get_max_workgroup_size(shader);
5461 lds_per_wave = (conf->lds_size * lds_increment) /
5462 DIV_ROUND_UP(max_workgroup_size, 64);
5463 }
5464 break;
5465 }
5466
5467 /* Compute the per-SIMD wave counts. */
5468 if (conf->num_sgprs) {
5469 if (sscreen->info.chip_class >= VI)
5470 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5471 else
5472 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5473 }
5474
5475 if (conf->num_vgprs)
5476 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5477
5478 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5479 * 16KB makes some SIMDs unoccupied). */
5480 if (lds_per_wave)
5481 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5482
5483 conf->max_simd_waves = max_simd_waves;
5484 }
5485
5486 void si_shader_dump_stats_for_shader_db(const struct si_shader *shader,
5487 struct pipe_debug_callback *debug)
5488 {
5489 const struct si_shader_config *conf = &shader->config;
5490
5491 pipe_debug_message(debug, SHADER_INFO,
5492 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5493 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5494 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5495 conf->num_sgprs, conf->num_vgprs,
5496 si_get_shader_binary_size(shader),
5497 conf->lds_size, conf->scratch_bytes_per_wave,
5498 conf->max_simd_waves, conf->spilled_sgprs,
5499 conf->spilled_vgprs, conf->private_mem_vgprs);
5500 }
5501
5502 static void si_shader_dump_stats(struct si_screen *sscreen,
5503 const struct si_shader *shader,
5504 unsigned processor,
5505 FILE *file,
5506 bool check_debug_option)
5507 {
5508 const struct si_shader_config *conf = &shader->config;
5509
5510 if (!check_debug_option ||
5511 si_can_dump_shader(sscreen, processor)) {
5512 if (processor == PIPE_SHADER_FRAGMENT) {
5513 fprintf(file, "*** SHADER CONFIG ***\n"
5514 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5515 "SPI_PS_INPUT_ENA = 0x%04x\n",
5516 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5517 }
5518
5519 fprintf(file, "*** SHADER STATS ***\n"
5520 "SGPRS: %d\n"
5521 "VGPRS: %d\n"
5522 "Spilled SGPRs: %d\n"
5523 "Spilled VGPRs: %d\n"
5524 "Private memory VGPRs: %d\n"
5525 "Code Size: %d bytes\n"
5526 "LDS: %d blocks\n"
5527 "Scratch: %d bytes per wave\n"
5528 "Max Waves: %d\n"
5529 "********************\n\n\n",
5530 conf->num_sgprs, conf->num_vgprs,
5531 conf->spilled_sgprs, conf->spilled_vgprs,
5532 conf->private_mem_vgprs,
5533 si_get_shader_binary_size(shader),
5534 conf->lds_size, conf->scratch_bytes_per_wave,
5535 conf->max_simd_waves);
5536 }
5537 }
5538
5539 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5540 {
5541 switch (processor) {
5542 case PIPE_SHADER_VERTEX:
5543 if (shader->key.as_es)
5544 return "Vertex Shader as ES";
5545 else if (shader->key.as_ls)
5546 return "Vertex Shader as LS";
5547 else
5548 return "Vertex Shader as VS";
5549 case PIPE_SHADER_TESS_CTRL:
5550 return "Tessellation Control Shader";
5551 case PIPE_SHADER_TESS_EVAL:
5552 if (shader->key.as_es)
5553 return "Tessellation Evaluation Shader as ES";
5554 else
5555 return "Tessellation Evaluation Shader as VS";
5556 case PIPE_SHADER_GEOMETRY:
5557 if (shader->is_gs_copy_shader)
5558 return "GS Copy Shader as VS";
5559 else
5560 return "Geometry Shader";
5561 case PIPE_SHADER_FRAGMENT:
5562 return "Pixel Shader";
5563 case PIPE_SHADER_COMPUTE:
5564 return "Compute Shader";
5565 default:
5566 return "Unknown Shader";
5567 }
5568 }
5569
5570 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5571 struct pipe_debug_callback *debug, unsigned processor,
5572 FILE *file, bool check_debug_option)
5573 {
5574 if (!check_debug_option ||
5575 si_can_dump_shader(sscreen, processor))
5576 si_dump_shader_key(processor, shader, file);
5577
5578 if (!check_debug_option && shader->binary.llvm_ir_string) {
5579 if (shader->previous_stage &&
5580 shader->previous_stage->binary.llvm_ir_string) {
5581 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5582 si_get_shader_name(shader, processor));
5583 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5584 }
5585
5586 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5587 si_get_shader_name(shader, processor));
5588 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5589 }
5590
5591 if (!check_debug_option ||
5592 (si_can_dump_shader(sscreen, processor) &&
5593 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5594 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5595
5596 if (shader->prolog)
5597 si_shader_dump_disassembly(&shader->prolog->binary,
5598 debug, "prolog", file);
5599 if (shader->previous_stage)
5600 si_shader_dump_disassembly(&shader->previous_stage->binary,
5601 debug, "previous stage", file);
5602 if (shader->prolog2)
5603 si_shader_dump_disassembly(&shader->prolog2->binary,
5604 debug, "prolog2", file);
5605
5606 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5607
5608 if (shader->epilog)
5609 si_shader_dump_disassembly(&shader->epilog->binary,
5610 debug, "epilog", file);
5611 fprintf(file, "\n");
5612 }
5613
5614 si_shader_dump_stats(sscreen, shader, processor, file,
5615 check_debug_option);
5616 }
5617
5618 static int si_compile_llvm(struct si_screen *sscreen,
5619 struct ac_shader_binary *binary,
5620 struct si_shader_config *conf,
5621 struct ac_llvm_compiler *compiler,
5622 LLVMModuleRef mod,
5623 struct pipe_debug_callback *debug,
5624 unsigned processor,
5625 const char *name,
5626 bool less_optimized)
5627 {
5628 int r = 0;
5629 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5630
5631 if (si_can_dump_shader(sscreen, processor)) {
5632 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5633
5634 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5635 fprintf(stderr, "%s LLVM IR:\n\n", name);
5636 ac_dump_module(mod);
5637 fprintf(stderr, "\n");
5638 }
5639 }
5640
5641 if (sscreen->record_llvm_ir) {
5642 char *ir = LLVMPrintModuleToString(mod);
5643 binary->llvm_ir_string = strdup(ir);
5644 LLVMDisposeMessage(ir);
5645 }
5646
5647 if (!si_replace_shader(count, binary)) {
5648 r = si_llvm_compile(mod, binary, compiler, debug,
5649 less_optimized);
5650 if (r)
5651 return r;
5652 }
5653
5654 si_shader_binary_read_config(binary, conf, 0);
5655
5656 /* Enable 64-bit and 16-bit denormals, because there is no performance
5657 * cost.
5658 *
5659 * If denormals are enabled, all floating-point output modifiers are
5660 * ignored.
5661 *
5662 * Don't enable denormals for 32-bit floats, because:
5663 * - Floating-point output modifiers would be ignored by the hw.
5664 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5665 * have to stop using those.
5666 * - SI & CI would be very slow.
5667 */
5668 conf->float_mode |= V_00B028_FP_64_DENORMS;
5669
5670 FREE(binary->config);
5671 FREE(binary->global_symbol_offsets);
5672 binary->config = NULL;
5673 binary->global_symbol_offsets = NULL;
5674
5675 /* Some shaders can't have rodata because their binaries can be
5676 * concatenated.
5677 */
5678 if (binary->rodata_size &&
5679 (processor == PIPE_SHADER_VERTEX ||
5680 processor == PIPE_SHADER_TESS_CTRL ||
5681 processor == PIPE_SHADER_TESS_EVAL ||
5682 processor == PIPE_SHADER_FRAGMENT)) {
5683 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5684 return -EINVAL;
5685 }
5686
5687 return r;
5688 }
5689
5690 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5691 {
5692 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5693 LLVMBuildRetVoid(ctx->ac.builder);
5694 else
5695 LLVMBuildRet(ctx->ac.builder, ret);
5696 }
5697
5698 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5699 struct si_shader *
5700 si_generate_gs_copy_shader(struct si_screen *sscreen,
5701 struct ac_llvm_compiler *compiler,
5702 struct si_shader_selector *gs_selector,
5703 struct pipe_debug_callback *debug)
5704 {
5705 struct si_shader_context ctx;
5706 struct si_shader *shader;
5707 LLVMBuilderRef builder;
5708 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5709 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5710 int i, r;
5711
5712
5713 shader = CALLOC_STRUCT(si_shader);
5714 if (!shader)
5715 return NULL;
5716
5717 /* We can leave the fence as permanently signaled because the GS copy
5718 * shader only becomes visible globally after it has been compiled. */
5719 util_queue_fence_init(&shader->ready);
5720
5721 shader->selector = gs_selector;
5722 shader->is_gs_copy_shader = true;
5723
5724 si_init_shader_ctx(&ctx, sscreen, compiler);
5725 ctx.shader = shader;
5726 ctx.type = PIPE_SHADER_VERTEX;
5727
5728 builder = ctx.ac.builder;
5729
5730 create_function(&ctx);
5731 preload_ring_buffers(&ctx);
5732
5733 LLVMValueRef voffset =
5734 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5735 LLVMConstInt(ctx.i32, 4, 0), "");
5736
5737 /* Fetch the vertex stream ID.*/
5738 LLVMValueRef stream_id;
5739
5740 if (gs_selector->so.num_outputs)
5741 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5742 else
5743 stream_id = ctx.i32_0;
5744
5745 /* Fill in output information. */
5746 for (i = 0; i < gsinfo->num_outputs; ++i) {
5747 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5748 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5749
5750 for (int chan = 0; chan < 4; chan++) {
5751 outputs[i].vertex_stream[chan] =
5752 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5753 }
5754 }
5755
5756 LLVMBasicBlockRef end_bb;
5757 LLVMValueRef switch_inst;
5758
5759 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5760 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5761
5762 for (int stream = 0; stream < 4; stream++) {
5763 LLVMBasicBlockRef bb;
5764 unsigned offset;
5765
5766 if (!gsinfo->num_stream_output_components[stream])
5767 continue;
5768
5769 if (stream > 0 && !gs_selector->so.num_outputs)
5770 continue;
5771
5772 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5773 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5774 LLVMPositionBuilderAtEnd(builder, bb);
5775
5776 /* Fetch vertex data from GSVS ring */
5777 offset = 0;
5778 for (i = 0; i < gsinfo->num_outputs; ++i) {
5779 for (unsigned chan = 0; chan < 4; chan++) {
5780 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5781 outputs[i].vertex_stream[chan] != stream) {
5782 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5783 continue;
5784 }
5785
5786 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5787 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5788 offset++;
5789
5790 outputs[i].values[chan] =
5791 ac_build_buffer_load(&ctx.ac,
5792 ctx.gsvs_ring[0], 1,
5793 ctx.i32_0, voffset,
5794 soffset, 0, 1, 1,
5795 true, false);
5796 }
5797 }
5798
5799 /* Streamout and exports. */
5800 if (gs_selector->so.num_outputs) {
5801 si_llvm_emit_streamout(&ctx, outputs,
5802 gsinfo->num_outputs,
5803 stream);
5804 }
5805
5806 if (stream == 0) {
5807 /* Vertex color clamping.
5808 *
5809 * This uses a state constant loaded in a user data SGPR and
5810 * an IF statement is added that clamps all colors if the constant
5811 * is true.
5812 */
5813 struct lp_build_if_state if_ctx;
5814 LLVMValueRef v[2], cond = NULL;
5815 LLVMBasicBlockRef blocks[2];
5816
5817 for (unsigned i = 0; i < gsinfo->num_outputs; i++) {
5818 if (gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
5819 gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
5820 continue;
5821
5822 /* We've found a color. */
5823 if (!cond) {
5824 /* The state is in the first bit of the user SGPR. */
5825 cond = LLVMGetParam(ctx.main_fn,
5826 ctx.param_vs_state_bits);
5827 cond = LLVMBuildTrunc(ctx.ac.builder, cond,
5828 ctx.i1, "");
5829 lp_build_if(&if_ctx, &ctx.gallivm, cond);
5830 /* Remember blocks for Phi. */
5831 blocks[0] = if_ctx.true_block;
5832 blocks[1] = if_ctx.entry_block;
5833 }
5834
5835 for (unsigned j = 0; j < 4; j++) {
5836 /* Insert clamp into the true block. */
5837 v[0] = ac_build_clamp(&ctx.ac, outputs[i].values[j]);
5838 v[1] = outputs[i].values[j];
5839
5840 /* Insert Phi into the endif block. */
5841 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.merge_block);
5842 outputs[i].values[j] = ac_build_phi(&ctx.ac, ctx.f32, 2, v, blocks);
5843 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.true_block);
5844 }
5845 }
5846 if (cond)
5847 lp_build_endif(&if_ctx);
5848
5849 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5850 }
5851
5852 LLVMBuildBr(builder, end_bb);
5853 }
5854
5855 LLVMPositionBuilderAtEnd(builder, end_bb);
5856
5857 LLVMBuildRetVoid(ctx.ac.builder);
5858
5859 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5860 si_llvm_optimize_module(&ctx);
5861
5862 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5863 &ctx.shader->config, ctx.compiler,
5864 ctx.ac.module,
5865 debug, PIPE_SHADER_GEOMETRY,
5866 "GS Copy Shader", false);
5867 if (!r) {
5868 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5869 fprintf(stderr, "GS Copy Shader:\n");
5870 si_shader_dump(sscreen, ctx.shader, debug,
5871 PIPE_SHADER_GEOMETRY, stderr, true);
5872 r = si_shader_binary_upload(sscreen, ctx.shader);
5873 }
5874
5875 si_llvm_dispose(&ctx);
5876
5877 if (r != 0) {
5878 FREE(shader);
5879 shader = NULL;
5880 }
5881 return shader;
5882 }
5883
5884 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5885 const struct si_vs_prolog_bits *prolog,
5886 const char *prefix, FILE *f)
5887 {
5888 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5889 prefix, prolog->instance_divisor_is_one);
5890 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5891 prefix, prolog->instance_divisor_is_fetched);
5892 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5893 prefix, prolog->ls_vgpr_fix);
5894
5895 fprintf(f, " mono.vs.fix_fetch = {");
5896 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5897 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5898 fprintf(f, "}\n");
5899 }
5900
5901 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5902 FILE *f)
5903 {
5904 const struct si_shader_key *key = &shader->key;
5905
5906 fprintf(f, "SHADER KEY\n");
5907
5908 switch (processor) {
5909 case PIPE_SHADER_VERTEX:
5910 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5911 "part.vs.prolog", f);
5912 fprintf(f, " as_es = %u\n", key->as_es);
5913 fprintf(f, " as_ls = %u\n", key->as_ls);
5914 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5915 key->mono.u.vs_export_prim_id);
5916 break;
5917
5918 case PIPE_SHADER_TESS_CTRL:
5919 if (shader->selector->screen->info.chip_class >= GFX9) {
5920 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5921 "part.tcs.ls_prolog", f);
5922 }
5923 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5924 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5925 break;
5926
5927 case PIPE_SHADER_TESS_EVAL:
5928 fprintf(f, " as_es = %u\n", key->as_es);
5929 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5930 key->mono.u.vs_export_prim_id);
5931 break;
5932
5933 case PIPE_SHADER_GEOMETRY:
5934 if (shader->is_gs_copy_shader)
5935 break;
5936
5937 if (shader->selector->screen->info.chip_class >= GFX9 &&
5938 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5939 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5940 "part.gs.vs_prolog", f);
5941 }
5942 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5943 break;
5944
5945 case PIPE_SHADER_COMPUTE:
5946 break;
5947
5948 case PIPE_SHADER_FRAGMENT:
5949 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5950 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5951 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5952 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5953 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5954 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5955 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5956 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5957 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5958 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5959 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5960 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5961 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5962 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5963 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5964 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5965 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5966 break;
5967
5968 default:
5969 assert(0);
5970 }
5971
5972 if ((processor == PIPE_SHADER_GEOMETRY ||
5973 processor == PIPE_SHADER_TESS_EVAL ||
5974 processor == PIPE_SHADER_VERTEX) &&
5975 !key->as_es && !key->as_ls) {
5976 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5977 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5978 }
5979 }
5980
5981 static void si_init_shader_ctx(struct si_shader_context *ctx,
5982 struct si_screen *sscreen,
5983 struct ac_llvm_compiler *compiler)
5984 {
5985 struct lp_build_tgsi_context *bld_base;
5986
5987 si_llvm_context_init(ctx, sscreen, compiler);
5988
5989 bld_base = &ctx->bld_base;
5990 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5991
5992 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
5993 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
5994 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
5995
5996 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5997
5998 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5999
6000 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
6001 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
6002 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
6003 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
6004
6005 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
6006 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
6007 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
6008 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
6009 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
6010 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
6011 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6012 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
6013 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6014
6015 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6016 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6017 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6018 }
6019
6020 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6021 {
6022 struct si_shader *shader = ctx->shader;
6023 struct tgsi_shader_info *info = &shader->selector->info;
6024
6025 if ((ctx->type != PIPE_SHADER_VERTEX &&
6026 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6027 shader->key.as_ls ||
6028 shader->key.as_es)
6029 return;
6030
6031 ac_optimize_vs_outputs(&ctx->ac,
6032 ctx->main_fn,
6033 shader->info.vs_output_param_offset,
6034 info->num_outputs,
6035 &shader->info.nr_param_exports);
6036 }
6037
6038 static void si_init_exec_from_input(struct si_shader_context *ctx,
6039 unsigned param, unsigned bitoffset)
6040 {
6041 LLVMValueRef args[] = {
6042 LLVMGetParam(ctx->main_fn, param),
6043 LLVMConstInt(ctx->i32, bitoffset, 0),
6044 };
6045 ac_build_intrinsic(&ctx->ac,
6046 "llvm.amdgcn.init.exec.from.input",
6047 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6048 }
6049
6050 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6051 const struct si_vs_prolog_bits *key)
6052 {
6053 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6054 * VS prolog. */
6055 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6056 }
6057
6058 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6059 {
6060 struct si_shader *shader = ctx->shader;
6061 struct si_shader_selector *sel = shader->selector;
6062 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6063
6064 // TODO clean all this up!
6065 switch (ctx->type) {
6066 case PIPE_SHADER_VERTEX:
6067 ctx->load_input = declare_input_vs;
6068 if (shader->key.as_ls)
6069 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6070 else if (shader->key.as_es)
6071 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6072 else
6073 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6074 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6075 ctx->abi.load_base_vertex = get_base_vertex;
6076 break;
6077 case PIPE_SHADER_TESS_CTRL:
6078 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6079 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6080 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6081 bld_base->emit_store = store_output_tcs;
6082 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6083 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6084 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6085 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6086 break;
6087 case PIPE_SHADER_TESS_EVAL:
6088 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6089 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6090 ctx->abi.load_tess_coord = si_load_tess_coord;
6091 ctx->abi.load_tess_level = si_load_tess_level;
6092 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6093 if (shader->key.as_es)
6094 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6095 else
6096 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6097 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6098 break;
6099 case PIPE_SHADER_GEOMETRY:
6100 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6101 ctx->abi.load_inputs = si_nir_load_input_gs;
6102 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6103 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6104 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6105 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6106 break;
6107 case PIPE_SHADER_FRAGMENT:
6108 ctx->load_input = declare_input_fs;
6109 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6110 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6111 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6112 ctx->abi.load_sample_position = load_sample_position;
6113 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6114 ctx->abi.emit_kill = si_llvm_emit_kill;
6115 break;
6116 case PIPE_SHADER_COMPUTE:
6117 ctx->abi.load_local_group_size = get_block_size;
6118 break;
6119 default:
6120 assert(!"Unsupported shader type");
6121 return false;
6122 }
6123
6124 ctx->abi.load_ubo = load_ubo;
6125 ctx->abi.load_ssbo = load_ssbo;
6126
6127 create_function(ctx);
6128 preload_ring_buffers(ctx);
6129
6130 /* For GFX9 merged shaders:
6131 * - Set EXEC for the first shader. If the prolog is present, set
6132 * EXEC there instead.
6133 * - Add a barrier before the second shader.
6134 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6135 * an if-statement. This is required for correctness in geometry
6136 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6137 * GS_CUT messages.
6138 *
6139 * For monolithic merged shaders, the first shader is wrapped in an
6140 * if-block together with its prolog in si_build_wrapper_function.
6141 */
6142 if (ctx->screen->info.chip_class >= GFX9) {
6143 if (!shader->is_monolithic &&
6144 sel->info.num_instructions > 1 && /* not empty shader */
6145 (shader->key.as_es || shader->key.as_ls) &&
6146 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6147 (ctx->type == PIPE_SHADER_VERTEX &&
6148 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6149 si_init_exec_from_input(ctx,
6150 ctx->param_merged_wave_info, 0);
6151 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6152 ctx->type == PIPE_SHADER_GEOMETRY) {
6153 if (!shader->is_monolithic)
6154 ac_init_exec_full_mask(&ctx->ac);
6155
6156 LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6157 LLVMValueRef ena =
6158 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6159 ac_get_thread_id(&ctx->ac), num_threads, "");
6160 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6161
6162 /* The barrier must execute for all shaders in a
6163 * threadgroup.
6164 *
6165 * Execute the barrier inside the conditional block,
6166 * so that empty waves can jump directly to s_endpgm,
6167 * which will also signal the barrier.
6168 *
6169 * If the shader is TCS and the TCS epilog is present
6170 * and contains a barrier, it will wait there and then
6171 * reach s_endpgm.
6172 */
6173 si_llvm_emit_barrier(NULL, bld_base, NULL);
6174 }
6175 }
6176
6177 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6178 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6179 for (unsigned i = 0; i < 6; i++) {
6180 ctx->invoc0_tess_factors[i] =
6181 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6182 }
6183 }
6184
6185 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6186 int i;
6187 for (i = 0; i < 4; i++) {
6188 ctx->gs_next_vertex[i] =
6189 ac_build_alloca(&ctx->ac, ctx->i32, "");
6190 }
6191 }
6192
6193 if (sel->force_correct_derivs_after_kill) {
6194 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6195 /* true = don't kill. */
6196 LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6197 ctx->postponed_kill);
6198 }
6199
6200 if (sel->tokens) {
6201 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6202 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6203 return false;
6204 }
6205 } else {
6206 if (!si_nir_build_llvm(ctx, sel->nir)) {
6207 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6208 return false;
6209 }
6210 }
6211
6212 si_llvm_build_ret(ctx, ctx->return_value);
6213 return true;
6214 }
6215
6216 /**
6217 * Compute the VS prolog key, which contains all the information needed to
6218 * build the VS prolog function, and set shader->info bits where needed.
6219 *
6220 * \param info Shader info of the vertex shader.
6221 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6222 * \param prolog_key Key of the VS prolog
6223 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6224 * \param key Output shader part key.
6225 */
6226 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6227 unsigned num_input_sgprs,
6228 const struct si_vs_prolog_bits *prolog_key,
6229 struct si_shader *shader_out,
6230 union si_shader_part_key *key)
6231 {
6232 memset(key, 0, sizeof(*key));
6233 key->vs_prolog.states = *prolog_key;
6234 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6235 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6236 key->vs_prolog.as_ls = shader_out->key.as_ls;
6237 key->vs_prolog.as_es = shader_out->key.as_es;
6238
6239 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6240 key->vs_prolog.as_ls = 1;
6241 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6242 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6243 key->vs_prolog.as_es = 1;
6244 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6245 }
6246
6247 /* Enable loading the InstanceID VGPR. */
6248 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6249
6250 if ((key->vs_prolog.states.instance_divisor_is_one |
6251 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6252 shader_out->info.uses_instanceid = true;
6253 }
6254
6255 /**
6256 * Compute the PS prolog key, which contains all the information needed to
6257 * build the PS prolog function, and set related bits in shader->config.
6258 */
6259 static void si_get_ps_prolog_key(struct si_shader *shader,
6260 union si_shader_part_key *key,
6261 bool separate_prolog)
6262 {
6263 struct tgsi_shader_info *info = &shader->selector->info;
6264
6265 memset(key, 0, sizeof(*key));
6266 key->ps_prolog.states = shader->key.part.ps.prolog;
6267 key->ps_prolog.colors_read = info->colors_read;
6268 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6269 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6270 key->ps_prolog.wqm = info->uses_derivatives &&
6271 (key->ps_prolog.colors_read ||
6272 key->ps_prolog.states.force_persp_sample_interp ||
6273 key->ps_prolog.states.force_linear_sample_interp ||
6274 key->ps_prolog.states.force_persp_center_interp ||
6275 key->ps_prolog.states.force_linear_center_interp ||
6276 key->ps_prolog.states.bc_optimize_for_persp ||
6277 key->ps_prolog.states.bc_optimize_for_linear);
6278 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6279
6280 if (info->colors_read) {
6281 unsigned *color = shader->selector->color_attr_index;
6282
6283 if (shader->key.part.ps.prolog.color_two_side) {
6284 /* BCOLORs are stored after the last input. */
6285 key->ps_prolog.num_interp_inputs = info->num_inputs;
6286 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6287 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6288 }
6289
6290 for (unsigned i = 0; i < 2; i++) {
6291 unsigned interp = info->input_interpolate[color[i]];
6292 unsigned location = info->input_interpolate_loc[color[i]];
6293
6294 if (!(info->colors_read & (0xf << i*4)))
6295 continue;
6296
6297 key->ps_prolog.color_attr_index[i] = color[i];
6298
6299 if (shader->key.part.ps.prolog.flatshade_colors &&
6300 interp == TGSI_INTERPOLATE_COLOR)
6301 interp = TGSI_INTERPOLATE_CONSTANT;
6302
6303 switch (interp) {
6304 case TGSI_INTERPOLATE_CONSTANT:
6305 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6306 break;
6307 case TGSI_INTERPOLATE_PERSPECTIVE:
6308 case TGSI_INTERPOLATE_COLOR:
6309 /* Force the interpolation location for colors here. */
6310 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6311 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6312 if (shader->key.part.ps.prolog.force_persp_center_interp)
6313 location = TGSI_INTERPOLATE_LOC_CENTER;
6314
6315 switch (location) {
6316 case TGSI_INTERPOLATE_LOC_SAMPLE:
6317 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6318 shader->config.spi_ps_input_ena |=
6319 S_0286CC_PERSP_SAMPLE_ENA(1);
6320 break;
6321 case TGSI_INTERPOLATE_LOC_CENTER:
6322 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6323 shader->config.spi_ps_input_ena |=
6324 S_0286CC_PERSP_CENTER_ENA(1);
6325 break;
6326 case TGSI_INTERPOLATE_LOC_CENTROID:
6327 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6328 shader->config.spi_ps_input_ena |=
6329 S_0286CC_PERSP_CENTROID_ENA(1);
6330 break;
6331 default:
6332 assert(0);
6333 }
6334 break;
6335 case TGSI_INTERPOLATE_LINEAR:
6336 /* Force the interpolation location for colors here. */
6337 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6338 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6339 if (shader->key.part.ps.prolog.force_linear_center_interp)
6340 location = TGSI_INTERPOLATE_LOC_CENTER;
6341
6342 /* The VGPR assignment for non-monolithic shaders
6343 * works because InitialPSInputAddr is set on the
6344 * main shader and PERSP_PULL_MODEL is never used.
6345 */
6346 switch (location) {
6347 case TGSI_INTERPOLATE_LOC_SAMPLE:
6348 key->ps_prolog.color_interp_vgpr_index[i] =
6349 separate_prolog ? 6 : 9;
6350 shader->config.spi_ps_input_ena |=
6351 S_0286CC_LINEAR_SAMPLE_ENA(1);
6352 break;
6353 case TGSI_INTERPOLATE_LOC_CENTER:
6354 key->ps_prolog.color_interp_vgpr_index[i] =
6355 separate_prolog ? 8 : 11;
6356 shader->config.spi_ps_input_ena |=
6357 S_0286CC_LINEAR_CENTER_ENA(1);
6358 break;
6359 case TGSI_INTERPOLATE_LOC_CENTROID:
6360 key->ps_prolog.color_interp_vgpr_index[i] =
6361 separate_prolog ? 10 : 13;
6362 shader->config.spi_ps_input_ena |=
6363 S_0286CC_LINEAR_CENTROID_ENA(1);
6364 break;
6365 default:
6366 assert(0);
6367 }
6368 break;
6369 default:
6370 assert(0);
6371 }
6372 }
6373 }
6374 }
6375
6376 /**
6377 * Check whether a PS prolog is required based on the key.
6378 */
6379 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6380 {
6381 return key->ps_prolog.colors_read ||
6382 key->ps_prolog.states.force_persp_sample_interp ||
6383 key->ps_prolog.states.force_linear_sample_interp ||
6384 key->ps_prolog.states.force_persp_center_interp ||
6385 key->ps_prolog.states.force_linear_center_interp ||
6386 key->ps_prolog.states.bc_optimize_for_persp ||
6387 key->ps_prolog.states.bc_optimize_for_linear ||
6388 key->ps_prolog.states.poly_stipple ||
6389 key->ps_prolog.states.samplemask_log_ps_iter;
6390 }
6391
6392 /**
6393 * Compute the PS epilog key, which contains all the information needed to
6394 * build the PS epilog function.
6395 */
6396 static void si_get_ps_epilog_key(struct si_shader *shader,
6397 union si_shader_part_key *key)
6398 {
6399 struct tgsi_shader_info *info = &shader->selector->info;
6400 memset(key, 0, sizeof(*key));
6401 key->ps_epilog.colors_written = info->colors_written;
6402 key->ps_epilog.writes_z = info->writes_z;
6403 key->ps_epilog.writes_stencil = info->writes_stencil;
6404 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6405 key->ps_epilog.states = shader->key.part.ps.epilog;
6406 }
6407
6408 /**
6409 * Build the GS prolog function. Rotate the input vertices for triangle strips
6410 * with adjacency.
6411 */
6412 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6413 union si_shader_part_key *key)
6414 {
6415 unsigned num_sgprs, num_vgprs;
6416 struct si_function_info fninfo;
6417 LLVMBuilderRef builder = ctx->ac.builder;
6418 LLVMTypeRef returns[48];
6419 LLVMValueRef func, ret;
6420
6421 si_init_function_info(&fninfo);
6422
6423 if (ctx->screen->info.chip_class >= GFX9) {
6424 if (key->gs_prolog.states.gfx9_prev_is_vs)
6425 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6426 else
6427 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6428 num_vgprs = 5; /* ES inputs are not needed by GS */
6429 } else {
6430 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6431 num_vgprs = 8;
6432 }
6433
6434 for (unsigned i = 0; i < num_sgprs; ++i) {
6435 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6436 returns[i] = ctx->i32;
6437 }
6438
6439 for (unsigned i = 0; i < num_vgprs; ++i) {
6440 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6441 returns[num_sgprs + i] = ctx->f32;
6442 }
6443
6444 /* Create the function. */
6445 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6446 &fninfo, 0);
6447 func = ctx->main_fn;
6448
6449 /* Set the full EXEC mask for the prolog, because we are only fiddling
6450 * with registers here. The main shader part will set the correct EXEC
6451 * mask.
6452 */
6453 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6454 ac_init_exec_full_mask(&ctx->ac);
6455
6456 /* Copy inputs to outputs. This should be no-op, as the registers match,
6457 * but it will prevent the compiler from overwriting them unintentionally.
6458 */
6459 ret = ctx->return_value;
6460 for (unsigned i = 0; i < num_sgprs; i++) {
6461 LLVMValueRef p = LLVMGetParam(func, i);
6462 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6463 }
6464 for (unsigned i = 0; i < num_vgprs; i++) {
6465 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6466 p = ac_to_float(&ctx->ac, p);
6467 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6468 }
6469
6470 if (key->gs_prolog.states.tri_strip_adj_fix) {
6471 /* Remap the input vertices for every other primitive. */
6472 const unsigned gfx6_vtx_params[6] = {
6473 num_sgprs,
6474 num_sgprs + 1,
6475 num_sgprs + 3,
6476 num_sgprs + 4,
6477 num_sgprs + 5,
6478 num_sgprs + 6
6479 };
6480 const unsigned gfx9_vtx_params[3] = {
6481 num_sgprs,
6482 num_sgprs + 1,
6483 num_sgprs + 4,
6484 };
6485 LLVMValueRef vtx_in[6], vtx_out[6];
6486 LLVMValueRef prim_id, rotate;
6487
6488 if (ctx->screen->info.chip_class >= GFX9) {
6489 for (unsigned i = 0; i < 3; i++) {
6490 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6491 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6492 }
6493 } else {
6494 for (unsigned i = 0; i < 6; i++)
6495 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6496 }
6497
6498 prim_id = LLVMGetParam(func, num_sgprs + 2);
6499 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6500
6501 for (unsigned i = 0; i < 6; ++i) {
6502 LLVMValueRef base, rotated;
6503 base = vtx_in[i];
6504 rotated = vtx_in[(i + 4) % 6];
6505 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6506 }
6507
6508 if (ctx->screen->info.chip_class >= GFX9) {
6509 for (unsigned i = 0; i < 3; i++) {
6510 LLVMValueRef hi, out;
6511
6512 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6513 LLVMConstInt(ctx->i32, 16, 0), "");
6514 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6515 out = ac_to_float(&ctx->ac, out);
6516 ret = LLVMBuildInsertValue(builder, ret, out,
6517 gfx9_vtx_params[i], "");
6518 }
6519 } else {
6520 for (unsigned i = 0; i < 6; i++) {
6521 LLVMValueRef out;
6522
6523 out = ac_to_float(&ctx->ac, vtx_out[i]);
6524 ret = LLVMBuildInsertValue(builder, ret, out,
6525 gfx6_vtx_params[i], "");
6526 }
6527 }
6528 }
6529
6530 LLVMBuildRet(builder, ret);
6531 }
6532
6533 /**
6534 * Given a list of shader part functions, build a wrapper function that
6535 * runs them in sequence to form a monolithic shader.
6536 */
6537 static void si_build_wrapper_function(struct si_shader_context *ctx,
6538 LLVMValueRef *parts,
6539 unsigned num_parts,
6540 unsigned main_part,
6541 unsigned next_shader_first_part)
6542 {
6543 LLVMBuilderRef builder = ctx->ac.builder;
6544 /* PS epilog has one arg per color component; gfx9 merged shader
6545 * prologs need to forward 32 user SGPRs.
6546 */
6547 struct si_function_info fninfo;
6548 LLVMValueRef initial[64], out[64];
6549 LLVMTypeRef function_type;
6550 unsigned num_first_params;
6551 unsigned num_out, initial_num_out;
6552 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6553 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6554 unsigned num_sgprs, num_vgprs;
6555 unsigned gprs;
6556 struct lp_build_if_state if_state;
6557
6558 si_init_function_info(&fninfo);
6559
6560 for (unsigned i = 0; i < num_parts; ++i) {
6561 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6562 AC_FUNC_ATTR_ALWAYSINLINE);
6563 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6564 }
6565
6566 /* The parameters of the wrapper function correspond to those of the
6567 * first part in terms of SGPRs and VGPRs, but we use the types of the
6568 * main part to get the right types. This is relevant for the
6569 * dereferenceable attribute on descriptor table pointers.
6570 */
6571 num_sgprs = 0;
6572 num_vgprs = 0;
6573
6574 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6575 num_first_params = LLVMCountParamTypes(function_type);
6576
6577 for (unsigned i = 0; i < num_first_params; ++i) {
6578 LLVMValueRef param = LLVMGetParam(parts[0], i);
6579
6580 if (ac_is_sgpr_param(param)) {
6581 assert(num_vgprs == 0);
6582 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6583 } else {
6584 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6585 }
6586 }
6587
6588 gprs = 0;
6589 while (gprs < num_sgprs + num_vgprs) {
6590 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6591 LLVMTypeRef type = LLVMTypeOf(param);
6592 unsigned size = ac_get_type_size(type) / 4;
6593
6594 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6595
6596 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6597 assert(gprs + size <= num_sgprs + num_vgprs &&
6598 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6599
6600 gprs += size;
6601 }
6602
6603 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6604 si_get_max_workgroup_size(ctx->shader));
6605
6606 if (is_merged_shader(ctx->shader))
6607 ac_init_exec_full_mask(&ctx->ac);
6608
6609 /* Record the arguments of the function as if they were an output of
6610 * a previous part.
6611 */
6612 num_out = 0;
6613 num_out_sgpr = 0;
6614
6615 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6616 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6617 LLVMTypeRef param_type = LLVMTypeOf(param);
6618 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6619 unsigned size = ac_get_type_size(param_type) / 4;
6620
6621 if (size == 1) {
6622 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6623 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6624 param_type = ctx->i32;
6625 }
6626
6627 if (param_type != out_type)
6628 param = LLVMBuildBitCast(builder, param, out_type, "");
6629 out[num_out++] = param;
6630 } else {
6631 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6632
6633 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6634 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6635 param_type = ctx->i64;
6636 }
6637
6638 if (param_type != vector_type)
6639 param = LLVMBuildBitCast(builder, param, vector_type, "");
6640
6641 for (unsigned j = 0; j < size; ++j)
6642 out[num_out++] = LLVMBuildExtractElement(
6643 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6644 }
6645
6646 if (i < fninfo.num_sgpr_params)
6647 num_out_sgpr = num_out;
6648 }
6649
6650 memcpy(initial, out, sizeof(out));
6651 initial_num_out = num_out;
6652 initial_num_out_sgpr = num_out_sgpr;
6653
6654 /* Now chain the parts. */
6655 for (unsigned part = 0; part < num_parts; ++part) {
6656 LLVMValueRef in[48];
6657 LLVMValueRef ret;
6658 LLVMTypeRef ret_type;
6659 unsigned out_idx = 0;
6660 unsigned num_params = LLVMCountParams(parts[part]);
6661
6662 /* Merged shaders are executed conditionally depending
6663 * on the number of enabled threads passed in the input SGPRs. */
6664 if (is_merged_shader(ctx->shader) && part == 0) {
6665 LLVMValueRef ena, count = initial[3];
6666
6667 count = LLVMBuildAnd(builder, count,
6668 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6669 ena = LLVMBuildICmp(builder, LLVMIntULT,
6670 ac_get_thread_id(&ctx->ac), count, "");
6671 lp_build_if(&if_state, &ctx->gallivm, ena);
6672 }
6673
6674 /* Derive arguments for the next part from outputs of the
6675 * previous one.
6676 */
6677 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6678 LLVMValueRef param;
6679 LLVMTypeRef param_type;
6680 bool is_sgpr;
6681 unsigned param_size;
6682 LLVMValueRef arg = NULL;
6683
6684 param = LLVMGetParam(parts[part], param_idx);
6685 param_type = LLVMTypeOf(param);
6686 param_size = ac_get_type_size(param_type) / 4;
6687 is_sgpr = ac_is_sgpr_param(param);
6688
6689 if (is_sgpr) {
6690 ac_add_function_attr(ctx->ac.context, parts[part],
6691 param_idx + 1, AC_FUNC_ATTR_INREG);
6692 } else if (out_idx < num_out_sgpr) {
6693 /* Skip returned SGPRs the current part doesn't
6694 * declare on the input. */
6695 out_idx = num_out_sgpr;
6696 }
6697
6698 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6699
6700 if (param_size == 1)
6701 arg = out[out_idx];
6702 else
6703 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6704
6705 if (LLVMTypeOf(arg) != param_type) {
6706 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6707 if (LLVMGetPointerAddressSpace(param_type) ==
6708 AC_CONST_32BIT_ADDR_SPACE) {
6709 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6710 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6711 } else {
6712 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6713 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6714 }
6715 } else {
6716 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6717 }
6718 }
6719
6720 in[param_idx] = arg;
6721 out_idx += param_size;
6722 }
6723
6724 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6725
6726 if (is_merged_shader(ctx->shader) &&
6727 part + 1 == next_shader_first_part) {
6728 lp_build_endif(&if_state);
6729
6730 /* The second half of the merged shader should use
6731 * the inputs from the toplevel (wrapper) function,
6732 * not the return value from the last call.
6733 *
6734 * That's because the last call was executed condi-
6735 * tionally, so we can't consume it in the main
6736 * block.
6737 */
6738 memcpy(out, initial, sizeof(initial));
6739 num_out = initial_num_out;
6740 num_out_sgpr = initial_num_out_sgpr;
6741 continue;
6742 }
6743
6744 /* Extract the returned GPRs. */
6745 ret_type = LLVMTypeOf(ret);
6746 num_out = 0;
6747 num_out_sgpr = 0;
6748
6749 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6750 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6751
6752 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6753
6754 for (unsigned i = 0; i < ret_size; ++i) {
6755 LLVMValueRef val =
6756 LLVMBuildExtractValue(builder, ret, i, "");
6757
6758 assert(num_out < ARRAY_SIZE(out));
6759 out[num_out++] = val;
6760
6761 if (LLVMTypeOf(val) == ctx->i32) {
6762 assert(num_out_sgpr + 1 == num_out);
6763 num_out_sgpr = num_out;
6764 }
6765 }
6766 }
6767 }
6768
6769 LLVMBuildRetVoid(builder);
6770 }
6771
6772 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6773 struct si_shader_selector *sel)
6774 {
6775 if (!compiler->low_opt_passes)
6776 return false;
6777
6778 /* Assume a slow CPU. */
6779 assert(!sel->screen->info.has_dedicated_vram &&
6780 sel->screen->info.chip_class <= VI);
6781
6782 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6783 * buffer stores. */
6784 return sel->type == PIPE_SHADER_COMPUTE &&
6785 sel->info.num_memory_instructions > 1000;
6786 }
6787
6788 int si_compile_tgsi_shader(struct si_screen *sscreen,
6789 struct ac_llvm_compiler *compiler,
6790 struct si_shader *shader,
6791 struct pipe_debug_callback *debug)
6792 {
6793 struct si_shader_selector *sel = shader->selector;
6794 struct si_shader_context ctx;
6795 int r = -1;
6796
6797 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6798 * conversion fails. */
6799 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6800 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6801 if (sel->tokens)
6802 tgsi_dump(sel->tokens, 0);
6803 else
6804 nir_print_shader(sel->nir, stderr);
6805 si_dump_streamout(&sel->so);
6806 }
6807
6808 si_init_shader_ctx(&ctx, sscreen, compiler);
6809 si_llvm_context_set_tgsi(&ctx, shader);
6810
6811 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6812 sizeof(shader->info.vs_output_param_offset));
6813
6814 shader->info.uses_instanceid = sel->info.uses_instanceid;
6815
6816 if (!si_compile_tgsi_main(&ctx)) {
6817 si_llvm_dispose(&ctx);
6818 return -1;
6819 }
6820
6821 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6822 LLVMValueRef parts[2];
6823 bool need_prolog = sel->vs_needs_prolog;
6824
6825 parts[1] = ctx.main_fn;
6826
6827 if (need_prolog) {
6828 union si_shader_part_key prolog_key;
6829 si_get_vs_prolog_key(&sel->info,
6830 shader->info.num_input_sgprs,
6831 &shader->key.part.vs.prolog,
6832 shader, &prolog_key);
6833 si_build_vs_prolog_function(&ctx, &prolog_key);
6834 parts[0] = ctx.main_fn;
6835 }
6836
6837 si_build_wrapper_function(&ctx, parts + !need_prolog,
6838 1 + need_prolog, need_prolog, 0);
6839 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6840 if (sscreen->info.chip_class >= GFX9) {
6841 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6842 LLVMValueRef parts[4];
6843 bool vs_needs_prolog =
6844 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6845
6846 /* TCS main part */
6847 parts[2] = ctx.main_fn;
6848
6849 /* TCS epilog */
6850 union si_shader_part_key tcs_epilog_key;
6851 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6852 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6853 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6854 parts[3] = ctx.main_fn;
6855
6856 /* VS as LS main part */
6857 struct si_shader shader_ls = {};
6858 shader_ls.selector = ls;
6859 shader_ls.key.as_ls = 1;
6860 shader_ls.key.mono = shader->key.mono;
6861 shader_ls.key.opt = shader->key.opt;
6862 shader_ls.is_monolithic = true;
6863 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6864
6865 if (!si_compile_tgsi_main(&ctx)) {
6866 si_llvm_dispose(&ctx);
6867 return -1;
6868 }
6869 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6870 parts[1] = ctx.main_fn;
6871
6872 /* LS prolog */
6873 if (vs_needs_prolog) {
6874 union si_shader_part_key vs_prolog_key;
6875 si_get_vs_prolog_key(&ls->info,
6876 shader_ls.info.num_input_sgprs,
6877 &shader->key.part.tcs.ls_prolog,
6878 shader, &vs_prolog_key);
6879 vs_prolog_key.vs_prolog.is_monolithic = true;
6880 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6881 parts[0] = ctx.main_fn;
6882 }
6883
6884 /* Reset the shader context. */
6885 ctx.shader = shader;
6886 ctx.type = PIPE_SHADER_TESS_CTRL;
6887
6888 si_build_wrapper_function(&ctx,
6889 parts + !vs_needs_prolog,
6890 4 - !vs_needs_prolog, vs_needs_prolog,
6891 vs_needs_prolog ? 2 : 1);
6892 } else {
6893 LLVMValueRef parts[2];
6894 union si_shader_part_key epilog_key;
6895
6896 parts[0] = ctx.main_fn;
6897
6898 memset(&epilog_key, 0, sizeof(epilog_key));
6899 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6900 si_build_tcs_epilog_function(&ctx, &epilog_key);
6901 parts[1] = ctx.main_fn;
6902
6903 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6904 }
6905 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6906 if (ctx.screen->info.chip_class >= GFX9) {
6907 struct si_shader_selector *es = shader->key.part.gs.es;
6908 LLVMValueRef es_prolog = NULL;
6909 LLVMValueRef es_main = NULL;
6910 LLVMValueRef gs_prolog = NULL;
6911 LLVMValueRef gs_main = ctx.main_fn;
6912
6913 /* GS prolog */
6914 union si_shader_part_key gs_prolog_key;
6915 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6916 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6917 gs_prolog_key.gs_prolog.is_monolithic = true;
6918 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6919 gs_prolog = ctx.main_fn;
6920
6921 /* ES main part */
6922 struct si_shader shader_es = {};
6923 shader_es.selector = es;
6924 shader_es.key.as_es = 1;
6925 shader_es.key.mono = shader->key.mono;
6926 shader_es.key.opt = shader->key.opt;
6927 shader_es.is_monolithic = true;
6928 si_llvm_context_set_tgsi(&ctx, &shader_es);
6929
6930 if (!si_compile_tgsi_main(&ctx)) {
6931 si_llvm_dispose(&ctx);
6932 return -1;
6933 }
6934 shader->info.uses_instanceid |= es->info.uses_instanceid;
6935 es_main = ctx.main_fn;
6936
6937 /* ES prolog */
6938 if (es->vs_needs_prolog) {
6939 union si_shader_part_key vs_prolog_key;
6940 si_get_vs_prolog_key(&es->info,
6941 shader_es.info.num_input_sgprs,
6942 &shader->key.part.gs.vs_prolog,
6943 shader, &vs_prolog_key);
6944 vs_prolog_key.vs_prolog.is_monolithic = true;
6945 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6946 es_prolog = ctx.main_fn;
6947 }
6948
6949 /* Reset the shader context. */
6950 ctx.shader = shader;
6951 ctx.type = PIPE_SHADER_GEOMETRY;
6952
6953 /* Prepare the array of shader parts. */
6954 LLVMValueRef parts[4];
6955 unsigned num_parts = 0, main_part, next_first_part;
6956
6957 if (es_prolog)
6958 parts[num_parts++] = es_prolog;
6959
6960 parts[main_part = num_parts++] = es_main;
6961 parts[next_first_part = num_parts++] = gs_prolog;
6962 parts[num_parts++] = gs_main;
6963
6964 si_build_wrapper_function(&ctx, parts, num_parts,
6965 main_part, next_first_part);
6966 } else {
6967 LLVMValueRef parts[2];
6968 union si_shader_part_key prolog_key;
6969
6970 parts[1] = ctx.main_fn;
6971
6972 memset(&prolog_key, 0, sizeof(prolog_key));
6973 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6974 si_build_gs_prolog_function(&ctx, &prolog_key);
6975 parts[0] = ctx.main_fn;
6976
6977 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6978 }
6979 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6980 LLVMValueRef parts[3];
6981 union si_shader_part_key prolog_key;
6982 union si_shader_part_key epilog_key;
6983 bool need_prolog;
6984
6985 si_get_ps_prolog_key(shader, &prolog_key, false);
6986 need_prolog = si_need_ps_prolog(&prolog_key);
6987
6988 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6989
6990 if (need_prolog) {
6991 si_build_ps_prolog_function(&ctx, &prolog_key);
6992 parts[0] = ctx.main_fn;
6993 }
6994
6995 si_get_ps_epilog_key(shader, &epilog_key);
6996 si_build_ps_epilog_function(&ctx, &epilog_key);
6997 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6998
6999 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7000 need_prolog ? 1 : 0, 0);
7001 }
7002
7003 si_llvm_optimize_module(&ctx);
7004
7005 /* Post-optimization transformations and analysis. */
7006 si_optimize_vs_outputs(&ctx);
7007
7008 if ((debug && debug->debug_message) ||
7009 si_can_dump_shader(sscreen, ctx.type)) {
7010 ctx.shader->config.private_mem_vgprs =
7011 ac_count_scratch_private_memory(ctx.main_fn);
7012 }
7013
7014 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7015 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7016 LLVMPointerTypeKind);
7017
7018 /* Compile to bytecode. */
7019 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7020 ctx.ac.module, debug, ctx.type, "TGSI shader",
7021 si_should_optimize_less(compiler, shader->selector));
7022 si_llvm_dispose(&ctx);
7023 if (r) {
7024 fprintf(stderr, "LLVM failed to compile shader\n");
7025 return r;
7026 }
7027
7028 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7029 * LLVM 3.9svn has this bug.
7030 */
7031 if (sel->type == PIPE_SHADER_COMPUTE) {
7032 unsigned wave_size = 64;
7033 unsigned max_vgprs = 256;
7034 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
7035 unsigned max_sgprs_per_wave = 128;
7036 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7037 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7038 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7039
7040 max_vgprs = max_vgprs / min_waves_per_simd;
7041 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7042
7043 if (shader->config.num_sgprs > max_sgprs ||
7044 shader->config.num_vgprs > max_vgprs) {
7045 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7046 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7047 shader->config.num_sgprs, shader->config.num_vgprs,
7048 max_sgprs, max_vgprs);
7049
7050 /* Just terminate the process, because dependent
7051 * shaders can hang due to bad input data, but use
7052 * the env var to allow shader-db to work.
7053 */
7054 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7055 abort();
7056 }
7057 }
7058
7059 /* Add the scratch offset to input SGPRs. */
7060 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
7061 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7062
7063 /* Calculate the number of fragment input VGPRs. */
7064 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7065 shader->info.num_input_vgprs = 0;
7066 shader->info.face_vgpr_index = -1;
7067 shader->info.ancillary_vgpr_index = -1;
7068
7069 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7070 shader->info.num_input_vgprs += 2;
7071 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7072 shader->info.num_input_vgprs += 2;
7073 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7074 shader->info.num_input_vgprs += 2;
7075 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7076 shader->info.num_input_vgprs += 3;
7077 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7078 shader->info.num_input_vgprs += 2;
7079 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7080 shader->info.num_input_vgprs += 2;
7081 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7082 shader->info.num_input_vgprs += 2;
7083 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7084 shader->info.num_input_vgprs += 1;
7085 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7086 shader->info.num_input_vgprs += 1;
7087 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7088 shader->info.num_input_vgprs += 1;
7089 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7090 shader->info.num_input_vgprs += 1;
7091 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7092 shader->info.num_input_vgprs += 1;
7093 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7094 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7095 shader->info.num_input_vgprs += 1;
7096 }
7097 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7098 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7099 shader->info.num_input_vgprs += 1;
7100 }
7101 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7102 shader->info.num_input_vgprs += 1;
7103 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7104 shader->info.num_input_vgprs += 1;
7105 }
7106
7107 si_calculate_max_simd_waves(shader);
7108 si_shader_dump_stats_for_shader_db(shader, debug);
7109 return 0;
7110 }
7111
7112 /**
7113 * Create, compile and return a shader part (prolog or epilog).
7114 *
7115 * \param sscreen screen
7116 * \param list list of shader parts of the same category
7117 * \param type shader type
7118 * \param key shader part key
7119 * \param prolog whether the part being requested is a prolog
7120 * \param tm LLVM target machine
7121 * \param debug debug callback
7122 * \param build the callback responsible for building the main function
7123 * \return non-NULL on success
7124 */
7125 static struct si_shader_part *
7126 si_get_shader_part(struct si_screen *sscreen,
7127 struct si_shader_part **list,
7128 enum pipe_shader_type type,
7129 bool prolog,
7130 union si_shader_part_key *key,
7131 struct ac_llvm_compiler *compiler,
7132 struct pipe_debug_callback *debug,
7133 void (*build)(struct si_shader_context *,
7134 union si_shader_part_key *),
7135 const char *name)
7136 {
7137 struct si_shader_part *result;
7138
7139 mtx_lock(&sscreen->shader_parts_mutex);
7140
7141 /* Find existing. */
7142 for (result = *list; result; result = result->next) {
7143 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7144 mtx_unlock(&sscreen->shader_parts_mutex);
7145 return result;
7146 }
7147 }
7148
7149 /* Compile a new one. */
7150 result = CALLOC_STRUCT(si_shader_part);
7151 result->key = *key;
7152
7153 struct si_shader shader = {};
7154 struct si_shader_context ctx;
7155
7156 si_init_shader_ctx(&ctx, sscreen, compiler);
7157 ctx.shader = &shader;
7158 ctx.type = type;
7159
7160 switch (type) {
7161 case PIPE_SHADER_VERTEX:
7162 shader.key.as_ls = key->vs_prolog.as_ls;
7163 shader.key.as_es = key->vs_prolog.as_es;
7164 break;
7165 case PIPE_SHADER_TESS_CTRL:
7166 assert(!prolog);
7167 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7168 break;
7169 case PIPE_SHADER_GEOMETRY:
7170 assert(prolog);
7171 break;
7172 case PIPE_SHADER_FRAGMENT:
7173 if (prolog)
7174 shader.key.part.ps.prolog = key->ps_prolog.states;
7175 else
7176 shader.key.part.ps.epilog = key->ps_epilog.states;
7177 break;
7178 default:
7179 unreachable("bad shader part");
7180 }
7181
7182 build(&ctx, key);
7183
7184 /* Compile. */
7185 si_llvm_optimize_module(&ctx);
7186
7187 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7188 ctx.ac.module, debug, ctx.type, name, false)) {
7189 FREE(result);
7190 result = NULL;
7191 goto out;
7192 }
7193
7194 result->next = *list;
7195 *list = result;
7196
7197 out:
7198 si_llvm_dispose(&ctx);
7199 mtx_unlock(&sscreen->shader_parts_mutex);
7200 return result;
7201 }
7202
7203 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7204 {
7205 LLVMValueRef ptr[2], list;
7206 bool is_merged_shader =
7207 ctx->screen->info.chip_class >= GFX9 &&
7208 (ctx->type == PIPE_SHADER_TESS_CTRL ||
7209 ctx->type == PIPE_SHADER_GEOMETRY ||
7210 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7211
7212 if (HAVE_32BIT_POINTERS) {
7213 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7214 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7215 ac_array_in_const32_addr_space(ctx->v4i32), "");
7216 return list;
7217 }
7218
7219 /* Get the pointer to rw buffers. */
7220 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7221 ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS + 1);
7222 list = ac_build_gather_values(&ctx->ac, ptr, 2);
7223 list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7224 list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7225 ac_array_in_const_addr_space(ctx->v4i32), "");
7226 return list;
7227 }
7228
7229 /**
7230 * Build the vertex shader prolog function.
7231 *
7232 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7233 * All inputs are returned unmodified. The vertex load indices are
7234 * stored after them, which will be used by the API VS for fetching inputs.
7235 *
7236 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7237 * input_v0,
7238 * input_v1,
7239 * input_v2,
7240 * input_v3,
7241 * (VertexID + BaseVertex),
7242 * (InstanceID + StartInstance),
7243 * (InstanceID / 2 + StartInstance)
7244 */
7245 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7246 union si_shader_part_key *key)
7247 {
7248 struct si_function_info fninfo;
7249 LLVMTypeRef *returns;
7250 LLVMValueRef ret, func;
7251 int num_returns, i;
7252 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7253 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7254 LLVMValueRef input_vgprs[9];
7255 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7256 num_input_vgprs;
7257 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7258
7259 si_init_function_info(&fninfo);
7260
7261 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7262 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7263 sizeof(LLVMTypeRef));
7264 num_returns = 0;
7265
7266 /* Declare input and output SGPRs. */
7267 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7268 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7269 returns[num_returns++] = ctx->i32;
7270 }
7271
7272 /* Preloaded VGPRs (outputs must be floats) */
7273 for (i = 0; i < num_input_vgprs; i++) {
7274 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7275 returns[num_returns++] = ctx->f32;
7276 }
7277
7278 /* Vertex load indices. */
7279 for (i = 0; i <= key->vs_prolog.last_input; i++)
7280 returns[num_returns++] = ctx->f32;
7281
7282 /* Create the function. */
7283 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7284 func = ctx->main_fn;
7285
7286 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7287 if (!key->vs_prolog.is_monolithic)
7288 si_init_exec_from_input(ctx, 3, 0);
7289
7290 if (key->vs_prolog.as_ls &&
7291 ctx->screen->has_ls_vgpr_init_bug) {
7292 /* If there are no HS threads, SPI loads the LS VGPRs
7293 * starting at VGPR 0. Shift them back to where they
7294 * belong.
7295 */
7296 LLVMValueRef has_hs_threads =
7297 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7298 si_unpack_param(ctx, 3, 8, 8),
7299 ctx->i32_0, "");
7300
7301 for (i = 4; i > 0; --i) {
7302 input_vgprs[i + 1] =
7303 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7304 input_vgprs[i + 1],
7305 input_vgprs[i - 1], "");
7306 }
7307 }
7308 }
7309
7310 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7311 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7312
7313 /* Copy inputs to outputs. This should be no-op, as the registers match,
7314 * but it will prevent the compiler from overwriting them unintentionally.
7315 */
7316 ret = ctx->return_value;
7317 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7318 LLVMValueRef p = LLVMGetParam(func, i);
7319 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7320 }
7321 for (i = 0; i < num_input_vgprs; i++) {
7322 LLVMValueRef p = input_vgprs[i];
7323 p = ac_to_float(&ctx->ac, p);
7324 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7325 key->vs_prolog.num_input_sgprs + i, "");
7326 }
7327
7328 /* Compute vertex load indices from instance divisors. */
7329 LLVMValueRef instance_divisor_constbuf = NULL;
7330
7331 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7332 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7333 LLVMValueRef buf_index =
7334 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7335 instance_divisor_constbuf =
7336 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7337 }
7338
7339 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7340 bool divisor_is_one =
7341 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7342 bool divisor_is_fetched =
7343 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7344 LLVMValueRef index;
7345
7346 if (divisor_is_one || divisor_is_fetched) {
7347 LLVMValueRef divisor = ctx->i32_1;
7348
7349 if (divisor_is_fetched) {
7350 divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7351 LLVMConstInt(ctx->i32, i * 4, 0));
7352 divisor = ac_to_integer(&ctx->ac, divisor);
7353 }
7354
7355 /* InstanceID / Divisor + StartInstance */
7356 index = get_instance_index_for_fetch(ctx,
7357 user_sgpr_base +
7358 SI_SGPR_START_INSTANCE,
7359 divisor);
7360 } else {
7361 /* VertexID + BaseVertex */
7362 index = LLVMBuildAdd(ctx->ac.builder,
7363 ctx->abi.vertex_id,
7364 LLVMGetParam(func, user_sgpr_base +
7365 SI_SGPR_BASE_VERTEX), "");
7366 }
7367
7368 index = ac_to_float(&ctx->ac, index);
7369 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7370 fninfo.num_params + i, "");
7371 }
7372
7373 si_llvm_build_ret(ctx, ret);
7374 }
7375
7376 static bool si_get_vs_prolog(struct si_screen *sscreen,
7377 struct ac_llvm_compiler *compiler,
7378 struct si_shader *shader,
7379 struct pipe_debug_callback *debug,
7380 struct si_shader *main_part,
7381 const struct si_vs_prolog_bits *key)
7382 {
7383 struct si_shader_selector *vs = main_part->selector;
7384
7385 if (!si_vs_needs_prolog(vs, key))
7386 return true;
7387
7388 /* Get the prolog. */
7389 union si_shader_part_key prolog_key;
7390 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7391 key, shader, &prolog_key);
7392
7393 shader->prolog =
7394 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7395 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7396 debug, si_build_vs_prolog_function,
7397 "Vertex Shader Prolog");
7398 return shader->prolog != NULL;
7399 }
7400
7401 /**
7402 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7403 */
7404 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7405 struct ac_llvm_compiler *compiler,
7406 struct si_shader *shader,
7407 struct pipe_debug_callback *debug)
7408 {
7409 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7410 &shader->key.part.vs.prolog);
7411 }
7412
7413 /**
7414 * Compile the TCS epilog function. This writes tesselation factors to memory
7415 * based on the output primitive type of the tesselator (determined by TES).
7416 */
7417 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7418 union si_shader_part_key *key)
7419 {
7420 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7421 struct si_function_info fninfo;
7422 LLVMValueRef func;
7423
7424 si_init_function_info(&fninfo);
7425
7426 if (ctx->screen->info.chip_class >= GFX9) {
7427 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7428 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7429 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7430 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7431 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7432 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7433 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7434 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7435 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7436 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7437 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7438 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7439 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7440 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7441 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7442 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7443 if (!HAVE_32BIT_POINTERS)
7444 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7445 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7446 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7447 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7448 } else {
7449 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7450 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7451 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7452 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7453 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7454 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7455 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7456 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7457 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7458 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7459 }
7460
7461 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7462 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7463 unsigned tess_factors_idx =
7464 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7465 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7466 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7467
7468 for (unsigned i = 0; i < 6; i++)
7469 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7470
7471 /* Create the function. */
7472 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7473 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7474 ac_declare_lds_as_pointer(&ctx->ac);
7475 func = ctx->main_fn;
7476
7477 LLVMValueRef invoc0_tess_factors[6];
7478 for (unsigned i = 0; i < 6; i++)
7479 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7480
7481 si_write_tess_factors(bld_base,
7482 LLVMGetParam(func, tess_factors_idx),
7483 LLVMGetParam(func, tess_factors_idx + 1),
7484 LLVMGetParam(func, tess_factors_idx + 2),
7485 invoc0_tess_factors, invoc0_tess_factors + 4);
7486
7487 LLVMBuildRetVoid(ctx->ac.builder);
7488 }
7489
7490 /**
7491 * Select and compile (or reuse) TCS parts (epilog).
7492 */
7493 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7494 struct ac_llvm_compiler *compiler,
7495 struct si_shader *shader,
7496 struct pipe_debug_callback *debug)
7497 {
7498 if (sscreen->info.chip_class >= GFX9) {
7499 struct si_shader *ls_main_part =
7500 shader->key.part.tcs.ls->main_shader_part_ls;
7501
7502 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7503 &shader->key.part.tcs.ls_prolog))
7504 return false;
7505
7506 shader->previous_stage = ls_main_part;
7507 }
7508
7509 /* Get the epilog. */
7510 union si_shader_part_key epilog_key;
7511 memset(&epilog_key, 0, sizeof(epilog_key));
7512 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7513
7514 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7515 PIPE_SHADER_TESS_CTRL, false,
7516 &epilog_key, compiler, debug,
7517 si_build_tcs_epilog_function,
7518 "Tessellation Control Shader Epilog");
7519 return shader->epilog != NULL;
7520 }
7521
7522 /**
7523 * Select and compile (or reuse) GS parts (prolog).
7524 */
7525 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7526 struct ac_llvm_compiler *compiler,
7527 struct si_shader *shader,
7528 struct pipe_debug_callback *debug)
7529 {
7530 if (sscreen->info.chip_class >= GFX9) {
7531 struct si_shader *es_main_part =
7532 shader->key.part.gs.es->main_shader_part_es;
7533
7534 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7535 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7536 &shader->key.part.gs.vs_prolog))
7537 return false;
7538
7539 shader->previous_stage = es_main_part;
7540 }
7541
7542 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7543 return true;
7544
7545 union si_shader_part_key prolog_key;
7546 memset(&prolog_key, 0, sizeof(prolog_key));
7547 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7548
7549 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7550 PIPE_SHADER_GEOMETRY, true,
7551 &prolog_key, compiler, debug,
7552 si_build_gs_prolog_function,
7553 "Geometry Shader Prolog");
7554 return shader->prolog2 != NULL;
7555 }
7556
7557 /**
7558 * Build the pixel shader prolog function. This handles:
7559 * - two-side color selection and interpolation
7560 * - overriding interpolation parameters for the API PS
7561 * - polygon stippling
7562 *
7563 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7564 * overriden by other states. (e.g. per-sample interpolation)
7565 * Interpolated colors are stored after the preloaded VGPRs.
7566 */
7567 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7568 union si_shader_part_key *key)
7569 {
7570 struct si_function_info fninfo;
7571 LLVMValueRef ret, func;
7572 int num_returns, i, num_color_channels;
7573
7574 assert(si_need_ps_prolog(key));
7575
7576 si_init_function_info(&fninfo);
7577
7578 /* Declare inputs. */
7579 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7580 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7581
7582 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7583 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7584
7585 /* Declare outputs (same as inputs + add colors if needed) */
7586 num_returns = fninfo.num_params;
7587 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7588 for (i = 0; i < num_color_channels; i++)
7589 fninfo.types[num_returns++] = ctx->f32;
7590
7591 /* Create the function. */
7592 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7593 &fninfo, 0);
7594 func = ctx->main_fn;
7595
7596 /* Copy inputs to outputs. This should be no-op, as the registers match,
7597 * but it will prevent the compiler from overwriting them unintentionally.
7598 */
7599 ret = ctx->return_value;
7600 for (i = 0; i < fninfo.num_params; i++) {
7601 LLVMValueRef p = LLVMGetParam(func, i);
7602 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7603 }
7604
7605 /* Polygon stippling. */
7606 if (key->ps_prolog.states.poly_stipple) {
7607 /* POS_FIXED_PT is always last. */
7608 unsigned pos = key->ps_prolog.num_input_sgprs +
7609 key->ps_prolog.num_input_vgprs - 1;
7610 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7611
7612 si_llvm_emit_polygon_stipple(ctx, list, pos);
7613 }
7614
7615 if (key->ps_prolog.states.bc_optimize_for_persp ||
7616 key->ps_prolog.states.bc_optimize_for_linear) {
7617 unsigned i, base = key->ps_prolog.num_input_sgprs;
7618 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7619
7620 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7621 * The hw doesn't compute CENTROID if the whole wave only
7622 * contains fully-covered quads.
7623 *
7624 * PRIM_MASK is after user SGPRs.
7625 */
7626 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7627 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7628 LLVMConstInt(ctx->i32, 31, 0), "");
7629 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7630 ctx->i1, "");
7631
7632 if (key->ps_prolog.states.bc_optimize_for_persp) {
7633 /* Read PERSP_CENTER. */
7634 for (i = 0; i < 2; i++)
7635 center[i] = LLVMGetParam(func, base + 2 + i);
7636 /* Read PERSP_CENTROID. */
7637 for (i = 0; i < 2; i++)
7638 centroid[i] = LLVMGetParam(func, base + 4 + i);
7639 /* Select PERSP_CENTROID. */
7640 for (i = 0; i < 2; i++) {
7641 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7642 center[i], centroid[i], "");
7643 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7644 tmp, base + 4 + i, "");
7645 }
7646 }
7647 if (key->ps_prolog.states.bc_optimize_for_linear) {
7648 /* Read LINEAR_CENTER. */
7649 for (i = 0; i < 2; i++)
7650 center[i] = LLVMGetParam(func, base + 8 + i);
7651 /* Read LINEAR_CENTROID. */
7652 for (i = 0; i < 2; i++)
7653 centroid[i] = LLVMGetParam(func, base + 10 + i);
7654 /* Select LINEAR_CENTROID. */
7655 for (i = 0; i < 2; i++) {
7656 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7657 center[i], centroid[i], "");
7658 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7659 tmp, base + 10 + i, "");
7660 }
7661 }
7662 }
7663
7664 /* Force per-sample interpolation. */
7665 if (key->ps_prolog.states.force_persp_sample_interp) {
7666 unsigned i, base = key->ps_prolog.num_input_sgprs;
7667 LLVMValueRef persp_sample[2];
7668
7669 /* Read PERSP_SAMPLE. */
7670 for (i = 0; i < 2; i++)
7671 persp_sample[i] = LLVMGetParam(func, base + i);
7672 /* Overwrite PERSP_CENTER. */
7673 for (i = 0; i < 2; i++)
7674 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7675 persp_sample[i], base + 2 + i, "");
7676 /* Overwrite PERSP_CENTROID. */
7677 for (i = 0; i < 2; i++)
7678 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7679 persp_sample[i], base + 4 + i, "");
7680 }
7681 if (key->ps_prolog.states.force_linear_sample_interp) {
7682 unsigned i, base = key->ps_prolog.num_input_sgprs;
7683 LLVMValueRef linear_sample[2];
7684
7685 /* Read LINEAR_SAMPLE. */
7686 for (i = 0; i < 2; i++)
7687 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7688 /* Overwrite LINEAR_CENTER. */
7689 for (i = 0; i < 2; i++)
7690 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7691 linear_sample[i], base + 8 + i, "");
7692 /* Overwrite LINEAR_CENTROID. */
7693 for (i = 0; i < 2; i++)
7694 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7695 linear_sample[i], base + 10 + i, "");
7696 }
7697
7698 /* Force center interpolation. */
7699 if (key->ps_prolog.states.force_persp_center_interp) {
7700 unsigned i, base = key->ps_prolog.num_input_sgprs;
7701 LLVMValueRef persp_center[2];
7702
7703 /* Read PERSP_CENTER. */
7704 for (i = 0; i < 2; i++)
7705 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7706 /* Overwrite PERSP_SAMPLE. */
7707 for (i = 0; i < 2; i++)
7708 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7709 persp_center[i], base + i, "");
7710 /* Overwrite PERSP_CENTROID. */
7711 for (i = 0; i < 2; i++)
7712 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7713 persp_center[i], base + 4 + i, "");
7714 }
7715 if (key->ps_prolog.states.force_linear_center_interp) {
7716 unsigned i, base = key->ps_prolog.num_input_sgprs;
7717 LLVMValueRef linear_center[2];
7718
7719 /* Read LINEAR_CENTER. */
7720 for (i = 0; i < 2; i++)
7721 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7722 /* Overwrite LINEAR_SAMPLE. */
7723 for (i = 0; i < 2; i++)
7724 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7725 linear_center[i], base + 6 + i, "");
7726 /* Overwrite LINEAR_CENTROID. */
7727 for (i = 0; i < 2; i++)
7728 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7729 linear_center[i], base + 10 + i, "");
7730 }
7731
7732 /* Interpolate colors. */
7733 unsigned color_out_idx = 0;
7734 for (i = 0; i < 2; i++) {
7735 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7736 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7737 key->ps_prolog.face_vgpr_index;
7738 LLVMValueRef interp[2], color[4];
7739 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7740
7741 if (!writemask)
7742 continue;
7743
7744 /* If the interpolation qualifier is not CONSTANT (-1). */
7745 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7746 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7747 key->ps_prolog.color_interp_vgpr_index[i];
7748
7749 /* Get the (i,j) updated by bc_optimize handling. */
7750 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7751 interp_vgpr, "");
7752 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7753 interp_vgpr + 1, "");
7754 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7755 }
7756
7757 /* Use the absolute location of the input. */
7758 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7759
7760 if (key->ps_prolog.states.color_two_side) {
7761 face = LLVMGetParam(func, face_vgpr);
7762 face = ac_to_integer(&ctx->ac, face);
7763 }
7764
7765 interp_fs_input(ctx,
7766 key->ps_prolog.color_attr_index[i],
7767 TGSI_SEMANTIC_COLOR, i,
7768 key->ps_prolog.num_interp_inputs,
7769 key->ps_prolog.colors_read, interp_ij,
7770 prim_mask, face, color);
7771
7772 while (writemask) {
7773 unsigned chan = u_bit_scan(&writemask);
7774 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7775 fninfo.num_params + color_out_idx++, "");
7776 }
7777 }
7778
7779 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7780 * says:
7781 *
7782 * "When per-sample shading is active due to the use of a fragment
7783 * input qualified by sample or due to the use of the gl_SampleID
7784 * or gl_SamplePosition variables, only the bit for the current
7785 * sample is set in gl_SampleMaskIn. When state specifies multiple
7786 * fragment shader invocations for a given fragment, the sample
7787 * mask for any single fragment shader invocation may specify a
7788 * subset of the covered samples for the fragment. In this case,
7789 * the bit corresponding to each covered sample will be set in
7790 * exactly one fragment shader invocation."
7791 *
7792 * The samplemask loaded by hardware is always the coverage of the
7793 * entire pixel/fragment, so mask bits out based on the sample ID.
7794 */
7795 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7796 /* The bit pattern matches that used by fixed function fragment
7797 * processing. */
7798 static const uint16_t ps_iter_masks[] = {
7799 0xffff, /* not used */
7800 0x5555,
7801 0x1111,
7802 0x0101,
7803 0x0001,
7804 };
7805 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7806
7807 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7808 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7809 key->ps_prolog.ancillary_vgpr_index;
7810 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7811 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7812
7813 samplemask = ac_to_integer(&ctx->ac, samplemask);
7814 samplemask = LLVMBuildAnd(
7815 ctx->ac.builder,
7816 samplemask,
7817 LLVMBuildShl(ctx->ac.builder,
7818 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7819 sampleid, ""),
7820 "");
7821 samplemask = ac_to_float(&ctx->ac, samplemask);
7822
7823 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7824 ancillary_vgpr + 1, "");
7825 }
7826
7827 /* Tell LLVM to insert WQM instruction sequence when needed. */
7828 if (key->ps_prolog.wqm) {
7829 LLVMAddTargetDependentFunctionAttr(func,
7830 "amdgpu-ps-wqm-outputs", "");
7831 }
7832
7833 si_llvm_build_ret(ctx, ret);
7834 }
7835
7836 /**
7837 * Build the pixel shader epilog function. This handles everything that must be
7838 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7839 */
7840 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7841 union si_shader_part_key *key)
7842 {
7843 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7844 struct si_function_info fninfo;
7845 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7846 int i;
7847 struct si_ps_exports exp = {};
7848
7849 si_init_function_info(&fninfo);
7850
7851 /* Declare input SGPRs. */
7852 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7853 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7854 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7855 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7856 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7857
7858 /* Declare input VGPRs. */
7859 unsigned required_num_params =
7860 fninfo.num_sgpr_params +
7861 util_bitcount(key->ps_epilog.colors_written) * 4 +
7862 key->ps_epilog.writes_z +
7863 key->ps_epilog.writes_stencil +
7864 key->ps_epilog.writes_samplemask;
7865
7866 required_num_params = MAX2(required_num_params,
7867 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7868
7869 while (fninfo.num_params < required_num_params)
7870 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7871
7872 /* Create the function. */
7873 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7874 /* Disable elimination of unused inputs. */
7875 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
7876 "InitialPSInputAddr", 0xffffff);
7877
7878 /* Process colors. */
7879 unsigned vgpr = fninfo.num_sgpr_params;
7880 unsigned colors_written = key->ps_epilog.colors_written;
7881 int last_color_export = -1;
7882
7883 /* Find the last color export. */
7884 if (!key->ps_epilog.writes_z &&
7885 !key->ps_epilog.writes_stencil &&
7886 !key->ps_epilog.writes_samplemask) {
7887 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7888
7889 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7890 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7891 /* Just set this if any of the colorbuffers are enabled. */
7892 if (spi_format &
7893 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7894 last_color_export = 0;
7895 } else {
7896 for (i = 0; i < 8; i++)
7897 if (colors_written & (1 << i) &&
7898 (spi_format >> (i * 4)) & 0xf)
7899 last_color_export = i;
7900 }
7901 }
7902
7903 while (colors_written) {
7904 LLVMValueRef color[4];
7905 int mrt = u_bit_scan(&colors_written);
7906
7907 for (i = 0; i < 4; i++)
7908 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7909
7910 si_export_mrt_color(bld_base, color, mrt,
7911 fninfo.num_params - 1,
7912 mrt == last_color_export, &exp);
7913 }
7914
7915 /* Process depth, stencil, samplemask. */
7916 if (key->ps_epilog.writes_z)
7917 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7918 if (key->ps_epilog.writes_stencil)
7919 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7920 if (key->ps_epilog.writes_samplemask)
7921 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7922
7923 if (depth || stencil || samplemask)
7924 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7925 else if (last_color_export == -1)
7926 ac_build_export_null(&ctx->ac);
7927
7928 if (exp.num)
7929 si_emit_ps_exports(ctx, &exp);
7930
7931 /* Compile. */
7932 LLVMBuildRetVoid(ctx->ac.builder);
7933 }
7934
7935 /**
7936 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7937 */
7938 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7939 struct ac_llvm_compiler *compiler,
7940 struct si_shader *shader,
7941 struct pipe_debug_callback *debug)
7942 {
7943 union si_shader_part_key prolog_key;
7944 union si_shader_part_key epilog_key;
7945
7946 /* Get the prolog. */
7947 si_get_ps_prolog_key(shader, &prolog_key, true);
7948
7949 /* The prolog is a no-op if these aren't set. */
7950 if (si_need_ps_prolog(&prolog_key)) {
7951 shader->prolog =
7952 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7953 PIPE_SHADER_FRAGMENT, true,
7954 &prolog_key, compiler, debug,
7955 si_build_ps_prolog_function,
7956 "Fragment Shader Prolog");
7957 if (!shader->prolog)
7958 return false;
7959 }
7960
7961 /* Get the epilog. */
7962 si_get_ps_epilog_key(shader, &epilog_key);
7963
7964 shader->epilog =
7965 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7966 PIPE_SHADER_FRAGMENT, false,
7967 &epilog_key, compiler, debug,
7968 si_build_ps_epilog_function,
7969 "Fragment Shader Epilog");
7970 if (!shader->epilog)
7971 return false;
7972
7973 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7974 if (shader->key.part.ps.prolog.poly_stipple) {
7975 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7976 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7977 }
7978
7979 /* Set up the enable bits for per-sample shading if needed. */
7980 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7981 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7982 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7983 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7984 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7985 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7986 }
7987 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7988 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7989 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7990 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7991 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7992 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7993 }
7994 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7995 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7996 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7997 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7998 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7999 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8000 }
8001 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8002 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8003 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8004 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8005 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8006 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8007 }
8008
8009 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8010 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8011 !(shader->config.spi_ps_input_ena & 0xf)) {
8012 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8013 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8014 }
8015
8016 /* At least one pair of interpolation weights must be enabled. */
8017 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8018 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8019 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8020 }
8021
8022 /* Samplemask fixup requires the sample ID. */
8023 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8024 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8025 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8026 }
8027
8028 /* The sample mask input is always enabled, because the API shader always
8029 * passes it through to the epilog. Disable it here if it's unused.
8030 */
8031 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8032 !shader->selector->info.reads_samplemask)
8033 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8034
8035 return true;
8036 }
8037
8038 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8039 unsigned *lds_size)
8040 {
8041 /* If tessellation is all offchip and on-chip GS isn't used, this
8042 * workaround is not needed.
8043 */
8044 return;
8045
8046 /* SPI barrier management bug:
8047 * Make sure we have at least 4k of LDS in use to avoid the bug.
8048 * It applies to workgroup sizes of more than one wavefront.
8049 */
8050 if (sscreen->info.family == CHIP_BONAIRE ||
8051 sscreen->info.family == CHIP_KABINI ||
8052 sscreen->info.family == CHIP_MULLINS)
8053 *lds_size = MAX2(*lds_size, 8);
8054 }
8055
8056 static void si_fix_resource_usage(struct si_screen *sscreen,
8057 struct si_shader *shader)
8058 {
8059 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8060
8061 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8062
8063 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8064 si_get_max_workgroup_size(shader) > 64) {
8065 si_multiwave_lds_size_workaround(sscreen,
8066 &shader->config.lds_size);
8067 }
8068 }
8069
8070 int si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8071 struct si_shader *shader,
8072 struct pipe_debug_callback *debug)
8073 {
8074 struct si_shader_selector *sel = shader->selector;
8075 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8076 int r;
8077
8078 /* LS, ES, VS are compiled on demand if the main part hasn't been
8079 * compiled for that stage.
8080 *
8081 * Vertex shaders are compiled on demand when a vertex fetch
8082 * workaround must be applied.
8083 */
8084 if (shader->is_monolithic) {
8085 /* Monolithic shader (compiled as a whole, has many variants,
8086 * may take a long time to compile).
8087 */
8088 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8089 if (r)
8090 return r;
8091 } else {
8092 /* The shader consists of several parts:
8093 *
8094 * - the middle part is the user shader, it has 1 variant only
8095 * and it was compiled during the creation of the shader
8096 * selector
8097 * - the prolog part is inserted at the beginning
8098 * - the epilog part is inserted at the end
8099 *
8100 * The prolog and epilog have many (but simple) variants.
8101 *
8102 * Starting with gfx9, geometry and tessellation control
8103 * shaders also contain the prolog and user shader parts of
8104 * the previous shader stage.
8105 */
8106
8107 if (!mainp)
8108 return -1;
8109
8110 /* Copy the compiled TGSI shader data over. */
8111 shader->is_binary_shared = true;
8112 shader->binary = mainp->binary;
8113 shader->config = mainp->config;
8114 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8115 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8116 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8117 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8118 memcpy(shader->info.vs_output_param_offset,
8119 mainp->info.vs_output_param_offset,
8120 sizeof(mainp->info.vs_output_param_offset));
8121 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8122 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8123 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8124
8125 /* Select prologs and/or epilogs. */
8126 switch (sel->type) {
8127 case PIPE_SHADER_VERTEX:
8128 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8129 return -1;
8130 break;
8131 case PIPE_SHADER_TESS_CTRL:
8132 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8133 return -1;
8134 break;
8135 case PIPE_SHADER_TESS_EVAL:
8136 break;
8137 case PIPE_SHADER_GEOMETRY:
8138 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8139 return -1;
8140 break;
8141 case PIPE_SHADER_FRAGMENT:
8142 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8143 return -1;
8144
8145 /* Make sure we have at least as many VGPRs as there
8146 * are allocated inputs.
8147 */
8148 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8149 shader->info.num_input_vgprs);
8150 break;
8151 }
8152
8153 /* Update SGPR and VGPR counts. */
8154 if (shader->prolog) {
8155 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8156 shader->prolog->config.num_sgprs);
8157 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8158 shader->prolog->config.num_vgprs);
8159 }
8160 if (shader->previous_stage) {
8161 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8162 shader->previous_stage->config.num_sgprs);
8163 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8164 shader->previous_stage->config.num_vgprs);
8165 shader->config.spilled_sgprs =
8166 MAX2(shader->config.spilled_sgprs,
8167 shader->previous_stage->config.spilled_sgprs);
8168 shader->config.spilled_vgprs =
8169 MAX2(shader->config.spilled_vgprs,
8170 shader->previous_stage->config.spilled_vgprs);
8171 shader->config.private_mem_vgprs =
8172 MAX2(shader->config.private_mem_vgprs,
8173 shader->previous_stage->config.private_mem_vgprs);
8174 shader->config.scratch_bytes_per_wave =
8175 MAX2(shader->config.scratch_bytes_per_wave,
8176 shader->previous_stage->config.scratch_bytes_per_wave);
8177 shader->info.uses_instanceid |=
8178 shader->previous_stage->info.uses_instanceid;
8179 }
8180 if (shader->prolog2) {
8181 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8182 shader->prolog2->config.num_sgprs);
8183 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8184 shader->prolog2->config.num_vgprs);
8185 }
8186 if (shader->epilog) {
8187 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8188 shader->epilog->config.num_sgprs);
8189 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8190 shader->epilog->config.num_vgprs);
8191 }
8192 si_calculate_max_simd_waves(shader);
8193 }
8194
8195 si_fix_resource_usage(sscreen, shader);
8196 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8197 stderr, true);
8198
8199 /* Upload. */
8200 r = si_shader_binary_upload(sscreen, shader);
8201 if (r) {
8202 fprintf(stderr, "LLVM failed to upload shader\n");
8203 return r;
8204 }
8205
8206 return 0;
8207 }
8208
8209 void si_shader_destroy(struct si_shader *shader)
8210 {
8211 if (shader->scratch_bo)
8212 r600_resource_reference(&shader->scratch_bo, NULL);
8213
8214 r600_resource_reference(&shader->bo, NULL);
8215
8216 if (!shader->is_binary_shared)
8217 ac_shader_binary_clean(&shader->binary);
8218
8219 free(shader->shader_log);
8220 }