ea749becdde2aaddb6739f1cabcffcf3daaf9ec8
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_strings.h"
29 #include "tgsi/tgsi_util.h"
30 #include "tgsi/tgsi_dump.h"
31 #include "tgsi/tgsi_from_mesa.h"
32
33 #include "ac_binary.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36 #include "ac_rtld.h"
37 #include "ac_llvm_util.h"
38 #include "si_shader_internal.h"
39 #include "si_pipe.h"
40 #include "sid.h"
41
42 #include "compiler/nir/nir.h"
43
44 static const char scratch_rsrc_dword0_symbol[] =
45 "SCRATCH_RSRC_DWORD0";
46
47 static const char scratch_rsrc_dword1_symbol[] =
48 "SCRATCH_RSRC_DWORD1";
49
50 static void si_init_shader_ctx(struct si_shader_context *ctx,
51 struct si_screen *sscreen,
52 struct ac_llvm_compiler *compiler,
53 unsigned wave_size);
54
55 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
56 struct lp_build_tgsi_context *bld_base,
57 struct lp_build_emit_data *emit_data);
58
59 static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
60
61 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
62 union si_shader_part_key *key);
63 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
64 union si_shader_part_key *key);
65 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
66 union si_shader_part_key *key);
67 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
68 union si_shader_part_key *key);
69 static void si_fix_resource_usage(struct si_screen *sscreen,
70 struct si_shader *shader);
71
72 /* Ideally pass the sample mask input to the PS epilog as v14, which
73 * is its usual location, so that the shader doesn't have to add v_mov.
74 */
75 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
76
77 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
78 LLVMTypeRef type)
79 {
80 if (type == ctx->ac.i64 || type == ctx->ac.f64)
81 return true;
82
83 return false;
84 }
85
86 /** Whether the shader runs as a combination of multiple API shaders */
87 static bool is_multi_part_shader(struct si_shader_context *ctx)
88 {
89 if (ctx->screen->info.chip_class <= GFX8)
90 return false;
91
92 return ctx->shader->key.as_ls ||
93 ctx->shader->key.as_es ||
94 ctx->type == PIPE_SHADER_TESS_CTRL ||
95 ctx->type == PIPE_SHADER_GEOMETRY;
96 }
97
98 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
99 static bool is_merged_shader(struct si_shader_context *ctx)
100 {
101 return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
102 }
103
104 void si_init_function_info(struct si_function_info *fninfo)
105 {
106 fninfo->num_params = 0;
107 fninfo->num_sgpr_params = 0;
108 }
109
110 unsigned add_arg_assign(struct si_function_info *fninfo,
111 enum si_arg_regfile regfile, LLVMTypeRef type,
112 LLVMValueRef *assign)
113 {
114 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
115
116 unsigned idx = fninfo->num_params++;
117 assert(idx < ARRAY_SIZE(fninfo->types));
118
119 if (regfile == ARG_SGPR)
120 fninfo->num_sgpr_params = fninfo->num_params;
121
122 fninfo->types[idx] = type;
123 fninfo->assign[idx] = assign;
124 return idx;
125 }
126
127 static unsigned add_arg(struct si_function_info *fninfo,
128 enum si_arg_regfile regfile, LLVMTypeRef type)
129 {
130 return add_arg_assign(fninfo, regfile, type, NULL);
131 }
132
133 static void add_arg_assign_checked(struct si_function_info *fninfo,
134 enum si_arg_regfile regfile, LLVMTypeRef type,
135 LLVMValueRef *assign, unsigned idx)
136 {
137 ASSERTED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
138 assert(actual == idx);
139 }
140
141 static void add_arg_checked(struct si_function_info *fninfo,
142 enum si_arg_regfile regfile, LLVMTypeRef type,
143 unsigned idx)
144 {
145 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
146 }
147
148 /**
149 * Returns a unique index for a per-patch semantic name and index. The index
150 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
151 * can be calculated.
152 */
153 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
154 {
155 switch (semantic_name) {
156 case TGSI_SEMANTIC_TESSOUTER:
157 return 0;
158 case TGSI_SEMANTIC_TESSINNER:
159 return 1;
160 case TGSI_SEMANTIC_PATCH:
161 assert(index < 30);
162 return 2 + index;
163
164 default:
165 assert(!"invalid semantic name");
166 return 0;
167 }
168 }
169
170 /**
171 * Returns a unique index for a semantic name and index. The index must be
172 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
173 * calculated.
174 */
175 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
176 unsigned is_varying)
177 {
178 switch (semantic_name) {
179 case TGSI_SEMANTIC_POSITION:
180 return 0;
181 case TGSI_SEMANTIC_GENERIC:
182 /* Since some shader stages use the the highest used IO index
183 * to determine the size to allocate for inputs/outputs
184 * (in LDS, tess and GS rings). GENERIC should be placed right
185 * after POSITION to make that size as small as possible.
186 */
187 if (index < SI_MAX_IO_GENERIC)
188 return 1 + index;
189
190 assert(!"invalid generic index");
191 return 0;
192 case TGSI_SEMANTIC_FOG:
193 return SI_MAX_IO_GENERIC + 1;
194 case TGSI_SEMANTIC_COLOR:
195 assert(index < 2);
196 return SI_MAX_IO_GENERIC + 2 + index;
197 case TGSI_SEMANTIC_BCOLOR:
198 assert(index < 2);
199 /* If it's a varying, COLOR and BCOLOR alias. */
200 if (is_varying)
201 return SI_MAX_IO_GENERIC + 2 + index;
202 else
203 return SI_MAX_IO_GENERIC + 4 + index;
204 case TGSI_SEMANTIC_TEXCOORD:
205 assert(index < 8);
206 return SI_MAX_IO_GENERIC + 6 + index;
207
208 /* These are rarely used between LS and HS or ES and GS. */
209 case TGSI_SEMANTIC_CLIPDIST:
210 assert(index < 2);
211 return SI_MAX_IO_GENERIC + 6 + 8 + index;
212 case TGSI_SEMANTIC_CLIPVERTEX:
213 return SI_MAX_IO_GENERIC + 6 + 8 + 2;
214 case TGSI_SEMANTIC_PSIZE:
215 return SI_MAX_IO_GENERIC + 6 + 8 + 3;
216
217 /* These can't be written by LS, HS, and ES. */
218 case TGSI_SEMANTIC_LAYER:
219 return SI_MAX_IO_GENERIC + 6 + 8 + 4;
220 case TGSI_SEMANTIC_VIEWPORT_INDEX:
221 return SI_MAX_IO_GENERIC + 6 + 8 + 5;
222 case TGSI_SEMANTIC_PRIMID:
223 STATIC_ASSERT(SI_MAX_IO_GENERIC + 6 + 8 + 6 <= 63);
224 return SI_MAX_IO_GENERIC + 6 + 8 + 6;
225 default:
226 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
227 assert(!"invalid semantic name");
228 return 0;
229 }
230 }
231
232 /**
233 * Get the value of a shader input parameter and extract a bitfield.
234 */
235 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
236 LLVMValueRef value, unsigned rshift,
237 unsigned bitwidth)
238 {
239 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
240 value = ac_to_integer(&ctx->ac, value);
241
242 if (rshift)
243 value = LLVMBuildLShr(ctx->ac.builder, value,
244 LLVMConstInt(ctx->i32, rshift, 0), "");
245
246 if (rshift + bitwidth < 32) {
247 unsigned mask = (1 << bitwidth) - 1;
248 value = LLVMBuildAnd(ctx->ac.builder, value,
249 LLVMConstInt(ctx->i32, mask, 0), "");
250 }
251
252 return value;
253 }
254
255 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
256 unsigned param, unsigned rshift,
257 unsigned bitwidth)
258 {
259 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
260
261 return unpack_llvm_param(ctx, value, rshift, bitwidth);
262 }
263
264 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
265 {
266 switch (ctx->type) {
267 case PIPE_SHADER_TESS_CTRL:
268 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
269
270 case PIPE_SHADER_TESS_EVAL:
271 return LLVMGetParam(ctx->main_fn,
272 ctx->param_tes_rel_patch_id);
273
274 default:
275 assert(0);
276 return NULL;
277 }
278 }
279
280 /* Tessellation shaders pass outputs to the next shader using LDS.
281 *
282 * LS outputs = TCS inputs
283 * TCS outputs = TES inputs
284 *
285 * The LDS layout is:
286 * - TCS inputs for patch 0
287 * - TCS inputs for patch 1
288 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
289 * - ...
290 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
291 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
292 * - TCS outputs for patch 1
293 * - Per-patch TCS outputs for patch 1
294 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
295 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
296 * - ...
297 *
298 * All three shaders VS(LS), TCS, TES share the same LDS space.
299 */
300
301 static LLVMValueRef
302 get_tcs_in_patch_stride(struct si_shader_context *ctx)
303 {
304 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
305 }
306
307 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
308 {
309 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
310
311 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
312 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
313
314 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
315 }
316
317 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
318 {
319 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
320
321 return LLVMConstInt(ctx->i32, stride, 0);
322 }
323
324 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
325 {
326 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
327 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
328
329 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
330 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
331 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
332 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
333 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
334 num_patch_outputs * 4;
335 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
336 }
337
338 static LLVMValueRef
339 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
340 {
341 return LLVMBuildMul(ctx->ac.builder,
342 si_unpack_param(ctx,
343 ctx->param_tcs_out_lds_offsets,
344 0, 16),
345 LLVMConstInt(ctx->i32, 4, 0), "");
346 }
347
348 static LLVMValueRef
349 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
350 {
351 return LLVMBuildMul(ctx->ac.builder,
352 si_unpack_param(ctx,
353 ctx->param_tcs_out_lds_offsets,
354 16, 16),
355 LLVMConstInt(ctx->i32, 4, 0), "");
356 }
357
358 static LLVMValueRef
359 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
360 {
361 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
362 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
363
364 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
365 }
366
367 static LLVMValueRef
368 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
369 {
370 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
371 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
372 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
373
374 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
375 }
376
377 static LLVMValueRef
378 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
379 {
380 LLVMValueRef patch0_patch_data_offset =
381 get_tcs_out_patch0_patch_data_offset(ctx);
382 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
383 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
384
385 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
386 }
387
388 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
389 {
390 unsigned tcs_out_vertices =
391 ctx->shader->selector ?
392 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
393
394 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
395 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
396 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
397
398 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
399 }
400
401 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
402 {
403 unsigned stride;
404
405 switch (ctx->type) {
406 case PIPE_SHADER_VERTEX:
407 stride = ctx->shader->selector->lshs_vertex_stride / 4;
408 return LLVMConstInt(ctx->i32, stride, 0);
409
410 case PIPE_SHADER_TESS_CTRL:
411 if (ctx->screen->info.chip_class >= GFX9 &&
412 ctx->shader->is_monolithic) {
413 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
414 return LLVMConstInt(ctx->i32, stride, 0);
415 }
416 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
417
418 default:
419 assert(0);
420 return NULL;
421 }
422 }
423
424 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
425 LLVMValueRef i32, unsigned index)
426 {
427 assert(index <= 1);
428
429 if (index == 1)
430 return LLVMBuildAShr(ctx->ac.builder, i32,
431 LLVMConstInt(ctx->i32, 16, 0), "");
432
433 return LLVMBuildSExt(ctx->ac.builder,
434 LLVMBuildTrunc(ctx->ac.builder, i32,
435 ctx->ac.i16, ""),
436 ctx->i32, "");
437 }
438
439 void si_llvm_load_input_vs(
440 struct si_shader_context *ctx,
441 unsigned input_index,
442 LLVMValueRef out[4])
443 {
444 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
445 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
446
447 if (vs_blit_property) {
448 LLVMValueRef vertex_id = ctx->abi.vertex_id;
449 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
450 LLVMIntULE, vertex_id,
451 ctx->i32_1, "");
452 /* Use LLVMIntNE, because we have 3 vertices and only
453 * the middle one should use y2.
454 */
455 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
456 LLVMIntNE, vertex_id,
457 ctx->i32_1, "");
458
459 if (input_index == 0) {
460 /* Position: */
461 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
462 ctx->param_vs_blit_inputs);
463 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
464 ctx->param_vs_blit_inputs + 1);
465
466 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
467 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
468 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
469 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
470
471 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
472 x1, x2, "");
473 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
474 y1, y2, "");
475
476 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
477 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
478 out[2] = LLVMGetParam(ctx->main_fn,
479 ctx->param_vs_blit_inputs + 2);
480 out[3] = ctx->ac.f32_1;
481 return;
482 }
483
484 /* Color or texture coordinates: */
485 assert(input_index == 1);
486
487 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
488 for (int i = 0; i < 4; i++) {
489 out[i] = LLVMGetParam(ctx->main_fn,
490 ctx->param_vs_blit_inputs + 3 + i);
491 }
492 } else {
493 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
494 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
495 ctx->param_vs_blit_inputs + 3);
496 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
497 ctx->param_vs_blit_inputs + 4);
498 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
499 ctx->param_vs_blit_inputs + 5);
500 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
501 ctx->param_vs_blit_inputs + 6);
502
503 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
504 x1, x2, "");
505 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
506 y1, y2, "");
507 out[2] = LLVMGetParam(ctx->main_fn,
508 ctx->param_vs_blit_inputs + 7);
509 out[3] = LLVMGetParam(ctx->main_fn,
510 ctx->param_vs_blit_inputs + 8);
511 }
512 return;
513 }
514
515 union si_vs_fix_fetch fix_fetch;
516 LLVMValueRef t_list_ptr;
517 LLVMValueRef t_offset;
518 LLVMValueRef t_list;
519 LLVMValueRef vertex_index;
520 LLVMValueRef tmp;
521
522 /* Load the T list */
523 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
524
525 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
526
527 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
528
529 vertex_index = LLVMGetParam(ctx->main_fn,
530 ctx->param_vertex_index0 +
531 input_index);
532
533 /* Use the open-coded implementation for all loads of doubles and
534 * of dword-sized data that needs fixups. We need to insert conversion
535 * code anyway, and the amd/common code does it for us.
536 *
537 * Note: On LLVM <= 8, we can only open-code formats with
538 * channel size >= 4 bytes.
539 */
540 bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
541 fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
542 if (opencode ||
543 (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
544 (fix_fetch.u.log_size == 2)) {
545 tmp = ac_build_opencoded_load_format(
546 &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
547 fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
548 t_list, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
549 for (unsigned i = 0; i < 4; ++i)
550 out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
551 return;
552 }
553
554 /* Do multiple loads for special formats. */
555 unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
556 LLVMValueRef fetches[4];
557 unsigned num_fetches;
558 unsigned fetch_stride;
559 unsigned channels_per_fetch;
560
561 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
562 num_fetches = MIN2(required_channels, 3);
563 fetch_stride = 1 << fix_fetch.u.log_size;
564 channels_per_fetch = 1;
565 } else {
566 num_fetches = 1;
567 fetch_stride = 0;
568 channels_per_fetch = required_channels;
569 }
570
571 for (unsigned i = 0; i < num_fetches; ++i) {
572 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
573 fetches[i] = ac_build_buffer_load_format(&ctx->ac, t_list, vertex_index, voffset,
574 channels_per_fetch, 0, true);
575 }
576
577 if (num_fetches == 1 && channels_per_fetch > 1) {
578 LLVMValueRef fetch = fetches[0];
579 for (unsigned i = 0; i < channels_per_fetch; ++i) {
580 tmp = LLVMConstInt(ctx->i32, i, false);
581 fetches[i] = LLVMBuildExtractElement(
582 ctx->ac.builder, fetch, tmp, "");
583 }
584 num_fetches = channels_per_fetch;
585 channels_per_fetch = 1;
586 }
587
588 for (unsigned i = num_fetches; i < 4; ++i)
589 fetches[i] = LLVMGetUndef(ctx->f32);
590
591 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
592 required_channels == 4) {
593 if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
594 fetches[3] = ctx->ac.i32_1;
595 else
596 fetches[3] = ctx->ac.f32_1;
597 } else if (fix_fetch.u.log_size == 3 &&
598 (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
599 fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
600 fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
601 required_channels == 4) {
602 /* For 2_10_10_10, the hardware returns an unsigned value;
603 * convert it to a signed one.
604 */
605 LLVMValueRef tmp = fetches[3];
606 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
607
608 /* First, recover the sign-extended signed integer value. */
609 if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
610 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
611 else
612 tmp = ac_to_integer(&ctx->ac, tmp);
613
614 /* For the integer-like cases, do a natural sign extension.
615 *
616 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
617 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
618 * exponent.
619 */
620 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
621 fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
622 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
623 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
624
625 /* Convert back to the right type. */
626 if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
627 LLVMValueRef clamp;
628 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
629 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
630 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
631 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
632 } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
633 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
634 }
635
636 fetches[3] = tmp;
637 }
638
639 for (unsigned i = 0; i < 4; ++i)
640 out[i] = ac_to_float(&ctx->ac, fetches[i]);
641 }
642
643 static void declare_input_vs(
644 struct si_shader_context *ctx,
645 unsigned input_index,
646 const struct tgsi_full_declaration *decl,
647 LLVMValueRef out[4])
648 {
649 si_llvm_load_input_vs(ctx, input_index, out);
650 }
651
652 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
653 unsigned swizzle)
654 {
655 if (swizzle > 0)
656 return ctx->i32_0;
657
658 switch (ctx->type) {
659 case PIPE_SHADER_VERTEX:
660 return LLVMGetParam(ctx->main_fn,
661 ctx->param_vs_prim_id);
662 case PIPE_SHADER_TESS_CTRL:
663 return ctx->abi.tcs_patch_id;
664 case PIPE_SHADER_TESS_EVAL:
665 return ctx->abi.tes_patch_id;
666 case PIPE_SHADER_GEOMETRY:
667 return ctx->abi.gs_prim_id;
668 default:
669 assert(0);
670 return ctx->i32_0;
671 }
672 }
673
674 /**
675 * Return the value of tgsi_ind_register for indexing.
676 * This is the indirect index with the constant offset added to it.
677 */
678 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
679 const struct tgsi_ind_register *ind,
680 unsigned addr_mul,
681 int rel_index)
682 {
683 LLVMValueRef result;
684
685 if (ind->File == TGSI_FILE_ADDRESS) {
686 result = ctx->addrs[ind->Index][ind->Swizzle];
687 result = LLVMBuildLoad(ctx->ac.builder, result, "");
688 } else {
689 struct tgsi_full_src_register src = {};
690
691 src.Register.File = ind->File;
692 src.Register.Index = ind->Index;
693
694 /* Set the second index to 0 for constants. */
695 if (ind->File == TGSI_FILE_CONSTANT)
696 src.Register.Dimension = 1;
697
698 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
699 TGSI_TYPE_SIGNED,
700 ind->Swizzle);
701 result = ac_to_integer(&ctx->ac, result);
702 }
703
704 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
705 LLVMConstInt(ctx->i32, rel_index, 0));
706 }
707
708 /**
709 * Like si_get_indirect_index, but restricts the return value to a (possibly
710 * undefined) value inside [0..num).
711 */
712 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
713 const struct tgsi_ind_register *ind,
714 int rel_index, unsigned num)
715 {
716 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
717
718 return si_llvm_bound_index(ctx, result, num);
719 }
720
721 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
722 LLVMValueRef vertex_dw_stride,
723 LLVMValueRef base_addr,
724 LLVMValueRef vertex_index,
725 LLVMValueRef param_index,
726 unsigned input_index,
727 ubyte *name,
728 ubyte *index,
729 bool is_patch)
730 {
731 if (vertex_dw_stride) {
732 base_addr = ac_build_imad(&ctx->ac, vertex_index,
733 vertex_dw_stride, base_addr);
734 }
735
736 if (param_index) {
737 base_addr = ac_build_imad(&ctx->ac, param_index,
738 LLVMConstInt(ctx->i32, 4, 0), base_addr);
739 }
740
741 int param = is_patch ?
742 si_shader_io_get_unique_index_patch(name[input_index],
743 index[input_index]) :
744 si_shader_io_get_unique_index(name[input_index],
745 index[input_index], false);
746
747 /* Add the base address of the element. */
748 return LLVMBuildAdd(ctx->ac.builder, base_addr,
749 LLVMConstInt(ctx->i32, param * 4, 0), "");
750 }
751
752 /**
753 * Calculate a dword address given an input or output register and a stride.
754 */
755 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
756 const struct tgsi_full_dst_register *dst,
757 const struct tgsi_full_src_register *src,
758 LLVMValueRef vertex_dw_stride,
759 LLVMValueRef base_addr)
760 {
761 struct tgsi_shader_info *info = &ctx->shader->selector->info;
762 ubyte *name, *index, *array_first;
763 int input_index;
764 struct tgsi_full_dst_register reg;
765 LLVMValueRef vertex_index = NULL;
766 LLVMValueRef ind_index = NULL;
767
768 /* Set the register description. The address computation is the same
769 * for sources and destinations. */
770 if (src) {
771 reg.Register.File = src->Register.File;
772 reg.Register.Index = src->Register.Index;
773 reg.Register.Indirect = src->Register.Indirect;
774 reg.Register.Dimension = src->Register.Dimension;
775 reg.Indirect = src->Indirect;
776 reg.Dimension = src->Dimension;
777 reg.DimIndirect = src->DimIndirect;
778 } else
779 reg = *dst;
780
781 /* If the register is 2-dimensional (e.g. an array of vertices
782 * in a primitive), calculate the base address of the vertex. */
783 if (reg.Register.Dimension) {
784 if (reg.Dimension.Indirect)
785 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
786 1, reg.Dimension.Index);
787 else
788 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
789 }
790
791 /* Get information about the register. */
792 if (reg.Register.File == TGSI_FILE_INPUT) {
793 name = info->input_semantic_name;
794 index = info->input_semantic_index;
795 array_first = info->input_array_first;
796 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
797 name = info->output_semantic_name;
798 index = info->output_semantic_index;
799 array_first = info->output_array_first;
800 } else {
801 assert(0);
802 return NULL;
803 }
804
805 if (reg.Register.Indirect) {
806 /* Add the relative address of the element. */
807 if (reg.Indirect.ArrayID)
808 input_index = array_first[reg.Indirect.ArrayID];
809 else
810 input_index = reg.Register.Index;
811
812 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
813 1, reg.Register.Index - input_index);
814 } else {
815 input_index = reg.Register.Index;
816 }
817
818 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
819 base_addr, vertex_index,
820 ind_index, input_index,
821 name, index,
822 !reg.Register.Dimension);
823 }
824
825 /* The offchip buffer layout for TCS->TES is
826 *
827 * - attribute 0 of patch 0 vertex 0
828 * - attribute 0 of patch 0 vertex 1
829 * - attribute 0 of patch 0 vertex 2
830 * ...
831 * - attribute 0 of patch 1 vertex 0
832 * - attribute 0 of patch 1 vertex 1
833 * ...
834 * - attribute 1 of patch 0 vertex 0
835 * - attribute 1 of patch 0 vertex 1
836 * ...
837 * - per patch attribute 0 of patch 0
838 * - per patch attribute 0 of patch 1
839 * ...
840 *
841 * Note that every attribute has 4 components.
842 */
843 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
844 LLVMValueRef rel_patch_id,
845 LLVMValueRef vertex_index,
846 LLVMValueRef param_index)
847 {
848 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
849 LLVMValueRef param_stride, constant16;
850
851 vertices_per_patch = get_num_tcs_out_vertices(ctx);
852 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
853 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
854 num_patches, "");
855
856 constant16 = LLVMConstInt(ctx->i32, 16, 0);
857 if (vertex_index) {
858 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
859 vertices_per_patch, vertex_index);
860 param_stride = total_vertices;
861 } else {
862 base_addr = rel_patch_id;
863 param_stride = num_patches;
864 }
865
866 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
867 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
868
869 if (!vertex_index) {
870 LLVMValueRef patch_data_offset =
871 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
872
873 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
874 patch_data_offset, "");
875 }
876 return base_addr;
877 }
878
879 /* This is a generic helper that can be shared by the NIR and TGSI backends */
880 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
881 struct si_shader_context *ctx,
882 LLVMValueRef vertex_index,
883 LLVMValueRef param_index,
884 unsigned param_base,
885 ubyte *name,
886 ubyte *index,
887 bool is_patch)
888 {
889 unsigned param_index_base;
890
891 param_index_base = is_patch ?
892 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
893 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
894
895 if (param_index) {
896 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
897 LLVMConstInt(ctx->i32, param_index_base, 0),
898 "");
899 } else {
900 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
901 }
902
903 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
904 vertex_index, param_index);
905 }
906
907 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
908 struct si_shader_context *ctx,
909 const struct tgsi_full_dst_register *dst,
910 const struct tgsi_full_src_register *src)
911 {
912 struct tgsi_shader_info *info = &ctx->shader->selector->info;
913 ubyte *name, *index, *array_first;
914 struct tgsi_full_src_register reg;
915 LLVMValueRef vertex_index = NULL;
916 LLVMValueRef param_index = NULL;
917 unsigned param_base;
918
919 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
920
921 if (reg.Register.Dimension) {
922
923 if (reg.Dimension.Indirect)
924 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
925 1, reg.Dimension.Index);
926 else
927 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
928 }
929
930 /* Get information about the register. */
931 if (reg.Register.File == TGSI_FILE_INPUT) {
932 name = info->input_semantic_name;
933 index = info->input_semantic_index;
934 array_first = info->input_array_first;
935 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
936 name = info->output_semantic_name;
937 index = info->output_semantic_index;
938 array_first = info->output_array_first;
939 } else {
940 assert(0);
941 return NULL;
942 }
943
944 if (reg.Register.Indirect) {
945 if (reg.Indirect.ArrayID)
946 param_base = array_first[reg.Indirect.ArrayID];
947 else
948 param_base = reg.Register.Index;
949
950 param_index = si_get_indirect_index(ctx, &reg.Indirect,
951 1, reg.Register.Index - param_base);
952
953 } else {
954 param_base = reg.Register.Index;
955 }
956
957 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
958 param_index, param_base,
959 name, index, !reg.Register.Dimension);
960 }
961
962 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
963 LLVMTypeRef type, unsigned swizzle,
964 LLVMValueRef buffer, LLVMValueRef offset,
965 LLVMValueRef base, bool can_speculate)
966 {
967 struct si_shader_context *ctx = si_shader_context(bld_base);
968 LLVMValueRef value, value2;
969 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
970
971 if (swizzle == ~0) {
972 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
973 0, ac_glc, can_speculate, false);
974
975 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
976 }
977
978 if (!llvm_type_is_64bit(ctx, type)) {
979 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
980 0, ac_glc, can_speculate, false);
981
982 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
983 return LLVMBuildExtractElement(ctx->ac.builder, value,
984 LLVMConstInt(ctx->i32, swizzle, 0), "");
985 }
986
987 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
988 swizzle * 4, ac_glc, can_speculate, false);
989
990 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
991 swizzle * 4 + 4, ac_glc, can_speculate, false);
992
993 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
994 }
995
996 /**
997 * Load from LSHS LDS storage.
998 *
999 * \param type output value type
1000 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1001 * \param dw_addr address in dwords
1002 */
1003 static LLVMValueRef lshs_lds_load(struct lp_build_tgsi_context *bld_base,
1004 LLVMTypeRef type, unsigned swizzle,
1005 LLVMValueRef dw_addr)
1006 {
1007 struct si_shader_context *ctx = si_shader_context(bld_base);
1008 LLVMValueRef value;
1009
1010 if (swizzle == ~0) {
1011 LLVMValueRef values[TGSI_NUM_CHANNELS];
1012
1013 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1014 values[chan] = lshs_lds_load(bld_base, type, chan, dw_addr);
1015
1016 return ac_build_gather_values(&ctx->ac, values,
1017 TGSI_NUM_CHANNELS);
1018 }
1019
1020 /* Split 64-bit loads. */
1021 if (llvm_type_is_64bit(ctx, type)) {
1022 LLVMValueRef lo, hi;
1023
1024 lo = lshs_lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1025 hi = lshs_lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1026 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1027 }
1028
1029 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1030 LLVMConstInt(ctx->i32, swizzle, 0), "");
1031
1032 value = ac_lds_load(&ctx->ac, dw_addr);
1033
1034 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1035 }
1036
1037 /**
1038 * Store to LSHS LDS storage.
1039 *
1040 * \param swizzle offset (typically 0..3)
1041 * \param dw_addr address in dwords
1042 * \param value value to store
1043 */
1044 static void lshs_lds_store(struct si_shader_context *ctx,
1045 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1046 LLVMValueRef value)
1047 {
1048 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1049 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1050
1051 ac_lds_store(&ctx->ac, dw_addr, value);
1052 }
1053
1054 enum si_tess_ring {
1055 TCS_FACTOR_RING,
1056 TESS_OFFCHIP_RING_TCS,
1057 TESS_OFFCHIP_RING_TES,
1058 };
1059
1060 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1061 enum si_tess_ring ring)
1062 {
1063 LLVMBuilderRef builder = ctx->ac.builder;
1064 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1065 ctx->param_tcs_out_lds_layout;
1066 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1067
1068 /* TCS only receives high 13 bits of the address. */
1069 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1070 addr = LLVMBuildAnd(builder, addr,
1071 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1072 }
1073
1074 if (ring == TCS_FACTOR_RING) {
1075 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1076 addr = LLVMBuildAdd(builder, addr,
1077 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1078 }
1079
1080 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1081 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1082 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1083 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1084
1085 if (ctx->screen->info.chip_class >= GFX10)
1086 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1087 S_008F0C_OOB_SELECT(3) |
1088 S_008F0C_RESOURCE_LEVEL(1);
1089 else
1090 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1091 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1092
1093 LLVMValueRef desc[4];
1094 desc[0] = addr;
1095 desc[1] = LLVMConstInt(ctx->i32,
1096 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1097 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1098 desc[3] = LLVMConstInt(ctx->i32, rsrc3, false);
1099
1100 return ac_build_gather_values(&ctx->ac, desc, 4);
1101 }
1102
1103 static LLVMValueRef fetch_input_tcs(
1104 struct lp_build_tgsi_context *bld_base,
1105 const struct tgsi_full_src_register *reg,
1106 enum tgsi_opcode_type type, unsigned swizzle_in)
1107 {
1108 struct si_shader_context *ctx = si_shader_context(bld_base);
1109 LLVMValueRef dw_addr, stride;
1110 unsigned swizzle = swizzle_in & 0xffff;
1111 stride = get_tcs_in_vertex_dw_stride(ctx);
1112 dw_addr = get_tcs_in_current_patch_offset(ctx);
1113 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1114
1115 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1116 }
1117
1118 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1119 LLVMTypeRef type,
1120 LLVMValueRef vertex_index,
1121 LLVMValueRef param_index,
1122 unsigned const_index,
1123 unsigned location,
1124 unsigned driver_location,
1125 unsigned component,
1126 unsigned num_components,
1127 bool is_patch,
1128 bool is_compact,
1129 bool load_input)
1130 {
1131 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1132 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1133 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1134 LLVMValueRef dw_addr, stride;
1135
1136 driver_location = driver_location / 4;
1137
1138 if (load_input) {
1139 stride = get_tcs_in_vertex_dw_stride(ctx);
1140 dw_addr = get_tcs_in_current_patch_offset(ctx);
1141 } else {
1142 if (is_patch) {
1143 stride = NULL;
1144 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1145 } else {
1146 stride = get_tcs_out_vertex_dw_stride(ctx);
1147 dw_addr = get_tcs_out_current_patch_offset(ctx);
1148 }
1149 }
1150
1151 if (param_index) {
1152 /* Add the constant index to the indirect index */
1153 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1154 LLVMConstInt(ctx->i32, const_index, 0), "");
1155 } else {
1156 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1157 }
1158
1159 ubyte *names;
1160 ubyte *indices;
1161 if (load_input) {
1162 names = info->input_semantic_name;
1163 indices = info->input_semantic_index;
1164 } else {
1165 names = info->output_semantic_name;
1166 indices = info->output_semantic_index;
1167 }
1168
1169 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1170 vertex_index, param_index,
1171 driver_location,
1172 names, indices,
1173 is_patch);
1174
1175 LLVMValueRef value[4];
1176 for (unsigned i = 0; i < num_components; i++) {
1177 unsigned offset = i;
1178 if (llvm_type_is_64bit(ctx, type))
1179 offset *= 2;
1180
1181 offset += component;
1182 value[i + component] = lshs_lds_load(bld_base, type, offset, dw_addr);
1183 }
1184
1185 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1186 }
1187
1188 static LLVMValueRef fetch_output_tcs(
1189 struct lp_build_tgsi_context *bld_base,
1190 const struct tgsi_full_src_register *reg,
1191 enum tgsi_opcode_type type, unsigned swizzle_in)
1192 {
1193 struct si_shader_context *ctx = si_shader_context(bld_base);
1194 LLVMValueRef dw_addr, stride;
1195 unsigned swizzle = (swizzle_in & 0xffff);
1196
1197 if (reg->Register.Dimension) {
1198 stride = get_tcs_out_vertex_dw_stride(ctx);
1199 dw_addr = get_tcs_out_current_patch_offset(ctx);
1200 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1201 } else {
1202 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1203 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1204 }
1205
1206 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1207 }
1208
1209 static LLVMValueRef fetch_input_tes(
1210 struct lp_build_tgsi_context *bld_base,
1211 const struct tgsi_full_src_register *reg,
1212 enum tgsi_opcode_type type, unsigned swizzle_in)
1213 {
1214 struct si_shader_context *ctx = si_shader_context(bld_base);
1215 LLVMValueRef base, addr;
1216 unsigned swizzle = (swizzle_in & 0xffff);
1217
1218 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1219 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1220
1221 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1222 ctx->tess_offchip_ring, base, addr, true);
1223 }
1224
1225 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1226 LLVMTypeRef type,
1227 LLVMValueRef vertex_index,
1228 LLVMValueRef param_index,
1229 unsigned const_index,
1230 unsigned location,
1231 unsigned driver_location,
1232 unsigned component,
1233 unsigned num_components,
1234 bool is_patch,
1235 bool is_compact,
1236 bool load_input)
1237 {
1238 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1239 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1240 LLVMValueRef base, addr;
1241
1242 driver_location = driver_location / 4;
1243
1244 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1245
1246 if (param_index) {
1247 /* Add the constant index to the indirect index */
1248 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1249 LLVMConstInt(ctx->i32, const_index, 0), "");
1250 } else {
1251 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1252 }
1253
1254 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1255 param_index, driver_location,
1256 info->input_semantic_name,
1257 info->input_semantic_index,
1258 is_patch);
1259
1260 /* TODO: This will generate rather ordinary llvm code, although it
1261 * should be easy for the optimiser to fix up. In future we might want
1262 * to refactor buffer_load(), but for now this maximises code sharing
1263 * between the NIR and TGSI backends.
1264 */
1265 LLVMValueRef value[4];
1266 for (unsigned i = 0; i < num_components; i++) {
1267 unsigned offset = i;
1268 if (llvm_type_is_64bit(ctx, type)) {
1269 offset *= 2;
1270 if (offset == 4) {
1271 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1272 vertex_index,
1273 param_index,
1274 driver_location + 1,
1275 info->input_semantic_name,
1276 info->input_semantic_index,
1277 is_patch);
1278 }
1279
1280 offset = offset % 4;
1281 }
1282
1283 offset += component;
1284 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1285 ctx->tess_offchip_ring, base, addr, true);
1286 }
1287
1288 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1289 }
1290
1291 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1292 const struct tgsi_full_instruction *inst,
1293 const struct tgsi_opcode_info *info,
1294 unsigned index,
1295 LLVMValueRef dst[4])
1296 {
1297 struct si_shader_context *ctx = si_shader_context(bld_base);
1298 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1299 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1300 unsigned chan_index;
1301 LLVMValueRef dw_addr, stride;
1302 LLVMValueRef buffer, base, buf_addr;
1303 LLVMValueRef values[4];
1304 bool skip_lds_store;
1305 bool is_tess_factor = false, is_tess_inner = false;
1306
1307 /* Only handle per-patch and per-vertex outputs here.
1308 * Vectors will be lowered to scalars and this function will be called again.
1309 */
1310 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1311 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1312 si_llvm_emit_store(bld_base, inst, info, index, dst);
1313 return;
1314 }
1315
1316 if (reg->Register.Dimension) {
1317 stride = get_tcs_out_vertex_dw_stride(ctx);
1318 dw_addr = get_tcs_out_current_patch_offset(ctx);
1319 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1320 skip_lds_store = !sh_info->reads_pervertex_outputs;
1321 } else {
1322 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1323 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1324 skip_lds_store = !sh_info->reads_perpatch_outputs;
1325
1326 if (!reg->Register.Indirect) {
1327 int name = sh_info->output_semantic_name[reg->Register.Index];
1328
1329 /* Always write tess factors into LDS for the TCS epilog. */
1330 if (name == TGSI_SEMANTIC_TESSINNER ||
1331 name == TGSI_SEMANTIC_TESSOUTER) {
1332 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1333 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1334 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1335 is_tess_factor = true;
1336 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1337 }
1338 }
1339 }
1340
1341 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1342
1343 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1344 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1345
1346 uint32_t writemask = reg->Register.WriteMask;
1347 while (writemask) {
1348 chan_index = u_bit_scan(&writemask);
1349 LLVMValueRef value = dst[chan_index];
1350
1351 if (inst->Instruction.Saturate)
1352 value = ac_build_clamp(&ctx->ac, value);
1353
1354 /* Skip LDS stores if there is no LDS read of this output. */
1355 if (!skip_lds_store)
1356 lshs_lds_store(ctx, chan_index, dw_addr, value);
1357
1358 value = ac_to_integer(&ctx->ac, value);
1359 values[chan_index] = value;
1360
1361 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1362 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1363 buf_addr, base,
1364 4 * chan_index, ac_glc, false);
1365 }
1366
1367 /* Write tess factors into VGPRs for the epilog. */
1368 if (is_tess_factor &&
1369 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1370 if (!is_tess_inner) {
1371 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1372 ctx->invoc0_tess_factors[chan_index]);
1373 } else if (chan_index < 2) {
1374 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1375 ctx->invoc0_tess_factors[4 + chan_index]);
1376 }
1377 }
1378 }
1379
1380 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1381 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1382 values, 4);
1383 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1384 base, 0, ac_glc, false);
1385 }
1386 }
1387
1388 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1389 const struct nir_variable *var,
1390 LLVMValueRef vertex_index,
1391 LLVMValueRef param_index,
1392 unsigned const_index,
1393 LLVMValueRef src,
1394 unsigned writemask)
1395 {
1396 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1397 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1398 const unsigned component = var->data.location_frac;
1399 const bool is_patch = var->data.patch;
1400 unsigned driver_location = var->data.driver_location;
1401 LLVMValueRef dw_addr, stride;
1402 LLVMValueRef buffer, base, addr;
1403 LLVMValueRef values[8];
1404 bool skip_lds_store;
1405 bool is_tess_factor = false, is_tess_inner = false;
1406
1407 driver_location = driver_location / 4;
1408
1409 if (param_index) {
1410 /* Add the constant index to the indirect index */
1411 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1412 LLVMConstInt(ctx->i32, const_index, 0), "");
1413 } else {
1414 if (const_index != 0)
1415 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1416 }
1417
1418 if (!is_patch) {
1419 stride = get_tcs_out_vertex_dw_stride(ctx);
1420 dw_addr = get_tcs_out_current_patch_offset(ctx);
1421 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1422 vertex_index, param_index,
1423 driver_location,
1424 info->output_semantic_name,
1425 info->output_semantic_index,
1426 is_patch);
1427
1428 skip_lds_store = !info->reads_pervertex_outputs;
1429 } else {
1430 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1431 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1432 vertex_index, param_index,
1433 driver_location,
1434 info->output_semantic_name,
1435 info->output_semantic_index,
1436 is_patch);
1437
1438 skip_lds_store = !info->reads_perpatch_outputs;
1439
1440 if (!param_index) {
1441 int name = info->output_semantic_name[driver_location];
1442
1443 /* Always write tess factors into LDS for the TCS epilog. */
1444 if (name == TGSI_SEMANTIC_TESSINNER ||
1445 name == TGSI_SEMANTIC_TESSOUTER) {
1446 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1447 skip_lds_store = !info->reads_tessfactor_outputs &&
1448 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1449 is_tess_factor = true;
1450 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1451 }
1452 }
1453 }
1454
1455 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1456
1457 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1458
1459 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1460 param_index, driver_location,
1461 info->output_semantic_name,
1462 info->output_semantic_index,
1463 is_patch);
1464
1465 for (unsigned chan = 0; chan < 8; chan++) {
1466 if (!(writemask & (1 << chan)))
1467 continue;
1468 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1469
1470 unsigned buffer_store_offset = chan % 4;
1471 if (chan == 4) {
1472 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1473 vertex_index,
1474 param_index,
1475 driver_location + 1,
1476 info->output_semantic_name,
1477 info->output_semantic_index,
1478 is_patch);
1479 }
1480
1481 /* Skip LDS stores if there is no LDS read of this output. */
1482 if (!skip_lds_store)
1483 lshs_lds_store(ctx, chan, dw_addr, value);
1484
1485 value = ac_to_integer(&ctx->ac, value);
1486 values[chan] = value;
1487
1488 if (writemask != 0xF && !is_tess_factor) {
1489 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1490 addr, base,
1491 4 * buffer_store_offset,
1492 ac_glc, false);
1493 }
1494
1495 /* Write tess factors into VGPRs for the epilog. */
1496 if (is_tess_factor &&
1497 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1498 if (!is_tess_inner) {
1499 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1500 ctx->invoc0_tess_factors[chan]);
1501 } else if (chan < 2) {
1502 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1503 ctx->invoc0_tess_factors[4 + chan]);
1504 }
1505 }
1506 }
1507
1508 if (writemask == 0xF && !is_tess_factor) {
1509 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1510 values, 4);
1511 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1512 base, 0, ac_glc, false);
1513 }
1514 }
1515
1516 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1517 unsigned input_index,
1518 unsigned vtx_offset_param,
1519 LLVMTypeRef type,
1520 unsigned swizzle)
1521 {
1522 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1523 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1524 struct si_shader *shader = ctx->shader;
1525 LLVMValueRef vtx_offset, soffset;
1526 struct tgsi_shader_info *info = &shader->selector->info;
1527 unsigned semantic_name = info->input_semantic_name[input_index];
1528 unsigned semantic_index = info->input_semantic_index[input_index];
1529 unsigned param;
1530 LLVMValueRef value;
1531
1532 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1533
1534 /* GFX9 has the ESGS ring in LDS. */
1535 if (ctx->screen->info.chip_class >= GFX9) {
1536 unsigned index = vtx_offset_param;
1537
1538 switch (index / 2) {
1539 case 0:
1540 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1541 index % 2 ? 16 : 0, 16);
1542 break;
1543 case 1:
1544 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1545 index % 2 ? 16 : 0, 16);
1546 break;
1547 case 2:
1548 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1549 index % 2 ? 16 : 0, 16);
1550 break;
1551 default:
1552 assert(0);
1553 return NULL;
1554 }
1555
1556 unsigned offset = param * 4 + swizzle;
1557 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1558 LLVMConstInt(ctx->i32, offset, false), "");
1559
1560 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset);
1561 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1562 if (llvm_type_is_64bit(ctx, type)) {
1563 ptr = LLVMBuildGEP(ctx->ac.builder, ptr,
1564 &ctx->ac.i32_1, 1, "");
1565 LLVMValueRef values[2] = {
1566 value,
1567 LLVMBuildLoad(ctx->ac.builder, ptr, "")
1568 };
1569 value = ac_build_gather_values(&ctx->ac, values, 2);
1570 }
1571 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1572 }
1573
1574 /* GFX6: input load from the ESGS ring in memory. */
1575 if (swizzle == ~0) {
1576 LLVMValueRef values[TGSI_NUM_CHANNELS];
1577 unsigned chan;
1578 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1579 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1580 type, chan);
1581 }
1582 return ac_build_gather_values(&ctx->ac, values,
1583 TGSI_NUM_CHANNELS);
1584 }
1585
1586 /* Get the vertex offset parameter on GFX6. */
1587 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1588
1589 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1590 LLVMConstInt(ctx->i32, 4, 0), "");
1591
1592 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1593
1594 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1595 vtx_offset, soffset, 0, ac_glc, true, false);
1596 if (llvm_type_is_64bit(ctx, type)) {
1597 LLVMValueRef value2;
1598 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1599
1600 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1601 ctx->i32_0, vtx_offset, soffset,
1602 0, ac_glc, true, false);
1603 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1604 }
1605 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1606 }
1607
1608 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1609 unsigned location,
1610 unsigned driver_location,
1611 unsigned component,
1612 unsigned num_components,
1613 unsigned vertex_index,
1614 unsigned const_index,
1615 LLVMTypeRef type)
1616 {
1617 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1618
1619 LLVMValueRef value[4];
1620 for (unsigned i = 0; i < num_components; i++) {
1621 unsigned offset = i;
1622 if (llvm_type_is_64bit(ctx, type))
1623 offset *= 2;
1624
1625 offset += component;
1626 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1627 vertex_index, type, offset);
1628 }
1629
1630 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1631 }
1632
1633 static LLVMValueRef fetch_input_gs(
1634 struct lp_build_tgsi_context *bld_base,
1635 const struct tgsi_full_src_register *reg,
1636 enum tgsi_opcode_type type,
1637 unsigned swizzle_in)
1638 {
1639 struct si_shader_context *ctx = si_shader_context(bld_base);
1640 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1641 unsigned swizzle = swizzle_in & 0xffff;
1642
1643 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1644 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1645 return si_get_primitive_id(ctx, swizzle);
1646
1647 if (!reg->Register.Dimension)
1648 return NULL;
1649
1650 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1651 reg->Dimension.Index,
1652 tgsi2llvmtype(bld_base, type),
1653 swizzle);
1654 }
1655
1656 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1657 {
1658 switch (interpolate) {
1659 case TGSI_INTERPOLATE_CONSTANT:
1660 return 0;
1661
1662 case TGSI_INTERPOLATE_LINEAR:
1663 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1664 return SI_PARAM_LINEAR_SAMPLE;
1665 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1666 return SI_PARAM_LINEAR_CENTROID;
1667 else
1668 return SI_PARAM_LINEAR_CENTER;
1669 break;
1670 case TGSI_INTERPOLATE_COLOR:
1671 case TGSI_INTERPOLATE_PERSPECTIVE:
1672 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1673 return SI_PARAM_PERSP_SAMPLE;
1674 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1675 return SI_PARAM_PERSP_CENTROID;
1676 else
1677 return SI_PARAM_PERSP_CENTER;
1678 break;
1679 default:
1680 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1681 return -1;
1682 }
1683 }
1684
1685 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1686 unsigned attr_index, unsigned chan,
1687 LLVMValueRef prim_mask,
1688 LLVMValueRef i, LLVMValueRef j)
1689 {
1690 if (i || j) {
1691 return ac_build_fs_interp(&ctx->ac,
1692 LLVMConstInt(ctx->i32, chan, 0),
1693 LLVMConstInt(ctx->i32, attr_index, 0),
1694 prim_mask, i, j);
1695 }
1696 return ac_build_fs_interp_mov(&ctx->ac,
1697 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1698 LLVMConstInt(ctx->i32, chan, 0),
1699 LLVMConstInt(ctx->i32, attr_index, 0),
1700 prim_mask);
1701 }
1702
1703 /**
1704 * Interpolate a fragment shader input.
1705 *
1706 * @param ctx context
1707 * @param input_index index of the input in hardware
1708 * @param semantic_name TGSI_SEMANTIC_*
1709 * @param semantic_index semantic index
1710 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1711 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1712 * @param interp_param interpolation weights (i,j)
1713 * @param prim_mask SI_PARAM_PRIM_MASK
1714 * @param face SI_PARAM_FRONT_FACE
1715 * @param result the return value (4 components)
1716 */
1717 static void interp_fs_input(struct si_shader_context *ctx,
1718 unsigned input_index,
1719 unsigned semantic_name,
1720 unsigned semantic_index,
1721 unsigned num_interp_inputs,
1722 unsigned colors_read_mask,
1723 LLVMValueRef interp_param,
1724 LLVMValueRef prim_mask,
1725 LLVMValueRef face,
1726 LLVMValueRef result[4])
1727 {
1728 LLVMValueRef i = NULL, j = NULL;
1729 unsigned chan;
1730
1731 /* fs.constant returns the param from the middle vertex, so it's not
1732 * really useful for flat shading. It's meant to be used for custom
1733 * interpolation (but the intrinsic can't fetch from the other two
1734 * vertices).
1735 *
1736 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1737 * to do the right thing. The only reason we use fs.constant is that
1738 * fs.interp cannot be used on integers, because they can be equal
1739 * to NaN.
1740 *
1741 * When interp is false we will use fs.constant or for newer llvm,
1742 * amdgcn.interp.mov.
1743 */
1744 bool interp = interp_param != NULL;
1745
1746 if (interp) {
1747 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1748 LLVMVectorType(ctx->f32, 2), "");
1749
1750 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1751 ctx->i32_0, "");
1752 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1753 ctx->i32_1, "");
1754 }
1755
1756 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1757 ctx->shader->key.part.ps.prolog.color_two_side) {
1758 LLVMValueRef is_face_positive;
1759
1760 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1761 * otherwise it's at offset "num_inputs".
1762 */
1763 unsigned back_attr_offset = num_interp_inputs;
1764 if (semantic_index == 1 && colors_read_mask & 0xf)
1765 back_attr_offset += 1;
1766
1767 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1768 face, ctx->i32_0, "");
1769
1770 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1771 LLVMValueRef front, back;
1772
1773 front = si_build_fs_interp(ctx,
1774 input_index, chan,
1775 prim_mask, i, j);
1776 back = si_build_fs_interp(ctx,
1777 back_attr_offset, chan,
1778 prim_mask, i, j);
1779
1780 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1781 is_face_positive,
1782 front,
1783 back,
1784 "");
1785 }
1786 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1787 result[0] = si_build_fs_interp(ctx, input_index,
1788 0, prim_mask, i, j);
1789 result[1] =
1790 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1791 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1792 } else {
1793 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1794 result[chan] = si_build_fs_interp(ctx,
1795 input_index, chan,
1796 prim_mask, i, j);
1797 }
1798 }
1799 }
1800
1801 void si_llvm_load_input_fs(
1802 struct si_shader_context *ctx,
1803 unsigned input_index,
1804 LLVMValueRef out[4])
1805 {
1806 struct si_shader *shader = ctx->shader;
1807 struct tgsi_shader_info *info = &shader->selector->info;
1808 LLVMValueRef main_fn = ctx->main_fn;
1809 LLVMValueRef interp_param = NULL;
1810 int interp_param_idx;
1811 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1812 unsigned semantic_index = info->input_semantic_index[input_index];
1813 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1814 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1815
1816 /* Get colors from input VGPRs (set by the prolog). */
1817 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1818 unsigned colors_read = shader->selector->info.colors_read;
1819 unsigned mask = colors_read >> (semantic_index * 4);
1820 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1821 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1822 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1823
1824 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1825 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1826 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1827 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1828 return;
1829 }
1830
1831 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1832 if (interp_param_idx == -1)
1833 return;
1834 else if (interp_param_idx) {
1835 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1836 }
1837
1838 interp_fs_input(ctx, input_index, semantic_name,
1839 semantic_index, 0, /* this param is unused */
1840 shader->selector->info.colors_read, interp_param,
1841 ctx->abi.prim_mask,
1842 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1843 &out[0]);
1844 }
1845
1846 static void declare_input_fs(
1847 struct si_shader_context *ctx,
1848 unsigned input_index,
1849 const struct tgsi_full_declaration *decl,
1850 LLVMValueRef out[4])
1851 {
1852 si_llvm_load_input_fs(ctx, input_index, out);
1853 }
1854
1855 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1856 {
1857 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1858 }
1859
1860 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1861 {
1862 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1863
1864 /* For non-indexed draws, the base vertex set by the driver
1865 * (for direct draws) or the CP (for indirect draws) is the
1866 * first vertex ID, but GLSL expects 0 to be returned.
1867 */
1868 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1869 ctx->param_vs_state_bits);
1870 LLVMValueRef indexed;
1871
1872 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1873 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1874
1875 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1876 ctx->i32_0, "");
1877 }
1878
1879 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1880 {
1881 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1882
1883 LLVMValueRef values[3];
1884 LLVMValueRef result;
1885 unsigned i;
1886 unsigned *properties = ctx->shader->selector->info.properties;
1887
1888 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1889 unsigned sizes[3] = {
1890 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1891 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1892 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1893 };
1894
1895 for (i = 0; i < 3; ++i)
1896 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1897
1898 result = ac_build_gather_values(&ctx->ac, values, 3);
1899 } else {
1900 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1901 }
1902
1903 return result;
1904 }
1905
1906 /**
1907 * Load a dword from a constant buffer.
1908 */
1909 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1910 LLVMValueRef resource,
1911 LLVMValueRef offset)
1912 {
1913 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1914 0, 0, true, true);
1915 }
1916
1917 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1918 {
1919 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1920 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1921 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1922 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1923
1924 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1925 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1926 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1927
1928 LLVMValueRef pos[4] = {
1929 buffer_load_const(ctx, resource, offset0),
1930 buffer_load_const(ctx, resource, offset1),
1931 LLVMConstReal(ctx->f32, 0),
1932 LLVMConstReal(ctx->f32, 0)
1933 };
1934
1935 return ac_build_gather_values(&ctx->ac, pos, 4);
1936 }
1937
1938 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1939 {
1940 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1941 return ac_to_integer(&ctx->ac, abi->sample_coverage);
1942 }
1943
1944 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
1945 {
1946 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1947 LLVMValueRef coord[4] = {
1948 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1949 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1950 ctx->ac.f32_0,
1951 ctx->ac.f32_0
1952 };
1953
1954 /* For triangles, the vector should be (u, v, 1-u-v). */
1955 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1956 PIPE_PRIM_TRIANGLES) {
1957 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1958 LLVMBuildFAdd(ctx->ac.builder,
1959 coord[0], coord[1], ""), "");
1960 }
1961 return ac_build_gather_values(&ctx->ac, coord, 4);
1962 }
1963
1964 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1965 unsigned semantic_name)
1966 {
1967 LLVMValueRef base, addr;
1968
1969 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1970
1971 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1972 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1973 LLVMConstInt(ctx->i32, param, 0));
1974
1975 return buffer_load(&ctx->bld_base, ctx->f32,
1976 ~0, ctx->tess_offchip_ring, base, addr, true);
1977
1978 }
1979
1980 static LLVMValueRef load_tess_level_default(struct si_shader_context *ctx,
1981 unsigned semantic_name)
1982 {
1983 LLVMValueRef buf, slot, val[4];
1984 int i, offset;
1985
1986 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
1987 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1988 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
1989 offset = semantic_name == TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL ? 4 : 0;
1990
1991 for (i = 0; i < 4; i++)
1992 val[i] = buffer_load_const(ctx, buf,
1993 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
1994 return ac_build_gather_values(&ctx->ac, val, 4);
1995 }
1996
1997 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1998 unsigned varying_id,
1999 bool load_default_state)
2000 {
2001 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2002 unsigned semantic_name;
2003
2004 if (load_default_state) {
2005 switch (varying_id) {
2006 case VARYING_SLOT_TESS_LEVEL_INNER:
2007 semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL;
2008 break;
2009 case VARYING_SLOT_TESS_LEVEL_OUTER:
2010 semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL;
2011 break;
2012 default:
2013 unreachable("unknown tess level");
2014 }
2015 return load_tess_level_default(ctx, semantic_name);
2016 }
2017
2018 switch (varying_id) {
2019 case VARYING_SLOT_TESS_LEVEL_INNER:
2020 semantic_name = TGSI_SEMANTIC_TESSINNER;
2021 break;
2022 case VARYING_SLOT_TESS_LEVEL_OUTER:
2023 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2024 break;
2025 default:
2026 unreachable("unknown tess level");
2027 }
2028
2029 return load_tess_level(ctx, semantic_name);
2030
2031 }
2032
2033 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2034 {
2035 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2036 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2037 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2038 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2039 return get_num_tcs_out_vertices(ctx);
2040 else
2041 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2042 }
2043
2044 void si_load_system_value(struct si_shader_context *ctx,
2045 unsigned index,
2046 const struct tgsi_full_declaration *decl)
2047 {
2048 LLVMValueRef value = 0;
2049
2050 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2051
2052 switch (decl->Semantic.Name) {
2053 case TGSI_SEMANTIC_INSTANCEID:
2054 value = ctx->abi.instance_id;
2055 break;
2056
2057 case TGSI_SEMANTIC_VERTEXID:
2058 value = LLVMBuildAdd(ctx->ac.builder,
2059 ctx->abi.vertex_id,
2060 ctx->abi.base_vertex, "");
2061 break;
2062
2063 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2064 /* Unused. Clarify the meaning in indexed vs. non-indexed
2065 * draws if this is ever used again. */
2066 assert(false);
2067 break;
2068
2069 case TGSI_SEMANTIC_BASEVERTEX:
2070 value = get_base_vertex(&ctx->abi);
2071 break;
2072
2073 case TGSI_SEMANTIC_BASEINSTANCE:
2074 value = ctx->abi.start_instance;
2075 break;
2076
2077 case TGSI_SEMANTIC_DRAWID:
2078 value = ctx->abi.draw_id;
2079 break;
2080
2081 case TGSI_SEMANTIC_INVOCATIONID:
2082 if (ctx->type == PIPE_SHADER_TESS_CTRL) {
2083 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2084 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
2085 if (ctx->screen->info.chip_class >= GFX10) {
2086 value = LLVMBuildAnd(ctx->ac.builder,
2087 ctx->abi.gs_invocation_id,
2088 LLVMConstInt(ctx->i32, 127, 0), "");
2089 } else {
2090 value = ctx->abi.gs_invocation_id;
2091 }
2092 } else {
2093 assert(!"INVOCATIONID not implemented");
2094 }
2095 break;
2096
2097 case TGSI_SEMANTIC_POSITION:
2098 {
2099 LLVMValueRef pos[4] = {
2100 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2101 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2102 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2103 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2104 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2105 };
2106 value = ac_build_gather_values(&ctx->ac, pos, 4);
2107 break;
2108 }
2109
2110 case TGSI_SEMANTIC_FACE:
2111 value = ctx->abi.front_face;
2112 break;
2113
2114 case TGSI_SEMANTIC_SAMPLEID:
2115 value = si_get_sample_id(ctx);
2116 break;
2117
2118 case TGSI_SEMANTIC_SAMPLEPOS: {
2119 LLVMValueRef pos[4] = {
2120 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2121 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2122 LLVMConstReal(ctx->f32, 0),
2123 LLVMConstReal(ctx->f32, 0)
2124 };
2125 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2126 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2127 value = ac_build_gather_values(&ctx->ac, pos, 4);
2128 break;
2129 }
2130
2131 case TGSI_SEMANTIC_SAMPLEMASK:
2132 /* This can only occur with the OpenGL Core profile, which
2133 * doesn't support smoothing.
2134 */
2135 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2136 break;
2137
2138 case TGSI_SEMANTIC_TESSCOORD:
2139 value = si_load_tess_coord(&ctx->abi);
2140 break;
2141
2142 case TGSI_SEMANTIC_VERTICESIN:
2143 value = si_load_patch_vertices_in(&ctx->abi);
2144 break;
2145
2146 case TGSI_SEMANTIC_TESSINNER:
2147 case TGSI_SEMANTIC_TESSOUTER:
2148 value = load_tess_level(ctx, decl->Semantic.Name);
2149 break;
2150
2151 case TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL:
2152 case TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL:
2153 value = load_tess_level_default(ctx, decl->Semantic.Name);
2154 break;
2155
2156 case TGSI_SEMANTIC_PRIMID:
2157 value = si_get_primitive_id(ctx, 0);
2158 break;
2159
2160 case TGSI_SEMANTIC_GRID_SIZE:
2161 value = ctx->abi.num_work_groups;
2162 break;
2163
2164 case TGSI_SEMANTIC_BLOCK_SIZE:
2165 value = get_block_size(&ctx->abi);
2166 break;
2167
2168 case TGSI_SEMANTIC_BLOCK_ID:
2169 {
2170 LLVMValueRef values[3];
2171
2172 for (int i = 0; i < 3; i++) {
2173 values[i] = ctx->i32_0;
2174 if (ctx->abi.workgroup_ids[i]) {
2175 values[i] = ctx->abi.workgroup_ids[i];
2176 }
2177 }
2178 value = ac_build_gather_values(&ctx->ac, values, 3);
2179 break;
2180 }
2181
2182 case TGSI_SEMANTIC_THREAD_ID:
2183 value = ctx->abi.local_invocation_ids;
2184 break;
2185
2186 case TGSI_SEMANTIC_HELPER_INVOCATION:
2187 value = ac_build_load_helper_invocation(&ctx->ac);
2188 break;
2189
2190 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2191 value = LLVMConstInt(ctx->i32, ctx->ac.wave_size, 0);
2192 break;
2193
2194 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2195 value = ac_get_thread_id(&ctx->ac);
2196 break;
2197
2198 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2199 {
2200 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2201 if (ctx->ac.wave_size == 64)
2202 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2203 value = LLVMBuildShl(ctx->ac.builder,
2204 LLVMConstInt(ctx->ac.iN_wavemask, 1, 0), id, "");
2205 if (ctx->ac.wave_size == 32)
2206 value = LLVMBuildZExt(ctx->ac.builder, value, ctx->i64, "");
2207 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2208 break;
2209 }
2210
2211 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2212 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2213 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2214 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2215 {
2216 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2217 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2218 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2219 /* All bits set except LSB */
2220 value = LLVMConstInt(ctx->ac.iN_wavemask, -2, 0);
2221 } else {
2222 /* All bits set */
2223 value = LLVMConstInt(ctx->ac.iN_wavemask, -1, 0);
2224 }
2225 if (ctx->ac.wave_size == 64)
2226 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2227 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2228 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2229 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2230 value = LLVMBuildNot(ctx->ac.builder, value, "");
2231 if (ctx->ac.wave_size == 32)
2232 value = LLVMBuildZExt(ctx->ac.builder, value, ctx->i64, "");
2233 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2234 break;
2235 }
2236
2237 case TGSI_SEMANTIC_CS_USER_DATA_AMD:
2238 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2239 break;
2240
2241 default:
2242 assert(!"unknown system value");
2243 return;
2244 }
2245
2246 ctx->system_values[index] = value;
2247 }
2248
2249 void si_declare_compute_memory(struct si_shader_context *ctx)
2250 {
2251 struct si_shader_selector *sel = ctx->shader->selector;
2252 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2253
2254 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2255 LLVMValueRef var;
2256
2257 assert(!ctx->ac.lds);
2258
2259 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2260 LLVMArrayType(ctx->i8, lds_size),
2261 "compute_lds",
2262 AC_ADDR_SPACE_LDS);
2263 LLVMSetAlignment(var, 64 * 1024);
2264
2265 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2266 }
2267
2268 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2269 const struct tgsi_full_declaration *decl)
2270 {
2271 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2272 assert(decl->Range.First == decl->Range.Last);
2273
2274 si_declare_compute_memory(ctx);
2275 }
2276
2277 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2278 {
2279 LLVMValueRef ptr =
2280 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2281 struct si_shader_selector *sel = ctx->shader->selector;
2282
2283 /* Do the bounds checking with a descriptor, because
2284 * doing computation and manual bounds checking of 64-bit
2285 * addresses generates horrible VALU code with very high
2286 * VGPR usage and very low SIMD occupancy.
2287 */
2288 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2289
2290 LLVMValueRef desc0, desc1;
2291 desc0 = ptr;
2292 desc1 = LLVMConstInt(ctx->i32,
2293 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2294
2295 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2296 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2297 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2298 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2299
2300 if (ctx->screen->info.chip_class >= GFX10)
2301 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2302 S_008F0C_OOB_SELECT(3) |
2303 S_008F0C_RESOURCE_LEVEL(1);
2304 else
2305 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2306 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2307
2308 LLVMValueRef desc_elems[] = {
2309 desc0,
2310 desc1,
2311 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2312 LLVMConstInt(ctx->i32, rsrc3, false)
2313 };
2314
2315 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2316 }
2317
2318 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2319 {
2320 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2321 ctx->param_const_and_shader_buffers);
2322
2323 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2324 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2325 }
2326
2327 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2328 {
2329 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2330 struct si_shader_selector *sel = ctx->shader->selector;
2331
2332 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2333
2334 if (sel->info.const_buffers_declared == 1 &&
2335 sel->info.shader_buffers_declared == 0) {
2336 return load_const_buffer_desc_fast_path(ctx);
2337 }
2338
2339 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2340 index = LLVMBuildAdd(ctx->ac.builder, index,
2341 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2342
2343 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2344 }
2345
2346 static LLVMValueRef
2347 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2348 {
2349 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2350 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2351 ctx->param_const_and_shader_buffers);
2352
2353 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2354 index = LLVMBuildSub(ctx->ac.builder,
2355 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2356 index, "");
2357
2358 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2359 }
2360
2361 static LLVMValueRef fetch_constant(
2362 struct lp_build_tgsi_context *bld_base,
2363 const struct tgsi_full_src_register *reg,
2364 enum tgsi_opcode_type type,
2365 unsigned swizzle_in)
2366 {
2367 struct si_shader_context *ctx = si_shader_context(bld_base);
2368 struct si_shader_selector *sel = ctx->shader->selector;
2369 const struct tgsi_ind_register *ireg = &reg->Indirect;
2370 unsigned buf, idx;
2371 unsigned swizzle = swizzle_in & 0xffff;
2372
2373 LLVMValueRef addr, bufp;
2374
2375 if (swizzle_in == LP_CHAN_ALL) {
2376 unsigned chan;
2377 LLVMValueRef values[4];
2378 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2379 values[chan] = fetch_constant(bld_base, reg, type, chan);
2380
2381 return ac_build_gather_values(&ctx->ac, values, 4);
2382 }
2383
2384 /* Split 64-bit loads. */
2385 if (tgsi_type_is_64bit(type)) {
2386 LLVMValueRef lo, hi;
2387
2388 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2389 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2390 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2391 lo, hi);
2392 }
2393
2394 idx = reg->Register.Index * 4 + swizzle;
2395 if (reg->Register.Indirect) {
2396 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2397 } else {
2398 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2399 }
2400
2401 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2402 if (sel->info.const_buffers_declared == 1 &&
2403 sel->info.shader_buffers_declared == 0) {
2404 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2405 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2406 return bitcast(bld_base, type, result);
2407 }
2408
2409 assert(reg->Register.Dimension);
2410 buf = reg->Dimension.Index;
2411
2412 if (reg->Dimension.Indirect) {
2413 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2414 LLVMValueRef index;
2415 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2416 reg->Dimension.Index,
2417 ctx->num_const_buffers);
2418 index = LLVMBuildAdd(ctx->ac.builder, index,
2419 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2420 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2421 } else
2422 bufp = load_const_buffer_desc(ctx, buf);
2423
2424 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2425 }
2426
2427 /* Initialize arguments for the shader export intrinsic */
2428 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2429 LLVMValueRef *values,
2430 unsigned target,
2431 struct ac_export_args *args)
2432 {
2433 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2434 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2435 unsigned chan;
2436 bool is_int8, is_int10;
2437
2438 /* Default is 0xf. Adjusted below depending on the format. */
2439 args->enabled_channels = 0xf; /* writemask */
2440
2441 /* Specify whether the EXEC mask represents the valid mask */
2442 args->valid_mask = 0;
2443
2444 /* Specify whether this is the last export */
2445 args->done = 0;
2446
2447 /* Specify the target we are exporting */
2448 args->target = target;
2449
2450 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2451 const struct si_shader_key *key = &ctx->shader->key;
2452 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2453 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2454
2455 assert(cbuf >= 0 && cbuf < 8);
2456 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2457 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2458 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2459 }
2460
2461 args->compr = false;
2462 args->out[0] = f32undef;
2463 args->out[1] = f32undef;
2464 args->out[2] = f32undef;
2465 args->out[3] = f32undef;
2466
2467 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2468 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2469 unsigned bits, bool hi) = NULL;
2470
2471 switch (spi_shader_col_format) {
2472 case V_028714_SPI_SHADER_ZERO:
2473 args->enabled_channels = 0; /* writemask */
2474 args->target = V_008DFC_SQ_EXP_NULL;
2475 break;
2476
2477 case V_028714_SPI_SHADER_32_R:
2478 args->enabled_channels = 1; /* writemask */
2479 args->out[0] = values[0];
2480 break;
2481
2482 case V_028714_SPI_SHADER_32_GR:
2483 args->enabled_channels = 0x3; /* writemask */
2484 args->out[0] = values[0];
2485 args->out[1] = values[1];
2486 break;
2487
2488 case V_028714_SPI_SHADER_32_AR:
2489 if (ctx->screen->info.chip_class >= GFX10) {
2490 args->enabled_channels = 0x3; /* writemask */
2491 args->out[0] = values[0];
2492 args->out[1] = values[3];
2493 } else {
2494 args->enabled_channels = 0x9; /* writemask */
2495 args->out[0] = values[0];
2496 args->out[3] = values[3];
2497 }
2498 break;
2499
2500 case V_028714_SPI_SHADER_FP16_ABGR:
2501 packf = ac_build_cvt_pkrtz_f16;
2502 break;
2503
2504 case V_028714_SPI_SHADER_UNORM16_ABGR:
2505 packf = ac_build_cvt_pknorm_u16;
2506 break;
2507
2508 case V_028714_SPI_SHADER_SNORM16_ABGR:
2509 packf = ac_build_cvt_pknorm_i16;
2510 break;
2511
2512 case V_028714_SPI_SHADER_UINT16_ABGR:
2513 packi = ac_build_cvt_pk_u16;
2514 break;
2515
2516 case V_028714_SPI_SHADER_SINT16_ABGR:
2517 packi = ac_build_cvt_pk_i16;
2518 break;
2519
2520 case V_028714_SPI_SHADER_32_ABGR:
2521 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2522 break;
2523 }
2524
2525 /* Pack f16 or norm_i16/u16. */
2526 if (packf) {
2527 for (chan = 0; chan < 2; chan++) {
2528 LLVMValueRef pack_args[2] = {
2529 values[2 * chan],
2530 values[2 * chan + 1]
2531 };
2532 LLVMValueRef packed;
2533
2534 packed = packf(&ctx->ac, pack_args);
2535 args->out[chan] = ac_to_float(&ctx->ac, packed);
2536 }
2537 args->compr = 1; /* COMPR flag */
2538 }
2539 /* Pack i16/u16. */
2540 if (packi) {
2541 for (chan = 0; chan < 2; chan++) {
2542 LLVMValueRef pack_args[2] = {
2543 ac_to_integer(&ctx->ac, values[2 * chan]),
2544 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2545 };
2546 LLVMValueRef packed;
2547
2548 packed = packi(&ctx->ac, pack_args,
2549 is_int8 ? 8 : is_int10 ? 10 : 16,
2550 chan == 1);
2551 args->out[chan] = ac_to_float(&ctx->ac, packed);
2552 }
2553 args->compr = 1; /* COMPR flag */
2554 }
2555 }
2556
2557 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2558 LLVMValueRef alpha)
2559 {
2560 struct si_shader_context *ctx = si_shader_context(bld_base);
2561
2562 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2563 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2564 [PIPE_FUNC_LESS] = LLVMRealOLT,
2565 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2566 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2567 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2568 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2569 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2570 };
2571 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2572 assert(cond);
2573
2574 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2575 SI_PARAM_ALPHA_REF);
2576 LLVMValueRef alpha_pass =
2577 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2578 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2579 } else {
2580 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2581 }
2582 }
2583
2584 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2585 LLVMValueRef alpha,
2586 unsigned samplemask_param)
2587 {
2588 struct si_shader_context *ctx = si_shader_context(bld_base);
2589 LLVMValueRef coverage;
2590
2591 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2592 coverage = LLVMGetParam(ctx->main_fn,
2593 samplemask_param);
2594 coverage = ac_to_integer(&ctx->ac, coverage);
2595
2596 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2597 ctx->i32,
2598 &coverage, 1, AC_FUNC_ATTR_READNONE);
2599
2600 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2601 ctx->f32, "");
2602
2603 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2604 LLVMConstReal(ctx->f32,
2605 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2606
2607 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2608 }
2609
2610 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2611 struct ac_export_args *pos, LLVMValueRef *out_elts)
2612 {
2613 unsigned reg_index;
2614 unsigned chan;
2615 unsigned const_chan;
2616 LLVMValueRef base_elt;
2617 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2618 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2619 SI_VS_CONST_CLIP_PLANES, 0);
2620 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2621
2622 for (reg_index = 0; reg_index < 2; reg_index ++) {
2623 struct ac_export_args *args = &pos[2 + reg_index];
2624
2625 args->out[0] =
2626 args->out[1] =
2627 args->out[2] =
2628 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2629
2630 /* Compute dot products of position and user clip plane vectors */
2631 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2632 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2633 LLVMValueRef addr =
2634 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2635 const_chan) * 4, 0);
2636 base_elt = buffer_load_const(ctx, const_resource,
2637 addr);
2638 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2639 out_elts[const_chan], args->out[chan]);
2640 }
2641 }
2642
2643 args->enabled_channels = 0xf;
2644 args->valid_mask = 0;
2645 args->done = 0;
2646 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2647 args->compr = 0;
2648 }
2649 }
2650
2651 static void si_dump_streamout(struct pipe_stream_output_info *so)
2652 {
2653 unsigned i;
2654
2655 if (so->num_outputs)
2656 fprintf(stderr, "STREAMOUT\n");
2657
2658 for (i = 0; i < so->num_outputs; i++) {
2659 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2660 so->output[i].start_component;
2661 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2662 i, so->output[i].output_buffer,
2663 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2664 so->output[i].register_index,
2665 mask & 1 ? "x" : "",
2666 mask & 2 ? "y" : "",
2667 mask & 4 ? "z" : "",
2668 mask & 8 ? "w" : "");
2669 }
2670 }
2671
2672 void si_emit_streamout_output(struct si_shader_context *ctx,
2673 LLVMValueRef const *so_buffers,
2674 LLVMValueRef const *so_write_offsets,
2675 struct pipe_stream_output *stream_out,
2676 struct si_shader_output_values *shader_out)
2677 {
2678 unsigned buf_idx = stream_out->output_buffer;
2679 unsigned start = stream_out->start_component;
2680 unsigned num_comps = stream_out->num_components;
2681 LLVMValueRef out[4];
2682
2683 assert(num_comps && num_comps <= 4);
2684 if (!num_comps || num_comps > 4)
2685 return;
2686
2687 /* Load the output as int. */
2688 for (int j = 0; j < num_comps; j++) {
2689 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2690
2691 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2692 }
2693
2694 /* Pack the output. */
2695 LLVMValueRef vdata = NULL;
2696
2697 switch (num_comps) {
2698 case 1: /* as i32 */
2699 vdata = out[0];
2700 break;
2701 case 2: /* as v2i32 */
2702 case 3: /* as v3i32 */
2703 if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
2704 vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
2705 break;
2706 }
2707 /* as v4i32 (aligned to 4) */
2708 out[3] = LLVMGetUndef(ctx->i32);
2709 /* fall through */
2710 case 4: /* as v4i32 */
2711 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2712 break;
2713 }
2714
2715 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2716 vdata, num_comps,
2717 so_write_offsets[buf_idx],
2718 ctx->i32_0,
2719 stream_out->dst_offset * 4, ac_glc | ac_slc, false);
2720 }
2721
2722 /**
2723 * Write streamout data to buffers for vertex stream @p stream (different
2724 * vertex streams can occur for GS copy shaders).
2725 */
2726 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2727 struct si_shader_output_values *outputs,
2728 unsigned noutput, unsigned stream)
2729 {
2730 struct si_shader_selector *sel = ctx->shader->selector;
2731 struct pipe_stream_output_info *so = &sel->so;
2732 LLVMBuilderRef builder = ctx->ac.builder;
2733 int i;
2734
2735 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2736 LLVMValueRef so_vtx_count =
2737 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2738
2739 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2740
2741 /* can_emit = tid < so_vtx_count; */
2742 LLVMValueRef can_emit =
2743 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2744
2745 /* Emit the streamout code conditionally. This actually avoids
2746 * out-of-bounds buffer access. The hw tells us via the SGPR
2747 * (so_vtx_count) which threads are allowed to emit streamout data. */
2748 ac_build_ifcc(&ctx->ac, can_emit, 6501);
2749 {
2750 /* The buffer offset is computed as follows:
2751 * ByteOffset = streamout_offset[buffer_id]*4 +
2752 * (streamout_write_index + thread_id)*stride[buffer_id] +
2753 * attrib_offset
2754 */
2755
2756 LLVMValueRef so_write_index =
2757 LLVMGetParam(ctx->main_fn,
2758 ctx->param_streamout_write_index);
2759
2760 /* Compute (streamout_write_index + thread_id). */
2761 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2762
2763 /* Load the descriptor and compute the write offset for each
2764 * enabled buffer. */
2765 LLVMValueRef so_write_offset[4] = {};
2766 LLVMValueRef so_buffers[4];
2767 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2768 ctx->param_rw_buffers);
2769
2770 for (i = 0; i < 4; i++) {
2771 if (!so->stride[i])
2772 continue;
2773
2774 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2775 SI_VS_STREAMOUT_BUF0 + i, 0);
2776
2777 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2778
2779 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2780 ctx->param_streamout_offset[i]);
2781 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2782
2783 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2784 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2785 so_offset);
2786 }
2787
2788 /* Write streamout data. */
2789 for (i = 0; i < so->num_outputs; i++) {
2790 unsigned reg = so->output[i].register_index;
2791
2792 if (reg >= noutput)
2793 continue;
2794
2795 if (stream != so->output[i].stream)
2796 continue;
2797
2798 si_emit_streamout_output(ctx, so_buffers, so_write_offset,
2799 &so->output[i], &outputs[reg]);
2800 }
2801 }
2802 ac_build_endif(&ctx->ac, 6501);
2803 }
2804
2805 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2806 LLVMValueRef *values)
2807 {
2808 struct ac_export_args args;
2809
2810 si_llvm_init_export_args(ctx, values,
2811 V_008DFC_SQ_EXP_PARAM + index, &args);
2812 ac_build_export(&ctx->ac, &args);
2813 }
2814
2815 static void si_build_param_exports(struct si_shader_context *ctx,
2816 struct si_shader_output_values *outputs,
2817 unsigned noutput)
2818 {
2819 struct si_shader *shader = ctx->shader;
2820 unsigned param_count = 0;
2821
2822 for (unsigned i = 0; i < noutput; i++) {
2823 unsigned semantic_name = outputs[i].semantic_name;
2824 unsigned semantic_index = outputs[i].semantic_index;
2825
2826 if (outputs[i].vertex_stream[0] != 0 &&
2827 outputs[i].vertex_stream[1] != 0 &&
2828 outputs[i].vertex_stream[2] != 0 &&
2829 outputs[i].vertex_stream[3] != 0)
2830 continue;
2831
2832 switch (semantic_name) {
2833 case TGSI_SEMANTIC_LAYER:
2834 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2835 case TGSI_SEMANTIC_CLIPDIST:
2836 case TGSI_SEMANTIC_COLOR:
2837 case TGSI_SEMANTIC_BCOLOR:
2838 case TGSI_SEMANTIC_PRIMID:
2839 case TGSI_SEMANTIC_FOG:
2840 case TGSI_SEMANTIC_TEXCOORD:
2841 case TGSI_SEMANTIC_GENERIC:
2842 break;
2843 default:
2844 continue;
2845 }
2846
2847 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2848 semantic_index < SI_MAX_IO_GENERIC) &&
2849 shader->key.opt.kill_outputs &
2850 (1ull << si_shader_io_get_unique_index(semantic_name,
2851 semantic_index, true)))
2852 continue;
2853
2854 si_export_param(ctx, param_count, outputs[i].values);
2855
2856 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2857 shader->info.vs_output_param_offset[i] = param_count++;
2858 }
2859
2860 shader->info.nr_param_exports = param_count;
2861 }
2862
2863 /**
2864 * Vertex color clamping.
2865 *
2866 * This uses a state constant loaded in a user data SGPR and
2867 * an IF statement is added that clamps all colors if the constant
2868 * is true.
2869 */
2870 static void si_vertex_color_clamping(struct si_shader_context *ctx,
2871 struct si_shader_output_values *outputs,
2872 unsigned noutput)
2873 {
2874 LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
2875 bool has_colors = false;
2876
2877 /* Store original colors to alloca variables. */
2878 for (unsigned i = 0; i < noutput; i++) {
2879 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2880 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2881 continue;
2882
2883 for (unsigned j = 0; j < 4; j++) {
2884 addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
2885 LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
2886 }
2887 has_colors = true;
2888 }
2889
2890 if (!has_colors)
2891 return;
2892
2893 /* The state is in the first bit of the user SGPR. */
2894 LLVMValueRef cond = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2895 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");
2896
2897 ac_build_ifcc(&ctx->ac, cond, 6502);
2898
2899 /* Store clamped colors to alloca variables within the conditional block. */
2900 for (unsigned i = 0; i < noutput; i++) {
2901 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2902 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2903 continue;
2904
2905 for (unsigned j = 0; j < 4; j++) {
2906 LLVMBuildStore(ctx->ac.builder,
2907 ac_build_clamp(&ctx->ac, outputs[i].values[j]),
2908 addr[i][j]);
2909 }
2910 }
2911 ac_build_endif(&ctx->ac, 6502);
2912
2913 /* Load clamped colors */
2914 for (unsigned i = 0; i < noutput; i++) {
2915 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2916 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2917 continue;
2918
2919 for (unsigned j = 0; j < 4; j++) {
2920 outputs[i].values[j] =
2921 LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
2922 }
2923 }
2924 }
2925
2926 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2927 * (position and parameter data only).
2928 */
2929 void si_llvm_export_vs(struct si_shader_context *ctx,
2930 struct si_shader_output_values *outputs,
2931 unsigned noutput)
2932 {
2933 struct si_shader *shader = ctx->shader;
2934 struct ac_export_args pos_args[4] = {};
2935 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2936 unsigned pos_idx;
2937 int i;
2938
2939 si_vertex_color_clamping(ctx, outputs, noutput);
2940
2941 /* Build position exports. */
2942 for (i = 0; i < noutput; i++) {
2943 switch (outputs[i].semantic_name) {
2944 case TGSI_SEMANTIC_POSITION:
2945 si_llvm_init_export_args(ctx, outputs[i].values,
2946 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2947 break;
2948 case TGSI_SEMANTIC_PSIZE:
2949 psize_value = outputs[i].values[0];
2950 break;
2951 case TGSI_SEMANTIC_LAYER:
2952 layer_value = outputs[i].values[0];
2953 break;
2954 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2955 viewport_index_value = outputs[i].values[0];
2956 break;
2957 case TGSI_SEMANTIC_EDGEFLAG:
2958 edgeflag_value = outputs[i].values[0];
2959 break;
2960 case TGSI_SEMANTIC_CLIPDIST:
2961 if (!shader->key.opt.clip_disable) {
2962 unsigned index = 2 + outputs[i].semantic_index;
2963 si_llvm_init_export_args(ctx, outputs[i].values,
2964 V_008DFC_SQ_EXP_POS + index,
2965 &pos_args[index]);
2966 }
2967 break;
2968 case TGSI_SEMANTIC_CLIPVERTEX:
2969 if (!shader->key.opt.clip_disable) {
2970 si_llvm_emit_clipvertex(ctx, pos_args,
2971 outputs[i].values);
2972 }
2973 break;
2974 }
2975 }
2976
2977 /* We need to add the position output manually if it's missing. */
2978 if (!pos_args[0].out[0]) {
2979 pos_args[0].enabled_channels = 0xf; /* writemask */
2980 pos_args[0].valid_mask = 0; /* EXEC mask */
2981 pos_args[0].done = 0; /* last export? */
2982 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2983 pos_args[0].compr = 0; /* COMPR flag */
2984 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2985 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2986 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2987 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2988 }
2989
2990 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2991 if (shader->selector->info.writes_psize ||
2992 shader->selector->pos_writes_edgeflag ||
2993 shader->selector->info.writes_viewport_index ||
2994 shader->selector->info.writes_layer) {
2995 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2996 (shader->selector->pos_writes_edgeflag << 1) |
2997 (shader->selector->info.writes_layer << 2);
2998
2999 pos_args[1].valid_mask = 0; /* EXEC mask */
3000 pos_args[1].done = 0; /* last export? */
3001 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
3002 pos_args[1].compr = 0; /* COMPR flag */
3003 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
3004 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
3005 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
3006 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
3007
3008 if (shader->selector->info.writes_psize)
3009 pos_args[1].out[0] = psize_value;
3010
3011 if (shader->selector->pos_writes_edgeflag) {
3012 /* The output is a float, but the hw expects an integer
3013 * with the first bit containing the edge flag. */
3014 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
3015 edgeflag_value,
3016 ctx->i32, "");
3017 edgeflag_value = ac_build_umin(&ctx->ac,
3018 edgeflag_value,
3019 ctx->i32_1);
3020
3021 /* The LLVM intrinsic expects a float. */
3022 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
3023 }
3024
3025 if (ctx->screen->info.chip_class >= GFX9) {
3026 /* GFX9 has the layer in out.z[10:0] and the viewport
3027 * index in out.z[19:16].
3028 */
3029 if (shader->selector->info.writes_layer)
3030 pos_args[1].out[2] = layer_value;
3031
3032 if (shader->selector->info.writes_viewport_index) {
3033 LLVMValueRef v = viewport_index_value;
3034
3035 v = ac_to_integer(&ctx->ac, v);
3036 v = LLVMBuildShl(ctx->ac.builder, v,
3037 LLVMConstInt(ctx->i32, 16, 0), "");
3038 v = LLVMBuildOr(ctx->ac.builder, v,
3039 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3040 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3041 pos_args[1].enabled_channels |= 1 << 2;
3042 }
3043 } else {
3044 if (shader->selector->info.writes_layer)
3045 pos_args[1].out[2] = layer_value;
3046
3047 if (shader->selector->info.writes_viewport_index) {
3048 pos_args[1].out[3] = viewport_index_value;
3049 pos_args[1].enabled_channels |= 1 << 3;
3050 }
3051 }
3052 }
3053
3054 for (i = 0; i < 4; i++)
3055 if (pos_args[i].out[0])
3056 shader->info.nr_pos_exports++;
3057
3058 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
3059 * Setting valid_mask=1 prevents it and has no other effect.
3060 */
3061 if (ctx->screen->info.family == CHIP_NAVI10 ||
3062 ctx->screen->info.family == CHIP_NAVI12 ||
3063 ctx->screen->info.family == CHIP_NAVI14)
3064 pos_args[0].valid_mask = 1;
3065
3066 pos_idx = 0;
3067 for (i = 0; i < 4; i++) {
3068 if (!pos_args[i].out[0])
3069 continue;
3070
3071 /* Specify the target we are exporting */
3072 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3073
3074 if (pos_idx == shader->info.nr_pos_exports)
3075 /* Specify that this is the last export */
3076 pos_args[i].done = 1;
3077
3078 ac_build_export(&ctx->ac, &pos_args[i]);
3079 }
3080
3081 /* Build parameter exports. */
3082 si_build_param_exports(ctx, outputs, noutput);
3083 }
3084
3085 /**
3086 * Forward all outputs from the vertex shader to the TES. This is only used
3087 * for the fixed function TCS.
3088 */
3089 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3090 {
3091 struct si_shader_context *ctx = si_shader_context(bld_base);
3092 LLVMValueRef invocation_id, buffer, buffer_offset;
3093 LLVMValueRef lds_vertex_stride, lds_base;
3094 uint64_t inputs;
3095
3096 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3097 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3098 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3099
3100 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3101 lds_base = get_tcs_in_current_patch_offset(ctx);
3102 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3103 lds_base);
3104
3105 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3106 while (inputs) {
3107 unsigned i = u_bit_scan64(&inputs);
3108
3109 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3110 LLVMConstInt(ctx->i32, 4 * i, 0),
3111 "");
3112
3113 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3114 get_rel_patch_id(ctx),
3115 invocation_id,
3116 LLVMConstInt(ctx->i32, i, 0));
3117
3118 LLVMValueRef value = lshs_lds_load(bld_base, ctx->ac.i32, ~0, lds_ptr);
3119
3120 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3121 buffer_offset, 0, ac_glc, false);
3122 }
3123 }
3124
3125 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3126 LLVMValueRef rel_patch_id,
3127 LLVMValueRef invocation_id,
3128 LLVMValueRef tcs_out_current_patch_data_offset,
3129 LLVMValueRef invoc0_tf_outer[4],
3130 LLVMValueRef invoc0_tf_inner[2])
3131 {
3132 struct si_shader_context *ctx = si_shader_context(bld_base);
3133 struct si_shader *shader = ctx->shader;
3134 unsigned tess_inner_index, tess_outer_index;
3135 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3136 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3137 unsigned stride, outer_comps, inner_comps, i, offset;
3138
3139 /* Add a barrier before loading tess factors from LDS. */
3140 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3141 si_llvm_emit_barrier(NULL, bld_base, NULL);
3142
3143 /* Do this only for invocation 0, because the tess levels are per-patch,
3144 * not per-vertex.
3145 *
3146 * This can't jump, because invocation 0 executes this. It should
3147 * at least mask out the loads and stores for other invocations.
3148 */
3149 ac_build_ifcc(&ctx->ac,
3150 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3151 invocation_id, ctx->i32_0, ""), 6503);
3152
3153 /* Determine the layout of one tess factor element in the buffer. */
3154 switch (shader->key.part.tcs.epilog.prim_mode) {
3155 case PIPE_PRIM_LINES:
3156 stride = 2; /* 2 dwords, 1 vec2 store */
3157 outer_comps = 2;
3158 inner_comps = 0;
3159 break;
3160 case PIPE_PRIM_TRIANGLES:
3161 stride = 4; /* 4 dwords, 1 vec4 store */
3162 outer_comps = 3;
3163 inner_comps = 1;
3164 break;
3165 case PIPE_PRIM_QUADS:
3166 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3167 outer_comps = 4;
3168 inner_comps = 2;
3169 break;
3170 default:
3171 assert(0);
3172 return;
3173 }
3174
3175 for (i = 0; i < 4; i++) {
3176 inner[i] = LLVMGetUndef(ctx->i32);
3177 outer[i] = LLVMGetUndef(ctx->i32);
3178 }
3179
3180 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3181 /* Tess factors are in VGPRs. */
3182 for (i = 0; i < outer_comps; i++)
3183 outer[i] = out[i] = invoc0_tf_outer[i];
3184 for (i = 0; i < inner_comps; i++)
3185 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3186 } else {
3187 /* Load tess_inner and tess_outer from LDS.
3188 * Any invocation can write them, so we can't get them from a temporary.
3189 */
3190 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3191 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3192
3193 lds_base = tcs_out_current_patch_data_offset;
3194 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3195 LLVMConstInt(ctx->i32,
3196 tess_inner_index * 4, 0), "");
3197 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3198 LLVMConstInt(ctx->i32,
3199 tess_outer_index * 4, 0), "");
3200
3201 for (i = 0; i < outer_comps; i++) {
3202 outer[i] = out[i] =
3203 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3204 }
3205 for (i = 0; i < inner_comps; i++) {
3206 inner[i] = out[outer_comps+i] =
3207 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3208 }
3209 }
3210
3211 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3212 /* For isolines, the hardware expects tess factors in the
3213 * reverse order from what GLSL / TGSI specify.
3214 */
3215 LLVMValueRef tmp = out[0];
3216 out[0] = out[1];
3217 out[1] = tmp;
3218 }
3219
3220 /* Convert the outputs to vectors for stores. */
3221 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3222 vec1 = NULL;
3223
3224 if (stride > 4)
3225 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3226
3227 /* Get the buffer. */
3228 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3229
3230 /* Get the offset. */
3231 tf_base = LLVMGetParam(ctx->main_fn,
3232 ctx->param_tcs_factor_offset);
3233 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3234 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3235
3236 ac_build_ifcc(&ctx->ac,
3237 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3238 rel_patch_id, ctx->i32_0, ""), 6504);
3239
3240 /* Store the dynamic HS control word. */
3241 offset = 0;
3242 if (ctx->screen->info.chip_class <= GFX8) {
3243 ac_build_buffer_store_dword(&ctx->ac, buffer,
3244 LLVMConstInt(ctx->i32, 0x80000000, 0),
3245 1, ctx->i32_0, tf_base,
3246 offset, ac_glc, false);
3247 offset += 4;
3248 }
3249
3250 ac_build_endif(&ctx->ac, 6504);
3251
3252 /* Store the tessellation factors. */
3253 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3254 MIN2(stride, 4), byteoffset, tf_base,
3255 offset, ac_glc, false);
3256 offset += 16;
3257 if (vec1)
3258 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3259 stride - 4, byteoffset, tf_base,
3260 offset, ac_glc, false);
3261
3262 /* Store the tess factors into the offchip buffer if TES reads them. */
3263 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3264 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3265 LLVMValueRef tf_inner_offset;
3266 unsigned param_outer, param_inner;
3267
3268 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3269 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3270
3271 param_outer = si_shader_io_get_unique_index_patch(
3272 TGSI_SEMANTIC_TESSOUTER, 0);
3273 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3274 LLVMConstInt(ctx->i32, param_outer, 0));
3275
3276 unsigned outer_vec_size =
3277 ac_has_vec3_support(ctx->screen->info.chip_class, false) ?
3278 outer_comps : util_next_power_of_two(outer_comps);
3279 outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size);
3280
3281 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3282 outer_comps, tf_outer_offset,
3283 base, 0, ac_glc, false);
3284 if (inner_comps) {
3285 param_inner = si_shader_io_get_unique_index_patch(
3286 TGSI_SEMANTIC_TESSINNER, 0);
3287 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3288 LLVMConstInt(ctx->i32, param_inner, 0));
3289
3290 inner_vec = inner_comps == 1 ? inner[0] :
3291 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3292 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3293 inner_comps, tf_inner_offset,
3294 base, 0, ac_glc, false);
3295 }
3296 }
3297
3298 ac_build_endif(&ctx->ac, 6503);
3299 }
3300
3301 static LLVMValueRef
3302 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3303 unsigned param, unsigned return_index)
3304 {
3305 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3306 LLVMGetParam(ctx->main_fn, param),
3307 return_index, "");
3308 }
3309
3310 static LLVMValueRef
3311 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3312 unsigned param, unsigned return_index)
3313 {
3314 LLVMBuilderRef builder = ctx->ac.builder;
3315 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3316
3317 return LLVMBuildInsertValue(builder, ret,
3318 ac_to_float(&ctx->ac, p),
3319 return_index, "");
3320 }
3321
3322 static LLVMValueRef
3323 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3324 unsigned param, unsigned return_index)
3325 {
3326 LLVMBuilderRef builder = ctx->ac.builder;
3327 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3328 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3329 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3330 }
3331
3332 /* This only writes the tessellation factor levels. */
3333 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3334 unsigned max_outputs,
3335 LLVMValueRef *addrs)
3336 {
3337 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3338 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3339 LLVMBuilderRef builder = ctx->ac.builder;
3340 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3341
3342 si_copy_tcs_inputs(bld_base);
3343
3344 rel_patch_id = get_rel_patch_id(ctx);
3345 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3346 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3347
3348 if (ctx->screen->info.chip_class >= GFX9) {
3349 LLVMBasicBlockRef blocks[2] = {
3350 LLVMGetInsertBlock(builder),
3351 ctx->merged_wrap_if_entry_block
3352 };
3353 LLVMValueRef values[2];
3354
3355 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
3356
3357 values[0] = rel_patch_id;
3358 values[1] = LLVMGetUndef(ctx->i32);
3359 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3360
3361 values[0] = tf_lds_offset;
3362 values[1] = LLVMGetUndef(ctx->i32);
3363 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3364
3365 values[0] = invocation_id;
3366 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3367 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3368 }
3369
3370 /* Return epilog parameters from this function. */
3371 LLVMValueRef ret = ctx->return_value;
3372 unsigned vgpr;
3373
3374 if (ctx->screen->info.chip_class >= GFX9) {
3375 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3376 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3377 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3378 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3379 /* Tess offchip and tess factor offsets are at the beginning. */
3380 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3381 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3382 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3383 } else {
3384 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3385 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3386 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3387 GFX6_SGPR_TCS_OUT_LAYOUT);
3388 /* Tess offchip and tess factor offsets are after user SGPRs. */
3389 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3390 GFX6_TCS_NUM_USER_SGPR);
3391 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3392 GFX6_TCS_NUM_USER_SGPR + 1);
3393 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3394 }
3395
3396 /* VGPRs */
3397 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3398 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3399 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3400
3401 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3402 * the invocation_id output does not alias the tcs_rel_ids input,
3403 * which saves a V_MOV on gfx9.
3404 */
3405 vgpr += 2;
3406
3407 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3408 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3409
3410 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3411 vgpr++; /* skip the tess factor LDS offset */
3412 for (unsigned i = 0; i < 6; i++) {
3413 LLVMValueRef value =
3414 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3415 value = ac_to_float(&ctx->ac, value);
3416 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3417 }
3418 } else {
3419 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3420 }
3421 ctx->return_value = ret;
3422 }
3423
3424 /* Pass TCS inputs from LS to TCS on GFX9. */
3425 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3426 {
3427 LLVMValueRef ret = ctx->return_value;
3428
3429 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3430 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3431 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3432 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3433 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3434 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3435
3436 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3437 8 + SI_SGPR_RW_BUFFERS);
3438 ret = si_insert_input_ptr(ctx, ret,
3439 ctx->param_bindless_samplers_and_images,
3440 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3441
3442 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3443 8 + SI_SGPR_VS_STATE_BITS);
3444
3445 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3446 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3447 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3448 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3449 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3450 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3451
3452 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3453 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3454 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3455 vgpr++, "");
3456 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3457 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3458 vgpr++, "");
3459 ctx->return_value = ret;
3460 }
3461
3462 /* Pass GS inputs from ES to GS on GFX9. */
3463 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3464 {
3465 LLVMBuilderRef builder = ctx->ac.builder;
3466 LLVMValueRef ret = ctx->return_value;
3467
3468 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3469 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3470 if (ctx->shader->key.as_ngg)
3471 ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
3472 else
3473 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3474 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3475 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3476
3477 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3478 8 + SI_SGPR_RW_BUFFERS);
3479 ret = si_insert_input_ptr(ctx, ret,
3480 ctx->param_bindless_samplers_and_images,
3481 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3482 if (ctx->screen->use_ngg) {
3483 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits,
3484 8 + SI_SGPR_VS_STATE_BITS);
3485 }
3486
3487 unsigned vgpr;
3488 if (ctx->type == PIPE_SHADER_VERTEX)
3489 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3490 else
3491 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3492
3493 for (unsigned i = 0; i < 5; i++) {
3494 unsigned param = ctx->param_gs_vtx01_offset + i;
3495 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3496 }
3497 ctx->return_value = ret;
3498 }
3499
3500 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3501 unsigned max_outputs,
3502 LLVMValueRef *addrs)
3503 {
3504 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3505 struct si_shader *shader = ctx->shader;
3506 struct tgsi_shader_info *info = &shader->selector->info;
3507 unsigned i, chan;
3508 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3509 ctx->param_rel_auto_id);
3510 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3511 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3512 vertex_dw_stride, "");
3513
3514 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3515 * its inputs from it. */
3516 for (i = 0; i < info->num_outputs; i++) {
3517 unsigned name = info->output_semantic_name[i];
3518 unsigned index = info->output_semantic_index[i];
3519
3520 /* The ARB_shader_viewport_layer_array spec contains the
3521 * following issue:
3522 *
3523 * 2) What happens if gl_ViewportIndex or gl_Layer is
3524 * written in the vertex shader and a geometry shader is
3525 * present?
3526 *
3527 * RESOLVED: The value written by the last vertex processing
3528 * stage is used. If the last vertex processing stage
3529 * (vertex, tessellation evaluation or geometry) does not
3530 * statically assign to gl_ViewportIndex or gl_Layer, index
3531 * or layer zero is assumed.
3532 *
3533 * So writes to those outputs in VS-as-LS are simply ignored.
3534 */
3535 if (name == TGSI_SEMANTIC_LAYER ||
3536 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3537 continue;
3538
3539 int param = si_shader_io_get_unique_index(name, index, false);
3540 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3541 LLVMConstInt(ctx->i32, param * 4, 0), "");
3542
3543 for (chan = 0; chan < 4; chan++) {
3544 if (!(info->output_usagemask[i] & (1 << chan)))
3545 continue;
3546
3547 lshs_lds_store(ctx, chan, dw_addr,
3548 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3549 }
3550 }
3551
3552 if (ctx->screen->info.chip_class >= GFX9)
3553 si_set_ls_return_value_for_tcs(ctx);
3554 }
3555
3556 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3557 unsigned max_outputs,
3558 LLVMValueRef *addrs)
3559 {
3560 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3561 struct si_shader *es = ctx->shader;
3562 struct tgsi_shader_info *info = &es->selector->info;
3563 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3564 ctx->param_es2gs_offset);
3565 LLVMValueRef lds_base = NULL;
3566 unsigned chan;
3567 int i;
3568
3569 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3570 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3571 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3572 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3573 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3574 LLVMBuildMul(ctx->ac.builder, wave_idx,
3575 LLVMConstInt(ctx->i32, ctx->ac.wave_size, false), ""), "");
3576 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3577 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3578 }
3579
3580 for (i = 0; i < info->num_outputs; i++) {
3581 int param;
3582
3583 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3584 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3585 continue;
3586
3587 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3588 info->output_semantic_index[i], false);
3589
3590 for (chan = 0; chan < 4; chan++) {
3591 if (!(info->output_usagemask[i] & (1 << chan)))
3592 continue;
3593
3594 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3595 out_val = ac_to_integer(&ctx->ac, out_val);
3596
3597 /* GFX9 has the ESGS ring in LDS. */
3598 if (ctx->screen->info.chip_class >= GFX9) {
3599 LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false);
3600 idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, "");
3601 ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val);
3602 continue;
3603 }
3604
3605 ac_build_buffer_store_dword(&ctx->ac,
3606 ctx->esgs_ring,
3607 out_val, 1, NULL, soffset,
3608 (4 * param + chan) * 4,
3609 ac_glc | ac_slc, true);
3610 }
3611 }
3612
3613 if (ctx->screen->info.chip_class >= GFX9)
3614 si_set_es_return_value_for_gs(ctx);
3615 }
3616
3617 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3618 {
3619 if (ctx->screen->info.chip_class >= GFX9)
3620 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3621 else
3622 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3623 }
3624
3625 static void emit_gs_epilogue(struct si_shader_context *ctx)
3626 {
3627 if (ctx->shader->key.as_ngg) {
3628 gfx10_ngg_gs_emit_epilogue(ctx);
3629 return;
3630 }
3631
3632 if (ctx->screen->info.chip_class >= GFX10)
3633 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
3634
3635 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3636 si_get_gs_wave_id(ctx));
3637
3638 if (ctx->screen->info.chip_class >= GFX9)
3639 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
3640 }
3641
3642 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3643 unsigned max_outputs,
3644 LLVMValueRef *addrs)
3645 {
3646 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3647 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3648
3649 assert(info->num_outputs <= max_outputs);
3650
3651 emit_gs_epilogue(ctx);
3652 }
3653
3654 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3655 {
3656 struct si_shader_context *ctx = si_shader_context(bld_base);
3657 emit_gs_epilogue(ctx);
3658 }
3659
3660 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3661 unsigned max_outputs,
3662 LLVMValueRef *addrs)
3663 {
3664 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3665 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3666 struct si_shader_output_values *outputs = NULL;
3667 int i,j;
3668
3669 assert(!ctx->shader->is_gs_copy_shader);
3670 assert(info->num_outputs <= max_outputs);
3671
3672 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3673
3674 for (i = 0; i < info->num_outputs; i++) {
3675 outputs[i].semantic_name = info->output_semantic_name[i];
3676 outputs[i].semantic_index = info->output_semantic_index[i];
3677
3678 for (j = 0; j < 4; j++) {
3679 outputs[i].values[j] =
3680 LLVMBuildLoad(ctx->ac.builder,
3681 addrs[4 * i + j],
3682 "");
3683 outputs[i].vertex_stream[j] =
3684 (info->output_streams[i] >> (2 * j)) & 3;
3685 }
3686 }
3687
3688 if (!ctx->screen->use_ngg_streamout &&
3689 ctx->shader->selector->so.num_outputs)
3690 si_llvm_emit_streamout(ctx, outputs, i, 0);
3691
3692 /* Export PrimitiveID. */
3693 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3694 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3695 outputs[i].semantic_index = 0;
3696 outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
3697 for (j = 1; j < 4; j++)
3698 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3699
3700 memset(outputs[i].vertex_stream, 0,
3701 sizeof(outputs[i].vertex_stream));
3702 i++;
3703 }
3704
3705 si_llvm_export_vs(ctx, outputs, i);
3706 FREE(outputs);
3707 }
3708
3709 static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
3710 unsigned max_outputs,
3711 LLVMValueRef *addrs)
3712 {
3713 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3714 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3715 LLVMValueRef pos[4] = {};
3716
3717 assert(info->num_outputs <= max_outputs);
3718
3719 for (unsigned i = 0; i < info->num_outputs; i++) {
3720 if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
3721 continue;
3722
3723 for (unsigned chan = 0; chan < 4; chan++)
3724 pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3725 break;
3726 }
3727 assert(pos[0] != NULL);
3728
3729 /* Return the position output. */
3730 LLVMValueRef ret = ctx->return_value;
3731 for (unsigned chan = 0; chan < 4; chan++)
3732 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
3733 ctx->return_value = ret;
3734 }
3735
3736 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3737 {
3738 struct si_shader_context *ctx = si_shader_context(bld_base);
3739
3740 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3741 &ctx->outputs[0][0]);
3742 }
3743
3744 struct si_ps_exports {
3745 unsigned num;
3746 struct ac_export_args args[10];
3747 };
3748
3749 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3750 LLVMValueRef depth, LLVMValueRef stencil,
3751 LLVMValueRef samplemask, struct si_ps_exports *exp)
3752 {
3753 struct si_shader_context *ctx = si_shader_context(bld_base);
3754 struct ac_export_args args;
3755
3756 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3757
3758 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3759 }
3760
3761 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3762 LLVMValueRef *color, unsigned index,
3763 unsigned samplemask_param,
3764 bool is_last, struct si_ps_exports *exp)
3765 {
3766 struct si_shader_context *ctx = si_shader_context(bld_base);
3767 int i;
3768
3769 /* Clamp color */
3770 if (ctx->shader->key.part.ps.epilog.clamp_color)
3771 for (i = 0; i < 4; i++)
3772 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3773
3774 /* Alpha to one */
3775 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3776 color[3] = ctx->ac.f32_1;
3777
3778 /* Alpha test */
3779 if (index == 0 &&
3780 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3781 si_alpha_test(bld_base, color[3]);
3782
3783 /* Line & polygon smoothing */
3784 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3785 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3786 samplemask_param);
3787
3788 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3789 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3790 struct ac_export_args args[8];
3791 int c, last = -1;
3792
3793 /* Get the export arguments, also find out what the last one is. */
3794 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3795 si_llvm_init_export_args(ctx, color,
3796 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3797 if (args[c].enabled_channels)
3798 last = c;
3799 }
3800
3801 /* Emit all exports. */
3802 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3803 if (is_last && last == c) {
3804 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3805 args[c].done = 1; /* DONE bit */
3806 } else if (!args[c].enabled_channels)
3807 continue; /* unnecessary NULL export */
3808
3809 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3810 }
3811 } else {
3812 struct ac_export_args args;
3813
3814 /* Export */
3815 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3816 &args);
3817 if (is_last) {
3818 args.valid_mask = 1; /* whether the EXEC mask is valid */
3819 args.done = 1; /* DONE bit */
3820 } else if (!args.enabled_channels)
3821 return; /* unnecessary NULL export */
3822
3823 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3824 }
3825 }
3826
3827 static void si_emit_ps_exports(struct si_shader_context *ctx,
3828 struct si_ps_exports *exp)
3829 {
3830 for (unsigned i = 0; i < exp->num; i++)
3831 ac_build_export(&ctx->ac, &exp->args[i]);
3832 }
3833
3834 /**
3835 * Return PS outputs in this order:
3836 *
3837 * v[0:3] = color0.xyzw
3838 * v[4:7] = color1.xyzw
3839 * ...
3840 * vN+0 = Depth
3841 * vN+1 = Stencil
3842 * vN+2 = SampleMask
3843 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3844 *
3845 * The alpha-ref SGPR is returned via its original location.
3846 */
3847 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3848 unsigned max_outputs,
3849 LLVMValueRef *addrs)
3850 {
3851 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3852 struct si_shader *shader = ctx->shader;
3853 struct tgsi_shader_info *info = &shader->selector->info;
3854 LLVMBuilderRef builder = ctx->ac.builder;
3855 unsigned i, j, first_vgpr, vgpr;
3856
3857 LLVMValueRef color[8][4] = {};
3858 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3859 LLVMValueRef ret;
3860
3861 if (ctx->postponed_kill)
3862 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3863
3864 /* Read the output values. */
3865 for (i = 0; i < info->num_outputs; i++) {
3866 unsigned semantic_name = info->output_semantic_name[i];
3867 unsigned semantic_index = info->output_semantic_index[i];
3868
3869 switch (semantic_name) {
3870 case TGSI_SEMANTIC_COLOR:
3871 assert(semantic_index < 8);
3872 for (j = 0; j < 4; j++) {
3873 LLVMValueRef ptr = addrs[4 * i + j];
3874 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3875 color[semantic_index][j] = result;
3876 }
3877 break;
3878 case TGSI_SEMANTIC_POSITION:
3879 depth = LLVMBuildLoad(builder,
3880 addrs[4 * i + 2], "");
3881 break;
3882 case TGSI_SEMANTIC_STENCIL:
3883 stencil = LLVMBuildLoad(builder,
3884 addrs[4 * i + 1], "");
3885 break;
3886 case TGSI_SEMANTIC_SAMPLEMASK:
3887 samplemask = LLVMBuildLoad(builder,
3888 addrs[4 * i + 0], "");
3889 break;
3890 default:
3891 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
3892 semantic_name);
3893 }
3894 }
3895
3896 /* Fill the return structure. */
3897 ret = ctx->return_value;
3898
3899 /* Set SGPRs. */
3900 ret = LLVMBuildInsertValue(builder, ret,
3901 ac_to_integer(&ctx->ac,
3902 LLVMGetParam(ctx->main_fn,
3903 SI_PARAM_ALPHA_REF)),
3904 SI_SGPR_ALPHA_REF, "");
3905
3906 /* Set VGPRs */
3907 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3908 for (i = 0; i < ARRAY_SIZE(color); i++) {
3909 if (!color[i][0])
3910 continue;
3911
3912 for (j = 0; j < 4; j++)
3913 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3914 }
3915 if (depth)
3916 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3917 if (stencil)
3918 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3919 if (samplemask)
3920 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3921
3922 /* Add the input sample mask for smoothing at the end. */
3923 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3924 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3925 ret = LLVMBuildInsertValue(builder, ret,
3926 LLVMGetParam(ctx->main_fn,
3927 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3928
3929 ctx->return_value = ret;
3930 }
3931
3932 static void membar_emit(
3933 const struct lp_build_tgsi_action *action,
3934 struct lp_build_tgsi_context *bld_base,
3935 struct lp_build_emit_data *emit_data)
3936 {
3937 struct si_shader_context *ctx = si_shader_context(bld_base);
3938 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3939 unsigned flags = LLVMConstIntGetZExtValue(src0);
3940 unsigned wait_flags = 0;
3941
3942 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3943 wait_flags |= AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE;
3944
3945 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3946 TGSI_MEMBAR_SHADER_BUFFER |
3947 TGSI_MEMBAR_SHADER_IMAGE))
3948 wait_flags |= AC_WAIT_VLOAD | AC_WAIT_VSTORE;
3949
3950 if (flags & TGSI_MEMBAR_SHARED)
3951 wait_flags |= AC_WAIT_LGKM;
3952
3953 ac_build_waitcnt(&ctx->ac, wait_flags);
3954 }
3955
3956 static void clock_emit(
3957 const struct lp_build_tgsi_action *action,
3958 struct lp_build_tgsi_context *bld_base,
3959 struct lp_build_emit_data *emit_data)
3960 {
3961 struct si_shader_context *ctx = si_shader_context(bld_base);
3962 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3963
3964 emit_data->output[0] =
3965 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3966 emit_data->output[1] =
3967 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3968 }
3969
3970 static void si_llvm_emit_ddxy(
3971 const struct lp_build_tgsi_action *action,
3972 struct lp_build_tgsi_context *bld_base,
3973 struct lp_build_emit_data *emit_data)
3974 {
3975 struct si_shader_context *ctx = si_shader_context(bld_base);
3976 unsigned opcode = emit_data->info->opcode;
3977 LLVMValueRef val;
3978 int idx;
3979 unsigned mask;
3980
3981 if (opcode == TGSI_OPCODE_DDX_FINE)
3982 mask = AC_TID_MASK_LEFT;
3983 else if (opcode == TGSI_OPCODE_DDY_FINE)
3984 mask = AC_TID_MASK_TOP;
3985 else
3986 mask = AC_TID_MASK_TOP_LEFT;
3987
3988 /* for DDX we want to next X pixel, DDY next Y pixel. */
3989 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3990
3991 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3992 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3993 emit_data->output[emit_data->chan] = val;
3994 }
3995
3996 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3997 struct lp_build_tgsi_context *bld_base,
3998 struct lp_build_emit_data *emit_data)
3999 {
4000 struct si_shader_context *ctx = si_shader_context(bld_base);
4001 struct si_shader *shader = ctx->shader;
4002 const struct tgsi_shader_info *info = &shader->selector->info;
4003 LLVMValueRef interp_param;
4004 const struct tgsi_full_instruction *inst = emit_data->inst;
4005 const struct tgsi_full_src_register *input = &inst->Src[0];
4006 int input_base, input_array_size;
4007 int chan;
4008 int i;
4009 LLVMValueRef prim_mask = ctx->abi.prim_mask;
4010 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
4011 int interp_param_idx;
4012 unsigned interp;
4013 unsigned location;
4014
4015 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4016 /* offset is in second src, first two channels */
4017 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4018 TGSI_CHAN_X);
4019 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4020 TGSI_CHAN_Y);
4021 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4022 LLVMValueRef sample_position;
4023 LLVMValueRef sample_id;
4024 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4025
4026 /* fetch sample ID, then fetch its sample position,
4027 * and place into first two channels.
4028 */
4029 sample_id = lp_build_emit_fetch(bld_base,
4030 emit_data->inst, 1, TGSI_CHAN_X);
4031 sample_id = ac_to_integer(&ctx->ac, sample_id);
4032
4033 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4034 * Language 4.50 spec says about interpolateAtSample:
4035 *
4036 * "Returns the value of the input interpolant variable at
4037 * the location of sample number sample. If multisample
4038 * buffers are not available, the input variable will be
4039 * evaluated at the center of the pixel. If sample sample
4040 * does not exist, the position used to interpolate the
4041 * input variable is undefined."
4042 *
4043 * This means that sample_id values outside of the valid are
4044 * in fact valid input, and the usual mechanism for loading the
4045 * sample position doesn't work.
4046 */
4047 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4048 LLVMValueRef center[4] = {
4049 LLVMConstReal(ctx->f32, 0.5),
4050 LLVMConstReal(ctx->f32, 0.5),
4051 ctx->ac.f32_0,
4052 ctx->ac.f32_0,
4053 };
4054
4055 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4056 } else {
4057 sample_position = load_sample_position(&ctx->abi, sample_id);
4058 }
4059
4060 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4061 ctx->i32_0, "");
4062
4063 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4064 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4065 ctx->i32_1, "");
4066 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4067 }
4068
4069 assert(input->Register.File == TGSI_FILE_INPUT);
4070
4071 if (input->Register.Indirect) {
4072 unsigned array_id = input->Indirect.ArrayID;
4073
4074 if (array_id) {
4075 input_base = info->input_array_first[array_id];
4076 input_array_size = info->input_array_last[array_id] - input_base + 1;
4077 } else {
4078 input_base = inst->Src[0].Register.Index;
4079 input_array_size = info->num_inputs - input_base;
4080 }
4081
4082 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4083 1, input->Register.Index - input_base);
4084 } else {
4085 input_base = inst->Src[0].Register.Index;
4086 input_array_size = 1;
4087 array_idx = ctx->i32_0;
4088 }
4089
4090 interp = shader->selector->info.input_interpolate[input_base];
4091
4092 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4093 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4094 location = TGSI_INTERPOLATE_LOC_CENTER;
4095 else
4096 location = TGSI_INTERPOLATE_LOC_CENTROID;
4097
4098 interp_param_idx = lookup_interp_param_index(interp, location);
4099 if (interp_param_idx == -1)
4100 return;
4101 else if (interp_param_idx)
4102 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4103 else
4104 interp_param = NULL;
4105
4106 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4107 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4108 LLVMValueRef ij_out[2];
4109 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4110
4111 /*
4112 * take the I then J parameters, and the DDX/Y for it, and
4113 * calculate the IJ inputs for the interpolator.
4114 * temp1 = ddx * offset/sample.x + I;
4115 * interp_param.I = ddy * offset/sample.y + temp1;
4116 * temp1 = ddx * offset/sample.x + J;
4117 * interp_param.J = ddy * offset/sample.y + temp1;
4118 */
4119 for (i = 0; i < 2; i++) {
4120 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4121 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4122 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4123 ddxy_out, ix_ll, "");
4124 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4125 ddxy_out, iy_ll, "");
4126 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4127 interp_param, ix_ll, "");
4128 LLVMValueRef temp;
4129
4130 interp_el = ac_to_float(&ctx->ac, interp_el);
4131
4132 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4133 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4134 }
4135 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4136 }
4137
4138 if (interp_param)
4139 interp_param = ac_to_float(&ctx->ac, interp_param);
4140
4141 for (chan = 0; chan < 4; chan++) {
4142 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4143 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4144
4145 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4146 LLVMValueRef v, i = NULL, j = NULL;
4147
4148 if (interp_param) {
4149 i = LLVMBuildExtractElement(
4150 ctx->ac.builder, interp_param, ctx->i32_0, "");
4151 j = LLVMBuildExtractElement(
4152 ctx->ac.builder, interp_param, ctx->i32_1, "");
4153 }
4154 v = si_build_fs_interp(ctx, input_base + idx, schan,
4155 prim_mask, i, j);
4156
4157 gather = LLVMBuildInsertElement(ctx->ac.builder,
4158 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4159 }
4160
4161 emit_data->output[chan] = LLVMBuildExtractElement(
4162 ctx->ac.builder, gather, array_idx, "");
4163 }
4164 }
4165
4166 static void vote_all_emit(
4167 const struct lp_build_tgsi_action *action,
4168 struct lp_build_tgsi_context *bld_base,
4169 struct lp_build_emit_data *emit_data)
4170 {
4171 struct si_shader_context *ctx = si_shader_context(bld_base);
4172
4173 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4174 emit_data->output[emit_data->chan] =
4175 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4176 }
4177
4178 static void vote_any_emit(
4179 const struct lp_build_tgsi_action *action,
4180 struct lp_build_tgsi_context *bld_base,
4181 struct lp_build_emit_data *emit_data)
4182 {
4183 struct si_shader_context *ctx = si_shader_context(bld_base);
4184
4185 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4186 emit_data->output[emit_data->chan] =
4187 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4188 }
4189
4190 static void vote_eq_emit(
4191 const struct lp_build_tgsi_action *action,
4192 struct lp_build_tgsi_context *bld_base,
4193 struct lp_build_emit_data *emit_data)
4194 {
4195 struct si_shader_context *ctx = si_shader_context(bld_base);
4196
4197 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4198 emit_data->output[emit_data->chan] =
4199 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4200 }
4201
4202 static void ballot_emit(
4203 const struct lp_build_tgsi_action *action,
4204 struct lp_build_tgsi_context *bld_base,
4205 struct lp_build_emit_data *emit_data)
4206 {
4207 struct si_shader_context *ctx = si_shader_context(bld_base);
4208 LLVMBuilderRef builder = ctx->ac.builder;
4209 LLVMValueRef tmp;
4210
4211 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4212 tmp = ac_build_ballot(&ctx->ac, tmp);
4213
4214 emit_data->output[0] = LLVMBuildTrunc(builder, tmp, ctx->i32, "");
4215
4216 if (ctx->ac.wave_size == 32) {
4217 emit_data->output[1] = ctx->i32_0;
4218 } else {
4219 tmp = LLVMBuildLShr(builder, tmp, LLVMConstInt(ctx->i64, 32, 0), "");
4220 emit_data->output[1] = LLVMBuildTrunc(builder, tmp, ctx->i32, "");
4221 }
4222 }
4223
4224 static void read_lane_emit(
4225 const struct lp_build_tgsi_action *action,
4226 struct lp_build_tgsi_context *bld_base,
4227 struct lp_build_emit_data *emit_data)
4228 {
4229 struct si_shader_context *ctx = si_shader_context(bld_base);
4230
4231 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4232 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4233 0, emit_data->src_chan);
4234
4235 /* Always read the source invocation (= lane) from the X channel. */
4236 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4237 1, TGSI_CHAN_X);
4238 emit_data->arg_count = 2;
4239 }
4240
4241 /* We currently have no other way to prevent LLVM from lifting the icmp
4242 * calls to a dominating basic block.
4243 */
4244 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4245
4246 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4247 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4248
4249 emit_data->output[emit_data->chan] =
4250 ac_build_intrinsic(&ctx->ac, action->intr_name,
4251 ctx->i32, emit_data->args, emit_data->arg_count,
4252 AC_FUNC_ATTR_READNONE |
4253 AC_FUNC_ATTR_CONVERGENT);
4254 }
4255
4256 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4257 struct lp_build_emit_data *emit_data)
4258 {
4259 struct si_shader_context *ctx = si_shader_context(bld_base);
4260 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4261 LLVMValueRef imm;
4262 unsigned stream;
4263
4264 assert(src0.File == TGSI_FILE_IMMEDIATE);
4265
4266 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4267 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4268 return stream;
4269 }
4270
4271 /* Emit one vertex from the geometry shader */
4272 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4273 unsigned stream,
4274 LLVMValueRef *addrs)
4275 {
4276 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4277
4278 if (ctx->shader->key.as_ngg) {
4279 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
4280 return;
4281 }
4282
4283 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4284 struct si_shader *shader = ctx->shader;
4285 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4286 ctx->param_gs2vs_offset);
4287 LLVMValueRef gs_next_vertex;
4288 LLVMValueRef can_emit;
4289 unsigned chan, offset;
4290 int i;
4291
4292 /* Write vertex attribute values to GSVS ring */
4293 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4294 ctx->gs_next_vertex[stream],
4295 "");
4296
4297 /* If this thread has already emitted the declared maximum number of
4298 * vertices, skip the write: excessive vertex emissions are not
4299 * supposed to have any effect.
4300 *
4301 * If the shader has no writes to memory, kill it instead. This skips
4302 * further memory loads and may allow LLVM to skip to the end
4303 * altogether.
4304 */
4305 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4306 LLVMConstInt(ctx->i32,
4307 shader->selector->gs_max_out_vertices, 0), "");
4308
4309 bool use_kill = !info->writes_memory;
4310 if (use_kill) {
4311 ac_build_kill_if_false(&ctx->ac, can_emit);
4312 } else {
4313 ac_build_ifcc(&ctx->ac, can_emit, 6505);
4314 }
4315
4316 offset = 0;
4317 for (i = 0; i < info->num_outputs; i++) {
4318 for (chan = 0; chan < 4; chan++) {
4319 if (!(info->output_usagemask[i] & (1 << chan)) ||
4320 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4321 continue;
4322
4323 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4324 LLVMValueRef voffset =
4325 LLVMConstInt(ctx->i32, offset *
4326 shader->selector->gs_max_out_vertices, 0);
4327 offset++;
4328
4329 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4330 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4331 LLVMConstInt(ctx->i32, 4, 0), "");
4332
4333 out_val = ac_to_integer(&ctx->ac, out_val);
4334
4335 ac_build_buffer_store_dword(&ctx->ac,
4336 ctx->gsvs_ring[stream],
4337 out_val, 1,
4338 voffset, soffset, 0,
4339 ac_glc | ac_slc, true);
4340 }
4341 }
4342
4343 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4344 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4345
4346 /* Signal vertex emission if vertex data was written. */
4347 if (offset) {
4348 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4349 si_get_gs_wave_id(ctx));
4350 }
4351
4352 if (!use_kill)
4353 ac_build_endif(&ctx->ac, 6505);
4354 }
4355
4356 /* Emit one vertex from the geometry shader */
4357 static void si_tgsi_emit_vertex(
4358 const struct lp_build_tgsi_action *action,
4359 struct lp_build_tgsi_context *bld_base,
4360 struct lp_build_emit_data *emit_data)
4361 {
4362 struct si_shader_context *ctx = si_shader_context(bld_base);
4363 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4364
4365 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4366 }
4367
4368 /* Cut one primitive from the geometry shader */
4369 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4370 unsigned stream)
4371 {
4372 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4373
4374 if (ctx->shader->key.as_ngg) {
4375 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
4376 return;
4377 }
4378
4379 /* Signal primitive cut */
4380 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4381 si_get_gs_wave_id(ctx));
4382 }
4383
4384 /* Cut one primitive from the geometry shader */
4385 static void si_tgsi_emit_primitive(
4386 const struct lp_build_tgsi_action *action,
4387 struct lp_build_tgsi_context *bld_base,
4388 struct lp_build_emit_data *emit_data)
4389 {
4390 struct si_shader_context *ctx = si_shader_context(bld_base);
4391
4392 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4393 }
4394
4395 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4396 struct lp_build_tgsi_context *bld_base,
4397 struct lp_build_emit_data *emit_data)
4398 {
4399 struct si_shader_context *ctx = si_shader_context(bld_base);
4400
4401 /* GFX6 only (thanks to a hw bug workaround):
4402 * The real barrier instruction isn’t needed, because an entire patch
4403 * always fits into a single wave.
4404 */
4405 if (ctx->screen->info.chip_class == GFX6 &&
4406 ctx->type == PIPE_SHADER_TESS_CTRL) {
4407 ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
4408 return;
4409 }
4410
4411 ac_build_s_barrier(&ctx->ac);
4412 }
4413
4414 void si_create_function(struct si_shader_context *ctx,
4415 const char *name,
4416 LLVMTypeRef *returns, unsigned num_returns,
4417 struct si_function_info *fninfo,
4418 unsigned max_workgroup_size)
4419 {
4420 int i;
4421
4422 si_llvm_create_func(ctx, name, returns, num_returns,
4423 fninfo->types, fninfo->num_params);
4424 ctx->return_value = LLVMGetUndef(ctx->return_type);
4425
4426 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4427 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4428
4429 /* The combination of:
4430 * - noalias
4431 * - dereferenceable
4432 * - invariant.load
4433 * allows the optimization passes to move loads and reduces
4434 * SGPR spilling significantly.
4435 */
4436 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4437 AC_FUNC_ATTR_INREG);
4438
4439 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4440 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4441 AC_FUNC_ATTR_NOALIAS);
4442 ac_add_attr_dereferenceable(P, UINT64_MAX);
4443 }
4444 }
4445
4446 for (i = 0; i < fninfo->num_params; ++i) {
4447 if (fninfo->assign[i])
4448 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4449 }
4450
4451 if (ctx->screen->info.address32_hi) {
4452 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4453 "amdgpu-32bit-address-high-bits",
4454 ctx->screen->info.address32_hi);
4455 }
4456
4457 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
4458
4459 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4460 "no-signed-zeros-fp-math",
4461 "true");
4462 }
4463
4464 static void declare_streamout_params(struct si_shader_context *ctx,
4465 struct pipe_stream_output_info *so,
4466 struct si_function_info *fninfo)
4467 {
4468 if (ctx->screen->use_ngg_streamout)
4469 return;
4470
4471 /* Streamout SGPRs. */
4472 if (so->num_outputs) {
4473 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4474 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4475 else
4476 ctx->param_streamout_config = fninfo->num_params - 1;
4477
4478 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4479 }
4480 /* A streamout buffer offset is loaded if the stride is non-zero. */
4481 for (int i = 0; i < 4; i++) {
4482 if (!so->stride[i])
4483 continue;
4484
4485 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4486 }
4487 }
4488
4489 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4490 {
4491 switch (shader->selector->type) {
4492 case PIPE_SHADER_VERTEX:
4493 case PIPE_SHADER_TESS_EVAL:
4494 return shader->key.as_ngg ? 128 : 0;
4495
4496 case PIPE_SHADER_TESS_CTRL:
4497 /* Return this so that LLVM doesn't remove s_barrier
4498 * instructions on chips where we use s_barrier. */
4499 return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;
4500
4501 case PIPE_SHADER_GEOMETRY:
4502 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;
4503
4504 case PIPE_SHADER_COMPUTE:
4505 break; /* see below */
4506
4507 default:
4508 return 0;
4509 }
4510
4511 const unsigned *properties = shader->selector->info.properties;
4512 unsigned max_work_group_size =
4513 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4514 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4515 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4516
4517 if (!max_work_group_size) {
4518 /* This is a variable group size compute shader,
4519 * compile it for the maximum possible group size.
4520 */
4521 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4522 }
4523 return max_work_group_size;
4524 }
4525
4526 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4527 struct si_function_info *fninfo,
4528 bool assign_params)
4529 {
4530 LLVMTypeRef const_shader_buf_type;
4531
4532 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4533 ctx->shader->selector->info.shader_buffers_declared == 0)
4534 const_shader_buf_type = ctx->f32;
4535 else
4536 const_shader_buf_type = ctx->v4i32;
4537
4538 unsigned const_and_shader_buffers =
4539 add_arg(fninfo, ARG_SGPR,
4540 ac_array_in_const32_addr_space(const_shader_buf_type));
4541
4542 if (assign_params)
4543 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4544 }
4545
4546 static void declare_samplers_and_images(struct si_shader_context *ctx,
4547 struct si_function_info *fninfo,
4548 bool assign_params)
4549 {
4550 unsigned samplers_and_images =
4551 add_arg(fninfo, ARG_SGPR,
4552 ac_array_in_const32_addr_space(ctx->v8i32));
4553
4554 if (assign_params)
4555 ctx->param_samplers_and_images = samplers_and_images;
4556 }
4557
4558 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4559 struct si_function_info *fninfo,
4560 bool assign_params)
4561 {
4562 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4563 declare_samplers_and_images(ctx, fninfo, assign_params);
4564 }
4565
4566 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4567 struct si_function_info *fninfo)
4568 {
4569 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4570 ac_array_in_const32_addr_space(ctx->v4i32));
4571 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4572 ac_array_in_const32_addr_space(ctx->v8i32));
4573 }
4574
4575 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4576 struct si_function_info *fninfo)
4577 {
4578 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4579 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4580 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4581 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4582 }
4583
4584 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4585 struct si_function_info *fninfo,
4586 unsigned *num_prolog_vgprs)
4587 {
4588 struct si_shader *shader = ctx->shader;
4589
4590 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4591 if (shader->key.as_ls) {
4592 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4593 if (ctx->screen->info.chip_class >= GFX10) {
4594 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user VGPR */
4595 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4596 } else {
4597 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4598 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4599 }
4600 } else if (ctx->screen->info.chip_class >= GFX10) {
4601 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4602 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr or PrimID (legacy) */
4603 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4604 } else {
4605 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4606 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4607 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4608 }
4609
4610 if (!shader->is_gs_copy_shader) {
4611 /* Vertex load indices. */
4612 ctx->param_vertex_index0 = fninfo->num_params;
4613 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4614 add_arg(fninfo, ARG_VGPR, ctx->i32);
4615 *num_prolog_vgprs += shader->selector->info.num_inputs;
4616 }
4617 }
4618
4619 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4620 struct si_function_info *fninfo,
4621 unsigned vs_blit_property)
4622 {
4623 ctx->param_vs_blit_inputs = fninfo->num_params;
4624 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4625 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4626 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4627
4628 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4629 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4630 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4631 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4632 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4633 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4634 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4635 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4636 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4637 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4638 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4639 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4640 }
4641 }
4642
4643 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4644 struct si_function_info *fninfo)
4645 {
4646 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4647 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4648 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4649 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4650 }
4651
4652 enum {
4653 /* Convenient merged shader definitions. */
4654 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4655 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4656 };
4657
4658 static void create_function(struct si_shader_context *ctx)
4659 {
4660 struct si_shader *shader = ctx->shader;
4661 struct si_function_info fninfo;
4662 LLVMTypeRef returns[16+32*4];
4663 unsigned i, num_return_sgprs;
4664 unsigned num_returns = 0;
4665 unsigned num_prolog_vgprs = 0;
4666 unsigned type = ctx->type;
4667 unsigned vs_blit_property =
4668 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
4669
4670 si_init_function_info(&fninfo);
4671
4672 /* Set MERGED shaders. */
4673 if (ctx->screen->info.chip_class >= GFX9) {
4674 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4675 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4676 else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
4677 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4678 }
4679
4680 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4681
4682 switch (type) {
4683 case PIPE_SHADER_VERTEX:
4684 declare_global_desc_pointers(ctx, &fninfo);
4685
4686 if (vs_blit_property) {
4687 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4688
4689 /* VGPRs */
4690 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4691 break;
4692 }
4693
4694 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4695 declare_vs_specific_input_sgprs(ctx, &fninfo);
4696 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4697 ac_array_in_const32_addr_space(ctx->v4i32));
4698
4699 if (shader->key.as_es) {
4700 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4701 } else if (shader->key.as_ls) {
4702 /* no extra parameters */
4703 } else {
4704 if (shader->is_gs_copy_shader) {
4705 fninfo.num_params = ctx->param_vs_state_bits + 1;
4706 fninfo.num_sgpr_params = fninfo.num_params;
4707 }
4708
4709 /* The locations of the other parameters are assigned dynamically. */
4710 declare_streamout_params(ctx, &shader->selector->so,
4711 &fninfo);
4712 }
4713
4714 /* VGPRs */
4715 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4716
4717 /* Return values */
4718 if (shader->key.opt.vs_as_prim_discard_cs) {
4719 for (i = 0; i < 4; i++)
4720 returns[num_returns++] = ctx->f32; /* VGPRs */
4721 }
4722 break;
4723
4724 case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
4725 declare_global_desc_pointers(ctx, &fninfo);
4726 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4727 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4728 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4729 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4730 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4731 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4732 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4733
4734 /* VGPRs */
4735 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4736 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4737
4738 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4739 * placed after the user SGPRs.
4740 */
4741 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4742 returns[num_returns++] = ctx->i32; /* SGPRs */
4743 for (i = 0; i < 11; i++)
4744 returns[num_returns++] = ctx->f32; /* VGPRs */
4745 break;
4746
4747 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4748 /* Merged stages have 8 system SGPRs at the beginning. */
4749 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4750 declare_per_stage_desc_pointers(ctx, &fninfo,
4751 ctx->type == PIPE_SHADER_TESS_CTRL);
4752 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4753 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4754 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4755 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4756 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4757 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4758
4759 declare_global_desc_pointers(ctx, &fninfo);
4760 declare_per_stage_desc_pointers(ctx, &fninfo,
4761 ctx->type == PIPE_SHADER_VERTEX);
4762 declare_vs_specific_input_sgprs(ctx, &fninfo);
4763
4764 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4765 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4766 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4767 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4768 ac_array_in_const32_addr_space(ctx->v4i32));
4769
4770 /* VGPRs (first TCS, then VS) */
4771 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4772 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4773
4774 if (ctx->type == PIPE_SHADER_VERTEX) {
4775 declare_vs_input_vgprs(ctx, &fninfo,
4776 &num_prolog_vgprs);
4777
4778 /* LS return values are inputs to the TCS main shader part. */
4779 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4780 returns[num_returns++] = ctx->i32; /* SGPRs */
4781 for (i = 0; i < 2; i++)
4782 returns[num_returns++] = ctx->f32; /* VGPRs */
4783 } else {
4784 /* TCS return values are inputs to the TCS epilog.
4785 *
4786 * param_tcs_offchip_offset, param_tcs_factor_offset,
4787 * param_tcs_offchip_layout, and param_rw_buffers
4788 * should be passed to the epilog.
4789 */
4790 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4791 returns[num_returns++] = ctx->i32; /* SGPRs */
4792 for (i = 0; i < 11; i++)
4793 returns[num_returns++] = ctx->f32; /* VGPRs */
4794 }
4795 break;
4796
4797 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4798 /* Merged stages have 8 system SGPRs at the beginning. */
4799 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4800 declare_per_stage_desc_pointers(ctx, &fninfo,
4801 ctx->type == PIPE_SHADER_GEOMETRY);
4802
4803 if (ctx->shader->key.as_ngg)
4804 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
4805 else
4806 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4807
4808 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4809 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4810 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4811 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4812 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4813
4814 declare_global_desc_pointers(ctx, &fninfo);
4815 if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
4816 declare_per_stage_desc_pointers(ctx, &fninfo,
4817 (ctx->type == PIPE_SHADER_VERTEX ||
4818 ctx->type == PIPE_SHADER_TESS_EVAL));
4819 }
4820
4821 if (ctx->type == PIPE_SHADER_VERTEX) {
4822 if (vs_blit_property)
4823 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4824 else
4825 declare_vs_specific_input_sgprs(ctx, &fninfo);
4826 } else {
4827 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4828 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4829 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4830 /* Declare as many input SGPRs as the VS has. */
4831 }
4832
4833 if (ctx->type == PIPE_SHADER_VERTEX) {
4834 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4835 ac_array_in_const32_addr_space(ctx->v4i32));
4836 }
4837
4838 /* VGPRs (first GS, then VS/TES) */
4839 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4840 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4841 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4842 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4843 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4844
4845 if (ctx->type == PIPE_SHADER_VERTEX) {
4846 declare_vs_input_vgprs(ctx, &fninfo,
4847 &num_prolog_vgprs);
4848 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4849 declare_tes_input_vgprs(ctx, &fninfo);
4850 }
4851
4852 if (ctx->shader->key.as_es &&
4853 (ctx->type == PIPE_SHADER_VERTEX ||
4854 ctx->type == PIPE_SHADER_TESS_EVAL)) {
4855 unsigned num_user_sgprs;
4856
4857 if (ctx->type == PIPE_SHADER_VERTEX)
4858 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4859 else
4860 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4861
4862 /* ES return values are inputs to GS. */
4863 for (i = 0; i < 8 + num_user_sgprs; i++)
4864 returns[num_returns++] = ctx->i32; /* SGPRs */
4865 for (i = 0; i < 5; i++)
4866 returns[num_returns++] = ctx->f32; /* VGPRs */
4867 }
4868 break;
4869
4870 case PIPE_SHADER_TESS_EVAL:
4871 declare_global_desc_pointers(ctx, &fninfo);
4872 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4873 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4874 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4875 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4876
4877 if (shader->key.as_es) {
4878 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4879 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4880 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4881 } else {
4882 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4883 declare_streamout_params(ctx, &shader->selector->so,
4884 &fninfo);
4885 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4886 }
4887
4888 /* VGPRs */
4889 declare_tes_input_vgprs(ctx, &fninfo);
4890 break;
4891
4892 case PIPE_SHADER_GEOMETRY:
4893 declare_global_desc_pointers(ctx, &fninfo);
4894 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4895 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4896 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4897
4898 /* VGPRs */
4899 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4900 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4901 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4902 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4903 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4904 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4905 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4906 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4907 break;
4908
4909 case PIPE_SHADER_FRAGMENT:
4910 declare_global_desc_pointers(ctx, &fninfo);
4911 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4912 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4913 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4914 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4915
4916 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4917 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4918 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4919 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4920 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4921 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4922 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4923 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4924 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4925 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4926 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4927 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4928 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4929 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4930 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4931 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4932 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4933 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4934 shader->info.face_vgpr_index = 20;
4935 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4936 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4937 shader->info.ancillary_vgpr_index = 21;
4938 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4939 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4940 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4941
4942 /* Color inputs from the prolog. */
4943 if (shader->selector->info.colors_read) {
4944 unsigned num_color_elements =
4945 util_bitcount(shader->selector->info.colors_read);
4946
4947 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4948 for (i = 0; i < num_color_elements; i++)
4949 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4950
4951 num_prolog_vgprs += num_color_elements;
4952 }
4953
4954 /* Outputs for the epilog. */
4955 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4956 num_returns =
4957 num_return_sgprs +
4958 util_bitcount(shader->selector->info.colors_written) * 4 +
4959 shader->selector->info.writes_z +
4960 shader->selector->info.writes_stencil +
4961 shader->selector->info.writes_samplemask +
4962 1 /* SampleMaskIn */;
4963
4964 num_returns = MAX2(num_returns,
4965 num_return_sgprs +
4966 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4967
4968 for (i = 0; i < num_return_sgprs; i++)
4969 returns[i] = ctx->i32;
4970 for (; i < num_returns; i++)
4971 returns[i] = ctx->f32;
4972 break;
4973
4974 case PIPE_SHADER_COMPUTE:
4975 declare_global_desc_pointers(ctx, &fninfo);
4976 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4977 if (shader->selector->info.uses_grid_size)
4978 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4979 if (shader->selector->info.uses_block_size &&
4980 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4981 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4982
4983 unsigned cs_user_data_dwords =
4984 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_COMPONENTS_AMD];
4985 if (cs_user_data_dwords) {
4986 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4987 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4988 }
4989
4990 for (i = 0; i < 3; i++) {
4991 ctx->abi.workgroup_ids[i] = NULL;
4992 if (shader->selector->info.uses_block_id[i])
4993 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4994 }
4995
4996 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4997 break;
4998 default:
4999 assert(0 && "unimplemented shader");
5000 return;
5001 }
5002
5003 si_create_function(ctx, "main", returns, num_returns, &fninfo,
5004 si_get_max_workgroup_size(shader));
5005
5006 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5007 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
5008 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
5009 "InitialPSInputAddr",
5010 S_0286D0_PERSP_SAMPLE_ENA(1) |
5011 S_0286D0_PERSP_CENTER_ENA(1) |
5012 S_0286D0_PERSP_CENTROID_ENA(1) |
5013 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5014 S_0286D0_LINEAR_CENTER_ENA(1) |
5015 S_0286D0_LINEAR_CENTROID_ENA(1) |
5016 S_0286D0_FRONT_FACE_ENA(1) |
5017 S_0286D0_ANCILLARY_ENA(1) |
5018 S_0286D0_POS_FIXED_PT_ENA(1));
5019 }
5020
5021 shader->info.num_input_sgprs = 0;
5022 shader->info.num_input_vgprs = 0;
5023
5024 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5025 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5026
5027 for (; i < fninfo.num_params; ++i)
5028 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5029
5030 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5031 shader->info.num_input_vgprs -= num_prolog_vgprs;
5032
5033 if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
5034 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5035 /* The LSHS size is not known until draw time, so we append it
5036 * at the end of whatever LDS use there may be in the rest of
5037 * the shader (currently none, unless LLVM decides to do its
5038 * own LDS-based lowering).
5039 */
5040 ctx->ac.lds = LLVMAddGlobalInAddressSpace(
5041 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5042 "__lds_end", AC_ADDR_SPACE_LDS);
5043 LLVMSetAlignment(ctx->ac.lds, 256);
5044 } else {
5045 ac_declare_lds_as_pointer(&ctx->ac);
5046 }
5047 }
5048 }
5049
5050 /* Ensure that the esgs ring is declared.
5051 *
5052 * We declare it with 64KB alignment as a hint that the
5053 * pointer value will always be 0.
5054 */
5055 static void declare_esgs_ring(struct si_shader_context *ctx)
5056 {
5057 if (ctx->esgs_ring)
5058 return;
5059
5060 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
5061
5062 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
5063 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5064 "esgs_ring",
5065 AC_ADDR_SPACE_LDS);
5066 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
5067 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
5068 }
5069
5070 /**
5071 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5072 * for later use.
5073 */
5074 static void preload_ring_buffers(struct si_shader_context *ctx)
5075 {
5076 LLVMBuilderRef builder = ctx->ac.builder;
5077
5078 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5079 ctx->param_rw_buffers);
5080
5081 if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) {
5082 if (ctx->screen->info.chip_class <= GFX8) {
5083 unsigned ring =
5084 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5085 : SI_ES_RING_ESGS;
5086 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5087
5088 ctx->esgs_ring =
5089 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5090 } else {
5091 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5092 /* Declare the ESGS ring as an explicit LDS symbol. */
5093 declare_esgs_ring(ctx);
5094 } else {
5095 ac_declare_lds_as_pointer(&ctx->ac);
5096 ctx->esgs_ring = ctx->ac.lds;
5097 }
5098 }
5099 }
5100
5101 if (ctx->shader->is_gs_copy_shader) {
5102 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5103
5104 ctx->gsvs_ring[0] =
5105 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5106 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5107 const struct si_shader_selector *sel = ctx->shader->selector;
5108 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5109 LLVMValueRef base_ring;
5110
5111 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5112
5113 /* The conceptual layout of the GSVS ring is
5114 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5115 * but the real memory layout is swizzled across
5116 * threads:
5117 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5118 * t16v0c0 ..
5119 * Override the buffer descriptor accordingly.
5120 */
5121 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5122 uint64_t stream_offset = 0;
5123
5124 for (unsigned stream = 0; stream < 4; ++stream) {
5125 unsigned num_components;
5126 unsigned stride;
5127 unsigned num_records;
5128 LLVMValueRef ring, tmp;
5129
5130 num_components = sel->info.num_stream_output_components[stream];
5131 if (!num_components)
5132 continue;
5133
5134 stride = 4 * num_components * sel->gs_max_out_vertices;
5135
5136 /* Limit on the stride field for <= GFX7. */
5137 assert(stride < (1 << 14));
5138
5139 num_records = ctx->ac.wave_size;
5140
5141 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5142 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5143 tmp = LLVMBuildAdd(builder, tmp,
5144 LLVMConstInt(ctx->i64,
5145 stream_offset, 0), "");
5146 stream_offset += stride * ctx->ac.wave_size;
5147
5148 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5149 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5150 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5151 tmp = LLVMBuildOr(builder, tmp,
5152 LLVMConstInt(ctx->i32,
5153 S_008F04_STRIDE(stride) |
5154 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5155 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5156 ring = LLVMBuildInsertElement(builder, ring,
5157 LLVMConstInt(ctx->i32, num_records, 0),
5158 LLVMConstInt(ctx->i32, 2, 0), "");
5159
5160 uint32_t rsrc3 =
5161 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5162 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5163 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5164 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5165 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5166 S_008F0C_ADD_TID_ENABLE(1);
5167
5168 if (ctx->ac.chip_class >= GFX10) {
5169 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5170 S_008F0C_OOB_SELECT(2) |
5171 S_008F0C_RESOURCE_LEVEL(1);
5172 } else {
5173 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5174 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5175 S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
5176 }
5177
5178 ring = LLVMBuildInsertElement(builder, ring,
5179 LLVMConstInt(ctx->i32, rsrc3, false),
5180 LLVMConstInt(ctx->i32, 3, 0), "");
5181
5182 ctx->gsvs_ring[stream] = ring;
5183 }
5184 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5185 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5186 }
5187 }
5188
5189 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5190 LLVMValueRef param_rw_buffers,
5191 unsigned param_pos_fixed_pt)
5192 {
5193 LLVMBuilderRef builder = ctx->ac.builder;
5194 LLVMValueRef slot, desc, offset, row, bit, address[2];
5195
5196 /* Use the fixed-point gl_FragCoord input.
5197 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5198 * per coordinate to get the repeating effect.
5199 */
5200 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5201 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5202
5203 /* Load the buffer descriptor. */
5204 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5205 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5206
5207 /* The stipple pattern is 32x32, each row has 32 bits. */
5208 offset = LLVMBuildMul(builder, address[1],
5209 LLVMConstInt(ctx->i32, 4, 0), "");
5210 row = buffer_load_const(ctx, desc, offset);
5211 row = ac_to_integer(&ctx->ac, row);
5212 bit = LLVMBuildLShr(builder, row, address[0], "");
5213 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5214 ac_build_kill_if_false(&ctx->ac, bit);
5215 }
5216
5217 /* For the UMR disassembler. */
5218 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5219 #define DEBUGGER_NUM_MARKERS 5
5220
5221 static bool si_shader_binary_open(struct si_screen *screen,
5222 struct si_shader *shader,
5223 struct ac_rtld_binary *rtld)
5224 {
5225 const struct si_shader_selector *sel = shader->selector;
5226 const char *part_elfs[5];
5227 size_t part_sizes[5];
5228 unsigned num_parts = 0;
5229
5230 #define add_part(shader_or_part) \
5231 if (shader_or_part) { \
5232 part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
5233 part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
5234 num_parts++; \
5235 }
5236
5237 add_part(shader->prolog);
5238 add_part(shader->previous_stage);
5239 add_part(shader->prolog2);
5240 add_part(shader);
5241 add_part(shader->epilog);
5242
5243 #undef add_part
5244
5245 struct ac_rtld_symbol lds_symbols[2];
5246 unsigned num_lds_symbols = 0;
5247
5248 if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
5249 (sel->type == PIPE_SHADER_GEOMETRY || shader->key.as_ngg)) {
5250 /* We add this symbol even on LLVM <= 8 to ensure that
5251 * shader->config.lds_size is set correctly below.
5252 */
5253 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5254 sym->name = "esgs_ring";
5255 sym->size = shader->gs_info.esgs_ring_size;
5256 sym->align = 64 * 1024;
5257 }
5258
5259 if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
5260 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5261 sym->name = "ngg_emit";
5262 sym->size = shader->ngg.ngg_emit_size * 4;
5263 sym->align = 4;
5264 }
5265
5266 bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
5267 .info = &screen->info,
5268 .options = {
5269 .halt_at_entry = screen->options.halt_shaders,
5270 },
5271 .shader_type = tgsi_processor_to_shader_stage(sel->type),
5272 .wave_size = si_get_shader_wave_size(shader),
5273 .num_parts = num_parts,
5274 .elf_ptrs = part_elfs,
5275 .elf_sizes = part_sizes,
5276 .num_shared_lds_symbols = num_lds_symbols,
5277 .shared_lds_symbols = lds_symbols });
5278
5279 if (rtld->lds_size > 0) {
5280 unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
5281 shader->config.lds_size =
5282 align(rtld->lds_size, alloc_granularity) / alloc_granularity;
5283 }
5284
5285 return ok;
5286 }
5287
5288 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
5289 {
5290 struct ac_rtld_binary rtld;
5291 si_shader_binary_open(screen, shader, &rtld);
5292 return rtld.rx_size;
5293 }
5294
5295 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
5296 {
5297 uint64_t *scratch_va = data;
5298
5299 if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
5300 *value = (uint32_t)*scratch_va;
5301 return true;
5302 }
5303 if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
5304 /* Enable scratch coalescing. */
5305 *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
5306 S_008F04_SWIZZLE_ENABLE(1);
5307 if (HAVE_LLVM < 0x0800) {
5308 /* Old LLVM created an R_ABS32_HI relocation for
5309 * this symbol. */
5310 *value <<= 32;
5311 }
5312 return true;
5313 }
5314
5315 return false;
5316 }
5317
5318 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
5319 uint64_t scratch_va)
5320 {
5321 struct ac_rtld_binary binary;
5322 if (!si_shader_binary_open(sscreen, shader, &binary))
5323 return false;
5324
5325 si_resource_reference(&shader->bo, NULL);
5326 shader->bo = si_aligned_buffer_create(&sscreen->b,
5327 sscreen->cpdma_prefetch_writes_memory ?
5328 0 : SI_RESOURCE_FLAG_READ_ONLY,
5329 PIPE_USAGE_IMMUTABLE,
5330 align(binary.rx_size, SI_CPDMA_ALIGNMENT),
5331 256);
5332 if (!shader->bo)
5333 return false;
5334
5335 /* Upload. */
5336 struct ac_rtld_upload_info u = {};
5337 u.binary = &binary;
5338 u.get_external_symbol = si_get_external_symbol;
5339 u.cb_data = &scratch_va;
5340 u.rx_va = shader->bo->gpu_address;
5341 u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5342 PIPE_TRANSFER_READ_WRITE |
5343 PIPE_TRANSFER_UNSYNCHRONIZED |
5344 RADEON_TRANSFER_TEMPORARY);
5345 if (!u.rx_ptr)
5346 return false;
5347
5348 bool ok = ac_rtld_upload(&u);
5349
5350 sscreen->ws->buffer_unmap(shader->bo->buf);
5351 ac_rtld_close(&binary);
5352
5353 return ok;
5354 }
5355
5356 static void si_shader_dump_disassembly(struct si_screen *screen,
5357 const struct si_shader_binary *binary,
5358 enum pipe_shader_type shader_type,
5359 unsigned wave_size,
5360 struct pipe_debug_callback *debug,
5361 const char *name, FILE *file)
5362 {
5363 struct ac_rtld_binary rtld_binary;
5364
5365 if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
5366 .info = &screen->info,
5367 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5368 .wave_size = wave_size,
5369 .num_parts = 1,
5370 .elf_ptrs = &binary->elf_buffer,
5371 .elf_sizes = &binary->elf_size }))
5372 return;
5373
5374 const char *disasm;
5375 size_t nbytes;
5376
5377 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
5378 goto out;
5379
5380 if (nbytes > INT_MAX)
5381 goto out;
5382
5383 if (debug && debug->debug_message) {
5384 /* Very long debug messages are cut off, so send the
5385 * disassembly one line at a time. This causes more
5386 * overhead, but on the plus side it simplifies
5387 * parsing of resulting logs.
5388 */
5389 pipe_debug_message(debug, SHADER_INFO,
5390 "Shader Disassembly Begin");
5391
5392 uint64_t line = 0;
5393 while (line < nbytes) {
5394 int count = nbytes - line;
5395 const char *nl = memchr(disasm + line, '\n', nbytes - line);
5396 if (nl)
5397 count = nl - (disasm + line);
5398
5399 if (count) {
5400 pipe_debug_message(debug, SHADER_INFO,
5401 "%.*s", count, disasm + line);
5402 }
5403
5404 line += count + 1;
5405 }
5406
5407 pipe_debug_message(debug, SHADER_INFO,
5408 "Shader Disassembly End");
5409 }
5410
5411 if (file) {
5412 fprintf(file, "Shader %s disassembly:\n", name);
5413 fprintf(file, "%*s", (int)nbytes, disasm);
5414 }
5415
5416 out:
5417 ac_rtld_close(&rtld_binary);
5418 }
5419
5420 static void si_calculate_max_simd_waves(struct si_shader *shader)
5421 {
5422 struct si_screen *sscreen = shader->selector->screen;
5423 struct ac_shader_config *conf = &shader->config;
5424 unsigned num_inputs = shader->selector->info.num_inputs;
5425 unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
5426 unsigned lds_per_wave = 0;
5427 unsigned max_simd_waves;
5428
5429 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5430
5431 /* Compute LDS usage for PS. */
5432 switch (shader->selector->type) {
5433 case PIPE_SHADER_FRAGMENT:
5434 /* The minimum usage per wave is (num_inputs * 48). The maximum
5435 * usage is (num_inputs * 48 * 16).
5436 * We can get anything in between and it varies between waves.
5437 *
5438 * The 48 bytes per input for a single primitive is equal to
5439 * 4 bytes/component * 4 components/input * 3 points.
5440 *
5441 * Other stages don't know the size at compile time or don't
5442 * allocate LDS per wave, but instead they do it per thread group.
5443 */
5444 lds_per_wave = conf->lds_size * lds_increment +
5445 align(num_inputs * 48, lds_increment);
5446 break;
5447 case PIPE_SHADER_COMPUTE:
5448 if (shader->selector) {
5449 unsigned max_workgroup_size =
5450 si_get_max_workgroup_size(shader);
5451 lds_per_wave = (conf->lds_size * lds_increment) /
5452 DIV_ROUND_UP(max_workgroup_size,
5453 sscreen->compute_wave_size);
5454 }
5455 break;
5456 default:;
5457 }
5458
5459 /* Compute the per-SIMD wave counts. */
5460 if (conf->num_sgprs) {
5461 max_simd_waves =
5462 MIN2(max_simd_waves,
5463 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5464 }
5465
5466 if (conf->num_vgprs)
5467 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5468
5469 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5470 * 16KB makes some SIMDs unoccupied). */
5471 if (lds_per_wave)
5472 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5473
5474 shader->info.max_simd_waves = max_simd_waves;
5475 }
5476
5477 void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
5478 struct si_shader *shader,
5479 struct pipe_debug_callback *debug)
5480 {
5481 const struct ac_shader_config *conf = &shader->config;
5482
5483 if (screen->options.debug_disassembly)
5484 si_shader_dump_disassembly(screen, &shader->binary,
5485 shader->selector->type,
5486 si_get_shader_wave_size(shader),
5487 debug, "main", NULL);
5488
5489 pipe_debug_message(debug, SHADER_INFO,
5490 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5491 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5492 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5493 conf->num_sgprs, conf->num_vgprs,
5494 si_get_shader_binary_size(screen, shader),
5495 conf->lds_size, conf->scratch_bytes_per_wave,
5496 shader->info.max_simd_waves, conf->spilled_sgprs,
5497 conf->spilled_vgprs, shader->info.private_mem_vgprs);
5498 }
5499
5500 static void si_shader_dump_stats(struct si_screen *sscreen,
5501 struct si_shader *shader,
5502 FILE *file,
5503 bool check_debug_option)
5504 {
5505 const struct ac_shader_config *conf = &shader->config;
5506
5507 if (!check_debug_option ||
5508 si_can_dump_shader(sscreen, shader->selector->type)) {
5509 if (shader->selector->type == PIPE_SHADER_FRAGMENT) {
5510 fprintf(file, "*** SHADER CONFIG ***\n"
5511 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5512 "SPI_PS_INPUT_ENA = 0x%04x\n",
5513 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5514 }
5515
5516 fprintf(file, "*** SHADER STATS ***\n"
5517 "SGPRS: %d\n"
5518 "VGPRS: %d\n"
5519 "Spilled SGPRs: %d\n"
5520 "Spilled VGPRs: %d\n"
5521 "Private memory VGPRs: %d\n"
5522 "Code Size: %d bytes\n"
5523 "LDS: %d blocks\n"
5524 "Scratch: %d bytes per wave\n"
5525 "Max Waves: %d\n"
5526 "********************\n\n\n",
5527 conf->num_sgprs, conf->num_vgprs,
5528 conf->spilled_sgprs, conf->spilled_vgprs,
5529 shader->info.private_mem_vgprs,
5530 si_get_shader_binary_size(sscreen, shader),
5531 conf->lds_size, conf->scratch_bytes_per_wave,
5532 shader->info.max_simd_waves);
5533 }
5534 }
5535
5536 const char *si_get_shader_name(const struct si_shader *shader)
5537 {
5538 switch (shader->selector->type) {
5539 case PIPE_SHADER_VERTEX:
5540 if (shader->key.as_es)
5541 return "Vertex Shader as ES";
5542 else if (shader->key.as_ls)
5543 return "Vertex Shader as LS";
5544 else if (shader->key.opt.vs_as_prim_discard_cs)
5545 return "Vertex Shader as Primitive Discard CS";
5546 else if (shader->key.as_ngg)
5547 return "Vertex Shader as ESGS";
5548 else
5549 return "Vertex Shader as VS";
5550 case PIPE_SHADER_TESS_CTRL:
5551 return "Tessellation Control Shader";
5552 case PIPE_SHADER_TESS_EVAL:
5553 if (shader->key.as_es)
5554 return "Tessellation Evaluation Shader as ES";
5555 else if (shader->key.as_ngg)
5556 return "Tessellation Evaluation Shader as ESGS";
5557 else
5558 return "Tessellation Evaluation Shader as VS";
5559 case PIPE_SHADER_GEOMETRY:
5560 if (shader->is_gs_copy_shader)
5561 return "GS Copy Shader as VS";
5562 else
5563 return "Geometry Shader";
5564 case PIPE_SHADER_FRAGMENT:
5565 return "Pixel Shader";
5566 case PIPE_SHADER_COMPUTE:
5567 return "Compute Shader";
5568 default:
5569 return "Unknown Shader";
5570 }
5571 }
5572
5573 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
5574 struct pipe_debug_callback *debug,
5575 FILE *file, bool check_debug_option)
5576 {
5577 enum pipe_shader_type shader_type = shader->selector->type;
5578
5579 if (!check_debug_option ||
5580 si_can_dump_shader(sscreen, shader_type))
5581 si_dump_shader_key(shader, file);
5582
5583 if (!check_debug_option && shader->binary.llvm_ir_string) {
5584 if (shader->previous_stage &&
5585 shader->previous_stage->binary.llvm_ir_string) {
5586 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5587 si_get_shader_name(shader));
5588 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5589 }
5590
5591 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5592 si_get_shader_name(shader));
5593 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5594 }
5595
5596 if (!check_debug_option ||
5597 (si_can_dump_shader(sscreen, shader_type) &&
5598 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5599 unsigned wave_size = si_get_shader_wave_size(shader);
5600
5601 fprintf(file, "\n%s:\n", si_get_shader_name(shader));
5602
5603 if (shader->prolog)
5604 si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
5605 shader_type, wave_size, debug, "prolog", file);
5606 if (shader->previous_stage)
5607 si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
5608 shader_type, wave_size, debug, "previous stage", file);
5609 if (shader->prolog2)
5610 si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
5611 shader_type, wave_size, debug, "prolog2", file);
5612
5613 si_shader_dump_disassembly(sscreen, &shader->binary, shader_type,
5614 wave_size, debug, "main", file);
5615
5616 if (shader->epilog)
5617 si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
5618 shader_type, wave_size, debug, "epilog", file);
5619 fprintf(file, "\n");
5620 }
5621
5622 si_shader_dump_stats(sscreen, shader, file, check_debug_option);
5623 }
5624
5625 static int si_compile_llvm(struct si_screen *sscreen,
5626 struct si_shader_binary *binary,
5627 struct ac_shader_config *conf,
5628 struct ac_llvm_compiler *compiler,
5629 LLVMModuleRef mod,
5630 struct pipe_debug_callback *debug,
5631 enum pipe_shader_type shader_type,
5632 unsigned wave_size,
5633 const char *name,
5634 bool less_optimized)
5635 {
5636 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5637
5638 if (si_can_dump_shader(sscreen, shader_type)) {
5639 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5640
5641 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5642 fprintf(stderr, "%s LLVM IR:\n\n", name);
5643 ac_dump_module(mod);
5644 fprintf(stderr, "\n");
5645 }
5646 }
5647
5648 if (sscreen->record_llvm_ir) {
5649 char *ir = LLVMPrintModuleToString(mod);
5650 binary->llvm_ir_string = strdup(ir);
5651 LLVMDisposeMessage(ir);
5652 }
5653
5654 if (!si_replace_shader(count, binary)) {
5655 unsigned r = si_llvm_compile(mod, binary, compiler, debug,
5656 less_optimized, wave_size);
5657 if (r)
5658 return r;
5659 }
5660
5661 struct ac_rtld_binary rtld;
5662 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
5663 .info = &sscreen->info,
5664 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5665 .wave_size = wave_size,
5666 .num_parts = 1,
5667 .elf_ptrs = &binary->elf_buffer,
5668 .elf_sizes = &binary->elf_size }))
5669 return -1;
5670
5671 bool ok = ac_rtld_read_config(&rtld, conf);
5672 ac_rtld_close(&rtld);
5673 if (!ok)
5674 return -1;
5675
5676 /* Enable 64-bit and 16-bit denormals, because there is no performance
5677 * cost.
5678 *
5679 * If denormals are enabled, all floating-point output modifiers are
5680 * ignored.
5681 *
5682 * Don't enable denormals for 32-bit floats, because:
5683 * - Floating-point output modifiers would be ignored by the hw.
5684 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5685 * have to stop using those.
5686 * - GFX6 & GFX7 would be very slow.
5687 */
5688 conf->float_mode |= V_00B028_FP_64_DENORMS;
5689
5690 return 0;
5691 }
5692
5693 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5694 {
5695 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5696 LLVMBuildRetVoid(ctx->ac.builder);
5697 else
5698 LLVMBuildRet(ctx->ac.builder, ret);
5699 }
5700
5701 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5702 struct si_shader *
5703 si_generate_gs_copy_shader(struct si_screen *sscreen,
5704 struct ac_llvm_compiler *compiler,
5705 struct si_shader_selector *gs_selector,
5706 struct pipe_debug_callback *debug)
5707 {
5708 struct si_shader_context ctx;
5709 struct si_shader *shader;
5710 LLVMBuilderRef builder;
5711 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5712 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5713 int i;
5714
5715
5716 shader = CALLOC_STRUCT(si_shader);
5717 if (!shader)
5718 return NULL;
5719
5720 /* We can leave the fence as permanently signaled because the GS copy
5721 * shader only becomes visible globally after it has been compiled. */
5722 util_queue_fence_init(&shader->ready);
5723
5724 shader->selector = gs_selector;
5725 shader->is_gs_copy_shader = true;
5726
5727 si_init_shader_ctx(&ctx, sscreen, compiler,
5728 si_get_wave_size(sscreen, PIPE_SHADER_VERTEX, false, false));
5729 ctx.shader = shader;
5730 ctx.type = PIPE_SHADER_VERTEX;
5731
5732 builder = ctx.ac.builder;
5733
5734 create_function(&ctx);
5735 preload_ring_buffers(&ctx);
5736
5737 LLVMValueRef voffset =
5738 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5739 LLVMConstInt(ctx.i32, 4, 0), "");
5740
5741 /* Fetch the vertex stream ID.*/
5742 LLVMValueRef stream_id;
5743
5744 if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs)
5745 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5746 else
5747 stream_id = ctx.i32_0;
5748
5749 /* Fill in output information. */
5750 for (i = 0; i < gsinfo->num_outputs; ++i) {
5751 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5752 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5753
5754 for (int chan = 0; chan < 4; chan++) {
5755 outputs[i].vertex_stream[chan] =
5756 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5757 }
5758 }
5759
5760 LLVMBasicBlockRef end_bb;
5761 LLVMValueRef switch_inst;
5762
5763 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5764 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5765
5766 for (int stream = 0; stream < 4; stream++) {
5767 LLVMBasicBlockRef bb;
5768 unsigned offset;
5769
5770 if (!gsinfo->num_stream_output_components[stream])
5771 continue;
5772
5773 if (stream > 0 && !gs_selector->so.num_outputs)
5774 continue;
5775
5776 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5777 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5778 LLVMPositionBuilderAtEnd(builder, bb);
5779
5780 /* Fetch vertex data from GSVS ring */
5781 offset = 0;
5782 for (i = 0; i < gsinfo->num_outputs; ++i) {
5783 for (unsigned chan = 0; chan < 4; chan++) {
5784 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5785 outputs[i].vertex_stream[chan] != stream) {
5786 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5787 continue;
5788 }
5789
5790 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5791 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5792 offset++;
5793
5794 outputs[i].values[chan] =
5795 ac_build_buffer_load(&ctx.ac,
5796 ctx.gsvs_ring[0], 1,
5797 ctx.i32_0, voffset,
5798 soffset, 0, ac_glc | ac_slc,
5799 true, false);
5800 }
5801 }
5802
5803 /* Streamout and exports. */
5804 if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs) {
5805 si_llvm_emit_streamout(&ctx, outputs,
5806 gsinfo->num_outputs,
5807 stream);
5808 }
5809
5810 if (stream == 0)
5811 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5812
5813 LLVMBuildBr(builder, end_bb);
5814 }
5815
5816 LLVMPositionBuilderAtEnd(builder, end_bb);
5817
5818 LLVMBuildRetVoid(ctx.ac.builder);
5819
5820 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5821 si_llvm_optimize_module(&ctx);
5822
5823 bool ok = false;
5824 if (si_compile_llvm(sscreen, &ctx.shader->binary,
5825 &ctx.shader->config, ctx.compiler,
5826 ctx.ac.module,
5827 debug, PIPE_SHADER_GEOMETRY, ctx.ac.wave_size,
5828 "GS Copy Shader", false) == 0) {
5829 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5830 fprintf(stderr, "GS Copy Shader:\n");
5831 si_shader_dump(sscreen, ctx.shader, debug, stderr, true);
5832
5833 if (!ctx.shader->config.scratch_bytes_per_wave)
5834 ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
5835 else
5836 ok = true;
5837 }
5838
5839 si_llvm_dispose(&ctx);
5840
5841 if (!ok) {
5842 FREE(shader);
5843 shader = NULL;
5844 } else {
5845 si_fix_resource_usage(sscreen, shader);
5846 }
5847 return shader;
5848 }
5849
5850 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5851 const struct si_vs_prolog_bits *prolog,
5852 const char *prefix, FILE *f)
5853 {
5854 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5855 prefix, prolog->instance_divisor_is_one);
5856 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5857 prefix, prolog->instance_divisor_is_fetched);
5858 fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n",
5859 prefix, prolog->unpack_instance_id_from_vertex_id);
5860 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5861 prefix, prolog->ls_vgpr_fix);
5862
5863 fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
5864 fprintf(f, " mono.vs.fix_fetch = {");
5865 for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
5866 union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
5867 if (i)
5868 fprintf(f, ", ");
5869 if (!fix.bits)
5870 fprintf(f, "0");
5871 else
5872 fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
5873 fix.u.num_channels_m1, fix.u.format);
5874 }
5875 fprintf(f, "}\n");
5876 }
5877
5878 static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
5879 {
5880 const struct si_shader_key *key = &shader->key;
5881 enum pipe_shader_type shader_type = shader->selector->type;
5882
5883 fprintf(f, "SHADER KEY\n");
5884
5885 switch (shader_type) {
5886 case PIPE_SHADER_VERTEX:
5887 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5888 "part.vs.prolog", f);
5889 fprintf(f, " as_es = %u\n", key->as_es);
5890 fprintf(f, " as_ls = %u\n", key->as_ls);
5891 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5892 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5893 key->mono.u.vs_export_prim_id);
5894 fprintf(f, " opt.vs_as_prim_discard_cs = %u\n",
5895 key->opt.vs_as_prim_discard_cs);
5896 fprintf(f, " opt.cs_prim_type = %s\n",
5897 tgsi_primitive_names[key->opt.cs_prim_type]);
5898 fprintf(f, " opt.cs_indexed = %u\n",
5899 key->opt.cs_indexed);
5900 fprintf(f, " opt.cs_instancing = %u\n",
5901 key->opt.cs_instancing);
5902 fprintf(f, " opt.cs_primitive_restart = %u\n",
5903 key->opt.cs_primitive_restart);
5904 fprintf(f, " opt.cs_provoking_vertex_first = %u\n",
5905 key->opt.cs_provoking_vertex_first);
5906 fprintf(f, " opt.cs_need_correct_orientation = %u\n",
5907 key->opt.cs_need_correct_orientation);
5908 fprintf(f, " opt.cs_cull_front = %u\n",
5909 key->opt.cs_cull_front);
5910 fprintf(f, " opt.cs_cull_back = %u\n",
5911 key->opt.cs_cull_back);
5912 fprintf(f, " opt.cs_cull_z = %u\n",
5913 key->opt.cs_cull_z);
5914 fprintf(f, " opt.cs_halfz_clip_space = %u\n",
5915 key->opt.cs_halfz_clip_space);
5916 break;
5917
5918 case PIPE_SHADER_TESS_CTRL:
5919 if (shader->selector->screen->info.chip_class >= GFX9) {
5920 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5921 "part.tcs.ls_prolog", f);
5922 }
5923 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5924 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5925 break;
5926
5927 case PIPE_SHADER_TESS_EVAL:
5928 fprintf(f, " as_es = %u\n", key->as_es);
5929 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5930 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5931 key->mono.u.vs_export_prim_id);
5932 break;
5933
5934 case PIPE_SHADER_GEOMETRY:
5935 if (shader->is_gs_copy_shader)
5936 break;
5937
5938 if (shader->selector->screen->info.chip_class >= GFX9 &&
5939 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5940 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5941 "part.gs.vs_prolog", f);
5942 }
5943 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5944 fprintf(f, " part.gs.prolog.gfx9_prev_is_vs = %u\n", key->part.gs.prolog.gfx9_prev_is_vs);
5945 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5946 break;
5947
5948 case PIPE_SHADER_COMPUTE:
5949 break;
5950
5951 case PIPE_SHADER_FRAGMENT:
5952 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5953 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5954 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5955 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5956 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5957 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5958 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5959 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5960 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5961 fprintf(f, " part.ps.prolog.samplemask_log_ps_iter = %u\n", key->part.ps.prolog.samplemask_log_ps_iter);
5962 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5963 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5964 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5965 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5966 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5967 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5968 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5969 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5970 fprintf(f, " mono.u.ps.interpolate_at_sample_force_center = %u\n", key->mono.u.ps.interpolate_at_sample_force_center);
5971 fprintf(f, " mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
5972 fprintf(f, " mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
5973 fprintf(f, " mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
5974 break;
5975
5976 default:
5977 assert(0);
5978 }
5979
5980 if ((shader_type == PIPE_SHADER_GEOMETRY ||
5981 shader_type == PIPE_SHADER_TESS_EVAL ||
5982 shader_type == PIPE_SHADER_VERTEX) &&
5983 !key->as_es && !key->as_ls) {
5984 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5985 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5986 }
5987 }
5988
5989 static void si_init_shader_ctx(struct si_shader_context *ctx,
5990 struct si_screen *sscreen,
5991 struct ac_llvm_compiler *compiler,
5992 unsigned wave_size)
5993 {
5994 struct lp_build_tgsi_context *bld_base;
5995
5996 si_llvm_context_init(ctx, sscreen, compiler, wave_size);
5997
5998 bld_base = &ctx->bld_base;
5999 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
6000
6001 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
6002 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
6003 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
6004
6005 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
6006
6007 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
6008
6009 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
6010 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
6011 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
6012 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
6013
6014 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
6015 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
6016 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
6017 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
6018 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
6019 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
6020 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6021 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6022
6023 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6024 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6025 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6026 }
6027
6028 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6029 {
6030 struct si_shader *shader = ctx->shader;
6031 struct tgsi_shader_info *info = &shader->selector->info;
6032
6033 if ((ctx->type != PIPE_SHADER_VERTEX &&
6034 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6035 shader->key.as_ls ||
6036 shader->key.as_es)
6037 return;
6038
6039 ac_optimize_vs_outputs(&ctx->ac,
6040 ctx->main_fn,
6041 shader->info.vs_output_param_offset,
6042 info->num_outputs,
6043 &shader->info.nr_param_exports);
6044 }
6045
6046 static void si_init_exec_from_input(struct si_shader_context *ctx,
6047 unsigned param, unsigned bitoffset)
6048 {
6049 LLVMValueRef args[] = {
6050 LLVMGetParam(ctx->main_fn, param),
6051 LLVMConstInt(ctx->i32, bitoffset, 0),
6052 };
6053 ac_build_intrinsic(&ctx->ac,
6054 "llvm.amdgcn.init.exec.from.input",
6055 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6056 }
6057
6058 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6059 const struct si_vs_prolog_bits *key)
6060 {
6061 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6062 * VS prolog. */
6063 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6064 }
6065
6066 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6067 {
6068 struct si_shader *shader = ctx->shader;
6069 struct si_shader_selector *sel = shader->selector;
6070 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6071
6072 // TODO clean all this up!
6073 switch (ctx->type) {
6074 case PIPE_SHADER_VERTEX:
6075 ctx->load_input = declare_input_vs;
6076 if (shader->key.as_ls)
6077 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6078 else if (shader->key.as_es)
6079 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6080 else if (shader->key.opt.vs_as_prim_discard_cs)
6081 ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
6082 else if (shader->key.as_ngg)
6083 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6084 else
6085 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6086 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6087 ctx->abi.load_base_vertex = get_base_vertex;
6088 break;
6089 case PIPE_SHADER_TESS_CTRL:
6090 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6091 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6092 ctx->abi.load_tess_level = si_load_tess_level;
6093 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6094 bld_base->emit_store = store_output_tcs;
6095 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6096 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6097 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6098 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6099 break;
6100 case PIPE_SHADER_TESS_EVAL:
6101 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6102 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6103 ctx->abi.load_tess_coord = si_load_tess_coord;
6104 ctx->abi.load_tess_level = si_load_tess_level;
6105 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6106 if (shader->key.as_es)
6107 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6108 else if (shader->key.as_ngg)
6109 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6110 else
6111 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6112 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6113 break;
6114 case PIPE_SHADER_GEOMETRY:
6115 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6116 ctx->abi.load_inputs = si_nir_load_input_gs;
6117 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6118 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6119 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6120 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6121 break;
6122 case PIPE_SHADER_FRAGMENT:
6123 ctx->load_input = declare_input_fs;
6124 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6125 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6126 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6127 ctx->abi.load_sample_position = load_sample_position;
6128 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6129 ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
6130 ctx->abi.emit_kill = si_llvm_emit_kill;
6131 break;
6132 case PIPE_SHADER_COMPUTE:
6133 ctx->abi.load_local_group_size = get_block_size;
6134 break;
6135 default:
6136 assert(!"Unsupported shader type");
6137 return false;
6138 }
6139
6140 ctx->abi.load_ubo = load_ubo;
6141 ctx->abi.load_ssbo = load_ssbo;
6142
6143 create_function(ctx);
6144 preload_ring_buffers(ctx);
6145
6146 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6147 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6148 for (unsigned i = 0; i < 6; i++) {
6149 ctx->invoc0_tess_factors[i] =
6150 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6151 }
6152 }
6153
6154 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6155 for (unsigned i = 0; i < 4; i++) {
6156 ctx->gs_next_vertex[i] =
6157 ac_build_alloca(&ctx->ac, ctx->i32, "");
6158 }
6159 if (shader->key.as_ngg) {
6160 for (unsigned i = 0; i < 4; ++i) {
6161 ctx->gs_curprim_verts[i] =
6162 ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
6163 ctx->gs_generated_prims[i] =
6164 ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
6165 }
6166
6167 unsigned scratch_size = 8;
6168 if (sel->so.num_outputs)
6169 scratch_size = 44;
6170
6171 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
6172 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6173 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6174 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
6175 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6176
6177 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6178 LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
6179 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
6180 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
6181 }
6182 }
6183
6184 if (ctx->type != PIPE_SHADER_GEOMETRY &&
6185 (shader->key.as_ngg && !shader->key.as_es)) {
6186 /* Unconditionally declare scratch space base for streamout and
6187 * vertex compaction. Whether space is actually allocated is
6188 * determined during linking / PM4 creation.
6189 *
6190 * Add an extra dword per vertex to ensure an odd stride, which
6191 * avoids bank conflicts for SoA accesses.
6192 */
6193 declare_esgs_ring(ctx);
6194
6195 /* This is really only needed when streamout and / or vertex
6196 * compaction is enabled.
6197 */
6198 LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
6199 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6200 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6201 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
6202 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6203 }
6204
6205 /* For GFX9 merged shaders:
6206 * - Set EXEC for the first shader. If the prolog is present, set
6207 * EXEC there instead.
6208 * - Add a barrier before the second shader.
6209 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6210 * an if-statement. This is required for correctness in geometry
6211 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6212 * GS_CUT messages.
6213 *
6214 * For monolithic merged shaders, the first shader is wrapped in an
6215 * if-block together with its prolog in si_build_wrapper_function.
6216 *
6217 * NGG vertex and tess eval shaders running as the last
6218 * vertex/geometry stage handle execution explicitly using
6219 * if-statements.
6220 */
6221 if (ctx->screen->info.chip_class >= GFX9) {
6222 if (!shader->is_monolithic &&
6223 sel->info.num_instructions > 1 && /* not empty shader */
6224 (shader->key.as_es || shader->key.as_ls) &&
6225 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6226 (ctx->type == PIPE_SHADER_VERTEX &&
6227 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6228 si_init_exec_from_input(ctx,
6229 ctx->param_merged_wave_info, 0);
6230 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6231 ctx->type == PIPE_SHADER_GEOMETRY ||
6232 (shader->key.as_ngg && !shader->key.as_es)) {
6233 LLVMValueRef num_threads;
6234 bool nested_barrier;
6235
6236 if (!shader->is_monolithic ||
6237 (ctx->type == PIPE_SHADER_TESS_EVAL &&
6238 (shader->key.as_ngg && !shader->key.as_es)))
6239 ac_init_exec_full_mask(&ctx->ac);
6240
6241 if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6242 ctx->type == PIPE_SHADER_GEOMETRY) {
6243 if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
6244 gfx10_ngg_gs_emit_prologue(ctx);
6245 nested_barrier = false;
6246 } else {
6247 nested_barrier = true;
6248 }
6249
6250 /* Number of patches / primitives */
6251 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6252 } else {
6253 /* Number of vertices */
6254 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
6255 nested_barrier = false;
6256 }
6257
6258 LLVMValueRef ena =
6259 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6260 ac_get_thread_id(&ctx->ac), num_threads, "");
6261
6262 ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
6263 ctx->merged_wrap_if_label = 11500;
6264 ac_build_ifcc(&ctx->ac, ena, ctx->merged_wrap_if_label);
6265
6266 if (nested_barrier) {
6267 /* Execute a barrier before the second shader in
6268 * a merged shader.
6269 *
6270 * Execute the barrier inside the conditional block,
6271 * so that empty waves can jump directly to s_endpgm,
6272 * which will also signal the barrier.
6273 *
6274 * This is possible in gfx9, because an empty wave
6275 * for the second shader does not participate in
6276 * the epilogue. With NGG, empty waves may still
6277 * be required to export data (e.g. GS output vertices),
6278 * so we cannot let them exit early.
6279 *
6280 * If the shader is TCS and the TCS epilog is present
6281 * and contains a barrier, it will wait there and then
6282 * reach s_endpgm.
6283 */
6284 si_llvm_emit_barrier(NULL, bld_base, NULL);
6285 }
6286 }
6287 }
6288
6289 if (sel->force_correct_derivs_after_kill) {
6290 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6291 /* true = don't kill. */
6292 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6293 ctx->postponed_kill);
6294 }
6295
6296 if (sel->tokens) {
6297 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6298 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6299 return false;
6300 }
6301 } else {
6302 if (!si_nir_build_llvm(ctx, sel->nir)) {
6303 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6304 return false;
6305 }
6306 }
6307
6308 si_llvm_build_ret(ctx, ctx->return_value);
6309 return true;
6310 }
6311
6312 /**
6313 * Compute the VS prolog key, which contains all the information needed to
6314 * build the VS prolog function, and set shader->info bits where needed.
6315 *
6316 * \param info Shader info of the vertex shader.
6317 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6318 * \param prolog_key Key of the VS prolog
6319 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6320 * \param key Output shader part key.
6321 */
6322 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6323 unsigned num_input_sgprs,
6324 const struct si_vs_prolog_bits *prolog_key,
6325 struct si_shader *shader_out,
6326 union si_shader_part_key *key)
6327 {
6328 memset(key, 0, sizeof(*key));
6329 key->vs_prolog.states = *prolog_key;
6330 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6331 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6332 key->vs_prolog.as_ls = shader_out->key.as_ls;
6333 key->vs_prolog.as_es = shader_out->key.as_es;
6334 key->vs_prolog.as_ngg = shader_out->key.as_ngg;
6335
6336 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6337 key->vs_prolog.as_ls = 1;
6338 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6339 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6340 key->vs_prolog.as_es = 1;
6341 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6342 } else if (shader_out->key.as_ngg) {
6343 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6344 }
6345
6346 /* Enable loading the InstanceID VGPR. */
6347 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6348
6349 if ((key->vs_prolog.states.instance_divisor_is_one |
6350 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6351 shader_out->info.uses_instanceid = true;
6352 }
6353
6354 /**
6355 * Compute the PS prolog key, which contains all the information needed to
6356 * build the PS prolog function, and set related bits in shader->config.
6357 */
6358 static void si_get_ps_prolog_key(struct si_shader *shader,
6359 union si_shader_part_key *key,
6360 bool separate_prolog)
6361 {
6362 struct tgsi_shader_info *info = &shader->selector->info;
6363
6364 memset(key, 0, sizeof(*key));
6365 key->ps_prolog.states = shader->key.part.ps.prolog;
6366 key->ps_prolog.colors_read = info->colors_read;
6367 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6368 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6369 key->ps_prolog.wqm = info->uses_derivatives &&
6370 (key->ps_prolog.colors_read ||
6371 key->ps_prolog.states.force_persp_sample_interp ||
6372 key->ps_prolog.states.force_linear_sample_interp ||
6373 key->ps_prolog.states.force_persp_center_interp ||
6374 key->ps_prolog.states.force_linear_center_interp ||
6375 key->ps_prolog.states.bc_optimize_for_persp ||
6376 key->ps_prolog.states.bc_optimize_for_linear);
6377 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6378
6379 if (info->colors_read) {
6380 unsigned *color = shader->selector->color_attr_index;
6381
6382 if (shader->key.part.ps.prolog.color_two_side) {
6383 /* BCOLORs are stored after the last input. */
6384 key->ps_prolog.num_interp_inputs = info->num_inputs;
6385 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6386 if (separate_prolog)
6387 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6388 }
6389
6390 for (unsigned i = 0; i < 2; i++) {
6391 unsigned interp = info->input_interpolate[color[i]];
6392 unsigned location = info->input_interpolate_loc[color[i]];
6393
6394 if (!(info->colors_read & (0xf << i*4)))
6395 continue;
6396
6397 key->ps_prolog.color_attr_index[i] = color[i];
6398
6399 if (shader->key.part.ps.prolog.flatshade_colors &&
6400 interp == TGSI_INTERPOLATE_COLOR)
6401 interp = TGSI_INTERPOLATE_CONSTANT;
6402
6403 switch (interp) {
6404 case TGSI_INTERPOLATE_CONSTANT:
6405 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6406 break;
6407 case TGSI_INTERPOLATE_PERSPECTIVE:
6408 case TGSI_INTERPOLATE_COLOR:
6409 /* Force the interpolation location for colors here. */
6410 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6411 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6412 if (shader->key.part.ps.prolog.force_persp_center_interp)
6413 location = TGSI_INTERPOLATE_LOC_CENTER;
6414
6415 switch (location) {
6416 case TGSI_INTERPOLATE_LOC_SAMPLE:
6417 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6418 if (separate_prolog) {
6419 shader->config.spi_ps_input_ena |=
6420 S_0286CC_PERSP_SAMPLE_ENA(1);
6421 }
6422 break;
6423 case TGSI_INTERPOLATE_LOC_CENTER:
6424 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6425 if (separate_prolog) {
6426 shader->config.spi_ps_input_ena |=
6427 S_0286CC_PERSP_CENTER_ENA(1);
6428 }
6429 break;
6430 case TGSI_INTERPOLATE_LOC_CENTROID:
6431 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6432 if (separate_prolog) {
6433 shader->config.spi_ps_input_ena |=
6434 S_0286CC_PERSP_CENTROID_ENA(1);
6435 }
6436 break;
6437 default:
6438 assert(0);
6439 }
6440 break;
6441 case TGSI_INTERPOLATE_LINEAR:
6442 /* Force the interpolation location for colors here. */
6443 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6444 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6445 if (shader->key.part.ps.prolog.force_linear_center_interp)
6446 location = TGSI_INTERPOLATE_LOC_CENTER;
6447
6448 /* The VGPR assignment for non-monolithic shaders
6449 * works because InitialPSInputAddr is set on the
6450 * main shader and PERSP_PULL_MODEL is never used.
6451 */
6452 switch (location) {
6453 case TGSI_INTERPOLATE_LOC_SAMPLE:
6454 key->ps_prolog.color_interp_vgpr_index[i] =
6455 separate_prolog ? 6 : 9;
6456 if (separate_prolog) {
6457 shader->config.spi_ps_input_ena |=
6458 S_0286CC_LINEAR_SAMPLE_ENA(1);
6459 }
6460 break;
6461 case TGSI_INTERPOLATE_LOC_CENTER:
6462 key->ps_prolog.color_interp_vgpr_index[i] =
6463 separate_prolog ? 8 : 11;
6464 if (separate_prolog) {
6465 shader->config.spi_ps_input_ena |=
6466 S_0286CC_LINEAR_CENTER_ENA(1);
6467 }
6468 break;
6469 case TGSI_INTERPOLATE_LOC_CENTROID:
6470 key->ps_prolog.color_interp_vgpr_index[i] =
6471 separate_prolog ? 10 : 13;
6472 if (separate_prolog) {
6473 shader->config.spi_ps_input_ena |=
6474 S_0286CC_LINEAR_CENTROID_ENA(1);
6475 }
6476 break;
6477 default:
6478 assert(0);
6479 }
6480 break;
6481 default:
6482 assert(0);
6483 }
6484 }
6485 }
6486 }
6487
6488 /**
6489 * Check whether a PS prolog is required based on the key.
6490 */
6491 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6492 {
6493 return key->ps_prolog.colors_read ||
6494 key->ps_prolog.states.force_persp_sample_interp ||
6495 key->ps_prolog.states.force_linear_sample_interp ||
6496 key->ps_prolog.states.force_persp_center_interp ||
6497 key->ps_prolog.states.force_linear_center_interp ||
6498 key->ps_prolog.states.bc_optimize_for_persp ||
6499 key->ps_prolog.states.bc_optimize_for_linear ||
6500 key->ps_prolog.states.poly_stipple ||
6501 key->ps_prolog.states.samplemask_log_ps_iter;
6502 }
6503
6504 /**
6505 * Compute the PS epilog key, which contains all the information needed to
6506 * build the PS epilog function.
6507 */
6508 static void si_get_ps_epilog_key(struct si_shader *shader,
6509 union si_shader_part_key *key)
6510 {
6511 struct tgsi_shader_info *info = &shader->selector->info;
6512 memset(key, 0, sizeof(*key));
6513 key->ps_epilog.colors_written = info->colors_written;
6514 key->ps_epilog.writes_z = info->writes_z;
6515 key->ps_epilog.writes_stencil = info->writes_stencil;
6516 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6517 key->ps_epilog.states = shader->key.part.ps.epilog;
6518 }
6519
6520 /**
6521 * Build the GS prolog function. Rotate the input vertices for triangle strips
6522 * with adjacency.
6523 */
6524 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6525 union si_shader_part_key *key)
6526 {
6527 unsigned num_sgprs, num_vgprs;
6528 struct si_function_info fninfo;
6529 LLVMBuilderRef builder = ctx->ac.builder;
6530 LLVMTypeRef returns[48];
6531 LLVMValueRef func, ret;
6532
6533 si_init_function_info(&fninfo);
6534
6535 if (ctx->screen->info.chip_class >= GFX9) {
6536 if (key->gs_prolog.states.gfx9_prev_is_vs)
6537 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6538 else
6539 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6540 num_vgprs = 5; /* ES inputs are not needed by GS */
6541 } else {
6542 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6543 num_vgprs = 8;
6544 }
6545
6546 for (unsigned i = 0; i < num_sgprs; ++i) {
6547 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6548 returns[i] = ctx->i32;
6549 }
6550
6551 for (unsigned i = 0; i < num_vgprs; ++i) {
6552 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6553 returns[num_sgprs + i] = ctx->f32;
6554 }
6555
6556 /* Create the function. */
6557 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6558 &fninfo, 0);
6559 func = ctx->main_fn;
6560
6561 /* Set the full EXEC mask for the prolog, because we are only fiddling
6562 * with registers here. The main shader part will set the correct EXEC
6563 * mask.
6564 */
6565 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6566 ac_init_exec_full_mask(&ctx->ac);
6567
6568 /* Copy inputs to outputs. This should be no-op, as the registers match,
6569 * but it will prevent the compiler from overwriting them unintentionally.
6570 */
6571 ret = ctx->return_value;
6572 for (unsigned i = 0; i < num_sgprs; i++) {
6573 LLVMValueRef p = LLVMGetParam(func, i);
6574 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6575 }
6576 for (unsigned i = 0; i < num_vgprs; i++) {
6577 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6578 p = ac_to_float(&ctx->ac, p);
6579 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6580 }
6581
6582 if (key->gs_prolog.states.tri_strip_adj_fix) {
6583 /* Remap the input vertices for every other primitive. */
6584 const unsigned gfx6_vtx_params[6] = {
6585 num_sgprs,
6586 num_sgprs + 1,
6587 num_sgprs + 3,
6588 num_sgprs + 4,
6589 num_sgprs + 5,
6590 num_sgprs + 6
6591 };
6592 const unsigned gfx9_vtx_params[3] = {
6593 num_sgprs,
6594 num_sgprs + 1,
6595 num_sgprs + 4,
6596 };
6597 LLVMValueRef vtx_in[6], vtx_out[6];
6598 LLVMValueRef prim_id, rotate;
6599
6600 if (ctx->screen->info.chip_class >= GFX9) {
6601 for (unsigned i = 0; i < 3; i++) {
6602 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6603 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6604 }
6605 } else {
6606 for (unsigned i = 0; i < 6; i++)
6607 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6608 }
6609
6610 prim_id = LLVMGetParam(func, num_sgprs + 2);
6611 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6612
6613 for (unsigned i = 0; i < 6; ++i) {
6614 LLVMValueRef base, rotated;
6615 base = vtx_in[i];
6616 rotated = vtx_in[(i + 4) % 6];
6617 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6618 }
6619
6620 if (ctx->screen->info.chip_class >= GFX9) {
6621 for (unsigned i = 0; i < 3; i++) {
6622 LLVMValueRef hi, out;
6623
6624 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6625 LLVMConstInt(ctx->i32, 16, 0), "");
6626 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6627 out = ac_to_float(&ctx->ac, out);
6628 ret = LLVMBuildInsertValue(builder, ret, out,
6629 gfx9_vtx_params[i], "");
6630 }
6631 } else {
6632 for (unsigned i = 0; i < 6; i++) {
6633 LLVMValueRef out;
6634
6635 out = ac_to_float(&ctx->ac, vtx_out[i]);
6636 ret = LLVMBuildInsertValue(builder, ret, out,
6637 gfx6_vtx_params[i], "");
6638 }
6639 }
6640 }
6641
6642 LLVMBuildRet(builder, ret);
6643 }
6644
6645 /**
6646 * Given a list of shader part functions, build a wrapper function that
6647 * runs them in sequence to form a monolithic shader.
6648 */
6649 static void si_build_wrapper_function(struct si_shader_context *ctx,
6650 LLVMValueRef *parts,
6651 unsigned num_parts,
6652 unsigned main_part,
6653 unsigned next_shader_first_part)
6654 {
6655 LLVMBuilderRef builder = ctx->ac.builder;
6656 /* PS epilog has one arg per color component; gfx9 merged shader
6657 * prologs need to forward 32 user SGPRs.
6658 */
6659 struct si_function_info fninfo;
6660 LLVMValueRef initial[64], out[64];
6661 LLVMTypeRef function_type;
6662 unsigned num_first_params;
6663 unsigned num_out, initial_num_out;
6664 ASSERTED unsigned num_out_sgpr; /* used in debug checks */
6665 ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
6666 unsigned num_sgprs, num_vgprs;
6667 unsigned gprs;
6668
6669 si_init_function_info(&fninfo);
6670
6671 for (unsigned i = 0; i < num_parts; ++i) {
6672 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6673 AC_FUNC_ATTR_ALWAYSINLINE);
6674 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6675 }
6676
6677 /* The parameters of the wrapper function correspond to those of the
6678 * first part in terms of SGPRs and VGPRs, but we use the types of the
6679 * main part to get the right types. This is relevant for the
6680 * dereferenceable attribute on descriptor table pointers.
6681 */
6682 num_sgprs = 0;
6683 num_vgprs = 0;
6684
6685 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6686 num_first_params = LLVMCountParamTypes(function_type);
6687
6688 for (unsigned i = 0; i < num_first_params; ++i) {
6689 LLVMValueRef param = LLVMGetParam(parts[0], i);
6690
6691 if (ac_is_sgpr_param(param)) {
6692 assert(num_vgprs == 0);
6693 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6694 } else {
6695 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6696 }
6697 }
6698
6699 gprs = 0;
6700 while (gprs < num_sgprs + num_vgprs) {
6701 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6702 LLVMTypeRef type = LLVMTypeOf(param);
6703 unsigned size = ac_get_type_size(type) / 4;
6704
6705 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6706
6707 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6708 assert(gprs + size <= num_sgprs + num_vgprs &&
6709 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6710
6711 gprs += size;
6712 }
6713
6714 /* Prepare the return type. */
6715 unsigned num_returns = 0;
6716 LLVMTypeRef returns[32], last_func_type, return_type;
6717
6718 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
6719 return_type = LLVMGetReturnType(last_func_type);
6720
6721 switch (LLVMGetTypeKind(return_type)) {
6722 case LLVMStructTypeKind:
6723 num_returns = LLVMCountStructElementTypes(return_type);
6724 assert(num_returns <= ARRAY_SIZE(returns));
6725 LLVMGetStructElementTypes(return_type, returns);
6726 break;
6727 case LLVMVoidTypeKind:
6728 break;
6729 default:
6730 unreachable("unexpected type");
6731 }
6732
6733 si_create_function(ctx, "wrapper", returns, num_returns, &fninfo,
6734 si_get_max_workgroup_size(ctx->shader));
6735
6736 if (is_merged_shader(ctx))
6737 ac_init_exec_full_mask(&ctx->ac);
6738
6739 /* Record the arguments of the function as if they were an output of
6740 * a previous part.
6741 */
6742 num_out = 0;
6743 num_out_sgpr = 0;
6744
6745 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6746 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6747 LLVMTypeRef param_type = LLVMTypeOf(param);
6748 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6749 unsigned size = ac_get_type_size(param_type) / 4;
6750
6751 if (size == 1) {
6752 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6753 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6754 param_type = ctx->i32;
6755 }
6756
6757 if (param_type != out_type)
6758 param = LLVMBuildBitCast(builder, param, out_type, "");
6759 out[num_out++] = param;
6760 } else {
6761 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6762
6763 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6764 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6765 param_type = ctx->i64;
6766 }
6767
6768 if (param_type != vector_type)
6769 param = LLVMBuildBitCast(builder, param, vector_type, "");
6770
6771 for (unsigned j = 0; j < size; ++j)
6772 out[num_out++] = LLVMBuildExtractElement(
6773 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6774 }
6775
6776 if (i < fninfo.num_sgpr_params)
6777 num_out_sgpr = num_out;
6778 }
6779
6780 memcpy(initial, out, sizeof(out));
6781 initial_num_out = num_out;
6782 initial_num_out_sgpr = num_out_sgpr;
6783
6784 /* Now chain the parts. */
6785 LLVMValueRef ret = NULL;
6786 for (unsigned part = 0; part < num_parts; ++part) {
6787 LLVMValueRef in[48];
6788 LLVMTypeRef ret_type;
6789 unsigned out_idx = 0;
6790 unsigned num_params = LLVMCountParams(parts[part]);
6791
6792 /* Merged shaders are executed conditionally depending
6793 * on the number of enabled threads passed in the input SGPRs. */
6794 if (is_multi_part_shader(ctx) && part == 0) {
6795 LLVMValueRef ena, count = initial[3];
6796
6797 count = LLVMBuildAnd(builder, count,
6798 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6799 ena = LLVMBuildICmp(builder, LLVMIntULT,
6800 ac_get_thread_id(&ctx->ac), count, "");
6801 ac_build_ifcc(&ctx->ac, ena, 6506);
6802 }
6803
6804 /* Derive arguments for the next part from outputs of the
6805 * previous one.
6806 */
6807 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6808 LLVMValueRef param;
6809 LLVMTypeRef param_type;
6810 bool is_sgpr;
6811 unsigned param_size;
6812 LLVMValueRef arg = NULL;
6813
6814 param = LLVMGetParam(parts[part], param_idx);
6815 param_type = LLVMTypeOf(param);
6816 param_size = ac_get_type_size(param_type) / 4;
6817 is_sgpr = ac_is_sgpr_param(param);
6818
6819 if (is_sgpr) {
6820 ac_add_function_attr(ctx->ac.context, parts[part],
6821 param_idx + 1, AC_FUNC_ATTR_INREG);
6822 } else if (out_idx < num_out_sgpr) {
6823 /* Skip returned SGPRs the current part doesn't
6824 * declare on the input. */
6825 out_idx = num_out_sgpr;
6826 }
6827
6828 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6829
6830 if (param_size == 1)
6831 arg = out[out_idx];
6832 else
6833 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6834
6835 if (LLVMTypeOf(arg) != param_type) {
6836 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6837 if (LLVMGetPointerAddressSpace(param_type) ==
6838 AC_ADDR_SPACE_CONST_32BIT) {
6839 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6840 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6841 } else {
6842 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6843 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6844 }
6845 } else {
6846 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6847 }
6848 }
6849
6850 in[param_idx] = arg;
6851 out_idx += param_size;
6852 }
6853
6854 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
6855
6856 if (is_multi_part_shader(ctx) &&
6857 part + 1 == next_shader_first_part) {
6858 ac_build_endif(&ctx->ac, 6506);
6859
6860 /* The second half of the merged shader should use
6861 * the inputs from the toplevel (wrapper) function,
6862 * not the return value from the last call.
6863 *
6864 * That's because the last call was executed condi-
6865 * tionally, so we can't consume it in the main
6866 * block.
6867 */
6868 memcpy(out, initial, sizeof(initial));
6869 num_out = initial_num_out;
6870 num_out_sgpr = initial_num_out_sgpr;
6871 continue;
6872 }
6873
6874 /* Extract the returned GPRs. */
6875 ret_type = LLVMTypeOf(ret);
6876 num_out = 0;
6877 num_out_sgpr = 0;
6878
6879 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6880 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6881
6882 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6883
6884 for (unsigned i = 0; i < ret_size; ++i) {
6885 LLVMValueRef val =
6886 LLVMBuildExtractValue(builder, ret, i, "");
6887
6888 assert(num_out < ARRAY_SIZE(out));
6889 out[num_out++] = val;
6890
6891 if (LLVMTypeOf(val) == ctx->i32) {
6892 assert(num_out_sgpr + 1 == num_out);
6893 num_out_sgpr = num_out;
6894 }
6895 }
6896 }
6897 }
6898
6899 /* Return the value from the last part. */
6900 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6901 LLVMBuildRetVoid(builder);
6902 else
6903 LLVMBuildRet(builder, ret);
6904 }
6905
6906 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6907 struct si_shader_selector *sel)
6908 {
6909 if (!compiler->low_opt_passes)
6910 return false;
6911
6912 /* Assume a slow CPU. */
6913 assert(!sel->screen->info.has_dedicated_vram &&
6914 sel->screen->info.chip_class <= GFX8);
6915
6916 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6917 * buffer stores. */
6918 return sel->type == PIPE_SHADER_COMPUTE &&
6919 sel->info.num_memory_instructions > 1000;
6920 }
6921
6922 int si_compile_tgsi_shader(struct si_screen *sscreen,
6923 struct ac_llvm_compiler *compiler,
6924 struct si_shader *shader,
6925 struct pipe_debug_callback *debug)
6926 {
6927 struct si_shader_selector *sel = shader->selector;
6928 struct si_shader_context ctx;
6929 int r = -1;
6930
6931 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6932 * conversion fails. */
6933 if (si_can_dump_shader(sscreen, sel->type) &&
6934 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6935 if (sel->tokens)
6936 tgsi_dump(sel->tokens, 0);
6937 else
6938 nir_print_shader(sel->nir, stderr);
6939 si_dump_streamout(&sel->so);
6940 }
6941
6942 si_init_shader_ctx(&ctx, sscreen, compiler, si_get_shader_wave_size(shader));
6943 si_llvm_context_set_ir(&ctx, shader);
6944
6945 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6946 sizeof(shader->info.vs_output_param_offset));
6947
6948 shader->info.uses_instanceid = sel->info.uses_instanceid;
6949
6950 if (!si_compile_tgsi_main(&ctx)) {
6951 si_llvm_dispose(&ctx);
6952 return -1;
6953 }
6954
6955 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6956 LLVMValueRef parts[2];
6957 bool need_prolog = sel->vs_needs_prolog;
6958
6959 parts[1] = ctx.main_fn;
6960
6961 if (need_prolog) {
6962 union si_shader_part_key prolog_key;
6963 si_get_vs_prolog_key(&sel->info,
6964 shader->info.num_input_sgprs,
6965 &shader->key.part.vs.prolog,
6966 shader, &prolog_key);
6967 si_build_vs_prolog_function(&ctx, &prolog_key);
6968 parts[0] = ctx.main_fn;
6969 }
6970
6971 si_build_wrapper_function(&ctx, parts + !need_prolog,
6972 1 + need_prolog, need_prolog, 0);
6973
6974 if (ctx.shader->key.opt.vs_as_prim_discard_cs)
6975 si_build_prim_discard_compute_shader(&ctx);
6976 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6977 if (sscreen->info.chip_class >= GFX9) {
6978 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6979 LLVMValueRef parts[4];
6980 bool vs_needs_prolog =
6981 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6982
6983 /* TCS main part */
6984 parts[2] = ctx.main_fn;
6985
6986 /* TCS epilog */
6987 union si_shader_part_key tcs_epilog_key;
6988 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6989 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6990 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6991 parts[3] = ctx.main_fn;
6992
6993 /* VS as LS main part */
6994 struct si_shader shader_ls = {};
6995 shader_ls.selector = ls;
6996 shader_ls.key.as_ls = 1;
6997 shader_ls.key.mono = shader->key.mono;
6998 shader_ls.key.opt = shader->key.opt;
6999 shader_ls.is_monolithic = true;
7000 si_llvm_context_set_ir(&ctx, &shader_ls);
7001
7002 if (!si_compile_tgsi_main(&ctx)) {
7003 si_llvm_dispose(&ctx);
7004 return -1;
7005 }
7006 shader->info.uses_instanceid |= ls->info.uses_instanceid;
7007 parts[1] = ctx.main_fn;
7008
7009 /* LS prolog */
7010 if (vs_needs_prolog) {
7011 union si_shader_part_key vs_prolog_key;
7012 si_get_vs_prolog_key(&ls->info,
7013 shader_ls.info.num_input_sgprs,
7014 &shader->key.part.tcs.ls_prolog,
7015 shader, &vs_prolog_key);
7016 vs_prolog_key.vs_prolog.is_monolithic = true;
7017 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7018 parts[0] = ctx.main_fn;
7019 }
7020
7021 /* Reset the shader context. */
7022 ctx.shader = shader;
7023 ctx.type = PIPE_SHADER_TESS_CTRL;
7024
7025 si_build_wrapper_function(&ctx,
7026 parts + !vs_needs_prolog,
7027 4 - !vs_needs_prolog, vs_needs_prolog,
7028 vs_needs_prolog ? 2 : 1);
7029 } else {
7030 LLVMValueRef parts[2];
7031 union si_shader_part_key epilog_key;
7032
7033 parts[0] = ctx.main_fn;
7034
7035 memset(&epilog_key, 0, sizeof(epilog_key));
7036 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7037 si_build_tcs_epilog_function(&ctx, &epilog_key);
7038 parts[1] = ctx.main_fn;
7039
7040 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
7041 }
7042 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7043 if (ctx.screen->info.chip_class >= GFX9) {
7044 struct si_shader_selector *es = shader->key.part.gs.es;
7045 LLVMValueRef es_prolog = NULL;
7046 LLVMValueRef es_main = NULL;
7047 LLVMValueRef gs_prolog = NULL;
7048 LLVMValueRef gs_main = ctx.main_fn;
7049
7050 /* GS prolog */
7051 union si_shader_part_key gs_prolog_key;
7052 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
7053 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7054 gs_prolog_key.gs_prolog.is_monolithic = true;
7055 gs_prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
7056 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
7057 gs_prolog = ctx.main_fn;
7058
7059 /* ES main part */
7060 struct si_shader shader_es = {};
7061 shader_es.selector = es;
7062 shader_es.key.as_es = 1;
7063 shader_es.key.as_ngg = shader->key.as_ngg;
7064 shader_es.key.mono = shader->key.mono;
7065 shader_es.key.opt = shader->key.opt;
7066 shader_es.is_monolithic = true;
7067 si_llvm_context_set_ir(&ctx, &shader_es);
7068
7069 if (!si_compile_tgsi_main(&ctx)) {
7070 si_llvm_dispose(&ctx);
7071 return -1;
7072 }
7073 shader->info.uses_instanceid |= es->info.uses_instanceid;
7074 es_main = ctx.main_fn;
7075
7076 /* ES prolog */
7077 if (es->vs_needs_prolog) {
7078 union si_shader_part_key vs_prolog_key;
7079 si_get_vs_prolog_key(&es->info,
7080 shader_es.info.num_input_sgprs,
7081 &shader->key.part.gs.vs_prolog,
7082 shader, &vs_prolog_key);
7083 vs_prolog_key.vs_prolog.is_monolithic = true;
7084 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7085 es_prolog = ctx.main_fn;
7086 }
7087
7088 /* Reset the shader context. */
7089 ctx.shader = shader;
7090 ctx.type = PIPE_SHADER_GEOMETRY;
7091
7092 /* Prepare the array of shader parts. */
7093 LLVMValueRef parts[4];
7094 unsigned num_parts = 0, main_part, next_first_part;
7095
7096 if (es_prolog)
7097 parts[num_parts++] = es_prolog;
7098
7099 parts[main_part = num_parts++] = es_main;
7100 parts[next_first_part = num_parts++] = gs_prolog;
7101 parts[num_parts++] = gs_main;
7102
7103 si_build_wrapper_function(&ctx, parts, num_parts,
7104 main_part, next_first_part);
7105 } else {
7106 LLVMValueRef parts[2];
7107 union si_shader_part_key prolog_key;
7108
7109 parts[1] = ctx.main_fn;
7110
7111 memset(&prolog_key, 0, sizeof(prolog_key));
7112 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7113 si_build_gs_prolog_function(&ctx, &prolog_key);
7114 parts[0] = ctx.main_fn;
7115
7116 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
7117 }
7118 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7119 LLVMValueRef parts[3];
7120 union si_shader_part_key prolog_key;
7121 union si_shader_part_key epilog_key;
7122 bool need_prolog;
7123
7124 si_get_ps_prolog_key(shader, &prolog_key, false);
7125 need_prolog = si_need_ps_prolog(&prolog_key);
7126
7127 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7128
7129 if (need_prolog) {
7130 si_build_ps_prolog_function(&ctx, &prolog_key);
7131 parts[0] = ctx.main_fn;
7132 }
7133
7134 si_get_ps_epilog_key(shader, &epilog_key);
7135 si_build_ps_epilog_function(&ctx, &epilog_key);
7136 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7137
7138 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7139 need_prolog ? 1 : 0, 0);
7140 }
7141
7142 si_llvm_optimize_module(&ctx);
7143
7144 /* Post-optimization transformations and analysis. */
7145 si_optimize_vs_outputs(&ctx);
7146
7147 if ((debug && debug->debug_message) ||
7148 si_can_dump_shader(sscreen, ctx.type)) {
7149 ctx.shader->info.private_mem_vgprs =
7150 ac_count_scratch_private_memory(ctx.main_fn);
7151 }
7152
7153 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7154 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7155 LLVMPointerTypeKind);
7156
7157 /* Compile to bytecode. */
7158 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7159 ctx.ac.module, debug, ctx.type, ctx.ac.wave_size,
7160 si_get_shader_name(shader),
7161 si_should_optimize_less(compiler, shader->selector));
7162 si_llvm_dispose(&ctx);
7163 if (r) {
7164 fprintf(stderr, "LLVM failed to compile shader\n");
7165 return r;
7166 }
7167
7168 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7169 * LLVM 3.9svn has this bug.
7170 */
7171 if (sel->type == PIPE_SHADER_COMPUTE) {
7172 unsigned wave_size = sscreen->compute_wave_size;
7173 unsigned max_vgprs = 256;
7174 unsigned max_sgprs = sscreen->info.chip_class >= GFX8 ? 800 : 512;
7175 unsigned max_sgprs_per_wave = 128;
7176 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7177 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7178 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7179
7180 max_vgprs = max_vgprs / min_waves_per_simd;
7181 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7182
7183 if (shader->config.num_sgprs > max_sgprs ||
7184 shader->config.num_vgprs > max_vgprs) {
7185 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7186 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7187 shader->config.num_sgprs, shader->config.num_vgprs,
7188 max_sgprs, max_vgprs);
7189
7190 /* Just terminate the process, because dependent
7191 * shaders can hang due to bad input data, but use
7192 * the env var to allow shader-db to work.
7193 */
7194 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7195 abort();
7196 }
7197 }
7198
7199 /* Add the scratch offset to input SGPRs. */
7200 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
7201 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7202
7203 /* Calculate the number of fragment input VGPRs. */
7204 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7205 shader->info.num_input_vgprs = 0;
7206 shader->info.face_vgpr_index = -1;
7207 shader->info.ancillary_vgpr_index = -1;
7208
7209 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7210 shader->info.num_input_vgprs += 2;
7211 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7212 shader->info.num_input_vgprs += 2;
7213 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7214 shader->info.num_input_vgprs += 2;
7215 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7216 shader->info.num_input_vgprs += 3;
7217 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7218 shader->info.num_input_vgprs += 2;
7219 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7220 shader->info.num_input_vgprs += 2;
7221 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7222 shader->info.num_input_vgprs += 2;
7223 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7224 shader->info.num_input_vgprs += 1;
7225 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7226 shader->info.num_input_vgprs += 1;
7227 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7228 shader->info.num_input_vgprs += 1;
7229 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7230 shader->info.num_input_vgprs += 1;
7231 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7232 shader->info.num_input_vgprs += 1;
7233 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7234 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7235 shader->info.num_input_vgprs += 1;
7236 }
7237 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7238 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7239 shader->info.num_input_vgprs += 1;
7240 }
7241 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7242 shader->info.num_input_vgprs += 1;
7243 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7244 shader->info.num_input_vgprs += 1;
7245 }
7246
7247 si_calculate_max_simd_waves(shader);
7248 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
7249 return 0;
7250 }
7251
7252 /**
7253 * Create, compile and return a shader part (prolog or epilog).
7254 *
7255 * \param sscreen screen
7256 * \param list list of shader parts of the same category
7257 * \param type shader type
7258 * \param key shader part key
7259 * \param prolog whether the part being requested is a prolog
7260 * \param tm LLVM target machine
7261 * \param debug debug callback
7262 * \param build the callback responsible for building the main function
7263 * \return non-NULL on success
7264 */
7265 static struct si_shader_part *
7266 si_get_shader_part(struct si_screen *sscreen,
7267 struct si_shader_part **list,
7268 enum pipe_shader_type type,
7269 bool prolog,
7270 union si_shader_part_key *key,
7271 struct ac_llvm_compiler *compiler,
7272 struct pipe_debug_callback *debug,
7273 void (*build)(struct si_shader_context *,
7274 union si_shader_part_key *),
7275 const char *name)
7276 {
7277 struct si_shader_part *result;
7278
7279 mtx_lock(&sscreen->shader_parts_mutex);
7280
7281 /* Find existing. */
7282 for (result = *list; result; result = result->next) {
7283 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7284 mtx_unlock(&sscreen->shader_parts_mutex);
7285 return result;
7286 }
7287 }
7288
7289 /* Compile a new one. */
7290 result = CALLOC_STRUCT(si_shader_part);
7291 result->key = *key;
7292
7293 struct si_shader shader = {};
7294
7295 switch (type) {
7296 case PIPE_SHADER_VERTEX:
7297 shader.key.as_ls = key->vs_prolog.as_ls;
7298 shader.key.as_es = key->vs_prolog.as_es;
7299 shader.key.as_ngg = key->vs_prolog.as_ngg;
7300 break;
7301 case PIPE_SHADER_TESS_CTRL:
7302 assert(!prolog);
7303 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7304 break;
7305 case PIPE_SHADER_GEOMETRY:
7306 assert(prolog);
7307 shader.key.as_ngg = key->gs_prolog.as_ngg;
7308 break;
7309 case PIPE_SHADER_FRAGMENT:
7310 if (prolog)
7311 shader.key.part.ps.prolog = key->ps_prolog.states;
7312 else
7313 shader.key.part.ps.epilog = key->ps_epilog.states;
7314 break;
7315 default:
7316 unreachable("bad shader part");
7317 }
7318
7319 struct si_shader_context ctx;
7320 si_init_shader_ctx(&ctx, sscreen, compiler,
7321 si_get_wave_size(sscreen, type, shader.key.as_ngg,
7322 shader.key.as_es));
7323 ctx.shader = &shader;
7324 ctx.type = type;
7325
7326 build(&ctx, key);
7327
7328 /* Compile. */
7329 si_llvm_optimize_module(&ctx);
7330
7331 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7332 ctx.ac.module, debug, ctx.type, ctx.ac.wave_size,
7333 name, false)) {
7334 FREE(result);
7335 result = NULL;
7336 goto out;
7337 }
7338
7339 result->next = *list;
7340 *list = result;
7341
7342 out:
7343 si_llvm_dispose(&ctx);
7344 mtx_unlock(&sscreen->shader_parts_mutex);
7345 return result;
7346 }
7347
7348 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7349 {
7350 LLVMValueRef ptr[2], list;
7351 bool merged_shader = is_merged_shader(ctx);
7352
7353 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7354 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7355 ac_array_in_const32_addr_space(ctx->v4i32), "");
7356 return list;
7357 }
7358
7359 /**
7360 * Build the vertex shader prolog function.
7361 *
7362 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7363 * All inputs are returned unmodified. The vertex load indices are
7364 * stored after them, which will be used by the API VS for fetching inputs.
7365 *
7366 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7367 * input_v0,
7368 * input_v1,
7369 * input_v2,
7370 * input_v3,
7371 * (VertexID + BaseVertex),
7372 * (InstanceID + StartInstance),
7373 * (InstanceID / 2 + StartInstance)
7374 */
7375 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7376 union si_shader_part_key *key)
7377 {
7378 struct si_function_info fninfo;
7379 LLVMTypeRef *returns;
7380 LLVMValueRef ret, func;
7381 int num_returns, i;
7382 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7383 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7384 LLVMValueRef input_vgprs[9];
7385 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7386 num_input_vgprs;
7387 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7388
7389 si_init_function_info(&fninfo);
7390
7391 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7392 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7393 sizeof(LLVMTypeRef));
7394 num_returns = 0;
7395
7396 /* Declare input and output SGPRs. */
7397 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7398 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7399 returns[num_returns++] = ctx->i32;
7400 }
7401
7402 /* Preloaded VGPRs (outputs must be floats) */
7403 for (i = 0; i < num_input_vgprs; i++) {
7404 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7405 returns[num_returns++] = ctx->f32;
7406 }
7407
7408 /* Vertex load indices. */
7409 for (i = 0; i <= key->vs_prolog.last_input; i++)
7410 returns[num_returns++] = ctx->f32;
7411
7412 /* Create the function. */
7413 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7414 func = ctx->main_fn;
7415
7416 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7417 if (!key->vs_prolog.is_monolithic)
7418 si_init_exec_from_input(ctx, 3, 0);
7419
7420 if (key->vs_prolog.as_ls &&
7421 ctx->screen->has_ls_vgpr_init_bug) {
7422 /* If there are no HS threads, SPI loads the LS VGPRs
7423 * starting at VGPR 0. Shift them back to where they
7424 * belong.
7425 */
7426 LLVMValueRef has_hs_threads =
7427 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7428 si_unpack_param(ctx, 3, 8, 8),
7429 ctx->i32_0, "");
7430
7431 for (i = 4; i > 0; --i) {
7432 input_vgprs[i + 1] =
7433 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7434 input_vgprs[i + 1],
7435 input_vgprs[i - 1], "");
7436 }
7437 }
7438 }
7439
7440 unsigned vertex_id_vgpr = first_vs_vgpr;
7441 unsigned instance_id_vgpr =
7442 ctx->screen->info.chip_class >= GFX10 ?
7443 first_vs_vgpr + 3 :
7444 first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
7445
7446 ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
7447 ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
7448
7449 /* InstanceID = VertexID >> 16;
7450 * VertexID = VertexID & 0xffff;
7451 */
7452 if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
7453 ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
7454 LLVMConstInt(ctx->i32, 16, 0), "");
7455 ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
7456 LLVMConstInt(ctx->i32, 0xffff, 0), "");
7457 }
7458
7459 /* Copy inputs to outputs. This should be no-op, as the registers match,
7460 * but it will prevent the compiler from overwriting them unintentionally.
7461 */
7462 ret = ctx->return_value;
7463 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7464 LLVMValueRef p = LLVMGetParam(func, i);
7465 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7466 }
7467 for (i = 0; i < num_input_vgprs; i++) {
7468 LLVMValueRef p = input_vgprs[i];
7469
7470 if (i == vertex_id_vgpr)
7471 p = ctx->abi.vertex_id;
7472 else if (i == instance_id_vgpr)
7473 p = ctx->abi.instance_id;
7474
7475 p = ac_to_float(&ctx->ac, p);
7476 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7477 key->vs_prolog.num_input_sgprs + i, "");
7478 }
7479
7480 LLVMValueRef original_ret = ret;
7481 bool wrapped = false;
7482 LLVMBasicBlockRef if_entry_block = NULL;
7483
7484 if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
7485 LLVMValueRef num_threads;
7486 LLVMValueRef ena;
7487
7488 num_threads = si_unpack_param(ctx, 3, 0, 8);
7489 ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
7490 ac_get_thread_id(&ctx->ac), num_threads, "");
7491 if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
7492 ac_build_ifcc(&ctx->ac, ena, 11501);
7493 wrapped = true;
7494 }
7495
7496 /* Compute vertex load indices from instance divisors. */
7497 LLVMValueRef instance_divisor_constbuf = NULL;
7498
7499 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7500 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7501 LLVMValueRef buf_index =
7502 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7503 instance_divisor_constbuf =
7504 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7505 }
7506
7507 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7508 bool divisor_is_one =
7509 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7510 bool divisor_is_fetched =
7511 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7512 LLVMValueRef index = NULL;
7513
7514 if (divisor_is_one) {
7515 index = ctx->abi.instance_id;
7516 } else if (divisor_is_fetched) {
7517 LLVMValueRef udiv_factors[4];
7518
7519 for (unsigned j = 0; j < 4; j++) {
7520 udiv_factors[j] =
7521 buffer_load_const(ctx, instance_divisor_constbuf,
7522 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7523 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7524 }
7525 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7526 * Such InstanceID might not be achievable in a reasonable time though.
7527 */
7528 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7529 udiv_factors[0], udiv_factors[1],
7530 udiv_factors[2], udiv_factors[3]);
7531 }
7532
7533 if (divisor_is_one || divisor_is_fetched) {
7534 /* Add StartInstance. */
7535 index = LLVMBuildAdd(ctx->ac.builder, index,
7536 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7537 SI_SGPR_START_INSTANCE), "");
7538 } else {
7539 /* VertexID + BaseVertex */
7540 index = LLVMBuildAdd(ctx->ac.builder,
7541 ctx->abi.vertex_id,
7542 LLVMGetParam(func, user_sgpr_base +
7543 SI_SGPR_BASE_VERTEX), "");
7544 }
7545
7546 index = ac_to_float(&ctx->ac, index);
7547 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7548 fninfo.num_params + i, "");
7549 }
7550
7551 if (wrapped) {
7552 LLVMBasicBlockRef bbs[2] = {
7553 LLVMGetInsertBlock(ctx->ac.builder),
7554 if_entry_block,
7555 };
7556 ac_build_endif(&ctx->ac, 11501);
7557
7558 LLVMValueRef values[2] = {
7559 ret,
7560 original_ret
7561 };
7562 ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
7563 }
7564
7565 si_llvm_build_ret(ctx, ret);
7566 }
7567
7568 static bool si_get_vs_prolog(struct si_screen *sscreen,
7569 struct ac_llvm_compiler *compiler,
7570 struct si_shader *shader,
7571 struct pipe_debug_callback *debug,
7572 struct si_shader *main_part,
7573 const struct si_vs_prolog_bits *key)
7574 {
7575 struct si_shader_selector *vs = main_part->selector;
7576
7577 if (!si_vs_needs_prolog(vs, key))
7578 return true;
7579
7580 /* Get the prolog. */
7581 union si_shader_part_key prolog_key;
7582 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7583 key, shader, &prolog_key);
7584
7585 shader->prolog =
7586 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7587 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7588 debug, si_build_vs_prolog_function,
7589 "Vertex Shader Prolog");
7590 return shader->prolog != NULL;
7591 }
7592
7593 /**
7594 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7595 */
7596 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7597 struct ac_llvm_compiler *compiler,
7598 struct si_shader *shader,
7599 struct pipe_debug_callback *debug)
7600 {
7601 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7602 &shader->key.part.vs.prolog);
7603 }
7604
7605 /**
7606 * Compile the TCS epilog function. This writes tesselation factors to memory
7607 * based on the output primitive type of the tesselator (determined by TES).
7608 */
7609 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7610 union si_shader_part_key *key)
7611 {
7612 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7613 struct si_function_info fninfo;
7614 LLVMValueRef func;
7615
7616 si_init_function_info(&fninfo);
7617
7618 if (ctx->screen->info.chip_class >= GFX9) {
7619 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7620 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7621 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7622 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7623 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7624 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7625 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7626 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7627 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7628 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7629 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7630 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7631 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7632 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7633 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7634 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7635 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7636 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7637 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7638 } else {
7639 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7640 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7641 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7642 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7643 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7644 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7645 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7646 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7647 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7648 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7649 }
7650
7651 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7652 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7653 unsigned tess_factors_idx =
7654 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7655 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7656 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7657
7658 for (unsigned i = 0; i < 6; i++)
7659 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7660
7661 /* Create the function. */
7662 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7663 ctx->screen->info.chip_class >= GFX7 ? 128 : 0);
7664 ac_declare_lds_as_pointer(&ctx->ac);
7665 func = ctx->main_fn;
7666
7667 LLVMValueRef invoc0_tess_factors[6];
7668 for (unsigned i = 0; i < 6; i++)
7669 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7670
7671 si_write_tess_factors(bld_base,
7672 LLVMGetParam(func, tess_factors_idx),
7673 LLVMGetParam(func, tess_factors_idx + 1),
7674 LLVMGetParam(func, tess_factors_idx + 2),
7675 invoc0_tess_factors, invoc0_tess_factors + 4);
7676
7677 LLVMBuildRetVoid(ctx->ac.builder);
7678 }
7679
7680 /**
7681 * Select and compile (or reuse) TCS parts (epilog).
7682 */
7683 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7684 struct ac_llvm_compiler *compiler,
7685 struct si_shader *shader,
7686 struct pipe_debug_callback *debug)
7687 {
7688 if (sscreen->info.chip_class >= GFX9) {
7689 struct si_shader *ls_main_part =
7690 shader->key.part.tcs.ls->main_shader_part_ls;
7691
7692 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7693 &shader->key.part.tcs.ls_prolog))
7694 return false;
7695
7696 shader->previous_stage = ls_main_part;
7697 }
7698
7699 /* Get the epilog. */
7700 union si_shader_part_key epilog_key;
7701 memset(&epilog_key, 0, sizeof(epilog_key));
7702 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7703
7704 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7705 PIPE_SHADER_TESS_CTRL, false,
7706 &epilog_key, compiler, debug,
7707 si_build_tcs_epilog_function,
7708 "Tessellation Control Shader Epilog");
7709 return shader->epilog != NULL;
7710 }
7711
7712 /**
7713 * Select and compile (or reuse) GS parts (prolog).
7714 */
7715 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7716 struct ac_llvm_compiler *compiler,
7717 struct si_shader *shader,
7718 struct pipe_debug_callback *debug)
7719 {
7720 if (sscreen->info.chip_class >= GFX9) {
7721 struct si_shader *es_main_part;
7722 enum pipe_shader_type es_type = shader->key.part.gs.es->type;
7723
7724 if (es_type == PIPE_SHADER_TESS_EVAL && shader->key.as_ngg)
7725 es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
7726 else
7727 es_main_part = shader->key.part.gs.es->main_shader_part_es;
7728
7729 if (es_type == PIPE_SHADER_VERTEX &&
7730 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7731 &shader->key.part.gs.vs_prolog))
7732 return false;
7733
7734 shader->previous_stage = es_main_part;
7735 }
7736
7737 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7738 return true;
7739
7740 union si_shader_part_key prolog_key;
7741 memset(&prolog_key, 0, sizeof(prolog_key));
7742 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7743 prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
7744
7745 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7746 PIPE_SHADER_GEOMETRY, true,
7747 &prolog_key, compiler, debug,
7748 si_build_gs_prolog_function,
7749 "Geometry Shader Prolog");
7750 return shader->prolog2 != NULL;
7751 }
7752
7753 /**
7754 * Build the pixel shader prolog function. This handles:
7755 * - two-side color selection and interpolation
7756 * - overriding interpolation parameters for the API PS
7757 * - polygon stippling
7758 *
7759 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7760 * overriden by other states. (e.g. per-sample interpolation)
7761 * Interpolated colors are stored after the preloaded VGPRs.
7762 */
7763 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7764 union si_shader_part_key *key)
7765 {
7766 struct si_function_info fninfo;
7767 LLVMValueRef ret, func;
7768 int num_returns, i, num_color_channels;
7769
7770 assert(si_need_ps_prolog(key));
7771
7772 si_init_function_info(&fninfo);
7773
7774 /* Declare inputs. */
7775 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7776 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7777
7778 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7779 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7780
7781 /* Declare outputs (same as inputs + add colors if needed) */
7782 num_returns = fninfo.num_params;
7783 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7784 for (i = 0; i < num_color_channels; i++)
7785 fninfo.types[num_returns++] = ctx->f32;
7786
7787 /* Create the function. */
7788 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7789 &fninfo, 0);
7790 func = ctx->main_fn;
7791
7792 /* Copy inputs to outputs. This should be no-op, as the registers match,
7793 * but it will prevent the compiler from overwriting them unintentionally.
7794 */
7795 ret = ctx->return_value;
7796 for (i = 0; i < fninfo.num_params; i++) {
7797 LLVMValueRef p = LLVMGetParam(func, i);
7798 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7799 }
7800
7801 /* Polygon stippling. */
7802 if (key->ps_prolog.states.poly_stipple) {
7803 /* POS_FIXED_PT is always last. */
7804 unsigned pos = key->ps_prolog.num_input_sgprs +
7805 key->ps_prolog.num_input_vgprs - 1;
7806 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7807
7808 si_llvm_emit_polygon_stipple(ctx, list, pos);
7809 }
7810
7811 if (key->ps_prolog.states.bc_optimize_for_persp ||
7812 key->ps_prolog.states.bc_optimize_for_linear) {
7813 unsigned i, base = key->ps_prolog.num_input_sgprs;
7814 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7815
7816 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7817 * The hw doesn't compute CENTROID if the whole wave only
7818 * contains fully-covered quads.
7819 *
7820 * PRIM_MASK is after user SGPRs.
7821 */
7822 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7823 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7824 LLVMConstInt(ctx->i32, 31, 0), "");
7825 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7826 ctx->i1, "");
7827
7828 if (key->ps_prolog.states.bc_optimize_for_persp) {
7829 /* Read PERSP_CENTER. */
7830 for (i = 0; i < 2; i++)
7831 center[i] = LLVMGetParam(func, base + 2 + i);
7832 /* Read PERSP_CENTROID. */
7833 for (i = 0; i < 2; i++)
7834 centroid[i] = LLVMGetParam(func, base + 4 + i);
7835 /* Select PERSP_CENTROID. */
7836 for (i = 0; i < 2; i++) {
7837 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7838 center[i], centroid[i], "");
7839 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7840 tmp, base + 4 + i, "");
7841 }
7842 }
7843 if (key->ps_prolog.states.bc_optimize_for_linear) {
7844 /* Read LINEAR_CENTER. */
7845 for (i = 0; i < 2; i++)
7846 center[i] = LLVMGetParam(func, base + 8 + i);
7847 /* Read LINEAR_CENTROID. */
7848 for (i = 0; i < 2; i++)
7849 centroid[i] = LLVMGetParam(func, base + 10 + i);
7850 /* Select LINEAR_CENTROID. */
7851 for (i = 0; i < 2; i++) {
7852 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7853 center[i], centroid[i], "");
7854 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7855 tmp, base + 10 + i, "");
7856 }
7857 }
7858 }
7859
7860 /* Force per-sample interpolation. */
7861 if (key->ps_prolog.states.force_persp_sample_interp) {
7862 unsigned i, base = key->ps_prolog.num_input_sgprs;
7863 LLVMValueRef persp_sample[2];
7864
7865 /* Read PERSP_SAMPLE. */
7866 for (i = 0; i < 2; i++)
7867 persp_sample[i] = LLVMGetParam(func, base + i);
7868 /* Overwrite PERSP_CENTER. */
7869 for (i = 0; i < 2; i++)
7870 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7871 persp_sample[i], base + 2 + i, "");
7872 /* Overwrite PERSP_CENTROID. */
7873 for (i = 0; i < 2; i++)
7874 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7875 persp_sample[i], base + 4 + i, "");
7876 }
7877 if (key->ps_prolog.states.force_linear_sample_interp) {
7878 unsigned i, base = key->ps_prolog.num_input_sgprs;
7879 LLVMValueRef linear_sample[2];
7880
7881 /* Read LINEAR_SAMPLE. */
7882 for (i = 0; i < 2; i++)
7883 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7884 /* Overwrite LINEAR_CENTER. */
7885 for (i = 0; i < 2; i++)
7886 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7887 linear_sample[i], base + 8 + i, "");
7888 /* Overwrite LINEAR_CENTROID. */
7889 for (i = 0; i < 2; i++)
7890 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7891 linear_sample[i], base + 10 + i, "");
7892 }
7893
7894 /* Force center interpolation. */
7895 if (key->ps_prolog.states.force_persp_center_interp) {
7896 unsigned i, base = key->ps_prolog.num_input_sgprs;
7897 LLVMValueRef persp_center[2];
7898
7899 /* Read PERSP_CENTER. */
7900 for (i = 0; i < 2; i++)
7901 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7902 /* Overwrite PERSP_SAMPLE. */
7903 for (i = 0; i < 2; i++)
7904 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7905 persp_center[i], base + i, "");
7906 /* Overwrite PERSP_CENTROID. */
7907 for (i = 0; i < 2; i++)
7908 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7909 persp_center[i], base + 4 + i, "");
7910 }
7911 if (key->ps_prolog.states.force_linear_center_interp) {
7912 unsigned i, base = key->ps_prolog.num_input_sgprs;
7913 LLVMValueRef linear_center[2];
7914
7915 /* Read LINEAR_CENTER. */
7916 for (i = 0; i < 2; i++)
7917 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7918 /* Overwrite LINEAR_SAMPLE. */
7919 for (i = 0; i < 2; i++)
7920 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7921 linear_center[i], base + 6 + i, "");
7922 /* Overwrite LINEAR_CENTROID. */
7923 for (i = 0; i < 2; i++)
7924 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7925 linear_center[i], base + 10 + i, "");
7926 }
7927
7928 /* Interpolate colors. */
7929 unsigned color_out_idx = 0;
7930 for (i = 0; i < 2; i++) {
7931 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7932 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7933 key->ps_prolog.face_vgpr_index;
7934 LLVMValueRef interp[2], color[4];
7935 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7936
7937 if (!writemask)
7938 continue;
7939
7940 /* If the interpolation qualifier is not CONSTANT (-1). */
7941 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7942 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7943 key->ps_prolog.color_interp_vgpr_index[i];
7944
7945 /* Get the (i,j) updated by bc_optimize handling. */
7946 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7947 interp_vgpr, "");
7948 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7949 interp_vgpr + 1, "");
7950 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7951 }
7952
7953 /* Use the absolute location of the input. */
7954 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7955
7956 if (key->ps_prolog.states.color_two_side) {
7957 face = LLVMGetParam(func, face_vgpr);
7958 face = ac_to_integer(&ctx->ac, face);
7959 }
7960
7961 interp_fs_input(ctx,
7962 key->ps_prolog.color_attr_index[i],
7963 TGSI_SEMANTIC_COLOR, i,
7964 key->ps_prolog.num_interp_inputs,
7965 key->ps_prolog.colors_read, interp_ij,
7966 prim_mask, face, color);
7967
7968 while (writemask) {
7969 unsigned chan = u_bit_scan(&writemask);
7970 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7971 fninfo.num_params + color_out_idx++, "");
7972 }
7973 }
7974
7975 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7976 * says:
7977 *
7978 * "When per-sample shading is active due to the use of a fragment
7979 * input qualified by sample or due to the use of the gl_SampleID
7980 * or gl_SamplePosition variables, only the bit for the current
7981 * sample is set in gl_SampleMaskIn. When state specifies multiple
7982 * fragment shader invocations for a given fragment, the sample
7983 * mask for any single fragment shader invocation may specify a
7984 * subset of the covered samples for the fragment. In this case,
7985 * the bit corresponding to each covered sample will be set in
7986 * exactly one fragment shader invocation."
7987 *
7988 * The samplemask loaded by hardware is always the coverage of the
7989 * entire pixel/fragment, so mask bits out based on the sample ID.
7990 */
7991 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7992 /* The bit pattern matches that used by fixed function fragment
7993 * processing. */
7994 static const uint16_t ps_iter_masks[] = {
7995 0xffff, /* not used */
7996 0x5555,
7997 0x1111,
7998 0x0101,
7999 0x0001,
8000 };
8001 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
8002
8003 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
8004 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
8005 key->ps_prolog.ancillary_vgpr_index;
8006 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
8007 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
8008
8009 samplemask = ac_to_integer(&ctx->ac, samplemask);
8010 samplemask = LLVMBuildAnd(
8011 ctx->ac.builder,
8012 samplemask,
8013 LLVMBuildShl(ctx->ac.builder,
8014 LLVMConstInt(ctx->i32, ps_iter_mask, false),
8015 sampleid, ""),
8016 "");
8017 samplemask = ac_to_float(&ctx->ac, samplemask);
8018
8019 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
8020 ancillary_vgpr + 1, "");
8021 }
8022
8023 /* Tell LLVM to insert WQM instruction sequence when needed. */
8024 if (key->ps_prolog.wqm) {
8025 LLVMAddTargetDependentFunctionAttr(func,
8026 "amdgpu-ps-wqm-outputs", "");
8027 }
8028
8029 si_llvm_build_ret(ctx, ret);
8030 }
8031
8032 /**
8033 * Build the pixel shader epilog function. This handles everything that must be
8034 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
8035 */
8036 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8037 union si_shader_part_key *key)
8038 {
8039 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8040 struct si_function_info fninfo;
8041 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8042 int i;
8043 struct si_ps_exports exp = {};
8044
8045 si_init_function_info(&fninfo);
8046
8047 /* Declare input SGPRs. */
8048 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8049 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8050 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8051 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8052 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
8053
8054 /* Declare input VGPRs. */
8055 unsigned required_num_params =
8056 fninfo.num_sgpr_params +
8057 util_bitcount(key->ps_epilog.colors_written) * 4 +
8058 key->ps_epilog.writes_z +
8059 key->ps_epilog.writes_stencil +
8060 key->ps_epilog.writes_samplemask;
8061
8062 required_num_params = MAX2(required_num_params,
8063 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8064
8065 while (fninfo.num_params < required_num_params)
8066 add_arg(&fninfo, ARG_VGPR, ctx->f32);
8067
8068 /* Create the function. */
8069 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
8070 /* Disable elimination of unused inputs. */
8071 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
8072 "InitialPSInputAddr", 0xffffff);
8073
8074 /* Process colors. */
8075 unsigned vgpr = fninfo.num_sgpr_params;
8076 unsigned colors_written = key->ps_epilog.colors_written;
8077 int last_color_export = -1;
8078
8079 /* Find the last color export. */
8080 if (!key->ps_epilog.writes_z &&
8081 !key->ps_epilog.writes_stencil &&
8082 !key->ps_epilog.writes_samplemask) {
8083 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8084
8085 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8086 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8087 /* Just set this if any of the colorbuffers are enabled. */
8088 if (spi_format &
8089 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8090 last_color_export = 0;
8091 } else {
8092 for (i = 0; i < 8; i++)
8093 if (colors_written & (1 << i) &&
8094 (spi_format >> (i * 4)) & 0xf)
8095 last_color_export = i;
8096 }
8097 }
8098
8099 while (colors_written) {
8100 LLVMValueRef color[4];
8101 int mrt = u_bit_scan(&colors_written);
8102
8103 for (i = 0; i < 4; i++)
8104 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8105
8106 si_export_mrt_color(bld_base, color, mrt,
8107 fninfo.num_params - 1,
8108 mrt == last_color_export, &exp);
8109 }
8110
8111 /* Process depth, stencil, samplemask. */
8112 if (key->ps_epilog.writes_z)
8113 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8114 if (key->ps_epilog.writes_stencil)
8115 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8116 if (key->ps_epilog.writes_samplemask)
8117 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8118
8119 if (depth || stencil || samplemask)
8120 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8121 else if (last_color_export == -1)
8122 ac_build_export_null(&ctx->ac);
8123
8124 if (exp.num)
8125 si_emit_ps_exports(ctx, &exp);
8126
8127 /* Compile. */
8128 LLVMBuildRetVoid(ctx->ac.builder);
8129 }
8130
8131 /**
8132 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8133 */
8134 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8135 struct ac_llvm_compiler *compiler,
8136 struct si_shader *shader,
8137 struct pipe_debug_callback *debug)
8138 {
8139 union si_shader_part_key prolog_key;
8140 union si_shader_part_key epilog_key;
8141
8142 /* Get the prolog. */
8143 si_get_ps_prolog_key(shader, &prolog_key, true);
8144
8145 /* The prolog is a no-op if these aren't set. */
8146 if (si_need_ps_prolog(&prolog_key)) {
8147 shader->prolog =
8148 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8149 PIPE_SHADER_FRAGMENT, true,
8150 &prolog_key, compiler, debug,
8151 si_build_ps_prolog_function,
8152 "Fragment Shader Prolog");
8153 if (!shader->prolog)
8154 return false;
8155 }
8156
8157 /* Get the epilog. */
8158 si_get_ps_epilog_key(shader, &epilog_key);
8159
8160 shader->epilog =
8161 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8162 PIPE_SHADER_FRAGMENT, false,
8163 &epilog_key, compiler, debug,
8164 si_build_ps_epilog_function,
8165 "Fragment Shader Epilog");
8166 if (!shader->epilog)
8167 return false;
8168
8169 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8170 if (shader->key.part.ps.prolog.poly_stipple) {
8171 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8172 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8173 }
8174
8175 /* Set up the enable bits for per-sample shading if needed. */
8176 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8177 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8178 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8179 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8180 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8181 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8182 }
8183 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8184 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8185 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8186 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8187 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8188 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8189 }
8190 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8191 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8192 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8193 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8194 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8195 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8196 }
8197 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8198 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8199 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8200 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8201 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8202 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8203 }
8204
8205 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8206 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8207 !(shader->config.spi_ps_input_ena & 0xf)) {
8208 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8209 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8210 }
8211
8212 /* At least one pair of interpolation weights must be enabled. */
8213 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8214 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8215 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8216 }
8217
8218 /* Samplemask fixup requires the sample ID. */
8219 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8220 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8221 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8222 }
8223
8224 /* The sample mask input is always enabled, because the API shader always
8225 * passes it through to the epilog. Disable it here if it's unused.
8226 */
8227 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8228 !shader->selector->info.reads_samplemask)
8229 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8230
8231 return true;
8232 }
8233
8234 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8235 unsigned *lds_size)
8236 {
8237 /* If tessellation is all offchip and on-chip GS isn't used, this
8238 * workaround is not needed.
8239 */
8240 return;
8241
8242 /* SPI barrier management bug:
8243 * Make sure we have at least 4k of LDS in use to avoid the bug.
8244 * It applies to workgroup sizes of more than one wavefront.
8245 */
8246 if (sscreen->info.family == CHIP_BONAIRE ||
8247 sscreen->info.family == CHIP_KABINI)
8248 *lds_size = MAX2(*lds_size, 8);
8249 }
8250
8251 static void si_fix_resource_usage(struct si_screen *sscreen,
8252 struct si_shader *shader)
8253 {
8254 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8255
8256 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8257
8258 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8259 si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
8260 si_multiwave_lds_size_workaround(sscreen,
8261 &shader->config.lds_size);
8262 }
8263 }
8264
8265 bool si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8266 struct si_shader *shader,
8267 struct pipe_debug_callback *debug)
8268 {
8269 struct si_shader_selector *sel = shader->selector;
8270 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8271 int r;
8272
8273 /* LS, ES, VS are compiled on demand if the main part hasn't been
8274 * compiled for that stage.
8275 *
8276 * GS are compiled on demand if the main part hasn't been compiled
8277 * for the chosen NGG-ness.
8278 *
8279 * Vertex shaders are compiled on demand when a vertex fetch
8280 * workaround must be applied.
8281 */
8282 if (shader->is_monolithic) {
8283 /* Monolithic shader (compiled as a whole, has many variants,
8284 * may take a long time to compile).
8285 */
8286 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8287 if (r)
8288 return false;
8289 } else {
8290 /* The shader consists of several parts:
8291 *
8292 * - the middle part is the user shader, it has 1 variant only
8293 * and it was compiled during the creation of the shader
8294 * selector
8295 * - the prolog part is inserted at the beginning
8296 * - the epilog part is inserted at the end
8297 *
8298 * The prolog and epilog have many (but simple) variants.
8299 *
8300 * Starting with gfx9, geometry and tessellation control
8301 * shaders also contain the prolog and user shader parts of
8302 * the previous shader stage.
8303 */
8304
8305 if (!mainp)
8306 return false;
8307
8308 /* Copy the compiled TGSI shader data over. */
8309 shader->is_binary_shared = true;
8310 shader->binary = mainp->binary;
8311 shader->config = mainp->config;
8312 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8313 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8314 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8315 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8316 memcpy(shader->info.vs_output_param_offset,
8317 mainp->info.vs_output_param_offset,
8318 sizeof(mainp->info.vs_output_param_offset));
8319 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8320 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8321 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8322
8323 /* Select prologs and/or epilogs. */
8324 switch (sel->type) {
8325 case PIPE_SHADER_VERTEX:
8326 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8327 return false;
8328 break;
8329 case PIPE_SHADER_TESS_CTRL:
8330 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8331 return false;
8332 break;
8333 case PIPE_SHADER_TESS_EVAL:
8334 break;
8335 case PIPE_SHADER_GEOMETRY:
8336 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8337 return false;
8338 break;
8339 case PIPE_SHADER_FRAGMENT:
8340 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8341 return false;
8342
8343 /* Make sure we have at least as many VGPRs as there
8344 * are allocated inputs.
8345 */
8346 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8347 shader->info.num_input_vgprs);
8348 break;
8349 default:;
8350 }
8351
8352 /* Update SGPR and VGPR counts. */
8353 if (shader->prolog) {
8354 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8355 shader->prolog->config.num_sgprs);
8356 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8357 shader->prolog->config.num_vgprs);
8358 }
8359 if (shader->previous_stage) {
8360 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8361 shader->previous_stage->config.num_sgprs);
8362 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8363 shader->previous_stage->config.num_vgprs);
8364 shader->config.spilled_sgprs =
8365 MAX2(shader->config.spilled_sgprs,
8366 shader->previous_stage->config.spilled_sgprs);
8367 shader->config.spilled_vgprs =
8368 MAX2(shader->config.spilled_vgprs,
8369 shader->previous_stage->config.spilled_vgprs);
8370 shader->info.private_mem_vgprs =
8371 MAX2(shader->info.private_mem_vgprs,
8372 shader->previous_stage->info.private_mem_vgprs);
8373 shader->config.scratch_bytes_per_wave =
8374 MAX2(shader->config.scratch_bytes_per_wave,
8375 shader->previous_stage->config.scratch_bytes_per_wave);
8376 shader->info.uses_instanceid |=
8377 shader->previous_stage->info.uses_instanceid;
8378 }
8379 if (shader->prolog2) {
8380 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8381 shader->prolog2->config.num_sgprs);
8382 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8383 shader->prolog2->config.num_vgprs);
8384 }
8385 if (shader->epilog) {
8386 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8387 shader->epilog->config.num_sgprs);
8388 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8389 shader->epilog->config.num_vgprs);
8390 }
8391 si_calculate_max_simd_waves(shader);
8392 }
8393
8394 if (shader->key.as_ngg) {
8395 assert(!shader->key.as_es && !shader->key.as_ls);
8396 gfx10_ngg_calculate_subgroup_info(shader);
8397 } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
8398 gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
8399 }
8400
8401 si_fix_resource_usage(sscreen, shader);
8402 si_shader_dump(sscreen, shader, debug, stderr, true);
8403
8404 /* Upload. */
8405 if (!si_shader_binary_upload(sscreen, shader, 0)) {
8406 fprintf(stderr, "LLVM failed to upload shader\n");
8407 return false;
8408 }
8409
8410 return true;
8411 }
8412
8413 void si_shader_destroy(struct si_shader *shader)
8414 {
8415 if (shader->scratch_bo)
8416 si_resource_reference(&shader->scratch_bo, NULL);
8417
8418 si_resource_reference(&shader->bo, NULL);
8419
8420 if (!shader->is_binary_shared)
8421 si_shader_binary_clean(&shader->binary);
8422
8423 free(shader->shader_log);
8424 }