ac: add ac_build_load_helper_invocation() helper
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_util.h"
29 #include "tgsi/tgsi_dump.h"
30
31 #include "ac_exp_param.h"
32 #include "ac_shader_util.h"
33 #include "ac_llvm_util.h"
34 #include "si_shader_internal.h"
35 #include "si_pipe.h"
36 #include "sid.h"
37
38 #include "compiler/nir/nir.h"
39
40 static const char *scratch_rsrc_dword0_symbol =
41 "SCRATCH_RSRC_DWORD0";
42
43 static const char *scratch_rsrc_dword1_symbol =
44 "SCRATCH_RSRC_DWORD1";
45
46 struct si_shader_output_values
47 {
48 LLVMValueRef values[4];
49 unsigned semantic_name;
50 unsigned semantic_index;
51 ubyte vertex_stream[4];
52 };
53
54 /**
55 * Used to collect types and other info about arguments of the LLVM function
56 * before the function is created.
57 */
58 struct si_function_info {
59 LLVMTypeRef types[100];
60 LLVMValueRef *assign[100];
61 unsigned num_sgpr_params;
62 unsigned num_params;
63 };
64
65 enum si_arg_regfile {
66 ARG_SGPR,
67 ARG_VGPR
68 };
69
70 static void si_init_shader_ctx(struct si_shader_context *ctx,
71 struct si_screen *sscreen,
72 struct ac_llvm_compiler *compiler);
73
74 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
75 struct lp_build_tgsi_context *bld_base,
76 struct lp_build_emit_data *emit_data);
77
78 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
79 FILE *f);
80
81 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
88 union si_shader_part_key *key);
89 static void si_fix_resource_usage(struct si_screen *sscreen,
90 struct si_shader *shader);
91
92 /* Ideally pass the sample mask input to the PS epilog as v14, which
93 * is its usual location, so that the shader doesn't have to add v_mov.
94 */
95 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
96
97 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
98 LLVMTypeRef type)
99 {
100 if (type == ctx->ac.i64 || type == ctx->ac.f64)
101 return true;
102
103 return false;
104 }
105
106 static bool is_merged_shader(struct si_shader_context *ctx)
107 {
108 if (ctx->screen->info.chip_class <= VI)
109 return false;
110
111 return ctx->shader->key.as_ls ||
112 ctx->shader->key.as_es ||
113 ctx->type == PIPE_SHADER_TESS_CTRL ||
114 ctx->type == PIPE_SHADER_GEOMETRY;
115 }
116
117 static void si_init_function_info(struct si_function_info *fninfo)
118 {
119 fninfo->num_params = 0;
120 fninfo->num_sgpr_params = 0;
121 }
122
123 static unsigned add_arg_assign(struct si_function_info *fninfo,
124 enum si_arg_regfile regfile, LLVMTypeRef type,
125 LLVMValueRef *assign)
126 {
127 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
128
129 unsigned idx = fninfo->num_params++;
130 assert(idx < ARRAY_SIZE(fninfo->types));
131
132 if (regfile == ARG_SGPR)
133 fninfo->num_sgpr_params = fninfo->num_params;
134
135 fninfo->types[idx] = type;
136 fninfo->assign[idx] = assign;
137 return idx;
138 }
139
140 static unsigned add_arg(struct si_function_info *fninfo,
141 enum si_arg_regfile regfile, LLVMTypeRef type)
142 {
143 return add_arg_assign(fninfo, regfile, type, NULL);
144 }
145
146 static void add_arg_assign_checked(struct si_function_info *fninfo,
147 enum si_arg_regfile regfile, LLVMTypeRef type,
148 LLVMValueRef *assign, unsigned idx)
149 {
150 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
151 assert(actual == idx);
152 }
153
154 static void add_arg_checked(struct si_function_info *fninfo,
155 enum si_arg_regfile regfile, LLVMTypeRef type,
156 unsigned idx)
157 {
158 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
159 }
160
161 /**
162 * Returns a unique index for a per-patch semantic name and index. The index
163 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
164 * can be calculated.
165 */
166 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
167 {
168 switch (semantic_name) {
169 case TGSI_SEMANTIC_TESSOUTER:
170 return 0;
171 case TGSI_SEMANTIC_TESSINNER:
172 return 1;
173 case TGSI_SEMANTIC_PATCH:
174 assert(index < 30);
175 return 2 + index;
176
177 default:
178 assert(!"invalid semantic name");
179 return 0;
180 }
181 }
182
183 /**
184 * Returns a unique index for a semantic name and index. The index must be
185 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
186 * calculated.
187 */
188 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
189 unsigned is_varying)
190 {
191 switch (semantic_name) {
192 case TGSI_SEMANTIC_POSITION:
193 return 0;
194 case TGSI_SEMANTIC_GENERIC:
195 /* Since some shader stages use the the highest used IO index
196 * to determine the size to allocate for inputs/outputs
197 * (in LDS, tess and GS rings). GENERIC should be placed right
198 * after POSITION to make that size as small as possible.
199 */
200 if (index < SI_MAX_IO_GENERIC)
201 return 1 + index;
202
203 assert(!"invalid generic index");
204 return 0;
205 case TGSI_SEMANTIC_PSIZE:
206 return SI_MAX_IO_GENERIC + 1;
207 case TGSI_SEMANTIC_CLIPDIST:
208 assert(index <= 1);
209 return SI_MAX_IO_GENERIC + 2 + index;
210 case TGSI_SEMANTIC_FOG:
211 return SI_MAX_IO_GENERIC + 4;
212 case TGSI_SEMANTIC_LAYER:
213 return SI_MAX_IO_GENERIC + 5;
214 case TGSI_SEMANTIC_VIEWPORT_INDEX:
215 return SI_MAX_IO_GENERIC + 6;
216 case TGSI_SEMANTIC_PRIMID:
217 return SI_MAX_IO_GENERIC + 7;
218 case TGSI_SEMANTIC_COLOR:
219 assert(index < 2);
220 return SI_MAX_IO_GENERIC + 8 + index;
221 case TGSI_SEMANTIC_BCOLOR:
222 assert(index < 2);
223 /* If it's a varying, COLOR and BCOLOR alias. */
224 if (is_varying)
225 return SI_MAX_IO_GENERIC + 8 + index;
226 else
227 return SI_MAX_IO_GENERIC + 10 + index;
228 case TGSI_SEMANTIC_TEXCOORD:
229 assert(index < 8);
230 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
231 return SI_MAX_IO_GENERIC + 12 + index;
232 case TGSI_SEMANTIC_CLIPVERTEX:
233 return 63;
234 default:
235 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
236 assert(!"invalid semantic name");
237 return 0;
238 }
239 }
240
241 /**
242 * Get the value of a shader input parameter and extract a bitfield.
243 */
244 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
245 LLVMValueRef value, unsigned rshift,
246 unsigned bitwidth)
247 {
248 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
249 value = ac_to_integer(&ctx->ac, value);
250
251 if (rshift)
252 value = LLVMBuildLShr(ctx->ac.builder, value,
253 LLVMConstInt(ctx->i32, rshift, 0), "");
254
255 if (rshift + bitwidth < 32) {
256 unsigned mask = (1 << bitwidth) - 1;
257 value = LLVMBuildAnd(ctx->ac.builder, value,
258 LLVMConstInt(ctx->i32, mask, 0), "");
259 }
260
261 return value;
262 }
263
264 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
265 unsigned param, unsigned rshift,
266 unsigned bitwidth)
267 {
268 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
269
270 return unpack_llvm_param(ctx, value, rshift, bitwidth);
271 }
272
273 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
274 {
275 switch (ctx->type) {
276 case PIPE_SHADER_TESS_CTRL:
277 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
278
279 case PIPE_SHADER_TESS_EVAL:
280 return LLVMGetParam(ctx->main_fn,
281 ctx->param_tes_rel_patch_id);
282
283 default:
284 assert(0);
285 return NULL;
286 }
287 }
288
289 /* Tessellation shaders pass outputs to the next shader using LDS.
290 *
291 * LS outputs = TCS inputs
292 * TCS outputs = TES inputs
293 *
294 * The LDS layout is:
295 * - TCS inputs for patch 0
296 * - TCS inputs for patch 1
297 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
298 * - ...
299 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
300 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
301 * - TCS outputs for patch 1
302 * - Per-patch TCS outputs for patch 1
303 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
304 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
305 * - ...
306 *
307 * All three shaders VS(LS), TCS, TES share the same LDS space.
308 */
309
310 static LLVMValueRef
311 get_tcs_in_patch_stride(struct si_shader_context *ctx)
312 {
313 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
314 }
315
316 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
317 {
318 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
319
320 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
321 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
322
323 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
324 }
325
326 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
327 {
328 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
329
330 return LLVMConstInt(ctx->i32, stride, 0);
331 }
332
333 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
334 {
335 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
336 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
337
338 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
339 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
340 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
341 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
342 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
343 num_patch_outputs * 4;
344 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
345 }
346
347 static LLVMValueRef
348 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
349 {
350 return LLVMBuildMul(ctx->ac.builder,
351 si_unpack_param(ctx,
352 ctx->param_tcs_out_lds_offsets,
353 0, 16),
354 LLVMConstInt(ctx->i32, 4, 0), "");
355 }
356
357 static LLVMValueRef
358 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
359 {
360 return LLVMBuildMul(ctx->ac.builder,
361 si_unpack_param(ctx,
362 ctx->param_tcs_out_lds_offsets,
363 16, 16),
364 LLVMConstInt(ctx->i32, 4, 0), "");
365 }
366
367 static LLVMValueRef
368 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
369 {
370 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
371 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
372
373 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
374 }
375
376 static LLVMValueRef
377 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
378 {
379 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
380 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
381 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
382
383 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
384 }
385
386 static LLVMValueRef
387 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
388 {
389 LLVMValueRef patch0_patch_data_offset =
390 get_tcs_out_patch0_patch_data_offset(ctx);
391 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
392 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
393
394 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
395 }
396
397 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
398 {
399 unsigned tcs_out_vertices =
400 ctx->shader->selector ?
401 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
402
403 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
404 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
405 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
406
407 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
408 }
409
410 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
411 {
412 unsigned stride;
413
414 switch (ctx->type) {
415 case PIPE_SHADER_VERTEX:
416 stride = ctx->shader->selector->lshs_vertex_stride / 4;
417 return LLVMConstInt(ctx->i32, stride, 0);
418
419 case PIPE_SHADER_TESS_CTRL:
420 if (ctx->screen->info.chip_class >= GFX9 &&
421 ctx->shader->is_monolithic) {
422 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
423 return LLVMConstInt(ctx->i32, stride, 0);
424 }
425 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
426
427 default:
428 assert(0);
429 return NULL;
430 }
431 }
432
433 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
434 * to float. */
435 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
436 LLVMValueRef vec4,
437 unsigned double_index)
438 {
439 LLVMBuilderRef builder = ctx->ac.builder;
440 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
441 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
442 LLVMVectorType(f64, 2), "");
443 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
444 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
445 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
446 }
447
448 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
449 LLVMValueRef i32, unsigned index)
450 {
451 assert(index <= 1);
452
453 if (index == 1)
454 return LLVMBuildAShr(ctx->ac.builder, i32,
455 LLVMConstInt(ctx->i32, 16, 0), "");
456
457 return LLVMBuildSExt(ctx->ac.builder,
458 LLVMBuildTrunc(ctx->ac.builder, i32,
459 ctx->ac.i16, ""),
460 ctx->i32, "");
461 }
462
463 void si_llvm_load_input_vs(
464 struct si_shader_context *ctx,
465 unsigned input_index,
466 LLVMValueRef out[4])
467 {
468 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
469 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
470
471 if (vs_blit_property) {
472 LLVMValueRef vertex_id = ctx->abi.vertex_id;
473 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
474 LLVMIntULE, vertex_id,
475 ctx->i32_1, "");
476 /* Use LLVMIntNE, because we have 3 vertices and only
477 * the middle one should use y2.
478 */
479 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
480 LLVMIntNE, vertex_id,
481 ctx->i32_1, "");
482
483 if (input_index == 0) {
484 /* Position: */
485 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
486 ctx->param_vs_blit_inputs);
487 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
488 ctx->param_vs_blit_inputs + 1);
489
490 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
491 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
492 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
493 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
494
495 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
496 x1, x2, "");
497 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
498 y1, y2, "");
499
500 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
501 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
502 out[2] = LLVMGetParam(ctx->main_fn,
503 ctx->param_vs_blit_inputs + 2);
504 out[3] = ctx->ac.f32_1;
505 return;
506 }
507
508 /* Color or texture coordinates: */
509 assert(input_index == 1);
510
511 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
512 for (int i = 0; i < 4; i++) {
513 out[i] = LLVMGetParam(ctx->main_fn,
514 ctx->param_vs_blit_inputs + 3 + i);
515 }
516 } else {
517 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
518 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
519 ctx->param_vs_blit_inputs + 3);
520 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
521 ctx->param_vs_blit_inputs + 4);
522 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
523 ctx->param_vs_blit_inputs + 5);
524 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
525 ctx->param_vs_blit_inputs + 6);
526
527 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
528 x1, x2, "");
529 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
530 y1, y2, "");
531 out[2] = LLVMGetParam(ctx->main_fn,
532 ctx->param_vs_blit_inputs + 7);
533 out[3] = LLVMGetParam(ctx->main_fn,
534 ctx->param_vs_blit_inputs + 8);
535 }
536 return;
537 }
538
539 unsigned chan;
540 unsigned fix_fetch;
541 unsigned num_fetches;
542 unsigned fetch_stride;
543 unsigned num_channels;
544
545 LLVMValueRef t_list_ptr;
546 LLVMValueRef t_offset;
547 LLVMValueRef t_list;
548 LLVMValueRef vertex_index;
549 LLVMValueRef input[3];
550
551 /* Load the T list */
552 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
553
554 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
555
556 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
557
558 vertex_index = LLVMGetParam(ctx->main_fn,
559 ctx->param_vertex_index0 +
560 input_index);
561
562 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
563
564 /* Do multiple loads for special formats. */
565 switch (fix_fetch) {
566 case SI_FIX_FETCH_RG_64_FLOAT:
567 num_fetches = 1; /* 1 2-dword or 4-dword load */
568 fetch_stride = 0;
569 if (util_last_bit(info->input_usage_mask[input_index]) >= 2)
570 num_channels = 4; /* 2 doubles in 4 dwords */
571 else
572 num_channels = 2; /* 1 double in 2 dwords */
573 break;
574 case SI_FIX_FETCH_RGB_64_FLOAT:
575 num_fetches = 3; /* 3 2-dword loads */
576 fetch_stride = 8;
577 num_channels = 2;
578 break;
579 case SI_FIX_FETCH_RGBA_64_FLOAT:
580 num_fetches = 2; /* 2 4-dword loads */
581 fetch_stride = 16;
582 num_channels = 4;
583 break;
584 case SI_FIX_FETCH_RGB_8:
585 case SI_FIX_FETCH_RGB_8_INT:
586 num_fetches = 3;
587 fetch_stride = 1;
588 num_channels = 1;
589 break;
590 case SI_FIX_FETCH_RGB_16:
591 case SI_FIX_FETCH_RGB_16_INT:
592 num_fetches = 3;
593 fetch_stride = 2;
594 num_channels = 1;
595 break;
596 default:
597 num_fetches = 1;
598 fetch_stride = 0;
599 num_channels = util_last_bit(info->input_usage_mask[input_index]);
600 }
601
602 for (unsigned i = 0; i < num_fetches; i++) {
603 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
604
605 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
606 vertex_index, voffset,
607 num_channels, false, true);
608 input[i] = ac_build_expand_to_vec4(&ctx->ac, input[i], num_channels);
609 }
610
611 /* Break up the vec4 into individual components */
612 for (chan = 0; chan < 4; chan++) {
613 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
614 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
615 input[0], llvm_chan, "");
616 }
617
618 switch (fix_fetch) {
619 case SI_FIX_FETCH_A2_SNORM:
620 case SI_FIX_FETCH_A2_SSCALED:
621 case SI_FIX_FETCH_A2_SINT: {
622 /* The hardware returns an unsigned value; convert it to a
623 * signed one.
624 */
625 LLVMValueRef tmp = out[3];
626 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
627
628 /* First, recover the sign-extended signed integer value. */
629 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
630 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
631 else
632 tmp = ac_to_integer(&ctx->ac, tmp);
633
634 /* For the integer-like cases, do a natural sign extension.
635 *
636 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
637 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
638 * exponent.
639 */
640 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
641 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
642 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
643 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
644
645 /* Convert back to the right type. */
646 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
647 LLVMValueRef clamp;
648 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
649 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
650 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
651 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
652 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
653 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
654 }
655
656 out[3] = tmp;
657 break;
658 }
659 case SI_FIX_FETCH_RGBA_32_UNORM:
660 case SI_FIX_FETCH_RGBX_32_UNORM:
661 for (chan = 0; chan < 4; chan++) {
662 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
663 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
664 out[chan], ctx->f32, "");
665 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
666 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
667 }
668 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
669 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
670 out[3] = LLVMConstReal(ctx->f32, 1);
671 break;
672 case SI_FIX_FETCH_RGBA_32_SNORM:
673 case SI_FIX_FETCH_RGBX_32_SNORM:
674 case SI_FIX_FETCH_RGBA_32_FIXED:
675 case SI_FIX_FETCH_RGBX_32_FIXED: {
676 double scale;
677 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
678 scale = 1.0 / 0x10000;
679 else
680 scale = 1.0 / INT_MAX;
681
682 for (chan = 0; chan < 4; chan++) {
683 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
684 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
685 out[chan], ctx->f32, "");
686 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
687 LLVMConstReal(ctx->f32, scale), "");
688 }
689 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
690 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
691 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
692 out[3] = LLVMConstReal(ctx->f32, 1);
693 break;
694 }
695 case SI_FIX_FETCH_RGBA_32_USCALED:
696 for (chan = 0; chan < 4; chan++) {
697 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
698 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
699 out[chan], ctx->f32, "");
700 }
701 break;
702 case SI_FIX_FETCH_RGBA_32_SSCALED:
703 for (chan = 0; chan < 4; chan++) {
704 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
705 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
706 out[chan], ctx->f32, "");
707 }
708 break;
709 case SI_FIX_FETCH_RG_64_FLOAT:
710 for (chan = 0; chan < 2; chan++)
711 out[chan] = extract_double_to_float(ctx, input[0], chan);
712
713 out[2] = LLVMConstReal(ctx->f32, 0);
714 out[3] = LLVMConstReal(ctx->f32, 1);
715 break;
716 case SI_FIX_FETCH_RGB_64_FLOAT:
717 for (chan = 0; chan < 3; chan++)
718 out[chan] = extract_double_to_float(ctx, input[chan], 0);
719
720 out[3] = LLVMConstReal(ctx->f32, 1);
721 break;
722 case SI_FIX_FETCH_RGBA_64_FLOAT:
723 for (chan = 0; chan < 4; chan++) {
724 out[chan] = extract_double_to_float(ctx, input[chan / 2],
725 chan % 2);
726 }
727 break;
728 case SI_FIX_FETCH_RGB_8:
729 case SI_FIX_FETCH_RGB_8_INT:
730 case SI_FIX_FETCH_RGB_16:
731 case SI_FIX_FETCH_RGB_16_INT:
732 for (chan = 0; chan < 3; chan++) {
733 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
734 input[chan],
735 ctx->i32_0, "");
736 }
737 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
738 fix_fetch == SI_FIX_FETCH_RGB_16) {
739 out[3] = LLVMConstReal(ctx->f32, 1);
740 } else {
741 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
742 }
743 break;
744 }
745 }
746
747 static void declare_input_vs(
748 struct si_shader_context *ctx,
749 unsigned input_index,
750 const struct tgsi_full_declaration *decl,
751 LLVMValueRef out[4])
752 {
753 si_llvm_load_input_vs(ctx, input_index, out);
754 }
755
756 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
757 unsigned swizzle)
758 {
759 if (swizzle > 0)
760 return ctx->i32_0;
761
762 switch (ctx->type) {
763 case PIPE_SHADER_VERTEX:
764 return LLVMGetParam(ctx->main_fn,
765 ctx->param_vs_prim_id);
766 case PIPE_SHADER_TESS_CTRL:
767 return ctx->abi.tcs_patch_id;
768 case PIPE_SHADER_TESS_EVAL:
769 return ctx->abi.tes_patch_id;
770 case PIPE_SHADER_GEOMETRY:
771 return ctx->abi.gs_prim_id;
772 default:
773 assert(0);
774 return ctx->i32_0;
775 }
776 }
777
778 /**
779 * Return the value of tgsi_ind_register for indexing.
780 * This is the indirect index with the constant offset added to it.
781 */
782 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
783 const struct tgsi_ind_register *ind,
784 unsigned addr_mul,
785 int rel_index)
786 {
787 LLVMValueRef result;
788
789 if (ind->File == TGSI_FILE_ADDRESS) {
790 result = ctx->addrs[ind->Index][ind->Swizzle];
791 result = LLVMBuildLoad(ctx->ac.builder, result, "");
792 } else {
793 struct tgsi_full_src_register src = {};
794
795 src.Register.File = ind->File;
796 src.Register.Index = ind->Index;
797
798 /* Set the second index to 0 for constants. */
799 if (ind->File == TGSI_FILE_CONSTANT)
800 src.Register.Dimension = 1;
801
802 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
803 TGSI_TYPE_SIGNED,
804 ind->Swizzle);
805 result = ac_to_integer(&ctx->ac, result);
806 }
807
808 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
809 LLVMConstInt(ctx->i32, rel_index, 0));
810 }
811
812 /**
813 * Like si_get_indirect_index, but restricts the return value to a (possibly
814 * undefined) value inside [0..num).
815 */
816 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
817 const struct tgsi_ind_register *ind,
818 int rel_index, unsigned num)
819 {
820 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
821
822 return si_llvm_bound_index(ctx, result, num);
823 }
824
825 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
826 LLVMValueRef vertex_dw_stride,
827 LLVMValueRef base_addr,
828 LLVMValueRef vertex_index,
829 LLVMValueRef param_index,
830 unsigned input_index,
831 ubyte *name,
832 ubyte *index,
833 bool is_patch)
834 {
835 if (vertex_dw_stride) {
836 base_addr = ac_build_imad(&ctx->ac, vertex_index,
837 vertex_dw_stride, base_addr);
838 }
839
840 if (param_index) {
841 base_addr = ac_build_imad(&ctx->ac, param_index,
842 LLVMConstInt(ctx->i32, 4, 0), base_addr);
843 }
844
845 int param = is_patch ?
846 si_shader_io_get_unique_index_patch(name[input_index],
847 index[input_index]) :
848 si_shader_io_get_unique_index(name[input_index],
849 index[input_index], false);
850
851 /* Add the base address of the element. */
852 return LLVMBuildAdd(ctx->ac.builder, base_addr,
853 LLVMConstInt(ctx->i32, param * 4, 0), "");
854 }
855
856 /**
857 * Calculate a dword address given an input or output register and a stride.
858 */
859 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
860 const struct tgsi_full_dst_register *dst,
861 const struct tgsi_full_src_register *src,
862 LLVMValueRef vertex_dw_stride,
863 LLVMValueRef base_addr)
864 {
865 struct tgsi_shader_info *info = &ctx->shader->selector->info;
866 ubyte *name, *index, *array_first;
867 int input_index;
868 struct tgsi_full_dst_register reg;
869 LLVMValueRef vertex_index = NULL;
870 LLVMValueRef ind_index = NULL;
871
872 /* Set the register description. The address computation is the same
873 * for sources and destinations. */
874 if (src) {
875 reg.Register.File = src->Register.File;
876 reg.Register.Index = src->Register.Index;
877 reg.Register.Indirect = src->Register.Indirect;
878 reg.Register.Dimension = src->Register.Dimension;
879 reg.Indirect = src->Indirect;
880 reg.Dimension = src->Dimension;
881 reg.DimIndirect = src->DimIndirect;
882 } else
883 reg = *dst;
884
885 /* If the register is 2-dimensional (e.g. an array of vertices
886 * in a primitive), calculate the base address of the vertex. */
887 if (reg.Register.Dimension) {
888 if (reg.Dimension.Indirect)
889 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
890 1, reg.Dimension.Index);
891 else
892 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
893 }
894
895 /* Get information about the register. */
896 if (reg.Register.File == TGSI_FILE_INPUT) {
897 name = info->input_semantic_name;
898 index = info->input_semantic_index;
899 array_first = info->input_array_first;
900 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
901 name = info->output_semantic_name;
902 index = info->output_semantic_index;
903 array_first = info->output_array_first;
904 } else {
905 assert(0);
906 return NULL;
907 }
908
909 if (reg.Register.Indirect) {
910 /* Add the relative address of the element. */
911 if (reg.Indirect.ArrayID)
912 input_index = array_first[reg.Indirect.ArrayID];
913 else
914 input_index = reg.Register.Index;
915
916 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
917 1, reg.Register.Index - input_index);
918 } else {
919 input_index = reg.Register.Index;
920 }
921
922 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
923 base_addr, vertex_index,
924 ind_index, input_index,
925 name, index,
926 !reg.Register.Dimension);
927 }
928
929 /* The offchip buffer layout for TCS->TES is
930 *
931 * - attribute 0 of patch 0 vertex 0
932 * - attribute 0 of patch 0 vertex 1
933 * - attribute 0 of patch 0 vertex 2
934 * ...
935 * - attribute 0 of patch 1 vertex 0
936 * - attribute 0 of patch 1 vertex 1
937 * ...
938 * - attribute 1 of patch 0 vertex 0
939 * - attribute 1 of patch 0 vertex 1
940 * ...
941 * - per patch attribute 0 of patch 0
942 * - per patch attribute 0 of patch 1
943 * ...
944 *
945 * Note that every attribute has 4 components.
946 */
947 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
948 LLVMValueRef rel_patch_id,
949 LLVMValueRef vertex_index,
950 LLVMValueRef param_index)
951 {
952 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
953 LLVMValueRef param_stride, constant16;
954
955 vertices_per_patch = get_num_tcs_out_vertices(ctx);
956 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
957 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
958 num_patches, "");
959
960 constant16 = LLVMConstInt(ctx->i32, 16, 0);
961 if (vertex_index) {
962 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
963 vertices_per_patch, vertex_index);
964 param_stride = total_vertices;
965 } else {
966 base_addr = rel_patch_id;
967 param_stride = num_patches;
968 }
969
970 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
971 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
972
973 if (!vertex_index) {
974 LLVMValueRef patch_data_offset =
975 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
976
977 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
978 patch_data_offset, "");
979 }
980 return base_addr;
981 }
982
983 /* This is a generic helper that can be shared by the NIR and TGSI backends */
984 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
985 struct si_shader_context *ctx,
986 LLVMValueRef vertex_index,
987 LLVMValueRef param_index,
988 unsigned param_base,
989 ubyte *name,
990 ubyte *index,
991 bool is_patch)
992 {
993 unsigned param_index_base;
994
995 param_index_base = is_patch ?
996 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
997 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
998
999 if (param_index) {
1000 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1001 LLVMConstInt(ctx->i32, param_index_base, 0),
1002 "");
1003 } else {
1004 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1005 }
1006
1007 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1008 vertex_index, param_index);
1009 }
1010
1011 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1012 struct si_shader_context *ctx,
1013 const struct tgsi_full_dst_register *dst,
1014 const struct tgsi_full_src_register *src)
1015 {
1016 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1017 ubyte *name, *index, *array_first;
1018 struct tgsi_full_src_register reg;
1019 LLVMValueRef vertex_index = NULL;
1020 LLVMValueRef param_index = NULL;
1021 unsigned param_base;
1022
1023 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1024
1025 if (reg.Register.Dimension) {
1026
1027 if (reg.Dimension.Indirect)
1028 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1029 1, reg.Dimension.Index);
1030 else
1031 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1032 }
1033
1034 /* Get information about the register. */
1035 if (reg.Register.File == TGSI_FILE_INPUT) {
1036 name = info->input_semantic_name;
1037 index = info->input_semantic_index;
1038 array_first = info->input_array_first;
1039 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1040 name = info->output_semantic_name;
1041 index = info->output_semantic_index;
1042 array_first = info->output_array_first;
1043 } else {
1044 assert(0);
1045 return NULL;
1046 }
1047
1048 if (reg.Register.Indirect) {
1049 if (reg.Indirect.ArrayID)
1050 param_base = array_first[reg.Indirect.ArrayID];
1051 else
1052 param_base = reg.Register.Index;
1053
1054 param_index = si_get_indirect_index(ctx, &reg.Indirect,
1055 1, reg.Register.Index - param_base);
1056
1057 } else {
1058 param_base = reg.Register.Index;
1059 }
1060
1061 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1062 param_index, param_base,
1063 name, index, !reg.Register.Dimension);
1064 }
1065
1066 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1067 LLVMTypeRef type, unsigned swizzle,
1068 LLVMValueRef buffer, LLVMValueRef offset,
1069 LLVMValueRef base, bool can_speculate)
1070 {
1071 struct si_shader_context *ctx = si_shader_context(bld_base);
1072 LLVMValueRef value, value2;
1073 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1074
1075 if (swizzle == ~0) {
1076 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1077 0, 1, 0, can_speculate, false);
1078
1079 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1080 }
1081
1082 if (!llvm_type_is_64bit(ctx, type)) {
1083 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1084 0, 1, 0, can_speculate, false);
1085
1086 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1087 return LLVMBuildExtractElement(ctx->ac.builder, value,
1088 LLVMConstInt(ctx->i32, swizzle, 0), "");
1089 }
1090
1091 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1092 swizzle * 4, 1, 0, can_speculate, false);
1093
1094 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1095 swizzle * 4 + 4, 1, 0, can_speculate, false);
1096
1097 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1098 }
1099
1100 /**
1101 * Load from LDS.
1102 *
1103 * \param type output value type
1104 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1105 * \param dw_addr address in dwords
1106 */
1107 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1108 LLVMTypeRef type, unsigned swizzle,
1109 LLVMValueRef dw_addr)
1110 {
1111 struct si_shader_context *ctx = si_shader_context(bld_base);
1112 LLVMValueRef value;
1113
1114 if (swizzle == ~0) {
1115 LLVMValueRef values[TGSI_NUM_CHANNELS];
1116
1117 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1118 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1119
1120 return ac_build_gather_values(&ctx->ac, values,
1121 TGSI_NUM_CHANNELS);
1122 }
1123
1124 /* Split 64-bit loads. */
1125 if (llvm_type_is_64bit(ctx, type)) {
1126 LLVMValueRef lo, hi;
1127
1128 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1129 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1130 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1131 }
1132
1133 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1134 LLVMConstInt(ctx->i32, swizzle, 0), "");
1135
1136 value = ac_lds_load(&ctx->ac, dw_addr);
1137
1138 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1139 }
1140
1141 /**
1142 * Store to LDS.
1143 *
1144 * \param swizzle offset (typically 0..3)
1145 * \param dw_addr address in dwords
1146 * \param value value to store
1147 */
1148 static void lds_store(struct si_shader_context *ctx,
1149 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1150 LLVMValueRef value)
1151 {
1152 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1153 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1154
1155 ac_lds_store(&ctx->ac, dw_addr, value);
1156 }
1157
1158 enum si_tess_ring {
1159 TCS_FACTOR_RING,
1160 TESS_OFFCHIP_RING_TCS,
1161 TESS_OFFCHIP_RING_TES,
1162 };
1163
1164 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1165 enum si_tess_ring ring)
1166 {
1167 LLVMBuilderRef builder = ctx->ac.builder;
1168 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1169 ctx->param_tcs_out_lds_layout;
1170 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1171
1172 /* TCS only receives high 13 bits of the address. */
1173 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1174 addr = LLVMBuildAnd(builder, addr,
1175 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1176 }
1177
1178 if (ring == TCS_FACTOR_RING) {
1179 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1180 addr = LLVMBuildAdd(builder, addr,
1181 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1182 }
1183
1184 LLVMValueRef desc[4];
1185 desc[0] = addr;
1186 desc[1] = LLVMConstInt(ctx->i32,
1187 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1188 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1189 desc[3] = LLVMConstInt(ctx->i32,
1190 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1191 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1192 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1193 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1194 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1195 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0);
1196
1197 return ac_build_gather_values(&ctx->ac, desc, 4);
1198 }
1199
1200 static LLVMValueRef fetch_input_tcs(
1201 struct lp_build_tgsi_context *bld_base,
1202 const struct tgsi_full_src_register *reg,
1203 enum tgsi_opcode_type type, unsigned swizzle_in)
1204 {
1205 struct si_shader_context *ctx = si_shader_context(bld_base);
1206 LLVMValueRef dw_addr, stride;
1207 unsigned swizzle = swizzle_in & 0xffff;
1208 stride = get_tcs_in_vertex_dw_stride(ctx);
1209 dw_addr = get_tcs_in_current_patch_offset(ctx);
1210 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1211
1212 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1213 }
1214
1215 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1216 LLVMTypeRef type,
1217 LLVMValueRef vertex_index,
1218 LLVMValueRef param_index,
1219 unsigned const_index,
1220 unsigned location,
1221 unsigned driver_location,
1222 unsigned component,
1223 unsigned num_components,
1224 bool is_patch,
1225 bool is_compact,
1226 bool load_input)
1227 {
1228 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1229 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1230 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1231 LLVMValueRef dw_addr, stride;
1232
1233 driver_location = driver_location / 4;
1234
1235 if (load_input) {
1236 stride = get_tcs_in_vertex_dw_stride(ctx);
1237 dw_addr = get_tcs_in_current_patch_offset(ctx);
1238 } else {
1239 if (is_patch) {
1240 stride = NULL;
1241 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1242 } else {
1243 stride = get_tcs_out_vertex_dw_stride(ctx);
1244 dw_addr = get_tcs_out_current_patch_offset(ctx);
1245 }
1246 }
1247
1248 if (param_index) {
1249 /* Add the constant index to the indirect index */
1250 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1251 LLVMConstInt(ctx->i32, const_index, 0), "");
1252 } else {
1253 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1254 }
1255
1256 ubyte *names;
1257 ubyte *indices;
1258 if (load_input) {
1259 names = info->input_semantic_name;
1260 indices = info->input_semantic_index;
1261 } else {
1262 names = info->output_semantic_name;
1263 indices = info->output_semantic_index;
1264 }
1265
1266 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1267 vertex_index, param_index,
1268 driver_location,
1269 names, indices,
1270 is_patch);
1271
1272 LLVMValueRef value[4];
1273 for (unsigned i = 0; i < num_components; i++) {
1274 unsigned offset = i;
1275 if (llvm_type_is_64bit(ctx, type))
1276 offset *= 2;
1277
1278 offset += component;
1279 value[i + component] = lds_load(bld_base, type, offset, dw_addr);
1280 }
1281
1282 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1283 }
1284
1285 static LLVMValueRef fetch_output_tcs(
1286 struct lp_build_tgsi_context *bld_base,
1287 const struct tgsi_full_src_register *reg,
1288 enum tgsi_opcode_type type, unsigned swizzle_in)
1289 {
1290 struct si_shader_context *ctx = si_shader_context(bld_base);
1291 LLVMValueRef dw_addr, stride;
1292 unsigned swizzle = (swizzle_in & 0xffff);
1293
1294 if (reg->Register.Dimension) {
1295 stride = get_tcs_out_vertex_dw_stride(ctx);
1296 dw_addr = get_tcs_out_current_patch_offset(ctx);
1297 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1298 } else {
1299 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1300 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1301 }
1302
1303 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1304 }
1305
1306 static LLVMValueRef fetch_input_tes(
1307 struct lp_build_tgsi_context *bld_base,
1308 const struct tgsi_full_src_register *reg,
1309 enum tgsi_opcode_type type, unsigned swizzle_in)
1310 {
1311 struct si_shader_context *ctx = si_shader_context(bld_base);
1312 LLVMValueRef base, addr;
1313 unsigned swizzle = (swizzle_in & 0xffff);
1314
1315 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1316 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1317
1318 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1319 ctx->tess_offchip_ring, base, addr, true);
1320 }
1321
1322 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1323 LLVMTypeRef type,
1324 LLVMValueRef vertex_index,
1325 LLVMValueRef param_index,
1326 unsigned const_index,
1327 unsigned location,
1328 unsigned driver_location,
1329 unsigned component,
1330 unsigned num_components,
1331 bool is_patch,
1332 bool is_compact,
1333 bool load_input)
1334 {
1335 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1336 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1337 LLVMValueRef base, addr;
1338
1339 driver_location = driver_location / 4;
1340
1341 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1342
1343 if (param_index) {
1344 /* Add the constant index to the indirect index */
1345 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1346 LLVMConstInt(ctx->i32, const_index, 0), "");
1347 } else {
1348 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1349 }
1350
1351 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1352 param_index, driver_location,
1353 info->input_semantic_name,
1354 info->input_semantic_index,
1355 is_patch);
1356
1357 /* TODO: This will generate rather ordinary llvm code, although it
1358 * should be easy for the optimiser to fix up. In future we might want
1359 * to refactor buffer_load(), but for now this maximises code sharing
1360 * between the NIR and TGSI backends.
1361 */
1362 LLVMValueRef value[4];
1363 for (unsigned i = 0; i < num_components; i++) {
1364 unsigned offset = i;
1365 if (llvm_type_is_64bit(ctx, type))
1366 offset *= 2;
1367
1368 offset += component;
1369 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1370 ctx->tess_offchip_ring, base, addr, true);
1371 }
1372
1373 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1374 }
1375
1376 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1377 const struct tgsi_full_instruction *inst,
1378 const struct tgsi_opcode_info *info,
1379 unsigned index,
1380 LLVMValueRef dst[4])
1381 {
1382 struct si_shader_context *ctx = si_shader_context(bld_base);
1383 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1384 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1385 unsigned chan_index;
1386 LLVMValueRef dw_addr, stride;
1387 LLVMValueRef buffer, base, buf_addr;
1388 LLVMValueRef values[4];
1389 bool skip_lds_store;
1390 bool is_tess_factor = false, is_tess_inner = false;
1391
1392 /* Only handle per-patch and per-vertex outputs here.
1393 * Vectors will be lowered to scalars and this function will be called again.
1394 */
1395 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1396 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1397 si_llvm_emit_store(bld_base, inst, info, index, dst);
1398 return;
1399 }
1400
1401 if (reg->Register.Dimension) {
1402 stride = get_tcs_out_vertex_dw_stride(ctx);
1403 dw_addr = get_tcs_out_current_patch_offset(ctx);
1404 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1405 skip_lds_store = !sh_info->reads_pervertex_outputs;
1406 } else {
1407 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1408 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1409 skip_lds_store = !sh_info->reads_perpatch_outputs;
1410
1411 if (!reg->Register.Indirect) {
1412 int name = sh_info->output_semantic_name[reg->Register.Index];
1413
1414 /* Always write tess factors into LDS for the TCS epilog. */
1415 if (name == TGSI_SEMANTIC_TESSINNER ||
1416 name == TGSI_SEMANTIC_TESSOUTER) {
1417 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1418 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1419 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1420 is_tess_factor = true;
1421 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1422 }
1423 }
1424 }
1425
1426 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1427
1428 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1429 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1430
1431 uint32_t writemask = reg->Register.WriteMask;
1432 while (writemask) {
1433 chan_index = u_bit_scan(&writemask);
1434 LLVMValueRef value = dst[chan_index];
1435
1436 if (inst->Instruction.Saturate)
1437 value = ac_build_clamp(&ctx->ac, value);
1438
1439 /* Skip LDS stores if there is no LDS read of this output. */
1440 if (!skip_lds_store)
1441 lds_store(ctx, chan_index, dw_addr, value);
1442
1443 value = ac_to_integer(&ctx->ac, value);
1444 values[chan_index] = value;
1445
1446 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1447 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1448 buf_addr, base,
1449 4 * chan_index, 1, 0, true, false);
1450 }
1451
1452 /* Write tess factors into VGPRs for the epilog. */
1453 if (is_tess_factor &&
1454 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1455 if (!is_tess_inner) {
1456 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1457 ctx->invoc0_tess_factors[chan_index]);
1458 } else if (chan_index < 2) {
1459 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1460 ctx->invoc0_tess_factors[4 + chan_index]);
1461 }
1462 }
1463 }
1464
1465 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1466 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1467 values, 4);
1468 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1469 base, 0, 1, 0, true, false);
1470 }
1471 }
1472
1473 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1474 const struct nir_variable *var,
1475 LLVMValueRef vertex_index,
1476 LLVMValueRef param_index,
1477 unsigned const_index,
1478 LLVMValueRef src,
1479 unsigned writemask)
1480 {
1481 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1482 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1483 const unsigned component = var->data.location_frac;
1484 const bool is_patch = var->data.patch;
1485 unsigned driver_location = var->data.driver_location;
1486 LLVMValueRef dw_addr, stride;
1487 LLVMValueRef buffer, base, addr;
1488 LLVMValueRef values[4];
1489 bool skip_lds_store;
1490 bool is_tess_factor = false, is_tess_inner = false;
1491
1492 driver_location = driver_location / 4;
1493
1494 if (param_index) {
1495 /* Add the constant index to the indirect index */
1496 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1497 LLVMConstInt(ctx->i32, const_index, 0), "");
1498 } else {
1499 if (const_index != 0)
1500 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1501 }
1502
1503 if (!is_patch) {
1504 stride = get_tcs_out_vertex_dw_stride(ctx);
1505 dw_addr = get_tcs_out_current_patch_offset(ctx);
1506 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1507 vertex_index, param_index,
1508 driver_location,
1509 info->output_semantic_name,
1510 info->output_semantic_index,
1511 is_patch);
1512
1513 skip_lds_store = !info->reads_pervertex_outputs;
1514 } else {
1515 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1516 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1517 vertex_index, param_index,
1518 driver_location,
1519 info->output_semantic_name,
1520 info->output_semantic_index,
1521 is_patch);
1522
1523 skip_lds_store = !info->reads_perpatch_outputs;
1524
1525 if (!param_index) {
1526 int name = info->output_semantic_name[driver_location];
1527
1528 /* Always write tess factors into LDS for the TCS epilog. */
1529 if (name == TGSI_SEMANTIC_TESSINNER ||
1530 name == TGSI_SEMANTIC_TESSOUTER) {
1531 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1532 skip_lds_store = !info->reads_tessfactor_outputs &&
1533 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1534 is_tess_factor = true;
1535 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1536 }
1537 }
1538 }
1539
1540 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1541
1542 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1543
1544 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1545 param_index, driver_location,
1546 info->output_semantic_name,
1547 info->output_semantic_index,
1548 is_patch);
1549
1550 for (unsigned chan = 0; chan < 4; chan++) {
1551 if (!(writemask & (1 << chan)))
1552 continue;
1553 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1554
1555 /* Skip LDS stores if there is no LDS read of this output. */
1556 if (!skip_lds_store)
1557 lds_store(ctx, chan, dw_addr, value);
1558
1559 value = ac_to_integer(&ctx->ac, value);
1560 values[chan] = value;
1561
1562 if (writemask != 0xF && !is_tess_factor) {
1563 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1564 addr, base,
1565 4 * chan, 1, 0, true, false);
1566 }
1567
1568 /* Write tess factors into VGPRs for the epilog. */
1569 if (is_tess_factor &&
1570 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1571 if (!is_tess_inner) {
1572 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1573 ctx->invoc0_tess_factors[chan]);
1574 } else if (chan < 2) {
1575 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1576 ctx->invoc0_tess_factors[4 + chan]);
1577 }
1578 }
1579 }
1580
1581 if (writemask == 0xF && !is_tess_factor) {
1582 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1583 values, 4);
1584 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1585 base, 0, 1, 0, true, false);
1586 }
1587 }
1588
1589 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1590 unsigned input_index,
1591 unsigned vtx_offset_param,
1592 LLVMTypeRef type,
1593 unsigned swizzle)
1594 {
1595 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1596 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1597 struct si_shader *shader = ctx->shader;
1598 LLVMValueRef vtx_offset, soffset;
1599 struct tgsi_shader_info *info = &shader->selector->info;
1600 unsigned semantic_name = info->input_semantic_name[input_index];
1601 unsigned semantic_index = info->input_semantic_index[input_index];
1602 unsigned param;
1603 LLVMValueRef value;
1604
1605 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1606
1607 /* GFX9 has the ESGS ring in LDS. */
1608 if (ctx->screen->info.chip_class >= GFX9) {
1609 unsigned index = vtx_offset_param;
1610
1611 switch (index / 2) {
1612 case 0:
1613 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1614 index % 2 ? 16 : 0, 16);
1615 break;
1616 case 1:
1617 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1618 index % 2 ? 16 : 0, 16);
1619 break;
1620 case 2:
1621 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1622 index % 2 ? 16 : 0, 16);
1623 break;
1624 default:
1625 assert(0);
1626 return NULL;
1627 }
1628
1629 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1630 LLVMConstInt(ctx->i32, param * 4, 0), "");
1631 return lds_load(bld_base, type, swizzle, vtx_offset);
1632 }
1633
1634 /* GFX6: input load from the ESGS ring in memory. */
1635 if (swizzle == ~0) {
1636 LLVMValueRef values[TGSI_NUM_CHANNELS];
1637 unsigned chan;
1638 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1639 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1640 type, chan);
1641 }
1642 return ac_build_gather_values(&ctx->ac, values,
1643 TGSI_NUM_CHANNELS);
1644 }
1645
1646 /* Get the vertex offset parameter on GFX6. */
1647 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1648
1649 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1650 LLVMConstInt(ctx->i32, 4, 0), "");
1651
1652 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1653
1654 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1655 vtx_offset, soffset, 0, 1, 0, true, false);
1656 if (llvm_type_is_64bit(ctx, type)) {
1657 LLVMValueRef value2;
1658 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1659
1660 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1661 ctx->i32_0, vtx_offset, soffset,
1662 0, 1, 0, true, false);
1663 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1664 }
1665 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1666 }
1667
1668 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1669 unsigned location,
1670 unsigned driver_location,
1671 unsigned component,
1672 unsigned num_components,
1673 unsigned vertex_index,
1674 unsigned const_index,
1675 LLVMTypeRef type)
1676 {
1677 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1678
1679 LLVMValueRef value[4];
1680 for (unsigned i = 0; i < num_components; i++) {
1681 unsigned offset = i;
1682 if (llvm_type_is_64bit(ctx, type))
1683 offset *= 2;
1684
1685 offset += component;
1686 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1687 vertex_index, type, offset);
1688 }
1689
1690 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1691 }
1692
1693 static LLVMValueRef fetch_input_gs(
1694 struct lp_build_tgsi_context *bld_base,
1695 const struct tgsi_full_src_register *reg,
1696 enum tgsi_opcode_type type,
1697 unsigned swizzle_in)
1698 {
1699 struct si_shader_context *ctx = si_shader_context(bld_base);
1700 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1701 unsigned swizzle = swizzle_in & 0xffff;
1702
1703 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1704 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1705 return get_primitive_id(ctx, swizzle);
1706
1707 if (!reg->Register.Dimension)
1708 return NULL;
1709
1710 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1711 reg->Dimension.Index,
1712 tgsi2llvmtype(bld_base, type),
1713 swizzle);
1714 }
1715
1716 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1717 {
1718 switch (interpolate) {
1719 case TGSI_INTERPOLATE_CONSTANT:
1720 return 0;
1721
1722 case TGSI_INTERPOLATE_LINEAR:
1723 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1724 return SI_PARAM_LINEAR_SAMPLE;
1725 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1726 return SI_PARAM_LINEAR_CENTROID;
1727 else
1728 return SI_PARAM_LINEAR_CENTER;
1729 break;
1730 case TGSI_INTERPOLATE_COLOR:
1731 case TGSI_INTERPOLATE_PERSPECTIVE:
1732 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1733 return SI_PARAM_PERSP_SAMPLE;
1734 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1735 return SI_PARAM_PERSP_CENTROID;
1736 else
1737 return SI_PARAM_PERSP_CENTER;
1738 break;
1739 default:
1740 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1741 return -1;
1742 }
1743 }
1744
1745 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1746 unsigned attr_index, unsigned chan,
1747 LLVMValueRef prim_mask,
1748 LLVMValueRef i, LLVMValueRef j)
1749 {
1750 if (i || j) {
1751 return ac_build_fs_interp(&ctx->ac,
1752 LLVMConstInt(ctx->i32, chan, 0),
1753 LLVMConstInt(ctx->i32, attr_index, 0),
1754 prim_mask, i, j);
1755 }
1756 return ac_build_fs_interp_mov(&ctx->ac,
1757 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1758 LLVMConstInt(ctx->i32, chan, 0),
1759 LLVMConstInt(ctx->i32, attr_index, 0),
1760 prim_mask);
1761 }
1762
1763 /**
1764 * Interpolate a fragment shader input.
1765 *
1766 * @param ctx context
1767 * @param input_index index of the input in hardware
1768 * @param semantic_name TGSI_SEMANTIC_*
1769 * @param semantic_index semantic index
1770 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1771 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1772 * @param interp_param interpolation weights (i,j)
1773 * @param prim_mask SI_PARAM_PRIM_MASK
1774 * @param face SI_PARAM_FRONT_FACE
1775 * @param result the return value (4 components)
1776 */
1777 static void interp_fs_input(struct si_shader_context *ctx,
1778 unsigned input_index,
1779 unsigned semantic_name,
1780 unsigned semantic_index,
1781 unsigned num_interp_inputs,
1782 unsigned colors_read_mask,
1783 LLVMValueRef interp_param,
1784 LLVMValueRef prim_mask,
1785 LLVMValueRef face,
1786 LLVMValueRef result[4])
1787 {
1788 LLVMValueRef i = NULL, j = NULL;
1789 unsigned chan;
1790
1791 /* fs.constant returns the param from the middle vertex, so it's not
1792 * really useful for flat shading. It's meant to be used for custom
1793 * interpolation (but the intrinsic can't fetch from the other two
1794 * vertices).
1795 *
1796 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1797 * to do the right thing. The only reason we use fs.constant is that
1798 * fs.interp cannot be used on integers, because they can be equal
1799 * to NaN.
1800 *
1801 * When interp is false we will use fs.constant or for newer llvm,
1802 * amdgcn.interp.mov.
1803 */
1804 bool interp = interp_param != NULL;
1805
1806 if (interp) {
1807 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1808 LLVMVectorType(ctx->f32, 2), "");
1809
1810 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1811 ctx->i32_0, "");
1812 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1813 ctx->i32_1, "");
1814 }
1815
1816 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1817 ctx->shader->key.part.ps.prolog.color_two_side) {
1818 LLVMValueRef is_face_positive;
1819
1820 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1821 * otherwise it's at offset "num_inputs".
1822 */
1823 unsigned back_attr_offset = num_interp_inputs;
1824 if (semantic_index == 1 && colors_read_mask & 0xf)
1825 back_attr_offset += 1;
1826
1827 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1828 face, ctx->i32_0, "");
1829
1830 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1831 LLVMValueRef front, back;
1832
1833 front = si_build_fs_interp(ctx,
1834 input_index, chan,
1835 prim_mask, i, j);
1836 back = si_build_fs_interp(ctx,
1837 back_attr_offset, chan,
1838 prim_mask, i, j);
1839
1840 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1841 is_face_positive,
1842 front,
1843 back,
1844 "");
1845 }
1846 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1847 result[0] = si_build_fs_interp(ctx, input_index,
1848 0, prim_mask, i, j);
1849 result[1] =
1850 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1851 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1852 } else {
1853 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1854 result[chan] = si_build_fs_interp(ctx,
1855 input_index, chan,
1856 prim_mask, i, j);
1857 }
1858 }
1859 }
1860
1861 void si_llvm_load_input_fs(
1862 struct si_shader_context *ctx,
1863 unsigned input_index,
1864 LLVMValueRef out[4])
1865 {
1866 struct si_shader *shader = ctx->shader;
1867 struct tgsi_shader_info *info = &shader->selector->info;
1868 LLVMValueRef main_fn = ctx->main_fn;
1869 LLVMValueRef interp_param = NULL;
1870 int interp_param_idx;
1871 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1872 unsigned semantic_index = info->input_semantic_index[input_index];
1873 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1874 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1875
1876 /* Get colors from input VGPRs (set by the prolog). */
1877 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1878 unsigned colors_read = shader->selector->info.colors_read;
1879 unsigned mask = colors_read >> (semantic_index * 4);
1880 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1881 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1882 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1883
1884 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1885 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1886 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1887 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1888 return;
1889 }
1890
1891 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1892 if (interp_param_idx == -1)
1893 return;
1894 else if (interp_param_idx) {
1895 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1896 }
1897
1898 interp_fs_input(ctx, input_index, semantic_name,
1899 semantic_index, 0, /* this param is unused */
1900 shader->selector->info.colors_read, interp_param,
1901 ctx->abi.prim_mask,
1902 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1903 &out[0]);
1904 }
1905
1906 static void declare_input_fs(
1907 struct si_shader_context *ctx,
1908 unsigned input_index,
1909 const struct tgsi_full_declaration *decl,
1910 LLVMValueRef out[4])
1911 {
1912 si_llvm_load_input_fs(ctx, input_index, out);
1913 }
1914
1915 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1916 {
1917 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1918 }
1919
1920 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1921 {
1922 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1923
1924 /* For non-indexed draws, the base vertex set by the driver
1925 * (for direct draws) or the CP (for indirect draws) is the
1926 * first vertex ID, but GLSL expects 0 to be returned.
1927 */
1928 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1929 ctx->param_vs_state_bits);
1930 LLVMValueRef indexed;
1931
1932 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1933 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1934
1935 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1936 ctx->i32_0, "");
1937 }
1938
1939 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1940 {
1941 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1942
1943 LLVMValueRef values[3];
1944 LLVMValueRef result;
1945 unsigned i;
1946 unsigned *properties = ctx->shader->selector->info.properties;
1947
1948 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1949 unsigned sizes[3] = {
1950 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1951 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1952 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1953 };
1954
1955 for (i = 0; i < 3; ++i)
1956 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1957
1958 result = ac_build_gather_values(&ctx->ac, values, 3);
1959 } else {
1960 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1961 }
1962
1963 return result;
1964 }
1965
1966 /**
1967 * Load a dword from a constant buffer.
1968 */
1969 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1970 LLVMValueRef resource,
1971 LLVMValueRef offset)
1972 {
1973 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1974 0, 0, 0, true, true);
1975 }
1976
1977 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1978 {
1979 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1980 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1981 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1982 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1983
1984 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1985 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1986 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1987
1988 LLVMValueRef pos[4] = {
1989 buffer_load_const(ctx, resource, offset0),
1990 buffer_load_const(ctx, resource, offset1),
1991 LLVMConstReal(ctx->f32, 0),
1992 LLVMConstReal(ctx->f32, 0)
1993 };
1994
1995 return ac_build_gather_values(&ctx->ac, pos, 4);
1996 }
1997
1998 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1999 {
2000 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2001 return ac_to_integer(&ctx->ac, abi->sample_coverage);
2002 }
2003
2004 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
2005 {
2006 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2007 LLVMValueRef coord[4] = {
2008 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
2009 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
2010 ctx->ac.f32_0,
2011 ctx->ac.f32_0
2012 };
2013
2014 /* For triangles, the vector should be (u, v, 1-u-v). */
2015 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
2016 PIPE_PRIM_TRIANGLES) {
2017 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
2018 LLVMBuildFAdd(ctx->ac.builder,
2019 coord[0], coord[1], ""), "");
2020 }
2021 return ac_build_gather_values(&ctx->ac, coord, 4);
2022 }
2023
2024 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
2025 unsigned semantic_name)
2026 {
2027 LLVMValueRef base, addr;
2028
2029 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
2030
2031 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
2032 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
2033 LLVMConstInt(ctx->i32, param, 0));
2034
2035 return buffer_load(&ctx->bld_base, ctx->f32,
2036 ~0, ctx->tess_offchip_ring, base, addr, true);
2037
2038 }
2039
2040 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
2041 unsigned varying_id)
2042 {
2043 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2044 unsigned semantic_name;
2045
2046 switch (varying_id) {
2047 case VARYING_SLOT_TESS_LEVEL_INNER:
2048 semantic_name = TGSI_SEMANTIC_TESSINNER;
2049 break;
2050 case VARYING_SLOT_TESS_LEVEL_OUTER:
2051 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2052 break;
2053 default:
2054 unreachable("unknown tess level");
2055 }
2056
2057 return load_tess_level(ctx, semantic_name);
2058
2059 }
2060
2061 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2062 {
2063 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2064 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2065 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2066 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2067 return get_num_tcs_out_vertices(ctx);
2068 else
2069 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2070 }
2071
2072 void si_load_system_value(struct si_shader_context *ctx,
2073 unsigned index,
2074 const struct tgsi_full_declaration *decl)
2075 {
2076 LLVMValueRef value = 0;
2077
2078 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2079
2080 switch (decl->Semantic.Name) {
2081 case TGSI_SEMANTIC_INSTANCEID:
2082 value = ctx->abi.instance_id;
2083 break;
2084
2085 case TGSI_SEMANTIC_VERTEXID:
2086 value = LLVMBuildAdd(ctx->ac.builder,
2087 ctx->abi.vertex_id,
2088 ctx->abi.base_vertex, "");
2089 break;
2090
2091 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2092 /* Unused. Clarify the meaning in indexed vs. non-indexed
2093 * draws if this is ever used again. */
2094 assert(false);
2095 break;
2096
2097 case TGSI_SEMANTIC_BASEVERTEX:
2098 value = get_base_vertex(&ctx->abi);
2099 break;
2100
2101 case TGSI_SEMANTIC_BASEINSTANCE:
2102 value = ctx->abi.start_instance;
2103 break;
2104
2105 case TGSI_SEMANTIC_DRAWID:
2106 value = ctx->abi.draw_id;
2107 break;
2108
2109 case TGSI_SEMANTIC_INVOCATIONID:
2110 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2111 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2112 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2113 value = ctx->abi.gs_invocation_id;
2114 else
2115 assert(!"INVOCATIONID not implemented");
2116 break;
2117
2118 case TGSI_SEMANTIC_POSITION:
2119 {
2120 LLVMValueRef pos[4] = {
2121 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2122 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2123 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2124 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2125 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2126 };
2127 value = ac_build_gather_values(&ctx->ac, pos, 4);
2128 break;
2129 }
2130
2131 case TGSI_SEMANTIC_FACE:
2132 value = ctx->abi.front_face;
2133 break;
2134
2135 case TGSI_SEMANTIC_SAMPLEID:
2136 value = si_get_sample_id(ctx);
2137 break;
2138
2139 case TGSI_SEMANTIC_SAMPLEPOS: {
2140 LLVMValueRef pos[4] = {
2141 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2142 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2143 LLVMConstReal(ctx->f32, 0),
2144 LLVMConstReal(ctx->f32, 0)
2145 };
2146 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2147 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2148 value = ac_build_gather_values(&ctx->ac, pos, 4);
2149 break;
2150 }
2151
2152 case TGSI_SEMANTIC_SAMPLEMASK:
2153 /* This can only occur with the OpenGL Core profile, which
2154 * doesn't support smoothing.
2155 */
2156 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2157 break;
2158
2159 case TGSI_SEMANTIC_TESSCOORD:
2160 value = si_load_tess_coord(&ctx->abi);
2161 break;
2162
2163 case TGSI_SEMANTIC_VERTICESIN:
2164 value = si_load_patch_vertices_in(&ctx->abi);
2165 break;
2166
2167 case TGSI_SEMANTIC_TESSINNER:
2168 case TGSI_SEMANTIC_TESSOUTER:
2169 value = load_tess_level(ctx, decl->Semantic.Name);
2170 break;
2171
2172 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2173 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2174 {
2175 LLVMValueRef buf, slot, val[4];
2176 int i, offset;
2177
2178 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2179 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2180 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2181 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2182
2183 for (i = 0; i < 4; i++)
2184 val[i] = buffer_load_const(ctx, buf,
2185 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2186 value = ac_build_gather_values(&ctx->ac, val, 4);
2187 break;
2188 }
2189
2190 case TGSI_SEMANTIC_PRIMID:
2191 value = get_primitive_id(ctx, 0);
2192 break;
2193
2194 case TGSI_SEMANTIC_GRID_SIZE:
2195 value = ctx->abi.num_work_groups;
2196 break;
2197
2198 case TGSI_SEMANTIC_BLOCK_SIZE:
2199 value = get_block_size(&ctx->abi);
2200 break;
2201
2202 case TGSI_SEMANTIC_BLOCK_ID:
2203 {
2204 LLVMValueRef values[3];
2205
2206 for (int i = 0; i < 3; i++) {
2207 values[i] = ctx->i32_0;
2208 if (ctx->abi.workgroup_ids[i]) {
2209 values[i] = ctx->abi.workgroup_ids[i];
2210 }
2211 }
2212 value = ac_build_gather_values(&ctx->ac, values, 3);
2213 break;
2214 }
2215
2216 case TGSI_SEMANTIC_THREAD_ID:
2217 value = ctx->abi.local_invocation_ids;
2218 break;
2219
2220 case TGSI_SEMANTIC_HELPER_INVOCATION:
2221 value = ac_build_load_helper_invocation(&ctx->ac);
2222 break;
2223
2224 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2225 value = LLVMConstInt(ctx->i32, 64, 0);
2226 break;
2227
2228 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2229 value = ac_get_thread_id(&ctx->ac);
2230 break;
2231
2232 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2233 {
2234 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2235 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2236 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2237 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2238 break;
2239 }
2240
2241 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2242 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2243 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2244 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2245 {
2246 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2247 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2248 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2249 /* All bits set except LSB */
2250 value = LLVMConstInt(ctx->i64, -2, 0);
2251 } else {
2252 /* All bits set */
2253 value = LLVMConstInt(ctx->i64, -1, 0);
2254 }
2255 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2256 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2257 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2258 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2259 value = LLVMBuildNot(ctx->ac.builder, value, "");
2260 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2261 break;
2262 }
2263
2264 case TGSI_SEMANTIC_CS_USER_DATA:
2265 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2266 break;
2267
2268 default:
2269 assert(!"unknown system value");
2270 return;
2271 }
2272
2273 ctx->system_values[index] = value;
2274 }
2275
2276 void si_declare_compute_memory(struct si_shader_context *ctx)
2277 {
2278 struct si_shader_selector *sel = ctx->shader->selector;
2279 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2280
2281 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2282 LLVMValueRef var;
2283
2284 assert(!ctx->ac.lds);
2285
2286 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2287 LLVMArrayType(ctx->i8, lds_size),
2288 "compute_lds",
2289 AC_ADDR_SPACE_LDS);
2290 LLVMSetAlignment(var, 4);
2291
2292 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2293 }
2294
2295 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2296 const struct tgsi_full_declaration *decl)
2297 {
2298 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2299 assert(decl->Range.First == decl->Range.Last);
2300
2301 si_declare_compute_memory(ctx);
2302 }
2303
2304 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2305 {
2306 LLVMValueRef ptr =
2307 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2308 struct si_shader_selector *sel = ctx->shader->selector;
2309
2310 /* Do the bounds checking with a descriptor, because
2311 * doing computation and manual bounds checking of 64-bit
2312 * addresses generates horrible VALU code with very high
2313 * VGPR usage and very low SIMD occupancy.
2314 */
2315 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2316
2317 LLVMValueRef desc0, desc1;
2318 desc0 = ptr;
2319 desc1 = LLVMConstInt(ctx->i32,
2320 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2321
2322 LLVMValueRef desc_elems[] = {
2323 desc0,
2324 desc1,
2325 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2326 LLVMConstInt(ctx->i32,
2327 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2328 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2329 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2330 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2331 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2332 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2333 };
2334
2335 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2336 }
2337
2338 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2339 {
2340 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2341 ctx->param_const_and_shader_buffers);
2342
2343 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2344 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2345 }
2346
2347 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2348 {
2349 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2350 struct si_shader_selector *sel = ctx->shader->selector;
2351
2352 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2353
2354 if (sel->info.const_buffers_declared == 1 &&
2355 sel->info.shader_buffers_declared == 0) {
2356 return load_const_buffer_desc_fast_path(ctx);
2357 }
2358
2359 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2360 index = LLVMBuildAdd(ctx->ac.builder, index,
2361 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2362
2363 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2364 }
2365
2366 static LLVMValueRef
2367 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2368 {
2369 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2370 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2371 ctx->param_const_and_shader_buffers);
2372
2373 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2374 index = LLVMBuildSub(ctx->ac.builder,
2375 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2376 index, "");
2377
2378 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2379 }
2380
2381 static LLVMValueRef fetch_constant(
2382 struct lp_build_tgsi_context *bld_base,
2383 const struct tgsi_full_src_register *reg,
2384 enum tgsi_opcode_type type,
2385 unsigned swizzle_in)
2386 {
2387 struct si_shader_context *ctx = si_shader_context(bld_base);
2388 struct si_shader_selector *sel = ctx->shader->selector;
2389 const struct tgsi_ind_register *ireg = &reg->Indirect;
2390 unsigned buf, idx;
2391 unsigned swizzle = swizzle_in & 0xffff;
2392
2393 LLVMValueRef addr, bufp;
2394
2395 if (swizzle_in == LP_CHAN_ALL) {
2396 unsigned chan;
2397 LLVMValueRef values[4];
2398 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2399 values[chan] = fetch_constant(bld_base, reg, type, chan);
2400
2401 return ac_build_gather_values(&ctx->ac, values, 4);
2402 }
2403
2404 /* Split 64-bit loads. */
2405 if (tgsi_type_is_64bit(type)) {
2406 LLVMValueRef lo, hi;
2407
2408 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2409 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2410 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2411 lo, hi);
2412 }
2413
2414 idx = reg->Register.Index * 4 + swizzle;
2415 if (reg->Register.Indirect) {
2416 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2417 } else {
2418 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2419 }
2420
2421 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2422 if (sel->info.const_buffers_declared == 1 &&
2423 sel->info.shader_buffers_declared == 0) {
2424 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2425 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2426 return bitcast(bld_base, type, result);
2427 }
2428
2429 assert(reg->Register.Dimension);
2430 buf = reg->Dimension.Index;
2431
2432 if (reg->Dimension.Indirect) {
2433 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2434 LLVMValueRef index;
2435 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2436 reg->Dimension.Index,
2437 ctx->num_const_buffers);
2438 index = LLVMBuildAdd(ctx->ac.builder, index,
2439 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2440 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2441 } else
2442 bufp = load_const_buffer_desc(ctx, buf);
2443
2444 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2445 }
2446
2447 /* Initialize arguments for the shader export intrinsic */
2448 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2449 LLVMValueRef *values,
2450 unsigned target,
2451 struct ac_export_args *args)
2452 {
2453 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2454 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2455 unsigned chan;
2456 bool is_int8, is_int10;
2457
2458 /* Default is 0xf. Adjusted below depending on the format. */
2459 args->enabled_channels = 0xf; /* writemask */
2460
2461 /* Specify whether the EXEC mask represents the valid mask */
2462 args->valid_mask = 0;
2463
2464 /* Specify whether this is the last export */
2465 args->done = 0;
2466
2467 /* Specify the target we are exporting */
2468 args->target = target;
2469
2470 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2471 const struct si_shader_key *key = &ctx->shader->key;
2472 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2473 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2474
2475 assert(cbuf >= 0 && cbuf < 8);
2476 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2477 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2478 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2479 }
2480
2481 args->compr = false;
2482 args->out[0] = f32undef;
2483 args->out[1] = f32undef;
2484 args->out[2] = f32undef;
2485 args->out[3] = f32undef;
2486
2487 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2488 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2489 unsigned bits, bool hi) = NULL;
2490
2491 switch (spi_shader_col_format) {
2492 case V_028714_SPI_SHADER_ZERO:
2493 args->enabled_channels = 0; /* writemask */
2494 args->target = V_008DFC_SQ_EXP_NULL;
2495 break;
2496
2497 case V_028714_SPI_SHADER_32_R:
2498 args->enabled_channels = 1; /* writemask */
2499 args->out[0] = values[0];
2500 break;
2501
2502 case V_028714_SPI_SHADER_32_GR:
2503 args->enabled_channels = 0x3; /* writemask */
2504 args->out[0] = values[0];
2505 args->out[1] = values[1];
2506 break;
2507
2508 case V_028714_SPI_SHADER_32_AR:
2509 args->enabled_channels = 0x9; /* writemask */
2510 args->out[0] = values[0];
2511 args->out[3] = values[3];
2512 break;
2513
2514 case V_028714_SPI_SHADER_FP16_ABGR:
2515 packf = ac_build_cvt_pkrtz_f16;
2516 break;
2517
2518 case V_028714_SPI_SHADER_UNORM16_ABGR:
2519 packf = ac_build_cvt_pknorm_u16;
2520 break;
2521
2522 case V_028714_SPI_SHADER_SNORM16_ABGR:
2523 packf = ac_build_cvt_pknorm_i16;
2524 break;
2525
2526 case V_028714_SPI_SHADER_UINT16_ABGR:
2527 packi = ac_build_cvt_pk_u16;
2528 break;
2529
2530 case V_028714_SPI_SHADER_SINT16_ABGR:
2531 packi = ac_build_cvt_pk_i16;
2532 break;
2533
2534 case V_028714_SPI_SHADER_32_ABGR:
2535 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2536 break;
2537 }
2538
2539 /* Pack f16 or norm_i16/u16. */
2540 if (packf) {
2541 for (chan = 0; chan < 2; chan++) {
2542 LLVMValueRef pack_args[2] = {
2543 values[2 * chan],
2544 values[2 * chan + 1]
2545 };
2546 LLVMValueRef packed;
2547
2548 packed = packf(&ctx->ac, pack_args);
2549 args->out[chan] = ac_to_float(&ctx->ac, packed);
2550 }
2551 args->compr = 1; /* COMPR flag */
2552 }
2553 /* Pack i16/u16. */
2554 if (packi) {
2555 for (chan = 0; chan < 2; chan++) {
2556 LLVMValueRef pack_args[2] = {
2557 ac_to_integer(&ctx->ac, values[2 * chan]),
2558 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2559 };
2560 LLVMValueRef packed;
2561
2562 packed = packi(&ctx->ac, pack_args,
2563 is_int8 ? 8 : is_int10 ? 10 : 16,
2564 chan == 1);
2565 args->out[chan] = ac_to_float(&ctx->ac, packed);
2566 }
2567 args->compr = 1; /* COMPR flag */
2568 }
2569 }
2570
2571 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2572 LLVMValueRef alpha)
2573 {
2574 struct si_shader_context *ctx = si_shader_context(bld_base);
2575
2576 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2577 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2578 [PIPE_FUNC_LESS] = LLVMRealOLT,
2579 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2580 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2581 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2582 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2583 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2584 };
2585 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2586 assert(cond);
2587
2588 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2589 SI_PARAM_ALPHA_REF);
2590 LLVMValueRef alpha_pass =
2591 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2592 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2593 } else {
2594 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2595 }
2596 }
2597
2598 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2599 LLVMValueRef alpha,
2600 unsigned samplemask_param)
2601 {
2602 struct si_shader_context *ctx = si_shader_context(bld_base);
2603 LLVMValueRef coverage;
2604
2605 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2606 coverage = LLVMGetParam(ctx->main_fn,
2607 samplemask_param);
2608 coverage = ac_to_integer(&ctx->ac, coverage);
2609
2610 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2611 ctx->i32,
2612 &coverage, 1, AC_FUNC_ATTR_READNONE);
2613
2614 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2615 ctx->f32, "");
2616
2617 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2618 LLVMConstReal(ctx->f32,
2619 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2620
2621 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2622 }
2623
2624 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2625 struct ac_export_args *pos, LLVMValueRef *out_elts)
2626 {
2627 unsigned reg_index;
2628 unsigned chan;
2629 unsigned const_chan;
2630 LLVMValueRef base_elt;
2631 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2632 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2633 SI_VS_CONST_CLIP_PLANES, 0);
2634 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2635
2636 for (reg_index = 0; reg_index < 2; reg_index ++) {
2637 struct ac_export_args *args = &pos[2 + reg_index];
2638
2639 args->out[0] =
2640 args->out[1] =
2641 args->out[2] =
2642 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2643
2644 /* Compute dot products of position and user clip plane vectors */
2645 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2646 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2647 LLVMValueRef addr =
2648 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2649 const_chan) * 4, 0);
2650 base_elt = buffer_load_const(ctx, const_resource,
2651 addr);
2652 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2653 out_elts[const_chan], args->out[chan]);
2654 }
2655 }
2656
2657 args->enabled_channels = 0xf;
2658 args->valid_mask = 0;
2659 args->done = 0;
2660 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2661 args->compr = 0;
2662 }
2663 }
2664
2665 static void si_dump_streamout(struct pipe_stream_output_info *so)
2666 {
2667 unsigned i;
2668
2669 if (so->num_outputs)
2670 fprintf(stderr, "STREAMOUT\n");
2671
2672 for (i = 0; i < so->num_outputs; i++) {
2673 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2674 so->output[i].start_component;
2675 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2676 i, so->output[i].output_buffer,
2677 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2678 so->output[i].register_index,
2679 mask & 1 ? "x" : "",
2680 mask & 2 ? "y" : "",
2681 mask & 4 ? "z" : "",
2682 mask & 8 ? "w" : "");
2683 }
2684 }
2685
2686 static void emit_streamout_output(struct si_shader_context *ctx,
2687 LLVMValueRef const *so_buffers,
2688 LLVMValueRef const *so_write_offsets,
2689 struct pipe_stream_output *stream_out,
2690 struct si_shader_output_values *shader_out)
2691 {
2692 unsigned buf_idx = stream_out->output_buffer;
2693 unsigned start = stream_out->start_component;
2694 unsigned num_comps = stream_out->num_components;
2695 LLVMValueRef out[4];
2696
2697 assert(num_comps && num_comps <= 4);
2698 if (!num_comps || num_comps > 4)
2699 return;
2700
2701 /* Load the output as int. */
2702 for (int j = 0; j < num_comps; j++) {
2703 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2704
2705 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2706 }
2707
2708 /* Pack the output. */
2709 LLVMValueRef vdata = NULL;
2710
2711 switch (num_comps) {
2712 case 1: /* as i32 */
2713 vdata = out[0];
2714 break;
2715 case 2: /* as v2i32 */
2716 case 3: /* as v4i32 (aligned to 4) */
2717 out[3] = LLVMGetUndef(ctx->i32);
2718 /* fall through */
2719 case 4: /* as v4i32 */
2720 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2721 break;
2722 }
2723
2724 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2725 vdata, num_comps,
2726 so_write_offsets[buf_idx],
2727 ctx->i32_0,
2728 stream_out->dst_offset * 4, 1, 1, true, false);
2729 }
2730
2731 /**
2732 * Write streamout data to buffers for vertex stream @p stream (different
2733 * vertex streams can occur for GS copy shaders).
2734 */
2735 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2736 struct si_shader_output_values *outputs,
2737 unsigned noutput, unsigned stream)
2738 {
2739 struct si_shader_selector *sel = ctx->shader->selector;
2740 struct pipe_stream_output_info *so = &sel->so;
2741 LLVMBuilderRef builder = ctx->ac.builder;
2742 int i;
2743 struct lp_build_if_state if_ctx;
2744
2745 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2746 LLVMValueRef so_vtx_count =
2747 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2748
2749 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2750
2751 /* can_emit = tid < so_vtx_count; */
2752 LLVMValueRef can_emit =
2753 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2754
2755 /* Emit the streamout code conditionally. This actually avoids
2756 * out-of-bounds buffer access. The hw tells us via the SGPR
2757 * (so_vtx_count) which threads are allowed to emit streamout data. */
2758 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2759 {
2760 /* The buffer offset is computed as follows:
2761 * ByteOffset = streamout_offset[buffer_id]*4 +
2762 * (streamout_write_index + thread_id)*stride[buffer_id] +
2763 * attrib_offset
2764 */
2765
2766 LLVMValueRef so_write_index =
2767 LLVMGetParam(ctx->main_fn,
2768 ctx->param_streamout_write_index);
2769
2770 /* Compute (streamout_write_index + thread_id). */
2771 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2772
2773 /* Load the descriptor and compute the write offset for each
2774 * enabled buffer. */
2775 LLVMValueRef so_write_offset[4] = {};
2776 LLVMValueRef so_buffers[4];
2777 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2778 ctx->param_rw_buffers);
2779
2780 for (i = 0; i < 4; i++) {
2781 if (!so->stride[i])
2782 continue;
2783
2784 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2785 SI_VS_STREAMOUT_BUF0 + i, 0);
2786
2787 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2788
2789 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2790 ctx->param_streamout_offset[i]);
2791 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2792
2793 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2794 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2795 so_offset);
2796 }
2797
2798 /* Write streamout data. */
2799 for (i = 0; i < so->num_outputs; i++) {
2800 unsigned reg = so->output[i].register_index;
2801
2802 if (reg >= noutput)
2803 continue;
2804
2805 if (stream != so->output[i].stream)
2806 continue;
2807
2808 emit_streamout_output(ctx, so_buffers, so_write_offset,
2809 &so->output[i], &outputs[reg]);
2810 }
2811 }
2812 lp_build_endif(&if_ctx);
2813 }
2814
2815 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2816 LLVMValueRef *values)
2817 {
2818 struct ac_export_args args;
2819
2820 si_llvm_init_export_args(ctx, values,
2821 V_008DFC_SQ_EXP_PARAM + index, &args);
2822 ac_build_export(&ctx->ac, &args);
2823 }
2824
2825 static void si_build_param_exports(struct si_shader_context *ctx,
2826 struct si_shader_output_values *outputs,
2827 unsigned noutput)
2828 {
2829 struct si_shader *shader = ctx->shader;
2830 unsigned param_count = 0;
2831
2832 for (unsigned i = 0; i < noutput; i++) {
2833 unsigned semantic_name = outputs[i].semantic_name;
2834 unsigned semantic_index = outputs[i].semantic_index;
2835
2836 if (outputs[i].vertex_stream[0] != 0 &&
2837 outputs[i].vertex_stream[1] != 0 &&
2838 outputs[i].vertex_stream[2] != 0 &&
2839 outputs[i].vertex_stream[3] != 0)
2840 continue;
2841
2842 switch (semantic_name) {
2843 case TGSI_SEMANTIC_LAYER:
2844 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2845 case TGSI_SEMANTIC_CLIPDIST:
2846 case TGSI_SEMANTIC_COLOR:
2847 case TGSI_SEMANTIC_BCOLOR:
2848 case TGSI_SEMANTIC_PRIMID:
2849 case TGSI_SEMANTIC_FOG:
2850 case TGSI_SEMANTIC_TEXCOORD:
2851 case TGSI_SEMANTIC_GENERIC:
2852 break;
2853 default:
2854 continue;
2855 }
2856
2857 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2858 semantic_index < SI_MAX_IO_GENERIC) &&
2859 shader->key.opt.kill_outputs &
2860 (1ull << si_shader_io_get_unique_index(semantic_name,
2861 semantic_index, true)))
2862 continue;
2863
2864 si_export_param(ctx, param_count, outputs[i].values);
2865
2866 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2867 shader->info.vs_output_param_offset[i] = param_count++;
2868 }
2869
2870 shader->info.nr_param_exports = param_count;
2871 }
2872
2873 /* Generate export instructions for hardware VS shader stage */
2874 static void si_llvm_export_vs(struct si_shader_context *ctx,
2875 struct si_shader_output_values *outputs,
2876 unsigned noutput)
2877 {
2878 struct si_shader *shader = ctx->shader;
2879 struct ac_export_args pos_args[4] = {};
2880 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2881 unsigned pos_idx;
2882 int i;
2883
2884 /* Build position exports. */
2885 for (i = 0; i < noutput; i++) {
2886 switch (outputs[i].semantic_name) {
2887 case TGSI_SEMANTIC_POSITION:
2888 si_llvm_init_export_args(ctx, outputs[i].values,
2889 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2890 break;
2891 case TGSI_SEMANTIC_PSIZE:
2892 psize_value = outputs[i].values[0];
2893 break;
2894 case TGSI_SEMANTIC_LAYER:
2895 layer_value = outputs[i].values[0];
2896 break;
2897 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2898 viewport_index_value = outputs[i].values[0];
2899 break;
2900 case TGSI_SEMANTIC_EDGEFLAG:
2901 edgeflag_value = outputs[i].values[0];
2902 break;
2903 case TGSI_SEMANTIC_CLIPDIST:
2904 if (!shader->key.opt.clip_disable) {
2905 unsigned index = 2 + outputs[i].semantic_index;
2906 si_llvm_init_export_args(ctx, outputs[i].values,
2907 V_008DFC_SQ_EXP_POS + index,
2908 &pos_args[index]);
2909 }
2910 break;
2911 case TGSI_SEMANTIC_CLIPVERTEX:
2912 if (!shader->key.opt.clip_disable) {
2913 si_llvm_emit_clipvertex(ctx, pos_args,
2914 outputs[i].values);
2915 }
2916 break;
2917 }
2918 }
2919
2920 /* We need to add the position output manually if it's missing. */
2921 if (!pos_args[0].out[0]) {
2922 pos_args[0].enabled_channels = 0xf; /* writemask */
2923 pos_args[0].valid_mask = 0; /* EXEC mask */
2924 pos_args[0].done = 0; /* last export? */
2925 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2926 pos_args[0].compr = 0; /* COMPR flag */
2927 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2928 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2929 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2930 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2931 }
2932
2933 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2934 if (shader->selector->info.writes_psize ||
2935 shader->selector->info.writes_edgeflag ||
2936 shader->selector->info.writes_viewport_index ||
2937 shader->selector->info.writes_layer) {
2938 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2939 (shader->selector->info.writes_edgeflag << 1) |
2940 (shader->selector->info.writes_layer << 2);
2941
2942 pos_args[1].valid_mask = 0; /* EXEC mask */
2943 pos_args[1].done = 0; /* last export? */
2944 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2945 pos_args[1].compr = 0; /* COMPR flag */
2946 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2947 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2948 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2949 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2950
2951 if (shader->selector->info.writes_psize)
2952 pos_args[1].out[0] = psize_value;
2953
2954 if (shader->selector->info.writes_edgeflag) {
2955 /* The output is a float, but the hw expects an integer
2956 * with the first bit containing the edge flag. */
2957 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2958 edgeflag_value,
2959 ctx->i32, "");
2960 edgeflag_value = ac_build_umin(&ctx->ac,
2961 edgeflag_value,
2962 ctx->i32_1);
2963
2964 /* The LLVM intrinsic expects a float. */
2965 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2966 }
2967
2968 if (ctx->screen->info.chip_class >= GFX9) {
2969 /* GFX9 has the layer in out.z[10:0] and the viewport
2970 * index in out.z[19:16].
2971 */
2972 if (shader->selector->info.writes_layer)
2973 pos_args[1].out[2] = layer_value;
2974
2975 if (shader->selector->info.writes_viewport_index) {
2976 LLVMValueRef v = viewport_index_value;
2977
2978 v = ac_to_integer(&ctx->ac, v);
2979 v = LLVMBuildShl(ctx->ac.builder, v,
2980 LLVMConstInt(ctx->i32, 16, 0), "");
2981 v = LLVMBuildOr(ctx->ac.builder, v,
2982 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2983 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2984 pos_args[1].enabled_channels |= 1 << 2;
2985 }
2986 } else {
2987 if (shader->selector->info.writes_layer)
2988 pos_args[1].out[2] = layer_value;
2989
2990 if (shader->selector->info.writes_viewport_index) {
2991 pos_args[1].out[3] = viewport_index_value;
2992 pos_args[1].enabled_channels |= 1 << 3;
2993 }
2994 }
2995 }
2996
2997 for (i = 0; i < 4; i++)
2998 if (pos_args[i].out[0])
2999 shader->info.nr_pos_exports++;
3000
3001 pos_idx = 0;
3002 for (i = 0; i < 4; i++) {
3003 if (!pos_args[i].out[0])
3004 continue;
3005
3006 /* Specify the target we are exporting */
3007 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3008
3009 if (pos_idx == shader->info.nr_pos_exports)
3010 /* Specify that this is the last export */
3011 pos_args[i].done = 1;
3012
3013 ac_build_export(&ctx->ac, &pos_args[i]);
3014 }
3015
3016 /* Build parameter exports. */
3017 si_build_param_exports(ctx, outputs, noutput);
3018 }
3019
3020 /**
3021 * Forward all outputs from the vertex shader to the TES. This is only used
3022 * for the fixed function TCS.
3023 */
3024 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3025 {
3026 struct si_shader_context *ctx = si_shader_context(bld_base);
3027 LLVMValueRef invocation_id, buffer, buffer_offset;
3028 LLVMValueRef lds_vertex_stride, lds_base;
3029 uint64_t inputs;
3030
3031 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3032 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3033 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3034
3035 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3036 lds_base = get_tcs_in_current_patch_offset(ctx);
3037 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3038 lds_base);
3039
3040 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3041 while (inputs) {
3042 unsigned i = u_bit_scan64(&inputs);
3043
3044 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3045 LLVMConstInt(ctx->i32, 4 * i, 0),
3046 "");
3047
3048 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3049 get_rel_patch_id(ctx),
3050 invocation_id,
3051 LLVMConstInt(ctx->i32, i, 0));
3052
3053 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3054 lds_ptr);
3055
3056 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3057 buffer_offset, 0, 1, 0, true, false);
3058 }
3059 }
3060
3061 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3062 LLVMValueRef rel_patch_id,
3063 LLVMValueRef invocation_id,
3064 LLVMValueRef tcs_out_current_patch_data_offset,
3065 LLVMValueRef invoc0_tf_outer[4],
3066 LLVMValueRef invoc0_tf_inner[2])
3067 {
3068 struct si_shader_context *ctx = si_shader_context(bld_base);
3069 struct si_shader *shader = ctx->shader;
3070 unsigned tess_inner_index, tess_outer_index;
3071 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3072 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3073 unsigned stride, outer_comps, inner_comps, i, offset;
3074 struct lp_build_if_state if_ctx, inner_if_ctx;
3075
3076 /* Add a barrier before loading tess factors from LDS. */
3077 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3078 si_llvm_emit_barrier(NULL, bld_base, NULL);
3079
3080 /* Do this only for invocation 0, because the tess levels are per-patch,
3081 * not per-vertex.
3082 *
3083 * This can't jump, because invocation 0 executes this. It should
3084 * at least mask out the loads and stores for other invocations.
3085 */
3086 lp_build_if(&if_ctx, &ctx->gallivm,
3087 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3088 invocation_id, ctx->i32_0, ""));
3089
3090 /* Determine the layout of one tess factor element in the buffer. */
3091 switch (shader->key.part.tcs.epilog.prim_mode) {
3092 case PIPE_PRIM_LINES:
3093 stride = 2; /* 2 dwords, 1 vec2 store */
3094 outer_comps = 2;
3095 inner_comps = 0;
3096 break;
3097 case PIPE_PRIM_TRIANGLES:
3098 stride = 4; /* 4 dwords, 1 vec4 store */
3099 outer_comps = 3;
3100 inner_comps = 1;
3101 break;
3102 case PIPE_PRIM_QUADS:
3103 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3104 outer_comps = 4;
3105 inner_comps = 2;
3106 break;
3107 default:
3108 assert(0);
3109 return;
3110 }
3111
3112 for (i = 0; i < 4; i++) {
3113 inner[i] = LLVMGetUndef(ctx->i32);
3114 outer[i] = LLVMGetUndef(ctx->i32);
3115 }
3116
3117 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3118 /* Tess factors are in VGPRs. */
3119 for (i = 0; i < outer_comps; i++)
3120 outer[i] = out[i] = invoc0_tf_outer[i];
3121 for (i = 0; i < inner_comps; i++)
3122 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3123 } else {
3124 /* Load tess_inner and tess_outer from LDS.
3125 * Any invocation can write them, so we can't get them from a temporary.
3126 */
3127 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3128 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3129
3130 lds_base = tcs_out_current_patch_data_offset;
3131 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3132 LLVMConstInt(ctx->i32,
3133 tess_inner_index * 4, 0), "");
3134 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3135 LLVMConstInt(ctx->i32,
3136 tess_outer_index * 4, 0), "");
3137
3138 for (i = 0; i < outer_comps; i++) {
3139 outer[i] = out[i] =
3140 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3141 }
3142 for (i = 0; i < inner_comps; i++) {
3143 inner[i] = out[outer_comps+i] =
3144 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3145 }
3146 }
3147
3148 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3149 /* For isolines, the hardware expects tess factors in the
3150 * reverse order from what GLSL / TGSI specify.
3151 */
3152 LLVMValueRef tmp = out[0];
3153 out[0] = out[1];
3154 out[1] = tmp;
3155 }
3156
3157 /* Convert the outputs to vectors for stores. */
3158 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3159 vec1 = NULL;
3160
3161 if (stride > 4)
3162 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3163
3164 /* Get the buffer. */
3165 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3166
3167 /* Get the offset. */
3168 tf_base = LLVMGetParam(ctx->main_fn,
3169 ctx->param_tcs_factor_offset);
3170 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3171 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3172
3173 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3174 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3175 rel_patch_id, ctx->i32_0, ""));
3176
3177 /* Store the dynamic HS control word. */
3178 offset = 0;
3179 if (ctx->screen->info.chip_class <= VI) {
3180 ac_build_buffer_store_dword(&ctx->ac, buffer,
3181 LLVMConstInt(ctx->i32, 0x80000000, 0),
3182 1, ctx->i32_0, tf_base,
3183 offset, 1, 0, true, false);
3184 offset += 4;
3185 }
3186
3187 lp_build_endif(&inner_if_ctx);
3188
3189 /* Store the tessellation factors. */
3190 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3191 MIN2(stride, 4), byteoffset, tf_base,
3192 offset, 1, 0, true, false);
3193 offset += 16;
3194 if (vec1)
3195 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3196 stride - 4, byteoffset, tf_base,
3197 offset, 1, 0, true, false);
3198
3199 /* Store the tess factors into the offchip buffer if TES reads them. */
3200 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3201 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3202 LLVMValueRef tf_inner_offset;
3203 unsigned param_outer, param_inner;
3204
3205 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3206 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3207
3208 param_outer = si_shader_io_get_unique_index_patch(
3209 TGSI_SEMANTIC_TESSOUTER, 0);
3210 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3211 LLVMConstInt(ctx->i32, param_outer, 0));
3212
3213 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3214 util_next_power_of_two(outer_comps));
3215
3216 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3217 outer_comps, tf_outer_offset,
3218 base, 0, 1, 0, true, false);
3219 if (inner_comps) {
3220 param_inner = si_shader_io_get_unique_index_patch(
3221 TGSI_SEMANTIC_TESSINNER, 0);
3222 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3223 LLVMConstInt(ctx->i32, param_inner, 0));
3224
3225 inner_vec = inner_comps == 1 ? inner[0] :
3226 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3227 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3228 inner_comps, tf_inner_offset,
3229 base, 0, 1, 0, true, false);
3230 }
3231 }
3232
3233 lp_build_endif(&if_ctx);
3234 }
3235
3236 static LLVMValueRef
3237 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3238 unsigned param, unsigned return_index)
3239 {
3240 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3241 LLVMGetParam(ctx->main_fn, param),
3242 return_index, "");
3243 }
3244
3245 static LLVMValueRef
3246 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3247 unsigned param, unsigned return_index)
3248 {
3249 LLVMBuilderRef builder = ctx->ac.builder;
3250 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3251
3252 return LLVMBuildInsertValue(builder, ret,
3253 ac_to_float(&ctx->ac, p),
3254 return_index, "");
3255 }
3256
3257 static LLVMValueRef
3258 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3259 unsigned param, unsigned return_index)
3260 {
3261 LLVMBuilderRef builder = ctx->ac.builder;
3262 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3263 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3264 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3265 }
3266
3267 /* This only writes the tessellation factor levels. */
3268 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3269 unsigned max_outputs,
3270 LLVMValueRef *addrs)
3271 {
3272 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3273 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3274 LLVMBuilderRef builder = ctx->ac.builder;
3275 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3276
3277 si_copy_tcs_inputs(bld_base);
3278
3279 rel_patch_id = get_rel_patch_id(ctx);
3280 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3281 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3282
3283 if (ctx->screen->info.chip_class >= GFX9) {
3284 LLVMBasicBlockRef blocks[2] = {
3285 LLVMGetInsertBlock(builder),
3286 ctx->merged_wrap_if_state.entry_block
3287 };
3288 LLVMValueRef values[2];
3289
3290 lp_build_endif(&ctx->merged_wrap_if_state);
3291
3292 values[0] = rel_patch_id;
3293 values[1] = LLVMGetUndef(ctx->i32);
3294 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3295
3296 values[0] = tf_lds_offset;
3297 values[1] = LLVMGetUndef(ctx->i32);
3298 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3299
3300 values[0] = invocation_id;
3301 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3302 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3303 }
3304
3305 /* Return epilog parameters from this function. */
3306 LLVMValueRef ret = ctx->return_value;
3307 unsigned vgpr;
3308
3309 if (ctx->screen->info.chip_class >= GFX9) {
3310 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3311 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3312 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3313 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3314 /* Tess offchip and tess factor offsets are at the beginning. */
3315 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3316 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3317 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3318 } else {
3319 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3320 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3321 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3322 GFX6_SGPR_TCS_OUT_LAYOUT);
3323 /* Tess offchip and tess factor offsets are after user SGPRs. */
3324 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3325 GFX6_TCS_NUM_USER_SGPR);
3326 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3327 GFX6_TCS_NUM_USER_SGPR + 1);
3328 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3329 }
3330
3331 /* VGPRs */
3332 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3333 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3334 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3335
3336 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3337 * the invocation_id output does not alias the tcs_rel_ids input,
3338 * which saves a V_MOV on gfx9.
3339 */
3340 vgpr += 2;
3341
3342 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3343 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3344
3345 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3346 vgpr++; /* skip the tess factor LDS offset */
3347 for (unsigned i = 0; i < 6; i++) {
3348 LLVMValueRef value =
3349 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3350 value = ac_to_float(&ctx->ac, value);
3351 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3352 }
3353 } else {
3354 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3355 }
3356 ctx->return_value = ret;
3357 }
3358
3359 /* Pass TCS inputs from LS to TCS on GFX9. */
3360 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3361 {
3362 LLVMValueRef ret = ctx->return_value;
3363
3364 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3365 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3366 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3367 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3368 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3369 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3370
3371 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3372 8 + SI_SGPR_RW_BUFFERS);
3373 ret = si_insert_input_ptr(ctx, ret,
3374 ctx->param_bindless_samplers_and_images,
3375 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3376
3377 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3378 8 + SI_SGPR_VS_STATE_BITS);
3379
3380 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3381 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3382 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3383 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3384 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3385 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3386
3387 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3388 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3389 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3390 vgpr++, "");
3391 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3392 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3393 vgpr++, "");
3394 ctx->return_value = ret;
3395 }
3396
3397 /* Pass GS inputs from ES to GS on GFX9. */
3398 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3399 {
3400 LLVMValueRef ret = ctx->return_value;
3401
3402 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3403 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3404 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3405 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3406 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3407
3408 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3409 8 + SI_SGPR_RW_BUFFERS);
3410 ret = si_insert_input_ptr(ctx, ret,
3411 ctx->param_bindless_samplers_and_images,
3412 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3413
3414 unsigned vgpr;
3415 if (ctx->type == PIPE_SHADER_VERTEX)
3416 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3417 else
3418 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3419
3420 for (unsigned i = 0; i < 5; i++) {
3421 unsigned param = ctx->param_gs_vtx01_offset + i;
3422 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3423 }
3424 ctx->return_value = ret;
3425 }
3426
3427 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3428 unsigned max_outputs,
3429 LLVMValueRef *addrs)
3430 {
3431 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3432 struct si_shader *shader = ctx->shader;
3433 struct tgsi_shader_info *info = &shader->selector->info;
3434 unsigned i, chan;
3435 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3436 ctx->param_rel_auto_id);
3437 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3438 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3439 vertex_dw_stride, "");
3440
3441 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3442 * its inputs from it. */
3443 for (i = 0; i < info->num_outputs; i++) {
3444 unsigned name = info->output_semantic_name[i];
3445 unsigned index = info->output_semantic_index[i];
3446
3447 /* The ARB_shader_viewport_layer_array spec contains the
3448 * following issue:
3449 *
3450 * 2) What happens if gl_ViewportIndex or gl_Layer is
3451 * written in the vertex shader and a geometry shader is
3452 * present?
3453 *
3454 * RESOLVED: The value written by the last vertex processing
3455 * stage is used. If the last vertex processing stage
3456 * (vertex, tessellation evaluation or geometry) does not
3457 * statically assign to gl_ViewportIndex or gl_Layer, index
3458 * or layer zero is assumed.
3459 *
3460 * So writes to those outputs in VS-as-LS are simply ignored.
3461 */
3462 if (name == TGSI_SEMANTIC_LAYER ||
3463 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3464 continue;
3465
3466 int param = si_shader_io_get_unique_index(name, index, false);
3467 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3468 LLVMConstInt(ctx->i32, param * 4, 0), "");
3469
3470 for (chan = 0; chan < 4; chan++) {
3471 if (!(info->output_usagemask[i] & (1 << chan)))
3472 continue;
3473
3474 lds_store(ctx, chan, dw_addr,
3475 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3476 }
3477 }
3478
3479 if (ctx->screen->info.chip_class >= GFX9)
3480 si_set_ls_return_value_for_tcs(ctx);
3481 }
3482
3483 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3484 unsigned max_outputs,
3485 LLVMValueRef *addrs)
3486 {
3487 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3488 struct si_shader *es = ctx->shader;
3489 struct tgsi_shader_info *info = &es->selector->info;
3490 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3491 ctx->param_es2gs_offset);
3492 LLVMValueRef lds_base = NULL;
3493 unsigned chan;
3494 int i;
3495
3496 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3497 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3498 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3499 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3500 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3501 LLVMBuildMul(ctx->ac.builder, wave_idx,
3502 LLVMConstInt(ctx->i32, 64, false), ""), "");
3503 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3504 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3505 }
3506
3507 for (i = 0; i < info->num_outputs; i++) {
3508 int param;
3509
3510 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3511 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3512 continue;
3513
3514 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3515 info->output_semantic_index[i], false);
3516
3517 for (chan = 0; chan < 4; chan++) {
3518 if (!(info->output_usagemask[i] & (1 << chan)))
3519 continue;
3520
3521 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3522 out_val = ac_to_integer(&ctx->ac, out_val);
3523
3524 /* GFX9 has the ESGS ring in LDS. */
3525 if (ctx->screen->info.chip_class >= GFX9) {
3526 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3527 continue;
3528 }
3529
3530 ac_build_buffer_store_dword(&ctx->ac,
3531 ctx->esgs_ring,
3532 out_val, 1, NULL, soffset,
3533 (4 * param + chan) * 4,
3534 1, 1, true, true);
3535 }
3536 }
3537
3538 if (ctx->screen->info.chip_class >= GFX9)
3539 si_set_es_return_value_for_gs(ctx);
3540 }
3541
3542 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3543 {
3544 if (ctx->screen->info.chip_class >= GFX9)
3545 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3546 else
3547 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3548 }
3549
3550 static void emit_gs_epilogue(struct si_shader_context *ctx)
3551 {
3552 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3553 si_get_gs_wave_id(ctx));
3554
3555 if (ctx->screen->info.chip_class >= GFX9)
3556 lp_build_endif(&ctx->merged_wrap_if_state);
3557 }
3558
3559 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3560 unsigned max_outputs,
3561 LLVMValueRef *addrs)
3562 {
3563 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3564 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3565
3566 assert(info->num_outputs <= max_outputs);
3567
3568 emit_gs_epilogue(ctx);
3569 }
3570
3571 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3572 {
3573 struct si_shader_context *ctx = si_shader_context(bld_base);
3574 emit_gs_epilogue(ctx);
3575 }
3576
3577 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3578 unsigned max_outputs,
3579 LLVMValueRef *addrs)
3580 {
3581 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3582 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3583 struct si_shader_output_values *outputs = NULL;
3584 int i,j;
3585
3586 assert(!ctx->shader->is_gs_copy_shader);
3587 assert(info->num_outputs <= max_outputs);
3588
3589 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3590
3591 /* Vertex color clamping.
3592 *
3593 * This uses a state constant loaded in a user data SGPR and
3594 * an IF statement is added that clamps all colors if the constant
3595 * is true.
3596 */
3597 struct lp_build_if_state if_ctx;
3598 LLVMValueRef cond = NULL;
3599 LLVMValueRef addr, val;
3600
3601 for (i = 0; i < info->num_outputs; i++) {
3602 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3603 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3604 continue;
3605
3606 /* We've found a color. */
3607 if (!cond) {
3608 /* The state is in the first bit of the user SGPR. */
3609 cond = LLVMGetParam(ctx->main_fn,
3610 ctx->param_vs_state_bits);
3611 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3612 ctx->i1, "");
3613 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3614 }
3615
3616 for (j = 0; j < 4; j++) {
3617 addr = addrs[4 * i + j];
3618 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3619 val = ac_build_clamp(&ctx->ac, val);
3620 LLVMBuildStore(ctx->ac.builder, val, addr);
3621 }
3622 }
3623
3624 if (cond)
3625 lp_build_endif(&if_ctx);
3626
3627 for (i = 0; i < info->num_outputs; i++) {
3628 outputs[i].semantic_name = info->output_semantic_name[i];
3629 outputs[i].semantic_index = info->output_semantic_index[i];
3630
3631 for (j = 0; j < 4; j++) {
3632 outputs[i].values[j] =
3633 LLVMBuildLoad(ctx->ac.builder,
3634 addrs[4 * i + j],
3635 "");
3636 outputs[i].vertex_stream[j] =
3637 (info->output_streams[i] >> (2 * j)) & 3;
3638 }
3639 }
3640
3641 if (ctx->shader->selector->so.num_outputs)
3642 si_llvm_emit_streamout(ctx, outputs, i, 0);
3643
3644 /* Export PrimitiveID. */
3645 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3646 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3647 outputs[i].semantic_index = 0;
3648 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3649 for (j = 1; j < 4; j++)
3650 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3651
3652 memset(outputs[i].vertex_stream, 0,
3653 sizeof(outputs[i].vertex_stream));
3654 i++;
3655 }
3656
3657 si_llvm_export_vs(ctx, outputs, i);
3658 FREE(outputs);
3659 }
3660
3661 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3662 {
3663 struct si_shader_context *ctx = si_shader_context(bld_base);
3664
3665 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3666 &ctx->outputs[0][0]);
3667 }
3668
3669 struct si_ps_exports {
3670 unsigned num;
3671 struct ac_export_args args[10];
3672 };
3673
3674 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3675 LLVMValueRef depth, LLVMValueRef stencil,
3676 LLVMValueRef samplemask, struct si_ps_exports *exp)
3677 {
3678 struct si_shader_context *ctx = si_shader_context(bld_base);
3679 struct ac_export_args args;
3680
3681 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3682
3683 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3684 }
3685
3686 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3687 LLVMValueRef *color, unsigned index,
3688 unsigned samplemask_param,
3689 bool is_last, struct si_ps_exports *exp)
3690 {
3691 struct si_shader_context *ctx = si_shader_context(bld_base);
3692 int i;
3693
3694 /* Clamp color */
3695 if (ctx->shader->key.part.ps.epilog.clamp_color)
3696 for (i = 0; i < 4; i++)
3697 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3698
3699 /* Alpha to one */
3700 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3701 color[3] = ctx->ac.f32_1;
3702
3703 /* Alpha test */
3704 if (index == 0 &&
3705 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3706 si_alpha_test(bld_base, color[3]);
3707
3708 /* Line & polygon smoothing */
3709 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3710 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3711 samplemask_param);
3712
3713 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3714 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3715 struct ac_export_args args[8];
3716 int c, last = -1;
3717
3718 /* Get the export arguments, also find out what the last one is. */
3719 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3720 si_llvm_init_export_args(ctx, color,
3721 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3722 if (args[c].enabled_channels)
3723 last = c;
3724 }
3725
3726 /* Emit all exports. */
3727 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3728 if (is_last && last == c) {
3729 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3730 args[c].done = 1; /* DONE bit */
3731 } else if (!args[c].enabled_channels)
3732 continue; /* unnecessary NULL export */
3733
3734 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3735 }
3736 } else {
3737 struct ac_export_args args;
3738
3739 /* Export */
3740 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3741 &args);
3742 if (is_last) {
3743 args.valid_mask = 1; /* whether the EXEC mask is valid */
3744 args.done = 1; /* DONE bit */
3745 } else if (!args.enabled_channels)
3746 return; /* unnecessary NULL export */
3747
3748 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3749 }
3750 }
3751
3752 static void si_emit_ps_exports(struct si_shader_context *ctx,
3753 struct si_ps_exports *exp)
3754 {
3755 for (unsigned i = 0; i < exp->num; i++)
3756 ac_build_export(&ctx->ac, &exp->args[i]);
3757 }
3758
3759 /**
3760 * Return PS outputs in this order:
3761 *
3762 * v[0:3] = color0.xyzw
3763 * v[4:7] = color1.xyzw
3764 * ...
3765 * vN+0 = Depth
3766 * vN+1 = Stencil
3767 * vN+2 = SampleMask
3768 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3769 *
3770 * The alpha-ref SGPR is returned via its original location.
3771 */
3772 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3773 unsigned max_outputs,
3774 LLVMValueRef *addrs)
3775 {
3776 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3777 struct si_shader *shader = ctx->shader;
3778 struct tgsi_shader_info *info = &shader->selector->info;
3779 LLVMBuilderRef builder = ctx->ac.builder;
3780 unsigned i, j, first_vgpr, vgpr;
3781
3782 LLVMValueRef color[8][4] = {};
3783 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3784 LLVMValueRef ret;
3785
3786 if (ctx->postponed_kill)
3787 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3788
3789 /* Read the output values. */
3790 for (i = 0; i < info->num_outputs; i++) {
3791 unsigned semantic_name = info->output_semantic_name[i];
3792 unsigned semantic_index = info->output_semantic_index[i];
3793
3794 switch (semantic_name) {
3795 case TGSI_SEMANTIC_COLOR:
3796 assert(semantic_index < 8);
3797 for (j = 0; j < 4; j++) {
3798 LLVMValueRef ptr = addrs[4 * i + j];
3799 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3800 color[semantic_index][j] = result;
3801 }
3802 break;
3803 case TGSI_SEMANTIC_POSITION:
3804 depth = LLVMBuildLoad(builder,
3805 addrs[4 * i + 2], "");
3806 break;
3807 case TGSI_SEMANTIC_STENCIL:
3808 stencil = LLVMBuildLoad(builder,
3809 addrs[4 * i + 1], "");
3810 break;
3811 case TGSI_SEMANTIC_SAMPLEMASK:
3812 samplemask = LLVMBuildLoad(builder,
3813 addrs[4 * i + 0], "");
3814 break;
3815 default:
3816 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3817 semantic_name);
3818 }
3819 }
3820
3821 /* Fill the return structure. */
3822 ret = ctx->return_value;
3823
3824 /* Set SGPRs. */
3825 ret = LLVMBuildInsertValue(builder, ret,
3826 ac_to_integer(&ctx->ac,
3827 LLVMGetParam(ctx->main_fn,
3828 SI_PARAM_ALPHA_REF)),
3829 SI_SGPR_ALPHA_REF, "");
3830
3831 /* Set VGPRs */
3832 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3833 for (i = 0; i < ARRAY_SIZE(color); i++) {
3834 if (!color[i][0])
3835 continue;
3836
3837 for (j = 0; j < 4; j++)
3838 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3839 }
3840 if (depth)
3841 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3842 if (stencil)
3843 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3844 if (samplemask)
3845 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3846
3847 /* Add the input sample mask for smoothing at the end. */
3848 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3849 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3850 ret = LLVMBuildInsertValue(builder, ret,
3851 LLVMGetParam(ctx->main_fn,
3852 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3853
3854 ctx->return_value = ret;
3855 }
3856
3857 static void membar_emit(
3858 const struct lp_build_tgsi_action *action,
3859 struct lp_build_tgsi_context *bld_base,
3860 struct lp_build_emit_data *emit_data)
3861 {
3862 struct si_shader_context *ctx = si_shader_context(bld_base);
3863 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3864 unsigned flags = LLVMConstIntGetZExtValue(src0);
3865 unsigned waitcnt = NOOP_WAITCNT;
3866
3867 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3868 waitcnt &= VM_CNT & LGKM_CNT;
3869
3870 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3871 TGSI_MEMBAR_SHADER_BUFFER |
3872 TGSI_MEMBAR_SHADER_IMAGE))
3873 waitcnt &= VM_CNT;
3874
3875 if (flags & TGSI_MEMBAR_SHARED)
3876 waitcnt &= LGKM_CNT;
3877
3878 if (waitcnt != NOOP_WAITCNT)
3879 ac_build_waitcnt(&ctx->ac, waitcnt);
3880 }
3881
3882 static void clock_emit(
3883 const struct lp_build_tgsi_action *action,
3884 struct lp_build_tgsi_context *bld_base,
3885 struct lp_build_emit_data *emit_data)
3886 {
3887 struct si_shader_context *ctx = si_shader_context(bld_base);
3888 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3889
3890 emit_data->output[0] =
3891 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3892 emit_data->output[1] =
3893 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3894 }
3895
3896 static void si_llvm_emit_ddxy(
3897 const struct lp_build_tgsi_action *action,
3898 struct lp_build_tgsi_context *bld_base,
3899 struct lp_build_emit_data *emit_data)
3900 {
3901 struct si_shader_context *ctx = si_shader_context(bld_base);
3902 unsigned opcode = emit_data->info->opcode;
3903 LLVMValueRef val;
3904 int idx;
3905 unsigned mask;
3906
3907 if (opcode == TGSI_OPCODE_DDX_FINE)
3908 mask = AC_TID_MASK_LEFT;
3909 else if (opcode == TGSI_OPCODE_DDY_FINE)
3910 mask = AC_TID_MASK_TOP;
3911 else
3912 mask = AC_TID_MASK_TOP_LEFT;
3913
3914 /* for DDX we want to next X pixel, DDY next Y pixel. */
3915 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3916
3917 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3918 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3919 emit_data->output[emit_data->chan] = val;
3920 }
3921
3922 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3923 struct lp_build_tgsi_context *bld_base,
3924 struct lp_build_emit_data *emit_data)
3925 {
3926 struct si_shader_context *ctx = si_shader_context(bld_base);
3927 struct si_shader *shader = ctx->shader;
3928 const struct tgsi_shader_info *info = &shader->selector->info;
3929 LLVMValueRef interp_param;
3930 const struct tgsi_full_instruction *inst = emit_data->inst;
3931 const struct tgsi_full_src_register *input = &inst->Src[0];
3932 int input_base, input_array_size;
3933 int chan;
3934 int i;
3935 LLVMValueRef prim_mask = ctx->abi.prim_mask;
3936 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
3937 int interp_param_idx;
3938 unsigned interp;
3939 unsigned location;
3940
3941 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
3942 /* offset is in second src, first two channels */
3943 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3944 TGSI_CHAN_X);
3945 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3946 TGSI_CHAN_Y);
3947 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3948 LLVMValueRef sample_position;
3949 LLVMValueRef sample_id;
3950 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
3951
3952 /* fetch sample ID, then fetch its sample position,
3953 * and place into first two channels.
3954 */
3955 sample_id = lp_build_emit_fetch(bld_base,
3956 emit_data->inst, 1, TGSI_CHAN_X);
3957 sample_id = ac_to_integer(&ctx->ac, sample_id);
3958
3959 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
3960 * Language 4.50 spec says about interpolateAtSample:
3961 *
3962 * "Returns the value of the input interpolant variable at
3963 * the location of sample number sample. If multisample
3964 * buffers are not available, the input variable will be
3965 * evaluated at the center of the pixel. If sample sample
3966 * does not exist, the position used to interpolate the
3967 * input variable is undefined."
3968 *
3969 * This means that sample_id values outside of the valid are
3970 * in fact valid input, and the usual mechanism for loading the
3971 * sample position doesn't work.
3972 */
3973 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
3974 LLVMValueRef center[4] = {
3975 LLVMConstReal(ctx->f32, 0.5),
3976 LLVMConstReal(ctx->f32, 0.5),
3977 ctx->ac.f32_0,
3978 ctx->ac.f32_0,
3979 };
3980
3981 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
3982 } else {
3983 sample_position = load_sample_position(&ctx->abi, sample_id);
3984 }
3985
3986 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
3987 ctx->i32_0, "");
3988
3989 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
3990 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
3991 ctx->i32_1, "");
3992 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
3993 }
3994
3995 assert(input->Register.File == TGSI_FILE_INPUT);
3996
3997 if (input->Register.Indirect) {
3998 unsigned array_id = input->Indirect.ArrayID;
3999
4000 if (array_id) {
4001 input_base = info->input_array_first[array_id];
4002 input_array_size = info->input_array_last[array_id] - input_base + 1;
4003 } else {
4004 input_base = inst->Src[0].Register.Index;
4005 input_array_size = info->num_inputs - input_base;
4006 }
4007
4008 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4009 1, input->Register.Index - input_base);
4010 } else {
4011 input_base = inst->Src[0].Register.Index;
4012 input_array_size = 1;
4013 array_idx = ctx->i32_0;
4014 }
4015
4016 interp = shader->selector->info.input_interpolate[input_base];
4017
4018 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4019 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4020 location = TGSI_INTERPOLATE_LOC_CENTER;
4021 else
4022 location = TGSI_INTERPOLATE_LOC_CENTROID;
4023
4024 interp_param_idx = lookup_interp_param_index(interp, location);
4025 if (interp_param_idx == -1)
4026 return;
4027 else if (interp_param_idx)
4028 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4029 else
4030 interp_param = NULL;
4031
4032 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4033 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4034 LLVMValueRef ij_out[2];
4035 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4036
4037 /*
4038 * take the I then J parameters, and the DDX/Y for it, and
4039 * calculate the IJ inputs for the interpolator.
4040 * temp1 = ddx * offset/sample.x + I;
4041 * interp_param.I = ddy * offset/sample.y + temp1;
4042 * temp1 = ddx * offset/sample.x + J;
4043 * interp_param.J = ddy * offset/sample.y + temp1;
4044 */
4045 for (i = 0; i < 2; i++) {
4046 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4047 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4048 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4049 ddxy_out, ix_ll, "");
4050 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4051 ddxy_out, iy_ll, "");
4052 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4053 interp_param, ix_ll, "");
4054 LLVMValueRef temp;
4055
4056 interp_el = ac_to_float(&ctx->ac, interp_el);
4057
4058 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4059 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4060 }
4061 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4062 }
4063
4064 if (interp_param)
4065 interp_param = ac_to_float(&ctx->ac, interp_param);
4066
4067 for (chan = 0; chan < 4; chan++) {
4068 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4069 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4070
4071 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4072 LLVMValueRef v, i = NULL, j = NULL;
4073
4074 if (interp_param) {
4075 i = LLVMBuildExtractElement(
4076 ctx->ac.builder, interp_param, ctx->i32_0, "");
4077 j = LLVMBuildExtractElement(
4078 ctx->ac.builder, interp_param, ctx->i32_1, "");
4079 }
4080 v = si_build_fs_interp(ctx, input_base + idx, schan,
4081 prim_mask, i, j);
4082
4083 gather = LLVMBuildInsertElement(ctx->ac.builder,
4084 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4085 }
4086
4087 emit_data->output[chan] = LLVMBuildExtractElement(
4088 ctx->ac.builder, gather, array_idx, "");
4089 }
4090 }
4091
4092 static void vote_all_emit(
4093 const struct lp_build_tgsi_action *action,
4094 struct lp_build_tgsi_context *bld_base,
4095 struct lp_build_emit_data *emit_data)
4096 {
4097 struct si_shader_context *ctx = si_shader_context(bld_base);
4098
4099 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4100 emit_data->output[emit_data->chan] =
4101 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4102 }
4103
4104 static void vote_any_emit(
4105 const struct lp_build_tgsi_action *action,
4106 struct lp_build_tgsi_context *bld_base,
4107 struct lp_build_emit_data *emit_data)
4108 {
4109 struct si_shader_context *ctx = si_shader_context(bld_base);
4110
4111 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4112 emit_data->output[emit_data->chan] =
4113 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4114 }
4115
4116 static void vote_eq_emit(
4117 const struct lp_build_tgsi_action *action,
4118 struct lp_build_tgsi_context *bld_base,
4119 struct lp_build_emit_data *emit_data)
4120 {
4121 struct si_shader_context *ctx = si_shader_context(bld_base);
4122
4123 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4124 emit_data->output[emit_data->chan] =
4125 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4126 }
4127
4128 static void ballot_emit(
4129 const struct lp_build_tgsi_action *action,
4130 struct lp_build_tgsi_context *bld_base,
4131 struct lp_build_emit_data *emit_data)
4132 {
4133 struct si_shader_context *ctx = si_shader_context(bld_base);
4134 LLVMBuilderRef builder = ctx->ac.builder;
4135 LLVMValueRef tmp;
4136
4137 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4138 tmp = ac_build_ballot(&ctx->ac, tmp);
4139 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4140
4141 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4142 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4143 }
4144
4145 static void read_lane_emit(
4146 const struct lp_build_tgsi_action *action,
4147 struct lp_build_tgsi_context *bld_base,
4148 struct lp_build_emit_data *emit_data)
4149 {
4150 struct si_shader_context *ctx = si_shader_context(bld_base);
4151
4152 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4153 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4154 0, emit_data->src_chan);
4155
4156 /* Always read the source invocation (= lane) from the X channel. */
4157 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4158 1, TGSI_CHAN_X);
4159 emit_data->arg_count = 2;
4160 }
4161
4162 /* We currently have no other way to prevent LLVM from lifting the icmp
4163 * calls to a dominating basic block.
4164 */
4165 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4166
4167 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4168 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4169
4170 emit_data->output[emit_data->chan] =
4171 ac_build_intrinsic(&ctx->ac, action->intr_name,
4172 ctx->i32, emit_data->args, emit_data->arg_count,
4173 AC_FUNC_ATTR_READNONE |
4174 AC_FUNC_ATTR_CONVERGENT);
4175 }
4176
4177 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4178 struct lp_build_emit_data *emit_data)
4179 {
4180 struct si_shader_context *ctx = si_shader_context(bld_base);
4181 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4182 LLVMValueRef imm;
4183 unsigned stream;
4184
4185 assert(src0.File == TGSI_FILE_IMMEDIATE);
4186
4187 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4188 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4189 return stream;
4190 }
4191
4192 /* Emit one vertex from the geometry shader */
4193 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4194 unsigned stream,
4195 LLVMValueRef *addrs)
4196 {
4197 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4198 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4199 struct si_shader *shader = ctx->shader;
4200 struct lp_build_if_state if_state;
4201 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4202 ctx->param_gs2vs_offset);
4203 LLVMValueRef gs_next_vertex;
4204 LLVMValueRef can_emit;
4205 unsigned chan, offset;
4206 int i;
4207
4208 /* Write vertex attribute values to GSVS ring */
4209 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4210 ctx->gs_next_vertex[stream],
4211 "");
4212
4213 /* If this thread has already emitted the declared maximum number of
4214 * vertices, skip the write: excessive vertex emissions are not
4215 * supposed to have any effect.
4216 *
4217 * If the shader has no writes to memory, kill it instead. This skips
4218 * further memory loads and may allow LLVM to skip to the end
4219 * altogether.
4220 */
4221 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4222 LLVMConstInt(ctx->i32,
4223 shader->selector->gs_max_out_vertices, 0), "");
4224
4225 bool use_kill = !info->writes_memory;
4226 if (use_kill) {
4227 ac_build_kill_if_false(&ctx->ac, can_emit);
4228 } else {
4229 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4230 }
4231
4232 offset = 0;
4233 for (i = 0; i < info->num_outputs; i++) {
4234 for (chan = 0; chan < 4; chan++) {
4235 if (!(info->output_usagemask[i] & (1 << chan)) ||
4236 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4237 continue;
4238
4239 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4240 LLVMValueRef voffset =
4241 LLVMConstInt(ctx->i32, offset *
4242 shader->selector->gs_max_out_vertices, 0);
4243 offset++;
4244
4245 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4246 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4247 LLVMConstInt(ctx->i32, 4, 0), "");
4248
4249 out_val = ac_to_integer(&ctx->ac, out_val);
4250
4251 ac_build_buffer_store_dword(&ctx->ac,
4252 ctx->gsvs_ring[stream],
4253 out_val, 1,
4254 voffset, soffset, 0,
4255 1, 1, true, true);
4256 }
4257 }
4258
4259 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4260 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4261
4262 /* Signal vertex emission if vertex data was written. */
4263 if (offset) {
4264 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4265 si_get_gs_wave_id(ctx));
4266 }
4267
4268 if (!use_kill)
4269 lp_build_endif(&if_state);
4270 }
4271
4272 /* Emit one vertex from the geometry shader */
4273 static void si_tgsi_emit_vertex(
4274 const struct lp_build_tgsi_action *action,
4275 struct lp_build_tgsi_context *bld_base,
4276 struct lp_build_emit_data *emit_data)
4277 {
4278 struct si_shader_context *ctx = si_shader_context(bld_base);
4279 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4280
4281 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4282 }
4283
4284 /* Cut one primitive from the geometry shader */
4285 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4286 unsigned stream)
4287 {
4288 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4289
4290 /* Signal primitive cut */
4291 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4292 si_get_gs_wave_id(ctx));
4293 }
4294
4295 /* Cut one primitive from the geometry shader */
4296 static void si_tgsi_emit_primitive(
4297 const struct lp_build_tgsi_action *action,
4298 struct lp_build_tgsi_context *bld_base,
4299 struct lp_build_emit_data *emit_data)
4300 {
4301 struct si_shader_context *ctx = si_shader_context(bld_base);
4302
4303 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4304 }
4305
4306 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4307 struct lp_build_tgsi_context *bld_base,
4308 struct lp_build_emit_data *emit_data)
4309 {
4310 struct si_shader_context *ctx = si_shader_context(bld_base);
4311
4312 /* SI only (thanks to a hw bug workaround):
4313 * The real barrier instruction isn’t needed, because an entire patch
4314 * always fits into a single wave.
4315 */
4316 if (ctx->screen->info.chip_class == SI &&
4317 ctx->type == PIPE_SHADER_TESS_CTRL) {
4318 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4319 return;
4320 }
4321
4322 ac_build_s_barrier(&ctx->ac);
4323 }
4324
4325 static void si_create_function(struct si_shader_context *ctx,
4326 const char *name,
4327 LLVMTypeRef *returns, unsigned num_returns,
4328 struct si_function_info *fninfo,
4329 unsigned max_workgroup_size)
4330 {
4331 int i;
4332
4333 si_llvm_create_func(ctx, name, returns, num_returns,
4334 fninfo->types, fninfo->num_params);
4335 ctx->return_value = LLVMGetUndef(ctx->return_type);
4336
4337 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4338 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4339
4340 /* The combination of:
4341 * - noalias
4342 * - dereferenceable
4343 * - invariant.load
4344 * allows the optimization passes to move loads and reduces
4345 * SGPR spilling significantly.
4346 */
4347 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4348 AC_FUNC_ATTR_INREG);
4349
4350 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4351 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4352 AC_FUNC_ATTR_NOALIAS);
4353 ac_add_attr_dereferenceable(P, UINT64_MAX);
4354 }
4355 }
4356
4357 for (i = 0; i < fninfo->num_params; ++i) {
4358 if (fninfo->assign[i])
4359 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4360 }
4361
4362 if (ctx->screen->info.address32_hi) {
4363 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4364 "amdgpu-32bit-address-high-bits",
4365 ctx->screen->info.address32_hi);
4366 }
4367
4368 if (max_workgroup_size) {
4369 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4370 "amdgpu-max-work-group-size",
4371 max_workgroup_size);
4372 }
4373 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4374 "no-signed-zeros-fp-math",
4375 "true");
4376
4377 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4378 /* These were copied from some LLVM test. */
4379 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4380 "less-precise-fpmad",
4381 "true");
4382 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4383 "no-infs-fp-math",
4384 "true");
4385 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4386 "no-nans-fp-math",
4387 "true");
4388 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4389 "unsafe-fp-math",
4390 "true");
4391 }
4392 }
4393
4394 static void declare_streamout_params(struct si_shader_context *ctx,
4395 struct pipe_stream_output_info *so,
4396 struct si_function_info *fninfo)
4397 {
4398 int i;
4399
4400 /* Streamout SGPRs. */
4401 if (so->num_outputs) {
4402 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4403 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4404 else
4405 ctx->param_streamout_config = fninfo->num_params - 1;
4406
4407 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4408 }
4409 /* A streamout buffer offset is loaded if the stride is non-zero. */
4410 for (i = 0; i < 4; i++) {
4411 if (!so->stride[i])
4412 continue;
4413
4414 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4415 }
4416 }
4417
4418 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4419 {
4420 switch (shader->selector->type) {
4421 case PIPE_SHADER_TESS_CTRL:
4422 /* Return this so that LLVM doesn't remove s_barrier
4423 * instructions on chips where we use s_barrier. */
4424 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4425
4426 case PIPE_SHADER_GEOMETRY:
4427 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4428
4429 case PIPE_SHADER_COMPUTE:
4430 break; /* see below */
4431
4432 default:
4433 return 0;
4434 }
4435
4436 const unsigned *properties = shader->selector->info.properties;
4437 unsigned max_work_group_size =
4438 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4439 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4440 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4441
4442 if (!max_work_group_size) {
4443 /* This is a variable group size compute shader,
4444 * compile it for the maximum possible group size.
4445 */
4446 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4447 }
4448 return max_work_group_size;
4449 }
4450
4451 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4452 struct si_function_info *fninfo,
4453 bool assign_params)
4454 {
4455 LLVMTypeRef const_shader_buf_type;
4456
4457 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4458 ctx->shader->selector->info.shader_buffers_declared == 0)
4459 const_shader_buf_type = ctx->f32;
4460 else
4461 const_shader_buf_type = ctx->v4i32;
4462
4463 unsigned const_and_shader_buffers =
4464 add_arg(fninfo, ARG_SGPR,
4465 ac_array_in_const32_addr_space(const_shader_buf_type));
4466
4467 if (assign_params)
4468 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4469 }
4470
4471 static void declare_samplers_and_images(struct si_shader_context *ctx,
4472 struct si_function_info *fninfo,
4473 bool assign_params)
4474 {
4475 unsigned samplers_and_images =
4476 add_arg(fninfo, ARG_SGPR,
4477 ac_array_in_const32_addr_space(ctx->v8i32));
4478
4479 if (assign_params)
4480 ctx->param_samplers_and_images = samplers_and_images;
4481 }
4482
4483 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4484 struct si_function_info *fninfo,
4485 bool assign_params)
4486 {
4487 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4488 declare_samplers_and_images(ctx, fninfo, assign_params);
4489 }
4490
4491 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4492 struct si_function_info *fninfo)
4493 {
4494 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4495 ac_array_in_const32_addr_space(ctx->v4i32));
4496 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4497 ac_array_in_const32_addr_space(ctx->v8i32));
4498 }
4499
4500 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4501 struct si_function_info *fninfo)
4502 {
4503 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4504 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4505 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4506 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4507 }
4508
4509 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4510 struct si_function_info *fninfo,
4511 unsigned *num_prolog_vgprs)
4512 {
4513 struct si_shader *shader = ctx->shader;
4514
4515 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4516 if (shader->key.as_ls) {
4517 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4518 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4519 } else {
4520 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4521 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4522 }
4523 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4524
4525 if (!shader->is_gs_copy_shader) {
4526 /* Vertex load indices. */
4527 ctx->param_vertex_index0 = fninfo->num_params;
4528 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4529 add_arg(fninfo, ARG_VGPR, ctx->i32);
4530 *num_prolog_vgprs += shader->selector->info.num_inputs;
4531 }
4532 }
4533
4534 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4535 struct si_function_info *fninfo,
4536 unsigned vs_blit_property)
4537 {
4538 ctx->param_vs_blit_inputs = fninfo->num_params;
4539 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4540 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4541 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4542
4543 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4544 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4545 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4546 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4547 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4548 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4549 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4550 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4551 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4552 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4553 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4554 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4555 }
4556 }
4557
4558 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4559 struct si_function_info *fninfo)
4560 {
4561 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4562 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4563 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4564 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4565 }
4566
4567 enum {
4568 /* Convenient merged shader definitions. */
4569 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4570 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4571 };
4572
4573 static void create_function(struct si_shader_context *ctx)
4574 {
4575 struct si_shader *shader = ctx->shader;
4576 struct si_function_info fninfo;
4577 LLVMTypeRef returns[16+32*4];
4578 unsigned i, num_return_sgprs;
4579 unsigned num_returns = 0;
4580 unsigned num_prolog_vgprs = 0;
4581 unsigned type = ctx->type;
4582 unsigned vs_blit_property =
4583 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4584
4585 si_init_function_info(&fninfo);
4586
4587 /* Set MERGED shaders. */
4588 if (ctx->screen->info.chip_class >= GFX9) {
4589 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4590 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4591 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4592 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4593 }
4594
4595 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4596
4597 switch (type) {
4598 case PIPE_SHADER_VERTEX:
4599 declare_global_desc_pointers(ctx, &fninfo);
4600
4601 if (vs_blit_property) {
4602 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4603
4604 /* VGPRs */
4605 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4606 break;
4607 }
4608
4609 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4610 declare_vs_specific_input_sgprs(ctx, &fninfo);
4611 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4612 ac_array_in_const32_addr_space(ctx->v4i32));
4613
4614 if (shader->key.as_es) {
4615 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4616 } else if (shader->key.as_ls) {
4617 /* no extra parameters */
4618 } else {
4619 if (shader->is_gs_copy_shader) {
4620 fninfo.num_params = ctx->param_vs_state_bits + 1;
4621 fninfo.num_sgpr_params = fninfo.num_params;
4622 }
4623
4624 /* The locations of the other parameters are assigned dynamically. */
4625 declare_streamout_params(ctx, &shader->selector->so,
4626 &fninfo);
4627 }
4628
4629 /* VGPRs */
4630 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4631 break;
4632
4633 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4634 declare_global_desc_pointers(ctx, &fninfo);
4635 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4636 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4637 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4638 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4639 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4640 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4641 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4642
4643 /* VGPRs */
4644 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4645 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4646
4647 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4648 * placed after the user SGPRs.
4649 */
4650 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4651 returns[num_returns++] = ctx->i32; /* SGPRs */
4652 for (i = 0; i < 11; i++)
4653 returns[num_returns++] = ctx->f32; /* VGPRs */
4654 break;
4655
4656 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4657 /* Merged stages have 8 system SGPRs at the beginning. */
4658 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4659 declare_per_stage_desc_pointers(ctx, &fninfo,
4660 ctx->type == PIPE_SHADER_TESS_CTRL);
4661 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4662 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4663 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4664 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4665 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4666 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4667
4668 declare_global_desc_pointers(ctx, &fninfo);
4669 declare_per_stage_desc_pointers(ctx, &fninfo,
4670 ctx->type == PIPE_SHADER_VERTEX);
4671 declare_vs_specific_input_sgprs(ctx, &fninfo);
4672
4673 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4674 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4675 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4676 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4677 ac_array_in_const32_addr_space(ctx->v4i32));
4678
4679 /* VGPRs (first TCS, then VS) */
4680 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4681 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4682
4683 if (ctx->type == PIPE_SHADER_VERTEX) {
4684 declare_vs_input_vgprs(ctx, &fninfo,
4685 &num_prolog_vgprs);
4686
4687 /* LS return values are inputs to the TCS main shader part. */
4688 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4689 returns[num_returns++] = ctx->i32; /* SGPRs */
4690 for (i = 0; i < 2; i++)
4691 returns[num_returns++] = ctx->f32; /* VGPRs */
4692 } else {
4693 /* TCS return values are inputs to the TCS epilog.
4694 *
4695 * param_tcs_offchip_offset, param_tcs_factor_offset,
4696 * param_tcs_offchip_layout, and param_rw_buffers
4697 * should be passed to the epilog.
4698 */
4699 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4700 returns[num_returns++] = ctx->i32; /* SGPRs */
4701 for (i = 0; i < 11; i++)
4702 returns[num_returns++] = ctx->f32; /* VGPRs */
4703 }
4704 break;
4705
4706 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4707 /* Merged stages have 8 system SGPRs at the beginning. */
4708 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4709 declare_per_stage_desc_pointers(ctx, &fninfo,
4710 ctx->type == PIPE_SHADER_GEOMETRY);
4711 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4712 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4713 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4714 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4715 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4716 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4717
4718 declare_global_desc_pointers(ctx, &fninfo);
4719 declare_per_stage_desc_pointers(ctx, &fninfo,
4720 (ctx->type == PIPE_SHADER_VERTEX ||
4721 ctx->type == PIPE_SHADER_TESS_EVAL));
4722 if (ctx->type == PIPE_SHADER_VERTEX) {
4723 declare_vs_specific_input_sgprs(ctx, &fninfo);
4724 } else {
4725 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4726 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4727 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4728 /* Declare as many input SGPRs as the VS has. */
4729 }
4730
4731 if (ctx->type == PIPE_SHADER_VERTEX) {
4732 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4733 ac_array_in_const32_addr_space(ctx->v4i32));
4734 }
4735
4736 /* VGPRs (first GS, then VS/TES) */
4737 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4738 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4739 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4740 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4741 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4742
4743 if (ctx->type == PIPE_SHADER_VERTEX) {
4744 declare_vs_input_vgprs(ctx, &fninfo,
4745 &num_prolog_vgprs);
4746 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4747 declare_tes_input_vgprs(ctx, &fninfo);
4748 }
4749
4750 if (ctx->type == PIPE_SHADER_VERTEX ||
4751 ctx->type == PIPE_SHADER_TESS_EVAL) {
4752 unsigned num_user_sgprs;
4753
4754 if (ctx->type == PIPE_SHADER_VERTEX)
4755 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4756 else
4757 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4758
4759 /* ES return values are inputs to GS. */
4760 for (i = 0; i < 8 + num_user_sgprs; i++)
4761 returns[num_returns++] = ctx->i32; /* SGPRs */
4762 for (i = 0; i < 5; i++)
4763 returns[num_returns++] = ctx->f32; /* VGPRs */
4764 }
4765 break;
4766
4767 case PIPE_SHADER_TESS_EVAL:
4768 declare_global_desc_pointers(ctx, &fninfo);
4769 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4770 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4771 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4772 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4773
4774 if (shader->key.as_es) {
4775 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4776 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4777 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4778 } else {
4779 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4780 declare_streamout_params(ctx, &shader->selector->so,
4781 &fninfo);
4782 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4783 }
4784
4785 /* VGPRs */
4786 declare_tes_input_vgprs(ctx, &fninfo);
4787 break;
4788
4789 case PIPE_SHADER_GEOMETRY:
4790 declare_global_desc_pointers(ctx, &fninfo);
4791 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4792 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4793 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4794
4795 /* VGPRs */
4796 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4797 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4798 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4799 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4800 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4801 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4802 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4803 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4804 break;
4805
4806 case PIPE_SHADER_FRAGMENT:
4807 declare_global_desc_pointers(ctx, &fninfo);
4808 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4809 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4810 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4811 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4812
4813 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4814 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4815 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4816 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4817 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4818 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4819 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4820 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4821 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4822 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4823 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4824 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4825 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4826 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4827 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4828 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4829 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4830 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4831 shader->info.face_vgpr_index = 20;
4832 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4833 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4834 shader->info.ancillary_vgpr_index = 21;
4835 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4836 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4837 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4838
4839 /* Color inputs from the prolog. */
4840 if (shader->selector->info.colors_read) {
4841 unsigned num_color_elements =
4842 util_bitcount(shader->selector->info.colors_read);
4843
4844 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4845 for (i = 0; i < num_color_elements; i++)
4846 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4847
4848 num_prolog_vgprs += num_color_elements;
4849 }
4850
4851 /* Outputs for the epilog. */
4852 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4853 num_returns =
4854 num_return_sgprs +
4855 util_bitcount(shader->selector->info.colors_written) * 4 +
4856 shader->selector->info.writes_z +
4857 shader->selector->info.writes_stencil +
4858 shader->selector->info.writes_samplemask +
4859 1 /* SampleMaskIn */;
4860
4861 num_returns = MAX2(num_returns,
4862 num_return_sgprs +
4863 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4864
4865 for (i = 0; i < num_return_sgprs; i++)
4866 returns[i] = ctx->i32;
4867 for (; i < num_returns; i++)
4868 returns[i] = ctx->f32;
4869 break;
4870
4871 case PIPE_SHADER_COMPUTE:
4872 declare_global_desc_pointers(ctx, &fninfo);
4873 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4874 if (shader->selector->info.uses_grid_size)
4875 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4876 if (shader->selector->info.uses_block_size &&
4877 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4878 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4879
4880 unsigned cs_user_data_dwords =
4881 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_DWORDS];
4882 if (cs_user_data_dwords) {
4883 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4884 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4885 }
4886
4887 for (i = 0; i < 3; i++) {
4888 ctx->abi.workgroup_ids[i] = NULL;
4889 if (shader->selector->info.uses_block_id[i])
4890 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4891 }
4892
4893 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4894 break;
4895 default:
4896 assert(0 && "unimplemented shader");
4897 return;
4898 }
4899
4900 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4901 si_get_max_workgroup_size(shader));
4902
4903 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4904 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
4905 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4906 "InitialPSInputAddr",
4907 S_0286D0_PERSP_SAMPLE_ENA(1) |
4908 S_0286D0_PERSP_CENTER_ENA(1) |
4909 S_0286D0_PERSP_CENTROID_ENA(1) |
4910 S_0286D0_LINEAR_SAMPLE_ENA(1) |
4911 S_0286D0_LINEAR_CENTER_ENA(1) |
4912 S_0286D0_LINEAR_CENTROID_ENA(1) |
4913 S_0286D0_FRONT_FACE_ENA(1) |
4914 S_0286D0_ANCILLARY_ENA(1) |
4915 S_0286D0_POS_FIXED_PT_ENA(1));
4916 }
4917
4918 shader->info.num_input_sgprs = 0;
4919 shader->info.num_input_vgprs = 0;
4920
4921 for (i = 0; i < fninfo.num_sgpr_params; ++i)
4922 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
4923
4924 for (; i < fninfo.num_params; ++i)
4925 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
4926
4927 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
4928 shader->info.num_input_vgprs -= num_prolog_vgprs;
4929
4930 if (shader->key.as_ls ||
4931 ctx->type == PIPE_SHADER_TESS_CTRL ||
4932 /* GFX9 has the ESGS ring buffer in LDS. */
4933 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
4934 ac_declare_lds_as_pointer(&ctx->ac);
4935 }
4936
4937 /**
4938 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
4939 * for later use.
4940 */
4941 static void preload_ring_buffers(struct si_shader_context *ctx)
4942 {
4943 LLVMBuilderRef builder = ctx->ac.builder;
4944
4945 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
4946 ctx->param_rw_buffers);
4947
4948 if (ctx->screen->info.chip_class <= VI &&
4949 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
4950 unsigned ring =
4951 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
4952 : SI_ES_RING_ESGS;
4953 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
4954
4955 ctx->esgs_ring =
4956 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
4957 }
4958
4959 if (ctx->shader->is_gs_copy_shader) {
4960 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
4961
4962 ctx->gsvs_ring[0] =
4963 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
4964 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
4965 const struct si_shader_selector *sel = ctx->shader->selector;
4966 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
4967 LLVMValueRef base_ring;
4968
4969 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
4970
4971 /* The conceptual layout of the GSVS ring is
4972 * v0c0 .. vLv0 v0c1 .. vLc1 ..
4973 * but the real memory layout is swizzled across
4974 * threads:
4975 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
4976 * t16v0c0 ..
4977 * Override the buffer descriptor accordingly.
4978 */
4979 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
4980 uint64_t stream_offset = 0;
4981
4982 for (unsigned stream = 0; stream < 4; ++stream) {
4983 unsigned num_components;
4984 unsigned stride;
4985 unsigned num_records;
4986 LLVMValueRef ring, tmp;
4987
4988 num_components = sel->info.num_stream_output_components[stream];
4989 if (!num_components)
4990 continue;
4991
4992 stride = 4 * num_components * sel->gs_max_out_vertices;
4993
4994 /* Limit on the stride field for <= CIK. */
4995 assert(stride < (1 << 14));
4996
4997 num_records = 64;
4998
4999 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5000 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5001 tmp = LLVMBuildAdd(builder, tmp,
5002 LLVMConstInt(ctx->i64,
5003 stream_offset, 0), "");
5004 stream_offset += stride * 64;
5005
5006 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5007 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5008 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5009 tmp = LLVMBuildOr(builder, tmp,
5010 LLVMConstInt(ctx->i32,
5011 S_008F04_STRIDE(stride) |
5012 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5013 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5014 ring = LLVMBuildInsertElement(builder, ring,
5015 LLVMConstInt(ctx->i32, num_records, 0),
5016 LLVMConstInt(ctx->i32, 2, 0), "");
5017 ring = LLVMBuildInsertElement(builder, ring,
5018 LLVMConstInt(ctx->i32,
5019 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5020 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5021 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5022 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5023 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5024 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5025 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5026 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5027 S_008F0C_ADD_TID_ENABLE(1),
5028 0),
5029 LLVMConstInt(ctx->i32, 3, 0), "");
5030
5031 ctx->gsvs_ring[stream] = ring;
5032 }
5033 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5034 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5035 }
5036 }
5037
5038 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5039 LLVMValueRef param_rw_buffers,
5040 unsigned param_pos_fixed_pt)
5041 {
5042 LLVMBuilderRef builder = ctx->ac.builder;
5043 LLVMValueRef slot, desc, offset, row, bit, address[2];
5044
5045 /* Use the fixed-point gl_FragCoord input.
5046 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5047 * per coordinate to get the repeating effect.
5048 */
5049 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5050 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5051
5052 /* Load the buffer descriptor. */
5053 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5054 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5055
5056 /* The stipple pattern is 32x32, each row has 32 bits. */
5057 offset = LLVMBuildMul(builder, address[1],
5058 LLVMConstInt(ctx->i32, 4, 0), "");
5059 row = buffer_load_const(ctx, desc, offset);
5060 row = ac_to_integer(&ctx->ac, row);
5061 bit = LLVMBuildLShr(builder, row, address[0], "");
5062 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5063 ac_build_kill_if_false(&ctx->ac, bit);
5064 }
5065
5066 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5067 struct si_shader_config *conf,
5068 unsigned symbol_offset)
5069 {
5070 unsigned i;
5071 const unsigned char *config =
5072 ac_shader_binary_config_start(binary, symbol_offset);
5073 bool really_needs_scratch = false;
5074
5075 /* LLVM adds SGPR spills to the scratch size.
5076 * Find out if we really need the scratch buffer.
5077 */
5078 for (i = 0; i < binary->reloc_count; i++) {
5079 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5080
5081 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5082 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5083 really_needs_scratch = true;
5084 break;
5085 }
5086 }
5087
5088 /* XXX: We may be able to emit some of these values directly rather than
5089 * extracting fields to be emitted later.
5090 */
5091
5092 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5093 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5094 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5095 switch (reg) {
5096 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5097 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5098 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5099 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5100 case R_00B848_COMPUTE_PGM_RSRC1:
5101 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5102 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5103 conf->float_mode = G_00B028_FLOAT_MODE(value);
5104 conf->rsrc1 = value;
5105 break;
5106 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5107 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5108 break;
5109 case R_00B84C_COMPUTE_PGM_RSRC2:
5110 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5111 conf->rsrc2 = value;
5112 break;
5113 case R_0286CC_SPI_PS_INPUT_ENA:
5114 conf->spi_ps_input_ena = value;
5115 break;
5116 case R_0286D0_SPI_PS_INPUT_ADDR:
5117 conf->spi_ps_input_addr = value;
5118 break;
5119 case R_0286E8_SPI_TMPRING_SIZE:
5120 case R_00B860_COMPUTE_TMPRING_SIZE:
5121 /* WAVESIZE is in units of 256 dwords. */
5122 if (really_needs_scratch)
5123 conf->scratch_bytes_per_wave =
5124 G_00B860_WAVESIZE(value) * 256 * 4;
5125 break;
5126 case 0x4: /* SPILLED_SGPRS */
5127 conf->spilled_sgprs = value;
5128 break;
5129 case 0x8: /* SPILLED_VGPRS */
5130 conf->spilled_vgprs = value;
5131 break;
5132 default:
5133 {
5134 static bool printed;
5135
5136 if (!printed) {
5137 fprintf(stderr, "Warning: LLVM emitted unknown "
5138 "config register: 0x%x\n", reg);
5139 printed = true;
5140 }
5141 }
5142 break;
5143 }
5144 }
5145
5146 if (!conf->spi_ps_input_addr)
5147 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5148 }
5149
5150 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5151 uint64_t scratch_va)
5152 {
5153 unsigned i;
5154 uint32_t scratch_rsrc_dword0 = scratch_va;
5155 uint32_t scratch_rsrc_dword1 =
5156 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5157
5158 /* Enable scratch coalescing. */
5159 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5160
5161 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5162 const struct ac_shader_reloc *reloc =
5163 &shader->binary.relocs[i];
5164 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5165 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5166 &scratch_rsrc_dword0, 4);
5167 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5168 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5169 &scratch_rsrc_dword1, 4);
5170 }
5171 }
5172 }
5173
5174 /* For the UMR disassembler. */
5175 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5176 #define DEBUGGER_NUM_MARKERS 5
5177
5178 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5179 {
5180 unsigned size = shader->binary.code_size;
5181
5182 if (shader->prolog)
5183 size += shader->prolog->binary.code_size;
5184 if (shader->previous_stage)
5185 size += shader->previous_stage->binary.code_size;
5186 if (shader->prolog2)
5187 size += shader->prolog2->binary.code_size;
5188 if (shader->epilog)
5189 size += shader->epilog->binary.code_size;
5190 return size + DEBUGGER_NUM_MARKERS * 4;
5191 }
5192
5193 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5194 {
5195 const struct ac_shader_binary *prolog =
5196 shader->prolog ? &shader->prolog->binary : NULL;
5197 const struct ac_shader_binary *previous_stage =
5198 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5199 const struct ac_shader_binary *prolog2 =
5200 shader->prolog2 ? &shader->prolog2->binary : NULL;
5201 const struct ac_shader_binary *epilog =
5202 shader->epilog ? &shader->epilog->binary : NULL;
5203 const struct ac_shader_binary *mainb = &shader->binary;
5204 unsigned bo_size = si_get_shader_binary_size(shader) +
5205 (!epilog ? mainb->rodata_size : 0);
5206 unsigned char *ptr;
5207
5208 assert(!prolog || !prolog->rodata_size);
5209 assert(!previous_stage || !previous_stage->rodata_size);
5210 assert(!prolog2 || !prolog2->rodata_size);
5211 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5212 !mainb->rodata_size);
5213 assert(!epilog || !epilog->rodata_size);
5214
5215 si_resource_reference(&shader->bo, NULL);
5216 shader->bo = si_aligned_buffer_create(&sscreen->b,
5217 sscreen->cpdma_prefetch_writes_memory ?
5218 0 : SI_RESOURCE_FLAG_READ_ONLY,
5219 PIPE_USAGE_IMMUTABLE,
5220 align(bo_size, SI_CPDMA_ALIGNMENT),
5221 256);
5222 if (!shader->bo)
5223 return -ENOMEM;
5224
5225 /* Upload. */
5226 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5227 PIPE_TRANSFER_READ_WRITE |
5228 PIPE_TRANSFER_UNSYNCHRONIZED |
5229 RADEON_TRANSFER_TEMPORARY);
5230
5231 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5232 * endian-independent. */
5233 if (prolog) {
5234 memcpy(ptr, prolog->code, prolog->code_size);
5235 ptr += prolog->code_size;
5236 }
5237 if (previous_stage) {
5238 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5239 ptr += previous_stage->code_size;
5240 }
5241 if (prolog2) {
5242 memcpy(ptr, prolog2->code, prolog2->code_size);
5243 ptr += prolog2->code_size;
5244 }
5245
5246 memcpy(ptr, mainb->code, mainb->code_size);
5247 ptr += mainb->code_size;
5248
5249 if (epilog) {
5250 memcpy(ptr, epilog->code, epilog->code_size);
5251 ptr += epilog->code_size;
5252 } else if (mainb->rodata_size > 0) {
5253 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5254 ptr += mainb->rodata_size;
5255 }
5256
5257 /* Add end-of-code markers for the UMR disassembler. */
5258 uint32_t *ptr32 = (uint32_t*)ptr;
5259 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
5260 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
5261
5262 sscreen->ws->buffer_unmap(shader->bo->buf);
5263 return 0;
5264 }
5265
5266 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5267 struct pipe_debug_callback *debug,
5268 const char *name, FILE *file)
5269 {
5270 char *line, *p;
5271 unsigned i, count;
5272
5273 if (binary->disasm_string) {
5274 fprintf(file, "Shader %s disassembly:\n", name);
5275 fprintf(file, "%s", binary->disasm_string);
5276
5277 if (debug && debug->debug_message) {
5278 /* Very long debug messages are cut off, so send the
5279 * disassembly one line at a time. This causes more
5280 * overhead, but on the plus side it simplifies
5281 * parsing of resulting logs.
5282 */
5283 pipe_debug_message(debug, SHADER_INFO,
5284 "Shader Disassembly Begin");
5285
5286 line = binary->disasm_string;
5287 while (*line) {
5288 p = util_strchrnul(line, '\n');
5289 count = p - line;
5290
5291 if (count) {
5292 pipe_debug_message(debug, SHADER_INFO,
5293 "%.*s", count, line);
5294 }
5295
5296 if (!*p)
5297 break;
5298 line = p + 1;
5299 }
5300
5301 pipe_debug_message(debug, SHADER_INFO,
5302 "Shader Disassembly End");
5303 }
5304 } else {
5305 fprintf(file, "Shader %s binary:\n", name);
5306 for (i = 0; i < binary->code_size; i += 4) {
5307 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5308 binary->code[i + 3], binary->code[i + 2],
5309 binary->code[i + 1], binary->code[i]);
5310 }
5311 }
5312 }
5313
5314 static void si_calculate_max_simd_waves(struct si_shader *shader)
5315 {
5316 struct si_screen *sscreen = shader->selector->screen;
5317 struct si_shader_config *conf = &shader->config;
5318 unsigned num_inputs = shader->selector->info.num_inputs;
5319 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5320 unsigned lds_per_wave = 0;
5321 unsigned max_simd_waves;
5322
5323 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5324
5325 /* Compute LDS usage for PS. */
5326 switch (shader->selector->type) {
5327 case PIPE_SHADER_FRAGMENT:
5328 /* The minimum usage per wave is (num_inputs * 48). The maximum
5329 * usage is (num_inputs * 48 * 16).
5330 * We can get anything in between and it varies between waves.
5331 *
5332 * The 48 bytes per input for a single primitive is equal to
5333 * 4 bytes/component * 4 components/input * 3 points.
5334 *
5335 * Other stages don't know the size at compile time or don't
5336 * allocate LDS per wave, but instead they do it per thread group.
5337 */
5338 lds_per_wave = conf->lds_size * lds_increment +
5339 align(num_inputs * 48, lds_increment);
5340 break;
5341 case PIPE_SHADER_COMPUTE:
5342 if (shader->selector) {
5343 unsigned max_workgroup_size =
5344 si_get_max_workgroup_size(shader);
5345 lds_per_wave = (conf->lds_size * lds_increment) /
5346 DIV_ROUND_UP(max_workgroup_size, 64);
5347 }
5348 break;
5349 }
5350
5351 /* Compute the per-SIMD wave counts. */
5352 if (conf->num_sgprs) {
5353 max_simd_waves =
5354 MIN2(max_simd_waves,
5355 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5356 }
5357
5358 if (conf->num_vgprs)
5359 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5360
5361 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5362 * 16KB makes some SIMDs unoccupied). */
5363 if (lds_per_wave)
5364 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5365
5366 conf->max_simd_waves = max_simd_waves;
5367 }
5368
5369 void si_shader_dump_stats_for_shader_db(const struct si_shader *shader,
5370 struct pipe_debug_callback *debug)
5371 {
5372 const struct si_shader_config *conf = &shader->config;
5373
5374 pipe_debug_message(debug, SHADER_INFO,
5375 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5376 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5377 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5378 conf->num_sgprs, conf->num_vgprs,
5379 si_get_shader_binary_size(shader),
5380 conf->lds_size, conf->scratch_bytes_per_wave,
5381 conf->max_simd_waves, conf->spilled_sgprs,
5382 conf->spilled_vgprs, conf->private_mem_vgprs);
5383 }
5384
5385 static void si_shader_dump_stats(struct si_screen *sscreen,
5386 const struct si_shader *shader,
5387 unsigned processor,
5388 FILE *file,
5389 bool check_debug_option)
5390 {
5391 const struct si_shader_config *conf = &shader->config;
5392
5393 if (!check_debug_option ||
5394 si_can_dump_shader(sscreen, processor)) {
5395 if (processor == PIPE_SHADER_FRAGMENT) {
5396 fprintf(file, "*** SHADER CONFIG ***\n"
5397 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5398 "SPI_PS_INPUT_ENA = 0x%04x\n",
5399 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5400 }
5401
5402 fprintf(file, "*** SHADER STATS ***\n"
5403 "SGPRS: %d\n"
5404 "VGPRS: %d\n"
5405 "Spilled SGPRs: %d\n"
5406 "Spilled VGPRs: %d\n"
5407 "Private memory VGPRs: %d\n"
5408 "Code Size: %d bytes\n"
5409 "LDS: %d blocks\n"
5410 "Scratch: %d bytes per wave\n"
5411 "Max Waves: %d\n"
5412 "********************\n\n\n",
5413 conf->num_sgprs, conf->num_vgprs,
5414 conf->spilled_sgprs, conf->spilled_vgprs,
5415 conf->private_mem_vgprs,
5416 si_get_shader_binary_size(shader),
5417 conf->lds_size, conf->scratch_bytes_per_wave,
5418 conf->max_simd_waves);
5419 }
5420 }
5421
5422 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5423 {
5424 switch (processor) {
5425 case PIPE_SHADER_VERTEX:
5426 if (shader->key.as_es)
5427 return "Vertex Shader as ES";
5428 else if (shader->key.as_ls)
5429 return "Vertex Shader as LS";
5430 else
5431 return "Vertex Shader as VS";
5432 case PIPE_SHADER_TESS_CTRL:
5433 return "Tessellation Control Shader";
5434 case PIPE_SHADER_TESS_EVAL:
5435 if (shader->key.as_es)
5436 return "Tessellation Evaluation Shader as ES";
5437 else
5438 return "Tessellation Evaluation Shader as VS";
5439 case PIPE_SHADER_GEOMETRY:
5440 if (shader->is_gs_copy_shader)
5441 return "GS Copy Shader as VS";
5442 else
5443 return "Geometry Shader";
5444 case PIPE_SHADER_FRAGMENT:
5445 return "Pixel Shader";
5446 case PIPE_SHADER_COMPUTE:
5447 return "Compute Shader";
5448 default:
5449 return "Unknown Shader";
5450 }
5451 }
5452
5453 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5454 struct pipe_debug_callback *debug, unsigned processor,
5455 FILE *file, bool check_debug_option)
5456 {
5457 if (!check_debug_option ||
5458 si_can_dump_shader(sscreen, processor))
5459 si_dump_shader_key(processor, shader, file);
5460
5461 if (!check_debug_option && shader->binary.llvm_ir_string) {
5462 if (shader->previous_stage &&
5463 shader->previous_stage->binary.llvm_ir_string) {
5464 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5465 si_get_shader_name(shader, processor));
5466 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5467 }
5468
5469 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5470 si_get_shader_name(shader, processor));
5471 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5472 }
5473
5474 if (!check_debug_option ||
5475 (si_can_dump_shader(sscreen, processor) &&
5476 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5477 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5478
5479 if (shader->prolog)
5480 si_shader_dump_disassembly(&shader->prolog->binary,
5481 debug, "prolog", file);
5482 if (shader->previous_stage)
5483 si_shader_dump_disassembly(&shader->previous_stage->binary,
5484 debug, "previous stage", file);
5485 if (shader->prolog2)
5486 si_shader_dump_disassembly(&shader->prolog2->binary,
5487 debug, "prolog2", file);
5488
5489 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5490
5491 if (shader->epilog)
5492 si_shader_dump_disassembly(&shader->epilog->binary,
5493 debug, "epilog", file);
5494 fprintf(file, "\n");
5495 }
5496
5497 si_shader_dump_stats(sscreen, shader, processor, file,
5498 check_debug_option);
5499 }
5500
5501 static int si_compile_llvm(struct si_screen *sscreen,
5502 struct ac_shader_binary *binary,
5503 struct si_shader_config *conf,
5504 struct ac_llvm_compiler *compiler,
5505 LLVMModuleRef mod,
5506 struct pipe_debug_callback *debug,
5507 unsigned processor,
5508 const char *name,
5509 bool less_optimized)
5510 {
5511 int r = 0;
5512 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5513
5514 if (si_can_dump_shader(sscreen, processor)) {
5515 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5516
5517 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5518 fprintf(stderr, "%s LLVM IR:\n\n", name);
5519 ac_dump_module(mod);
5520 fprintf(stderr, "\n");
5521 }
5522 }
5523
5524 if (sscreen->record_llvm_ir) {
5525 char *ir = LLVMPrintModuleToString(mod);
5526 binary->llvm_ir_string = strdup(ir);
5527 LLVMDisposeMessage(ir);
5528 }
5529
5530 if (!si_replace_shader(count, binary)) {
5531 r = si_llvm_compile(mod, binary, compiler, debug,
5532 less_optimized);
5533 if (r)
5534 return r;
5535 }
5536
5537 si_shader_binary_read_config(binary, conf, 0);
5538
5539 /* Enable 64-bit and 16-bit denormals, because there is no performance
5540 * cost.
5541 *
5542 * If denormals are enabled, all floating-point output modifiers are
5543 * ignored.
5544 *
5545 * Don't enable denormals for 32-bit floats, because:
5546 * - Floating-point output modifiers would be ignored by the hw.
5547 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5548 * have to stop using those.
5549 * - SI & CI would be very slow.
5550 */
5551 conf->float_mode |= V_00B028_FP_64_DENORMS;
5552
5553 FREE(binary->config);
5554 FREE(binary->global_symbol_offsets);
5555 binary->config = NULL;
5556 binary->global_symbol_offsets = NULL;
5557
5558 /* Some shaders can't have rodata because their binaries can be
5559 * concatenated.
5560 */
5561 if (binary->rodata_size &&
5562 (processor == PIPE_SHADER_VERTEX ||
5563 processor == PIPE_SHADER_TESS_CTRL ||
5564 processor == PIPE_SHADER_TESS_EVAL ||
5565 processor == PIPE_SHADER_FRAGMENT)) {
5566 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5567 return -EINVAL;
5568 }
5569
5570 return r;
5571 }
5572
5573 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5574 {
5575 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5576 LLVMBuildRetVoid(ctx->ac.builder);
5577 else
5578 LLVMBuildRet(ctx->ac.builder, ret);
5579 }
5580
5581 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5582 struct si_shader *
5583 si_generate_gs_copy_shader(struct si_screen *sscreen,
5584 struct ac_llvm_compiler *compiler,
5585 struct si_shader_selector *gs_selector,
5586 struct pipe_debug_callback *debug)
5587 {
5588 struct si_shader_context ctx;
5589 struct si_shader *shader;
5590 LLVMBuilderRef builder;
5591 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5592 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5593 int i, r;
5594
5595
5596 shader = CALLOC_STRUCT(si_shader);
5597 if (!shader)
5598 return NULL;
5599
5600 /* We can leave the fence as permanently signaled because the GS copy
5601 * shader only becomes visible globally after it has been compiled. */
5602 util_queue_fence_init(&shader->ready);
5603
5604 shader->selector = gs_selector;
5605 shader->is_gs_copy_shader = true;
5606
5607 si_init_shader_ctx(&ctx, sscreen, compiler);
5608 ctx.shader = shader;
5609 ctx.type = PIPE_SHADER_VERTEX;
5610
5611 builder = ctx.ac.builder;
5612
5613 create_function(&ctx);
5614 preload_ring_buffers(&ctx);
5615
5616 LLVMValueRef voffset =
5617 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5618 LLVMConstInt(ctx.i32, 4, 0), "");
5619
5620 /* Fetch the vertex stream ID.*/
5621 LLVMValueRef stream_id;
5622
5623 if (gs_selector->so.num_outputs)
5624 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5625 else
5626 stream_id = ctx.i32_0;
5627
5628 /* Fill in output information. */
5629 for (i = 0; i < gsinfo->num_outputs; ++i) {
5630 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5631 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5632
5633 for (int chan = 0; chan < 4; chan++) {
5634 outputs[i].vertex_stream[chan] =
5635 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5636 }
5637 }
5638
5639 LLVMBasicBlockRef end_bb;
5640 LLVMValueRef switch_inst;
5641
5642 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5643 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5644
5645 for (int stream = 0; stream < 4; stream++) {
5646 LLVMBasicBlockRef bb;
5647 unsigned offset;
5648
5649 if (!gsinfo->num_stream_output_components[stream])
5650 continue;
5651
5652 if (stream > 0 && !gs_selector->so.num_outputs)
5653 continue;
5654
5655 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5656 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5657 LLVMPositionBuilderAtEnd(builder, bb);
5658
5659 /* Fetch vertex data from GSVS ring */
5660 offset = 0;
5661 for (i = 0; i < gsinfo->num_outputs; ++i) {
5662 for (unsigned chan = 0; chan < 4; chan++) {
5663 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5664 outputs[i].vertex_stream[chan] != stream) {
5665 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5666 continue;
5667 }
5668
5669 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5670 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5671 offset++;
5672
5673 outputs[i].values[chan] =
5674 ac_build_buffer_load(&ctx.ac,
5675 ctx.gsvs_ring[0], 1,
5676 ctx.i32_0, voffset,
5677 soffset, 0, 1, 1,
5678 true, false);
5679 }
5680 }
5681
5682 /* Streamout and exports. */
5683 if (gs_selector->so.num_outputs) {
5684 si_llvm_emit_streamout(&ctx, outputs,
5685 gsinfo->num_outputs,
5686 stream);
5687 }
5688
5689 if (stream == 0) {
5690 /* Vertex color clamping.
5691 *
5692 * This uses a state constant loaded in a user data SGPR and
5693 * an IF statement is added that clamps all colors if the constant
5694 * is true.
5695 */
5696 struct lp_build_if_state if_ctx;
5697 LLVMValueRef v[2], cond = NULL;
5698 LLVMBasicBlockRef blocks[2];
5699
5700 for (unsigned i = 0; i < gsinfo->num_outputs; i++) {
5701 if (gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
5702 gsinfo->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
5703 continue;
5704
5705 /* We've found a color. */
5706 if (!cond) {
5707 /* The state is in the first bit of the user SGPR. */
5708 cond = LLVMGetParam(ctx.main_fn,
5709 ctx.param_vs_state_bits);
5710 cond = LLVMBuildTrunc(ctx.ac.builder, cond,
5711 ctx.i1, "");
5712 lp_build_if(&if_ctx, &ctx.gallivm, cond);
5713 /* Remember blocks for Phi. */
5714 blocks[0] = if_ctx.true_block;
5715 blocks[1] = if_ctx.entry_block;
5716 }
5717
5718 for (unsigned j = 0; j < 4; j++) {
5719 /* Insert clamp into the true block. */
5720 v[0] = ac_build_clamp(&ctx.ac, outputs[i].values[j]);
5721 v[1] = outputs[i].values[j];
5722
5723 /* Insert Phi into the endif block. */
5724 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.merge_block);
5725 outputs[i].values[j] = ac_build_phi(&ctx.ac, ctx.f32, 2, v, blocks);
5726 LLVMPositionBuilderAtEnd(ctx.ac.builder, if_ctx.true_block);
5727 }
5728 }
5729 if (cond)
5730 lp_build_endif(&if_ctx);
5731
5732 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5733 }
5734
5735 LLVMBuildBr(builder, end_bb);
5736 }
5737
5738 LLVMPositionBuilderAtEnd(builder, end_bb);
5739
5740 LLVMBuildRetVoid(ctx.ac.builder);
5741
5742 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5743 si_llvm_optimize_module(&ctx);
5744
5745 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5746 &ctx.shader->config, ctx.compiler,
5747 ctx.ac.module,
5748 debug, PIPE_SHADER_GEOMETRY,
5749 "GS Copy Shader", false);
5750 if (!r) {
5751 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5752 fprintf(stderr, "GS Copy Shader:\n");
5753 si_shader_dump(sscreen, ctx.shader, debug,
5754 PIPE_SHADER_GEOMETRY, stderr, true);
5755 r = si_shader_binary_upload(sscreen, ctx.shader);
5756 }
5757
5758 si_llvm_dispose(&ctx);
5759
5760 if (r != 0) {
5761 FREE(shader);
5762 shader = NULL;
5763 } else {
5764 si_fix_resource_usage(sscreen, shader);
5765 }
5766 return shader;
5767 }
5768
5769 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5770 const struct si_vs_prolog_bits *prolog,
5771 const char *prefix, FILE *f)
5772 {
5773 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5774 prefix, prolog->instance_divisor_is_one);
5775 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5776 prefix, prolog->instance_divisor_is_fetched);
5777 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5778 prefix, prolog->ls_vgpr_fix);
5779
5780 fprintf(f, " mono.vs.fix_fetch = {");
5781 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5782 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5783 fprintf(f, "}\n");
5784 }
5785
5786 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5787 FILE *f)
5788 {
5789 const struct si_shader_key *key = &shader->key;
5790
5791 fprintf(f, "SHADER KEY\n");
5792
5793 switch (processor) {
5794 case PIPE_SHADER_VERTEX:
5795 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5796 "part.vs.prolog", f);
5797 fprintf(f, " as_es = %u\n", key->as_es);
5798 fprintf(f, " as_ls = %u\n", key->as_ls);
5799 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5800 key->mono.u.vs_export_prim_id);
5801 break;
5802
5803 case PIPE_SHADER_TESS_CTRL:
5804 if (shader->selector->screen->info.chip_class >= GFX9) {
5805 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5806 "part.tcs.ls_prolog", f);
5807 }
5808 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5809 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5810 break;
5811
5812 case PIPE_SHADER_TESS_EVAL:
5813 fprintf(f, " as_es = %u\n", key->as_es);
5814 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5815 key->mono.u.vs_export_prim_id);
5816 break;
5817
5818 case PIPE_SHADER_GEOMETRY:
5819 if (shader->is_gs_copy_shader)
5820 break;
5821
5822 if (shader->selector->screen->info.chip_class >= GFX9 &&
5823 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5824 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5825 "part.gs.vs_prolog", f);
5826 }
5827 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5828 break;
5829
5830 case PIPE_SHADER_COMPUTE:
5831 break;
5832
5833 case PIPE_SHADER_FRAGMENT:
5834 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5835 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5836 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5837 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5838 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5839 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5840 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5841 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5842 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5843 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5844 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5845 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5846 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5847 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5848 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5849 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5850 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5851 break;
5852
5853 default:
5854 assert(0);
5855 }
5856
5857 if ((processor == PIPE_SHADER_GEOMETRY ||
5858 processor == PIPE_SHADER_TESS_EVAL ||
5859 processor == PIPE_SHADER_VERTEX) &&
5860 !key->as_es && !key->as_ls) {
5861 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5862 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5863 }
5864 }
5865
5866 static void si_init_shader_ctx(struct si_shader_context *ctx,
5867 struct si_screen *sscreen,
5868 struct ac_llvm_compiler *compiler)
5869 {
5870 struct lp_build_tgsi_context *bld_base;
5871
5872 si_llvm_context_init(ctx, sscreen, compiler);
5873
5874 bld_base = &ctx->bld_base;
5875 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5876
5877 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5878 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5879 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5880
5881 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5882
5883 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5884
5885 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5886 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5887 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5888 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5889
5890 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5891 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5892 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5893 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5894 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5895 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5896 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5897 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5898
5899 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5900 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5901 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5902 }
5903
5904 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
5905 {
5906 struct si_shader *shader = ctx->shader;
5907 struct tgsi_shader_info *info = &shader->selector->info;
5908
5909 if ((ctx->type != PIPE_SHADER_VERTEX &&
5910 ctx->type != PIPE_SHADER_TESS_EVAL) ||
5911 shader->key.as_ls ||
5912 shader->key.as_es)
5913 return;
5914
5915 ac_optimize_vs_outputs(&ctx->ac,
5916 ctx->main_fn,
5917 shader->info.vs_output_param_offset,
5918 info->num_outputs,
5919 &shader->info.nr_param_exports);
5920 }
5921
5922 static void si_init_exec_from_input(struct si_shader_context *ctx,
5923 unsigned param, unsigned bitoffset)
5924 {
5925 LLVMValueRef args[] = {
5926 LLVMGetParam(ctx->main_fn, param),
5927 LLVMConstInt(ctx->i32, bitoffset, 0),
5928 };
5929 ac_build_intrinsic(&ctx->ac,
5930 "llvm.amdgcn.init.exec.from.input",
5931 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
5932 }
5933
5934 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
5935 const struct si_vs_prolog_bits *key)
5936 {
5937 /* VGPR initialization fixup for Vega10 and Raven is always done in the
5938 * VS prolog. */
5939 return sel->vs_needs_prolog || key->ls_vgpr_fix;
5940 }
5941
5942 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
5943 {
5944 struct si_shader *shader = ctx->shader;
5945 struct si_shader_selector *sel = shader->selector;
5946 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5947
5948 // TODO clean all this up!
5949 switch (ctx->type) {
5950 case PIPE_SHADER_VERTEX:
5951 ctx->load_input = declare_input_vs;
5952 if (shader->key.as_ls)
5953 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
5954 else if (shader->key.as_es)
5955 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
5956 else
5957 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
5958 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
5959 ctx->abi.load_base_vertex = get_base_vertex;
5960 break;
5961 case PIPE_SHADER_TESS_CTRL:
5962 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
5963 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
5964 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
5965 bld_base->emit_store = store_output_tcs;
5966 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
5967 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
5968 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
5969 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
5970 break;
5971 case PIPE_SHADER_TESS_EVAL:
5972 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
5973 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
5974 ctx->abi.load_tess_coord = si_load_tess_coord;
5975 ctx->abi.load_tess_level = si_load_tess_level;
5976 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
5977 if (shader->key.as_es)
5978 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
5979 else
5980 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
5981 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
5982 break;
5983 case PIPE_SHADER_GEOMETRY:
5984 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
5985 ctx->abi.load_inputs = si_nir_load_input_gs;
5986 ctx->abi.emit_vertex = si_llvm_emit_vertex;
5987 ctx->abi.emit_primitive = si_llvm_emit_primitive;
5988 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
5989 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
5990 break;
5991 case PIPE_SHADER_FRAGMENT:
5992 ctx->load_input = declare_input_fs;
5993 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
5994 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
5995 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
5996 ctx->abi.load_sample_position = load_sample_position;
5997 ctx->abi.load_sample_mask_in = load_sample_mask_in;
5998 ctx->abi.emit_kill = si_llvm_emit_kill;
5999 break;
6000 case PIPE_SHADER_COMPUTE:
6001 ctx->abi.load_local_group_size = get_block_size;
6002 break;
6003 default:
6004 assert(!"Unsupported shader type");
6005 return false;
6006 }
6007
6008 ctx->abi.load_ubo = load_ubo;
6009 ctx->abi.load_ssbo = load_ssbo;
6010
6011 create_function(ctx);
6012 preload_ring_buffers(ctx);
6013
6014 /* For GFX9 merged shaders:
6015 * - Set EXEC for the first shader. If the prolog is present, set
6016 * EXEC there instead.
6017 * - Add a barrier before the second shader.
6018 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6019 * an if-statement. This is required for correctness in geometry
6020 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6021 * GS_CUT messages.
6022 *
6023 * For monolithic merged shaders, the first shader is wrapped in an
6024 * if-block together with its prolog in si_build_wrapper_function.
6025 */
6026 if (ctx->screen->info.chip_class >= GFX9) {
6027 if (!shader->is_monolithic &&
6028 sel->info.num_instructions > 1 && /* not empty shader */
6029 (shader->key.as_es || shader->key.as_ls) &&
6030 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6031 (ctx->type == PIPE_SHADER_VERTEX &&
6032 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6033 si_init_exec_from_input(ctx,
6034 ctx->param_merged_wave_info, 0);
6035 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6036 ctx->type == PIPE_SHADER_GEOMETRY) {
6037 if (!shader->is_monolithic)
6038 ac_init_exec_full_mask(&ctx->ac);
6039
6040 LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6041 LLVMValueRef ena =
6042 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6043 ac_get_thread_id(&ctx->ac), num_threads, "");
6044 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6045
6046 /* The barrier must execute for all shaders in a
6047 * threadgroup.
6048 *
6049 * Execute the barrier inside the conditional block,
6050 * so that empty waves can jump directly to s_endpgm,
6051 * which will also signal the barrier.
6052 *
6053 * If the shader is TCS and the TCS epilog is present
6054 * and contains a barrier, it will wait there and then
6055 * reach s_endpgm.
6056 */
6057 si_llvm_emit_barrier(NULL, bld_base, NULL);
6058 }
6059 }
6060
6061 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6062 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6063 for (unsigned i = 0; i < 6; i++) {
6064 ctx->invoc0_tess_factors[i] =
6065 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6066 }
6067 }
6068
6069 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6070 int i;
6071 for (i = 0; i < 4; i++) {
6072 ctx->gs_next_vertex[i] =
6073 ac_build_alloca(&ctx->ac, ctx->i32, "");
6074 }
6075 }
6076
6077 if (sel->force_correct_derivs_after_kill) {
6078 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6079 /* true = don't kill. */
6080 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6081 ctx->postponed_kill);
6082 }
6083
6084 if (sel->tokens) {
6085 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6086 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6087 return false;
6088 }
6089 } else {
6090 if (!si_nir_build_llvm(ctx, sel->nir)) {
6091 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6092 return false;
6093 }
6094 }
6095
6096 si_llvm_build_ret(ctx, ctx->return_value);
6097 return true;
6098 }
6099
6100 /**
6101 * Compute the VS prolog key, which contains all the information needed to
6102 * build the VS prolog function, and set shader->info bits where needed.
6103 *
6104 * \param info Shader info of the vertex shader.
6105 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6106 * \param prolog_key Key of the VS prolog
6107 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6108 * \param key Output shader part key.
6109 */
6110 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6111 unsigned num_input_sgprs,
6112 const struct si_vs_prolog_bits *prolog_key,
6113 struct si_shader *shader_out,
6114 union si_shader_part_key *key)
6115 {
6116 memset(key, 0, sizeof(*key));
6117 key->vs_prolog.states = *prolog_key;
6118 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6119 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6120 key->vs_prolog.as_ls = shader_out->key.as_ls;
6121 key->vs_prolog.as_es = shader_out->key.as_es;
6122
6123 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6124 key->vs_prolog.as_ls = 1;
6125 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6126 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6127 key->vs_prolog.as_es = 1;
6128 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6129 }
6130
6131 /* Enable loading the InstanceID VGPR. */
6132 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6133
6134 if ((key->vs_prolog.states.instance_divisor_is_one |
6135 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6136 shader_out->info.uses_instanceid = true;
6137 }
6138
6139 /**
6140 * Compute the PS prolog key, which contains all the information needed to
6141 * build the PS prolog function, and set related bits in shader->config.
6142 */
6143 static void si_get_ps_prolog_key(struct si_shader *shader,
6144 union si_shader_part_key *key,
6145 bool separate_prolog)
6146 {
6147 struct tgsi_shader_info *info = &shader->selector->info;
6148
6149 memset(key, 0, sizeof(*key));
6150 key->ps_prolog.states = shader->key.part.ps.prolog;
6151 key->ps_prolog.colors_read = info->colors_read;
6152 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6153 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6154 key->ps_prolog.wqm = info->uses_derivatives &&
6155 (key->ps_prolog.colors_read ||
6156 key->ps_prolog.states.force_persp_sample_interp ||
6157 key->ps_prolog.states.force_linear_sample_interp ||
6158 key->ps_prolog.states.force_persp_center_interp ||
6159 key->ps_prolog.states.force_linear_center_interp ||
6160 key->ps_prolog.states.bc_optimize_for_persp ||
6161 key->ps_prolog.states.bc_optimize_for_linear);
6162 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6163
6164 if (info->colors_read) {
6165 unsigned *color = shader->selector->color_attr_index;
6166
6167 if (shader->key.part.ps.prolog.color_two_side) {
6168 /* BCOLORs are stored after the last input. */
6169 key->ps_prolog.num_interp_inputs = info->num_inputs;
6170 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6171 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6172 }
6173
6174 for (unsigned i = 0; i < 2; i++) {
6175 unsigned interp = info->input_interpolate[color[i]];
6176 unsigned location = info->input_interpolate_loc[color[i]];
6177
6178 if (!(info->colors_read & (0xf << i*4)))
6179 continue;
6180
6181 key->ps_prolog.color_attr_index[i] = color[i];
6182
6183 if (shader->key.part.ps.prolog.flatshade_colors &&
6184 interp == TGSI_INTERPOLATE_COLOR)
6185 interp = TGSI_INTERPOLATE_CONSTANT;
6186
6187 switch (interp) {
6188 case TGSI_INTERPOLATE_CONSTANT:
6189 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6190 break;
6191 case TGSI_INTERPOLATE_PERSPECTIVE:
6192 case TGSI_INTERPOLATE_COLOR:
6193 /* Force the interpolation location for colors here. */
6194 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6195 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6196 if (shader->key.part.ps.prolog.force_persp_center_interp)
6197 location = TGSI_INTERPOLATE_LOC_CENTER;
6198
6199 switch (location) {
6200 case TGSI_INTERPOLATE_LOC_SAMPLE:
6201 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6202 shader->config.spi_ps_input_ena |=
6203 S_0286CC_PERSP_SAMPLE_ENA(1);
6204 break;
6205 case TGSI_INTERPOLATE_LOC_CENTER:
6206 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6207 shader->config.spi_ps_input_ena |=
6208 S_0286CC_PERSP_CENTER_ENA(1);
6209 break;
6210 case TGSI_INTERPOLATE_LOC_CENTROID:
6211 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6212 shader->config.spi_ps_input_ena |=
6213 S_0286CC_PERSP_CENTROID_ENA(1);
6214 break;
6215 default:
6216 assert(0);
6217 }
6218 break;
6219 case TGSI_INTERPOLATE_LINEAR:
6220 /* Force the interpolation location for colors here. */
6221 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6222 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6223 if (shader->key.part.ps.prolog.force_linear_center_interp)
6224 location = TGSI_INTERPOLATE_LOC_CENTER;
6225
6226 /* The VGPR assignment for non-monolithic shaders
6227 * works because InitialPSInputAddr is set on the
6228 * main shader and PERSP_PULL_MODEL is never used.
6229 */
6230 switch (location) {
6231 case TGSI_INTERPOLATE_LOC_SAMPLE:
6232 key->ps_prolog.color_interp_vgpr_index[i] =
6233 separate_prolog ? 6 : 9;
6234 shader->config.spi_ps_input_ena |=
6235 S_0286CC_LINEAR_SAMPLE_ENA(1);
6236 break;
6237 case TGSI_INTERPOLATE_LOC_CENTER:
6238 key->ps_prolog.color_interp_vgpr_index[i] =
6239 separate_prolog ? 8 : 11;
6240 shader->config.spi_ps_input_ena |=
6241 S_0286CC_LINEAR_CENTER_ENA(1);
6242 break;
6243 case TGSI_INTERPOLATE_LOC_CENTROID:
6244 key->ps_prolog.color_interp_vgpr_index[i] =
6245 separate_prolog ? 10 : 13;
6246 shader->config.spi_ps_input_ena |=
6247 S_0286CC_LINEAR_CENTROID_ENA(1);
6248 break;
6249 default:
6250 assert(0);
6251 }
6252 break;
6253 default:
6254 assert(0);
6255 }
6256 }
6257 }
6258 }
6259
6260 /**
6261 * Check whether a PS prolog is required based on the key.
6262 */
6263 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6264 {
6265 return key->ps_prolog.colors_read ||
6266 key->ps_prolog.states.force_persp_sample_interp ||
6267 key->ps_prolog.states.force_linear_sample_interp ||
6268 key->ps_prolog.states.force_persp_center_interp ||
6269 key->ps_prolog.states.force_linear_center_interp ||
6270 key->ps_prolog.states.bc_optimize_for_persp ||
6271 key->ps_prolog.states.bc_optimize_for_linear ||
6272 key->ps_prolog.states.poly_stipple ||
6273 key->ps_prolog.states.samplemask_log_ps_iter;
6274 }
6275
6276 /**
6277 * Compute the PS epilog key, which contains all the information needed to
6278 * build the PS epilog function.
6279 */
6280 static void si_get_ps_epilog_key(struct si_shader *shader,
6281 union si_shader_part_key *key)
6282 {
6283 struct tgsi_shader_info *info = &shader->selector->info;
6284 memset(key, 0, sizeof(*key));
6285 key->ps_epilog.colors_written = info->colors_written;
6286 key->ps_epilog.writes_z = info->writes_z;
6287 key->ps_epilog.writes_stencil = info->writes_stencil;
6288 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6289 key->ps_epilog.states = shader->key.part.ps.epilog;
6290 }
6291
6292 /**
6293 * Build the GS prolog function. Rotate the input vertices for triangle strips
6294 * with adjacency.
6295 */
6296 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6297 union si_shader_part_key *key)
6298 {
6299 unsigned num_sgprs, num_vgprs;
6300 struct si_function_info fninfo;
6301 LLVMBuilderRef builder = ctx->ac.builder;
6302 LLVMTypeRef returns[48];
6303 LLVMValueRef func, ret;
6304
6305 si_init_function_info(&fninfo);
6306
6307 if (ctx->screen->info.chip_class >= GFX9) {
6308 if (key->gs_prolog.states.gfx9_prev_is_vs)
6309 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6310 else
6311 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6312 num_vgprs = 5; /* ES inputs are not needed by GS */
6313 } else {
6314 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6315 num_vgprs = 8;
6316 }
6317
6318 for (unsigned i = 0; i < num_sgprs; ++i) {
6319 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6320 returns[i] = ctx->i32;
6321 }
6322
6323 for (unsigned i = 0; i < num_vgprs; ++i) {
6324 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6325 returns[num_sgprs + i] = ctx->f32;
6326 }
6327
6328 /* Create the function. */
6329 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6330 &fninfo, 0);
6331 func = ctx->main_fn;
6332
6333 /* Set the full EXEC mask for the prolog, because we are only fiddling
6334 * with registers here. The main shader part will set the correct EXEC
6335 * mask.
6336 */
6337 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6338 ac_init_exec_full_mask(&ctx->ac);
6339
6340 /* Copy inputs to outputs. This should be no-op, as the registers match,
6341 * but it will prevent the compiler from overwriting them unintentionally.
6342 */
6343 ret = ctx->return_value;
6344 for (unsigned i = 0; i < num_sgprs; i++) {
6345 LLVMValueRef p = LLVMGetParam(func, i);
6346 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6347 }
6348 for (unsigned i = 0; i < num_vgprs; i++) {
6349 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6350 p = ac_to_float(&ctx->ac, p);
6351 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6352 }
6353
6354 if (key->gs_prolog.states.tri_strip_adj_fix) {
6355 /* Remap the input vertices for every other primitive. */
6356 const unsigned gfx6_vtx_params[6] = {
6357 num_sgprs,
6358 num_sgprs + 1,
6359 num_sgprs + 3,
6360 num_sgprs + 4,
6361 num_sgprs + 5,
6362 num_sgprs + 6
6363 };
6364 const unsigned gfx9_vtx_params[3] = {
6365 num_sgprs,
6366 num_sgprs + 1,
6367 num_sgprs + 4,
6368 };
6369 LLVMValueRef vtx_in[6], vtx_out[6];
6370 LLVMValueRef prim_id, rotate;
6371
6372 if (ctx->screen->info.chip_class >= GFX9) {
6373 for (unsigned i = 0; i < 3; i++) {
6374 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6375 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6376 }
6377 } else {
6378 for (unsigned i = 0; i < 6; i++)
6379 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6380 }
6381
6382 prim_id = LLVMGetParam(func, num_sgprs + 2);
6383 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6384
6385 for (unsigned i = 0; i < 6; ++i) {
6386 LLVMValueRef base, rotated;
6387 base = vtx_in[i];
6388 rotated = vtx_in[(i + 4) % 6];
6389 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6390 }
6391
6392 if (ctx->screen->info.chip_class >= GFX9) {
6393 for (unsigned i = 0; i < 3; i++) {
6394 LLVMValueRef hi, out;
6395
6396 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6397 LLVMConstInt(ctx->i32, 16, 0), "");
6398 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6399 out = ac_to_float(&ctx->ac, out);
6400 ret = LLVMBuildInsertValue(builder, ret, out,
6401 gfx9_vtx_params[i], "");
6402 }
6403 } else {
6404 for (unsigned i = 0; i < 6; i++) {
6405 LLVMValueRef out;
6406
6407 out = ac_to_float(&ctx->ac, vtx_out[i]);
6408 ret = LLVMBuildInsertValue(builder, ret, out,
6409 gfx6_vtx_params[i], "");
6410 }
6411 }
6412 }
6413
6414 LLVMBuildRet(builder, ret);
6415 }
6416
6417 /**
6418 * Given a list of shader part functions, build a wrapper function that
6419 * runs them in sequence to form a monolithic shader.
6420 */
6421 static void si_build_wrapper_function(struct si_shader_context *ctx,
6422 LLVMValueRef *parts,
6423 unsigned num_parts,
6424 unsigned main_part,
6425 unsigned next_shader_first_part)
6426 {
6427 LLVMBuilderRef builder = ctx->ac.builder;
6428 /* PS epilog has one arg per color component; gfx9 merged shader
6429 * prologs need to forward 32 user SGPRs.
6430 */
6431 struct si_function_info fninfo;
6432 LLVMValueRef initial[64], out[64];
6433 LLVMTypeRef function_type;
6434 unsigned num_first_params;
6435 unsigned num_out, initial_num_out;
6436 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6437 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6438 unsigned num_sgprs, num_vgprs;
6439 unsigned gprs;
6440 struct lp_build_if_state if_state;
6441
6442 si_init_function_info(&fninfo);
6443
6444 for (unsigned i = 0; i < num_parts; ++i) {
6445 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6446 AC_FUNC_ATTR_ALWAYSINLINE);
6447 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6448 }
6449
6450 /* The parameters of the wrapper function correspond to those of the
6451 * first part in terms of SGPRs and VGPRs, but we use the types of the
6452 * main part to get the right types. This is relevant for the
6453 * dereferenceable attribute on descriptor table pointers.
6454 */
6455 num_sgprs = 0;
6456 num_vgprs = 0;
6457
6458 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6459 num_first_params = LLVMCountParamTypes(function_type);
6460
6461 for (unsigned i = 0; i < num_first_params; ++i) {
6462 LLVMValueRef param = LLVMGetParam(parts[0], i);
6463
6464 if (ac_is_sgpr_param(param)) {
6465 assert(num_vgprs == 0);
6466 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6467 } else {
6468 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6469 }
6470 }
6471
6472 gprs = 0;
6473 while (gprs < num_sgprs + num_vgprs) {
6474 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6475 LLVMTypeRef type = LLVMTypeOf(param);
6476 unsigned size = ac_get_type_size(type) / 4;
6477
6478 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6479
6480 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6481 assert(gprs + size <= num_sgprs + num_vgprs &&
6482 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6483
6484 gprs += size;
6485 }
6486
6487 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6488 si_get_max_workgroup_size(ctx->shader));
6489
6490 if (is_merged_shader(ctx))
6491 ac_init_exec_full_mask(&ctx->ac);
6492
6493 /* Record the arguments of the function as if they were an output of
6494 * a previous part.
6495 */
6496 num_out = 0;
6497 num_out_sgpr = 0;
6498
6499 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6500 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6501 LLVMTypeRef param_type = LLVMTypeOf(param);
6502 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6503 unsigned size = ac_get_type_size(param_type) / 4;
6504
6505 if (size == 1) {
6506 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6507 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6508 param_type = ctx->i32;
6509 }
6510
6511 if (param_type != out_type)
6512 param = LLVMBuildBitCast(builder, param, out_type, "");
6513 out[num_out++] = param;
6514 } else {
6515 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6516
6517 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6518 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6519 param_type = ctx->i64;
6520 }
6521
6522 if (param_type != vector_type)
6523 param = LLVMBuildBitCast(builder, param, vector_type, "");
6524
6525 for (unsigned j = 0; j < size; ++j)
6526 out[num_out++] = LLVMBuildExtractElement(
6527 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6528 }
6529
6530 if (i < fninfo.num_sgpr_params)
6531 num_out_sgpr = num_out;
6532 }
6533
6534 memcpy(initial, out, sizeof(out));
6535 initial_num_out = num_out;
6536 initial_num_out_sgpr = num_out_sgpr;
6537
6538 /* Now chain the parts. */
6539 for (unsigned part = 0; part < num_parts; ++part) {
6540 LLVMValueRef in[48];
6541 LLVMValueRef ret;
6542 LLVMTypeRef ret_type;
6543 unsigned out_idx = 0;
6544 unsigned num_params = LLVMCountParams(parts[part]);
6545
6546 /* Merged shaders are executed conditionally depending
6547 * on the number of enabled threads passed in the input SGPRs. */
6548 if (is_merged_shader(ctx) && part == 0) {
6549 LLVMValueRef ena, count = initial[3];
6550
6551 count = LLVMBuildAnd(builder, count,
6552 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6553 ena = LLVMBuildICmp(builder, LLVMIntULT,
6554 ac_get_thread_id(&ctx->ac), count, "");
6555 lp_build_if(&if_state, &ctx->gallivm, ena);
6556 }
6557
6558 /* Derive arguments for the next part from outputs of the
6559 * previous one.
6560 */
6561 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6562 LLVMValueRef param;
6563 LLVMTypeRef param_type;
6564 bool is_sgpr;
6565 unsigned param_size;
6566 LLVMValueRef arg = NULL;
6567
6568 param = LLVMGetParam(parts[part], param_idx);
6569 param_type = LLVMTypeOf(param);
6570 param_size = ac_get_type_size(param_type) / 4;
6571 is_sgpr = ac_is_sgpr_param(param);
6572
6573 if (is_sgpr) {
6574 ac_add_function_attr(ctx->ac.context, parts[part],
6575 param_idx + 1, AC_FUNC_ATTR_INREG);
6576 } else if (out_idx < num_out_sgpr) {
6577 /* Skip returned SGPRs the current part doesn't
6578 * declare on the input. */
6579 out_idx = num_out_sgpr;
6580 }
6581
6582 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6583
6584 if (param_size == 1)
6585 arg = out[out_idx];
6586 else
6587 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6588
6589 if (LLVMTypeOf(arg) != param_type) {
6590 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6591 if (LLVMGetPointerAddressSpace(param_type) ==
6592 AC_ADDR_SPACE_CONST_32BIT) {
6593 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6594 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6595 } else {
6596 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6597 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6598 }
6599 } else {
6600 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6601 }
6602 }
6603
6604 in[param_idx] = arg;
6605 out_idx += param_size;
6606 }
6607
6608 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6609
6610 if (is_merged_shader(ctx) &&
6611 part + 1 == next_shader_first_part) {
6612 lp_build_endif(&if_state);
6613
6614 /* The second half of the merged shader should use
6615 * the inputs from the toplevel (wrapper) function,
6616 * not the return value from the last call.
6617 *
6618 * That's because the last call was executed condi-
6619 * tionally, so we can't consume it in the main
6620 * block.
6621 */
6622 memcpy(out, initial, sizeof(initial));
6623 num_out = initial_num_out;
6624 num_out_sgpr = initial_num_out_sgpr;
6625 continue;
6626 }
6627
6628 /* Extract the returned GPRs. */
6629 ret_type = LLVMTypeOf(ret);
6630 num_out = 0;
6631 num_out_sgpr = 0;
6632
6633 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6634 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6635
6636 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6637
6638 for (unsigned i = 0; i < ret_size; ++i) {
6639 LLVMValueRef val =
6640 LLVMBuildExtractValue(builder, ret, i, "");
6641
6642 assert(num_out < ARRAY_SIZE(out));
6643 out[num_out++] = val;
6644
6645 if (LLVMTypeOf(val) == ctx->i32) {
6646 assert(num_out_sgpr + 1 == num_out);
6647 num_out_sgpr = num_out;
6648 }
6649 }
6650 }
6651 }
6652
6653 LLVMBuildRetVoid(builder);
6654 }
6655
6656 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6657 struct si_shader_selector *sel)
6658 {
6659 if (!compiler->low_opt_passes)
6660 return false;
6661
6662 /* Assume a slow CPU. */
6663 assert(!sel->screen->info.has_dedicated_vram &&
6664 sel->screen->info.chip_class <= VI);
6665
6666 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6667 * buffer stores. */
6668 return sel->type == PIPE_SHADER_COMPUTE &&
6669 sel->info.num_memory_instructions > 1000;
6670 }
6671
6672 int si_compile_tgsi_shader(struct si_screen *sscreen,
6673 struct ac_llvm_compiler *compiler,
6674 struct si_shader *shader,
6675 struct pipe_debug_callback *debug)
6676 {
6677 struct si_shader_selector *sel = shader->selector;
6678 struct si_shader_context ctx;
6679 int r = -1;
6680
6681 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6682 * conversion fails. */
6683 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6684 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6685 if (sel->tokens)
6686 tgsi_dump(sel->tokens, 0);
6687 else
6688 nir_print_shader(sel->nir, stderr);
6689 si_dump_streamout(&sel->so);
6690 }
6691
6692 si_init_shader_ctx(&ctx, sscreen, compiler);
6693 si_llvm_context_set_tgsi(&ctx, shader);
6694
6695 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6696 sizeof(shader->info.vs_output_param_offset));
6697
6698 shader->info.uses_instanceid = sel->info.uses_instanceid;
6699
6700 if (!si_compile_tgsi_main(&ctx)) {
6701 si_llvm_dispose(&ctx);
6702 return -1;
6703 }
6704
6705 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6706 LLVMValueRef parts[2];
6707 bool need_prolog = sel->vs_needs_prolog;
6708
6709 parts[1] = ctx.main_fn;
6710
6711 if (need_prolog) {
6712 union si_shader_part_key prolog_key;
6713 si_get_vs_prolog_key(&sel->info,
6714 shader->info.num_input_sgprs,
6715 &shader->key.part.vs.prolog,
6716 shader, &prolog_key);
6717 si_build_vs_prolog_function(&ctx, &prolog_key);
6718 parts[0] = ctx.main_fn;
6719 }
6720
6721 si_build_wrapper_function(&ctx, parts + !need_prolog,
6722 1 + need_prolog, need_prolog, 0);
6723 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6724 if (sscreen->info.chip_class >= GFX9) {
6725 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6726 LLVMValueRef parts[4];
6727 bool vs_needs_prolog =
6728 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6729
6730 /* TCS main part */
6731 parts[2] = ctx.main_fn;
6732
6733 /* TCS epilog */
6734 union si_shader_part_key tcs_epilog_key;
6735 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6736 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6737 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6738 parts[3] = ctx.main_fn;
6739
6740 /* VS as LS main part */
6741 struct si_shader shader_ls = {};
6742 shader_ls.selector = ls;
6743 shader_ls.key.as_ls = 1;
6744 shader_ls.key.mono = shader->key.mono;
6745 shader_ls.key.opt = shader->key.opt;
6746 shader_ls.is_monolithic = true;
6747 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6748
6749 if (!si_compile_tgsi_main(&ctx)) {
6750 si_llvm_dispose(&ctx);
6751 return -1;
6752 }
6753 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6754 parts[1] = ctx.main_fn;
6755
6756 /* LS prolog */
6757 if (vs_needs_prolog) {
6758 union si_shader_part_key vs_prolog_key;
6759 si_get_vs_prolog_key(&ls->info,
6760 shader_ls.info.num_input_sgprs,
6761 &shader->key.part.tcs.ls_prolog,
6762 shader, &vs_prolog_key);
6763 vs_prolog_key.vs_prolog.is_monolithic = true;
6764 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6765 parts[0] = ctx.main_fn;
6766 }
6767
6768 /* Reset the shader context. */
6769 ctx.shader = shader;
6770 ctx.type = PIPE_SHADER_TESS_CTRL;
6771
6772 si_build_wrapper_function(&ctx,
6773 parts + !vs_needs_prolog,
6774 4 - !vs_needs_prolog, vs_needs_prolog,
6775 vs_needs_prolog ? 2 : 1);
6776 } else {
6777 LLVMValueRef parts[2];
6778 union si_shader_part_key epilog_key;
6779
6780 parts[0] = ctx.main_fn;
6781
6782 memset(&epilog_key, 0, sizeof(epilog_key));
6783 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6784 si_build_tcs_epilog_function(&ctx, &epilog_key);
6785 parts[1] = ctx.main_fn;
6786
6787 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6788 }
6789 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6790 if (ctx.screen->info.chip_class >= GFX9) {
6791 struct si_shader_selector *es = shader->key.part.gs.es;
6792 LLVMValueRef es_prolog = NULL;
6793 LLVMValueRef es_main = NULL;
6794 LLVMValueRef gs_prolog = NULL;
6795 LLVMValueRef gs_main = ctx.main_fn;
6796
6797 /* GS prolog */
6798 union si_shader_part_key gs_prolog_key;
6799 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6800 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6801 gs_prolog_key.gs_prolog.is_monolithic = true;
6802 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6803 gs_prolog = ctx.main_fn;
6804
6805 /* ES main part */
6806 struct si_shader shader_es = {};
6807 shader_es.selector = es;
6808 shader_es.key.as_es = 1;
6809 shader_es.key.mono = shader->key.mono;
6810 shader_es.key.opt = shader->key.opt;
6811 shader_es.is_monolithic = true;
6812 si_llvm_context_set_tgsi(&ctx, &shader_es);
6813
6814 if (!si_compile_tgsi_main(&ctx)) {
6815 si_llvm_dispose(&ctx);
6816 return -1;
6817 }
6818 shader->info.uses_instanceid |= es->info.uses_instanceid;
6819 es_main = ctx.main_fn;
6820
6821 /* ES prolog */
6822 if (es->vs_needs_prolog) {
6823 union si_shader_part_key vs_prolog_key;
6824 si_get_vs_prolog_key(&es->info,
6825 shader_es.info.num_input_sgprs,
6826 &shader->key.part.gs.vs_prolog,
6827 shader, &vs_prolog_key);
6828 vs_prolog_key.vs_prolog.is_monolithic = true;
6829 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6830 es_prolog = ctx.main_fn;
6831 }
6832
6833 /* Reset the shader context. */
6834 ctx.shader = shader;
6835 ctx.type = PIPE_SHADER_GEOMETRY;
6836
6837 /* Prepare the array of shader parts. */
6838 LLVMValueRef parts[4];
6839 unsigned num_parts = 0, main_part, next_first_part;
6840
6841 if (es_prolog)
6842 parts[num_parts++] = es_prolog;
6843
6844 parts[main_part = num_parts++] = es_main;
6845 parts[next_first_part = num_parts++] = gs_prolog;
6846 parts[num_parts++] = gs_main;
6847
6848 si_build_wrapper_function(&ctx, parts, num_parts,
6849 main_part, next_first_part);
6850 } else {
6851 LLVMValueRef parts[2];
6852 union si_shader_part_key prolog_key;
6853
6854 parts[1] = ctx.main_fn;
6855
6856 memset(&prolog_key, 0, sizeof(prolog_key));
6857 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6858 si_build_gs_prolog_function(&ctx, &prolog_key);
6859 parts[0] = ctx.main_fn;
6860
6861 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6862 }
6863 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6864 LLVMValueRef parts[3];
6865 union si_shader_part_key prolog_key;
6866 union si_shader_part_key epilog_key;
6867 bool need_prolog;
6868
6869 si_get_ps_prolog_key(shader, &prolog_key, false);
6870 need_prolog = si_need_ps_prolog(&prolog_key);
6871
6872 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6873
6874 if (need_prolog) {
6875 si_build_ps_prolog_function(&ctx, &prolog_key);
6876 parts[0] = ctx.main_fn;
6877 }
6878
6879 si_get_ps_epilog_key(shader, &epilog_key);
6880 si_build_ps_epilog_function(&ctx, &epilog_key);
6881 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6882
6883 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6884 need_prolog ? 1 : 0, 0);
6885 }
6886
6887 si_llvm_optimize_module(&ctx);
6888
6889 /* Post-optimization transformations and analysis. */
6890 si_optimize_vs_outputs(&ctx);
6891
6892 if ((debug && debug->debug_message) ||
6893 si_can_dump_shader(sscreen, ctx.type)) {
6894 ctx.shader->config.private_mem_vgprs =
6895 ac_count_scratch_private_memory(ctx.main_fn);
6896 }
6897
6898 /* Make sure the input is a pointer and not integer followed by inttoptr. */
6899 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
6900 LLVMPointerTypeKind);
6901
6902 /* Compile to bytecode. */
6903 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
6904 ctx.ac.module, debug, ctx.type,
6905 si_get_shader_name(shader, ctx.type),
6906 si_should_optimize_less(compiler, shader->selector));
6907 si_llvm_dispose(&ctx);
6908 if (r) {
6909 fprintf(stderr, "LLVM failed to compile shader\n");
6910 return r;
6911 }
6912
6913 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
6914 * LLVM 3.9svn has this bug.
6915 */
6916 if (sel->type == PIPE_SHADER_COMPUTE) {
6917 unsigned wave_size = 64;
6918 unsigned max_vgprs = 256;
6919 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
6920 unsigned max_sgprs_per_wave = 128;
6921 unsigned max_block_threads = si_get_max_workgroup_size(shader);
6922 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
6923 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
6924
6925 max_vgprs = max_vgprs / min_waves_per_simd;
6926 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
6927
6928 if (shader->config.num_sgprs > max_sgprs ||
6929 shader->config.num_vgprs > max_vgprs) {
6930 fprintf(stderr, "LLVM failed to compile a shader correctly: "
6931 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
6932 shader->config.num_sgprs, shader->config.num_vgprs,
6933 max_sgprs, max_vgprs);
6934
6935 /* Just terminate the process, because dependent
6936 * shaders can hang due to bad input data, but use
6937 * the env var to allow shader-db to work.
6938 */
6939 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
6940 abort();
6941 }
6942 }
6943
6944 /* Add the scratch offset to input SGPRs. */
6945 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
6946 shader->info.num_input_sgprs += 1; /* scratch byte offset */
6947
6948 /* Calculate the number of fragment input VGPRs. */
6949 if (ctx.type == PIPE_SHADER_FRAGMENT) {
6950 shader->info.num_input_vgprs = 0;
6951 shader->info.face_vgpr_index = -1;
6952 shader->info.ancillary_vgpr_index = -1;
6953
6954 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6955 shader->info.num_input_vgprs += 2;
6956 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
6957 shader->info.num_input_vgprs += 2;
6958 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
6959 shader->info.num_input_vgprs += 2;
6960 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
6961 shader->info.num_input_vgprs += 3;
6962 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6963 shader->info.num_input_vgprs += 2;
6964 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
6965 shader->info.num_input_vgprs += 2;
6966 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
6967 shader->info.num_input_vgprs += 2;
6968 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
6969 shader->info.num_input_vgprs += 1;
6970 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
6971 shader->info.num_input_vgprs += 1;
6972 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
6973 shader->info.num_input_vgprs += 1;
6974 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
6975 shader->info.num_input_vgprs += 1;
6976 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
6977 shader->info.num_input_vgprs += 1;
6978 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
6979 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
6980 shader->info.num_input_vgprs += 1;
6981 }
6982 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
6983 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
6984 shader->info.num_input_vgprs += 1;
6985 }
6986 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
6987 shader->info.num_input_vgprs += 1;
6988 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
6989 shader->info.num_input_vgprs += 1;
6990 }
6991
6992 si_calculate_max_simd_waves(shader);
6993 si_shader_dump_stats_for_shader_db(shader, debug);
6994 return 0;
6995 }
6996
6997 /**
6998 * Create, compile and return a shader part (prolog or epilog).
6999 *
7000 * \param sscreen screen
7001 * \param list list of shader parts of the same category
7002 * \param type shader type
7003 * \param key shader part key
7004 * \param prolog whether the part being requested is a prolog
7005 * \param tm LLVM target machine
7006 * \param debug debug callback
7007 * \param build the callback responsible for building the main function
7008 * \return non-NULL on success
7009 */
7010 static struct si_shader_part *
7011 si_get_shader_part(struct si_screen *sscreen,
7012 struct si_shader_part **list,
7013 enum pipe_shader_type type,
7014 bool prolog,
7015 union si_shader_part_key *key,
7016 struct ac_llvm_compiler *compiler,
7017 struct pipe_debug_callback *debug,
7018 void (*build)(struct si_shader_context *,
7019 union si_shader_part_key *),
7020 const char *name)
7021 {
7022 struct si_shader_part *result;
7023
7024 mtx_lock(&sscreen->shader_parts_mutex);
7025
7026 /* Find existing. */
7027 for (result = *list; result; result = result->next) {
7028 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7029 mtx_unlock(&sscreen->shader_parts_mutex);
7030 return result;
7031 }
7032 }
7033
7034 /* Compile a new one. */
7035 result = CALLOC_STRUCT(si_shader_part);
7036 result->key = *key;
7037
7038 struct si_shader shader = {};
7039 struct si_shader_context ctx;
7040
7041 si_init_shader_ctx(&ctx, sscreen, compiler);
7042 ctx.shader = &shader;
7043 ctx.type = type;
7044
7045 switch (type) {
7046 case PIPE_SHADER_VERTEX:
7047 shader.key.as_ls = key->vs_prolog.as_ls;
7048 shader.key.as_es = key->vs_prolog.as_es;
7049 break;
7050 case PIPE_SHADER_TESS_CTRL:
7051 assert(!prolog);
7052 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7053 break;
7054 case PIPE_SHADER_GEOMETRY:
7055 assert(prolog);
7056 break;
7057 case PIPE_SHADER_FRAGMENT:
7058 if (prolog)
7059 shader.key.part.ps.prolog = key->ps_prolog.states;
7060 else
7061 shader.key.part.ps.epilog = key->ps_epilog.states;
7062 break;
7063 default:
7064 unreachable("bad shader part");
7065 }
7066
7067 build(&ctx, key);
7068
7069 /* Compile. */
7070 si_llvm_optimize_module(&ctx);
7071
7072 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7073 ctx.ac.module, debug, ctx.type, name, false)) {
7074 FREE(result);
7075 result = NULL;
7076 goto out;
7077 }
7078
7079 result->next = *list;
7080 *list = result;
7081
7082 out:
7083 si_llvm_dispose(&ctx);
7084 mtx_unlock(&sscreen->shader_parts_mutex);
7085 return result;
7086 }
7087
7088 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7089 {
7090 LLVMValueRef ptr[2], list;
7091 bool merged_shader = is_merged_shader(ctx);
7092
7093 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7094 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7095 ac_array_in_const32_addr_space(ctx->v4i32), "");
7096 return list;
7097 }
7098
7099 /**
7100 * Build the vertex shader prolog function.
7101 *
7102 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7103 * All inputs are returned unmodified. The vertex load indices are
7104 * stored after them, which will be used by the API VS for fetching inputs.
7105 *
7106 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7107 * input_v0,
7108 * input_v1,
7109 * input_v2,
7110 * input_v3,
7111 * (VertexID + BaseVertex),
7112 * (InstanceID + StartInstance),
7113 * (InstanceID / 2 + StartInstance)
7114 */
7115 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7116 union si_shader_part_key *key)
7117 {
7118 struct si_function_info fninfo;
7119 LLVMTypeRef *returns;
7120 LLVMValueRef ret, func;
7121 int num_returns, i;
7122 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7123 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7124 LLVMValueRef input_vgprs[9];
7125 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7126 num_input_vgprs;
7127 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7128
7129 si_init_function_info(&fninfo);
7130
7131 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7132 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7133 sizeof(LLVMTypeRef));
7134 num_returns = 0;
7135
7136 /* Declare input and output SGPRs. */
7137 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7138 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7139 returns[num_returns++] = ctx->i32;
7140 }
7141
7142 /* Preloaded VGPRs (outputs must be floats) */
7143 for (i = 0; i < num_input_vgprs; i++) {
7144 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7145 returns[num_returns++] = ctx->f32;
7146 }
7147
7148 /* Vertex load indices. */
7149 for (i = 0; i <= key->vs_prolog.last_input; i++)
7150 returns[num_returns++] = ctx->f32;
7151
7152 /* Create the function. */
7153 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7154 func = ctx->main_fn;
7155
7156 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7157 if (!key->vs_prolog.is_monolithic)
7158 si_init_exec_from_input(ctx, 3, 0);
7159
7160 if (key->vs_prolog.as_ls &&
7161 ctx->screen->has_ls_vgpr_init_bug) {
7162 /* If there are no HS threads, SPI loads the LS VGPRs
7163 * starting at VGPR 0. Shift them back to where they
7164 * belong.
7165 */
7166 LLVMValueRef has_hs_threads =
7167 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7168 si_unpack_param(ctx, 3, 8, 8),
7169 ctx->i32_0, "");
7170
7171 for (i = 4; i > 0; --i) {
7172 input_vgprs[i + 1] =
7173 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7174 input_vgprs[i + 1],
7175 input_vgprs[i - 1], "");
7176 }
7177 }
7178 }
7179
7180 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7181 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7182
7183 /* Copy inputs to outputs. This should be no-op, as the registers match,
7184 * but it will prevent the compiler from overwriting them unintentionally.
7185 */
7186 ret = ctx->return_value;
7187 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7188 LLVMValueRef p = LLVMGetParam(func, i);
7189 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7190 }
7191 for (i = 0; i < num_input_vgprs; i++) {
7192 LLVMValueRef p = input_vgprs[i];
7193 p = ac_to_float(&ctx->ac, p);
7194 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7195 key->vs_prolog.num_input_sgprs + i, "");
7196 }
7197
7198 /* Compute vertex load indices from instance divisors. */
7199 LLVMValueRef instance_divisor_constbuf = NULL;
7200
7201 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7202 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7203 LLVMValueRef buf_index =
7204 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7205 instance_divisor_constbuf =
7206 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7207 }
7208
7209 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7210 bool divisor_is_one =
7211 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7212 bool divisor_is_fetched =
7213 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7214 LLVMValueRef index = NULL;
7215
7216 if (divisor_is_one) {
7217 index = ctx->abi.instance_id;
7218 } else if (divisor_is_fetched) {
7219 LLVMValueRef udiv_factors[4];
7220
7221 for (unsigned j = 0; j < 4; j++) {
7222 udiv_factors[j] =
7223 buffer_load_const(ctx, instance_divisor_constbuf,
7224 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7225 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7226 }
7227 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7228 * Such InstanceID might not be achievable in a reasonable time though.
7229 */
7230 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7231 udiv_factors[0], udiv_factors[1],
7232 udiv_factors[2], udiv_factors[3]);
7233 }
7234
7235 if (divisor_is_one || divisor_is_fetched) {
7236 /* Add StartInstance. */
7237 index = LLVMBuildAdd(ctx->ac.builder, index,
7238 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7239 SI_SGPR_START_INSTANCE), "");
7240 } else {
7241 /* VertexID + BaseVertex */
7242 index = LLVMBuildAdd(ctx->ac.builder,
7243 ctx->abi.vertex_id,
7244 LLVMGetParam(func, user_sgpr_base +
7245 SI_SGPR_BASE_VERTEX), "");
7246 }
7247
7248 index = ac_to_float(&ctx->ac, index);
7249 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7250 fninfo.num_params + i, "");
7251 }
7252
7253 si_llvm_build_ret(ctx, ret);
7254 }
7255
7256 static bool si_get_vs_prolog(struct si_screen *sscreen,
7257 struct ac_llvm_compiler *compiler,
7258 struct si_shader *shader,
7259 struct pipe_debug_callback *debug,
7260 struct si_shader *main_part,
7261 const struct si_vs_prolog_bits *key)
7262 {
7263 struct si_shader_selector *vs = main_part->selector;
7264
7265 if (!si_vs_needs_prolog(vs, key))
7266 return true;
7267
7268 /* Get the prolog. */
7269 union si_shader_part_key prolog_key;
7270 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7271 key, shader, &prolog_key);
7272
7273 shader->prolog =
7274 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7275 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7276 debug, si_build_vs_prolog_function,
7277 "Vertex Shader Prolog");
7278 return shader->prolog != NULL;
7279 }
7280
7281 /**
7282 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7283 */
7284 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7285 struct ac_llvm_compiler *compiler,
7286 struct si_shader *shader,
7287 struct pipe_debug_callback *debug)
7288 {
7289 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7290 &shader->key.part.vs.prolog);
7291 }
7292
7293 /**
7294 * Compile the TCS epilog function. This writes tesselation factors to memory
7295 * based on the output primitive type of the tesselator (determined by TES).
7296 */
7297 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7298 union si_shader_part_key *key)
7299 {
7300 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7301 struct si_function_info fninfo;
7302 LLVMValueRef func;
7303
7304 si_init_function_info(&fninfo);
7305
7306 if (ctx->screen->info.chip_class >= GFX9) {
7307 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7308 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7309 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7310 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7311 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7312 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7313 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7314 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7315 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7316 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7317 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7318 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7319 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7320 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7321 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7322 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7323 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7324 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7325 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7326 } else {
7327 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7328 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7329 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7330 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7331 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7332 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7333 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7334 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7335 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7336 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7337 }
7338
7339 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7340 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7341 unsigned tess_factors_idx =
7342 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7343 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7344 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7345
7346 for (unsigned i = 0; i < 6; i++)
7347 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7348
7349 /* Create the function. */
7350 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7351 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7352 ac_declare_lds_as_pointer(&ctx->ac);
7353 func = ctx->main_fn;
7354
7355 LLVMValueRef invoc0_tess_factors[6];
7356 for (unsigned i = 0; i < 6; i++)
7357 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7358
7359 si_write_tess_factors(bld_base,
7360 LLVMGetParam(func, tess_factors_idx),
7361 LLVMGetParam(func, tess_factors_idx + 1),
7362 LLVMGetParam(func, tess_factors_idx + 2),
7363 invoc0_tess_factors, invoc0_tess_factors + 4);
7364
7365 LLVMBuildRetVoid(ctx->ac.builder);
7366 }
7367
7368 /**
7369 * Select and compile (or reuse) TCS parts (epilog).
7370 */
7371 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7372 struct ac_llvm_compiler *compiler,
7373 struct si_shader *shader,
7374 struct pipe_debug_callback *debug)
7375 {
7376 if (sscreen->info.chip_class >= GFX9) {
7377 struct si_shader *ls_main_part =
7378 shader->key.part.tcs.ls->main_shader_part_ls;
7379
7380 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7381 &shader->key.part.tcs.ls_prolog))
7382 return false;
7383
7384 shader->previous_stage = ls_main_part;
7385 }
7386
7387 /* Get the epilog. */
7388 union si_shader_part_key epilog_key;
7389 memset(&epilog_key, 0, sizeof(epilog_key));
7390 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7391
7392 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7393 PIPE_SHADER_TESS_CTRL, false,
7394 &epilog_key, compiler, debug,
7395 si_build_tcs_epilog_function,
7396 "Tessellation Control Shader Epilog");
7397 return shader->epilog != NULL;
7398 }
7399
7400 /**
7401 * Select and compile (or reuse) GS parts (prolog).
7402 */
7403 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7404 struct ac_llvm_compiler *compiler,
7405 struct si_shader *shader,
7406 struct pipe_debug_callback *debug)
7407 {
7408 if (sscreen->info.chip_class >= GFX9) {
7409 struct si_shader *es_main_part =
7410 shader->key.part.gs.es->main_shader_part_es;
7411
7412 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7413 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7414 &shader->key.part.gs.vs_prolog))
7415 return false;
7416
7417 shader->previous_stage = es_main_part;
7418 }
7419
7420 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7421 return true;
7422
7423 union si_shader_part_key prolog_key;
7424 memset(&prolog_key, 0, sizeof(prolog_key));
7425 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7426
7427 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7428 PIPE_SHADER_GEOMETRY, true,
7429 &prolog_key, compiler, debug,
7430 si_build_gs_prolog_function,
7431 "Geometry Shader Prolog");
7432 return shader->prolog2 != NULL;
7433 }
7434
7435 /**
7436 * Build the pixel shader prolog function. This handles:
7437 * - two-side color selection and interpolation
7438 * - overriding interpolation parameters for the API PS
7439 * - polygon stippling
7440 *
7441 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7442 * overriden by other states. (e.g. per-sample interpolation)
7443 * Interpolated colors are stored after the preloaded VGPRs.
7444 */
7445 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7446 union si_shader_part_key *key)
7447 {
7448 struct si_function_info fninfo;
7449 LLVMValueRef ret, func;
7450 int num_returns, i, num_color_channels;
7451
7452 assert(si_need_ps_prolog(key));
7453
7454 si_init_function_info(&fninfo);
7455
7456 /* Declare inputs. */
7457 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7458 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7459
7460 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7461 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7462
7463 /* Declare outputs (same as inputs + add colors if needed) */
7464 num_returns = fninfo.num_params;
7465 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7466 for (i = 0; i < num_color_channels; i++)
7467 fninfo.types[num_returns++] = ctx->f32;
7468
7469 /* Create the function. */
7470 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7471 &fninfo, 0);
7472 func = ctx->main_fn;
7473
7474 /* Copy inputs to outputs. This should be no-op, as the registers match,
7475 * but it will prevent the compiler from overwriting them unintentionally.
7476 */
7477 ret = ctx->return_value;
7478 for (i = 0; i < fninfo.num_params; i++) {
7479 LLVMValueRef p = LLVMGetParam(func, i);
7480 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7481 }
7482
7483 /* Polygon stippling. */
7484 if (key->ps_prolog.states.poly_stipple) {
7485 /* POS_FIXED_PT is always last. */
7486 unsigned pos = key->ps_prolog.num_input_sgprs +
7487 key->ps_prolog.num_input_vgprs - 1;
7488 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7489
7490 si_llvm_emit_polygon_stipple(ctx, list, pos);
7491 }
7492
7493 if (key->ps_prolog.states.bc_optimize_for_persp ||
7494 key->ps_prolog.states.bc_optimize_for_linear) {
7495 unsigned i, base = key->ps_prolog.num_input_sgprs;
7496 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7497
7498 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7499 * The hw doesn't compute CENTROID if the whole wave only
7500 * contains fully-covered quads.
7501 *
7502 * PRIM_MASK is after user SGPRs.
7503 */
7504 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7505 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7506 LLVMConstInt(ctx->i32, 31, 0), "");
7507 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7508 ctx->i1, "");
7509
7510 if (key->ps_prolog.states.bc_optimize_for_persp) {
7511 /* Read PERSP_CENTER. */
7512 for (i = 0; i < 2; i++)
7513 center[i] = LLVMGetParam(func, base + 2 + i);
7514 /* Read PERSP_CENTROID. */
7515 for (i = 0; i < 2; i++)
7516 centroid[i] = LLVMGetParam(func, base + 4 + i);
7517 /* Select PERSP_CENTROID. */
7518 for (i = 0; i < 2; i++) {
7519 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7520 center[i], centroid[i], "");
7521 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7522 tmp, base + 4 + i, "");
7523 }
7524 }
7525 if (key->ps_prolog.states.bc_optimize_for_linear) {
7526 /* Read LINEAR_CENTER. */
7527 for (i = 0; i < 2; i++)
7528 center[i] = LLVMGetParam(func, base + 8 + i);
7529 /* Read LINEAR_CENTROID. */
7530 for (i = 0; i < 2; i++)
7531 centroid[i] = LLVMGetParam(func, base + 10 + i);
7532 /* Select LINEAR_CENTROID. */
7533 for (i = 0; i < 2; i++) {
7534 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7535 center[i], centroid[i], "");
7536 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7537 tmp, base + 10 + i, "");
7538 }
7539 }
7540 }
7541
7542 /* Force per-sample interpolation. */
7543 if (key->ps_prolog.states.force_persp_sample_interp) {
7544 unsigned i, base = key->ps_prolog.num_input_sgprs;
7545 LLVMValueRef persp_sample[2];
7546
7547 /* Read PERSP_SAMPLE. */
7548 for (i = 0; i < 2; i++)
7549 persp_sample[i] = LLVMGetParam(func, base + i);
7550 /* Overwrite PERSP_CENTER. */
7551 for (i = 0; i < 2; i++)
7552 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7553 persp_sample[i], base + 2 + i, "");
7554 /* Overwrite PERSP_CENTROID. */
7555 for (i = 0; i < 2; i++)
7556 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7557 persp_sample[i], base + 4 + i, "");
7558 }
7559 if (key->ps_prolog.states.force_linear_sample_interp) {
7560 unsigned i, base = key->ps_prolog.num_input_sgprs;
7561 LLVMValueRef linear_sample[2];
7562
7563 /* Read LINEAR_SAMPLE. */
7564 for (i = 0; i < 2; i++)
7565 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7566 /* Overwrite LINEAR_CENTER. */
7567 for (i = 0; i < 2; i++)
7568 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7569 linear_sample[i], base + 8 + i, "");
7570 /* Overwrite LINEAR_CENTROID. */
7571 for (i = 0; i < 2; i++)
7572 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7573 linear_sample[i], base + 10 + i, "");
7574 }
7575
7576 /* Force center interpolation. */
7577 if (key->ps_prolog.states.force_persp_center_interp) {
7578 unsigned i, base = key->ps_prolog.num_input_sgprs;
7579 LLVMValueRef persp_center[2];
7580
7581 /* Read PERSP_CENTER. */
7582 for (i = 0; i < 2; i++)
7583 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7584 /* Overwrite PERSP_SAMPLE. */
7585 for (i = 0; i < 2; i++)
7586 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7587 persp_center[i], base + i, "");
7588 /* Overwrite PERSP_CENTROID. */
7589 for (i = 0; i < 2; i++)
7590 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7591 persp_center[i], base + 4 + i, "");
7592 }
7593 if (key->ps_prolog.states.force_linear_center_interp) {
7594 unsigned i, base = key->ps_prolog.num_input_sgprs;
7595 LLVMValueRef linear_center[2];
7596
7597 /* Read LINEAR_CENTER. */
7598 for (i = 0; i < 2; i++)
7599 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7600 /* Overwrite LINEAR_SAMPLE. */
7601 for (i = 0; i < 2; i++)
7602 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7603 linear_center[i], base + 6 + i, "");
7604 /* Overwrite LINEAR_CENTROID. */
7605 for (i = 0; i < 2; i++)
7606 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7607 linear_center[i], base + 10 + i, "");
7608 }
7609
7610 /* Interpolate colors. */
7611 unsigned color_out_idx = 0;
7612 for (i = 0; i < 2; i++) {
7613 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7614 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7615 key->ps_prolog.face_vgpr_index;
7616 LLVMValueRef interp[2], color[4];
7617 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7618
7619 if (!writemask)
7620 continue;
7621
7622 /* If the interpolation qualifier is not CONSTANT (-1). */
7623 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7624 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7625 key->ps_prolog.color_interp_vgpr_index[i];
7626
7627 /* Get the (i,j) updated by bc_optimize handling. */
7628 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7629 interp_vgpr, "");
7630 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7631 interp_vgpr + 1, "");
7632 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7633 }
7634
7635 /* Use the absolute location of the input. */
7636 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7637
7638 if (key->ps_prolog.states.color_two_side) {
7639 face = LLVMGetParam(func, face_vgpr);
7640 face = ac_to_integer(&ctx->ac, face);
7641 }
7642
7643 interp_fs_input(ctx,
7644 key->ps_prolog.color_attr_index[i],
7645 TGSI_SEMANTIC_COLOR, i,
7646 key->ps_prolog.num_interp_inputs,
7647 key->ps_prolog.colors_read, interp_ij,
7648 prim_mask, face, color);
7649
7650 while (writemask) {
7651 unsigned chan = u_bit_scan(&writemask);
7652 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7653 fninfo.num_params + color_out_idx++, "");
7654 }
7655 }
7656
7657 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7658 * says:
7659 *
7660 * "When per-sample shading is active due to the use of a fragment
7661 * input qualified by sample or due to the use of the gl_SampleID
7662 * or gl_SamplePosition variables, only the bit for the current
7663 * sample is set in gl_SampleMaskIn. When state specifies multiple
7664 * fragment shader invocations for a given fragment, the sample
7665 * mask for any single fragment shader invocation may specify a
7666 * subset of the covered samples for the fragment. In this case,
7667 * the bit corresponding to each covered sample will be set in
7668 * exactly one fragment shader invocation."
7669 *
7670 * The samplemask loaded by hardware is always the coverage of the
7671 * entire pixel/fragment, so mask bits out based on the sample ID.
7672 */
7673 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7674 /* The bit pattern matches that used by fixed function fragment
7675 * processing. */
7676 static const uint16_t ps_iter_masks[] = {
7677 0xffff, /* not used */
7678 0x5555,
7679 0x1111,
7680 0x0101,
7681 0x0001,
7682 };
7683 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7684
7685 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7686 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7687 key->ps_prolog.ancillary_vgpr_index;
7688 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7689 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7690
7691 samplemask = ac_to_integer(&ctx->ac, samplemask);
7692 samplemask = LLVMBuildAnd(
7693 ctx->ac.builder,
7694 samplemask,
7695 LLVMBuildShl(ctx->ac.builder,
7696 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7697 sampleid, ""),
7698 "");
7699 samplemask = ac_to_float(&ctx->ac, samplemask);
7700
7701 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7702 ancillary_vgpr + 1, "");
7703 }
7704
7705 /* Tell LLVM to insert WQM instruction sequence when needed. */
7706 if (key->ps_prolog.wqm) {
7707 LLVMAddTargetDependentFunctionAttr(func,
7708 "amdgpu-ps-wqm-outputs", "");
7709 }
7710
7711 si_llvm_build_ret(ctx, ret);
7712 }
7713
7714 /**
7715 * Build the pixel shader epilog function. This handles everything that must be
7716 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7717 */
7718 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7719 union si_shader_part_key *key)
7720 {
7721 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7722 struct si_function_info fninfo;
7723 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7724 int i;
7725 struct si_ps_exports exp = {};
7726
7727 si_init_function_info(&fninfo);
7728
7729 /* Declare input SGPRs. */
7730 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7731 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7732 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7733 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7734 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7735
7736 /* Declare input VGPRs. */
7737 unsigned required_num_params =
7738 fninfo.num_sgpr_params +
7739 util_bitcount(key->ps_epilog.colors_written) * 4 +
7740 key->ps_epilog.writes_z +
7741 key->ps_epilog.writes_stencil +
7742 key->ps_epilog.writes_samplemask;
7743
7744 required_num_params = MAX2(required_num_params,
7745 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7746
7747 while (fninfo.num_params < required_num_params)
7748 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7749
7750 /* Create the function. */
7751 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7752 /* Disable elimination of unused inputs. */
7753 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
7754 "InitialPSInputAddr", 0xffffff);
7755
7756 /* Process colors. */
7757 unsigned vgpr = fninfo.num_sgpr_params;
7758 unsigned colors_written = key->ps_epilog.colors_written;
7759 int last_color_export = -1;
7760
7761 /* Find the last color export. */
7762 if (!key->ps_epilog.writes_z &&
7763 !key->ps_epilog.writes_stencil &&
7764 !key->ps_epilog.writes_samplemask) {
7765 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7766
7767 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7768 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7769 /* Just set this if any of the colorbuffers are enabled. */
7770 if (spi_format &
7771 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7772 last_color_export = 0;
7773 } else {
7774 for (i = 0; i < 8; i++)
7775 if (colors_written & (1 << i) &&
7776 (spi_format >> (i * 4)) & 0xf)
7777 last_color_export = i;
7778 }
7779 }
7780
7781 while (colors_written) {
7782 LLVMValueRef color[4];
7783 int mrt = u_bit_scan(&colors_written);
7784
7785 for (i = 0; i < 4; i++)
7786 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7787
7788 si_export_mrt_color(bld_base, color, mrt,
7789 fninfo.num_params - 1,
7790 mrt == last_color_export, &exp);
7791 }
7792
7793 /* Process depth, stencil, samplemask. */
7794 if (key->ps_epilog.writes_z)
7795 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7796 if (key->ps_epilog.writes_stencil)
7797 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7798 if (key->ps_epilog.writes_samplemask)
7799 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7800
7801 if (depth || stencil || samplemask)
7802 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7803 else if (last_color_export == -1)
7804 ac_build_export_null(&ctx->ac);
7805
7806 if (exp.num)
7807 si_emit_ps_exports(ctx, &exp);
7808
7809 /* Compile. */
7810 LLVMBuildRetVoid(ctx->ac.builder);
7811 }
7812
7813 /**
7814 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7815 */
7816 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7817 struct ac_llvm_compiler *compiler,
7818 struct si_shader *shader,
7819 struct pipe_debug_callback *debug)
7820 {
7821 union si_shader_part_key prolog_key;
7822 union si_shader_part_key epilog_key;
7823
7824 /* Get the prolog. */
7825 si_get_ps_prolog_key(shader, &prolog_key, true);
7826
7827 /* The prolog is a no-op if these aren't set. */
7828 if (si_need_ps_prolog(&prolog_key)) {
7829 shader->prolog =
7830 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7831 PIPE_SHADER_FRAGMENT, true,
7832 &prolog_key, compiler, debug,
7833 si_build_ps_prolog_function,
7834 "Fragment Shader Prolog");
7835 if (!shader->prolog)
7836 return false;
7837 }
7838
7839 /* Get the epilog. */
7840 si_get_ps_epilog_key(shader, &epilog_key);
7841
7842 shader->epilog =
7843 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7844 PIPE_SHADER_FRAGMENT, false,
7845 &epilog_key, compiler, debug,
7846 si_build_ps_epilog_function,
7847 "Fragment Shader Epilog");
7848 if (!shader->epilog)
7849 return false;
7850
7851 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7852 if (shader->key.part.ps.prolog.poly_stipple) {
7853 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7854 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7855 }
7856
7857 /* Set up the enable bits for per-sample shading if needed. */
7858 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7859 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7860 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7861 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7862 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7863 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7864 }
7865 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7866 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7867 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7868 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7869 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7870 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7871 }
7872 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7873 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7874 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7875 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7876 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7877 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7878 }
7879 if (shader->key.part.ps.prolog.force_linear_center_interp &&
7880 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7881 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7882 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7883 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7884 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7885 }
7886
7887 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7888 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7889 !(shader->config.spi_ps_input_ena & 0xf)) {
7890 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7891 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7892 }
7893
7894 /* At least one pair of interpolation weights must be enabled. */
7895 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7896 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7897 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7898 }
7899
7900 /* Samplemask fixup requires the sample ID. */
7901 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
7902 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
7903 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
7904 }
7905
7906 /* The sample mask input is always enabled, because the API shader always
7907 * passes it through to the epilog. Disable it here if it's unused.
7908 */
7909 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
7910 !shader->selector->info.reads_samplemask)
7911 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
7912
7913 return true;
7914 }
7915
7916 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
7917 unsigned *lds_size)
7918 {
7919 /* If tessellation is all offchip and on-chip GS isn't used, this
7920 * workaround is not needed.
7921 */
7922 return;
7923
7924 /* SPI barrier management bug:
7925 * Make sure we have at least 4k of LDS in use to avoid the bug.
7926 * It applies to workgroup sizes of more than one wavefront.
7927 */
7928 if (sscreen->info.family == CHIP_BONAIRE ||
7929 sscreen->info.family == CHIP_KABINI ||
7930 sscreen->info.family == CHIP_MULLINS)
7931 *lds_size = MAX2(*lds_size, 8);
7932 }
7933
7934 static void si_fix_resource_usage(struct si_screen *sscreen,
7935 struct si_shader *shader)
7936 {
7937 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
7938
7939 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
7940
7941 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
7942 si_get_max_workgroup_size(shader) > 64) {
7943 si_multiwave_lds_size_workaround(sscreen,
7944 &shader->config.lds_size);
7945 }
7946 }
7947
7948 int si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
7949 struct si_shader *shader,
7950 struct pipe_debug_callback *debug)
7951 {
7952 struct si_shader_selector *sel = shader->selector;
7953 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
7954 int r;
7955
7956 /* LS, ES, VS are compiled on demand if the main part hasn't been
7957 * compiled for that stage.
7958 *
7959 * Vertex shaders are compiled on demand when a vertex fetch
7960 * workaround must be applied.
7961 */
7962 if (shader->is_monolithic) {
7963 /* Monolithic shader (compiled as a whole, has many variants,
7964 * may take a long time to compile).
7965 */
7966 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
7967 if (r)
7968 return r;
7969 } else {
7970 /* The shader consists of several parts:
7971 *
7972 * - the middle part is the user shader, it has 1 variant only
7973 * and it was compiled during the creation of the shader
7974 * selector
7975 * - the prolog part is inserted at the beginning
7976 * - the epilog part is inserted at the end
7977 *
7978 * The prolog and epilog have many (but simple) variants.
7979 *
7980 * Starting with gfx9, geometry and tessellation control
7981 * shaders also contain the prolog and user shader parts of
7982 * the previous shader stage.
7983 */
7984
7985 if (!mainp)
7986 return -1;
7987
7988 /* Copy the compiled TGSI shader data over. */
7989 shader->is_binary_shared = true;
7990 shader->binary = mainp->binary;
7991 shader->config = mainp->config;
7992 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
7993 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
7994 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
7995 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
7996 memcpy(shader->info.vs_output_param_offset,
7997 mainp->info.vs_output_param_offset,
7998 sizeof(mainp->info.vs_output_param_offset));
7999 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8000 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8001 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8002
8003 /* Select prologs and/or epilogs. */
8004 switch (sel->type) {
8005 case PIPE_SHADER_VERTEX:
8006 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8007 return -1;
8008 break;
8009 case PIPE_SHADER_TESS_CTRL:
8010 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8011 return -1;
8012 break;
8013 case PIPE_SHADER_TESS_EVAL:
8014 break;
8015 case PIPE_SHADER_GEOMETRY:
8016 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8017 return -1;
8018 break;
8019 case PIPE_SHADER_FRAGMENT:
8020 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8021 return -1;
8022
8023 /* Make sure we have at least as many VGPRs as there
8024 * are allocated inputs.
8025 */
8026 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8027 shader->info.num_input_vgprs);
8028 break;
8029 }
8030
8031 /* Update SGPR and VGPR counts. */
8032 if (shader->prolog) {
8033 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8034 shader->prolog->config.num_sgprs);
8035 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8036 shader->prolog->config.num_vgprs);
8037 }
8038 if (shader->previous_stage) {
8039 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8040 shader->previous_stage->config.num_sgprs);
8041 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8042 shader->previous_stage->config.num_vgprs);
8043 shader->config.spilled_sgprs =
8044 MAX2(shader->config.spilled_sgprs,
8045 shader->previous_stage->config.spilled_sgprs);
8046 shader->config.spilled_vgprs =
8047 MAX2(shader->config.spilled_vgprs,
8048 shader->previous_stage->config.spilled_vgprs);
8049 shader->config.private_mem_vgprs =
8050 MAX2(shader->config.private_mem_vgprs,
8051 shader->previous_stage->config.private_mem_vgprs);
8052 shader->config.scratch_bytes_per_wave =
8053 MAX2(shader->config.scratch_bytes_per_wave,
8054 shader->previous_stage->config.scratch_bytes_per_wave);
8055 shader->info.uses_instanceid |=
8056 shader->previous_stage->info.uses_instanceid;
8057 }
8058 if (shader->prolog2) {
8059 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8060 shader->prolog2->config.num_sgprs);
8061 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8062 shader->prolog2->config.num_vgprs);
8063 }
8064 if (shader->epilog) {
8065 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8066 shader->epilog->config.num_sgprs);
8067 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8068 shader->epilog->config.num_vgprs);
8069 }
8070 si_calculate_max_simd_waves(shader);
8071 }
8072
8073 si_fix_resource_usage(sscreen, shader);
8074 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8075 stderr, true);
8076
8077 /* Upload. */
8078 r = si_shader_binary_upload(sscreen, shader);
8079 if (r) {
8080 fprintf(stderr, "LLVM failed to upload shader\n");
8081 return r;
8082 }
8083
8084 return 0;
8085 }
8086
8087 void si_shader_destroy(struct si_shader *shader)
8088 {
8089 if (shader->scratch_bo)
8090 si_resource_reference(&shader->scratch_bo, NULL);
8091
8092 si_resource_reference(&shader->bo, NULL);
8093
8094 if (!shader->is_binary_shared)
8095 ac_shader_binary_clean(&shader->binary);
8096
8097 free(shader->shader_log);
8098 }