551671f40213a5319388d932bcfa998012640b30
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_util.h"
29 #include "tgsi/tgsi_dump.h"
30
31 #include "ac_exp_param.h"
32 #include "ac_shader_util.h"
33 #include "ac_llvm_util.h"
34 #include "si_shader_internal.h"
35 #include "si_pipe.h"
36 #include "sid.h"
37
38 #include "compiler/nir/nir.h"
39
40 static const char *scratch_rsrc_dword0_symbol =
41 "SCRATCH_RSRC_DWORD0";
42
43 static const char *scratch_rsrc_dword1_symbol =
44 "SCRATCH_RSRC_DWORD1";
45
46 struct si_shader_output_values
47 {
48 LLVMValueRef values[4];
49 unsigned semantic_name;
50 unsigned semantic_index;
51 ubyte vertex_stream[4];
52 };
53
54 /**
55 * Used to collect types and other info about arguments of the LLVM function
56 * before the function is created.
57 */
58 struct si_function_info {
59 LLVMTypeRef types[100];
60 LLVMValueRef *assign[100];
61 unsigned num_sgpr_params;
62 unsigned num_params;
63 };
64
65 enum si_arg_regfile {
66 ARG_SGPR,
67 ARG_VGPR
68 };
69
70 static void si_init_shader_ctx(struct si_shader_context *ctx,
71 struct si_screen *sscreen,
72 struct ac_llvm_compiler *compiler);
73
74 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
75 struct lp_build_tgsi_context *bld_base,
76 struct lp_build_emit_data *emit_data);
77
78 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
79 FILE *f);
80
81 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
88 union si_shader_part_key *key);
89
90 /* Ideally pass the sample mask input to the PS epilog as v14, which
91 * is its usual location, so that the shader doesn't have to add v_mov.
92 */
93 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
94
95 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
96 LLVMTypeRef type)
97 {
98 if (type == ctx->ac.i64 || type == ctx->ac.f64)
99 return true;
100
101 return false;
102 }
103
104 static bool is_merged_shader(struct si_shader *shader)
105 {
106 if (shader->selector->screen->info.chip_class <= VI)
107 return false;
108
109 return shader->key.as_ls ||
110 shader->key.as_es ||
111 shader->selector->type == PIPE_SHADER_TESS_CTRL ||
112 shader->selector->type == PIPE_SHADER_GEOMETRY;
113 }
114
115 static void si_init_function_info(struct si_function_info *fninfo)
116 {
117 fninfo->num_params = 0;
118 fninfo->num_sgpr_params = 0;
119 }
120
121 static unsigned add_arg_assign(struct si_function_info *fninfo,
122 enum si_arg_regfile regfile, LLVMTypeRef type,
123 LLVMValueRef *assign)
124 {
125 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
126
127 unsigned idx = fninfo->num_params++;
128 assert(idx < ARRAY_SIZE(fninfo->types));
129
130 if (regfile == ARG_SGPR)
131 fninfo->num_sgpr_params = fninfo->num_params;
132
133 fninfo->types[idx] = type;
134 fninfo->assign[idx] = assign;
135 return idx;
136 }
137
138 static unsigned add_arg(struct si_function_info *fninfo,
139 enum si_arg_regfile regfile, LLVMTypeRef type)
140 {
141 return add_arg_assign(fninfo, regfile, type, NULL);
142 }
143
144 static void add_arg_assign_checked(struct si_function_info *fninfo,
145 enum si_arg_regfile regfile, LLVMTypeRef type,
146 LLVMValueRef *assign, unsigned idx)
147 {
148 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
149 assert(actual == idx);
150 }
151
152 static void add_arg_checked(struct si_function_info *fninfo,
153 enum si_arg_regfile regfile, LLVMTypeRef type,
154 unsigned idx)
155 {
156 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
157 }
158
159 /**
160 * Returns a unique index for a per-patch semantic name and index. The index
161 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
162 * can be calculated.
163 */
164 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
165 {
166 switch (semantic_name) {
167 case TGSI_SEMANTIC_TESSOUTER:
168 return 0;
169 case TGSI_SEMANTIC_TESSINNER:
170 return 1;
171 case TGSI_SEMANTIC_PATCH:
172 assert(index < 30);
173 return 2 + index;
174
175 default:
176 assert(!"invalid semantic name");
177 return 0;
178 }
179 }
180
181 /**
182 * Returns a unique index for a semantic name and index. The index must be
183 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
184 * calculated.
185 */
186 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
187 unsigned is_varying)
188 {
189 switch (semantic_name) {
190 case TGSI_SEMANTIC_POSITION:
191 return 0;
192 case TGSI_SEMANTIC_GENERIC:
193 /* Since some shader stages use the the highest used IO index
194 * to determine the size to allocate for inputs/outputs
195 * (in LDS, tess and GS rings). GENERIC should be placed right
196 * after POSITION to make that size as small as possible.
197 */
198 if (index < SI_MAX_IO_GENERIC)
199 return 1 + index;
200
201 assert(!"invalid generic index");
202 return 0;
203 case TGSI_SEMANTIC_PSIZE:
204 return SI_MAX_IO_GENERIC + 1;
205 case TGSI_SEMANTIC_CLIPDIST:
206 assert(index <= 1);
207 return SI_MAX_IO_GENERIC + 2 + index;
208 case TGSI_SEMANTIC_FOG:
209 return SI_MAX_IO_GENERIC + 4;
210 case TGSI_SEMANTIC_LAYER:
211 return SI_MAX_IO_GENERIC + 5;
212 case TGSI_SEMANTIC_VIEWPORT_INDEX:
213 return SI_MAX_IO_GENERIC + 6;
214 case TGSI_SEMANTIC_PRIMID:
215 return SI_MAX_IO_GENERIC + 7;
216 case TGSI_SEMANTIC_COLOR:
217 assert(index < 2);
218 return SI_MAX_IO_GENERIC + 8 + index;
219 case TGSI_SEMANTIC_BCOLOR:
220 assert(index < 2);
221 /* If it's a varying, COLOR and BCOLOR alias. */
222 if (is_varying)
223 return SI_MAX_IO_GENERIC + 8 + index;
224 else
225 return SI_MAX_IO_GENERIC + 10 + index;
226 case TGSI_SEMANTIC_TEXCOORD:
227 assert(index < 8);
228 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
229 return SI_MAX_IO_GENERIC + 12 + index;
230 case TGSI_SEMANTIC_CLIPVERTEX:
231 return 63;
232 default:
233 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
234 assert(!"invalid semantic name");
235 return 0;
236 }
237 }
238
239 /**
240 * Get the value of a shader input parameter and extract a bitfield.
241 */
242 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
243 LLVMValueRef value, unsigned rshift,
244 unsigned bitwidth)
245 {
246 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
247 value = ac_to_integer(&ctx->ac, value);
248
249 if (rshift)
250 value = LLVMBuildLShr(ctx->ac.builder, value,
251 LLVMConstInt(ctx->i32, rshift, 0), "");
252
253 if (rshift + bitwidth < 32) {
254 unsigned mask = (1 << bitwidth) - 1;
255 value = LLVMBuildAnd(ctx->ac.builder, value,
256 LLVMConstInt(ctx->i32, mask, 0), "");
257 }
258
259 return value;
260 }
261
262 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
263 unsigned param, unsigned rshift,
264 unsigned bitwidth)
265 {
266 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
267
268 return unpack_llvm_param(ctx, value, rshift, bitwidth);
269 }
270
271 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
272 {
273 switch (ctx->type) {
274 case PIPE_SHADER_TESS_CTRL:
275 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
276
277 case PIPE_SHADER_TESS_EVAL:
278 return LLVMGetParam(ctx->main_fn,
279 ctx->param_tes_rel_patch_id);
280
281 default:
282 assert(0);
283 return NULL;
284 }
285 }
286
287 /* Tessellation shaders pass outputs to the next shader using LDS.
288 *
289 * LS outputs = TCS inputs
290 * TCS outputs = TES inputs
291 *
292 * The LDS layout is:
293 * - TCS inputs for patch 0
294 * - TCS inputs for patch 1
295 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
296 * - ...
297 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
298 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
299 * - TCS outputs for patch 1
300 * - Per-patch TCS outputs for patch 1
301 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
302 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
303 * - ...
304 *
305 * All three shaders VS(LS), TCS, TES share the same LDS space.
306 */
307
308 static LLVMValueRef
309 get_tcs_in_patch_stride(struct si_shader_context *ctx)
310 {
311 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
312 }
313
314 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
315 {
316 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
317
318 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
319 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
320
321 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
322 }
323
324 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
325 {
326 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
327
328 return LLVMConstInt(ctx->i32, stride, 0);
329 }
330
331 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
332 {
333 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
334 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
335
336 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
337 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
338 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
339 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
340 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
341 num_patch_outputs * 4;
342 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
343 }
344
345 static LLVMValueRef
346 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
347 {
348 return LLVMBuildMul(ctx->ac.builder,
349 si_unpack_param(ctx,
350 ctx->param_tcs_out_lds_offsets,
351 0, 16),
352 LLVMConstInt(ctx->i32, 4, 0), "");
353 }
354
355 static LLVMValueRef
356 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
357 {
358 return LLVMBuildMul(ctx->ac.builder,
359 si_unpack_param(ctx,
360 ctx->param_tcs_out_lds_offsets,
361 16, 16),
362 LLVMConstInt(ctx->i32, 4, 0), "");
363 }
364
365 static LLVMValueRef
366 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
367 {
368 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
369 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
370
371 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
372 }
373
374 static LLVMValueRef
375 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
376 {
377 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
382 LLVMBuildMul(ctx->ac.builder, patch_stride,
383 rel_patch_id, ""),
384 "");
385 }
386
387 static LLVMValueRef
388 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
389 {
390 LLVMValueRef patch0_patch_data_offset =
391 get_tcs_out_patch0_patch_data_offset(ctx);
392 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
393 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
394
395 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
396 LLVMBuildMul(ctx->ac.builder, patch_stride,
397 rel_patch_id, ""),
398 "");
399 }
400
401 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
402 {
403 unsigned tcs_out_vertices =
404 ctx->shader->selector ?
405 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
406
407 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
408 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
409 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
410
411 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
412 }
413
414 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
415 {
416 unsigned stride;
417
418 switch (ctx->type) {
419 case PIPE_SHADER_VERTEX:
420 stride = ctx->shader->selector->lshs_vertex_stride / 4;
421 return LLVMConstInt(ctx->i32, stride, 0);
422
423 case PIPE_SHADER_TESS_CTRL:
424 if (ctx->screen->info.chip_class >= GFX9 &&
425 ctx->shader->is_monolithic) {
426 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
427 return LLVMConstInt(ctx->i32, stride, 0);
428 }
429 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
430
431 default:
432 assert(0);
433 return NULL;
434 }
435 }
436
437 static LLVMValueRef get_instance_index_for_fetch(
438 struct si_shader_context *ctx,
439 unsigned param_start_instance, LLVMValueRef divisor)
440 {
441 LLVMValueRef result = ctx->abi.instance_id;
442
443 /* The division must be done before START_INSTANCE is added. */
444 if (divisor != ctx->i32_1)
445 result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
446
447 return LLVMBuildAdd(ctx->ac.builder, result,
448 LLVMGetParam(ctx->main_fn, param_start_instance), "");
449 }
450
451 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
452 * to float. */
453 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
454 LLVMValueRef vec4,
455 unsigned double_index)
456 {
457 LLVMBuilderRef builder = ctx->ac.builder;
458 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
459 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
460 LLVMVectorType(f64, 2), "");
461 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
462 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
463 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
464 }
465
466 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
467 LLVMValueRef i32, unsigned index)
468 {
469 assert(index <= 1);
470
471 if (index == 1)
472 return LLVMBuildAShr(ctx->ac.builder, i32,
473 LLVMConstInt(ctx->i32, 16, 0), "");
474
475 return LLVMBuildSExt(ctx->ac.builder,
476 LLVMBuildTrunc(ctx->ac.builder, i32,
477 ctx->ac.i16, ""),
478 ctx->i32, "");
479 }
480
481 void si_llvm_load_input_vs(
482 struct si_shader_context *ctx,
483 unsigned input_index,
484 LLVMValueRef out[4])
485 {
486 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
487 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
488
489 if (vs_blit_property) {
490 LLVMValueRef vertex_id = ctx->abi.vertex_id;
491 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
492 LLVMIntULE, vertex_id,
493 ctx->i32_1, "");
494 /* Use LLVMIntNE, because we have 3 vertices and only
495 * the middle one should use y2.
496 */
497 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
498 LLVMIntNE, vertex_id,
499 ctx->i32_1, "");
500
501 if (input_index == 0) {
502 /* Position: */
503 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs);
505 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 1);
507
508 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
509 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
510 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
511 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
512
513 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
514 x1, x2, "");
515 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
516 y1, y2, "");
517
518 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
519 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
520 out[2] = LLVMGetParam(ctx->main_fn,
521 ctx->param_vs_blit_inputs + 2);
522 out[3] = ctx->ac.f32_1;
523 return;
524 }
525
526 /* Color or texture coordinates: */
527 assert(input_index == 1);
528
529 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
530 for (int i = 0; i < 4; i++) {
531 out[i] = LLVMGetParam(ctx->main_fn,
532 ctx->param_vs_blit_inputs + 3 + i);
533 }
534 } else {
535 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
536 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
537 ctx->param_vs_blit_inputs + 3);
538 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
539 ctx->param_vs_blit_inputs + 4);
540 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
541 ctx->param_vs_blit_inputs + 5);
542 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
543 ctx->param_vs_blit_inputs + 6);
544
545 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
546 x1, x2, "");
547 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
548 y1, y2, "");
549 out[2] = LLVMGetParam(ctx->main_fn,
550 ctx->param_vs_blit_inputs + 7);
551 out[3] = LLVMGetParam(ctx->main_fn,
552 ctx->param_vs_blit_inputs + 8);
553 }
554 return;
555 }
556
557 unsigned chan;
558 unsigned fix_fetch;
559 unsigned num_fetches;
560 unsigned fetch_stride;
561 unsigned num_channels;
562
563 LLVMValueRef t_list_ptr;
564 LLVMValueRef t_offset;
565 LLVMValueRef t_list;
566 LLVMValueRef vertex_index;
567 LLVMValueRef input[3];
568
569 /* Load the T list */
570 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
571
572 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
573
574 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
575
576 vertex_index = LLVMGetParam(ctx->main_fn,
577 ctx->param_vertex_index0 +
578 input_index);
579
580 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
581
582 /* Do multiple loads for special formats. */
583 switch (fix_fetch) {
584 case SI_FIX_FETCH_RGB_64_FLOAT:
585 num_fetches = 3; /* 3 2-dword loads */
586 fetch_stride = 8;
587 num_channels = 2;
588 break;
589 case SI_FIX_FETCH_RGBA_64_FLOAT:
590 num_fetches = 2; /* 2 4-dword loads */
591 fetch_stride = 16;
592 num_channels = 4;
593 break;
594 case SI_FIX_FETCH_RGB_8:
595 case SI_FIX_FETCH_RGB_8_INT:
596 num_fetches = 3;
597 fetch_stride = 1;
598 num_channels = 1;
599 break;
600 case SI_FIX_FETCH_RGB_16:
601 case SI_FIX_FETCH_RGB_16_INT:
602 num_fetches = 3;
603 fetch_stride = 2;
604 num_channels = 1;
605 break;
606 default:
607 num_fetches = 1;
608 fetch_stride = 0;
609 num_channels = util_last_bit(info->input_usage_mask[input_index]);
610 }
611
612 for (unsigned i = 0; i < num_fetches; i++) {
613 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
614
615 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
616 vertex_index, voffset,
617 num_channels, false, true);
618 input[i] = ac_build_expand_to_vec4(&ctx->ac, input[i], num_channels);
619 }
620
621 /* Break up the vec4 into individual components */
622 for (chan = 0; chan < 4; chan++) {
623 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
624 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
625 input[0], llvm_chan, "");
626 }
627
628 switch (fix_fetch) {
629 case SI_FIX_FETCH_A2_SNORM:
630 case SI_FIX_FETCH_A2_SSCALED:
631 case SI_FIX_FETCH_A2_SINT: {
632 /* The hardware returns an unsigned value; convert it to a
633 * signed one.
634 */
635 LLVMValueRef tmp = out[3];
636 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
637
638 /* First, recover the sign-extended signed integer value. */
639 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
640 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
641 else
642 tmp = ac_to_integer(&ctx->ac, tmp);
643
644 /* For the integer-like cases, do a natural sign extension.
645 *
646 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
647 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
648 * exponent.
649 */
650 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
651 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
652 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
653 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
654
655 /* Convert back to the right type. */
656 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
657 LLVMValueRef clamp;
658 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
659 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
660 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
661 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
662 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
663 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
664 }
665
666 out[3] = tmp;
667 break;
668 }
669 case SI_FIX_FETCH_RGBA_32_UNORM:
670 case SI_FIX_FETCH_RGBX_32_UNORM:
671 for (chan = 0; chan < 4; chan++) {
672 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
673 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
674 out[chan], ctx->f32, "");
675 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
676 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
677 }
678 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
679 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
680 out[3] = LLVMConstReal(ctx->f32, 1);
681 break;
682 case SI_FIX_FETCH_RGBA_32_SNORM:
683 case SI_FIX_FETCH_RGBX_32_SNORM:
684 case SI_FIX_FETCH_RGBA_32_FIXED:
685 case SI_FIX_FETCH_RGBX_32_FIXED: {
686 double scale;
687 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
688 scale = 1.0 / 0x10000;
689 else
690 scale = 1.0 / INT_MAX;
691
692 for (chan = 0; chan < 4; chan++) {
693 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
694 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
695 out[chan], ctx->f32, "");
696 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
697 LLVMConstReal(ctx->f32, scale), "");
698 }
699 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
700 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
701 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
702 out[3] = LLVMConstReal(ctx->f32, 1);
703 break;
704 }
705 case SI_FIX_FETCH_RGBA_32_USCALED:
706 for (chan = 0; chan < 4; chan++) {
707 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
708 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
709 out[chan], ctx->f32, "");
710 }
711 break;
712 case SI_FIX_FETCH_RGBA_32_SSCALED:
713 for (chan = 0; chan < 4; chan++) {
714 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
715 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
716 out[chan], ctx->f32, "");
717 }
718 break;
719 case SI_FIX_FETCH_RG_64_FLOAT:
720 for (chan = 0; chan < 2; chan++)
721 out[chan] = extract_double_to_float(ctx, input[0], chan);
722
723 out[2] = LLVMConstReal(ctx->f32, 0);
724 out[3] = LLVMConstReal(ctx->f32, 1);
725 break;
726 case SI_FIX_FETCH_RGB_64_FLOAT:
727 for (chan = 0; chan < 3; chan++)
728 out[chan] = extract_double_to_float(ctx, input[chan], 0);
729
730 out[3] = LLVMConstReal(ctx->f32, 1);
731 break;
732 case SI_FIX_FETCH_RGBA_64_FLOAT:
733 for (chan = 0; chan < 4; chan++) {
734 out[chan] = extract_double_to_float(ctx, input[chan / 2],
735 chan % 2);
736 }
737 break;
738 case SI_FIX_FETCH_RGB_8:
739 case SI_FIX_FETCH_RGB_8_INT:
740 case SI_FIX_FETCH_RGB_16:
741 case SI_FIX_FETCH_RGB_16_INT:
742 for (chan = 0; chan < 3; chan++) {
743 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
744 input[chan],
745 ctx->i32_0, "");
746 }
747 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
748 fix_fetch == SI_FIX_FETCH_RGB_16) {
749 out[3] = LLVMConstReal(ctx->f32, 1);
750 } else {
751 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
752 }
753 break;
754 }
755 }
756
757 static void declare_input_vs(
758 struct si_shader_context *ctx,
759 unsigned input_index,
760 const struct tgsi_full_declaration *decl,
761 LLVMValueRef out[4])
762 {
763 si_llvm_load_input_vs(ctx, input_index, out);
764 }
765
766 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
767 unsigned swizzle)
768 {
769 if (swizzle > 0)
770 return ctx->i32_0;
771
772 switch (ctx->type) {
773 case PIPE_SHADER_VERTEX:
774 return LLVMGetParam(ctx->main_fn,
775 ctx->param_vs_prim_id);
776 case PIPE_SHADER_TESS_CTRL:
777 return ctx->abi.tcs_patch_id;
778 case PIPE_SHADER_TESS_EVAL:
779 return ctx->abi.tes_patch_id;
780 case PIPE_SHADER_GEOMETRY:
781 return ctx->abi.gs_prim_id;
782 default:
783 assert(0);
784 return ctx->i32_0;
785 }
786 }
787
788 /**
789 * Return the value of tgsi_ind_register for indexing.
790 * This is the indirect index with the constant offset added to it.
791 */
792 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
793 const struct tgsi_ind_register *ind,
794 unsigned addr_mul,
795 int rel_index)
796 {
797 LLVMValueRef result;
798
799 if (ind->File == TGSI_FILE_ADDRESS) {
800 result = ctx->addrs[ind->Index][ind->Swizzle];
801 result = LLVMBuildLoad(ctx->ac.builder, result, "");
802 } else {
803 struct tgsi_full_src_register src = {};
804
805 src.Register.File = ind->File;
806 src.Register.Index = ind->Index;
807
808 /* Set the second index to 0 for constants. */
809 if (ind->File == TGSI_FILE_CONSTANT)
810 src.Register.Dimension = 1;
811
812 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
813 TGSI_TYPE_SIGNED,
814 ind->Swizzle);
815 result = ac_to_integer(&ctx->ac, result);
816 }
817
818 if (addr_mul != 1)
819 result = LLVMBuildMul(ctx->ac.builder, result,
820 LLVMConstInt(ctx->i32, addr_mul, 0), "");
821 result = LLVMBuildAdd(ctx->ac.builder, result,
822 LLVMConstInt(ctx->i32, rel_index, 0), "");
823 return result;
824 }
825
826 /**
827 * Like si_get_indirect_index, but restricts the return value to a (possibly
828 * undefined) value inside [0..num).
829 */
830 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
831 const struct tgsi_ind_register *ind,
832 int rel_index, unsigned num)
833 {
834 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
835
836 return si_llvm_bound_index(ctx, result, num);
837 }
838
839 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
840 LLVMValueRef vertex_dw_stride,
841 LLVMValueRef base_addr,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index,
844 unsigned input_index,
845 ubyte *name,
846 ubyte *index,
847 bool is_patch)
848 {
849 if (vertex_dw_stride) {
850 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
851 LLVMBuildMul(ctx->ac.builder, vertex_index,
852 vertex_dw_stride, ""), "");
853 }
854
855 if (param_index) {
856 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
857 LLVMBuildMul(ctx->ac.builder, param_index,
858 LLVMConstInt(ctx->i32, 4, 0), ""), "");
859 }
860
861 int param = is_patch ?
862 si_shader_io_get_unique_index_patch(name[input_index],
863 index[input_index]) :
864 si_shader_io_get_unique_index(name[input_index],
865 index[input_index], false);
866
867 /* Add the base address of the element. */
868 return LLVMBuildAdd(ctx->ac.builder, base_addr,
869 LLVMConstInt(ctx->i32, param * 4, 0), "");
870 }
871
872 /**
873 * Calculate a dword address given an input or output register and a stride.
874 */
875 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
876 const struct tgsi_full_dst_register *dst,
877 const struct tgsi_full_src_register *src,
878 LLVMValueRef vertex_dw_stride,
879 LLVMValueRef base_addr)
880 {
881 struct tgsi_shader_info *info = &ctx->shader->selector->info;
882 ubyte *name, *index, *array_first;
883 int input_index;
884 struct tgsi_full_dst_register reg;
885 LLVMValueRef vertex_index = NULL;
886 LLVMValueRef ind_index = NULL;
887
888 /* Set the register description. The address computation is the same
889 * for sources and destinations. */
890 if (src) {
891 reg.Register.File = src->Register.File;
892 reg.Register.Index = src->Register.Index;
893 reg.Register.Indirect = src->Register.Indirect;
894 reg.Register.Dimension = src->Register.Dimension;
895 reg.Indirect = src->Indirect;
896 reg.Dimension = src->Dimension;
897 reg.DimIndirect = src->DimIndirect;
898 } else
899 reg = *dst;
900
901 /* If the register is 2-dimensional (e.g. an array of vertices
902 * in a primitive), calculate the base address of the vertex. */
903 if (reg.Register.Dimension) {
904 if (reg.Dimension.Indirect)
905 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
906 1, reg.Dimension.Index);
907 else
908 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
909 }
910
911 /* Get information about the register. */
912 if (reg.Register.File == TGSI_FILE_INPUT) {
913 name = info->input_semantic_name;
914 index = info->input_semantic_index;
915 array_first = info->input_array_first;
916 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
917 name = info->output_semantic_name;
918 index = info->output_semantic_index;
919 array_first = info->output_array_first;
920 } else {
921 assert(0);
922 return NULL;
923 }
924
925 if (reg.Register.Indirect) {
926 /* Add the relative address of the element. */
927 if (reg.Indirect.ArrayID)
928 input_index = array_first[reg.Indirect.ArrayID];
929 else
930 input_index = reg.Register.Index;
931
932 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
933 1, reg.Register.Index - input_index);
934 } else {
935 input_index = reg.Register.Index;
936 }
937
938 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
939 base_addr, vertex_index,
940 ind_index, input_index,
941 name, index,
942 !reg.Register.Dimension);
943 }
944
945 /* The offchip buffer layout for TCS->TES is
946 *
947 * - attribute 0 of patch 0 vertex 0
948 * - attribute 0 of patch 0 vertex 1
949 * - attribute 0 of patch 0 vertex 2
950 * ...
951 * - attribute 0 of patch 1 vertex 0
952 * - attribute 0 of patch 1 vertex 1
953 * ...
954 * - attribute 1 of patch 0 vertex 0
955 * - attribute 1 of patch 0 vertex 1
956 * ...
957 * - per patch attribute 0 of patch 0
958 * - per patch attribute 0 of patch 1
959 * ...
960 *
961 * Note that every attribute has 4 components.
962 */
963 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
964 LLVMValueRef rel_patch_id,
965 LLVMValueRef vertex_index,
966 LLVMValueRef param_index)
967 {
968 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
969 LLVMValueRef param_stride, constant16;
970
971 vertices_per_patch = get_num_tcs_out_vertices(ctx);
972 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
973 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
974 num_patches, "");
975
976 constant16 = LLVMConstInt(ctx->i32, 16, 0);
977 if (vertex_index) {
978 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
979 vertices_per_patch, "");
980
981 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
982 vertex_index, "");
983
984 param_stride = total_vertices;
985 } else {
986 base_addr = rel_patch_id;
987 param_stride = num_patches;
988 }
989
990 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
991 LLVMBuildMul(ctx->ac.builder, param_index,
992 param_stride, ""), "");
993
994 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
995
996 if (!vertex_index) {
997 LLVMValueRef patch_data_offset =
998 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
999
1000 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1001 patch_data_offset, "");
1002 }
1003 return base_addr;
1004 }
1005
1006 /* This is a generic helper that can be shared by the NIR and TGSI backends */
1007 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1008 struct si_shader_context *ctx,
1009 LLVMValueRef vertex_index,
1010 LLVMValueRef param_index,
1011 unsigned param_base,
1012 ubyte *name,
1013 ubyte *index,
1014 bool is_patch)
1015 {
1016 unsigned param_index_base;
1017
1018 param_index_base = is_patch ?
1019 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1020 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
1021
1022 if (param_index) {
1023 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1024 LLVMConstInt(ctx->i32, param_index_base, 0),
1025 "");
1026 } else {
1027 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1028 }
1029
1030 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1031 vertex_index, param_index);
1032 }
1033
1034 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1035 struct si_shader_context *ctx,
1036 const struct tgsi_full_dst_register *dst,
1037 const struct tgsi_full_src_register *src)
1038 {
1039 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1040 ubyte *name, *index, *array_first;
1041 struct tgsi_full_src_register reg;
1042 LLVMValueRef vertex_index = NULL;
1043 LLVMValueRef param_index = NULL;
1044 unsigned param_base;
1045
1046 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1047
1048 if (reg.Register.Dimension) {
1049
1050 if (reg.Dimension.Indirect)
1051 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1052 1, reg.Dimension.Index);
1053 else
1054 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1055 }
1056
1057 /* Get information about the register. */
1058 if (reg.Register.File == TGSI_FILE_INPUT) {
1059 name = info->input_semantic_name;
1060 index = info->input_semantic_index;
1061 array_first = info->input_array_first;
1062 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1063 name = info->output_semantic_name;
1064 index = info->output_semantic_index;
1065 array_first = info->output_array_first;
1066 } else {
1067 assert(0);
1068 return NULL;
1069 }
1070
1071 if (reg.Register.Indirect) {
1072 if (reg.Indirect.ArrayID)
1073 param_base = array_first[reg.Indirect.ArrayID];
1074 else
1075 param_base = reg.Register.Index;
1076
1077 param_index = si_get_indirect_index(ctx, &reg.Indirect,
1078 1, reg.Register.Index - param_base);
1079
1080 } else {
1081 param_base = reg.Register.Index;
1082 }
1083
1084 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1085 param_index, param_base,
1086 name, index, !reg.Register.Dimension);
1087 }
1088
1089 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1090 LLVMTypeRef type, unsigned swizzle,
1091 LLVMValueRef buffer, LLVMValueRef offset,
1092 LLVMValueRef base, bool can_speculate)
1093 {
1094 struct si_shader_context *ctx = si_shader_context(bld_base);
1095 LLVMValueRef value, value2;
1096 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1097
1098 if (swizzle == ~0) {
1099 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1100 0, 1, 0, can_speculate, false);
1101
1102 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1103 }
1104
1105 if (!llvm_type_is_64bit(ctx, type)) {
1106 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1107 0, 1, 0, can_speculate, false);
1108
1109 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1110 return LLVMBuildExtractElement(ctx->ac.builder, value,
1111 LLVMConstInt(ctx->i32, swizzle, 0), "");
1112 }
1113
1114 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1115 swizzle * 4, 1, 0, can_speculate, false);
1116
1117 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1118 swizzle * 4 + 4, 1, 0, can_speculate, false);
1119
1120 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1121 }
1122
1123 /**
1124 * Load from LDS.
1125 *
1126 * \param type output value type
1127 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1128 * \param dw_addr address in dwords
1129 */
1130 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1131 LLVMTypeRef type, unsigned swizzle,
1132 LLVMValueRef dw_addr)
1133 {
1134 struct si_shader_context *ctx = si_shader_context(bld_base);
1135 LLVMValueRef value;
1136
1137 if (swizzle == ~0) {
1138 LLVMValueRef values[TGSI_NUM_CHANNELS];
1139
1140 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1141 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1142
1143 return ac_build_gather_values(&ctx->ac, values,
1144 TGSI_NUM_CHANNELS);
1145 }
1146
1147 /* Split 64-bit loads. */
1148 if (llvm_type_is_64bit(ctx, type)) {
1149 LLVMValueRef lo, hi;
1150
1151 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1152 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1153 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1154 }
1155
1156 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1157 LLVMConstInt(ctx->i32, swizzle, 0), "");
1158
1159 value = ac_lds_load(&ctx->ac, dw_addr);
1160
1161 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1162 }
1163
1164 /**
1165 * Store to LDS.
1166 *
1167 * \param swizzle offset (typically 0..3)
1168 * \param dw_addr address in dwords
1169 * \param value value to store
1170 */
1171 static void lds_store(struct si_shader_context *ctx,
1172 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1173 LLVMValueRef value)
1174 {
1175 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1176 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1177
1178 ac_lds_store(&ctx->ac, dw_addr, value);
1179 }
1180
1181 enum si_tess_ring {
1182 TCS_FACTOR_RING,
1183 TESS_OFFCHIP_RING_TCS,
1184 TESS_OFFCHIP_RING_TES,
1185 };
1186
1187 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1188 enum si_tess_ring ring)
1189 {
1190 LLVMBuilderRef builder = ctx->ac.builder;
1191 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1192 ctx->param_tcs_out_lds_layout;
1193 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1194
1195 /* TCS only receives high 13 bits of the address. */
1196 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1197 addr = LLVMBuildAnd(builder, addr,
1198 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1199 }
1200
1201 if (ring == TCS_FACTOR_RING) {
1202 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1203 addr = LLVMBuildAdd(builder, addr,
1204 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1205 }
1206
1207 LLVMValueRef desc[4];
1208 desc[0] = addr;
1209 desc[1] = LLVMConstInt(ctx->i32,
1210 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1211 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1212 desc[3] = LLVMConstInt(ctx->i32,
1213 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1214 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1215 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1216 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1217 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1218 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0);
1219
1220 return ac_build_gather_values(&ctx->ac, desc, 4);
1221 }
1222
1223 static LLVMValueRef fetch_input_tcs(
1224 struct lp_build_tgsi_context *bld_base,
1225 const struct tgsi_full_src_register *reg,
1226 enum tgsi_opcode_type type, unsigned swizzle)
1227 {
1228 struct si_shader_context *ctx = si_shader_context(bld_base);
1229 LLVMValueRef dw_addr, stride;
1230
1231 stride = get_tcs_in_vertex_dw_stride(ctx);
1232 dw_addr = get_tcs_in_current_patch_offset(ctx);
1233 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1234
1235 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1236 }
1237
1238 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1239 LLVMTypeRef type,
1240 LLVMValueRef vertex_index,
1241 LLVMValueRef param_index,
1242 unsigned const_index,
1243 unsigned location,
1244 unsigned driver_location,
1245 unsigned component,
1246 unsigned num_components,
1247 bool is_patch,
1248 bool is_compact,
1249 bool load_input)
1250 {
1251 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1252 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1253 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1254 LLVMValueRef dw_addr, stride;
1255
1256 driver_location = driver_location / 4;
1257
1258 if (load_input) {
1259 stride = get_tcs_in_vertex_dw_stride(ctx);
1260 dw_addr = get_tcs_in_current_patch_offset(ctx);
1261 } else {
1262 if (is_patch) {
1263 stride = NULL;
1264 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1265 } else {
1266 stride = get_tcs_out_vertex_dw_stride(ctx);
1267 dw_addr = get_tcs_out_current_patch_offset(ctx);
1268 }
1269 }
1270
1271 if (param_index) {
1272 /* Add the constant index to the indirect index */
1273 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1274 LLVMConstInt(ctx->i32, const_index, 0), "");
1275 } else {
1276 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1277 }
1278
1279 ubyte *names;
1280 ubyte *indices;
1281 if (load_input) {
1282 names = info->input_semantic_name;
1283 indices = info->input_semantic_index;
1284 } else {
1285 names = info->output_semantic_name;
1286 indices = info->output_semantic_index;
1287 }
1288
1289 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1290 vertex_index, param_index,
1291 driver_location,
1292 names, indices,
1293 is_patch);
1294
1295 LLVMValueRef value[4];
1296 for (unsigned i = 0; i < num_components; i++) {
1297 unsigned offset = i;
1298 if (llvm_type_is_64bit(ctx, type))
1299 offset *= 2;
1300
1301 offset += component;
1302 value[i + component] = lds_load(bld_base, type, offset, dw_addr);
1303 }
1304
1305 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1306 }
1307
1308 static LLVMValueRef fetch_output_tcs(
1309 struct lp_build_tgsi_context *bld_base,
1310 const struct tgsi_full_src_register *reg,
1311 enum tgsi_opcode_type type, unsigned swizzle)
1312 {
1313 struct si_shader_context *ctx = si_shader_context(bld_base);
1314 LLVMValueRef dw_addr, stride;
1315
1316 if (reg->Register.Dimension) {
1317 stride = get_tcs_out_vertex_dw_stride(ctx);
1318 dw_addr = get_tcs_out_current_patch_offset(ctx);
1319 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1320 } else {
1321 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1322 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1323 }
1324
1325 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1326 }
1327
1328 static LLVMValueRef fetch_input_tes(
1329 struct lp_build_tgsi_context *bld_base,
1330 const struct tgsi_full_src_register *reg,
1331 enum tgsi_opcode_type type, unsigned swizzle)
1332 {
1333 struct si_shader_context *ctx = si_shader_context(bld_base);
1334 LLVMValueRef base, addr;
1335
1336 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1337 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1338
1339 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1340 ctx->tess_offchip_ring, base, addr, true);
1341 }
1342
1343 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1344 LLVMTypeRef type,
1345 LLVMValueRef vertex_index,
1346 LLVMValueRef param_index,
1347 unsigned const_index,
1348 unsigned location,
1349 unsigned driver_location,
1350 unsigned component,
1351 unsigned num_components,
1352 bool is_patch,
1353 bool is_compact,
1354 bool load_input)
1355 {
1356 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1357 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1358 LLVMValueRef base, addr;
1359
1360 driver_location = driver_location / 4;
1361
1362 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1363
1364 if (param_index) {
1365 /* Add the constant index to the indirect index */
1366 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1367 LLVMConstInt(ctx->i32, const_index, 0), "");
1368 } else {
1369 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1370 }
1371
1372 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1373 param_index, driver_location,
1374 info->input_semantic_name,
1375 info->input_semantic_index,
1376 is_patch);
1377
1378 /* TODO: This will generate rather ordinary llvm code, although it
1379 * should be easy for the optimiser to fix up. In future we might want
1380 * to refactor buffer_load(), but for now this maximises code sharing
1381 * between the NIR and TGSI backends.
1382 */
1383 LLVMValueRef value[4];
1384 for (unsigned i = 0; i < num_components; i++) {
1385 unsigned offset = i;
1386 if (llvm_type_is_64bit(ctx, type))
1387 offset *= 2;
1388
1389 offset += component;
1390 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1391 ctx->tess_offchip_ring, base, addr, true);
1392 }
1393
1394 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1395 }
1396
1397 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1398 const struct tgsi_full_instruction *inst,
1399 const struct tgsi_opcode_info *info,
1400 unsigned index,
1401 LLVMValueRef dst[4])
1402 {
1403 struct si_shader_context *ctx = si_shader_context(bld_base);
1404 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1405 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1406 unsigned chan_index;
1407 LLVMValueRef dw_addr, stride;
1408 LLVMValueRef buffer, base, buf_addr;
1409 LLVMValueRef values[4];
1410 bool skip_lds_store;
1411 bool is_tess_factor = false, is_tess_inner = false;
1412
1413 /* Only handle per-patch and per-vertex outputs here.
1414 * Vectors will be lowered to scalars and this function will be called again.
1415 */
1416 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1417 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1418 si_llvm_emit_store(bld_base, inst, info, index, dst);
1419 return;
1420 }
1421
1422 if (reg->Register.Dimension) {
1423 stride = get_tcs_out_vertex_dw_stride(ctx);
1424 dw_addr = get_tcs_out_current_patch_offset(ctx);
1425 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1426 skip_lds_store = !sh_info->reads_pervertex_outputs;
1427 } else {
1428 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1429 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1430 skip_lds_store = !sh_info->reads_perpatch_outputs;
1431
1432 if (!reg->Register.Indirect) {
1433 int name = sh_info->output_semantic_name[reg->Register.Index];
1434
1435 /* Always write tess factors into LDS for the TCS epilog. */
1436 if (name == TGSI_SEMANTIC_TESSINNER ||
1437 name == TGSI_SEMANTIC_TESSOUTER) {
1438 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1439 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1440 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1441 is_tess_factor = true;
1442 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1443 }
1444 }
1445 }
1446
1447 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1448
1449 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1450 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1451
1452 uint32_t writemask = reg->Register.WriteMask;
1453 while (writemask) {
1454 chan_index = u_bit_scan(&writemask);
1455 LLVMValueRef value = dst[chan_index];
1456
1457 if (inst->Instruction.Saturate)
1458 value = ac_build_clamp(&ctx->ac, value);
1459
1460 /* Skip LDS stores if there is no LDS read of this output. */
1461 if (!skip_lds_store)
1462 lds_store(ctx, chan_index, dw_addr, value);
1463
1464 value = ac_to_integer(&ctx->ac, value);
1465 values[chan_index] = value;
1466
1467 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1468 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1469 buf_addr, base,
1470 4 * chan_index, 1, 0, true, false);
1471 }
1472
1473 /* Write tess factors into VGPRs for the epilog. */
1474 if (is_tess_factor &&
1475 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1476 if (!is_tess_inner) {
1477 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1478 ctx->invoc0_tess_factors[chan_index]);
1479 } else if (chan_index < 2) {
1480 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1481 ctx->invoc0_tess_factors[4 + chan_index]);
1482 }
1483 }
1484 }
1485
1486 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1487 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1488 values, 4);
1489 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1490 base, 0, 1, 0, true, false);
1491 }
1492 }
1493
1494 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1495 const struct nir_variable *var,
1496 LLVMValueRef vertex_index,
1497 LLVMValueRef param_index,
1498 unsigned const_index,
1499 LLVMValueRef src,
1500 unsigned writemask)
1501 {
1502 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1503 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1504 const unsigned component = var->data.location_frac;
1505 const bool is_patch = var->data.patch;
1506 unsigned driver_location = var->data.driver_location;
1507 LLVMValueRef dw_addr, stride;
1508 LLVMValueRef buffer, base, addr;
1509 LLVMValueRef values[4];
1510 bool skip_lds_store;
1511 bool is_tess_factor = false, is_tess_inner = false;
1512
1513 driver_location = driver_location / 4;
1514
1515 if (param_index) {
1516 /* Add the constant index to the indirect index */
1517 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1518 LLVMConstInt(ctx->i32, const_index, 0), "");
1519 } else {
1520 if (const_index != 0)
1521 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1522 }
1523
1524 if (!is_patch) {
1525 stride = get_tcs_out_vertex_dw_stride(ctx);
1526 dw_addr = get_tcs_out_current_patch_offset(ctx);
1527 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1528 vertex_index, param_index,
1529 driver_location,
1530 info->output_semantic_name,
1531 info->output_semantic_index,
1532 is_patch);
1533
1534 skip_lds_store = !info->reads_pervertex_outputs;
1535 } else {
1536 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1537 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1538 vertex_index, param_index,
1539 driver_location,
1540 info->output_semantic_name,
1541 info->output_semantic_index,
1542 is_patch);
1543
1544 skip_lds_store = !info->reads_perpatch_outputs;
1545
1546 if (!param_index) {
1547 int name = info->output_semantic_name[driver_location];
1548
1549 /* Always write tess factors into LDS for the TCS epilog. */
1550 if (name == TGSI_SEMANTIC_TESSINNER ||
1551 name == TGSI_SEMANTIC_TESSOUTER) {
1552 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1553 skip_lds_store = !info->reads_tessfactor_outputs &&
1554 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1555 is_tess_factor = true;
1556 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1557 }
1558 }
1559 }
1560
1561 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1562
1563 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1564
1565 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1566 param_index, driver_location,
1567 info->output_semantic_name,
1568 info->output_semantic_index,
1569 is_patch);
1570
1571 for (unsigned chan = 0; chan < 4; chan++) {
1572 if (!(writemask & (1 << chan)))
1573 continue;
1574 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1575
1576 /* Skip LDS stores if there is no LDS read of this output. */
1577 if (!skip_lds_store)
1578 lds_store(ctx, chan, dw_addr, value);
1579
1580 value = ac_to_integer(&ctx->ac, value);
1581 values[chan] = value;
1582
1583 if (writemask != 0xF && !is_tess_factor) {
1584 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1585 addr, base,
1586 4 * chan, 1, 0, true, false);
1587 }
1588
1589 /* Write tess factors into VGPRs for the epilog. */
1590 if (is_tess_factor &&
1591 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1592 if (!is_tess_inner) {
1593 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1594 ctx->invoc0_tess_factors[chan]);
1595 } else if (chan < 2) {
1596 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1597 ctx->invoc0_tess_factors[4 + chan]);
1598 }
1599 }
1600 }
1601
1602 if (writemask == 0xF && !is_tess_factor) {
1603 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1604 values, 4);
1605 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1606 base, 0, 1, 0, true, false);
1607 }
1608 }
1609
1610 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1611 unsigned input_index,
1612 unsigned vtx_offset_param,
1613 LLVMTypeRef type,
1614 unsigned swizzle)
1615 {
1616 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1617 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1618 struct si_shader *shader = ctx->shader;
1619 LLVMValueRef vtx_offset, soffset;
1620 struct tgsi_shader_info *info = &shader->selector->info;
1621 unsigned semantic_name = info->input_semantic_name[input_index];
1622 unsigned semantic_index = info->input_semantic_index[input_index];
1623 unsigned param;
1624 LLVMValueRef value;
1625
1626 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1627
1628 /* GFX9 has the ESGS ring in LDS. */
1629 if (ctx->screen->info.chip_class >= GFX9) {
1630 unsigned index = vtx_offset_param;
1631
1632 switch (index / 2) {
1633 case 0:
1634 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1635 index % 2 ? 16 : 0, 16);
1636 break;
1637 case 1:
1638 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1639 index % 2 ? 16 : 0, 16);
1640 break;
1641 case 2:
1642 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1643 index % 2 ? 16 : 0, 16);
1644 break;
1645 default:
1646 assert(0);
1647 return NULL;
1648 }
1649
1650 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1651 LLVMConstInt(ctx->i32, param * 4, 0), "");
1652 return lds_load(bld_base, type, swizzle, vtx_offset);
1653 }
1654
1655 /* GFX6: input load from the ESGS ring in memory. */
1656 if (swizzle == ~0) {
1657 LLVMValueRef values[TGSI_NUM_CHANNELS];
1658 unsigned chan;
1659 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1660 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1661 type, chan);
1662 }
1663 return ac_build_gather_values(&ctx->ac, values,
1664 TGSI_NUM_CHANNELS);
1665 }
1666
1667 /* Get the vertex offset parameter on GFX6. */
1668 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1669
1670 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1671 LLVMConstInt(ctx->i32, 4, 0), "");
1672
1673 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1674
1675 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1676 vtx_offset, soffset, 0, 1, 0, true, false);
1677 if (llvm_type_is_64bit(ctx, type)) {
1678 LLVMValueRef value2;
1679 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1680
1681 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1682 ctx->i32_0, vtx_offset, soffset,
1683 0, 1, 0, true, false);
1684 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1685 }
1686 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1687 }
1688
1689 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1690 unsigned location,
1691 unsigned driver_location,
1692 unsigned component,
1693 unsigned num_components,
1694 unsigned vertex_index,
1695 unsigned const_index,
1696 LLVMTypeRef type)
1697 {
1698 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1699
1700 LLVMValueRef value[4];
1701 for (unsigned i = 0; i < num_components; i++) {
1702 unsigned offset = i;
1703 if (llvm_type_is_64bit(ctx, type))
1704 offset *= 2;
1705
1706 offset += component;
1707 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1708 vertex_index, type, offset);
1709 }
1710
1711 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1712 }
1713
1714 static LLVMValueRef fetch_input_gs(
1715 struct lp_build_tgsi_context *bld_base,
1716 const struct tgsi_full_src_register *reg,
1717 enum tgsi_opcode_type type,
1718 unsigned swizzle)
1719 {
1720 struct si_shader_context *ctx = si_shader_context(bld_base);
1721 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1722
1723 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1724 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1725 return get_primitive_id(ctx, swizzle);
1726
1727 if (!reg->Register.Dimension)
1728 return NULL;
1729
1730 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1731 reg->Dimension.Index,
1732 tgsi2llvmtype(bld_base, type),
1733 swizzle);
1734 }
1735
1736 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1737 {
1738 switch (interpolate) {
1739 case TGSI_INTERPOLATE_CONSTANT:
1740 return 0;
1741
1742 case TGSI_INTERPOLATE_LINEAR:
1743 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1744 return SI_PARAM_LINEAR_SAMPLE;
1745 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1746 return SI_PARAM_LINEAR_CENTROID;
1747 else
1748 return SI_PARAM_LINEAR_CENTER;
1749 break;
1750 case TGSI_INTERPOLATE_COLOR:
1751 case TGSI_INTERPOLATE_PERSPECTIVE:
1752 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1753 return SI_PARAM_PERSP_SAMPLE;
1754 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1755 return SI_PARAM_PERSP_CENTROID;
1756 else
1757 return SI_PARAM_PERSP_CENTER;
1758 break;
1759 default:
1760 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1761 return -1;
1762 }
1763 }
1764
1765 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1766 unsigned attr_index, unsigned chan,
1767 LLVMValueRef prim_mask,
1768 LLVMValueRef i, LLVMValueRef j)
1769 {
1770 if (i || j) {
1771 return ac_build_fs_interp(&ctx->ac,
1772 LLVMConstInt(ctx->i32, chan, 0),
1773 LLVMConstInt(ctx->i32, attr_index, 0),
1774 prim_mask, i, j);
1775 }
1776 return ac_build_fs_interp_mov(&ctx->ac,
1777 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1778 LLVMConstInt(ctx->i32, chan, 0),
1779 LLVMConstInt(ctx->i32, attr_index, 0),
1780 prim_mask);
1781 }
1782
1783 /**
1784 * Interpolate a fragment shader input.
1785 *
1786 * @param ctx context
1787 * @param input_index index of the input in hardware
1788 * @param semantic_name TGSI_SEMANTIC_*
1789 * @param semantic_index semantic index
1790 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1791 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1792 * @param interp_param interpolation weights (i,j)
1793 * @param prim_mask SI_PARAM_PRIM_MASK
1794 * @param face SI_PARAM_FRONT_FACE
1795 * @param result the return value (4 components)
1796 */
1797 static void interp_fs_input(struct si_shader_context *ctx,
1798 unsigned input_index,
1799 unsigned semantic_name,
1800 unsigned semantic_index,
1801 unsigned num_interp_inputs,
1802 unsigned colors_read_mask,
1803 LLVMValueRef interp_param,
1804 LLVMValueRef prim_mask,
1805 LLVMValueRef face,
1806 LLVMValueRef result[4])
1807 {
1808 LLVMValueRef i = NULL, j = NULL;
1809 unsigned chan;
1810
1811 /* fs.constant returns the param from the middle vertex, so it's not
1812 * really useful for flat shading. It's meant to be used for custom
1813 * interpolation (but the intrinsic can't fetch from the other two
1814 * vertices).
1815 *
1816 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1817 * to do the right thing. The only reason we use fs.constant is that
1818 * fs.interp cannot be used on integers, because they can be equal
1819 * to NaN.
1820 *
1821 * When interp is false we will use fs.constant or for newer llvm,
1822 * amdgcn.interp.mov.
1823 */
1824 bool interp = interp_param != NULL;
1825
1826 if (interp) {
1827 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1828 LLVMVectorType(ctx->f32, 2), "");
1829
1830 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1831 ctx->i32_0, "");
1832 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1833 ctx->i32_1, "");
1834 }
1835
1836 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1837 ctx->shader->key.part.ps.prolog.color_two_side) {
1838 LLVMValueRef is_face_positive;
1839
1840 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1841 * otherwise it's at offset "num_inputs".
1842 */
1843 unsigned back_attr_offset = num_interp_inputs;
1844 if (semantic_index == 1 && colors_read_mask & 0xf)
1845 back_attr_offset += 1;
1846
1847 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1848 face, ctx->i32_0, "");
1849
1850 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1851 LLVMValueRef front, back;
1852
1853 front = si_build_fs_interp(ctx,
1854 input_index, chan,
1855 prim_mask, i, j);
1856 back = si_build_fs_interp(ctx,
1857 back_attr_offset, chan,
1858 prim_mask, i, j);
1859
1860 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1861 is_face_positive,
1862 front,
1863 back,
1864 "");
1865 }
1866 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1867 result[0] = si_build_fs_interp(ctx, input_index,
1868 0, prim_mask, i, j);
1869 result[1] =
1870 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1871 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1872 } else {
1873 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1874 result[chan] = si_build_fs_interp(ctx,
1875 input_index, chan,
1876 prim_mask, i, j);
1877 }
1878 }
1879 }
1880
1881 void si_llvm_load_input_fs(
1882 struct si_shader_context *ctx,
1883 unsigned input_index,
1884 LLVMValueRef out[4])
1885 {
1886 struct si_shader *shader = ctx->shader;
1887 struct tgsi_shader_info *info = &shader->selector->info;
1888 LLVMValueRef main_fn = ctx->main_fn;
1889 LLVMValueRef interp_param = NULL;
1890 int interp_param_idx;
1891 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1892 unsigned semantic_index = info->input_semantic_index[input_index];
1893 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1894 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1895
1896 /* Get colors from input VGPRs (set by the prolog). */
1897 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1898 unsigned colors_read = shader->selector->info.colors_read;
1899 unsigned mask = colors_read >> (semantic_index * 4);
1900 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1901 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1902 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1903
1904 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1905 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1906 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1907 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1908 return;
1909 }
1910
1911 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1912 if (interp_param_idx == -1)
1913 return;
1914 else if (interp_param_idx) {
1915 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1916 }
1917
1918 interp_fs_input(ctx, input_index, semantic_name,
1919 semantic_index, 0, /* this param is unused */
1920 shader->selector->info.colors_read, interp_param,
1921 ctx->abi.prim_mask,
1922 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1923 &out[0]);
1924 }
1925
1926 static void declare_input_fs(
1927 struct si_shader_context *ctx,
1928 unsigned input_index,
1929 const struct tgsi_full_declaration *decl,
1930 LLVMValueRef out[4])
1931 {
1932 si_llvm_load_input_fs(ctx, input_index, out);
1933 }
1934
1935 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1936 {
1937 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1938 }
1939
1940 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1941 {
1942 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1943
1944 /* For non-indexed draws, the base vertex set by the driver
1945 * (for direct draws) or the CP (for indirect draws) is the
1946 * first vertex ID, but GLSL expects 0 to be returned.
1947 */
1948 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1949 ctx->param_vs_state_bits);
1950 LLVMValueRef indexed;
1951
1952 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1953 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1954
1955 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1956 ctx->i32_0, "");
1957 }
1958
1959 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1960 {
1961 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1962
1963 LLVMValueRef values[3];
1964 LLVMValueRef result;
1965 unsigned i;
1966 unsigned *properties = ctx->shader->selector->info.properties;
1967
1968 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1969 unsigned sizes[3] = {
1970 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1971 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1972 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1973 };
1974
1975 for (i = 0; i < 3; ++i)
1976 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1977
1978 result = ac_build_gather_values(&ctx->ac, values, 3);
1979 } else {
1980 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1981 }
1982
1983 return result;
1984 }
1985
1986 /**
1987 * Load a dword from a constant buffer.
1988 */
1989 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1990 LLVMValueRef resource,
1991 LLVMValueRef offset)
1992 {
1993 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1994 0, 0, 0, true, true);
1995 }
1996
1997 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1998 {
1999 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2000 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2001 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
2002 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
2003
2004 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
2005 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
2006 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
2007
2008 LLVMValueRef pos[4] = {
2009 buffer_load_const(ctx, resource, offset0),
2010 buffer_load_const(ctx, resource, offset1),
2011 LLVMConstReal(ctx->f32, 0),
2012 LLVMConstReal(ctx->f32, 0)
2013 };
2014
2015 return ac_build_gather_values(&ctx->ac, pos, 4);
2016 }
2017
2018 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
2019 {
2020 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2021 return ac_to_integer(&ctx->ac, abi->sample_coverage);
2022 }
2023
2024 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
2025 {
2026 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2027 LLVMValueRef coord[4] = {
2028 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
2029 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
2030 ctx->ac.f32_0,
2031 ctx->ac.f32_0
2032 };
2033
2034 /* For triangles, the vector should be (u, v, 1-u-v). */
2035 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
2036 PIPE_PRIM_TRIANGLES) {
2037 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
2038 LLVMBuildFAdd(ctx->ac.builder,
2039 coord[0], coord[1], ""), "");
2040 }
2041 return ac_build_gather_values(&ctx->ac, coord, 4);
2042 }
2043
2044 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
2045 unsigned semantic_name)
2046 {
2047 LLVMValueRef base, addr;
2048
2049 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
2050
2051 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
2052 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
2053 LLVMConstInt(ctx->i32, param, 0));
2054
2055 return buffer_load(&ctx->bld_base, ctx->f32,
2056 ~0, ctx->tess_offchip_ring, base, addr, true);
2057
2058 }
2059
2060 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
2061 unsigned varying_id)
2062 {
2063 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2064 unsigned semantic_name;
2065
2066 switch (varying_id) {
2067 case VARYING_SLOT_TESS_LEVEL_INNER:
2068 semantic_name = TGSI_SEMANTIC_TESSINNER;
2069 break;
2070 case VARYING_SLOT_TESS_LEVEL_OUTER:
2071 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2072 break;
2073 default:
2074 unreachable("unknown tess level");
2075 }
2076
2077 return load_tess_level(ctx, semantic_name);
2078
2079 }
2080
2081 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2082 {
2083 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2084 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2085 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2086 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2087 return get_num_tcs_out_vertices(ctx);
2088 else
2089 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2090 }
2091
2092 void si_load_system_value(struct si_shader_context *ctx,
2093 unsigned index,
2094 const struct tgsi_full_declaration *decl)
2095 {
2096 LLVMValueRef value = 0;
2097
2098 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2099
2100 switch (decl->Semantic.Name) {
2101 case TGSI_SEMANTIC_INSTANCEID:
2102 value = ctx->abi.instance_id;
2103 break;
2104
2105 case TGSI_SEMANTIC_VERTEXID:
2106 value = LLVMBuildAdd(ctx->ac.builder,
2107 ctx->abi.vertex_id,
2108 ctx->abi.base_vertex, "");
2109 break;
2110
2111 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2112 /* Unused. Clarify the meaning in indexed vs. non-indexed
2113 * draws if this is ever used again. */
2114 assert(false);
2115 break;
2116
2117 case TGSI_SEMANTIC_BASEVERTEX:
2118 value = get_base_vertex(&ctx->abi);
2119 break;
2120
2121 case TGSI_SEMANTIC_BASEINSTANCE:
2122 value = ctx->abi.start_instance;
2123 break;
2124
2125 case TGSI_SEMANTIC_DRAWID:
2126 value = ctx->abi.draw_id;
2127 break;
2128
2129 case TGSI_SEMANTIC_INVOCATIONID:
2130 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2131 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2132 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2133 value = ctx->abi.gs_invocation_id;
2134 else
2135 assert(!"INVOCATIONID not implemented");
2136 break;
2137
2138 case TGSI_SEMANTIC_POSITION:
2139 {
2140 LLVMValueRef pos[4] = {
2141 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2142 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2143 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2144 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2145 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2146 };
2147 value = ac_build_gather_values(&ctx->ac, pos, 4);
2148 break;
2149 }
2150
2151 case TGSI_SEMANTIC_FACE:
2152 value = ctx->abi.front_face;
2153 break;
2154
2155 case TGSI_SEMANTIC_SAMPLEID:
2156 value = si_get_sample_id(ctx);
2157 break;
2158
2159 case TGSI_SEMANTIC_SAMPLEPOS: {
2160 LLVMValueRef pos[4] = {
2161 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2162 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2163 LLVMConstReal(ctx->f32, 0),
2164 LLVMConstReal(ctx->f32, 0)
2165 };
2166 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2167 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2168 value = ac_build_gather_values(&ctx->ac, pos, 4);
2169 break;
2170 }
2171
2172 case TGSI_SEMANTIC_SAMPLEMASK:
2173 /* This can only occur with the OpenGL Core profile, which
2174 * doesn't support smoothing.
2175 */
2176 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2177 break;
2178
2179 case TGSI_SEMANTIC_TESSCOORD:
2180 value = si_load_tess_coord(&ctx->abi);
2181 break;
2182
2183 case TGSI_SEMANTIC_VERTICESIN:
2184 value = si_load_patch_vertices_in(&ctx->abi);
2185 break;
2186
2187 case TGSI_SEMANTIC_TESSINNER:
2188 case TGSI_SEMANTIC_TESSOUTER:
2189 value = load_tess_level(ctx, decl->Semantic.Name);
2190 break;
2191
2192 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2193 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2194 {
2195 LLVMValueRef buf, slot, val[4];
2196 int i, offset;
2197
2198 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2199 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2200 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2201 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2202
2203 for (i = 0; i < 4; i++)
2204 val[i] = buffer_load_const(ctx, buf,
2205 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2206 value = ac_build_gather_values(&ctx->ac, val, 4);
2207 break;
2208 }
2209
2210 case TGSI_SEMANTIC_PRIMID:
2211 value = get_primitive_id(ctx, 0);
2212 break;
2213
2214 case TGSI_SEMANTIC_GRID_SIZE:
2215 value = ctx->abi.num_work_groups;
2216 break;
2217
2218 case TGSI_SEMANTIC_BLOCK_SIZE:
2219 value = get_block_size(&ctx->abi);
2220 break;
2221
2222 case TGSI_SEMANTIC_BLOCK_ID:
2223 {
2224 LLVMValueRef values[3];
2225
2226 for (int i = 0; i < 3; i++) {
2227 values[i] = ctx->i32_0;
2228 if (ctx->abi.workgroup_ids[i]) {
2229 values[i] = ctx->abi.workgroup_ids[i];
2230 }
2231 }
2232 value = ac_build_gather_values(&ctx->ac, values, 3);
2233 break;
2234 }
2235
2236 case TGSI_SEMANTIC_THREAD_ID:
2237 value = ctx->abi.local_invocation_ids;
2238 break;
2239
2240 case TGSI_SEMANTIC_HELPER_INVOCATION:
2241 value = ac_build_intrinsic(&ctx->ac,
2242 "llvm.amdgcn.ps.live",
2243 ctx->i1, NULL, 0,
2244 AC_FUNC_ATTR_READNONE);
2245 value = LLVMBuildNot(ctx->ac.builder, value, "");
2246 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2247 break;
2248
2249 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2250 value = LLVMConstInt(ctx->i32, 64, 0);
2251 break;
2252
2253 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2254 value = ac_get_thread_id(&ctx->ac);
2255 break;
2256
2257 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2258 {
2259 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2260 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2261 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2262 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2263 break;
2264 }
2265
2266 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2267 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2268 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2269 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2270 {
2271 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2272 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2273 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2274 /* All bits set except LSB */
2275 value = LLVMConstInt(ctx->i64, -2, 0);
2276 } else {
2277 /* All bits set */
2278 value = LLVMConstInt(ctx->i64, -1, 0);
2279 }
2280 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2281 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2282 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2283 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2284 value = LLVMBuildNot(ctx->ac.builder, value, "");
2285 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2286 break;
2287 }
2288
2289 default:
2290 assert(!"unknown system value");
2291 return;
2292 }
2293
2294 ctx->system_values[index] = value;
2295 }
2296
2297 void si_declare_compute_memory(struct si_shader_context *ctx)
2298 {
2299 struct si_shader_selector *sel = ctx->shader->selector;
2300 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2301
2302 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_LOCAL_ADDR_SPACE);
2303 LLVMValueRef var;
2304
2305 assert(!ctx->ac.lds);
2306
2307 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2308 LLVMArrayType(ctx->i8, lds_size),
2309 "compute_lds",
2310 AC_LOCAL_ADDR_SPACE);
2311 LLVMSetAlignment(var, 4);
2312
2313 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2314 }
2315
2316 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2317 const struct tgsi_full_declaration *decl)
2318 {
2319 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2320 assert(decl->Range.First == decl->Range.Last);
2321
2322 si_declare_compute_memory(ctx);
2323 }
2324
2325 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2326 {
2327 LLVMValueRef ptr =
2328 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2329 struct si_shader_selector *sel = ctx->shader->selector;
2330
2331 /* Do the bounds checking with a descriptor, because
2332 * doing computation and manual bounds checking of 64-bit
2333 * addresses generates horrible VALU code with very high
2334 * VGPR usage and very low SIMD occupancy.
2335 */
2336 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2337
2338 LLVMValueRef desc0, desc1;
2339 if (HAVE_32BIT_POINTERS) {
2340 desc0 = ptr;
2341 desc1 = LLVMConstInt(ctx->i32,
2342 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2343 } else {
2344 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2345 desc0 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, "");
2346 desc1 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, "");
2347 /* Mask out all bits except BASE_ADDRESS_HI. */
2348 desc1 = LLVMBuildAnd(ctx->ac.builder, desc1,
2349 LLVMConstInt(ctx->i32, ~C_008F04_BASE_ADDRESS_HI, 0), "");
2350 }
2351
2352 LLVMValueRef desc_elems[] = {
2353 desc0,
2354 desc1,
2355 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2356 LLVMConstInt(ctx->i32,
2357 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2358 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2359 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2360 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2361 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2362 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2363 };
2364
2365 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2366 }
2367
2368 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2369 {
2370 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2371 ctx->param_const_and_shader_buffers);
2372
2373 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2374 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2375 }
2376
2377 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2378 {
2379 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2380 struct si_shader_selector *sel = ctx->shader->selector;
2381
2382 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2383
2384 if (sel->info.const_buffers_declared == 1 &&
2385 sel->info.shader_buffers_declared == 0) {
2386 return load_const_buffer_desc_fast_path(ctx);
2387 }
2388
2389 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2390 index = LLVMBuildAdd(ctx->ac.builder, index,
2391 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2392
2393 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2394 }
2395
2396 static LLVMValueRef
2397 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2398 {
2399 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2400 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2401 ctx->param_const_and_shader_buffers);
2402
2403 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2404 index = LLVMBuildSub(ctx->ac.builder,
2405 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2406 index, "");
2407
2408 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2409 }
2410
2411 static LLVMValueRef fetch_constant(
2412 struct lp_build_tgsi_context *bld_base,
2413 const struct tgsi_full_src_register *reg,
2414 enum tgsi_opcode_type type,
2415 unsigned swizzle)
2416 {
2417 struct si_shader_context *ctx = si_shader_context(bld_base);
2418 struct si_shader_selector *sel = ctx->shader->selector;
2419 const struct tgsi_ind_register *ireg = &reg->Indirect;
2420 unsigned buf, idx;
2421
2422 LLVMValueRef addr, bufp;
2423
2424 if (swizzle == LP_CHAN_ALL) {
2425 unsigned chan;
2426 LLVMValueRef values[4];
2427 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2428 values[chan] = fetch_constant(bld_base, reg, type, chan);
2429
2430 return ac_build_gather_values(&ctx->ac, values, 4);
2431 }
2432
2433 /* Split 64-bit loads. */
2434 if (tgsi_type_is_64bit(type)) {
2435 LLVMValueRef lo, hi;
2436
2437 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2438 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2439 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2440 lo, hi);
2441 }
2442
2443 idx = reg->Register.Index * 4 + swizzle;
2444 if (reg->Register.Indirect) {
2445 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2446 } else {
2447 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2448 }
2449
2450 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2451 if (sel->info.const_buffers_declared == 1 &&
2452 sel->info.shader_buffers_declared == 0) {
2453 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2454 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2455 return bitcast(bld_base, type, result);
2456 }
2457
2458 assert(reg->Register.Dimension);
2459 buf = reg->Dimension.Index;
2460
2461 if (reg->Dimension.Indirect) {
2462 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2463 LLVMValueRef index;
2464 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2465 reg->Dimension.Index,
2466 ctx->num_const_buffers);
2467 index = LLVMBuildAdd(ctx->ac.builder, index,
2468 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2469 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2470 } else
2471 bufp = load_const_buffer_desc(ctx, buf);
2472
2473 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2474 }
2475
2476 /* Initialize arguments for the shader export intrinsic */
2477 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2478 LLVMValueRef *values,
2479 unsigned target,
2480 struct ac_export_args *args)
2481 {
2482 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2483 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2484 unsigned chan;
2485 bool is_int8, is_int10;
2486
2487 /* Default is 0xf. Adjusted below depending on the format. */
2488 args->enabled_channels = 0xf; /* writemask */
2489
2490 /* Specify whether the EXEC mask represents the valid mask */
2491 args->valid_mask = 0;
2492
2493 /* Specify whether this is the last export */
2494 args->done = 0;
2495
2496 /* Specify the target we are exporting */
2497 args->target = target;
2498
2499 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2500 const struct si_shader_key *key = &ctx->shader->key;
2501 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2502 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2503
2504 assert(cbuf >= 0 && cbuf < 8);
2505 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2506 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2507 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2508 }
2509
2510 args->compr = false;
2511 args->out[0] = f32undef;
2512 args->out[1] = f32undef;
2513 args->out[2] = f32undef;
2514 args->out[3] = f32undef;
2515
2516 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2517 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2518 unsigned bits, bool hi) = NULL;
2519
2520 switch (spi_shader_col_format) {
2521 case V_028714_SPI_SHADER_ZERO:
2522 args->enabled_channels = 0; /* writemask */
2523 args->target = V_008DFC_SQ_EXP_NULL;
2524 break;
2525
2526 case V_028714_SPI_SHADER_32_R:
2527 args->enabled_channels = 1; /* writemask */
2528 args->out[0] = values[0];
2529 break;
2530
2531 case V_028714_SPI_SHADER_32_GR:
2532 args->enabled_channels = 0x3; /* writemask */
2533 args->out[0] = values[0];
2534 args->out[1] = values[1];
2535 break;
2536
2537 case V_028714_SPI_SHADER_32_AR:
2538 args->enabled_channels = 0x9; /* writemask */
2539 args->out[0] = values[0];
2540 args->out[3] = values[3];
2541 break;
2542
2543 case V_028714_SPI_SHADER_FP16_ABGR:
2544 packf = ac_build_cvt_pkrtz_f16;
2545 break;
2546
2547 case V_028714_SPI_SHADER_UNORM16_ABGR:
2548 packf = ac_build_cvt_pknorm_u16;
2549 break;
2550
2551 case V_028714_SPI_SHADER_SNORM16_ABGR:
2552 packf = ac_build_cvt_pknorm_i16;
2553 break;
2554
2555 case V_028714_SPI_SHADER_UINT16_ABGR:
2556 packi = ac_build_cvt_pk_u16;
2557 break;
2558
2559 case V_028714_SPI_SHADER_SINT16_ABGR:
2560 packi = ac_build_cvt_pk_i16;
2561 break;
2562
2563 case V_028714_SPI_SHADER_32_ABGR:
2564 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2565 break;
2566 }
2567
2568 /* Pack f16 or norm_i16/u16. */
2569 if (packf) {
2570 for (chan = 0; chan < 2; chan++) {
2571 LLVMValueRef pack_args[2] = {
2572 values[2 * chan],
2573 values[2 * chan + 1]
2574 };
2575 LLVMValueRef packed;
2576
2577 packed = packf(&ctx->ac, pack_args);
2578 args->out[chan] = ac_to_float(&ctx->ac, packed);
2579 }
2580 args->compr = 1; /* COMPR flag */
2581 }
2582 /* Pack i16/u16. */
2583 if (packi) {
2584 for (chan = 0; chan < 2; chan++) {
2585 LLVMValueRef pack_args[2] = {
2586 ac_to_integer(&ctx->ac, values[2 * chan]),
2587 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2588 };
2589 LLVMValueRef packed;
2590
2591 packed = packi(&ctx->ac, pack_args,
2592 is_int8 ? 8 : is_int10 ? 10 : 16,
2593 chan == 1);
2594 args->out[chan] = ac_to_float(&ctx->ac, packed);
2595 }
2596 args->compr = 1; /* COMPR flag */
2597 }
2598 }
2599
2600 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2601 LLVMValueRef alpha)
2602 {
2603 struct si_shader_context *ctx = si_shader_context(bld_base);
2604
2605 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2606 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2607 [PIPE_FUNC_LESS] = LLVMRealOLT,
2608 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2609 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2610 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2611 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2612 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2613 };
2614 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2615 assert(cond);
2616
2617 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2618 SI_PARAM_ALPHA_REF);
2619 LLVMValueRef alpha_pass =
2620 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2621 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2622 } else {
2623 ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2624 }
2625 }
2626
2627 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2628 LLVMValueRef alpha,
2629 unsigned samplemask_param)
2630 {
2631 struct si_shader_context *ctx = si_shader_context(bld_base);
2632 LLVMValueRef coverage;
2633
2634 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2635 coverage = LLVMGetParam(ctx->main_fn,
2636 samplemask_param);
2637 coverage = ac_to_integer(&ctx->ac, coverage);
2638
2639 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2640 ctx->i32,
2641 &coverage, 1, AC_FUNC_ATTR_READNONE);
2642
2643 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2644 ctx->f32, "");
2645
2646 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2647 LLVMConstReal(ctx->f32,
2648 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2649
2650 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2651 }
2652
2653 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2654 struct ac_export_args *pos, LLVMValueRef *out_elts)
2655 {
2656 unsigned reg_index;
2657 unsigned chan;
2658 unsigned const_chan;
2659 LLVMValueRef base_elt;
2660 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2661 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2662 SI_VS_CONST_CLIP_PLANES, 0);
2663 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2664
2665 for (reg_index = 0; reg_index < 2; reg_index ++) {
2666 struct ac_export_args *args = &pos[2 + reg_index];
2667
2668 args->out[0] =
2669 args->out[1] =
2670 args->out[2] =
2671 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2672
2673 /* Compute dot products of position and user clip plane vectors */
2674 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2675 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2676 LLVMValueRef addr =
2677 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2678 const_chan) * 4, 0);
2679 base_elt = buffer_load_const(ctx, const_resource,
2680 addr);
2681 args->out[chan] =
2682 LLVMBuildFAdd(ctx->ac.builder, args->out[chan],
2683 LLVMBuildFMul(ctx->ac.builder, base_elt,
2684 out_elts[const_chan], ""), "");
2685 }
2686 }
2687
2688 args->enabled_channels = 0xf;
2689 args->valid_mask = 0;
2690 args->done = 0;
2691 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2692 args->compr = 0;
2693 }
2694 }
2695
2696 static void si_dump_streamout(struct pipe_stream_output_info *so)
2697 {
2698 unsigned i;
2699
2700 if (so->num_outputs)
2701 fprintf(stderr, "STREAMOUT\n");
2702
2703 for (i = 0; i < so->num_outputs; i++) {
2704 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2705 so->output[i].start_component;
2706 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2707 i, so->output[i].output_buffer,
2708 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2709 so->output[i].register_index,
2710 mask & 1 ? "x" : "",
2711 mask & 2 ? "y" : "",
2712 mask & 4 ? "z" : "",
2713 mask & 8 ? "w" : "");
2714 }
2715 }
2716
2717 static void emit_streamout_output(struct si_shader_context *ctx,
2718 LLVMValueRef const *so_buffers,
2719 LLVMValueRef const *so_write_offsets,
2720 struct pipe_stream_output *stream_out,
2721 struct si_shader_output_values *shader_out)
2722 {
2723 unsigned buf_idx = stream_out->output_buffer;
2724 unsigned start = stream_out->start_component;
2725 unsigned num_comps = stream_out->num_components;
2726 LLVMValueRef out[4];
2727
2728 assert(num_comps && num_comps <= 4);
2729 if (!num_comps || num_comps > 4)
2730 return;
2731
2732 /* Load the output as int. */
2733 for (int j = 0; j < num_comps; j++) {
2734 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2735
2736 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2737 }
2738
2739 /* Pack the output. */
2740 LLVMValueRef vdata = NULL;
2741
2742 switch (num_comps) {
2743 case 1: /* as i32 */
2744 vdata = out[0];
2745 break;
2746 case 2: /* as v2i32 */
2747 case 3: /* as v4i32 (aligned to 4) */
2748 case 4: /* as v4i32 */
2749 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2750 for (int j = 0; j < num_comps; j++) {
2751 vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2752 LLVMConstInt(ctx->i32, j, 0), "");
2753 }
2754 break;
2755 }
2756
2757 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2758 vdata, num_comps,
2759 so_write_offsets[buf_idx],
2760 ctx->i32_0,
2761 stream_out->dst_offset * 4, 1, 1, true, false);
2762 }
2763
2764 /**
2765 * Write streamout data to buffers for vertex stream @p stream (different
2766 * vertex streams can occur for GS copy shaders).
2767 */
2768 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2769 struct si_shader_output_values *outputs,
2770 unsigned noutput, unsigned stream)
2771 {
2772 struct si_shader_selector *sel = ctx->shader->selector;
2773 struct pipe_stream_output_info *so = &sel->so;
2774 LLVMBuilderRef builder = ctx->ac.builder;
2775 int i;
2776 struct lp_build_if_state if_ctx;
2777
2778 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2779 LLVMValueRef so_vtx_count =
2780 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2781
2782 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2783
2784 /* can_emit = tid < so_vtx_count; */
2785 LLVMValueRef can_emit =
2786 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2787
2788 /* Emit the streamout code conditionally. This actually avoids
2789 * out-of-bounds buffer access. The hw tells us via the SGPR
2790 * (so_vtx_count) which threads are allowed to emit streamout data. */
2791 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2792 {
2793 /* The buffer offset is computed as follows:
2794 * ByteOffset = streamout_offset[buffer_id]*4 +
2795 * (streamout_write_index + thread_id)*stride[buffer_id] +
2796 * attrib_offset
2797 */
2798
2799 LLVMValueRef so_write_index =
2800 LLVMGetParam(ctx->main_fn,
2801 ctx->param_streamout_write_index);
2802
2803 /* Compute (streamout_write_index + thread_id). */
2804 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2805
2806 /* Load the descriptor and compute the write offset for each
2807 * enabled buffer. */
2808 LLVMValueRef so_write_offset[4] = {};
2809 LLVMValueRef so_buffers[4];
2810 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2811 ctx->param_rw_buffers);
2812
2813 for (i = 0; i < 4; i++) {
2814 if (!so->stride[i])
2815 continue;
2816
2817 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2818 SI_VS_STREAMOUT_BUF0 + i, 0);
2819
2820 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2821
2822 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2823 ctx->param_streamout_offset[i]);
2824 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2825
2826 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2827 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2828 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2829 }
2830
2831 /* Write streamout data. */
2832 for (i = 0; i < so->num_outputs; i++) {
2833 unsigned reg = so->output[i].register_index;
2834
2835 if (reg >= noutput)
2836 continue;
2837
2838 if (stream != so->output[i].stream)
2839 continue;
2840
2841 emit_streamout_output(ctx, so_buffers, so_write_offset,
2842 &so->output[i], &outputs[reg]);
2843 }
2844 }
2845 lp_build_endif(&if_ctx);
2846 }
2847
2848 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2849 LLVMValueRef *values)
2850 {
2851 struct ac_export_args args;
2852
2853 si_llvm_init_export_args(ctx, values,
2854 V_008DFC_SQ_EXP_PARAM + index, &args);
2855 ac_build_export(&ctx->ac, &args);
2856 }
2857
2858 static void si_build_param_exports(struct si_shader_context *ctx,
2859 struct si_shader_output_values *outputs,
2860 unsigned noutput)
2861 {
2862 struct si_shader *shader = ctx->shader;
2863 unsigned param_count = 0;
2864
2865 for (unsigned i = 0; i < noutput; i++) {
2866 unsigned semantic_name = outputs[i].semantic_name;
2867 unsigned semantic_index = outputs[i].semantic_index;
2868
2869 if (outputs[i].vertex_stream[0] != 0 &&
2870 outputs[i].vertex_stream[1] != 0 &&
2871 outputs[i].vertex_stream[2] != 0 &&
2872 outputs[i].vertex_stream[3] != 0)
2873 continue;
2874
2875 switch (semantic_name) {
2876 case TGSI_SEMANTIC_LAYER:
2877 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2878 case TGSI_SEMANTIC_CLIPDIST:
2879 case TGSI_SEMANTIC_COLOR:
2880 case TGSI_SEMANTIC_BCOLOR:
2881 case TGSI_SEMANTIC_PRIMID:
2882 case TGSI_SEMANTIC_FOG:
2883 case TGSI_SEMANTIC_TEXCOORD:
2884 case TGSI_SEMANTIC_GENERIC:
2885 break;
2886 default:
2887 continue;
2888 }
2889
2890 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2891 semantic_index < SI_MAX_IO_GENERIC) &&
2892 shader->key.opt.kill_outputs &
2893 (1ull << si_shader_io_get_unique_index(semantic_name,
2894 semantic_index, true)))
2895 continue;
2896
2897 si_export_param(ctx, param_count, outputs[i].values);
2898
2899 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2900 shader->info.vs_output_param_offset[i] = param_count++;
2901 }
2902
2903 shader->info.nr_param_exports = param_count;
2904 }
2905
2906 /* Generate export instructions for hardware VS shader stage */
2907 static void si_llvm_export_vs(struct si_shader_context *ctx,
2908 struct si_shader_output_values *outputs,
2909 unsigned noutput)
2910 {
2911 struct si_shader *shader = ctx->shader;
2912 struct ac_export_args pos_args[4] = {};
2913 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2914 unsigned pos_idx;
2915 int i;
2916
2917 /* Build position exports. */
2918 for (i = 0; i < noutput; i++) {
2919 switch (outputs[i].semantic_name) {
2920 case TGSI_SEMANTIC_POSITION:
2921 si_llvm_init_export_args(ctx, outputs[i].values,
2922 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2923 break;
2924 case TGSI_SEMANTIC_PSIZE:
2925 psize_value = outputs[i].values[0];
2926 break;
2927 case TGSI_SEMANTIC_LAYER:
2928 layer_value = outputs[i].values[0];
2929 break;
2930 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2931 viewport_index_value = outputs[i].values[0];
2932 break;
2933 case TGSI_SEMANTIC_EDGEFLAG:
2934 edgeflag_value = outputs[i].values[0];
2935 break;
2936 case TGSI_SEMANTIC_CLIPDIST:
2937 if (!shader->key.opt.clip_disable) {
2938 unsigned index = 2 + outputs[i].semantic_index;
2939 si_llvm_init_export_args(ctx, outputs[i].values,
2940 V_008DFC_SQ_EXP_POS + index,
2941 &pos_args[index]);
2942 }
2943 break;
2944 case TGSI_SEMANTIC_CLIPVERTEX:
2945 if (!shader->key.opt.clip_disable) {
2946 si_llvm_emit_clipvertex(ctx, pos_args,
2947 outputs[i].values);
2948 }
2949 break;
2950 }
2951 }
2952
2953 /* We need to add the position output manually if it's missing. */
2954 if (!pos_args[0].out[0]) {
2955 pos_args[0].enabled_channels = 0xf; /* writemask */
2956 pos_args[0].valid_mask = 0; /* EXEC mask */
2957 pos_args[0].done = 0; /* last export? */
2958 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2959 pos_args[0].compr = 0; /* COMPR flag */
2960 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2961 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2962 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2963 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2964 }
2965
2966 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2967 if (shader->selector->info.writes_psize ||
2968 shader->selector->info.writes_edgeflag ||
2969 shader->selector->info.writes_viewport_index ||
2970 shader->selector->info.writes_layer) {
2971 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2972 (shader->selector->info.writes_edgeflag << 1) |
2973 (shader->selector->info.writes_layer << 2);
2974
2975 pos_args[1].valid_mask = 0; /* EXEC mask */
2976 pos_args[1].done = 0; /* last export? */
2977 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2978 pos_args[1].compr = 0; /* COMPR flag */
2979 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2980 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2981 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2982 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2983
2984 if (shader->selector->info.writes_psize)
2985 pos_args[1].out[0] = psize_value;
2986
2987 if (shader->selector->info.writes_edgeflag) {
2988 /* The output is a float, but the hw expects an integer
2989 * with the first bit containing the edge flag. */
2990 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2991 edgeflag_value,
2992 ctx->i32, "");
2993 edgeflag_value = ac_build_umin(&ctx->ac,
2994 edgeflag_value,
2995 ctx->i32_1);
2996
2997 /* The LLVM intrinsic expects a float. */
2998 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2999 }
3000
3001 if (ctx->screen->info.chip_class >= GFX9) {
3002 /* GFX9 has the layer in out.z[10:0] and the viewport
3003 * index in out.z[19:16].
3004 */
3005 if (shader->selector->info.writes_layer)
3006 pos_args[1].out[2] = layer_value;
3007
3008 if (shader->selector->info.writes_viewport_index) {
3009 LLVMValueRef v = viewport_index_value;
3010
3011 v = ac_to_integer(&ctx->ac, v);
3012 v = LLVMBuildShl(ctx->ac.builder, v,
3013 LLVMConstInt(ctx->i32, 16, 0), "");
3014 v = LLVMBuildOr(ctx->ac.builder, v,
3015 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3016 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3017 pos_args[1].enabled_channels |= 1 << 2;
3018 }
3019 } else {
3020 if (shader->selector->info.writes_layer)
3021 pos_args[1].out[2] = layer_value;
3022
3023 if (shader->selector->info.writes_viewport_index) {
3024 pos_args[1].out[3] = viewport_index_value;
3025 pos_args[1].enabled_channels |= 1 << 3;
3026 }
3027 }
3028 }
3029
3030 for (i = 0; i < 4; i++)
3031 if (pos_args[i].out[0])
3032 shader->info.nr_pos_exports++;
3033
3034 pos_idx = 0;
3035 for (i = 0; i < 4; i++) {
3036 if (!pos_args[i].out[0])
3037 continue;
3038
3039 /* Specify the target we are exporting */
3040 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3041
3042 if (pos_idx == shader->info.nr_pos_exports)
3043 /* Specify that this is the last export */
3044 pos_args[i].done = 1;
3045
3046 ac_build_export(&ctx->ac, &pos_args[i]);
3047 }
3048
3049 /* Build parameter exports. */
3050 si_build_param_exports(ctx, outputs, noutput);
3051 }
3052
3053 /**
3054 * Forward all outputs from the vertex shader to the TES. This is only used
3055 * for the fixed function TCS.
3056 */
3057 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3058 {
3059 struct si_shader_context *ctx = si_shader_context(bld_base);
3060 LLVMValueRef invocation_id, buffer, buffer_offset;
3061 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3062 uint64_t inputs;
3063
3064 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3065 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3066 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3067
3068 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3069 lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3070 lds_vertex_stride, "");
3071 lds_base = get_tcs_in_current_patch_offset(ctx);
3072 lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3073
3074 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3075 while (inputs) {
3076 unsigned i = u_bit_scan64(&inputs);
3077
3078 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3079 LLVMConstInt(ctx->i32, 4 * i, 0),
3080 "");
3081
3082 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3083 get_rel_patch_id(ctx),
3084 invocation_id,
3085 LLVMConstInt(ctx->i32, i, 0));
3086
3087 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3088 lds_ptr);
3089
3090 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3091 buffer_offset, 0, 1, 0, true, false);
3092 }
3093 }
3094
3095 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3096 LLVMValueRef rel_patch_id,
3097 LLVMValueRef invocation_id,
3098 LLVMValueRef tcs_out_current_patch_data_offset,
3099 LLVMValueRef invoc0_tf_outer[4],
3100 LLVMValueRef invoc0_tf_inner[2])
3101 {
3102 struct si_shader_context *ctx = si_shader_context(bld_base);
3103 struct si_shader *shader = ctx->shader;
3104 unsigned tess_inner_index, tess_outer_index;
3105 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3106 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3107 unsigned stride, outer_comps, inner_comps, i, offset;
3108 struct lp_build_if_state if_ctx, inner_if_ctx;
3109
3110 /* Add a barrier before loading tess factors from LDS. */
3111 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3112 si_llvm_emit_barrier(NULL, bld_base, NULL);
3113
3114 /* Do this only for invocation 0, because the tess levels are per-patch,
3115 * not per-vertex.
3116 *
3117 * This can't jump, because invocation 0 executes this. It should
3118 * at least mask out the loads and stores for other invocations.
3119 */
3120 lp_build_if(&if_ctx, &ctx->gallivm,
3121 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3122 invocation_id, ctx->i32_0, ""));
3123
3124 /* Determine the layout of one tess factor element in the buffer. */
3125 switch (shader->key.part.tcs.epilog.prim_mode) {
3126 case PIPE_PRIM_LINES:
3127 stride = 2; /* 2 dwords, 1 vec2 store */
3128 outer_comps = 2;
3129 inner_comps = 0;
3130 break;
3131 case PIPE_PRIM_TRIANGLES:
3132 stride = 4; /* 4 dwords, 1 vec4 store */
3133 outer_comps = 3;
3134 inner_comps = 1;
3135 break;
3136 case PIPE_PRIM_QUADS:
3137 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3138 outer_comps = 4;
3139 inner_comps = 2;
3140 break;
3141 default:
3142 assert(0);
3143 return;
3144 }
3145
3146 for (i = 0; i < 4; i++) {
3147 inner[i] = LLVMGetUndef(ctx->i32);
3148 outer[i] = LLVMGetUndef(ctx->i32);
3149 }
3150
3151 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3152 /* Tess factors are in VGPRs. */
3153 for (i = 0; i < outer_comps; i++)
3154 outer[i] = out[i] = invoc0_tf_outer[i];
3155 for (i = 0; i < inner_comps; i++)
3156 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3157 } else {
3158 /* Load tess_inner and tess_outer from LDS.
3159 * Any invocation can write them, so we can't get them from a temporary.
3160 */
3161 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3162 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3163
3164 lds_base = tcs_out_current_patch_data_offset;
3165 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3166 LLVMConstInt(ctx->i32,
3167 tess_inner_index * 4, 0), "");
3168 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3169 LLVMConstInt(ctx->i32,
3170 tess_outer_index * 4, 0), "");
3171
3172 for (i = 0; i < outer_comps; i++) {
3173 outer[i] = out[i] =
3174 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3175 }
3176 for (i = 0; i < inner_comps; i++) {
3177 inner[i] = out[outer_comps+i] =
3178 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3179 }
3180 }
3181
3182 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3183 /* For isolines, the hardware expects tess factors in the
3184 * reverse order from what GLSL / TGSI specify.
3185 */
3186 LLVMValueRef tmp = out[0];
3187 out[0] = out[1];
3188 out[1] = tmp;
3189 }
3190
3191 /* Convert the outputs to vectors for stores. */
3192 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3193 vec1 = NULL;
3194
3195 if (stride > 4)
3196 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3197
3198 /* Get the buffer. */
3199 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3200
3201 /* Get the offset. */
3202 tf_base = LLVMGetParam(ctx->main_fn,
3203 ctx->param_tcs_factor_offset);
3204 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3205 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3206
3207 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3208 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3209 rel_patch_id, ctx->i32_0, ""));
3210
3211 /* Store the dynamic HS control word. */
3212 offset = 0;
3213 if (ctx->screen->info.chip_class <= VI) {
3214 ac_build_buffer_store_dword(&ctx->ac, buffer,
3215 LLVMConstInt(ctx->i32, 0x80000000, 0),
3216 1, ctx->i32_0, tf_base,
3217 offset, 1, 0, true, false);
3218 offset += 4;
3219 }
3220
3221 lp_build_endif(&inner_if_ctx);
3222
3223 /* Store the tessellation factors. */
3224 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3225 MIN2(stride, 4), byteoffset, tf_base,
3226 offset, 1, 0, true, false);
3227 offset += 16;
3228 if (vec1)
3229 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3230 stride - 4, byteoffset, tf_base,
3231 offset, 1, 0, true, false);
3232
3233 /* Store the tess factors into the offchip buffer if TES reads them. */
3234 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3235 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3236 LLVMValueRef tf_inner_offset;
3237 unsigned param_outer, param_inner;
3238
3239 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3240 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3241
3242 param_outer = si_shader_io_get_unique_index_patch(
3243 TGSI_SEMANTIC_TESSOUTER, 0);
3244 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3245 LLVMConstInt(ctx->i32, param_outer, 0));
3246
3247 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3248 util_next_power_of_two(outer_comps));
3249
3250 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3251 outer_comps, tf_outer_offset,
3252 base, 0, 1, 0, true, false);
3253 if (inner_comps) {
3254 param_inner = si_shader_io_get_unique_index_patch(
3255 TGSI_SEMANTIC_TESSINNER, 0);
3256 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3257 LLVMConstInt(ctx->i32, param_inner, 0));
3258
3259 inner_vec = inner_comps == 1 ? inner[0] :
3260 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3261 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3262 inner_comps, tf_inner_offset,
3263 base, 0, 1, 0, true, false);
3264 }
3265 }
3266
3267 lp_build_endif(&if_ctx);
3268 }
3269
3270 static LLVMValueRef
3271 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3272 unsigned param, unsigned return_index)
3273 {
3274 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3275 LLVMGetParam(ctx->main_fn, param),
3276 return_index, "");
3277 }
3278
3279 static LLVMValueRef
3280 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3281 unsigned param, unsigned return_index)
3282 {
3283 LLVMBuilderRef builder = ctx->ac.builder;
3284 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3285
3286 return LLVMBuildInsertValue(builder, ret,
3287 ac_to_float(&ctx->ac, p),
3288 return_index, "");
3289 }
3290
3291 static LLVMValueRef
3292 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3293 unsigned param, unsigned return_index)
3294 {
3295 LLVMBuilderRef builder = ctx->ac.builder;
3296 LLVMValueRef ptr, lo, hi;
3297
3298 if (HAVE_32BIT_POINTERS) {
3299 ptr = LLVMGetParam(ctx->main_fn, param);
3300 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3301 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3302 }
3303
3304 ptr = LLVMGetParam(ctx->main_fn, param);
3305 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3306 ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3307 lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3308 hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3309 ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3310 return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3311 }
3312
3313 /* This only writes the tessellation factor levels. */
3314 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3315 unsigned max_outputs,
3316 LLVMValueRef *addrs)
3317 {
3318 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3319 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3320 LLVMBuilderRef builder = ctx->ac.builder;
3321 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3322
3323 si_copy_tcs_inputs(bld_base);
3324
3325 rel_patch_id = get_rel_patch_id(ctx);
3326 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3327 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3328
3329 if (ctx->screen->info.chip_class >= GFX9) {
3330 LLVMBasicBlockRef blocks[2] = {
3331 LLVMGetInsertBlock(builder),
3332 ctx->merged_wrap_if_state.entry_block
3333 };
3334 LLVMValueRef values[2];
3335
3336 lp_build_endif(&ctx->merged_wrap_if_state);
3337
3338 values[0] = rel_patch_id;
3339 values[1] = LLVMGetUndef(ctx->i32);
3340 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3341
3342 values[0] = tf_lds_offset;
3343 values[1] = LLVMGetUndef(ctx->i32);
3344 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3345
3346 values[0] = invocation_id;
3347 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3348 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3349 }
3350
3351 /* Return epilog parameters from this function. */
3352 LLVMValueRef ret = ctx->return_value;
3353 unsigned vgpr;
3354
3355 if (ctx->screen->info.chip_class >= GFX9) {
3356 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3357 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3358 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3359 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3360 /* Tess offchip and tess factor offsets are at the beginning. */
3361 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3362 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3363 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3364 } else {
3365 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3366 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3367 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3368 GFX6_SGPR_TCS_OUT_LAYOUT);
3369 /* Tess offchip and tess factor offsets are after user SGPRs. */
3370 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3371 GFX6_TCS_NUM_USER_SGPR);
3372 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3373 GFX6_TCS_NUM_USER_SGPR + 1);
3374 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3375 }
3376
3377 /* VGPRs */
3378 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3379 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3380 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3381
3382 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3383 * the invocation_id output does not alias the tcs_rel_ids input,
3384 * which saves a V_MOV on gfx9.
3385 */
3386 vgpr += 2;
3387
3388 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3389 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3390
3391 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3392 vgpr++; /* skip the tess factor LDS offset */
3393 for (unsigned i = 0; i < 6; i++) {
3394 LLVMValueRef value =
3395 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3396 value = ac_to_float(&ctx->ac, value);
3397 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3398 }
3399 } else {
3400 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3401 }
3402 ctx->return_value = ret;
3403 }
3404
3405 /* Pass TCS inputs from LS to TCS on GFX9. */
3406 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3407 {
3408 LLVMValueRef ret = ctx->return_value;
3409
3410 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3411 if (HAVE_32BIT_POINTERS)
3412 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3413 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3414 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3415 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3416 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3417
3418 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3419 8 + SI_SGPR_RW_BUFFERS);
3420 ret = si_insert_input_ptr(ctx, ret,
3421 ctx->param_bindless_samplers_and_images,
3422 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3423
3424 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3425 8 + SI_SGPR_VS_STATE_BITS);
3426
3427 #if !HAVE_32BIT_POINTERS
3428 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 4,
3429 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3430 #endif
3431
3432 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3433 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3434 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3435 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3436 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3437 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3438
3439 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3440 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3441 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3442 vgpr++, "");
3443 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3444 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3445 vgpr++, "");
3446 ctx->return_value = ret;
3447 }
3448
3449 /* Pass GS inputs from ES to GS on GFX9. */
3450 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3451 {
3452 LLVMValueRef ret = ctx->return_value;
3453
3454 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3455 if (HAVE_32BIT_POINTERS)
3456 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3457 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3458 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3459 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3460
3461 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3462 8 + SI_SGPR_RW_BUFFERS);
3463 ret = si_insert_input_ptr(ctx, ret,
3464 ctx->param_bindless_samplers_and_images,
3465 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3466
3467 #if !HAVE_32BIT_POINTERS
3468 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 4,
3469 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3470 #endif
3471
3472 unsigned vgpr;
3473 if (ctx->type == PIPE_SHADER_VERTEX)
3474 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3475 else
3476 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3477
3478 for (unsigned i = 0; i < 5; i++) {
3479 unsigned param = ctx->param_gs_vtx01_offset + i;
3480 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3481 }
3482 ctx->return_value = ret;
3483 }
3484
3485 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3486 unsigned max_outputs,
3487 LLVMValueRef *addrs)
3488 {
3489 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3490 struct si_shader *shader = ctx->shader;
3491 struct tgsi_shader_info *info = &shader->selector->info;
3492 unsigned i, chan;
3493 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3494 ctx->param_rel_auto_id);
3495 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3496 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3497 vertex_dw_stride, "");
3498
3499 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3500 * its inputs from it. */
3501 for (i = 0; i < info->num_outputs; i++) {
3502 unsigned name = info->output_semantic_name[i];
3503 unsigned index = info->output_semantic_index[i];
3504
3505 /* The ARB_shader_viewport_layer_array spec contains the
3506 * following issue:
3507 *
3508 * 2) What happens if gl_ViewportIndex or gl_Layer is
3509 * written in the vertex shader and a geometry shader is
3510 * present?
3511 *
3512 * RESOLVED: The value written by the last vertex processing
3513 * stage is used. If the last vertex processing stage
3514 * (vertex, tessellation evaluation or geometry) does not
3515 * statically assign to gl_ViewportIndex or gl_Layer, index
3516 * or layer zero is assumed.
3517 *
3518 * So writes to those outputs in VS-as-LS are simply ignored.
3519 */
3520 if (name == TGSI_SEMANTIC_LAYER ||
3521 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3522 continue;
3523
3524 int param = si_shader_io_get_unique_index(name, index, false);
3525 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3526 LLVMConstInt(ctx->i32, param * 4, 0), "");
3527
3528 for (chan = 0; chan < 4; chan++) {
3529 if (!(info->output_usagemask[i] & (1 << chan)))
3530 continue;
3531
3532 lds_store(ctx, chan, dw_addr,
3533 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3534 }
3535 }
3536
3537 if (ctx->screen->info.chip_class >= GFX9)
3538 si_set_ls_return_value_for_tcs(ctx);
3539 }
3540
3541 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3542 unsigned max_outputs,
3543 LLVMValueRef *addrs)
3544 {
3545 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3546 struct si_shader *es = ctx->shader;
3547 struct tgsi_shader_info *info = &es->selector->info;
3548 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3549 ctx->param_es2gs_offset);
3550 LLVMValueRef lds_base = NULL;
3551 unsigned chan;
3552 int i;
3553
3554 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3555 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3556 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3557 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3558 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3559 LLVMBuildMul(ctx->ac.builder, wave_idx,
3560 LLVMConstInt(ctx->i32, 64, false), ""), "");
3561 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3562 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3563 }
3564
3565 for (i = 0; i < info->num_outputs; i++) {
3566 int param;
3567
3568 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3569 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3570 continue;
3571
3572 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3573 info->output_semantic_index[i], false);
3574
3575 for (chan = 0; chan < 4; chan++) {
3576 if (!(info->output_usagemask[i] & (1 << chan)))
3577 continue;
3578
3579 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3580 out_val = ac_to_integer(&ctx->ac, out_val);
3581
3582 /* GFX9 has the ESGS ring in LDS. */
3583 if (ctx->screen->info.chip_class >= GFX9) {
3584 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3585 continue;
3586 }
3587
3588 ac_build_buffer_store_dword(&ctx->ac,
3589 ctx->esgs_ring,
3590 out_val, 1, NULL, soffset,
3591 (4 * param + chan) * 4,
3592 1, 1, true, true);
3593 }
3594 }
3595
3596 if (ctx->screen->info.chip_class >= GFX9)
3597 si_set_es_return_value_for_gs(ctx);
3598 }
3599
3600 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3601 {
3602 if (ctx->screen->info.chip_class >= GFX9)
3603 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3604 else
3605 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3606 }
3607
3608 static void emit_gs_epilogue(struct si_shader_context *ctx)
3609 {
3610 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3611 si_get_gs_wave_id(ctx));
3612
3613 if (ctx->screen->info.chip_class >= GFX9)
3614 lp_build_endif(&ctx->merged_wrap_if_state);
3615 }
3616
3617 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3618 unsigned max_outputs,
3619 LLVMValueRef *addrs)
3620 {
3621 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3622 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3623
3624 assert(info->num_outputs <= max_outputs);
3625
3626 emit_gs_epilogue(ctx);
3627 }
3628
3629 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3630 {
3631 struct si_shader_context *ctx = si_shader_context(bld_base);
3632 emit_gs_epilogue(ctx);
3633 }
3634
3635 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3636 unsigned max_outputs,
3637 LLVMValueRef *addrs)
3638 {
3639 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3640 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3641 struct si_shader_output_values *outputs = NULL;
3642 int i,j;
3643
3644 assert(!ctx->shader->is_gs_copy_shader);
3645 assert(info->num_outputs <= max_outputs);
3646
3647 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3648
3649 /* Vertex color clamping.
3650 *
3651 * This uses a state constant loaded in a user data SGPR and
3652 * an IF statement is added that clamps all colors if the constant
3653 * is true.
3654 */
3655 struct lp_build_if_state if_ctx;
3656 LLVMValueRef cond = NULL;
3657 LLVMValueRef addr, val;
3658
3659 for (i = 0; i < info->num_outputs; i++) {
3660 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3661 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3662 continue;
3663
3664 /* We've found a color. */
3665 if (!cond) {
3666 /* The state is in the first bit of the user SGPR. */
3667 cond = LLVMGetParam(ctx->main_fn,
3668 ctx->param_vs_state_bits);
3669 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3670 ctx->i1, "");
3671 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3672 }
3673
3674 for (j = 0; j < 4; j++) {
3675 addr = addrs[4 * i + j];
3676 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3677 val = ac_build_clamp(&ctx->ac, val);
3678 LLVMBuildStore(ctx->ac.builder, val, addr);
3679 }
3680 }
3681
3682 if (cond)
3683 lp_build_endif(&if_ctx);
3684
3685 for (i = 0; i < info->num_outputs; i++) {
3686 outputs[i].semantic_name = info->output_semantic_name[i];
3687 outputs[i].semantic_index = info->output_semantic_index[i];
3688
3689 for (j = 0; j < 4; j++) {
3690 outputs[i].values[j] =
3691 LLVMBuildLoad(ctx->ac.builder,
3692 addrs[4 * i + j],
3693 "");
3694 outputs[i].vertex_stream[j] =
3695 (info->output_streams[i] >> (2 * j)) & 3;
3696 }
3697 }
3698
3699 if (ctx->shader->selector->so.num_outputs)
3700 si_llvm_emit_streamout(ctx, outputs, i, 0);
3701
3702 /* Export PrimitiveID. */
3703 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3704 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3705 outputs[i].semantic_index = 0;
3706 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3707 for (j = 1; j < 4; j++)
3708 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3709
3710 memset(outputs[i].vertex_stream, 0,
3711 sizeof(outputs[i].vertex_stream));
3712 i++;
3713 }
3714
3715 si_llvm_export_vs(ctx, outputs, i);
3716 FREE(outputs);
3717 }
3718
3719 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3720 {
3721 struct si_shader_context *ctx = si_shader_context(bld_base);
3722
3723 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3724 &ctx->outputs[0][0]);
3725 }
3726
3727 struct si_ps_exports {
3728 unsigned num;
3729 struct ac_export_args args[10];
3730 };
3731
3732 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3733 LLVMValueRef depth, LLVMValueRef stencil,
3734 LLVMValueRef samplemask, struct si_ps_exports *exp)
3735 {
3736 struct si_shader_context *ctx = si_shader_context(bld_base);
3737 struct ac_export_args args;
3738
3739 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3740
3741 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3742 }
3743
3744 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3745 LLVMValueRef *color, unsigned index,
3746 unsigned samplemask_param,
3747 bool is_last, struct si_ps_exports *exp)
3748 {
3749 struct si_shader_context *ctx = si_shader_context(bld_base);
3750 int i;
3751
3752 /* Clamp color */
3753 if (ctx->shader->key.part.ps.epilog.clamp_color)
3754 for (i = 0; i < 4; i++)
3755 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3756
3757 /* Alpha to one */
3758 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3759 color[3] = ctx->ac.f32_1;
3760
3761 /* Alpha test */
3762 if (index == 0 &&
3763 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3764 si_alpha_test(bld_base, color[3]);
3765
3766 /* Line & polygon smoothing */
3767 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3768 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3769 samplemask_param);
3770
3771 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3772 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3773 struct ac_export_args args[8];
3774 int c, last = -1;
3775
3776 /* Get the export arguments, also find out what the last one is. */
3777 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3778 si_llvm_init_export_args(ctx, color,
3779 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3780 if (args[c].enabled_channels)
3781 last = c;
3782 }
3783
3784 /* Emit all exports. */
3785 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3786 if (is_last && last == c) {
3787 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3788 args[c].done = 1; /* DONE bit */
3789 } else if (!args[c].enabled_channels)
3790 continue; /* unnecessary NULL export */
3791
3792 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3793 }
3794 } else {
3795 struct ac_export_args args;
3796
3797 /* Export */
3798 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3799 &args);
3800 if (is_last) {
3801 args.valid_mask = 1; /* whether the EXEC mask is valid */
3802 args.done = 1; /* DONE bit */
3803 } else if (!args.enabled_channels)
3804 return; /* unnecessary NULL export */
3805
3806 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3807 }
3808 }
3809
3810 static void si_emit_ps_exports(struct si_shader_context *ctx,
3811 struct si_ps_exports *exp)
3812 {
3813 for (unsigned i = 0; i < exp->num; i++)
3814 ac_build_export(&ctx->ac, &exp->args[i]);
3815 }
3816
3817 /**
3818 * Return PS outputs in this order:
3819 *
3820 * v[0:3] = color0.xyzw
3821 * v[4:7] = color1.xyzw
3822 * ...
3823 * vN+0 = Depth
3824 * vN+1 = Stencil
3825 * vN+2 = SampleMask
3826 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3827 *
3828 * The alpha-ref SGPR is returned via its original location.
3829 */
3830 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3831 unsigned max_outputs,
3832 LLVMValueRef *addrs)
3833 {
3834 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3835 struct si_shader *shader = ctx->shader;
3836 struct tgsi_shader_info *info = &shader->selector->info;
3837 LLVMBuilderRef builder = ctx->ac.builder;
3838 unsigned i, j, first_vgpr, vgpr;
3839
3840 LLVMValueRef color[8][4] = {};
3841 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3842 LLVMValueRef ret;
3843
3844 if (ctx->postponed_kill)
3845 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3846
3847 /* Read the output values. */
3848 for (i = 0; i < info->num_outputs; i++) {
3849 unsigned semantic_name = info->output_semantic_name[i];
3850 unsigned semantic_index = info->output_semantic_index[i];
3851
3852 switch (semantic_name) {
3853 case TGSI_SEMANTIC_COLOR:
3854 assert(semantic_index < 8);
3855 for (j = 0; j < 4; j++) {
3856 LLVMValueRef ptr = addrs[4 * i + j];
3857 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3858 color[semantic_index][j] = result;
3859 }
3860 break;
3861 case TGSI_SEMANTIC_POSITION:
3862 depth = LLVMBuildLoad(builder,
3863 addrs[4 * i + 2], "");
3864 break;
3865 case TGSI_SEMANTIC_STENCIL:
3866 stencil = LLVMBuildLoad(builder,
3867 addrs[4 * i + 1], "");
3868 break;
3869 case TGSI_SEMANTIC_SAMPLEMASK:
3870 samplemask = LLVMBuildLoad(builder,
3871 addrs[4 * i + 0], "");
3872 break;
3873 default:
3874 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3875 semantic_name);
3876 }
3877 }
3878
3879 /* Fill the return structure. */
3880 ret = ctx->return_value;
3881
3882 /* Set SGPRs. */
3883 ret = LLVMBuildInsertValue(builder, ret,
3884 ac_to_integer(&ctx->ac,
3885 LLVMGetParam(ctx->main_fn,
3886 SI_PARAM_ALPHA_REF)),
3887 SI_SGPR_ALPHA_REF, "");
3888
3889 /* Set VGPRs */
3890 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3891 for (i = 0; i < ARRAY_SIZE(color); i++) {
3892 if (!color[i][0])
3893 continue;
3894
3895 for (j = 0; j < 4; j++)
3896 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3897 }
3898 if (depth)
3899 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3900 if (stencil)
3901 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3902 if (samplemask)
3903 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3904
3905 /* Add the input sample mask for smoothing at the end. */
3906 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3907 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3908 ret = LLVMBuildInsertValue(builder, ret,
3909 LLVMGetParam(ctx->main_fn,
3910 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3911
3912 ctx->return_value = ret;
3913 }
3914
3915 static void membar_emit(
3916 const struct lp_build_tgsi_action *action,
3917 struct lp_build_tgsi_context *bld_base,
3918 struct lp_build_emit_data *emit_data)
3919 {
3920 struct si_shader_context *ctx = si_shader_context(bld_base);
3921 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3922 unsigned flags = LLVMConstIntGetZExtValue(src0);
3923 unsigned waitcnt = NOOP_WAITCNT;
3924
3925 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3926 waitcnt &= VM_CNT & LGKM_CNT;
3927
3928 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3929 TGSI_MEMBAR_SHADER_BUFFER |
3930 TGSI_MEMBAR_SHADER_IMAGE))
3931 waitcnt &= VM_CNT;
3932
3933 if (flags & TGSI_MEMBAR_SHARED)
3934 waitcnt &= LGKM_CNT;
3935
3936 if (waitcnt != NOOP_WAITCNT)
3937 ac_build_waitcnt(&ctx->ac, waitcnt);
3938 }
3939
3940 static void clock_emit(
3941 const struct lp_build_tgsi_action *action,
3942 struct lp_build_tgsi_context *bld_base,
3943 struct lp_build_emit_data *emit_data)
3944 {
3945 struct si_shader_context *ctx = si_shader_context(bld_base);
3946 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3947
3948 emit_data->output[0] =
3949 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3950 emit_data->output[1] =
3951 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3952 }
3953
3954 static void si_llvm_emit_ddxy(
3955 const struct lp_build_tgsi_action *action,
3956 struct lp_build_tgsi_context *bld_base,
3957 struct lp_build_emit_data *emit_data)
3958 {
3959 struct si_shader_context *ctx = si_shader_context(bld_base);
3960 unsigned opcode = emit_data->info->opcode;
3961 LLVMValueRef val;
3962 int idx;
3963 unsigned mask;
3964
3965 if (opcode == TGSI_OPCODE_DDX_FINE)
3966 mask = AC_TID_MASK_LEFT;
3967 else if (opcode == TGSI_OPCODE_DDY_FINE)
3968 mask = AC_TID_MASK_TOP;
3969 else
3970 mask = AC_TID_MASK_TOP_LEFT;
3971
3972 /* for DDX we want to next X pixel, DDY next Y pixel. */
3973 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3974
3975 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3976 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3977 emit_data->output[emit_data->chan] = val;
3978 }
3979
3980 /*
3981 * this takes an I,J coordinate pair,
3982 * and works out the X and Y derivatives.
3983 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
3984 */
3985 static LLVMValueRef si_llvm_emit_ddxy_interp(
3986 struct lp_build_tgsi_context *bld_base,
3987 LLVMValueRef interp_ij)
3988 {
3989 struct si_shader_context *ctx = si_shader_context(bld_base);
3990 LLVMValueRef result[4], a;
3991 unsigned i;
3992
3993 for (i = 0; i < 2; i++) {
3994 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
3995 LLVMConstInt(ctx->i32, i, 0), "");
3996 result[i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 1,
3997 ac_to_integer(&ctx->ac, a)); /* DDX */
3998 result[2+i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 2,
3999 ac_to_integer(&ctx->ac, a)); /* DDY */
4000 }
4001
4002 return ac_build_gather_values(&ctx->ac, result, 4);
4003 }
4004
4005 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4006 struct lp_build_tgsi_context *bld_base,
4007 struct lp_build_emit_data *emit_data)
4008 {
4009 struct si_shader_context *ctx = si_shader_context(bld_base);
4010 struct si_shader *shader = ctx->shader;
4011 const struct tgsi_shader_info *info = &shader->selector->info;
4012 LLVMValueRef interp_param;
4013 const struct tgsi_full_instruction *inst = emit_data->inst;
4014 const struct tgsi_full_src_register *input = &inst->Src[0];
4015 int input_base, input_array_size;
4016 int chan;
4017 int i;
4018 LLVMValueRef prim_mask = ctx->abi.prim_mask;
4019 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
4020 int interp_param_idx;
4021 unsigned interp;
4022 unsigned location;
4023
4024 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4025 /* offset is in second src, first two channels */
4026 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4027 TGSI_CHAN_X);
4028 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4029 TGSI_CHAN_Y);
4030 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4031 LLVMValueRef sample_position;
4032 LLVMValueRef sample_id;
4033 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4034
4035 /* fetch sample ID, then fetch its sample position,
4036 * and place into first two channels.
4037 */
4038 sample_id = lp_build_emit_fetch(bld_base,
4039 emit_data->inst, 1, TGSI_CHAN_X);
4040 sample_id = ac_to_integer(&ctx->ac, sample_id);
4041
4042 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4043 * Language 4.50 spec says about interpolateAtSample:
4044 *
4045 * "Returns the value of the input interpolant variable at
4046 * the location of sample number sample. If multisample
4047 * buffers are not available, the input variable will be
4048 * evaluated at the center of the pixel. If sample sample
4049 * does not exist, the position used to interpolate the
4050 * input variable is undefined."
4051 *
4052 * This means that sample_id values outside of the valid are
4053 * in fact valid input, and the usual mechanism for loading the
4054 * sample position doesn't work.
4055 */
4056 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4057 LLVMValueRef center[4] = {
4058 LLVMConstReal(ctx->f32, 0.5),
4059 LLVMConstReal(ctx->f32, 0.5),
4060 ctx->ac.f32_0,
4061 ctx->ac.f32_0,
4062 };
4063
4064 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4065 } else {
4066 sample_position = load_sample_position(&ctx->abi, sample_id);
4067 }
4068
4069 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4070 ctx->i32_0, "");
4071
4072 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4073 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4074 ctx->i32_1, "");
4075 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4076 }
4077
4078 assert(input->Register.File == TGSI_FILE_INPUT);
4079
4080 if (input->Register.Indirect) {
4081 unsigned array_id = input->Indirect.ArrayID;
4082
4083 if (array_id) {
4084 input_base = info->input_array_first[array_id];
4085 input_array_size = info->input_array_last[array_id] - input_base + 1;
4086 } else {
4087 input_base = inst->Src[0].Register.Index;
4088 input_array_size = info->num_inputs - input_base;
4089 }
4090
4091 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4092 1, input->Register.Index - input_base);
4093 } else {
4094 input_base = inst->Src[0].Register.Index;
4095 input_array_size = 1;
4096 array_idx = ctx->i32_0;
4097 }
4098
4099 interp = shader->selector->info.input_interpolate[input_base];
4100
4101 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4102 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4103 location = TGSI_INTERPOLATE_LOC_CENTER;
4104 else
4105 location = TGSI_INTERPOLATE_LOC_CENTROID;
4106
4107 interp_param_idx = lookup_interp_param_index(interp, location);
4108 if (interp_param_idx == -1)
4109 return;
4110 else if (interp_param_idx)
4111 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4112 else
4113 interp_param = NULL;
4114
4115 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4116 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4117 LLVMValueRef ij_out[2];
4118 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4119
4120 /*
4121 * take the I then J parameters, and the DDX/Y for it, and
4122 * calculate the IJ inputs for the interpolator.
4123 * temp1 = ddx * offset/sample.x + I;
4124 * interp_param.I = ddy * offset/sample.y + temp1;
4125 * temp1 = ddx * offset/sample.x + J;
4126 * interp_param.J = ddy * offset/sample.y + temp1;
4127 */
4128 for (i = 0; i < 2; i++) {
4129 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4130 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4131 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4132 ddxy_out, ix_ll, "");
4133 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4134 ddxy_out, iy_ll, "");
4135 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4136 interp_param, ix_ll, "");
4137 LLVMValueRef temp1, temp2;
4138
4139 interp_el = ac_to_float(&ctx->ac, interp_el);
4140
4141 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, offset_x, "");
4142
4143 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4144
4145 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, offset_y, "");
4146
4147 ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4148 }
4149 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4150 }
4151
4152 if (interp_param)
4153 interp_param = ac_to_float(&ctx->ac, interp_param);
4154
4155 for (chan = 0; chan < 4; chan++) {
4156 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4157 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4158
4159 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4160 LLVMValueRef v, i = NULL, j = NULL;
4161
4162 if (interp_param) {
4163 i = LLVMBuildExtractElement(
4164 ctx->ac.builder, interp_param, ctx->i32_0, "");
4165 j = LLVMBuildExtractElement(
4166 ctx->ac.builder, interp_param, ctx->i32_1, "");
4167 }
4168 v = si_build_fs_interp(ctx, input_base + idx, schan,
4169 prim_mask, i, j);
4170
4171 gather = LLVMBuildInsertElement(ctx->ac.builder,
4172 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4173 }
4174
4175 emit_data->output[chan] = LLVMBuildExtractElement(
4176 ctx->ac.builder, gather, array_idx, "");
4177 }
4178 }
4179
4180 static void vote_all_emit(
4181 const struct lp_build_tgsi_action *action,
4182 struct lp_build_tgsi_context *bld_base,
4183 struct lp_build_emit_data *emit_data)
4184 {
4185 struct si_shader_context *ctx = si_shader_context(bld_base);
4186
4187 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4188 emit_data->output[emit_data->chan] =
4189 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4190 }
4191
4192 static void vote_any_emit(
4193 const struct lp_build_tgsi_action *action,
4194 struct lp_build_tgsi_context *bld_base,
4195 struct lp_build_emit_data *emit_data)
4196 {
4197 struct si_shader_context *ctx = si_shader_context(bld_base);
4198
4199 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4200 emit_data->output[emit_data->chan] =
4201 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4202 }
4203
4204 static void vote_eq_emit(
4205 const struct lp_build_tgsi_action *action,
4206 struct lp_build_tgsi_context *bld_base,
4207 struct lp_build_emit_data *emit_data)
4208 {
4209 struct si_shader_context *ctx = si_shader_context(bld_base);
4210
4211 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4212 emit_data->output[emit_data->chan] =
4213 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4214 }
4215
4216 static void ballot_emit(
4217 const struct lp_build_tgsi_action *action,
4218 struct lp_build_tgsi_context *bld_base,
4219 struct lp_build_emit_data *emit_data)
4220 {
4221 struct si_shader_context *ctx = si_shader_context(bld_base);
4222 LLVMBuilderRef builder = ctx->ac.builder;
4223 LLVMValueRef tmp;
4224
4225 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4226 tmp = ac_build_ballot(&ctx->ac, tmp);
4227 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4228
4229 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4230 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4231 }
4232
4233 static void read_lane_emit(
4234 const struct lp_build_tgsi_action *action,
4235 struct lp_build_tgsi_context *bld_base,
4236 struct lp_build_emit_data *emit_data)
4237 {
4238 struct si_shader_context *ctx = si_shader_context(bld_base);
4239
4240 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4241 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4242 0, emit_data->src_chan);
4243
4244 /* Always read the source invocation (= lane) from the X channel. */
4245 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4246 1, TGSI_CHAN_X);
4247 emit_data->arg_count = 2;
4248 }
4249
4250 /* We currently have no other way to prevent LLVM from lifting the icmp
4251 * calls to a dominating basic block.
4252 */
4253 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4254
4255 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4256 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4257
4258 emit_data->output[emit_data->chan] =
4259 ac_build_intrinsic(&ctx->ac, action->intr_name,
4260 ctx->i32, emit_data->args, emit_data->arg_count,
4261 AC_FUNC_ATTR_READNONE |
4262 AC_FUNC_ATTR_CONVERGENT);
4263 }
4264
4265 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4266 struct lp_build_emit_data *emit_data)
4267 {
4268 struct si_shader_context *ctx = si_shader_context(bld_base);
4269 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4270 LLVMValueRef imm;
4271 unsigned stream;
4272
4273 assert(src0.File == TGSI_FILE_IMMEDIATE);
4274
4275 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4276 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4277 return stream;
4278 }
4279
4280 /* Emit one vertex from the geometry shader */
4281 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4282 unsigned stream,
4283 LLVMValueRef *addrs)
4284 {
4285 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4286 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4287 struct si_shader *shader = ctx->shader;
4288 struct lp_build_if_state if_state;
4289 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4290 ctx->param_gs2vs_offset);
4291 LLVMValueRef gs_next_vertex;
4292 LLVMValueRef can_emit;
4293 unsigned chan, offset;
4294 int i;
4295
4296 /* Write vertex attribute values to GSVS ring */
4297 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4298 ctx->gs_next_vertex[stream],
4299 "");
4300
4301 /* If this thread has already emitted the declared maximum number of
4302 * vertices, skip the write: excessive vertex emissions are not
4303 * supposed to have any effect.
4304 *
4305 * If the shader has no writes to memory, kill it instead. This skips
4306 * further memory loads and may allow LLVM to skip to the end
4307 * altogether.
4308 */
4309 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4310 LLVMConstInt(ctx->i32,
4311 shader->selector->gs_max_out_vertices, 0), "");
4312
4313 bool use_kill = !info->writes_memory;
4314 if (use_kill) {
4315 ac_build_kill_if_false(&ctx->ac, can_emit);
4316 } else {
4317 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4318 }
4319
4320 offset = 0;
4321 for (i = 0; i < info->num_outputs; i++) {
4322 for (chan = 0; chan < 4; chan++) {
4323 if (!(info->output_usagemask[i] & (1 << chan)) ||
4324 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4325 continue;
4326
4327 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4328 LLVMValueRef voffset =
4329 LLVMConstInt(ctx->i32, offset *
4330 shader->selector->gs_max_out_vertices, 0);
4331 offset++;
4332
4333 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4334 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4335 LLVMConstInt(ctx->i32, 4, 0), "");
4336
4337 out_val = ac_to_integer(&ctx->ac, out_val);
4338
4339 ac_build_buffer_store_dword(&ctx->ac,
4340 ctx->gsvs_ring[stream],
4341 out_val, 1,
4342 voffset, soffset, 0,
4343 1, 1, true, true);
4344 }
4345 }
4346
4347 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4348 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4349
4350 /* Signal vertex emission */
4351 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4352 si_get_gs_wave_id(ctx));
4353 if (!use_kill)
4354 lp_build_endif(&if_state);
4355 }
4356
4357 /* Emit one vertex from the geometry shader */
4358 static void si_tgsi_emit_vertex(
4359 const struct lp_build_tgsi_action *action,
4360 struct lp_build_tgsi_context *bld_base,
4361 struct lp_build_emit_data *emit_data)
4362 {
4363 struct si_shader_context *ctx = si_shader_context(bld_base);
4364 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4365
4366 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4367 }
4368
4369 /* Cut one primitive from the geometry shader */
4370 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4371 unsigned stream)
4372 {
4373 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4374
4375 /* Signal primitive cut */
4376 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4377 si_get_gs_wave_id(ctx));
4378 }
4379
4380 /* Cut one primitive from the geometry shader */
4381 static void si_tgsi_emit_primitive(
4382 const struct lp_build_tgsi_action *action,
4383 struct lp_build_tgsi_context *bld_base,
4384 struct lp_build_emit_data *emit_data)
4385 {
4386 struct si_shader_context *ctx = si_shader_context(bld_base);
4387
4388 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4389 }
4390
4391 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4392 struct lp_build_tgsi_context *bld_base,
4393 struct lp_build_emit_data *emit_data)
4394 {
4395 struct si_shader_context *ctx = si_shader_context(bld_base);
4396
4397 /* SI only (thanks to a hw bug workaround):
4398 * The real barrier instruction isn’t needed, because an entire patch
4399 * always fits into a single wave.
4400 */
4401 if (ctx->screen->info.chip_class == SI &&
4402 ctx->type == PIPE_SHADER_TESS_CTRL) {
4403 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4404 return;
4405 }
4406
4407 ac_build_intrinsic(&ctx->ac,
4408 "llvm.amdgcn.s.barrier",
4409 ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
4410 }
4411
4412 static void si_create_function(struct si_shader_context *ctx,
4413 const char *name,
4414 LLVMTypeRef *returns, unsigned num_returns,
4415 struct si_function_info *fninfo,
4416 unsigned max_workgroup_size)
4417 {
4418 int i;
4419
4420 si_llvm_create_func(ctx, name, returns, num_returns,
4421 fninfo->types, fninfo->num_params);
4422 ctx->return_value = LLVMGetUndef(ctx->return_type);
4423
4424 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4425 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4426
4427 /* The combination of:
4428 * - noalias
4429 * - dereferenceable
4430 * - invariant.load
4431 * allows the optimization passes to move loads and reduces
4432 * SGPR spilling significantly.
4433 */
4434 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4435 AC_FUNC_ATTR_INREG);
4436
4437 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4438 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4439 AC_FUNC_ATTR_NOALIAS);
4440 ac_add_attr_dereferenceable(P, UINT64_MAX);
4441 }
4442 }
4443
4444 for (i = 0; i < fninfo->num_params; ++i) {
4445 if (fninfo->assign[i])
4446 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4447 }
4448
4449 if (ctx->screen->info.address32_hi) {
4450 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4451 "amdgpu-32bit-address-high-bits",
4452 ctx->screen->info.address32_hi);
4453 }
4454
4455 if (max_workgroup_size) {
4456 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4457 "amdgpu-max-work-group-size",
4458 max_workgroup_size);
4459 }
4460 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4461 "no-signed-zeros-fp-math",
4462 "true");
4463
4464 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4465 /* These were copied from some LLVM test. */
4466 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4467 "less-precise-fpmad",
4468 "true");
4469 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4470 "no-infs-fp-math",
4471 "true");
4472 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4473 "no-nans-fp-math",
4474 "true");
4475 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4476 "unsafe-fp-math",
4477 "true");
4478 }
4479 }
4480
4481 static void declare_streamout_params(struct si_shader_context *ctx,
4482 struct pipe_stream_output_info *so,
4483 struct si_function_info *fninfo)
4484 {
4485 int i;
4486
4487 /* Streamout SGPRs. */
4488 if (so->num_outputs) {
4489 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4490 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4491 else
4492 ctx->param_streamout_config = fninfo->num_params - 1;
4493
4494 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4495 }
4496 /* A streamout buffer offset is loaded if the stride is non-zero. */
4497 for (i = 0; i < 4; i++) {
4498 if (!so->stride[i])
4499 continue;
4500
4501 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4502 }
4503 }
4504
4505 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4506 {
4507 switch (shader->selector->type) {
4508 case PIPE_SHADER_TESS_CTRL:
4509 /* Return this so that LLVM doesn't remove s_barrier
4510 * instructions on chips where we use s_barrier. */
4511 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4512
4513 case PIPE_SHADER_GEOMETRY:
4514 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4515
4516 case PIPE_SHADER_COMPUTE:
4517 break; /* see below */
4518
4519 default:
4520 return 0;
4521 }
4522
4523 const unsigned *properties = shader->selector->info.properties;
4524 unsigned max_work_group_size =
4525 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4526 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4527 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4528
4529 if (!max_work_group_size) {
4530 /* This is a variable group size compute shader,
4531 * compile it for the maximum possible group size.
4532 */
4533 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4534 }
4535 return max_work_group_size;
4536 }
4537
4538 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4539 struct si_function_info *fninfo,
4540 bool assign_params)
4541 {
4542 LLVMTypeRef const_shader_buf_type;
4543
4544 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4545 ctx->shader->selector->info.shader_buffers_declared == 0)
4546 const_shader_buf_type = ctx->f32;
4547 else
4548 const_shader_buf_type = ctx->v4i32;
4549
4550 unsigned const_and_shader_buffers =
4551 add_arg(fninfo, ARG_SGPR,
4552 ac_array_in_const32_addr_space(const_shader_buf_type));
4553
4554 if (assign_params)
4555 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4556 }
4557
4558 static void declare_samplers_and_images(struct si_shader_context *ctx,
4559 struct si_function_info *fninfo,
4560 bool assign_params)
4561 {
4562 unsigned samplers_and_images =
4563 add_arg(fninfo, ARG_SGPR,
4564 ac_array_in_const32_addr_space(ctx->v8i32));
4565
4566 if (assign_params)
4567 ctx->param_samplers_and_images = samplers_and_images;
4568 }
4569
4570 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4571 struct si_function_info *fninfo,
4572 bool assign_params)
4573 {
4574 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4575 declare_samplers_and_images(ctx, fninfo, assign_params);
4576 }
4577
4578 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4579 struct si_function_info *fninfo)
4580 {
4581 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4582 ac_array_in_const32_addr_space(ctx->v4i32));
4583 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4584 ac_array_in_const32_addr_space(ctx->v8i32));
4585 }
4586
4587 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4588 struct si_function_info *fninfo)
4589 {
4590 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4591 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4592 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4593 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4594 }
4595
4596 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4597 struct si_function_info *fninfo,
4598 unsigned *num_prolog_vgprs)
4599 {
4600 struct si_shader *shader = ctx->shader;
4601
4602 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4603 if (shader->key.as_ls) {
4604 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4605 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4606 } else {
4607 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4608 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4609 }
4610 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4611
4612 if (!shader->is_gs_copy_shader) {
4613 /* Vertex load indices. */
4614 ctx->param_vertex_index0 = fninfo->num_params;
4615 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4616 add_arg(fninfo, ARG_VGPR, ctx->i32);
4617 *num_prolog_vgprs += shader->selector->info.num_inputs;
4618 }
4619 }
4620
4621 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4622 struct si_function_info *fninfo)
4623 {
4624 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4625 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4626 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4627 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4628 }
4629
4630 enum {
4631 /* Convenient merged shader definitions. */
4632 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4633 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4634 };
4635
4636 static void create_function(struct si_shader_context *ctx)
4637 {
4638 struct si_shader *shader = ctx->shader;
4639 struct si_function_info fninfo;
4640 LLVMTypeRef returns[16+32*4];
4641 unsigned i, num_return_sgprs;
4642 unsigned num_returns = 0;
4643 unsigned num_prolog_vgprs = 0;
4644 unsigned type = ctx->type;
4645 unsigned vs_blit_property =
4646 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4647
4648 si_init_function_info(&fninfo);
4649
4650 /* Set MERGED shaders. */
4651 if (ctx->screen->info.chip_class >= GFX9) {
4652 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4653 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4654 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4655 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4656 }
4657
4658 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4659
4660 switch (type) {
4661 case PIPE_SHADER_VERTEX:
4662 declare_global_desc_pointers(ctx, &fninfo);
4663
4664 if (vs_blit_property) {
4665 ctx->param_vs_blit_inputs = fninfo.num_params;
4666 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4667 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4668 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4669
4670 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4671 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4672 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4673 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4674 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4675 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4676 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4677 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4678 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4679 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4680 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4681 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4682 }
4683
4684 /* VGPRs */
4685 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4686 break;
4687 }
4688
4689 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4690 declare_vs_specific_input_sgprs(ctx, &fninfo);
4691 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4692 ac_array_in_const32_addr_space(ctx->v4i32));
4693
4694 if (shader->key.as_es) {
4695 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4696 } else if (shader->key.as_ls) {
4697 /* no extra parameters */
4698 } else {
4699 if (shader->is_gs_copy_shader) {
4700 fninfo.num_params = ctx->param_vs_state_bits + 1;
4701 fninfo.num_sgpr_params = fninfo.num_params;
4702 }
4703
4704 /* The locations of the other parameters are assigned dynamically. */
4705 declare_streamout_params(ctx, &shader->selector->so,
4706 &fninfo);
4707 }
4708
4709 /* VGPRs */
4710 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4711 break;
4712
4713 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4714 declare_global_desc_pointers(ctx, &fninfo);
4715 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4716 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4717 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4718 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4719 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4720 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4721 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4722
4723 /* VGPRs */
4724 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4725 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4726
4727 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4728 * placed after the user SGPRs.
4729 */
4730 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4731 returns[num_returns++] = ctx->i32; /* SGPRs */
4732 for (i = 0; i < 11; i++)
4733 returns[num_returns++] = ctx->f32; /* VGPRs */
4734 break;
4735
4736 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4737 /* Merged stages have 8 system SGPRs at the beginning. */
4738 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4739 if (HAVE_32BIT_POINTERS) {
4740 declare_per_stage_desc_pointers(ctx, &fninfo,
4741 ctx->type == PIPE_SHADER_TESS_CTRL);
4742 } else {
4743 declare_const_and_shader_buffers(ctx, &fninfo,
4744 ctx->type == PIPE_SHADER_TESS_CTRL);
4745 }
4746 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4747 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4748 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4749 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4750 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4751 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4752
4753 declare_global_desc_pointers(ctx, &fninfo);
4754 declare_per_stage_desc_pointers(ctx, &fninfo,
4755 ctx->type == PIPE_SHADER_VERTEX);
4756 declare_vs_specific_input_sgprs(ctx, &fninfo);
4757
4758 if (!HAVE_32BIT_POINTERS) {
4759 declare_samplers_and_images(ctx, &fninfo,
4760 ctx->type == PIPE_SHADER_TESS_CTRL);
4761 }
4762 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4763 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4764 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4765 if (!HAVE_32BIT_POINTERS) /* Align to 2 dwords. */
4766 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4767 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4768 ac_array_in_const32_addr_space(ctx->v4i32));
4769
4770 /* VGPRs (first TCS, then VS) */
4771 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4772 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4773
4774 if (ctx->type == PIPE_SHADER_VERTEX) {
4775 declare_vs_input_vgprs(ctx, &fninfo,
4776 &num_prolog_vgprs);
4777
4778 /* LS return values are inputs to the TCS main shader part. */
4779 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4780 returns[num_returns++] = ctx->i32; /* SGPRs */
4781 for (i = 0; i < 2; i++)
4782 returns[num_returns++] = ctx->f32; /* VGPRs */
4783 } else {
4784 /* TCS return values are inputs to the TCS epilog.
4785 *
4786 * param_tcs_offchip_offset, param_tcs_factor_offset,
4787 * param_tcs_offchip_layout, and param_rw_buffers
4788 * should be passed to the epilog.
4789 */
4790 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4791 returns[num_returns++] = ctx->i32; /* SGPRs */
4792 for (i = 0; i < 11; i++)
4793 returns[num_returns++] = ctx->f32; /* VGPRs */
4794 }
4795 break;
4796
4797 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4798 /* Merged stages have 8 system SGPRs at the beginning. */
4799 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4800 if (HAVE_32BIT_POINTERS) {
4801 declare_per_stage_desc_pointers(ctx, &fninfo,
4802 ctx->type == PIPE_SHADER_GEOMETRY);
4803 } else {
4804 declare_const_and_shader_buffers(ctx, &fninfo,
4805 ctx->type == PIPE_SHADER_GEOMETRY);
4806 }
4807 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4808 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4809 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4810 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4811 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4812 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4813
4814 declare_global_desc_pointers(ctx, &fninfo);
4815 declare_per_stage_desc_pointers(ctx, &fninfo,
4816 (ctx->type == PIPE_SHADER_VERTEX ||
4817 ctx->type == PIPE_SHADER_TESS_EVAL));
4818 if (ctx->type == PIPE_SHADER_VERTEX) {
4819 declare_vs_specific_input_sgprs(ctx, &fninfo);
4820 } else {
4821 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4822 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4823 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4824 /* Declare as many input SGPRs as the VS has. */
4825 if (!HAVE_32BIT_POINTERS)
4826 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4827 }
4828
4829 if (!HAVE_32BIT_POINTERS) {
4830 declare_samplers_and_images(ctx, &fninfo,
4831 ctx->type == PIPE_SHADER_GEOMETRY);
4832 }
4833 if (ctx->type == PIPE_SHADER_VERTEX) {
4834 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4835 ac_array_in_const32_addr_space(ctx->v4i32));
4836 }
4837
4838 /* VGPRs (first GS, then VS/TES) */
4839 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4840 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4841 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4842 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4843 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4844
4845 if (ctx->type == PIPE_SHADER_VERTEX) {
4846 declare_vs_input_vgprs(ctx, &fninfo,
4847 &num_prolog_vgprs);
4848 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4849 declare_tes_input_vgprs(ctx, &fninfo);
4850 }
4851
4852 if (ctx->type == PIPE_SHADER_VERTEX ||
4853 ctx->type == PIPE_SHADER_TESS_EVAL) {
4854 unsigned num_user_sgprs;
4855
4856 if (ctx->type == PIPE_SHADER_VERTEX)
4857 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4858 else
4859 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4860
4861 /* ES return values are inputs to GS. */
4862 for (i = 0; i < 8 + num_user_sgprs; i++)
4863 returns[num_returns++] = ctx->i32; /* SGPRs */
4864 for (i = 0; i < 5; i++)
4865 returns[num_returns++] = ctx->f32; /* VGPRs */
4866 }
4867 break;
4868
4869 case PIPE_SHADER_TESS_EVAL:
4870 declare_global_desc_pointers(ctx, &fninfo);
4871 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4872 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4873 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4874 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4875
4876 if (shader->key.as_es) {
4877 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4878 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4879 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4880 } else {
4881 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4882 declare_streamout_params(ctx, &shader->selector->so,
4883 &fninfo);
4884 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4885 }
4886
4887 /* VGPRs */
4888 declare_tes_input_vgprs(ctx, &fninfo);
4889 break;
4890
4891 case PIPE_SHADER_GEOMETRY:
4892 declare_global_desc_pointers(ctx, &fninfo);
4893 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4894 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4895 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4896
4897 /* VGPRs */
4898 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4899 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4900 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4901 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4902 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4903 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4904 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4905 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4906 break;
4907
4908 case PIPE_SHADER_FRAGMENT:
4909 declare_global_desc_pointers(ctx, &fninfo);
4910 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4911 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4912 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4913 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4914
4915 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4916 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4917 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4918 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4919 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4920 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4921 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4922 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4923 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4924 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4925 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4926 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4927 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4928 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4929 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4930 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4931 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4932 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4933 shader->info.face_vgpr_index = 20;
4934 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4935 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4936 shader->info.ancillary_vgpr_index = 21;
4937 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4938 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4939 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4940
4941 /* Color inputs from the prolog. */
4942 if (shader->selector->info.colors_read) {
4943 unsigned num_color_elements =
4944 util_bitcount(shader->selector->info.colors_read);
4945
4946 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4947 for (i = 0; i < num_color_elements; i++)
4948 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4949
4950 num_prolog_vgprs += num_color_elements;
4951 }
4952
4953 /* Outputs for the epilog. */
4954 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4955 num_returns =
4956 num_return_sgprs +
4957 util_bitcount(shader->selector->info.colors_written) * 4 +
4958 shader->selector->info.writes_z +
4959 shader->selector->info.writes_stencil +
4960 shader->selector->info.writes_samplemask +
4961 1 /* SampleMaskIn */;
4962
4963 num_returns = MAX2(num_returns,
4964 num_return_sgprs +
4965 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4966
4967 for (i = 0; i < num_return_sgprs; i++)
4968 returns[i] = ctx->i32;
4969 for (; i < num_returns; i++)
4970 returns[i] = ctx->f32;
4971 break;
4972
4973 case PIPE_SHADER_COMPUTE:
4974 declare_global_desc_pointers(ctx, &fninfo);
4975 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4976 if (shader->selector->info.uses_grid_size)
4977 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4978 if (shader->selector->info.uses_block_size &&
4979 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4980 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4981
4982 for (i = 0; i < 3; i++) {
4983 ctx->abi.workgroup_ids[i] = NULL;
4984 if (shader->selector->info.uses_block_id[i])
4985 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4986 }
4987
4988 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4989 break;
4990 default:
4991 assert(0 && "unimplemented shader");
4992 return;
4993 }
4994
4995 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4996 si_get_max_workgroup_size(shader));
4997
4998 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4999 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
5000 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
5001 "InitialPSInputAddr",
5002 S_0286D0_PERSP_SAMPLE_ENA(1) |
5003 S_0286D0_PERSP_CENTER_ENA(1) |
5004 S_0286D0_PERSP_CENTROID_ENA(1) |
5005 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5006 S_0286D0_LINEAR_CENTER_ENA(1) |
5007 S_0286D0_LINEAR_CENTROID_ENA(1) |
5008 S_0286D0_FRONT_FACE_ENA(1) |
5009 S_0286D0_ANCILLARY_ENA(1) |
5010 S_0286D0_POS_FIXED_PT_ENA(1));
5011 }
5012
5013 shader->info.num_input_sgprs = 0;
5014 shader->info.num_input_vgprs = 0;
5015
5016 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5017 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5018
5019 for (; i < fninfo.num_params; ++i)
5020 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5021
5022 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5023 shader->info.num_input_vgprs -= num_prolog_vgprs;
5024
5025 if (shader->key.as_ls ||
5026 ctx->type == PIPE_SHADER_TESS_CTRL ||
5027 /* GFX9 has the ESGS ring buffer in LDS. */
5028 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5029 ac_declare_lds_as_pointer(&ctx->ac);
5030 }
5031
5032 /**
5033 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5034 * for later use.
5035 */
5036 static void preload_ring_buffers(struct si_shader_context *ctx)
5037 {
5038 LLVMBuilderRef builder = ctx->ac.builder;
5039
5040 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5041 ctx->param_rw_buffers);
5042
5043 if (ctx->screen->info.chip_class <= VI &&
5044 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5045 unsigned ring =
5046 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5047 : SI_ES_RING_ESGS;
5048 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5049
5050 ctx->esgs_ring =
5051 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5052 }
5053
5054 if (ctx->shader->is_gs_copy_shader) {
5055 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5056
5057 ctx->gsvs_ring[0] =
5058 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5059 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5060 const struct si_shader_selector *sel = ctx->shader->selector;
5061 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5062 LLVMValueRef base_ring;
5063
5064 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5065
5066 /* The conceptual layout of the GSVS ring is
5067 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5068 * but the real memory layout is swizzled across
5069 * threads:
5070 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5071 * t16v0c0 ..
5072 * Override the buffer descriptor accordingly.
5073 */
5074 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5075 uint64_t stream_offset = 0;
5076
5077 for (unsigned stream = 0; stream < 4; ++stream) {
5078 unsigned num_components;
5079 unsigned stride;
5080 unsigned num_records;
5081 LLVMValueRef ring, tmp;
5082
5083 num_components = sel->info.num_stream_output_components[stream];
5084 if (!num_components)
5085 continue;
5086
5087 stride = 4 * num_components * sel->gs_max_out_vertices;
5088
5089 /* Limit on the stride field for <= CIK. */
5090 assert(stride < (1 << 14));
5091
5092 num_records = 64;
5093
5094 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5095 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5096 tmp = LLVMBuildAdd(builder, tmp,
5097 LLVMConstInt(ctx->i64,
5098 stream_offset, 0), "");
5099 stream_offset += stride * 64;
5100
5101 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5102 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5103 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5104 tmp = LLVMBuildOr(builder, tmp,
5105 LLVMConstInt(ctx->i32,
5106 S_008F04_STRIDE(stride) |
5107 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5108 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5109 ring = LLVMBuildInsertElement(builder, ring,
5110 LLVMConstInt(ctx->i32, num_records, 0),
5111 LLVMConstInt(ctx->i32, 2, 0), "");
5112 ring = LLVMBuildInsertElement(builder, ring,
5113 LLVMConstInt(ctx->i32,
5114 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5115 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5116 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5117 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5118 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5119 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5120 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5121 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5122 S_008F0C_ADD_TID_ENABLE(1),
5123 0),
5124 LLVMConstInt(ctx->i32, 3, 0), "");
5125
5126 ctx->gsvs_ring[stream] = ring;
5127 }
5128 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5129 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5130 }
5131 }
5132
5133 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5134 LLVMValueRef param_rw_buffers,
5135 unsigned param_pos_fixed_pt)
5136 {
5137 LLVMBuilderRef builder = ctx->ac.builder;
5138 LLVMValueRef slot, desc, offset, row, bit, address[2];
5139
5140 /* Use the fixed-point gl_FragCoord input.
5141 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5142 * per coordinate to get the repeating effect.
5143 */
5144 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5145 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5146
5147 /* Load the buffer descriptor. */
5148 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5149 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5150
5151 /* The stipple pattern is 32x32, each row has 32 bits. */
5152 offset = LLVMBuildMul(builder, address[1],
5153 LLVMConstInt(ctx->i32, 4, 0), "");
5154 row = buffer_load_const(ctx, desc, offset);
5155 row = ac_to_integer(&ctx->ac, row);
5156 bit = LLVMBuildLShr(builder, row, address[0], "");
5157 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5158 ac_build_kill_if_false(&ctx->ac, bit);
5159 }
5160
5161 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5162 struct si_shader_config *conf,
5163 unsigned symbol_offset)
5164 {
5165 unsigned i;
5166 const unsigned char *config =
5167 ac_shader_binary_config_start(binary, symbol_offset);
5168 bool really_needs_scratch = false;
5169
5170 /* LLVM adds SGPR spills to the scratch size.
5171 * Find out if we really need the scratch buffer.
5172 */
5173 for (i = 0; i < binary->reloc_count; i++) {
5174 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5175
5176 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5177 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5178 really_needs_scratch = true;
5179 break;
5180 }
5181 }
5182
5183 /* XXX: We may be able to emit some of these values directly rather than
5184 * extracting fields to be emitted later.
5185 */
5186
5187 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5188 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5189 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5190 switch (reg) {
5191 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5192 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5193 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5194 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5195 case R_00B848_COMPUTE_PGM_RSRC1:
5196 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5197 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5198 conf->float_mode = G_00B028_FLOAT_MODE(value);
5199 conf->rsrc1 = value;
5200 break;
5201 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5202 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5203 break;
5204 case R_00B84C_COMPUTE_PGM_RSRC2:
5205 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5206 conf->rsrc2 = value;
5207 break;
5208 case R_0286CC_SPI_PS_INPUT_ENA:
5209 conf->spi_ps_input_ena = value;
5210 break;
5211 case R_0286D0_SPI_PS_INPUT_ADDR:
5212 conf->spi_ps_input_addr = value;
5213 break;
5214 case R_0286E8_SPI_TMPRING_SIZE:
5215 case R_00B860_COMPUTE_TMPRING_SIZE:
5216 /* WAVESIZE is in units of 256 dwords. */
5217 if (really_needs_scratch)
5218 conf->scratch_bytes_per_wave =
5219 G_00B860_WAVESIZE(value) * 256 * 4;
5220 break;
5221 case 0x4: /* SPILLED_SGPRS */
5222 conf->spilled_sgprs = value;
5223 break;
5224 case 0x8: /* SPILLED_VGPRS */
5225 conf->spilled_vgprs = value;
5226 break;
5227 default:
5228 {
5229 static bool printed;
5230
5231 if (!printed) {
5232 fprintf(stderr, "Warning: LLVM emitted unknown "
5233 "config register: 0x%x\n", reg);
5234 printed = true;
5235 }
5236 }
5237 break;
5238 }
5239 }
5240
5241 if (!conf->spi_ps_input_addr)
5242 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5243 }
5244
5245 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5246 uint64_t scratch_va)
5247 {
5248 unsigned i;
5249 uint32_t scratch_rsrc_dword0 = scratch_va;
5250 uint32_t scratch_rsrc_dword1 =
5251 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5252
5253 /* Enable scratch coalescing. */
5254 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5255
5256 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5257 const struct ac_shader_reloc *reloc =
5258 &shader->binary.relocs[i];
5259 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5260 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5261 &scratch_rsrc_dword0, 4);
5262 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5263 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5264 &scratch_rsrc_dword1, 4);
5265 }
5266 }
5267 }
5268
5269 /* For the UMR disassembler. */
5270 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5271 #define DEBUGGER_NUM_MARKERS 5
5272
5273 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5274 {
5275 unsigned size = shader->binary.code_size;
5276
5277 if (shader->prolog)
5278 size += shader->prolog->binary.code_size;
5279 if (shader->previous_stage)
5280 size += shader->previous_stage->binary.code_size;
5281 if (shader->prolog2)
5282 size += shader->prolog2->binary.code_size;
5283 if (shader->epilog)
5284 size += shader->epilog->binary.code_size;
5285 return size + DEBUGGER_NUM_MARKERS * 4;
5286 }
5287
5288 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5289 {
5290 const struct ac_shader_binary *prolog =
5291 shader->prolog ? &shader->prolog->binary : NULL;
5292 const struct ac_shader_binary *previous_stage =
5293 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5294 const struct ac_shader_binary *prolog2 =
5295 shader->prolog2 ? &shader->prolog2->binary : NULL;
5296 const struct ac_shader_binary *epilog =
5297 shader->epilog ? &shader->epilog->binary : NULL;
5298 const struct ac_shader_binary *mainb = &shader->binary;
5299 unsigned bo_size = si_get_shader_binary_size(shader) +
5300 (!epilog ? mainb->rodata_size : 0);
5301 unsigned char *ptr;
5302
5303 assert(!prolog || !prolog->rodata_size);
5304 assert(!previous_stage || !previous_stage->rodata_size);
5305 assert(!prolog2 || !prolog2->rodata_size);
5306 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5307 !mainb->rodata_size);
5308 assert(!epilog || !epilog->rodata_size);
5309
5310 r600_resource_reference(&shader->bo, NULL);
5311 shader->bo = si_aligned_buffer_create(&sscreen->b,
5312 sscreen->cpdma_prefetch_writes_memory ?
5313 0 : SI_RESOURCE_FLAG_READ_ONLY,
5314 PIPE_USAGE_IMMUTABLE,
5315 align(bo_size, SI_CPDMA_ALIGNMENT),
5316 256);
5317 if (!shader->bo)
5318 return -ENOMEM;
5319
5320 /* Upload. */
5321 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5322 PIPE_TRANSFER_READ_WRITE |
5323 PIPE_TRANSFER_UNSYNCHRONIZED);
5324
5325 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5326 * endian-independent. */
5327 if (prolog) {
5328 memcpy(ptr, prolog->code, prolog->code_size);
5329 ptr += prolog->code_size;
5330 }
5331 if (previous_stage) {
5332 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5333 ptr += previous_stage->code_size;
5334 }
5335 if (prolog2) {
5336 memcpy(ptr, prolog2->code, prolog2->code_size);
5337 ptr += prolog2->code_size;
5338 }
5339
5340 memcpy(ptr, mainb->code, mainb->code_size);
5341 ptr += mainb->code_size;
5342
5343 if (epilog) {
5344 memcpy(ptr, epilog->code, epilog->code_size);
5345 ptr += epilog->code_size;
5346 } else if (mainb->rodata_size > 0) {
5347 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5348 ptr += mainb->rodata_size;
5349 }
5350
5351 /* Add end-of-code markers for the UMR disassembler. */
5352 uint32_t *ptr32 = (uint32_t*)ptr;
5353 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
5354 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
5355
5356 sscreen->ws->buffer_unmap(shader->bo->buf);
5357 return 0;
5358 }
5359
5360 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5361 struct pipe_debug_callback *debug,
5362 const char *name, FILE *file)
5363 {
5364 char *line, *p;
5365 unsigned i, count;
5366
5367 if (binary->disasm_string) {
5368 fprintf(file, "Shader %s disassembly:\n", name);
5369 fprintf(file, "%s", binary->disasm_string);
5370
5371 if (debug && debug->debug_message) {
5372 /* Very long debug messages are cut off, so send the
5373 * disassembly one line at a time. This causes more
5374 * overhead, but on the plus side it simplifies
5375 * parsing of resulting logs.
5376 */
5377 pipe_debug_message(debug, SHADER_INFO,
5378 "Shader Disassembly Begin");
5379
5380 line = binary->disasm_string;
5381 while (*line) {
5382 p = util_strchrnul(line, '\n');
5383 count = p - line;
5384
5385 if (count) {
5386 pipe_debug_message(debug, SHADER_INFO,
5387 "%.*s", count, line);
5388 }
5389
5390 if (!*p)
5391 break;
5392 line = p + 1;
5393 }
5394
5395 pipe_debug_message(debug, SHADER_INFO,
5396 "Shader Disassembly End");
5397 }
5398 } else {
5399 fprintf(file, "Shader %s binary:\n", name);
5400 for (i = 0; i < binary->code_size; i += 4) {
5401 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5402 binary->code[i + 3], binary->code[i + 2],
5403 binary->code[i + 1], binary->code[i]);
5404 }
5405 }
5406 }
5407
5408 static void si_calculate_max_simd_waves(struct si_shader *shader)
5409 {
5410 struct si_screen *sscreen = shader->selector->screen;
5411 struct si_shader_config *conf = &shader->config;
5412 unsigned num_inputs = shader->selector->info.num_inputs;
5413 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5414 unsigned lds_per_wave = 0;
5415 unsigned max_simd_waves;
5416
5417 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5418
5419 /* Compute LDS usage for PS. */
5420 switch (shader->selector->type) {
5421 case PIPE_SHADER_FRAGMENT:
5422 /* The minimum usage per wave is (num_inputs * 48). The maximum
5423 * usage is (num_inputs * 48 * 16).
5424 * We can get anything in between and it varies between waves.
5425 *
5426 * The 48 bytes per input for a single primitive is equal to
5427 * 4 bytes/component * 4 components/input * 3 points.
5428 *
5429 * Other stages don't know the size at compile time or don't
5430 * allocate LDS per wave, but instead they do it per thread group.
5431 */
5432 lds_per_wave = conf->lds_size * lds_increment +
5433 align(num_inputs * 48, lds_increment);
5434 break;
5435 case PIPE_SHADER_COMPUTE:
5436 if (shader->selector) {
5437 unsigned max_workgroup_size =
5438 si_get_max_workgroup_size(shader);
5439 lds_per_wave = (conf->lds_size * lds_increment) /
5440 DIV_ROUND_UP(max_workgroup_size, 64);
5441 }
5442 break;
5443 }
5444
5445 /* Compute the per-SIMD wave counts. */
5446 if (conf->num_sgprs) {
5447 if (sscreen->info.chip_class >= VI)
5448 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5449 else
5450 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5451 }
5452
5453 if (conf->num_vgprs)
5454 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5455
5456 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5457 * 16KB makes some SIMDs unoccupied). */
5458 if (lds_per_wave)
5459 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5460
5461 conf->max_simd_waves = max_simd_waves;
5462 }
5463
5464 void si_shader_dump_stats_for_shader_db(const struct si_shader *shader,
5465 struct pipe_debug_callback *debug)
5466 {
5467 const struct si_shader_config *conf = &shader->config;
5468
5469 pipe_debug_message(debug, SHADER_INFO,
5470 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5471 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5472 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5473 conf->num_sgprs, conf->num_vgprs,
5474 si_get_shader_binary_size(shader),
5475 conf->lds_size, conf->scratch_bytes_per_wave,
5476 conf->max_simd_waves, conf->spilled_sgprs,
5477 conf->spilled_vgprs, conf->private_mem_vgprs);
5478 }
5479
5480 static void si_shader_dump_stats(struct si_screen *sscreen,
5481 const struct si_shader *shader,
5482 unsigned processor,
5483 FILE *file,
5484 bool check_debug_option)
5485 {
5486 const struct si_shader_config *conf = &shader->config;
5487
5488 if (!check_debug_option ||
5489 si_can_dump_shader(sscreen, processor)) {
5490 if (processor == PIPE_SHADER_FRAGMENT) {
5491 fprintf(file, "*** SHADER CONFIG ***\n"
5492 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5493 "SPI_PS_INPUT_ENA = 0x%04x\n",
5494 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5495 }
5496
5497 fprintf(file, "*** SHADER STATS ***\n"
5498 "SGPRS: %d\n"
5499 "VGPRS: %d\n"
5500 "Spilled SGPRs: %d\n"
5501 "Spilled VGPRs: %d\n"
5502 "Private memory VGPRs: %d\n"
5503 "Code Size: %d bytes\n"
5504 "LDS: %d blocks\n"
5505 "Scratch: %d bytes per wave\n"
5506 "Max Waves: %d\n"
5507 "********************\n\n\n",
5508 conf->num_sgprs, conf->num_vgprs,
5509 conf->spilled_sgprs, conf->spilled_vgprs,
5510 conf->private_mem_vgprs,
5511 si_get_shader_binary_size(shader),
5512 conf->lds_size, conf->scratch_bytes_per_wave,
5513 conf->max_simd_waves);
5514 }
5515 }
5516
5517 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5518 {
5519 switch (processor) {
5520 case PIPE_SHADER_VERTEX:
5521 if (shader->key.as_es)
5522 return "Vertex Shader as ES";
5523 else if (shader->key.as_ls)
5524 return "Vertex Shader as LS";
5525 else
5526 return "Vertex Shader as VS";
5527 case PIPE_SHADER_TESS_CTRL:
5528 return "Tessellation Control Shader";
5529 case PIPE_SHADER_TESS_EVAL:
5530 if (shader->key.as_es)
5531 return "Tessellation Evaluation Shader as ES";
5532 else
5533 return "Tessellation Evaluation Shader as VS";
5534 case PIPE_SHADER_GEOMETRY:
5535 if (shader->is_gs_copy_shader)
5536 return "GS Copy Shader as VS";
5537 else
5538 return "Geometry Shader";
5539 case PIPE_SHADER_FRAGMENT:
5540 return "Pixel Shader";
5541 case PIPE_SHADER_COMPUTE:
5542 return "Compute Shader";
5543 default:
5544 return "Unknown Shader";
5545 }
5546 }
5547
5548 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5549 struct pipe_debug_callback *debug, unsigned processor,
5550 FILE *file, bool check_debug_option)
5551 {
5552 if (!check_debug_option ||
5553 si_can_dump_shader(sscreen, processor))
5554 si_dump_shader_key(processor, shader, file);
5555
5556 if (!check_debug_option && shader->binary.llvm_ir_string) {
5557 if (shader->previous_stage &&
5558 shader->previous_stage->binary.llvm_ir_string) {
5559 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5560 si_get_shader_name(shader, processor));
5561 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5562 }
5563
5564 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5565 si_get_shader_name(shader, processor));
5566 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5567 }
5568
5569 if (!check_debug_option ||
5570 (si_can_dump_shader(sscreen, processor) &&
5571 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5572 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5573
5574 if (shader->prolog)
5575 si_shader_dump_disassembly(&shader->prolog->binary,
5576 debug, "prolog", file);
5577 if (shader->previous_stage)
5578 si_shader_dump_disassembly(&shader->previous_stage->binary,
5579 debug, "previous stage", file);
5580 if (shader->prolog2)
5581 si_shader_dump_disassembly(&shader->prolog2->binary,
5582 debug, "prolog2", file);
5583
5584 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5585
5586 if (shader->epilog)
5587 si_shader_dump_disassembly(&shader->epilog->binary,
5588 debug, "epilog", file);
5589 fprintf(file, "\n");
5590 }
5591
5592 si_shader_dump_stats(sscreen, shader, processor, file,
5593 check_debug_option);
5594 }
5595
5596 static int si_compile_llvm(struct si_screen *sscreen,
5597 struct ac_shader_binary *binary,
5598 struct si_shader_config *conf,
5599 struct ac_llvm_compiler *compiler,
5600 LLVMModuleRef mod,
5601 struct pipe_debug_callback *debug,
5602 unsigned processor,
5603 const char *name,
5604 bool less_optimized)
5605 {
5606 int r = 0;
5607 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5608
5609 if (si_can_dump_shader(sscreen, processor)) {
5610 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5611
5612 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5613 fprintf(stderr, "%s LLVM IR:\n\n", name);
5614 ac_dump_module(mod);
5615 fprintf(stderr, "\n");
5616 }
5617 }
5618
5619 if (sscreen->record_llvm_ir) {
5620 char *ir = LLVMPrintModuleToString(mod);
5621 binary->llvm_ir_string = strdup(ir);
5622 LLVMDisposeMessage(ir);
5623 }
5624
5625 if (!si_replace_shader(count, binary)) {
5626 r = si_llvm_compile(mod, binary, compiler, debug,
5627 less_optimized);
5628 if (r)
5629 return r;
5630 }
5631
5632 si_shader_binary_read_config(binary, conf, 0);
5633
5634 /* Enable 64-bit and 16-bit denormals, because there is no performance
5635 * cost.
5636 *
5637 * If denormals are enabled, all floating-point output modifiers are
5638 * ignored.
5639 *
5640 * Don't enable denormals for 32-bit floats, because:
5641 * - Floating-point output modifiers would be ignored by the hw.
5642 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5643 * have to stop using those.
5644 * - SI & CI would be very slow.
5645 */
5646 conf->float_mode |= V_00B028_FP_64_DENORMS;
5647
5648 FREE(binary->config);
5649 FREE(binary->global_symbol_offsets);
5650 binary->config = NULL;
5651 binary->global_symbol_offsets = NULL;
5652
5653 /* Some shaders can't have rodata because their binaries can be
5654 * concatenated.
5655 */
5656 if (binary->rodata_size &&
5657 (processor == PIPE_SHADER_VERTEX ||
5658 processor == PIPE_SHADER_TESS_CTRL ||
5659 processor == PIPE_SHADER_TESS_EVAL ||
5660 processor == PIPE_SHADER_FRAGMENT)) {
5661 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5662 return -EINVAL;
5663 }
5664
5665 return r;
5666 }
5667
5668 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5669 {
5670 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5671 LLVMBuildRetVoid(ctx->ac.builder);
5672 else
5673 LLVMBuildRet(ctx->ac.builder, ret);
5674 }
5675
5676 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5677 struct si_shader *
5678 si_generate_gs_copy_shader(struct si_screen *sscreen,
5679 struct ac_llvm_compiler *compiler,
5680 struct si_shader_selector *gs_selector,
5681 struct pipe_debug_callback *debug)
5682 {
5683 struct si_shader_context ctx;
5684 struct si_shader *shader;
5685 LLVMBuilderRef builder;
5686 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5687 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5688 int i, r;
5689
5690
5691 shader = CALLOC_STRUCT(si_shader);
5692 if (!shader)
5693 return NULL;
5694
5695 /* We can leave the fence as permanently signaled because the GS copy
5696 * shader only becomes visible globally after it has been compiled. */
5697 util_queue_fence_init(&shader->ready);
5698
5699 shader->selector = gs_selector;
5700 shader->is_gs_copy_shader = true;
5701
5702 si_init_shader_ctx(&ctx, sscreen, compiler);
5703 ctx.shader = shader;
5704 ctx.type = PIPE_SHADER_VERTEX;
5705
5706 builder = ctx.ac.builder;
5707
5708 create_function(&ctx);
5709 preload_ring_buffers(&ctx);
5710
5711 LLVMValueRef voffset =
5712 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5713 LLVMConstInt(ctx.i32, 4, 0), "");
5714
5715 /* Fetch the vertex stream ID.*/
5716 LLVMValueRef stream_id;
5717
5718 if (gs_selector->so.num_outputs)
5719 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5720 else
5721 stream_id = ctx.i32_0;
5722
5723 /* Fill in output information. */
5724 for (i = 0; i < gsinfo->num_outputs; ++i) {
5725 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5726 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5727
5728 for (int chan = 0; chan < 4; chan++) {
5729 outputs[i].vertex_stream[chan] =
5730 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5731 }
5732 }
5733
5734 LLVMBasicBlockRef end_bb;
5735 LLVMValueRef switch_inst;
5736
5737 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5738 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5739
5740 for (int stream = 0; stream < 4; stream++) {
5741 LLVMBasicBlockRef bb;
5742 unsigned offset;
5743
5744 if (!gsinfo->num_stream_output_components[stream])
5745 continue;
5746
5747 if (stream > 0 && !gs_selector->so.num_outputs)
5748 continue;
5749
5750 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5751 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5752 LLVMPositionBuilderAtEnd(builder, bb);
5753
5754 /* Fetch vertex data from GSVS ring */
5755 offset = 0;
5756 for (i = 0; i < gsinfo->num_outputs; ++i) {
5757 for (unsigned chan = 0; chan < 4; chan++) {
5758 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5759 outputs[i].vertex_stream[chan] != stream) {
5760 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5761 continue;
5762 }
5763
5764 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5765 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5766 offset++;
5767
5768 outputs[i].values[chan] =
5769 ac_build_buffer_load(&ctx.ac,
5770 ctx.gsvs_ring[0], 1,
5771 ctx.i32_0, voffset,
5772 soffset, 0, 1, 1,
5773 true, false);
5774 }
5775 }
5776
5777 /* Streamout and exports. */
5778 if (gs_selector->so.num_outputs) {
5779 si_llvm_emit_streamout(&ctx, outputs,
5780 gsinfo->num_outputs,
5781 stream);
5782 }
5783
5784 if (stream == 0) {
5785 /* Vertex color clamping.
5786 *
5787 * This uses a state constant loaded in a user data SGPR and
5788 * an IF statement is added that clamps all colors if the constant
5789 * is true.
5790 */
5791 struct lp_build_if_state if_ctx;
5792 LLVMValueRef v[2], cond = NULL;
5793 LLVMBasicBlockRef blocks[2];
5794
5795 for (unsigned i = 0; i < gsinfo->num_outputs; i++) {
5796 if (gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
5797 gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
5798 continue;
5799
5800 /* We've found a color. */
5801 if (!cond) {
5802 /* The state is in the first bit of the user SGPR. */
5803 cond = LLVMGetParam(ctx.main_fn,
5804 ctx.param_vs_state_bits);
5805 cond = LLVMBuildTrunc(ctx.ac.builder, cond,
5806 ctx.i1, "");
5807 lp_build_if(&if_ctx, &ctx.gallivm, cond);
5808 /* Remember blocks for Phi. */
5809 blocks[0] = if_ctx.true_block;
5810 blocks[1] = if_ctx.entry_block;
5811 }
5812
5813 for (unsigned j = 0; j < 4; j++) {
5814 /* Insert clamp into the true block. */
5815 v[0] = ac_build_clamp(&ctx.ac, outputs[i].values[j]);
5816 v[1] = outputs[i].values[j];
5817
5818 /* Insert Phi into the endif block. */
5819 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.merge_block);
5820 outputs[i].values[j] = ac_build_phi(&ctx.ac, ctx.f32, 2, v, blocks);
5821 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.true_block);
5822 }
5823 }
5824 if (cond)
5825 lp_build_endif(&if_ctx);
5826
5827 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5828 }
5829
5830 LLVMBuildBr(builder, end_bb);
5831 }
5832
5833 LLVMPositionBuilderAtEnd(builder, end_bb);
5834
5835 LLVMBuildRetVoid(ctx.ac.builder);
5836
5837 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5838 si_llvm_optimize_module(&ctx);
5839
5840 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5841 &ctx.shader->config, ctx.compiler,
5842 ctx.ac.module,
5843 debug, PIPE_SHADER_GEOMETRY,
5844 "GS Copy Shader", false);
5845 if (!r) {
5846 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5847 fprintf(stderr, "GS Copy Shader:\n");
5848 si_shader_dump(sscreen, ctx.shader, debug,
5849 PIPE_SHADER_GEOMETRY, stderr, true);
5850 r = si_shader_binary_upload(sscreen, ctx.shader);
5851 }
5852
5853 si_llvm_dispose(&ctx);
5854
5855 if (r != 0) {
5856 FREE(shader);
5857 shader = NULL;
5858 }
5859 return shader;
5860 }
5861
5862 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5863 const struct si_vs_prolog_bits *prolog,
5864 const char *prefix, FILE *f)
5865 {
5866 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5867 prefix, prolog->instance_divisor_is_one);
5868 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5869 prefix, prolog->instance_divisor_is_fetched);
5870 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5871 prefix, prolog->ls_vgpr_fix);
5872
5873 fprintf(f, " mono.vs.fix_fetch = {");
5874 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5875 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5876 fprintf(f, "}\n");
5877 }
5878
5879 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5880 FILE *f)
5881 {
5882 const struct si_shader_key *key = &shader->key;
5883
5884 fprintf(f, "SHADER KEY\n");
5885
5886 switch (processor) {
5887 case PIPE_SHADER_VERTEX:
5888 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5889 "part.vs.prolog", f);
5890 fprintf(f, " as_es = %u\n", key->as_es);
5891 fprintf(f, " as_ls = %u\n", key->as_ls);
5892 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5893 key->mono.u.vs_export_prim_id);
5894 break;
5895
5896 case PIPE_SHADER_TESS_CTRL:
5897 if (shader->selector->screen->info.chip_class >= GFX9) {
5898 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5899 "part.tcs.ls_prolog", f);
5900 }
5901 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5902 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5903 break;
5904
5905 case PIPE_SHADER_TESS_EVAL:
5906 fprintf(f, " as_es = %u\n", key->as_es);
5907 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5908 key->mono.u.vs_export_prim_id);
5909 break;
5910
5911 case PIPE_SHADER_GEOMETRY:
5912 if (shader->is_gs_copy_shader)
5913 break;
5914
5915 if (shader->selector->screen->info.chip_class >= GFX9 &&
5916 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5917 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5918 "part.gs.vs_prolog", f);
5919 }
5920 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5921 break;
5922
5923 case PIPE_SHADER_COMPUTE:
5924 break;
5925
5926 case PIPE_SHADER_FRAGMENT:
5927 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5928 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5929 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5930 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5931 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5932 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5933 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5934 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5935 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5936 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5937 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5938 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5939 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5940 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5941 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5942 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5943 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5944 break;
5945
5946 default:
5947 assert(0);
5948 }
5949
5950 if ((processor == PIPE_SHADER_GEOMETRY ||
5951 processor == PIPE_SHADER_TESS_EVAL ||
5952 processor == PIPE_SHADER_VERTEX) &&
5953 !key->as_es && !key->as_ls) {
5954 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5955 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5956 }
5957 }
5958
5959 static void si_init_shader_ctx(struct si_shader_context *ctx,
5960 struct si_screen *sscreen,
5961 struct ac_llvm_compiler *compiler)
5962 {
5963 struct lp_build_tgsi_context *bld_base;
5964
5965 si_llvm_context_init(ctx, sscreen, compiler);
5966
5967 bld_base = &ctx->bld_base;
5968 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5969
5970 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5971 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5972 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5973
5974 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5975
5976 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5977
5978 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5979 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5980 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5981 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5982
5983 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5984 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5985 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5986 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5987 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5988 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5989 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5990 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5991
5992 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5993 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5994 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5995 }
5996
5997 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
5998 {
5999 struct si_shader *shader = ctx->shader;
6000 struct tgsi_shader_info *info = &shader->selector->info;
6001
6002 if ((ctx->type != PIPE_SHADER_VERTEX &&
6003 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6004 shader->key.as_ls ||
6005 shader->key.as_es)
6006 return;
6007
6008 ac_optimize_vs_outputs(&ctx->ac,
6009 ctx->main_fn,
6010 shader->info.vs_output_param_offset,
6011 info->num_outputs,
6012 &shader->info.nr_param_exports);
6013 }
6014
6015 static void si_init_exec_from_input(struct si_shader_context *ctx,
6016 unsigned param, unsigned bitoffset)
6017 {
6018 LLVMValueRef args[] = {
6019 LLVMGetParam(ctx->main_fn, param),
6020 LLVMConstInt(ctx->i32, bitoffset, 0),
6021 };
6022 ac_build_intrinsic(&ctx->ac,
6023 "llvm.amdgcn.init.exec.from.input",
6024 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6025 }
6026
6027 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6028 const struct si_vs_prolog_bits *key)
6029 {
6030 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6031 * VS prolog. */
6032 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6033 }
6034
6035 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6036 {
6037 struct si_shader *shader = ctx->shader;
6038 struct si_shader_selector *sel = shader->selector;
6039 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6040
6041 // TODO clean all this up!
6042 switch (ctx->type) {
6043 case PIPE_SHADER_VERTEX:
6044 ctx->load_input = declare_input_vs;
6045 if (shader->key.as_ls)
6046 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6047 else if (shader->key.as_es)
6048 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6049 else
6050 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6051 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6052 ctx->abi.load_base_vertex = get_base_vertex;
6053 break;
6054 case PIPE_SHADER_TESS_CTRL:
6055 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6056 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6057 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6058 bld_base->emit_store = store_output_tcs;
6059 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6060 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6061 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6062 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6063 break;
6064 case PIPE_SHADER_TESS_EVAL:
6065 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6066 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6067 ctx->abi.load_tess_coord = si_load_tess_coord;
6068 ctx->abi.load_tess_level = si_load_tess_level;
6069 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6070 if (shader->key.as_es)
6071 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6072 else
6073 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6074 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6075 break;
6076 case PIPE_SHADER_GEOMETRY:
6077 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6078 ctx->abi.load_inputs = si_nir_load_input_gs;
6079 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6080 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6081 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6082 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6083 break;
6084 case PIPE_SHADER_FRAGMENT:
6085 ctx->load_input = declare_input_fs;
6086 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6087 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6088 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6089 ctx->abi.load_sample_position = load_sample_position;
6090 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6091 ctx->abi.emit_kill = si_llvm_emit_kill;
6092 break;
6093 case PIPE_SHADER_COMPUTE:
6094 ctx->abi.load_local_group_size = get_block_size;
6095 break;
6096 default:
6097 assert(!"Unsupported shader type");
6098 return false;
6099 }
6100
6101 ctx->abi.load_ubo = load_ubo;
6102 ctx->abi.load_ssbo = load_ssbo;
6103
6104 create_function(ctx);
6105 preload_ring_buffers(ctx);
6106
6107 /* For GFX9 merged shaders:
6108 * - Set EXEC for the first shader. If the prolog is present, set
6109 * EXEC there instead.
6110 * - Add a barrier before the second shader.
6111 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6112 * an if-statement. This is required for correctness in geometry
6113 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6114 * GS_CUT messages.
6115 *
6116 * For monolithic merged shaders, the first shader is wrapped in an
6117 * if-block together with its prolog in si_build_wrapper_function.
6118 */
6119 if (ctx->screen->info.chip_class >= GFX9) {
6120 if (!shader->is_monolithic &&
6121 sel->info.num_instructions > 1 && /* not empty shader */
6122 (shader->key.as_es || shader->key.as_ls) &&
6123 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6124 (ctx->type == PIPE_SHADER_VERTEX &&
6125 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6126 si_init_exec_from_input(ctx,
6127 ctx->param_merged_wave_info, 0);
6128 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6129 ctx->type == PIPE_SHADER_GEOMETRY) {
6130 if (!shader->is_monolithic)
6131 ac_init_exec_full_mask(&ctx->ac);
6132
6133 LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6134 LLVMValueRef ena =
6135 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6136 ac_get_thread_id(&ctx->ac), num_threads, "");
6137 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6138
6139 /* The barrier must execute for all shaders in a
6140 * threadgroup.
6141 *
6142 * Execute the barrier inside the conditional block,
6143 * so that empty waves can jump directly to s_endpgm,
6144 * which will also signal the barrier.
6145 *
6146 * If the shader is TCS and the TCS epilog is present
6147 * and contains a barrier, it will wait there and then
6148 * reach s_endpgm.
6149 */
6150 si_llvm_emit_barrier(NULL, bld_base, NULL);
6151 }
6152 }
6153
6154 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6155 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6156 for (unsigned i = 0; i < 6; i++) {
6157 ctx->invoc0_tess_factors[i] =
6158 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6159 }
6160 }
6161
6162 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6163 int i;
6164 for (i = 0; i < 4; i++) {
6165 ctx->gs_next_vertex[i] =
6166 ac_build_alloca(&ctx->ac, ctx->i32, "");
6167 }
6168 }
6169
6170 if (sel->force_correct_derivs_after_kill) {
6171 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6172 /* true = don't kill. */
6173 LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6174 ctx->postponed_kill);
6175 }
6176
6177 if (sel->tokens) {
6178 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6179 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6180 return false;
6181 }
6182 } else {
6183 if (!si_nir_build_llvm(ctx, sel->nir)) {
6184 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6185 return false;
6186 }
6187 }
6188
6189 si_llvm_build_ret(ctx, ctx->return_value);
6190 return true;
6191 }
6192
6193 /**
6194 * Compute the VS prolog key, which contains all the information needed to
6195 * build the VS prolog function, and set shader->info bits where needed.
6196 *
6197 * \param info Shader info of the vertex shader.
6198 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6199 * \param prolog_key Key of the VS prolog
6200 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6201 * \param key Output shader part key.
6202 */
6203 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6204 unsigned num_input_sgprs,
6205 const struct si_vs_prolog_bits *prolog_key,
6206 struct si_shader *shader_out,
6207 union si_shader_part_key *key)
6208 {
6209 memset(key, 0, sizeof(*key));
6210 key->vs_prolog.states = *prolog_key;
6211 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6212 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6213 key->vs_prolog.as_ls = shader_out->key.as_ls;
6214 key->vs_prolog.as_es = shader_out->key.as_es;
6215
6216 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6217 key->vs_prolog.as_ls = 1;
6218 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6219 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6220 key->vs_prolog.as_es = 1;
6221 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6222 }
6223
6224 /* Enable loading the InstanceID VGPR. */
6225 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6226
6227 if ((key->vs_prolog.states.instance_divisor_is_one |
6228 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6229 shader_out->info.uses_instanceid = true;
6230 }
6231
6232 /**
6233 * Compute the PS prolog key, which contains all the information needed to
6234 * build the PS prolog function, and set related bits in shader->config.
6235 */
6236 static void si_get_ps_prolog_key(struct si_shader *shader,
6237 union si_shader_part_key *key,
6238 bool separate_prolog)
6239 {
6240 struct tgsi_shader_info *info = &shader->selector->info;
6241
6242 memset(key, 0, sizeof(*key));
6243 key->ps_prolog.states = shader->key.part.ps.prolog;
6244 key->ps_prolog.colors_read = info->colors_read;
6245 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6246 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6247 key->ps_prolog.wqm = info->uses_derivatives &&
6248 (key->ps_prolog.colors_read ||
6249 key->ps_prolog.states.force_persp_sample_interp ||
6250 key->ps_prolog.states.force_linear_sample_interp ||
6251 key->ps_prolog.states.force_persp_center_interp ||
6252 key->ps_prolog.states.force_linear_center_interp ||
6253 key->ps_prolog.states.bc_optimize_for_persp ||
6254 key->ps_prolog.states.bc_optimize_for_linear);
6255 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6256
6257 if (info->colors_read) {
6258 unsigned *color = shader->selector->color_attr_index;
6259
6260 if (shader->key.part.ps.prolog.color_two_side) {
6261 /* BCOLORs are stored after the last input. */
6262 key->ps_prolog.num_interp_inputs = info->num_inputs;
6263 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6264 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6265 }
6266
6267 for (unsigned i = 0; i < 2; i++) {
6268 unsigned interp = info->input_interpolate[color[i]];
6269 unsigned location = info->input_interpolate_loc[color[i]];
6270
6271 if (!(info->colors_read & (0xf << i*4)))
6272 continue;
6273
6274 key->ps_prolog.color_attr_index[i] = color[i];
6275
6276 if (shader->key.part.ps.prolog.flatshade_colors &&
6277 interp == TGSI_INTERPOLATE_COLOR)
6278 interp = TGSI_INTERPOLATE_CONSTANT;
6279
6280 switch (interp) {
6281 case TGSI_INTERPOLATE_CONSTANT:
6282 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6283 break;
6284 case TGSI_INTERPOLATE_PERSPECTIVE:
6285 case TGSI_INTERPOLATE_COLOR:
6286 /* Force the interpolation location for colors here. */
6287 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6288 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6289 if (shader->key.part.ps.prolog.force_persp_center_interp)
6290 location = TGSI_INTERPOLATE_LOC_CENTER;
6291
6292 switch (location) {
6293 case TGSI_INTERPOLATE_LOC_SAMPLE:
6294 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6295 shader->config.spi_ps_input_ena |=
6296 S_0286CC_PERSP_SAMPLE_ENA(1);
6297 break;
6298 case TGSI_INTERPOLATE_LOC_CENTER:
6299 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6300 shader->config.spi_ps_input_ena |=
6301 S_0286CC_PERSP_CENTER_ENA(1);
6302 break;
6303 case TGSI_INTERPOLATE_LOC_CENTROID:
6304 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6305 shader->config.spi_ps_input_ena |=
6306 S_0286CC_PERSP_CENTROID_ENA(1);
6307 break;
6308 default:
6309 assert(0);
6310 }
6311 break;
6312 case TGSI_INTERPOLATE_LINEAR:
6313 /* Force the interpolation location for colors here. */
6314 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6315 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6316 if (shader->key.part.ps.prolog.force_linear_center_interp)
6317 location = TGSI_INTERPOLATE_LOC_CENTER;
6318
6319 /* The VGPR assignment for non-monolithic shaders
6320 * works because InitialPSInputAddr is set on the
6321 * main shader and PERSP_PULL_MODEL is never used.
6322 */
6323 switch (location) {
6324 case TGSI_INTERPOLATE_LOC_SAMPLE:
6325 key->ps_prolog.color_interp_vgpr_index[i] =
6326 separate_prolog ? 6 : 9;
6327 shader->config.spi_ps_input_ena |=
6328 S_0286CC_LINEAR_SAMPLE_ENA(1);
6329 break;
6330 case TGSI_INTERPOLATE_LOC_CENTER:
6331 key->ps_prolog.color_interp_vgpr_index[i] =
6332 separate_prolog ? 8 : 11;
6333 shader->config.spi_ps_input_ena |=
6334 S_0286CC_LINEAR_CENTER_ENA(1);
6335 break;
6336 case TGSI_INTERPOLATE_LOC_CENTROID:
6337 key->ps_prolog.color_interp_vgpr_index[i] =
6338 separate_prolog ? 10 : 13;
6339 shader->config.spi_ps_input_ena |=
6340 S_0286CC_LINEAR_CENTROID_ENA(1);
6341 break;
6342 default:
6343 assert(0);
6344 }
6345 break;
6346 default:
6347 assert(0);
6348 }
6349 }
6350 }
6351 }
6352
6353 /**
6354 * Check whether a PS prolog is required based on the key.
6355 */
6356 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6357 {
6358 return key->ps_prolog.colors_read ||
6359 key->ps_prolog.states.force_persp_sample_interp ||
6360 key->ps_prolog.states.force_linear_sample_interp ||
6361 key->ps_prolog.states.force_persp_center_interp ||
6362 key->ps_prolog.states.force_linear_center_interp ||
6363 key->ps_prolog.states.bc_optimize_for_persp ||
6364 key->ps_prolog.states.bc_optimize_for_linear ||
6365 key->ps_prolog.states.poly_stipple ||
6366 key->ps_prolog.states.samplemask_log_ps_iter;
6367 }
6368
6369 /**
6370 * Compute the PS epilog key, which contains all the information needed to
6371 * build the PS epilog function.
6372 */
6373 static void si_get_ps_epilog_key(struct si_shader *shader,
6374 union si_shader_part_key *key)
6375 {
6376 struct tgsi_shader_info *info = &shader->selector->info;
6377 memset(key, 0, sizeof(*key));
6378 key->ps_epilog.colors_written = info->colors_written;
6379 key->ps_epilog.writes_z = info->writes_z;
6380 key->ps_epilog.writes_stencil = info->writes_stencil;
6381 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6382 key->ps_epilog.states = shader->key.part.ps.epilog;
6383 }
6384
6385 /**
6386 * Build the GS prolog function. Rotate the input vertices for triangle strips
6387 * with adjacency.
6388 */
6389 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6390 union si_shader_part_key *key)
6391 {
6392 unsigned num_sgprs, num_vgprs;
6393 struct si_function_info fninfo;
6394 LLVMBuilderRef builder = ctx->ac.builder;
6395 LLVMTypeRef returns[48];
6396 LLVMValueRef func, ret;
6397
6398 si_init_function_info(&fninfo);
6399
6400 if (ctx->screen->info.chip_class >= GFX9) {
6401 if (key->gs_prolog.states.gfx9_prev_is_vs)
6402 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6403 else
6404 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6405 num_vgprs = 5; /* ES inputs are not needed by GS */
6406 } else {
6407 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6408 num_vgprs = 8;
6409 }
6410
6411 for (unsigned i = 0; i < num_sgprs; ++i) {
6412 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6413 returns[i] = ctx->i32;
6414 }
6415
6416 for (unsigned i = 0; i < num_vgprs; ++i) {
6417 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6418 returns[num_sgprs + i] = ctx->f32;
6419 }
6420
6421 /* Create the function. */
6422 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6423 &fninfo, 0);
6424 func = ctx->main_fn;
6425
6426 /* Set the full EXEC mask for the prolog, because we are only fiddling
6427 * with registers here. The main shader part will set the correct EXEC
6428 * mask.
6429 */
6430 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6431 ac_init_exec_full_mask(&ctx->ac);
6432
6433 /* Copy inputs to outputs. This should be no-op, as the registers match,
6434 * but it will prevent the compiler from overwriting them unintentionally.
6435 */
6436 ret = ctx->return_value;
6437 for (unsigned i = 0; i < num_sgprs; i++) {
6438 LLVMValueRef p = LLVMGetParam(func, i);
6439 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6440 }
6441 for (unsigned i = 0; i < num_vgprs; i++) {
6442 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6443 p = ac_to_float(&ctx->ac, p);
6444 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6445 }
6446
6447 if (key->gs_prolog.states.tri_strip_adj_fix) {
6448 /* Remap the input vertices for every other primitive. */
6449 const unsigned gfx6_vtx_params[6] = {
6450 num_sgprs,
6451 num_sgprs + 1,
6452 num_sgprs + 3,
6453 num_sgprs + 4,
6454 num_sgprs + 5,
6455 num_sgprs + 6
6456 };
6457 const unsigned gfx9_vtx_params[3] = {
6458 num_sgprs,
6459 num_sgprs + 1,
6460 num_sgprs + 4,
6461 };
6462 LLVMValueRef vtx_in[6], vtx_out[6];
6463 LLVMValueRef prim_id, rotate;
6464
6465 if (ctx->screen->info.chip_class >= GFX9) {
6466 for (unsigned i = 0; i < 3; i++) {
6467 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6468 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6469 }
6470 } else {
6471 for (unsigned i = 0; i < 6; i++)
6472 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6473 }
6474
6475 prim_id = LLVMGetParam(func, num_sgprs + 2);
6476 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6477
6478 for (unsigned i = 0; i < 6; ++i) {
6479 LLVMValueRef base, rotated;
6480 base = vtx_in[i];
6481 rotated = vtx_in[(i + 4) % 6];
6482 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6483 }
6484
6485 if (ctx->screen->info.chip_class >= GFX9) {
6486 for (unsigned i = 0; i < 3; i++) {
6487 LLVMValueRef hi, out;
6488
6489 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6490 LLVMConstInt(ctx->i32, 16, 0), "");
6491 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6492 out = ac_to_float(&ctx->ac, out);
6493 ret = LLVMBuildInsertValue(builder, ret, out,
6494 gfx9_vtx_params[i], "");
6495 }
6496 } else {
6497 for (unsigned i = 0; i < 6; i++) {
6498 LLVMValueRef out;
6499
6500 out = ac_to_float(&ctx->ac, vtx_out[i]);
6501 ret = LLVMBuildInsertValue(builder, ret, out,
6502 gfx6_vtx_params[i], "");
6503 }
6504 }
6505 }
6506
6507 LLVMBuildRet(builder, ret);
6508 }
6509
6510 /**
6511 * Given a list of shader part functions, build a wrapper function that
6512 * runs them in sequence to form a monolithic shader.
6513 */
6514 static void si_build_wrapper_function(struct si_shader_context *ctx,
6515 LLVMValueRef *parts,
6516 unsigned num_parts,
6517 unsigned main_part,
6518 unsigned next_shader_first_part)
6519 {
6520 LLVMBuilderRef builder = ctx->ac.builder;
6521 /* PS epilog has one arg per color component; gfx9 merged shader
6522 * prologs need to forward 32 user SGPRs.
6523 */
6524 struct si_function_info fninfo;
6525 LLVMValueRef initial[64], out[64];
6526 LLVMTypeRef function_type;
6527 unsigned num_first_params;
6528 unsigned num_out, initial_num_out;
6529 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6530 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6531 unsigned num_sgprs, num_vgprs;
6532 unsigned gprs;
6533 struct lp_build_if_state if_state;
6534
6535 si_init_function_info(&fninfo);
6536
6537 for (unsigned i = 0; i < num_parts; ++i) {
6538 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6539 AC_FUNC_ATTR_ALWAYSINLINE);
6540 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6541 }
6542
6543 /* The parameters of the wrapper function correspond to those of the
6544 * first part in terms of SGPRs and VGPRs, but we use the types of the
6545 * main part to get the right types. This is relevant for the
6546 * dereferenceable attribute on descriptor table pointers.
6547 */
6548 num_sgprs = 0;
6549 num_vgprs = 0;
6550
6551 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6552 num_first_params = LLVMCountParamTypes(function_type);
6553
6554 for (unsigned i = 0; i < num_first_params; ++i) {
6555 LLVMValueRef param = LLVMGetParam(parts[0], i);
6556
6557 if (ac_is_sgpr_param(param)) {
6558 assert(num_vgprs == 0);
6559 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6560 } else {
6561 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6562 }
6563 }
6564
6565 gprs = 0;
6566 while (gprs < num_sgprs + num_vgprs) {
6567 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6568 LLVMTypeRef type = LLVMTypeOf(param);
6569 unsigned size = ac_get_type_size(type) / 4;
6570
6571 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6572
6573 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6574 assert(gprs + size <= num_sgprs + num_vgprs &&
6575 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6576
6577 gprs += size;
6578 }
6579
6580 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6581 si_get_max_workgroup_size(ctx->shader));
6582
6583 if (is_merged_shader(ctx->shader))
6584 ac_init_exec_full_mask(&ctx->ac);
6585
6586 /* Record the arguments of the function as if they were an output of
6587 * a previous part.
6588 */
6589 num_out = 0;
6590 num_out_sgpr = 0;
6591
6592 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6593 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6594 LLVMTypeRef param_type = LLVMTypeOf(param);
6595 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6596 unsigned size = ac_get_type_size(param_type) / 4;
6597
6598 if (size == 1) {
6599 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6600 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6601 param_type = ctx->i32;
6602 }
6603
6604 if (param_type != out_type)
6605 param = LLVMBuildBitCast(builder, param, out_type, "");
6606 out[num_out++] = param;
6607 } else {
6608 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6609
6610 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6611 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6612 param_type = ctx->i64;
6613 }
6614
6615 if (param_type != vector_type)
6616 param = LLVMBuildBitCast(builder, param, vector_type, "");
6617
6618 for (unsigned j = 0; j < size; ++j)
6619 out[num_out++] = LLVMBuildExtractElement(
6620 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6621 }
6622
6623 if (i < fninfo.num_sgpr_params)
6624 num_out_sgpr = num_out;
6625 }
6626
6627 memcpy(initial, out, sizeof(out));
6628 initial_num_out = num_out;
6629 initial_num_out_sgpr = num_out_sgpr;
6630
6631 /* Now chain the parts. */
6632 for (unsigned part = 0; part < num_parts; ++part) {
6633 LLVMValueRef in[48];
6634 LLVMValueRef ret;
6635 LLVMTypeRef ret_type;
6636 unsigned out_idx = 0;
6637 unsigned num_params = LLVMCountParams(parts[part]);
6638
6639 /* Merged shaders are executed conditionally depending
6640 * on the number of enabled threads passed in the input SGPRs. */
6641 if (is_merged_shader(ctx->shader) && part == 0) {
6642 LLVMValueRef ena, count = initial[3];
6643
6644 count = LLVMBuildAnd(builder, count,
6645 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6646 ena = LLVMBuildICmp(builder, LLVMIntULT,
6647 ac_get_thread_id(&ctx->ac), count, "");
6648 lp_build_if(&if_state, &ctx->gallivm, ena);
6649 }
6650
6651 /* Derive arguments for the next part from outputs of the
6652 * previous one.
6653 */
6654 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6655 LLVMValueRef param;
6656 LLVMTypeRef param_type;
6657 bool is_sgpr;
6658 unsigned param_size;
6659 LLVMValueRef arg = NULL;
6660
6661 param = LLVMGetParam(parts[part], param_idx);
6662 param_type = LLVMTypeOf(param);
6663 param_size = ac_get_type_size(param_type) / 4;
6664 is_sgpr = ac_is_sgpr_param(param);
6665
6666 if (is_sgpr) {
6667 ac_add_function_attr(ctx->ac.context, parts[part],
6668 param_idx + 1, AC_FUNC_ATTR_INREG);
6669 } else if (out_idx < num_out_sgpr) {
6670 /* Skip returned SGPRs the current part doesn't
6671 * declare on the input. */
6672 out_idx = num_out_sgpr;
6673 }
6674
6675 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6676
6677 if (param_size == 1)
6678 arg = out[out_idx];
6679 else
6680 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6681
6682 if (LLVMTypeOf(arg) != param_type) {
6683 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6684 if (LLVMGetPointerAddressSpace(param_type) ==
6685 AC_CONST_32BIT_ADDR_SPACE) {
6686 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6687 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6688 } else {
6689 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6690 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6691 }
6692 } else {
6693 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6694 }
6695 }
6696
6697 in[param_idx] = arg;
6698 out_idx += param_size;
6699 }
6700
6701 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6702
6703 if (is_merged_shader(ctx->shader) &&
6704 part + 1 == next_shader_first_part) {
6705 lp_build_endif(&if_state);
6706
6707 /* The second half of the merged shader should use
6708 * the inputs from the toplevel (wrapper) function,
6709 * not the return value from the last call.
6710 *
6711 * That's because the last call was executed condi-
6712 * tionally, so we can't consume it in the main
6713 * block.
6714 */
6715 memcpy(out, initial, sizeof(initial));
6716 num_out = initial_num_out;
6717 num_out_sgpr = initial_num_out_sgpr;
6718 continue;
6719 }
6720
6721 /* Extract the returned GPRs. */
6722 ret_type = LLVMTypeOf(ret);
6723 num_out = 0;
6724 num_out_sgpr = 0;
6725
6726 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6727 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6728
6729 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6730
6731 for (unsigned i = 0; i < ret_size; ++i) {
6732 LLVMValueRef val =
6733 LLVMBuildExtractValue(builder, ret, i, "");
6734
6735 assert(num_out < ARRAY_SIZE(out));
6736 out[num_out++] = val;
6737
6738 if (LLVMTypeOf(val) == ctx->i32) {
6739 assert(num_out_sgpr + 1 == num_out);
6740 num_out_sgpr = num_out;
6741 }
6742 }
6743 }
6744 }
6745
6746 LLVMBuildRetVoid(builder);
6747 }
6748
6749 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6750 struct si_shader_selector *sel)
6751 {
6752 if (!compiler->low_opt_passes)
6753 return false;
6754
6755 /* Assume a slow CPU. */
6756 assert(!sel->screen->info.has_dedicated_vram &&
6757 sel->screen->info.chip_class <= VI);
6758
6759 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6760 * buffer stores. */
6761 return sel->type == PIPE_SHADER_COMPUTE &&
6762 sel->info.num_memory_instructions > 1000;
6763 }
6764
6765 int si_compile_tgsi_shader(struct si_screen *sscreen,
6766 struct ac_llvm_compiler *compiler,
6767 struct si_shader *shader,
6768 struct pipe_debug_callback *debug)
6769 {
6770 struct si_shader_selector *sel = shader->selector;
6771 struct si_shader_context ctx;
6772 int r = -1;
6773
6774 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6775 * conversion fails. */
6776 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6777 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6778 if (sel->tokens)
6779 tgsi_dump(sel->tokens, 0);
6780 else
6781 nir_print_shader(sel->nir, stderr);
6782 si_dump_streamout(&sel->so);
6783 }
6784
6785 si_init_shader_ctx(&ctx, sscreen, compiler);
6786 si_llvm_context_set_tgsi(&ctx, shader);
6787
6788 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6789 sizeof(shader->info.vs_output_param_offset));
6790
6791 shader->info.uses_instanceid = sel->info.uses_instanceid;
6792
6793 if (!si_compile_tgsi_main(&ctx)) {
6794 si_llvm_dispose(&ctx);
6795 return -1;
6796 }
6797
6798 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6799 LLVMValueRef parts[2];
6800 bool need_prolog = sel->vs_needs_prolog;
6801
6802 parts[1] = ctx.main_fn;
6803
6804 if (need_prolog) {
6805 union si_shader_part_key prolog_key;
6806 si_get_vs_prolog_key(&sel->info,
6807 shader->info.num_input_sgprs,
6808 &shader->key.part.vs.prolog,
6809 shader, &prolog_key);
6810 si_build_vs_prolog_function(&ctx, &prolog_key);
6811 parts[0] = ctx.main_fn;
6812 }
6813
6814 si_build_wrapper_function(&ctx, parts + !need_prolog,
6815 1 + need_prolog, need_prolog, 0);
6816 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6817 if (sscreen->info.chip_class >= GFX9) {
6818 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6819 LLVMValueRef parts[4];
6820 bool vs_needs_prolog =
6821 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6822
6823 /* TCS main part */
6824 parts[2] = ctx.main_fn;
6825
6826 /* TCS epilog */
6827 union si_shader_part_key tcs_epilog_key;
6828 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6829 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6830 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6831 parts[3] = ctx.main_fn;
6832
6833 /* VS as LS main part */
6834 struct si_shader shader_ls = {};
6835 shader_ls.selector = ls;
6836 shader_ls.key.as_ls = 1;
6837 shader_ls.key.mono = shader->key.mono;
6838 shader_ls.key.opt = shader->key.opt;
6839 shader_ls.is_monolithic = true;
6840 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6841
6842 if (!si_compile_tgsi_main(&ctx)) {
6843 si_llvm_dispose(&ctx);
6844 return -1;
6845 }
6846 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6847 parts[1] = ctx.main_fn;
6848
6849 /* LS prolog */
6850 if (vs_needs_prolog) {
6851 union si_shader_part_key vs_prolog_key;
6852 si_get_vs_prolog_key(&ls->info,
6853 shader_ls.info.num_input_sgprs,
6854 &shader->key.part.tcs.ls_prolog,
6855 shader, &vs_prolog_key);
6856 vs_prolog_key.vs_prolog.is_monolithic = true;
6857 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6858 parts[0] = ctx.main_fn;
6859 }
6860
6861 /* Reset the shader context. */
6862 ctx.shader = shader;
6863 ctx.type = PIPE_SHADER_TESS_CTRL;
6864
6865 si_build_wrapper_function(&ctx,
6866 parts + !vs_needs_prolog,
6867 4 - !vs_needs_prolog, vs_needs_prolog,
6868 vs_needs_prolog ? 2 : 1);
6869 } else {
6870 LLVMValueRef parts[2];
6871 union si_shader_part_key epilog_key;
6872
6873 parts[0] = ctx.main_fn;
6874
6875 memset(&epilog_key, 0, sizeof(epilog_key));
6876 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6877 si_build_tcs_epilog_function(&ctx, &epilog_key);
6878 parts[1] = ctx.main_fn;
6879
6880 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6881 }
6882 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6883 if (ctx.screen->info.chip_class >= GFX9) {
6884 struct si_shader_selector *es = shader->key.part.gs.es;
6885 LLVMValueRef es_prolog = NULL;
6886 LLVMValueRef es_main = NULL;
6887 LLVMValueRef gs_prolog = NULL;
6888 LLVMValueRef gs_main = ctx.main_fn;
6889
6890 /* GS prolog */
6891 union si_shader_part_key gs_prolog_key;
6892 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6893 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6894 gs_prolog_key.gs_prolog.is_monolithic = true;
6895 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6896 gs_prolog = ctx.main_fn;
6897
6898 /* ES main part */
6899 struct si_shader shader_es = {};
6900 shader_es.selector = es;
6901 shader_es.key.as_es = 1;
6902 shader_es.key.mono = shader->key.mono;
6903 shader_es.key.opt = shader->key.opt;
6904 shader_es.is_monolithic = true;
6905 si_llvm_context_set_tgsi(&ctx, &shader_es);
6906
6907 if (!si_compile_tgsi_main(&ctx)) {
6908 si_llvm_dispose(&ctx);
6909 return -1;
6910 }
6911 shader->info.uses_instanceid |= es->info.uses_instanceid;
6912 es_main = ctx.main_fn;
6913
6914 /* ES prolog */
6915 if (es->vs_needs_prolog) {
6916 union si_shader_part_key vs_prolog_key;
6917 si_get_vs_prolog_key(&es->info,
6918 shader_es.info.num_input_sgprs,
6919 &shader->key.part.gs.vs_prolog,
6920 shader, &vs_prolog_key);
6921 vs_prolog_key.vs_prolog.is_monolithic = true;
6922 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6923 es_prolog = ctx.main_fn;
6924 }
6925
6926 /* Reset the shader context. */
6927 ctx.shader = shader;
6928 ctx.type = PIPE_SHADER_GEOMETRY;
6929
6930 /* Prepare the array of shader parts. */
6931 LLVMValueRef parts[4];
6932 unsigned num_parts = 0, main_part, next_first_part;
6933
6934 if (es_prolog)
6935 parts[num_parts++] = es_prolog;
6936
6937 parts[main_part = num_parts++] = es_main;
6938 parts[next_first_part = num_parts++] = gs_prolog;
6939 parts[num_parts++] = gs_main;
6940
6941 si_build_wrapper_function(&ctx, parts, num_parts,
6942 main_part, next_first_part);
6943 } else {
6944 LLVMValueRef parts[2];
6945 union si_shader_part_key prolog_key;
6946
6947 parts[1] = ctx.main_fn;
6948
6949 memset(&prolog_key, 0, sizeof(prolog_key));
6950 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6951 si_build_gs_prolog_function(&ctx, &prolog_key);
6952 parts[0] = ctx.main_fn;
6953
6954 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6955 }
6956 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6957 LLVMValueRef parts[3];
6958 union si_shader_part_key prolog_key;
6959 union si_shader_part_key epilog_key;
6960 bool need_prolog;
6961
6962 si_get_ps_prolog_key(shader, &prolog_key, false);
6963 need_prolog = si_need_ps_prolog(&prolog_key);
6964
6965 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6966
6967 if (need_prolog) {
6968 si_build_ps_prolog_function(&ctx, &prolog_key);
6969 parts[0] = ctx.main_fn;
6970 }
6971
6972 si_get_ps_epilog_key(shader, &epilog_key);
6973 si_build_ps_epilog_function(&ctx, &epilog_key);
6974 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6975
6976 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6977 need_prolog ? 1 : 0, 0);
6978 }
6979
6980 si_llvm_optimize_module(&ctx);
6981
6982 /* Post-optimization transformations and analysis. */
6983 si_optimize_vs_outputs(&ctx);
6984
6985 if ((debug && debug->debug_message) ||
6986 si_can_dump_shader(sscreen, ctx.type)) {
6987 ctx.shader->config.private_mem_vgprs =
6988 ac_count_scratch_private_memory(ctx.main_fn);
6989 }
6990
6991 /* Make sure the input is a pointer and not integer followed by inttoptr. */
6992 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
6993 LLVMPointerTypeKind);
6994
6995 /* Compile to bytecode. */
6996 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
6997 ctx.ac.module, debug, ctx.type, "TGSI shader",
6998 si_should_optimize_less(compiler, shader->selector));
6999 si_llvm_dispose(&ctx);
7000 if (r) {
7001 fprintf(stderr, "LLVM failed to compile shader\n");
7002 return r;
7003 }
7004
7005 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7006 * LLVM 3.9svn has this bug.
7007 */
7008 if (sel->type == PIPE_SHADER_COMPUTE) {
7009 unsigned wave_size = 64;
7010 unsigned max_vgprs = 256;
7011 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
7012 unsigned max_sgprs_per_wave = 128;
7013 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7014 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7015 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7016
7017 max_vgprs = max_vgprs / min_waves_per_simd;
7018 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7019
7020 if (shader->config.num_sgprs > max_sgprs ||
7021 shader->config.num_vgprs > max_vgprs) {
7022 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7023 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7024 shader->config.num_sgprs, shader->config.num_vgprs,
7025 max_sgprs, max_vgprs);
7026
7027 /* Just terminate the process, because dependent
7028 * shaders can hang due to bad input data, but use
7029 * the env var to allow shader-db to work.
7030 */
7031 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7032 abort();
7033 }
7034 }
7035
7036 /* Add the scratch offset to input SGPRs. */
7037 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
7038 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7039
7040 /* Calculate the number of fragment input VGPRs. */
7041 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7042 shader->info.num_input_vgprs = 0;
7043 shader->info.face_vgpr_index = -1;
7044 shader->info.ancillary_vgpr_index = -1;
7045
7046 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7047 shader->info.num_input_vgprs += 2;
7048 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7049 shader->info.num_input_vgprs += 2;
7050 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7051 shader->info.num_input_vgprs += 2;
7052 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7053 shader->info.num_input_vgprs += 3;
7054 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7055 shader->info.num_input_vgprs += 2;
7056 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7057 shader->info.num_input_vgprs += 2;
7058 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7059 shader->info.num_input_vgprs += 2;
7060 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7061 shader->info.num_input_vgprs += 1;
7062 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7063 shader->info.num_input_vgprs += 1;
7064 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7065 shader->info.num_input_vgprs += 1;
7066 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7067 shader->info.num_input_vgprs += 1;
7068 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7069 shader->info.num_input_vgprs += 1;
7070 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7071 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7072 shader->info.num_input_vgprs += 1;
7073 }
7074 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7075 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7076 shader->info.num_input_vgprs += 1;
7077 }
7078 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7079 shader->info.num_input_vgprs += 1;
7080 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7081 shader->info.num_input_vgprs += 1;
7082 }
7083
7084 si_calculate_max_simd_waves(shader);
7085 si_shader_dump_stats_for_shader_db(shader, debug);
7086 return 0;
7087 }
7088
7089 /**
7090 * Create, compile and return a shader part (prolog or epilog).
7091 *
7092 * \param sscreen screen
7093 * \param list list of shader parts of the same category
7094 * \param type shader type
7095 * \param key shader part key
7096 * \param prolog whether the part being requested is a prolog
7097 * \param tm LLVM target machine
7098 * \param debug debug callback
7099 * \param build the callback responsible for building the main function
7100 * \return non-NULL on success
7101 */
7102 static struct si_shader_part *
7103 si_get_shader_part(struct si_screen *sscreen,
7104 struct si_shader_part **list,
7105 enum pipe_shader_type type,
7106 bool prolog,
7107 union si_shader_part_key *key,
7108 struct ac_llvm_compiler *compiler,
7109 struct pipe_debug_callback *debug,
7110 void (*build)(struct si_shader_context *,
7111 union si_shader_part_key *),
7112 const char *name)
7113 {
7114 struct si_shader_part *result;
7115
7116 mtx_lock(&sscreen->shader_parts_mutex);
7117
7118 /* Find existing. */
7119 for (result = *list; result; result = result->next) {
7120 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7121 mtx_unlock(&sscreen->shader_parts_mutex);
7122 return result;
7123 }
7124 }
7125
7126 /* Compile a new one. */
7127 result = CALLOC_STRUCT(si_shader_part);
7128 result->key = *key;
7129
7130 struct si_shader shader = {};
7131 struct si_shader_context ctx;
7132
7133 si_init_shader_ctx(&ctx, sscreen, compiler);
7134 ctx.shader = &shader;
7135 ctx.type = type;
7136
7137 switch (type) {
7138 case PIPE_SHADER_VERTEX:
7139 shader.key.as_ls = key->vs_prolog.as_ls;
7140 shader.key.as_es = key->vs_prolog.as_es;
7141 break;
7142 case PIPE_SHADER_TESS_CTRL:
7143 assert(!prolog);
7144 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7145 break;
7146 case PIPE_SHADER_GEOMETRY:
7147 assert(prolog);
7148 break;
7149 case PIPE_SHADER_FRAGMENT:
7150 if (prolog)
7151 shader.key.part.ps.prolog = key->ps_prolog.states;
7152 else
7153 shader.key.part.ps.epilog = key->ps_epilog.states;
7154 break;
7155 default:
7156 unreachable("bad shader part");
7157 }
7158
7159 build(&ctx, key);
7160
7161 /* Compile. */
7162 si_llvm_optimize_module(&ctx);
7163
7164 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7165 ctx.ac.module, debug, ctx.type, name, false)) {
7166 FREE(result);
7167 result = NULL;
7168 goto out;
7169 }
7170
7171 result->next = *list;
7172 *list = result;
7173
7174 out:
7175 si_llvm_dispose(&ctx);
7176 mtx_unlock(&sscreen->shader_parts_mutex);
7177 return result;
7178 }
7179
7180 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7181 {
7182 LLVMValueRef ptr[2], list;
7183 bool is_merged_shader =
7184 ctx->screen->info.chip_class >= GFX9 &&
7185 (ctx->type == PIPE_SHADER_TESS_CTRL ||
7186 ctx->type == PIPE_SHADER_GEOMETRY ||
7187 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7188
7189 if (HAVE_32BIT_POINTERS) {
7190 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7191 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7192 ac_array_in_const32_addr_space(ctx->v4i32), "");
7193 return list;
7194 }
7195
7196 /* Get the pointer to rw buffers. */
7197 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7198 ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS + 1);
7199 list = ac_build_gather_values(&ctx->ac, ptr, 2);
7200 list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7201 list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7202 ac_array_in_const_addr_space(ctx->v4i32), "");
7203 return list;
7204 }
7205
7206 /**
7207 * Build the vertex shader prolog function.
7208 *
7209 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7210 * All inputs are returned unmodified. The vertex load indices are
7211 * stored after them, which will be used by the API VS for fetching inputs.
7212 *
7213 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7214 * input_v0,
7215 * input_v1,
7216 * input_v2,
7217 * input_v3,
7218 * (VertexID + BaseVertex),
7219 * (InstanceID + StartInstance),
7220 * (InstanceID / 2 + StartInstance)
7221 */
7222 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7223 union si_shader_part_key *key)
7224 {
7225 struct si_function_info fninfo;
7226 LLVMTypeRef *returns;
7227 LLVMValueRef ret, func;
7228 int num_returns, i;
7229 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7230 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7231 LLVMValueRef input_vgprs[9];
7232 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7233 num_input_vgprs;
7234 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7235
7236 si_init_function_info(&fninfo);
7237
7238 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7239 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7240 sizeof(LLVMTypeRef));
7241 num_returns = 0;
7242
7243 /* Declare input and output SGPRs. */
7244 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7245 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7246 returns[num_returns++] = ctx->i32;
7247 }
7248
7249 /* Preloaded VGPRs (outputs must be floats) */
7250 for (i = 0; i < num_input_vgprs; i++) {
7251 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7252 returns[num_returns++] = ctx->f32;
7253 }
7254
7255 /* Vertex load indices. */
7256 for (i = 0; i <= key->vs_prolog.last_input; i++)
7257 returns[num_returns++] = ctx->f32;
7258
7259 /* Create the function. */
7260 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7261 func = ctx->main_fn;
7262
7263 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7264 if (!key->vs_prolog.is_monolithic)
7265 si_init_exec_from_input(ctx, 3, 0);
7266
7267 if (key->vs_prolog.as_ls &&
7268 ctx->screen->has_ls_vgpr_init_bug) {
7269 /* If there are no HS threads, SPI loads the LS VGPRs
7270 * starting at VGPR 0. Shift them back to where they
7271 * belong.
7272 */
7273 LLVMValueRef has_hs_threads =
7274 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7275 si_unpack_param(ctx, 3, 8, 8),
7276 ctx->i32_0, "");
7277
7278 for (i = 4; i > 0; --i) {
7279 input_vgprs[i + 1] =
7280 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7281 input_vgprs[i + 1],
7282 input_vgprs[i - 1], "");
7283 }
7284 }
7285 }
7286
7287 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7288 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7289
7290 /* Copy inputs to outputs. This should be no-op, as the registers match,
7291 * but it will prevent the compiler from overwriting them unintentionally.
7292 */
7293 ret = ctx->return_value;
7294 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7295 LLVMValueRef p = LLVMGetParam(func, i);
7296 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7297 }
7298 for (i = 0; i < num_input_vgprs; i++) {
7299 LLVMValueRef p = input_vgprs[i];
7300 p = ac_to_float(&ctx->ac, p);
7301 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7302 key->vs_prolog.num_input_sgprs + i, "");
7303 }
7304
7305 /* Compute vertex load indices from instance divisors. */
7306 LLVMValueRef instance_divisor_constbuf = NULL;
7307
7308 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7309 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7310 LLVMValueRef buf_index =
7311 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7312 instance_divisor_constbuf =
7313 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7314 }
7315
7316 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7317 bool divisor_is_one =
7318 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7319 bool divisor_is_fetched =
7320 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7321 LLVMValueRef index;
7322
7323 if (divisor_is_one || divisor_is_fetched) {
7324 LLVMValueRef divisor = ctx->i32_1;
7325
7326 if (divisor_is_fetched) {
7327 divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7328 LLVMConstInt(ctx->i32, i * 4, 0));
7329 divisor = ac_to_integer(&ctx->ac, divisor);
7330 }
7331
7332 /* InstanceID / Divisor + StartInstance */
7333 index = get_instance_index_for_fetch(ctx,
7334 user_sgpr_base +
7335 SI_SGPR_START_INSTANCE,
7336 divisor);
7337 } else {
7338 /* VertexID + BaseVertex */
7339 index = LLVMBuildAdd(ctx->ac.builder,
7340 ctx->abi.vertex_id,
7341 LLVMGetParam(func, user_sgpr_base +
7342 SI_SGPR_BASE_VERTEX), "");
7343 }
7344
7345 index = ac_to_float(&ctx->ac, index);
7346 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7347 fninfo.num_params + i, "");
7348 }
7349
7350 si_llvm_build_ret(ctx, ret);
7351 }
7352
7353 static bool si_get_vs_prolog(struct si_screen *sscreen,
7354 struct ac_llvm_compiler *compiler,
7355 struct si_shader *shader,
7356 struct pipe_debug_callback *debug,
7357 struct si_shader *main_part,
7358 const struct si_vs_prolog_bits *key)
7359 {
7360 struct si_shader_selector *vs = main_part->selector;
7361
7362 if (!si_vs_needs_prolog(vs, key))
7363 return true;
7364
7365 /* Get the prolog. */
7366 union si_shader_part_key prolog_key;
7367 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7368 key, shader, &prolog_key);
7369
7370 shader->prolog =
7371 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7372 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7373 debug, si_build_vs_prolog_function,
7374 "Vertex Shader Prolog");
7375 return shader->prolog != NULL;
7376 }
7377
7378 /**
7379 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7380 */
7381 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7382 struct ac_llvm_compiler *compiler,
7383 struct si_shader *shader,
7384 struct pipe_debug_callback *debug)
7385 {
7386 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7387 &shader->key.part.vs.prolog);
7388 }
7389
7390 /**
7391 * Compile the TCS epilog function. This writes tesselation factors to memory
7392 * based on the output primitive type of the tesselator (determined by TES).
7393 */
7394 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7395 union si_shader_part_key *key)
7396 {
7397 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7398 struct si_function_info fninfo;
7399 LLVMValueRef func;
7400
7401 si_init_function_info(&fninfo);
7402
7403 if (ctx->screen->info.chip_class >= GFX9) {
7404 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7405 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7406 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7407 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7408 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7409 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7410 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7411 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7412 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7413 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7414 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7415 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7416 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7417 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7418 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7419 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7420 if (!HAVE_32BIT_POINTERS)
7421 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7422 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7423 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7424 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7425 } else {
7426 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7427 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7428 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7429 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7430 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7431 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7432 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7433 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7434 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7435 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7436 }
7437
7438 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7439 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7440 unsigned tess_factors_idx =
7441 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7442 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7443 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7444
7445 for (unsigned i = 0; i < 6; i++)
7446 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7447
7448 /* Create the function. */
7449 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7450 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7451 ac_declare_lds_as_pointer(&ctx->ac);
7452 func = ctx->main_fn;
7453
7454 LLVMValueRef invoc0_tess_factors[6];
7455 for (unsigned i = 0; i < 6; i++)
7456 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7457
7458 si_write_tess_factors(bld_base,
7459 LLVMGetParam(func, tess_factors_idx),
7460 LLVMGetParam(func, tess_factors_idx + 1),
7461 LLVMGetParam(func, tess_factors_idx + 2),
7462 invoc0_tess_factors, invoc0_tess_factors + 4);
7463
7464 LLVMBuildRetVoid(ctx->ac.builder);
7465 }
7466
7467 /**
7468 * Select and compile (or reuse) TCS parts (epilog).
7469 */
7470 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7471 struct ac_llvm_compiler *compiler,
7472 struct si_shader *shader,
7473 struct pipe_debug_callback *debug)
7474 {
7475 if (sscreen->info.chip_class >= GFX9) {
7476 struct si_shader *ls_main_part =
7477 shader->key.part.tcs.ls->main_shader_part_ls;
7478
7479 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7480 &shader->key.part.tcs.ls_prolog))
7481 return false;
7482
7483 shader->previous_stage = ls_main_part;
7484 }
7485
7486 /* Get the epilog. */
7487 union si_shader_part_key epilog_key;
7488 memset(&epilog_key, 0, sizeof(epilog_key));
7489 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7490
7491 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7492 PIPE_SHADER_TESS_CTRL, false,
7493 &epilog_key, compiler, debug,
7494 si_build_tcs_epilog_function,
7495 "Tessellation Control Shader Epilog");
7496 return shader->epilog != NULL;
7497 }
7498
7499 /**
7500 * Select and compile (or reuse) GS parts (prolog).
7501 */
7502 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7503 struct ac_llvm_compiler *compiler,
7504 struct si_shader *shader,
7505 struct pipe_debug_callback *debug)
7506 {
7507 if (sscreen->info.chip_class >= GFX9) {
7508 struct si_shader *es_main_part =
7509 shader->key.part.gs.es->main_shader_part_es;
7510
7511 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7512 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7513 &shader->key.part.gs.vs_prolog))
7514 return false;
7515
7516 shader->previous_stage = es_main_part;
7517 }
7518
7519 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7520 return true;
7521
7522 union si_shader_part_key prolog_key;
7523 memset(&prolog_key, 0, sizeof(prolog_key));
7524 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7525
7526 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7527 PIPE_SHADER_GEOMETRY, true,
7528 &prolog_key, compiler, debug,
7529 si_build_gs_prolog_function,
7530 "Geometry Shader Prolog");
7531 return shader->prolog2 != NULL;
7532 }
7533
7534 /**
7535 * Build the pixel shader prolog function. This handles:
7536 * - two-side color selection and interpolation
7537 * - overriding interpolation parameters for the API PS
7538 * - polygon stippling
7539 *
7540 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7541 * overriden by other states. (e.g. per-sample interpolation)
7542 * Interpolated colors are stored after the preloaded VGPRs.
7543 */
7544 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7545 union si_shader_part_key *key)
7546 {
7547 struct si_function_info fninfo;
7548 LLVMValueRef ret, func;
7549 int num_returns, i, num_color_channels;
7550
7551 assert(si_need_ps_prolog(key));
7552
7553 si_init_function_info(&fninfo);
7554
7555 /* Declare inputs. */
7556 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7557 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7558
7559 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7560 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7561
7562 /* Declare outputs (same as inputs + add colors if needed) */
7563 num_returns = fninfo.num_params;
7564 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7565 for (i = 0; i < num_color_channels; i++)
7566 fninfo.types[num_returns++] = ctx->f32;
7567
7568 /* Create the function. */
7569 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7570 &fninfo, 0);
7571 func = ctx->main_fn;
7572
7573 /* Copy inputs to outputs. This should be no-op, as the registers match,
7574 * but it will prevent the compiler from overwriting them unintentionally.
7575 */
7576 ret = ctx->return_value;
7577 for (i = 0; i < fninfo.num_params; i++) {
7578 LLVMValueRef p = LLVMGetParam(func, i);
7579 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7580 }
7581
7582 /* Polygon stippling. */
7583 if (key->ps_prolog.states.poly_stipple) {
7584 /* POS_FIXED_PT is always last. */
7585 unsigned pos = key->ps_prolog.num_input_sgprs +
7586 key->ps_prolog.num_input_vgprs - 1;
7587 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7588
7589 si_llvm_emit_polygon_stipple(ctx, list, pos);
7590 }
7591
7592 if (key->ps_prolog.states.bc_optimize_for_persp ||
7593 key->ps_prolog.states.bc_optimize_for_linear) {
7594 unsigned i, base = key->ps_prolog.num_input_sgprs;
7595 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7596
7597 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7598 * The hw doesn't compute CENTROID if the whole wave only
7599 * contains fully-covered quads.
7600 *
7601 * PRIM_MASK is after user SGPRs.
7602 */
7603 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7604 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7605 LLVMConstInt(ctx->i32, 31, 0), "");
7606 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7607 ctx->i1, "");
7608
7609 if (key->ps_prolog.states.bc_optimize_for_persp) {
7610 /* Read PERSP_CENTER. */
7611 for (i = 0; i < 2; i++)
7612 center[i] = LLVMGetParam(func, base + 2 + i);
7613 /* Read PERSP_CENTROID. */
7614 for (i = 0; i < 2; i++)
7615 centroid[i] = LLVMGetParam(func, base + 4 + i);
7616 /* Select PERSP_CENTROID. */
7617 for (i = 0; i < 2; i++) {
7618 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7619 center[i], centroid[i], "");
7620 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7621 tmp, base + 4 + i, "");
7622 }
7623 }
7624 if (key->ps_prolog.states.bc_optimize_for_linear) {
7625 /* Read LINEAR_CENTER. */
7626 for (i = 0; i < 2; i++)
7627 center[i] = LLVMGetParam(func, base + 8 + i);
7628 /* Read LINEAR_CENTROID. */
7629 for (i = 0; i < 2; i++)
7630 centroid[i] = LLVMGetParam(func, base + 10 + i);
7631 /* Select LINEAR_CENTROID. */
7632 for (i = 0; i < 2; i++) {
7633 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7634 center[i], centroid[i], "");
7635 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7636 tmp, base + 10 + i, "");
7637 }
7638 }
7639 }
7640
7641 /* Force per-sample interpolation. */
7642 if (key->ps_prolog.states.force_persp_sample_interp) {
7643 unsigned i, base = key->ps_prolog.num_input_sgprs;
7644 LLVMValueRef persp_sample[2];
7645
7646 /* Read PERSP_SAMPLE. */
7647 for (i = 0; i < 2; i++)
7648 persp_sample[i] = LLVMGetParam(func, base + i);
7649 /* Overwrite PERSP_CENTER. */
7650 for (i = 0; i < 2; i++)
7651 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7652 persp_sample[i], base + 2 + i, "");
7653 /* Overwrite PERSP_CENTROID. */
7654 for (i = 0; i < 2; i++)
7655 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7656 persp_sample[i], base + 4 + i, "");
7657 }
7658 if (key->ps_prolog.states.force_linear_sample_interp) {
7659 unsigned i, base = key->ps_prolog.num_input_sgprs;
7660 LLVMValueRef linear_sample[2];
7661
7662 /* Read LINEAR_SAMPLE. */
7663 for (i = 0; i < 2; i++)
7664 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7665 /* Overwrite LINEAR_CENTER. */
7666 for (i = 0; i < 2; i++)
7667 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7668 linear_sample[i], base + 8 + i, "");
7669 /* Overwrite LINEAR_CENTROID. */
7670 for (i = 0; i < 2; i++)
7671 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7672 linear_sample[i], base + 10 + i, "");
7673 }
7674
7675 /* Force center interpolation. */
7676 if (key->ps_prolog.states.force_persp_center_interp) {
7677 unsigned i, base = key->ps_prolog.num_input_sgprs;
7678 LLVMValueRef persp_center[2];
7679
7680 /* Read PERSP_CENTER. */
7681 for (i = 0; i < 2; i++)
7682 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7683 /* Overwrite PERSP_SAMPLE. */
7684 for (i = 0; i < 2; i++)
7685 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7686 persp_center[i], base + i, "");
7687 /* Overwrite PERSP_CENTROID. */
7688 for (i = 0; i < 2; i++)
7689 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7690 persp_center[i], base + 4 + i, "");
7691 }
7692 if (key->ps_prolog.states.force_linear_center_interp) {
7693 unsigned i, base = key->ps_prolog.num_input_sgprs;
7694 LLVMValueRef linear_center[2];
7695
7696 /* Read LINEAR_CENTER. */
7697 for (i = 0; i < 2; i++)
7698 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7699 /* Overwrite LINEAR_SAMPLE. */
7700 for (i = 0; i < 2; i++)
7701 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7702 linear_center[i], base + 6 + i, "");
7703 /* Overwrite LINEAR_CENTROID. */
7704 for (i = 0; i < 2; i++)
7705 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7706 linear_center[i], base + 10 + i, "");
7707 }
7708
7709 /* Interpolate colors. */
7710 unsigned color_out_idx = 0;
7711 for (i = 0; i < 2; i++) {
7712 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7713 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7714 key->ps_prolog.face_vgpr_index;
7715 LLVMValueRef interp[2], color[4];
7716 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7717
7718 if (!writemask)
7719 continue;
7720
7721 /* If the interpolation qualifier is not CONSTANT (-1). */
7722 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7723 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7724 key->ps_prolog.color_interp_vgpr_index[i];
7725
7726 /* Get the (i,j) updated by bc_optimize handling. */
7727 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7728 interp_vgpr, "");
7729 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7730 interp_vgpr + 1, "");
7731 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7732 }
7733
7734 /* Use the absolute location of the input. */
7735 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7736
7737 if (key->ps_prolog.states.color_two_side) {
7738 face = LLVMGetParam(func, face_vgpr);
7739 face = ac_to_integer(&ctx->ac, face);
7740 }
7741
7742 interp_fs_input(ctx,
7743 key->ps_prolog.color_attr_index[i],
7744 TGSI_SEMANTIC_COLOR, i,
7745 key->ps_prolog.num_interp_inputs,
7746 key->ps_prolog.colors_read, interp_ij,
7747 prim_mask, face, color);
7748
7749 while (writemask) {
7750 unsigned chan = u_bit_scan(&writemask);
7751 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7752 fninfo.num_params + color_out_idx++, "");
7753 }
7754 }
7755
7756 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7757 * says:
7758 *
7759 * "When per-sample shading is active due to the use of a fragment
7760 * input qualified by sample or due to the use of the gl_SampleID
7761 * or gl_SamplePosition variables, only the bit for the current
7762 * sample is set in gl_SampleMaskIn. When state specifies multiple
7763 * fragment shader invocations for a given fragment, the sample
7764 * mask for any single fragment shader invocation may specify a
7765 * subset of the covered samples for the fragment. In this case,
7766 * the bit corresponding to each covered sample will be set in
7767 * exactly one fragment shader invocation."
7768 *
7769 * The samplemask loaded by hardware is always the coverage of the
7770 * entire pixel/fragment, so mask bits out based on the sample ID.
7771 */
7772 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7773 /* The bit pattern matches that used by fixed function fragment
7774 * processing. */
7775 static const uint16_t ps_iter_masks[] = {
7776 0xffff, /* not used */
7777 0x5555,
7778 0x1111,
7779 0x0101,
7780 0x0001,
7781 };
7782 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7783
7784 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7785 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7786 key->ps_prolog.ancillary_vgpr_index;
7787 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7788 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7789
7790 samplemask = ac_to_integer(&ctx->ac, samplemask);
7791 samplemask = LLVMBuildAnd(
7792 ctx->ac.builder,
7793 samplemask,
7794 LLVMBuildShl(ctx->ac.builder,
7795 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7796 sampleid, ""),
7797 "");
7798 samplemask = ac_to_float(&ctx->ac, samplemask);
7799
7800 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7801 ancillary_vgpr + 1, "");
7802 }
7803
7804 /* Tell LLVM to insert WQM instruction sequence when needed. */
7805 if (key->ps_prolog.wqm) {
7806 LLVMAddTargetDependentFunctionAttr(func,
7807 "amdgpu-ps-wqm-outputs", "");
7808 }
7809
7810 si_llvm_build_ret(ctx, ret);
7811 }
7812
7813 /**
7814 * Build the pixel shader epilog function. This handles everything that must be
7815 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7816 */
7817 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7818 union si_shader_part_key *key)
7819 {
7820 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7821 struct si_function_info fninfo;
7822 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7823 int i;
7824 struct si_ps_exports exp = {};
7825
7826 si_init_function_info(&fninfo);
7827
7828 /* Declare input SGPRs. */
7829 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7830 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7831 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7832 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7833 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7834
7835 /* Declare input VGPRs. */
7836 unsigned required_num_params =
7837 fninfo.num_sgpr_params +
7838 util_bitcount(key->ps_epilog.colors_written) * 4 +
7839 key->ps_epilog.writes_z +
7840 key->ps_epilog.writes_stencil +
7841 key->ps_epilog.writes_samplemask;
7842
7843 required_num_params = MAX2(required_num_params,
7844 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7845
7846 while (fninfo.num_params < required_num_params)
7847 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7848
7849 /* Create the function. */
7850 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7851 /* Disable elimination of unused inputs. */
7852 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
7853 "InitialPSInputAddr", 0xffffff);
7854
7855 /* Process colors. */
7856 unsigned vgpr = fninfo.num_sgpr_params;
7857 unsigned colors_written = key->ps_epilog.colors_written;
7858 int last_color_export = -1;
7859
7860 /* Find the last color export. */
7861 if (!key->ps_epilog.writes_z &&
7862 !key->ps_epilog.writes_stencil &&
7863 !key->ps_epilog.writes_samplemask) {
7864 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7865
7866 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7867 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7868 /* Just set this if any of the colorbuffers are enabled. */
7869 if (spi_format &
7870 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7871 last_color_export = 0;
7872 } else {
7873 for (i = 0; i < 8; i++)
7874 if (colors_written & (1 << i) &&
7875 (spi_format >> (i * 4)) & 0xf)
7876 last_color_export = i;
7877 }
7878 }
7879
7880 while (colors_written) {
7881 LLVMValueRef color[4];
7882 int mrt = u_bit_scan(&colors_written);
7883
7884 for (i = 0; i < 4; i++)
7885 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7886
7887 si_export_mrt_color(bld_base, color, mrt,
7888 fninfo.num_params - 1,
7889 mrt == last_color_export, &exp);
7890 }
7891
7892 /* Process depth, stencil, samplemask. */
7893 if (key->ps_epilog.writes_z)
7894 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7895 if (key->ps_epilog.writes_stencil)
7896 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7897 if (key->ps_epilog.writes_samplemask)
7898 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7899
7900 if (depth || stencil || samplemask)
7901 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7902 else if (last_color_export == -1)
7903 ac_build_export_null(&ctx->ac);
7904
7905 if (exp.num)
7906 si_emit_ps_exports(ctx, &exp);
7907
7908 /* Compile. */
7909 LLVMBuildRetVoid(ctx->ac.builder);
7910 }
7911
7912 /**
7913 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7914 */
7915 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7916 struct ac_llvm_compiler *compiler,
7917 struct si_shader *shader,
7918 struct pipe_debug_callback *debug)
7919 {
7920 union si_shader_part_key prolog_key;
7921 union si_shader_part_key epilog_key;
7922
7923 /* Get the prolog. */
7924 si_get_ps_prolog_key(shader, &prolog_key, true);
7925
7926 /* The prolog is a no-op if these aren't set. */
7927 if (si_need_ps_prolog(&prolog_key)) {
7928 shader->prolog =
7929 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7930 PIPE_SHADER_FRAGMENT, true,
7931 &prolog_key, compiler, debug,
7932 si_build_ps_prolog_function,
7933 "Fragment Shader Prolog");
7934 if (!shader->prolog)
7935 return false;
7936 }
7937
7938 /* Get the epilog. */
7939 si_get_ps_epilog_key(shader, &epilog_key);
7940
7941 shader->epilog =
7942 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7943 PIPE_SHADER_FRAGMENT, false,
7944 &epilog_key, compiler, debug,
7945 si_build_ps_epilog_function,
7946 "Fragment Shader Epilog");
7947 if (!shader->epilog)
7948 return false;
7949
7950 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7951 if (shader->key.part.ps.prolog.poly_stipple) {
7952 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7953 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7954 }
7955
7956 /* Set up the enable bits for per-sample shading if needed. */
7957 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7958 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7959 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7960 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7961 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7962 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7963 }
7964 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7965 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7966 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7967 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7968 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7969 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7970 }
7971 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7972 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7973 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7974 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7975 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7976 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7977 }
7978 if (shader->key.part.ps.prolog.force_linear_center_interp &&
7979 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7980 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7981 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7982 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7983 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7984 }
7985
7986 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7987 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7988 !(shader->config.spi_ps_input_ena & 0xf)) {
7989 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7990 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7991 }
7992
7993 /* At least one pair of interpolation weights must be enabled. */
7994 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7995 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7996 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7997 }
7998
7999 /* Samplemask fixup requires the sample ID. */
8000 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8001 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8002 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8003 }
8004
8005 /* The sample mask input is always enabled, because the API shader always
8006 * passes it through to the epilog. Disable it here if it's unused.
8007 */
8008 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8009 !shader->selector->info.reads_samplemask)
8010 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8011
8012 return true;
8013 }
8014
8015 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8016 unsigned *lds_size)
8017 {
8018 /* If tessellation is all offchip and on-chip GS isn't used, this
8019 * workaround is not needed.
8020 */
8021 return;
8022
8023 /* SPI barrier management bug:
8024 * Make sure we have at least 4k of LDS in use to avoid the bug.
8025 * It applies to workgroup sizes of more than one wavefront.
8026 */
8027 if (sscreen->info.family == CHIP_BONAIRE ||
8028 sscreen->info.family == CHIP_KABINI ||
8029 sscreen->info.family == CHIP_MULLINS)
8030 *lds_size = MAX2(*lds_size, 8);
8031 }
8032
8033 static void si_fix_resource_usage(struct si_screen *sscreen,
8034 struct si_shader *shader)
8035 {
8036 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8037
8038 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8039
8040 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8041 si_get_max_workgroup_size(shader) > 64) {
8042 si_multiwave_lds_size_workaround(sscreen,
8043 &shader->config.lds_size);
8044 }
8045 }
8046
8047 int si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8048 struct si_shader *shader,
8049 struct pipe_debug_callback *debug)
8050 {
8051 struct si_shader_selector *sel = shader->selector;
8052 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8053 int r;
8054
8055 /* LS, ES, VS are compiled on demand if the main part hasn't been
8056 * compiled for that stage.
8057 *
8058 * Vertex shaders are compiled on demand when a vertex fetch
8059 * workaround must be applied.
8060 */
8061 if (shader->is_monolithic) {
8062 /* Monolithic shader (compiled as a whole, has many variants,
8063 * may take a long time to compile).
8064 */
8065 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8066 if (r)
8067 return r;
8068 } else {
8069 /* The shader consists of several parts:
8070 *
8071 * - the middle part is the user shader, it has 1 variant only
8072 * and it was compiled during the creation of the shader
8073 * selector
8074 * - the prolog part is inserted at the beginning
8075 * - the epilog part is inserted at the end
8076 *
8077 * The prolog and epilog have many (but simple) variants.
8078 *
8079 * Starting with gfx9, geometry and tessellation control
8080 * shaders also contain the prolog and user shader parts of
8081 * the previous shader stage.
8082 */
8083
8084 if (!mainp)
8085 return -1;
8086
8087 /* Copy the compiled TGSI shader data over. */
8088 shader->is_binary_shared = true;
8089 shader->binary = mainp->binary;
8090 shader->config = mainp->config;
8091 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8092 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8093 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8094 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8095 memcpy(shader->info.vs_output_param_offset,
8096 mainp->info.vs_output_param_offset,
8097 sizeof(mainp->info.vs_output_param_offset));
8098 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8099 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8100 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8101
8102 /* Select prologs and/or epilogs. */
8103 switch (sel->type) {
8104 case PIPE_SHADER_VERTEX:
8105 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8106 return -1;
8107 break;
8108 case PIPE_SHADER_TESS_CTRL:
8109 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8110 return -1;
8111 break;
8112 case PIPE_SHADER_TESS_EVAL:
8113 break;
8114 case PIPE_SHADER_GEOMETRY:
8115 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8116 return -1;
8117 break;
8118 case PIPE_SHADER_FRAGMENT:
8119 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8120 return -1;
8121
8122 /* Make sure we have at least as many VGPRs as there
8123 * are allocated inputs.
8124 */
8125 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8126 shader->info.num_input_vgprs);
8127 break;
8128 }
8129
8130 /* Update SGPR and VGPR counts. */
8131 if (shader->prolog) {
8132 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8133 shader->prolog->config.num_sgprs);
8134 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8135 shader->prolog->config.num_vgprs);
8136 }
8137 if (shader->previous_stage) {
8138 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8139 shader->previous_stage->config.num_sgprs);
8140 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8141 shader->previous_stage->config.num_vgprs);
8142 shader->config.spilled_sgprs =
8143 MAX2(shader->config.spilled_sgprs,
8144 shader->previous_stage->config.spilled_sgprs);
8145 shader->config.spilled_vgprs =
8146 MAX2(shader->config.spilled_vgprs,
8147 shader->previous_stage->config.spilled_vgprs);
8148 shader->config.private_mem_vgprs =
8149 MAX2(shader->config.private_mem_vgprs,
8150 shader->previous_stage->config.private_mem_vgprs);
8151 shader->config.scratch_bytes_per_wave =
8152 MAX2(shader->config.scratch_bytes_per_wave,
8153 shader->previous_stage->config.scratch_bytes_per_wave);
8154 shader->info.uses_instanceid |=
8155 shader->previous_stage->info.uses_instanceid;
8156 }
8157 if (shader->prolog2) {
8158 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8159 shader->prolog2->config.num_sgprs);
8160 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8161 shader->prolog2->config.num_vgprs);
8162 }
8163 if (shader->epilog) {
8164 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8165 shader->epilog->config.num_sgprs);
8166 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8167 shader->epilog->config.num_vgprs);
8168 }
8169 si_calculate_max_simd_waves(shader);
8170 }
8171
8172 si_fix_resource_usage(sscreen, shader);
8173 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8174 stderr, true);
8175
8176 /* Upload. */
8177 r = si_shader_binary_upload(sscreen, shader);
8178 if (r) {
8179 fprintf(stderr, "LLVM failed to upload shader\n");
8180 return r;
8181 }
8182
8183 return 0;
8184 }
8185
8186 void si_shader_destroy(struct si_shader *shader)
8187 {
8188 if (shader->scratch_bo)
8189 r600_resource_reference(&shader->scratch_bo, NULL);
8190
8191 r600_resource_reference(&shader->bo, NULL);
8192
8193 if (!shader->is_binary_shared)
8194 ac_shader_binary_clean(&shader->binary);
8195
8196 free(shader->shader_log);
8197 }