radeonsi/gfx10: fix a possible hang with exp pos0 with done=0 and exec=0
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_strings.h"
29 #include "tgsi/tgsi_util.h"
30 #include "tgsi/tgsi_dump.h"
31 #include "tgsi/tgsi_from_mesa.h"
32
33 #include "ac_binary.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36 #include "ac_rtld.h"
37 #include "ac_llvm_util.h"
38 #include "si_shader_internal.h"
39 #include "si_pipe.h"
40 #include "sid.h"
41
42 #include "compiler/nir/nir.h"
43
44 static const char scratch_rsrc_dword0_symbol[] =
45 "SCRATCH_RSRC_DWORD0";
46
47 static const char scratch_rsrc_dword1_symbol[] =
48 "SCRATCH_RSRC_DWORD1";
49
50 static void si_init_shader_ctx(struct si_shader_context *ctx,
51 struct si_screen *sscreen,
52 struct ac_llvm_compiler *compiler);
53
54 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
55 struct lp_build_tgsi_context *bld_base,
56 struct lp_build_emit_data *emit_data);
57
58 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
59 FILE *f);
60
61 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
62 union si_shader_part_key *key);
63 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
64 union si_shader_part_key *key);
65 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
66 union si_shader_part_key *key);
67 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
68 union si_shader_part_key *key);
69 static void si_fix_resource_usage(struct si_screen *sscreen,
70 struct si_shader *shader);
71
72 /* Ideally pass the sample mask input to the PS epilog as v14, which
73 * is its usual location, so that the shader doesn't have to add v_mov.
74 */
75 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
76
77 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
78 LLVMTypeRef type)
79 {
80 if (type == ctx->ac.i64 || type == ctx->ac.f64)
81 return true;
82
83 return false;
84 }
85
86 /** Whether the shader runs as a combination of multiple API shaders */
87 static bool is_multi_part_shader(struct si_shader_context *ctx)
88 {
89 if (ctx->screen->info.chip_class <= GFX8)
90 return false;
91
92 return ctx->shader->key.as_ls ||
93 ctx->shader->key.as_es ||
94 ctx->type == PIPE_SHADER_TESS_CTRL ||
95 ctx->type == PIPE_SHADER_GEOMETRY;
96 }
97
98 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
99 static bool is_merged_shader(struct si_shader_context *ctx)
100 {
101 return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
102 }
103
104 void si_init_function_info(struct si_function_info *fninfo)
105 {
106 fninfo->num_params = 0;
107 fninfo->num_sgpr_params = 0;
108 }
109
110 unsigned add_arg_assign(struct si_function_info *fninfo,
111 enum si_arg_regfile regfile, LLVMTypeRef type,
112 LLVMValueRef *assign)
113 {
114 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
115
116 unsigned idx = fninfo->num_params++;
117 assert(idx < ARRAY_SIZE(fninfo->types));
118
119 if (regfile == ARG_SGPR)
120 fninfo->num_sgpr_params = fninfo->num_params;
121
122 fninfo->types[idx] = type;
123 fninfo->assign[idx] = assign;
124 return idx;
125 }
126
127 static unsigned add_arg(struct si_function_info *fninfo,
128 enum si_arg_regfile regfile, LLVMTypeRef type)
129 {
130 return add_arg_assign(fninfo, regfile, type, NULL);
131 }
132
133 static void add_arg_assign_checked(struct si_function_info *fninfo,
134 enum si_arg_regfile regfile, LLVMTypeRef type,
135 LLVMValueRef *assign, unsigned idx)
136 {
137 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
138 assert(actual == idx);
139 }
140
141 static void add_arg_checked(struct si_function_info *fninfo,
142 enum si_arg_regfile regfile, LLVMTypeRef type,
143 unsigned idx)
144 {
145 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
146 }
147
148 /**
149 * Returns a unique index for a per-patch semantic name and index. The index
150 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
151 * can be calculated.
152 */
153 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
154 {
155 switch (semantic_name) {
156 case TGSI_SEMANTIC_TESSOUTER:
157 return 0;
158 case TGSI_SEMANTIC_TESSINNER:
159 return 1;
160 case TGSI_SEMANTIC_PATCH:
161 assert(index < 30);
162 return 2 + index;
163
164 default:
165 assert(!"invalid semantic name");
166 return 0;
167 }
168 }
169
170 /**
171 * Returns a unique index for a semantic name and index. The index must be
172 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
173 * calculated.
174 */
175 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
176 unsigned is_varying)
177 {
178 switch (semantic_name) {
179 case TGSI_SEMANTIC_POSITION:
180 return 0;
181 case TGSI_SEMANTIC_GENERIC:
182 /* Since some shader stages use the the highest used IO index
183 * to determine the size to allocate for inputs/outputs
184 * (in LDS, tess and GS rings). GENERIC should be placed right
185 * after POSITION to make that size as small as possible.
186 */
187 if (index < SI_MAX_IO_GENERIC)
188 return 1 + index;
189
190 assert(!"invalid generic index");
191 return 0;
192 case TGSI_SEMANTIC_PSIZE:
193 return SI_MAX_IO_GENERIC + 1;
194 case TGSI_SEMANTIC_CLIPDIST:
195 assert(index <= 1);
196 return SI_MAX_IO_GENERIC + 2 + index;
197 case TGSI_SEMANTIC_FOG:
198 return SI_MAX_IO_GENERIC + 4;
199 case TGSI_SEMANTIC_LAYER:
200 return SI_MAX_IO_GENERIC + 5;
201 case TGSI_SEMANTIC_VIEWPORT_INDEX:
202 return SI_MAX_IO_GENERIC + 6;
203 case TGSI_SEMANTIC_PRIMID:
204 return SI_MAX_IO_GENERIC + 7;
205 case TGSI_SEMANTIC_COLOR:
206 assert(index < 2);
207 return SI_MAX_IO_GENERIC + 8 + index;
208 case TGSI_SEMANTIC_BCOLOR:
209 assert(index < 2);
210 /* If it's a varying, COLOR and BCOLOR alias. */
211 if (is_varying)
212 return SI_MAX_IO_GENERIC + 8 + index;
213 else
214 return SI_MAX_IO_GENERIC + 10 + index;
215 case TGSI_SEMANTIC_TEXCOORD:
216 assert(index < 8);
217 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
218 return SI_MAX_IO_GENERIC + 12 + index;
219 case TGSI_SEMANTIC_CLIPVERTEX:
220 return 63;
221 default:
222 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
223 assert(!"invalid semantic name");
224 return 0;
225 }
226 }
227
228 /**
229 * Get the value of a shader input parameter and extract a bitfield.
230 */
231 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
232 LLVMValueRef value, unsigned rshift,
233 unsigned bitwidth)
234 {
235 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
236 value = ac_to_integer(&ctx->ac, value);
237
238 if (rshift)
239 value = LLVMBuildLShr(ctx->ac.builder, value,
240 LLVMConstInt(ctx->i32, rshift, 0), "");
241
242 if (rshift + bitwidth < 32) {
243 unsigned mask = (1 << bitwidth) - 1;
244 value = LLVMBuildAnd(ctx->ac.builder, value,
245 LLVMConstInt(ctx->i32, mask, 0), "");
246 }
247
248 return value;
249 }
250
251 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
252 unsigned param, unsigned rshift,
253 unsigned bitwidth)
254 {
255 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
256
257 return unpack_llvm_param(ctx, value, rshift, bitwidth);
258 }
259
260 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
261 {
262 switch (ctx->type) {
263 case PIPE_SHADER_TESS_CTRL:
264 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
265
266 case PIPE_SHADER_TESS_EVAL:
267 return LLVMGetParam(ctx->main_fn,
268 ctx->param_tes_rel_patch_id);
269
270 default:
271 assert(0);
272 return NULL;
273 }
274 }
275
276 /* Tessellation shaders pass outputs to the next shader using LDS.
277 *
278 * LS outputs = TCS inputs
279 * TCS outputs = TES inputs
280 *
281 * The LDS layout is:
282 * - TCS inputs for patch 0
283 * - TCS inputs for patch 1
284 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
285 * - ...
286 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
287 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
288 * - TCS outputs for patch 1
289 * - Per-patch TCS outputs for patch 1
290 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
291 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
292 * - ...
293 *
294 * All three shaders VS(LS), TCS, TES share the same LDS space.
295 */
296
297 static LLVMValueRef
298 get_tcs_in_patch_stride(struct si_shader_context *ctx)
299 {
300 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
301 }
302
303 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
304 {
305 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
306
307 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
308 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
309
310 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
311 }
312
313 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
314 {
315 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
316
317 return LLVMConstInt(ctx->i32, stride, 0);
318 }
319
320 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
321 {
322 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
323 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
324
325 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
326 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
327 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
328 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
329 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
330 num_patch_outputs * 4;
331 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
332 }
333
334 static LLVMValueRef
335 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
336 {
337 return LLVMBuildMul(ctx->ac.builder,
338 si_unpack_param(ctx,
339 ctx->param_tcs_out_lds_offsets,
340 0, 16),
341 LLVMConstInt(ctx->i32, 4, 0), "");
342 }
343
344 static LLVMValueRef
345 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
346 {
347 return LLVMBuildMul(ctx->ac.builder,
348 si_unpack_param(ctx,
349 ctx->param_tcs_out_lds_offsets,
350 16, 16),
351 LLVMConstInt(ctx->i32, 4, 0), "");
352 }
353
354 static LLVMValueRef
355 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
356 {
357 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
358 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
359
360 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
361 }
362
363 static LLVMValueRef
364 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
365 {
366 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
367 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
368 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
369
370 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
371 }
372
373 static LLVMValueRef
374 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
375 {
376 LLVMValueRef patch0_patch_data_offset =
377 get_tcs_out_patch0_patch_data_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
382 }
383
384 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
385 {
386 unsigned tcs_out_vertices =
387 ctx->shader->selector ?
388 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
389
390 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
391 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
392 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
393
394 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
395 }
396
397 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
398 {
399 unsigned stride;
400
401 switch (ctx->type) {
402 case PIPE_SHADER_VERTEX:
403 stride = ctx->shader->selector->lshs_vertex_stride / 4;
404 return LLVMConstInt(ctx->i32, stride, 0);
405
406 case PIPE_SHADER_TESS_CTRL:
407 if (ctx->screen->info.chip_class >= GFX9 &&
408 ctx->shader->is_monolithic) {
409 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
410 return LLVMConstInt(ctx->i32, stride, 0);
411 }
412 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
413
414 default:
415 assert(0);
416 return NULL;
417 }
418 }
419
420 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
421 LLVMValueRef i32, unsigned index)
422 {
423 assert(index <= 1);
424
425 if (index == 1)
426 return LLVMBuildAShr(ctx->ac.builder, i32,
427 LLVMConstInt(ctx->i32, 16, 0), "");
428
429 return LLVMBuildSExt(ctx->ac.builder,
430 LLVMBuildTrunc(ctx->ac.builder, i32,
431 ctx->ac.i16, ""),
432 ctx->i32, "");
433 }
434
435 void si_llvm_load_input_vs(
436 struct si_shader_context *ctx,
437 unsigned input_index,
438 LLVMValueRef out[4])
439 {
440 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
441 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
442
443 if (vs_blit_property) {
444 LLVMValueRef vertex_id = ctx->abi.vertex_id;
445 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
446 LLVMIntULE, vertex_id,
447 ctx->i32_1, "");
448 /* Use LLVMIntNE, because we have 3 vertices and only
449 * the middle one should use y2.
450 */
451 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
452 LLVMIntNE, vertex_id,
453 ctx->i32_1, "");
454
455 if (input_index == 0) {
456 /* Position: */
457 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
458 ctx->param_vs_blit_inputs);
459 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
460 ctx->param_vs_blit_inputs + 1);
461
462 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
463 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
464 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
465 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
466
467 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
468 x1, x2, "");
469 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
470 y1, y2, "");
471
472 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
473 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
474 out[2] = LLVMGetParam(ctx->main_fn,
475 ctx->param_vs_blit_inputs + 2);
476 out[3] = ctx->ac.f32_1;
477 return;
478 }
479
480 /* Color or texture coordinates: */
481 assert(input_index == 1);
482
483 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
484 for (int i = 0; i < 4; i++) {
485 out[i] = LLVMGetParam(ctx->main_fn,
486 ctx->param_vs_blit_inputs + 3 + i);
487 }
488 } else {
489 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
490 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
491 ctx->param_vs_blit_inputs + 3);
492 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
493 ctx->param_vs_blit_inputs + 4);
494 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
495 ctx->param_vs_blit_inputs + 5);
496 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
497 ctx->param_vs_blit_inputs + 6);
498
499 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
500 x1, x2, "");
501 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
502 y1, y2, "");
503 out[2] = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs + 7);
505 out[3] = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 8);
507 }
508 return;
509 }
510
511 union si_vs_fix_fetch fix_fetch;
512 LLVMValueRef t_list_ptr;
513 LLVMValueRef t_offset;
514 LLVMValueRef t_list;
515 LLVMValueRef vertex_index;
516 LLVMValueRef tmp;
517
518 /* Load the T list */
519 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
520
521 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
522
523 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
524
525 vertex_index = LLVMGetParam(ctx->main_fn,
526 ctx->param_vertex_index0 +
527 input_index);
528
529 /* Use the open-coded implementation for all loads of doubles and
530 * of dword-sized data that needs fixups. We need to insert conversion
531 * code anyway, and the amd/common code does it for us.
532 *
533 * Note: On LLVM <= 8, we can only open-code formats with
534 * channel size >= 4 bytes.
535 */
536 bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
537 fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
538 if (opencode ||
539 (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
540 (fix_fetch.u.log_size == 2)) {
541 tmp = ac_build_opencoded_load_format(
542 &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
543 fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
544 t_list, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0,
545 false, false, true);
546 for (unsigned i = 0; i < 4; ++i)
547 out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
548 return;
549 }
550
551 /* Do multiple loads for special formats. */
552 unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
553 LLVMValueRef fetches[4];
554 unsigned num_fetches;
555 unsigned fetch_stride;
556 unsigned channels_per_fetch;
557
558 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
559 num_fetches = MIN2(required_channels, 3);
560 fetch_stride = 1 << fix_fetch.u.log_size;
561 channels_per_fetch = 1;
562 } else {
563 num_fetches = 1;
564 fetch_stride = 0;
565 channels_per_fetch = required_channels;
566 }
567
568 for (unsigned i = 0; i < num_fetches; ++i) {
569 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
570 fetches[i] = ac_build_buffer_load_format(&ctx->ac, t_list, vertex_index, voffset,
571 channels_per_fetch, false, true);
572 }
573
574 if (num_fetches == 1 && channels_per_fetch > 1) {
575 LLVMValueRef fetch = fetches[0];
576 for (unsigned i = 0; i < channels_per_fetch; ++i) {
577 tmp = LLVMConstInt(ctx->i32, i, false);
578 fetches[i] = LLVMBuildExtractElement(
579 ctx->ac.builder, fetch, tmp, "");
580 }
581 num_fetches = channels_per_fetch;
582 channels_per_fetch = 1;
583 }
584
585 for (unsigned i = num_fetches; i < 4; ++i)
586 fetches[i] = LLVMGetUndef(ctx->f32);
587
588 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
589 required_channels == 4) {
590 if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
591 fetches[3] = ctx->ac.i32_1;
592 else
593 fetches[3] = ctx->ac.f32_1;
594 } else if (fix_fetch.u.log_size == 3 &&
595 (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
596 fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
597 fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
598 required_channels == 4) {
599 /* For 2_10_10_10, the hardware returns an unsigned value;
600 * convert it to a signed one.
601 */
602 LLVMValueRef tmp = fetches[3];
603 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
604
605 /* First, recover the sign-extended signed integer value. */
606 if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
607 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
608 else
609 tmp = ac_to_integer(&ctx->ac, tmp);
610
611 /* For the integer-like cases, do a natural sign extension.
612 *
613 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
614 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
615 * exponent.
616 */
617 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
618 fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
619 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
620 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
621
622 /* Convert back to the right type. */
623 if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
624 LLVMValueRef clamp;
625 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
626 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
627 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
628 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
629 } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
630 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
631 }
632
633 fetches[3] = tmp;
634 }
635
636 for (unsigned i = 0; i < 4; ++i)
637 out[i] = ac_to_float(&ctx->ac, fetches[i]);
638 }
639
640 static void declare_input_vs(
641 struct si_shader_context *ctx,
642 unsigned input_index,
643 const struct tgsi_full_declaration *decl,
644 LLVMValueRef out[4])
645 {
646 si_llvm_load_input_vs(ctx, input_index, out);
647 }
648
649 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
650 unsigned swizzle)
651 {
652 if (swizzle > 0)
653 return ctx->i32_0;
654
655 switch (ctx->type) {
656 case PIPE_SHADER_VERTEX:
657 return LLVMGetParam(ctx->main_fn,
658 ctx->param_vs_prim_id);
659 case PIPE_SHADER_TESS_CTRL:
660 return ctx->abi.tcs_patch_id;
661 case PIPE_SHADER_TESS_EVAL:
662 return ctx->abi.tes_patch_id;
663 case PIPE_SHADER_GEOMETRY:
664 return ctx->abi.gs_prim_id;
665 default:
666 assert(0);
667 return ctx->i32_0;
668 }
669 }
670
671 /**
672 * Return the value of tgsi_ind_register for indexing.
673 * This is the indirect index with the constant offset added to it.
674 */
675 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
676 const struct tgsi_ind_register *ind,
677 unsigned addr_mul,
678 int rel_index)
679 {
680 LLVMValueRef result;
681
682 if (ind->File == TGSI_FILE_ADDRESS) {
683 result = ctx->addrs[ind->Index][ind->Swizzle];
684 result = LLVMBuildLoad(ctx->ac.builder, result, "");
685 } else {
686 struct tgsi_full_src_register src = {};
687
688 src.Register.File = ind->File;
689 src.Register.Index = ind->Index;
690
691 /* Set the second index to 0 for constants. */
692 if (ind->File == TGSI_FILE_CONSTANT)
693 src.Register.Dimension = 1;
694
695 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
696 TGSI_TYPE_SIGNED,
697 ind->Swizzle);
698 result = ac_to_integer(&ctx->ac, result);
699 }
700
701 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
702 LLVMConstInt(ctx->i32, rel_index, 0));
703 }
704
705 /**
706 * Like si_get_indirect_index, but restricts the return value to a (possibly
707 * undefined) value inside [0..num).
708 */
709 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
710 const struct tgsi_ind_register *ind,
711 int rel_index, unsigned num)
712 {
713 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
714
715 return si_llvm_bound_index(ctx, result, num);
716 }
717
718 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
719 LLVMValueRef vertex_dw_stride,
720 LLVMValueRef base_addr,
721 LLVMValueRef vertex_index,
722 LLVMValueRef param_index,
723 unsigned input_index,
724 ubyte *name,
725 ubyte *index,
726 bool is_patch)
727 {
728 if (vertex_dw_stride) {
729 base_addr = ac_build_imad(&ctx->ac, vertex_index,
730 vertex_dw_stride, base_addr);
731 }
732
733 if (param_index) {
734 base_addr = ac_build_imad(&ctx->ac, param_index,
735 LLVMConstInt(ctx->i32, 4, 0), base_addr);
736 }
737
738 int param = is_patch ?
739 si_shader_io_get_unique_index_patch(name[input_index],
740 index[input_index]) :
741 si_shader_io_get_unique_index(name[input_index],
742 index[input_index], false);
743
744 /* Add the base address of the element. */
745 return LLVMBuildAdd(ctx->ac.builder, base_addr,
746 LLVMConstInt(ctx->i32, param * 4, 0), "");
747 }
748
749 /**
750 * Calculate a dword address given an input or output register and a stride.
751 */
752 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
753 const struct tgsi_full_dst_register *dst,
754 const struct tgsi_full_src_register *src,
755 LLVMValueRef vertex_dw_stride,
756 LLVMValueRef base_addr)
757 {
758 struct tgsi_shader_info *info = &ctx->shader->selector->info;
759 ubyte *name, *index, *array_first;
760 int input_index;
761 struct tgsi_full_dst_register reg;
762 LLVMValueRef vertex_index = NULL;
763 LLVMValueRef ind_index = NULL;
764
765 /* Set the register description. The address computation is the same
766 * for sources and destinations. */
767 if (src) {
768 reg.Register.File = src->Register.File;
769 reg.Register.Index = src->Register.Index;
770 reg.Register.Indirect = src->Register.Indirect;
771 reg.Register.Dimension = src->Register.Dimension;
772 reg.Indirect = src->Indirect;
773 reg.Dimension = src->Dimension;
774 reg.DimIndirect = src->DimIndirect;
775 } else
776 reg = *dst;
777
778 /* If the register is 2-dimensional (e.g. an array of vertices
779 * in a primitive), calculate the base address of the vertex. */
780 if (reg.Register.Dimension) {
781 if (reg.Dimension.Indirect)
782 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
783 1, reg.Dimension.Index);
784 else
785 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
786 }
787
788 /* Get information about the register. */
789 if (reg.Register.File == TGSI_FILE_INPUT) {
790 name = info->input_semantic_name;
791 index = info->input_semantic_index;
792 array_first = info->input_array_first;
793 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
794 name = info->output_semantic_name;
795 index = info->output_semantic_index;
796 array_first = info->output_array_first;
797 } else {
798 assert(0);
799 return NULL;
800 }
801
802 if (reg.Register.Indirect) {
803 /* Add the relative address of the element. */
804 if (reg.Indirect.ArrayID)
805 input_index = array_first[reg.Indirect.ArrayID];
806 else
807 input_index = reg.Register.Index;
808
809 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
810 1, reg.Register.Index - input_index);
811 } else {
812 input_index = reg.Register.Index;
813 }
814
815 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
816 base_addr, vertex_index,
817 ind_index, input_index,
818 name, index,
819 !reg.Register.Dimension);
820 }
821
822 /* The offchip buffer layout for TCS->TES is
823 *
824 * - attribute 0 of patch 0 vertex 0
825 * - attribute 0 of patch 0 vertex 1
826 * - attribute 0 of patch 0 vertex 2
827 * ...
828 * - attribute 0 of patch 1 vertex 0
829 * - attribute 0 of patch 1 vertex 1
830 * ...
831 * - attribute 1 of patch 0 vertex 0
832 * - attribute 1 of patch 0 vertex 1
833 * ...
834 * - per patch attribute 0 of patch 0
835 * - per patch attribute 0 of patch 1
836 * ...
837 *
838 * Note that every attribute has 4 components.
839 */
840 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
841 LLVMValueRef rel_patch_id,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index)
844 {
845 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
846 LLVMValueRef param_stride, constant16;
847
848 vertices_per_patch = get_num_tcs_out_vertices(ctx);
849 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
850 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
851 num_patches, "");
852
853 constant16 = LLVMConstInt(ctx->i32, 16, 0);
854 if (vertex_index) {
855 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
856 vertices_per_patch, vertex_index);
857 param_stride = total_vertices;
858 } else {
859 base_addr = rel_patch_id;
860 param_stride = num_patches;
861 }
862
863 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
864 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
865
866 if (!vertex_index) {
867 LLVMValueRef patch_data_offset =
868 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
869
870 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
871 patch_data_offset, "");
872 }
873 return base_addr;
874 }
875
876 /* This is a generic helper that can be shared by the NIR and TGSI backends */
877 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
878 struct si_shader_context *ctx,
879 LLVMValueRef vertex_index,
880 LLVMValueRef param_index,
881 unsigned param_base,
882 ubyte *name,
883 ubyte *index,
884 bool is_patch)
885 {
886 unsigned param_index_base;
887
888 param_index_base = is_patch ?
889 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
890 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
891
892 if (param_index) {
893 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
894 LLVMConstInt(ctx->i32, param_index_base, 0),
895 "");
896 } else {
897 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
898 }
899
900 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
901 vertex_index, param_index);
902 }
903
904 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
905 struct si_shader_context *ctx,
906 const struct tgsi_full_dst_register *dst,
907 const struct tgsi_full_src_register *src)
908 {
909 struct tgsi_shader_info *info = &ctx->shader->selector->info;
910 ubyte *name, *index, *array_first;
911 struct tgsi_full_src_register reg;
912 LLVMValueRef vertex_index = NULL;
913 LLVMValueRef param_index = NULL;
914 unsigned param_base;
915
916 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
917
918 if (reg.Register.Dimension) {
919
920 if (reg.Dimension.Indirect)
921 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
922 1, reg.Dimension.Index);
923 else
924 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
925 }
926
927 /* Get information about the register. */
928 if (reg.Register.File == TGSI_FILE_INPUT) {
929 name = info->input_semantic_name;
930 index = info->input_semantic_index;
931 array_first = info->input_array_first;
932 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
933 name = info->output_semantic_name;
934 index = info->output_semantic_index;
935 array_first = info->output_array_first;
936 } else {
937 assert(0);
938 return NULL;
939 }
940
941 if (reg.Register.Indirect) {
942 if (reg.Indirect.ArrayID)
943 param_base = array_first[reg.Indirect.ArrayID];
944 else
945 param_base = reg.Register.Index;
946
947 param_index = si_get_indirect_index(ctx, &reg.Indirect,
948 1, reg.Register.Index - param_base);
949
950 } else {
951 param_base = reg.Register.Index;
952 }
953
954 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
955 param_index, param_base,
956 name, index, !reg.Register.Dimension);
957 }
958
959 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
960 LLVMTypeRef type, unsigned swizzle,
961 LLVMValueRef buffer, LLVMValueRef offset,
962 LLVMValueRef base, bool can_speculate)
963 {
964 struct si_shader_context *ctx = si_shader_context(bld_base);
965 LLVMValueRef value, value2;
966 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
967
968 if (swizzle == ~0) {
969 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
970 0, 1, 0, can_speculate, false);
971
972 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
973 }
974
975 if (!llvm_type_is_64bit(ctx, type)) {
976 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
977 0, 1, 0, can_speculate, false);
978
979 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
980 return LLVMBuildExtractElement(ctx->ac.builder, value,
981 LLVMConstInt(ctx->i32, swizzle, 0), "");
982 }
983
984 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
985 swizzle * 4, 1, 0, can_speculate, false);
986
987 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
988 swizzle * 4 + 4, 1, 0, can_speculate, false);
989
990 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
991 }
992
993 /**
994 * Load from LSHS LDS storage.
995 *
996 * \param type output value type
997 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
998 * \param dw_addr address in dwords
999 */
1000 static LLVMValueRef lshs_lds_load(struct lp_build_tgsi_context *bld_base,
1001 LLVMTypeRef type, unsigned swizzle,
1002 LLVMValueRef dw_addr)
1003 {
1004 struct si_shader_context *ctx = si_shader_context(bld_base);
1005 LLVMValueRef value;
1006
1007 if (swizzle == ~0) {
1008 LLVMValueRef values[TGSI_NUM_CHANNELS];
1009
1010 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1011 values[chan] = lshs_lds_load(bld_base, type, chan, dw_addr);
1012
1013 return ac_build_gather_values(&ctx->ac, values,
1014 TGSI_NUM_CHANNELS);
1015 }
1016
1017 /* Split 64-bit loads. */
1018 if (llvm_type_is_64bit(ctx, type)) {
1019 LLVMValueRef lo, hi;
1020
1021 lo = lshs_lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1022 hi = lshs_lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1023 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1024 }
1025
1026 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1027 LLVMConstInt(ctx->i32, swizzle, 0), "");
1028
1029 value = ac_lds_load(&ctx->ac, dw_addr);
1030
1031 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1032 }
1033
1034 /**
1035 * Store to LSHS LDS storage.
1036 *
1037 * \param swizzle offset (typically 0..3)
1038 * \param dw_addr address in dwords
1039 * \param value value to store
1040 */
1041 static void lshs_lds_store(struct si_shader_context *ctx,
1042 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1043 LLVMValueRef value)
1044 {
1045 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1046 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1047
1048 ac_lds_store(&ctx->ac, dw_addr, value);
1049 }
1050
1051 enum si_tess_ring {
1052 TCS_FACTOR_RING,
1053 TESS_OFFCHIP_RING_TCS,
1054 TESS_OFFCHIP_RING_TES,
1055 };
1056
1057 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1058 enum si_tess_ring ring)
1059 {
1060 LLVMBuilderRef builder = ctx->ac.builder;
1061 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1062 ctx->param_tcs_out_lds_layout;
1063 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1064
1065 /* TCS only receives high 13 bits of the address. */
1066 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1067 addr = LLVMBuildAnd(builder, addr,
1068 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1069 }
1070
1071 if (ring == TCS_FACTOR_RING) {
1072 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1073 addr = LLVMBuildAdd(builder, addr,
1074 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1075 }
1076
1077 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1078 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1079 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1080 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1081
1082 if (ctx->screen->info.chip_class >= GFX10)
1083 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1084 S_008F0C_OOB_SELECT(3) |
1085 S_008F0C_RESOURCE_LEVEL(1);
1086 else
1087 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1088 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1089
1090 LLVMValueRef desc[4];
1091 desc[0] = addr;
1092 desc[1] = LLVMConstInt(ctx->i32,
1093 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1094 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1095 desc[3] = LLVMConstInt(ctx->i32, rsrc3, false);
1096
1097 return ac_build_gather_values(&ctx->ac, desc, 4);
1098 }
1099
1100 static LLVMValueRef fetch_input_tcs(
1101 struct lp_build_tgsi_context *bld_base,
1102 const struct tgsi_full_src_register *reg,
1103 enum tgsi_opcode_type type, unsigned swizzle_in)
1104 {
1105 struct si_shader_context *ctx = si_shader_context(bld_base);
1106 LLVMValueRef dw_addr, stride;
1107 unsigned swizzle = swizzle_in & 0xffff;
1108 stride = get_tcs_in_vertex_dw_stride(ctx);
1109 dw_addr = get_tcs_in_current_patch_offset(ctx);
1110 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1111
1112 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1113 }
1114
1115 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1116 LLVMTypeRef type,
1117 LLVMValueRef vertex_index,
1118 LLVMValueRef param_index,
1119 unsigned const_index,
1120 unsigned location,
1121 unsigned driver_location,
1122 unsigned component,
1123 unsigned num_components,
1124 bool is_patch,
1125 bool is_compact,
1126 bool load_input)
1127 {
1128 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1129 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1130 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1131 LLVMValueRef dw_addr, stride;
1132
1133 driver_location = driver_location / 4;
1134
1135 if (load_input) {
1136 stride = get_tcs_in_vertex_dw_stride(ctx);
1137 dw_addr = get_tcs_in_current_patch_offset(ctx);
1138 } else {
1139 if (is_patch) {
1140 stride = NULL;
1141 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1142 } else {
1143 stride = get_tcs_out_vertex_dw_stride(ctx);
1144 dw_addr = get_tcs_out_current_patch_offset(ctx);
1145 }
1146 }
1147
1148 if (param_index) {
1149 /* Add the constant index to the indirect index */
1150 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1151 LLVMConstInt(ctx->i32, const_index, 0), "");
1152 } else {
1153 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1154 }
1155
1156 ubyte *names;
1157 ubyte *indices;
1158 if (load_input) {
1159 names = info->input_semantic_name;
1160 indices = info->input_semantic_index;
1161 } else {
1162 names = info->output_semantic_name;
1163 indices = info->output_semantic_index;
1164 }
1165
1166 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1167 vertex_index, param_index,
1168 driver_location,
1169 names, indices,
1170 is_patch);
1171
1172 LLVMValueRef value[4];
1173 for (unsigned i = 0; i < num_components; i++) {
1174 unsigned offset = i;
1175 if (llvm_type_is_64bit(ctx, type))
1176 offset *= 2;
1177
1178 offset += component;
1179 value[i + component] = lshs_lds_load(bld_base, type, offset, dw_addr);
1180 }
1181
1182 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1183 }
1184
1185 static LLVMValueRef fetch_output_tcs(
1186 struct lp_build_tgsi_context *bld_base,
1187 const struct tgsi_full_src_register *reg,
1188 enum tgsi_opcode_type type, unsigned swizzle_in)
1189 {
1190 struct si_shader_context *ctx = si_shader_context(bld_base);
1191 LLVMValueRef dw_addr, stride;
1192 unsigned swizzle = (swizzle_in & 0xffff);
1193
1194 if (reg->Register.Dimension) {
1195 stride = get_tcs_out_vertex_dw_stride(ctx);
1196 dw_addr = get_tcs_out_current_patch_offset(ctx);
1197 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1198 } else {
1199 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1200 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1201 }
1202
1203 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1204 }
1205
1206 static LLVMValueRef fetch_input_tes(
1207 struct lp_build_tgsi_context *bld_base,
1208 const struct tgsi_full_src_register *reg,
1209 enum tgsi_opcode_type type, unsigned swizzle_in)
1210 {
1211 struct si_shader_context *ctx = si_shader_context(bld_base);
1212 LLVMValueRef base, addr;
1213 unsigned swizzle = (swizzle_in & 0xffff);
1214
1215 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1216 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1217
1218 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1219 ctx->tess_offchip_ring, base, addr, true);
1220 }
1221
1222 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1223 LLVMTypeRef type,
1224 LLVMValueRef vertex_index,
1225 LLVMValueRef param_index,
1226 unsigned const_index,
1227 unsigned location,
1228 unsigned driver_location,
1229 unsigned component,
1230 unsigned num_components,
1231 bool is_patch,
1232 bool is_compact,
1233 bool load_input)
1234 {
1235 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1236 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1237 LLVMValueRef base, addr;
1238
1239 driver_location = driver_location / 4;
1240
1241 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1242
1243 if (param_index) {
1244 /* Add the constant index to the indirect index */
1245 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1246 LLVMConstInt(ctx->i32, const_index, 0), "");
1247 } else {
1248 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1249 }
1250
1251 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1252 param_index, driver_location,
1253 info->input_semantic_name,
1254 info->input_semantic_index,
1255 is_patch);
1256
1257 /* TODO: This will generate rather ordinary llvm code, although it
1258 * should be easy for the optimiser to fix up. In future we might want
1259 * to refactor buffer_load(), but for now this maximises code sharing
1260 * between the NIR and TGSI backends.
1261 */
1262 LLVMValueRef value[4];
1263 for (unsigned i = 0; i < num_components; i++) {
1264 unsigned offset = i;
1265 if (llvm_type_is_64bit(ctx, type)) {
1266 offset *= 2;
1267 if (offset == 4) {
1268 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1269 vertex_index,
1270 param_index,
1271 driver_location + 1,
1272 info->input_semantic_name,
1273 info->input_semantic_index,
1274 is_patch);
1275 }
1276
1277 offset = offset % 4;
1278 }
1279
1280 offset += component;
1281 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1282 ctx->tess_offchip_ring, base, addr, true);
1283 }
1284
1285 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1286 }
1287
1288 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1289 const struct tgsi_full_instruction *inst,
1290 const struct tgsi_opcode_info *info,
1291 unsigned index,
1292 LLVMValueRef dst[4])
1293 {
1294 struct si_shader_context *ctx = si_shader_context(bld_base);
1295 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1296 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1297 unsigned chan_index;
1298 LLVMValueRef dw_addr, stride;
1299 LLVMValueRef buffer, base, buf_addr;
1300 LLVMValueRef values[4];
1301 bool skip_lds_store;
1302 bool is_tess_factor = false, is_tess_inner = false;
1303
1304 /* Only handle per-patch and per-vertex outputs here.
1305 * Vectors will be lowered to scalars and this function will be called again.
1306 */
1307 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1308 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1309 si_llvm_emit_store(bld_base, inst, info, index, dst);
1310 return;
1311 }
1312
1313 if (reg->Register.Dimension) {
1314 stride = get_tcs_out_vertex_dw_stride(ctx);
1315 dw_addr = get_tcs_out_current_patch_offset(ctx);
1316 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1317 skip_lds_store = !sh_info->reads_pervertex_outputs;
1318 } else {
1319 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1320 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1321 skip_lds_store = !sh_info->reads_perpatch_outputs;
1322
1323 if (!reg->Register.Indirect) {
1324 int name = sh_info->output_semantic_name[reg->Register.Index];
1325
1326 /* Always write tess factors into LDS for the TCS epilog. */
1327 if (name == TGSI_SEMANTIC_TESSINNER ||
1328 name == TGSI_SEMANTIC_TESSOUTER) {
1329 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1330 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1331 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1332 is_tess_factor = true;
1333 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1334 }
1335 }
1336 }
1337
1338 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1339
1340 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1341 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1342
1343 uint32_t writemask = reg->Register.WriteMask;
1344 while (writemask) {
1345 chan_index = u_bit_scan(&writemask);
1346 LLVMValueRef value = dst[chan_index];
1347
1348 if (inst->Instruction.Saturate)
1349 value = ac_build_clamp(&ctx->ac, value);
1350
1351 /* Skip LDS stores if there is no LDS read of this output. */
1352 if (!skip_lds_store)
1353 lshs_lds_store(ctx, chan_index, dw_addr, value);
1354
1355 value = ac_to_integer(&ctx->ac, value);
1356 values[chan_index] = value;
1357
1358 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1359 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1360 buf_addr, base,
1361 4 * chan_index, 1, 0, false);
1362 }
1363
1364 /* Write tess factors into VGPRs for the epilog. */
1365 if (is_tess_factor &&
1366 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1367 if (!is_tess_inner) {
1368 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1369 ctx->invoc0_tess_factors[chan_index]);
1370 } else if (chan_index < 2) {
1371 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1372 ctx->invoc0_tess_factors[4 + chan_index]);
1373 }
1374 }
1375 }
1376
1377 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1378 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1379 values, 4);
1380 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1381 base, 0, 1, 0, false);
1382 }
1383 }
1384
1385 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1386 const struct nir_variable *var,
1387 LLVMValueRef vertex_index,
1388 LLVMValueRef param_index,
1389 unsigned const_index,
1390 LLVMValueRef src,
1391 unsigned writemask)
1392 {
1393 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1394 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1395 const unsigned component = var->data.location_frac;
1396 const bool is_patch = var->data.patch;
1397 unsigned driver_location = var->data.driver_location;
1398 LLVMValueRef dw_addr, stride;
1399 LLVMValueRef buffer, base, addr;
1400 LLVMValueRef values[8];
1401 bool skip_lds_store;
1402 bool is_tess_factor = false, is_tess_inner = false;
1403
1404 driver_location = driver_location / 4;
1405
1406 if (param_index) {
1407 /* Add the constant index to the indirect index */
1408 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1409 LLVMConstInt(ctx->i32, const_index, 0), "");
1410 } else {
1411 if (const_index != 0)
1412 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1413 }
1414
1415 if (!is_patch) {
1416 stride = get_tcs_out_vertex_dw_stride(ctx);
1417 dw_addr = get_tcs_out_current_patch_offset(ctx);
1418 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1419 vertex_index, param_index,
1420 driver_location,
1421 info->output_semantic_name,
1422 info->output_semantic_index,
1423 is_patch);
1424
1425 skip_lds_store = !info->reads_pervertex_outputs;
1426 } else {
1427 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1428 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1429 vertex_index, param_index,
1430 driver_location,
1431 info->output_semantic_name,
1432 info->output_semantic_index,
1433 is_patch);
1434
1435 skip_lds_store = !info->reads_perpatch_outputs;
1436
1437 if (!param_index) {
1438 int name = info->output_semantic_name[driver_location];
1439
1440 /* Always write tess factors into LDS for the TCS epilog. */
1441 if (name == TGSI_SEMANTIC_TESSINNER ||
1442 name == TGSI_SEMANTIC_TESSOUTER) {
1443 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1444 skip_lds_store = !info->reads_tessfactor_outputs &&
1445 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1446 is_tess_factor = true;
1447 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1448 }
1449 }
1450 }
1451
1452 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1453
1454 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1455
1456 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1457 param_index, driver_location,
1458 info->output_semantic_name,
1459 info->output_semantic_index,
1460 is_patch);
1461
1462 for (unsigned chan = 0; chan < 8; chan++) {
1463 if (!(writemask & (1 << chan)))
1464 continue;
1465 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1466
1467 unsigned buffer_store_offset = chan % 4;
1468 if (chan == 4) {
1469 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1470 vertex_index,
1471 param_index,
1472 driver_location + 1,
1473 info->output_semantic_name,
1474 info->output_semantic_index,
1475 is_patch);
1476 }
1477
1478 /* Skip LDS stores if there is no LDS read of this output. */
1479 if (!skip_lds_store)
1480 lshs_lds_store(ctx, chan, dw_addr, value);
1481
1482 value = ac_to_integer(&ctx->ac, value);
1483 values[chan] = value;
1484
1485 if (writemask != 0xF && !is_tess_factor) {
1486 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1487 addr, base,
1488 4 * buffer_store_offset,
1489 1, 0, false);
1490 }
1491
1492 /* Write tess factors into VGPRs for the epilog. */
1493 if (is_tess_factor &&
1494 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1495 if (!is_tess_inner) {
1496 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1497 ctx->invoc0_tess_factors[chan]);
1498 } else if (chan < 2) {
1499 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1500 ctx->invoc0_tess_factors[4 + chan]);
1501 }
1502 }
1503 }
1504
1505 if (writemask == 0xF && !is_tess_factor) {
1506 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1507 values, 4);
1508 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1509 base, 0, 1, 0, false);
1510 }
1511 }
1512
1513 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1514 unsigned input_index,
1515 unsigned vtx_offset_param,
1516 LLVMTypeRef type,
1517 unsigned swizzle)
1518 {
1519 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1520 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1521 struct si_shader *shader = ctx->shader;
1522 LLVMValueRef vtx_offset, soffset;
1523 struct tgsi_shader_info *info = &shader->selector->info;
1524 unsigned semantic_name = info->input_semantic_name[input_index];
1525 unsigned semantic_index = info->input_semantic_index[input_index];
1526 unsigned param;
1527 LLVMValueRef value;
1528
1529 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1530
1531 /* GFX9 has the ESGS ring in LDS. */
1532 if (ctx->screen->info.chip_class >= GFX9) {
1533 unsigned index = vtx_offset_param;
1534
1535 switch (index / 2) {
1536 case 0:
1537 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1538 index % 2 ? 16 : 0, 16);
1539 break;
1540 case 1:
1541 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1542 index % 2 ? 16 : 0, 16);
1543 break;
1544 case 2:
1545 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1546 index % 2 ? 16 : 0, 16);
1547 break;
1548 default:
1549 assert(0);
1550 return NULL;
1551 }
1552
1553 unsigned offset = param * 4 + swizzle;
1554 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1555 LLVMConstInt(ctx->i32, offset, false), "");
1556
1557 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset);
1558 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1559 if (llvm_type_is_64bit(ctx, type)) {
1560 ptr = LLVMBuildGEP(ctx->ac.builder, ptr,
1561 &ctx->ac.i32_1, 1, "");
1562 LLVMValueRef values[2] = {
1563 value,
1564 LLVMBuildLoad(ctx->ac.builder, ptr, "")
1565 };
1566 value = ac_build_gather_values(&ctx->ac, values, 2);
1567 }
1568 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1569 }
1570
1571 /* GFX6: input load from the ESGS ring in memory. */
1572 if (swizzle == ~0) {
1573 LLVMValueRef values[TGSI_NUM_CHANNELS];
1574 unsigned chan;
1575 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1576 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1577 type, chan);
1578 }
1579 return ac_build_gather_values(&ctx->ac, values,
1580 TGSI_NUM_CHANNELS);
1581 }
1582
1583 /* Get the vertex offset parameter on GFX6. */
1584 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1585
1586 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1587 LLVMConstInt(ctx->i32, 4, 0), "");
1588
1589 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1590
1591 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1592 vtx_offset, soffset, 0, 1, 0, true, false);
1593 if (llvm_type_is_64bit(ctx, type)) {
1594 LLVMValueRef value2;
1595 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1596
1597 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1598 ctx->i32_0, vtx_offset, soffset,
1599 0, 1, 0, true, false);
1600 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1601 }
1602 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1603 }
1604
1605 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1606 unsigned location,
1607 unsigned driver_location,
1608 unsigned component,
1609 unsigned num_components,
1610 unsigned vertex_index,
1611 unsigned const_index,
1612 LLVMTypeRef type)
1613 {
1614 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1615
1616 LLVMValueRef value[4];
1617 for (unsigned i = 0; i < num_components; i++) {
1618 unsigned offset = i;
1619 if (llvm_type_is_64bit(ctx, type))
1620 offset *= 2;
1621
1622 offset += component;
1623 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1624 vertex_index, type, offset);
1625 }
1626
1627 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1628 }
1629
1630 static LLVMValueRef fetch_input_gs(
1631 struct lp_build_tgsi_context *bld_base,
1632 const struct tgsi_full_src_register *reg,
1633 enum tgsi_opcode_type type,
1634 unsigned swizzle_in)
1635 {
1636 struct si_shader_context *ctx = si_shader_context(bld_base);
1637 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1638 unsigned swizzle = swizzle_in & 0xffff;
1639
1640 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1641 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1642 return si_get_primitive_id(ctx, swizzle);
1643
1644 if (!reg->Register.Dimension)
1645 return NULL;
1646
1647 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1648 reg->Dimension.Index,
1649 tgsi2llvmtype(bld_base, type),
1650 swizzle);
1651 }
1652
1653 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1654 {
1655 switch (interpolate) {
1656 case TGSI_INTERPOLATE_CONSTANT:
1657 return 0;
1658
1659 case TGSI_INTERPOLATE_LINEAR:
1660 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1661 return SI_PARAM_LINEAR_SAMPLE;
1662 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1663 return SI_PARAM_LINEAR_CENTROID;
1664 else
1665 return SI_PARAM_LINEAR_CENTER;
1666 break;
1667 case TGSI_INTERPOLATE_COLOR:
1668 case TGSI_INTERPOLATE_PERSPECTIVE:
1669 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1670 return SI_PARAM_PERSP_SAMPLE;
1671 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1672 return SI_PARAM_PERSP_CENTROID;
1673 else
1674 return SI_PARAM_PERSP_CENTER;
1675 break;
1676 default:
1677 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1678 return -1;
1679 }
1680 }
1681
1682 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1683 unsigned attr_index, unsigned chan,
1684 LLVMValueRef prim_mask,
1685 LLVMValueRef i, LLVMValueRef j)
1686 {
1687 if (i || j) {
1688 return ac_build_fs_interp(&ctx->ac,
1689 LLVMConstInt(ctx->i32, chan, 0),
1690 LLVMConstInt(ctx->i32, attr_index, 0),
1691 prim_mask, i, j);
1692 }
1693 return ac_build_fs_interp_mov(&ctx->ac,
1694 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1695 LLVMConstInt(ctx->i32, chan, 0),
1696 LLVMConstInt(ctx->i32, attr_index, 0),
1697 prim_mask);
1698 }
1699
1700 /**
1701 * Interpolate a fragment shader input.
1702 *
1703 * @param ctx context
1704 * @param input_index index of the input in hardware
1705 * @param semantic_name TGSI_SEMANTIC_*
1706 * @param semantic_index semantic index
1707 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1708 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1709 * @param interp_param interpolation weights (i,j)
1710 * @param prim_mask SI_PARAM_PRIM_MASK
1711 * @param face SI_PARAM_FRONT_FACE
1712 * @param result the return value (4 components)
1713 */
1714 static void interp_fs_input(struct si_shader_context *ctx,
1715 unsigned input_index,
1716 unsigned semantic_name,
1717 unsigned semantic_index,
1718 unsigned num_interp_inputs,
1719 unsigned colors_read_mask,
1720 LLVMValueRef interp_param,
1721 LLVMValueRef prim_mask,
1722 LLVMValueRef face,
1723 LLVMValueRef result[4])
1724 {
1725 LLVMValueRef i = NULL, j = NULL;
1726 unsigned chan;
1727
1728 /* fs.constant returns the param from the middle vertex, so it's not
1729 * really useful for flat shading. It's meant to be used for custom
1730 * interpolation (but the intrinsic can't fetch from the other two
1731 * vertices).
1732 *
1733 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1734 * to do the right thing. The only reason we use fs.constant is that
1735 * fs.interp cannot be used on integers, because they can be equal
1736 * to NaN.
1737 *
1738 * When interp is false we will use fs.constant or for newer llvm,
1739 * amdgcn.interp.mov.
1740 */
1741 bool interp = interp_param != NULL;
1742
1743 if (interp) {
1744 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1745 LLVMVectorType(ctx->f32, 2), "");
1746
1747 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1748 ctx->i32_0, "");
1749 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1750 ctx->i32_1, "");
1751 }
1752
1753 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1754 ctx->shader->key.part.ps.prolog.color_two_side) {
1755 LLVMValueRef is_face_positive;
1756
1757 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1758 * otherwise it's at offset "num_inputs".
1759 */
1760 unsigned back_attr_offset = num_interp_inputs;
1761 if (semantic_index == 1 && colors_read_mask & 0xf)
1762 back_attr_offset += 1;
1763
1764 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1765 face, ctx->i32_0, "");
1766
1767 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1768 LLVMValueRef front, back;
1769
1770 front = si_build_fs_interp(ctx,
1771 input_index, chan,
1772 prim_mask, i, j);
1773 back = si_build_fs_interp(ctx,
1774 back_attr_offset, chan,
1775 prim_mask, i, j);
1776
1777 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1778 is_face_positive,
1779 front,
1780 back,
1781 "");
1782 }
1783 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1784 result[0] = si_build_fs_interp(ctx, input_index,
1785 0, prim_mask, i, j);
1786 result[1] =
1787 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1788 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1789 } else {
1790 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1791 result[chan] = si_build_fs_interp(ctx,
1792 input_index, chan,
1793 prim_mask, i, j);
1794 }
1795 }
1796 }
1797
1798 void si_llvm_load_input_fs(
1799 struct si_shader_context *ctx,
1800 unsigned input_index,
1801 LLVMValueRef out[4])
1802 {
1803 struct si_shader *shader = ctx->shader;
1804 struct tgsi_shader_info *info = &shader->selector->info;
1805 LLVMValueRef main_fn = ctx->main_fn;
1806 LLVMValueRef interp_param = NULL;
1807 int interp_param_idx;
1808 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1809 unsigned semantic_index = info->input_semantic_index[input_index];
1810 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1811 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1812
1813 /* Get colors from input VGPRs (set by the prolog). */
1814 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1815 unsigned colors_read = shader->selector->info.colors_read;
1816 unsigned mask = colors_read >> (semantic_index * 4);
1817 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1818 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1819 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1820
1821 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1822 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1823 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1824 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1825 return;
1826 }
1827
1828 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1829 if (interp_param_idx == -1)
1830 return;
1831 else if (interp_param_idx) {
1832 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1833 }
1834
1835 interp_fs_input(ctx, input_index, semantic_name,
1836 semantic_index, 0, /* this param is unused */
1837 shader->selector->info.colors_read, interp_param,
1838 ctx->abi.prim_mask,
1839 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1840 &out[0]);
1841 }
1842
1843 static void declare_input_fs(
1844 struct si_shader_context *ctx,
1845 unsigned input_index,
1846 const struct tgsi_full_declaration *decl,
1847 LLVMValueRef out[4])
1848 {
1849 si_llvm_load_input_fs(ctx, input_index, out);
1850 }
1851
1852 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1853 {
1854 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1855 }
1856
1857 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1858 {
1859 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1860
1861 /* For non-indexed draws, the base vertex set by the driver
1862 * (for direct draws) or the CP (for indirect draws) is the
1863 * first vertex ID, but GLSL expects 0 to be returned.
1864 */
1865 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1866 ctx->param_vs_state_bits);
1867 LLVMValueRef indexed;
1868
1869 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1870 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1871
1872 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1873 ctx->i32_0, "");
1874 }
1875
1876 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1877 {
1878 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1879
1880 LLVMValueRef values[3];
1881 LLVMValueRef result;
1882 unsigned i;
1883 unsigned *properties = ctx->shader->selector->info.properties;
1884
1885 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1886 unsigned sizes[3] = {
1887 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1888 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1889 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1890 };
1891
1892 for (i = 0; i < 3; ++i)
1893 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1894
1895 result = ac_build_gather_values(&ctx->ac, values, 3);
1896 } else {
1897 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1898 }
1899
1900 return result;
1901 }
1902
1903 /**
1904 * Load a dword from a constant buffer.
1905 */
1906 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1907 LLVMValueRef resource,
1908 LLVMValueRef offset)
1909 {
1910 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1911 0, 0, 0, true, true);
1912 }
1913
1914 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1915 {
1916 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1917 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1918 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1919 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1920
1921 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1922 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1923 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1924
1925 LLVMValueRef pos[4] = {
1926 buffer_load_const(ctx, resource, offset0),
1927 buffer_load_const(ctx, resource, offset1),
1928 LLVMConstReal(ctx->f32, 0),
1929 LLVMConstReal(ctx->f32, 0)
1930 };
1931
1932 return ac_build_gather_values(&ctx->ac, pos, 4);
1933 }
1934
1935 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1936 {
1937 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1938 return ac_to_integer(&ctx->ac, abi->sample_coverage);
1939 }
1940
1941 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
1942 {
1943 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1944 LLVMValueRef coord[4] = {
1945 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1946 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1947 ctx->ac.f32_0,
1948 ctx->ac.f32_0
1949 };
1950
1951 /* For triangles, the vector should be (u, v, 1-u-v). */
1952 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1953 PIPE_PRIM_TRIANGLES) {
1954 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1955 LLVMBuildFAdd(ctx->ac.builder,
1956 coord[0], coord[1], ""), "");
1957 }
1958 return ac_build_gather_values(&ctx->ac, coord, 4);
1959 }
1960
1961 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1962 unsigned semantic_name)
1963 {
1964 LLVMValueRef base, addr;
1965
1966 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1967
1968 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1969 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1970 LLVMConstInt(ctx->i32, param, 0));
1971
1972 return buffer_load(&ctx->bld_base, ctx->f32,
1973 ~0, ctx->tess_offchip_ring, base, addr, true);
1974
1975 }
1976
1977 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1978 unsigned varying_id)
1979 {
1980 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1981 unsigned semantic_name;
1982
1983 switch (varying_id) {
1984 case VARYING_SLOT_TESS_LEVEL_INNER:
1985 semantic_name = TGSI_SEMANTIC_TESSINNER;
1986 break;
1987 case VARYING_SLOT_TESS_LEVEL_OUTER:
1988 semantic_name = TGSI_SEMANTIC_TESSOUTER;
1989 break;
1990 default:
1991 unreachable("unknown tess level");
1992 }
1993
1994 return load_tess_level(ctx, semantic_name);
1995
1996 }
1997
1998 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
1999 {
2000 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2001 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2002 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2003 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2004 return get_num_tcs_out_vertices(ctx);
2005 else
2006 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2007 }
2008
2009 void si_load_system_value(struct si_shader_context *ctx,
2010 unsigned index,
2011 const struct tgsi_full_declaration *decl)
2012 {
2013 LLVMValueRef value = 0;
2014
2015 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2016
2017 switch (decl->Semantic.Name) {
2018 case TGSI_SEMANTIC_INSTANCEID:
2019 value = ctx->abi.instance_id;
2020 break;
2021
2022 case TGSI_SEMANTIC_VERTEXID:
2023 value = LLVMBuildAdd(ctx->ac.builder,
2024 ctx->abi.vertex_id,
2025 ctx->abi.base_vertex, "");
2026 break;
2027
2028 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2029 /* Unused. Clarify the meaning in indexed vs. non-indexed
2030 * draws if this is ever used again. */
2031 assert(false);
2032 break;
2033
2034 case TGSI_SEMANTIC_BASEVERTEX:
2035 value = get_base_vertex(&ctx->abi);
2036 break;
2037
2038 case TGSI_SEMANTIC_BASEINSTANCE:
2039 value = ctx->abi.start_instance;
2040 break;
2041
2042 case TGSI_SEMANTIC_DRAWID:
2043 value = ctx->abi.draw_id;
2044 break;
2045
2046 case TGSI_SEMANTIC_INVOCATIONID:
2047 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2048 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2049 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2050 value = ctx->abi.gs_invocation_id;
2051 else
2052 assert(!"INVOCATIONID not implemented");
2053 break;
2054
2055 case TGSI_SEMANTIC_POSITION:
2056 {
2057 LLVMValueRef pos[4] = {
2058 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2059 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2060 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2061 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2062 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2063 };
2064 value = ac_build_gather_values(&ctx->ac, pos, 4);
2065 break;
2066 }
2067
2068 case TGSI_SEMANTIC_FACE:
2069 value = ctx->abi.front_face;
2070 break;
2071
2072 case TGSI_SEMANTIC_SAMPLEID:
2073 value = si_get_sample_id(ctx);
2074 break;
2075
2076 case TGSI_SEMANTIC_SAMPLEPOS: {
2077 LLVMValueRef pos[4] = {
2078 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2079 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2080 LLVMConstReal(ctx->f32, 0),
2081 LLVMConstReal(ctx->f32, 0)
2082 };
2083 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2084 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2085 value = ac_build_gather_values(&ctx->ac, pos, 4);
2086 break;
2087 }
2088
2089 case TGSI_SEMANTIC_SAMPLEMASK:
2090 /* This can only occur with the OpenGL Core profile, which
2091 * doesn't support smoothing.
2092 */
2093 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2094 break;
2095
2096 case TGSI_SEMANTIC_TESSCOORD:
2097 value = si_load_tess_coord(&ctx->abi);
2098 break;
2099
2100 case TGSI_SEMANTIC_VERTICESIN:
2101 value = si_load_patch_vertices_in(&ctx->abi);
2102 break;
2103
2104 case TGSI_SEMANTIC_TESSINNER:
2105 case TGSI_SEMANTIC_TESSOUTER:
2106 value = load_tess_level(ctx, decl->Semantic.Name);
2107 break;
2108
2109 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2110 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2111 {
2112 LLVMValueRef buf, slot, val[4];
2113 int i, offset;
2114
2115 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2116 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2117 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2118 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2119
2120 for (i = 0; i < 4; i++)
2121 val[i] = buffer_load_const(ctx, buf,
2122 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2123 value = ac_build_gather_values(&ctx->ac, val, 4);
2124 break;
2125 }
2126
2127 case TGSI_SEMANTIC_PRIMID:
2128 value = si_get_primitive_id(ctx, 0);
2129 break;
2130
2131 case TGSI_SEMANTIC_GRID_SIZE:
2132 value = ctx->abi.num_work_groups;
2133 break;
2134
2135 case TGSI_SEMANTIC_BLOCK_SIZE:
2136 value = get_block_size(&ctx->abi);
2137 break;
2138
2139 case TGSI_SEMANTIC_BLOCK_ID:
2140 {
2141 LLVMValueRef values[3];
2142
2143 for (int i = 0; i < 3; i++) {
2144 values[i] = ctx->i32_0;
2145 if (ctx->abi.workgroup_ids[i]) {
2146 values[i] = ctx->abi.workgroup_ids[i];
2147 }
2148 }
2149 value = ac_build_gather_values(&ctx->ac, values, 3);
2150 break;
2151 }
2152
2153 case TGSI_SEMANTIC_THREAD_ID:
2154 value = ctx->abi.local_invocation_ids;
2155 break;
2156
2157 case TGSI_SEMANTIC_HELPER_INVOCATION:
2158 value = ac_build_load_helper_invocation(&ctx->ac);
2159 break;
2160
2161 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2162 value = LLVMConstInt(ctx->i32, 64, 0);
2163 break;
2164
2165 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2166 value = ac_get_thread_id(&ctx->ac);
2167 break;
2168
2169 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2170 {
2171 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2172 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2173 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2174 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2175 break;
2176 }
2177
2178 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2179 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2180 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2181 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2182 {
2183 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2184 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2185 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2186 /* All bits set except LSB */
2187 value = LLVMConstInt(ctx->i64, -2, 0);
2188 } else {
2189 /* All bits set */
2190 value = LLVMConstInt(ctx->i64, -1, 0);
2191 }
2192 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2193 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2194 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2195 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2196 value = LLVMBuildNot(ctx->ac.builder, value, "");
2197 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2198 break;
2199 }
2200
2201 case TGSI_SEMANTIC_CS_USER_DATA:
2202 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2203 break;
2204
2205 default:
2206 assert(!"unknown system value");
2207 return;
2208 }
2209
2210 ctx->system_values[index] = value;
2211 }
2212
2213 void si_declare_compute_memory(struct si_shader_context *ctx)
2214 {
2215 struct si_shader_selector *sel = ctx->shader->selector;
2216 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2217
2218 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2219 LLVMValueRef var;
2220
2221 assert(!ctx->ac.lds);
2222
2223 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2224 LLVMArrayType(ctx->i8, lds_size),
2225 "compute_lds",
2226 AC_ADDR_SPACE_LDS);
2227 LLVMSetAlignment(var, 64 * 1024);
2228
2229 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2230 }
2231
2232 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2233 const struct tgsi_full_declaration *decl)
2234 {
2235 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2236 assert(decl->Range.First == decl->Range.Last);
2237
2238 si_declare_compute_memory(ctx);
2239 }
2240
2241 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2242 {
2243 LLVMValueRef ptr =
2244 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2245 struct si_shader_selector *sel = ctx->shader->selector;
2246
2247 /* Do the bounds checking with a descriptor, because
2248 * doing computation and manual bounds checking of 64-bit
2249 * addresses generates horrible VALU code with very high
2250 * VGPR usage and very low SIMD occupancy.
2251 */
2252 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2253
2254 LLVMValueRef desc0, desc1;
2255 desc0 = ptr;
2256 desc1 = LLVMConstInt(ctx->i32,
2257 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2258
2259 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2260 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2261 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2262 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2263
2264 if (ctx->screen->info.chip_class >= GFX10)
2265 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2266 S_008F0C_OOB_SELECT(3) |
2267 S_008F0C_RESOURCE_LEVEL(1);
2268 else
2269 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2270 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2271
2272 LLVMValueRef desc_elems[] = {
2273 desc0,
2274 desc1,
2275 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2276 LLVMConstInt(ctx->i32, rsrc3, false)
2277 };
2278
2279 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2280 }
2281
2282 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2283 {
2284 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2285 ctx->param_const_and_shader_buffers);
2286
2287 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2288 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2289 }
2290
2291 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2292 {
2293 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2294 struct si_shader_selector *sel = ctx->shader->selector;
2295
2296 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2297
2298 if (sel->info.const_buffers_declared == 1 &&
2299 sel->info.shader_buffers_declared == 0) {
2300 return load_const_buffer_desc_fast_path(ctx);
2301 }
2302
2303 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2304 index = LLVMBuildAdd(ctx->ac.builder, index,
2305 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2306
2307 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2308 }
2309
2310 static LLVMValueRef
2311 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2312 {
2313 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2314 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2315 ctx->param_const_and_shader_buffers);
2316
2317 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2318 index = LLVMBuildSub(ctx->ac.builder,
2319 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2320 index, "");
2321
2322 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2323 }
2324
2325 static LLVMValueRef fetch_constant(
2326 struct lp_build_tgsi_context *bld_base,
2327 const struct tgsi_full_src_register *reg,
2328 enum tgsi_opcode_type type,
2329 unsigned swizzle_in)
2330 {
2331 struct si_shader_context *ctx = si_shader_context(bld_base);
2332 struct si_shader_selector *sel = ctx->shader->selector;
2333 const struct tgsi_ind_register *ireg = &reg->Indirect;
2334 unsigned buf, idx;
2335 unsigned swizzle = swizzle_in & 0xffff;
2336
2337 LLVMValueRef addr, bufp;
2338
2339 if (swizzle_in == LP_CHAN_ALL) {
2340 unsigned chan;
2341 LLVMValueRef values[4];
2342 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2343 values[chan] = fetch_constant(bld_base, reg, type, chan);
2344
2345 return ac_build_gather_values(&ctx->ac, values, 4);
2346 }
2347
2348 /* Split 64-bit loads. */
2349 if (tgsi_type_is_64bit(type)) {
2350 LLVMValueRef lo, hi;
2351
2352 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2353 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2354 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2355 lo, hi);
2356 }
2357
2358 idx = reg->Register.Index * 4 + swizzle;
2359 if (reg->Register.Indirect) {
2360 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2361 } else {
2362 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2363 }
2364
2365 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2366 if (sel->info.const_buffers_declared == 1 &&
2367 sel->info.shader_buffers_declared == 0) {
2368 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2369 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2370 return bitcast(bld_base, type, result);
2371 }
2372
2373 assert(reg->Register.Dimension);
2374 buf = reg->Dimension.Index;
2375
2376 if (reg->Dimension.Indirect) {
2377 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2378 LLVMValueRef index;
2379 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2380 reg->Dimension.Index,
2381 ctx->num_const_buffers);
2382 index = LLVMBuildAdd(ctx->ac.builder, index,
2383 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2384 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2385 } else
2386 bufp = load_const_buffer_desc(ctx, buf);
2387
2388 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2389 }
2390
2391 /* Initialize arguments for the shader export intrinsic */
2392 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2393 LLVMValueRef *values,
2394 unsigned target,
2395 struct ac_export_args *args)
2396 {
2397 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2398 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2399 unsigned chan;
2400 bool is_int8, is_int10;
2401
2402 /* Default is 0xf. Adjusted below depending on the format. */
2403 args->enabled_channels = 0xf; /* writemask */
2404
2405 /* Specify whether the EXEC mask represents the valid mask */
2406 args->valid_mask = 0;
2407
2408 /* Specify whether this is the last export */
2409 args->done = 0;
2410
2411 /* Specify the target we are exporting */
2412 args->target = target;
2413
2414 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2415 const struct si_shader_key *key = &ctx->shader->key;
2416 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2417 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2418
2419 assert(cbuf >= 0 && cbuf < 8);
2420 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2421 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2422 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2423 }
2424
2425 args->compr = false;
2426 args->out[0] = f32undef;
2427 args->out[1] = f32undef;
2428 args->out[2] = f32undef;
2429 args->out[3] = f32undef;
2430
2431 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2432 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2433 unsigned bits, bool hi) = NULL;
2434
2435 switch (spi_shader_col_format) {
2436 case V_028714_SPI_SHADER_ZERO:
2437 args->enabled_channels = 0; /* writemask */
2438 args->target = V_008DFC_SQ_EXP_NULL;
2439 break;
2440
2441 case V_028714_SPI_SHADER_32_R:
2442 args->enabled_channels = 1; /* writemask */
2443 args->out[0] = values[0];
2444 break;
2445
2446 case V_028714_SPI_SHADER_32_GR:
2447 args->enabled_channels = 0x3; /* writemask */
2448 args->out[0] = values[0];
2449 args->out[1] = values[1];
2450 break;
2451
2452 case V_028714_SPI_SHADER_32_AR:
2453 if (ctx->screen->info.chip_class >= GFX10) {
2454 args->enabled_channels = 0x3; /* writemask */
2455 args->out[0] = values[0];
2456 args->out[1] = values[3];
2457 } else {
2458 args->enabled_channels = 0x9; /* writemask */
2459 args->out[0] = values[0];
2460 args->out[3] = values[3];
2461 }
2462 break;
2463
2464 case V_028714_SPI_SHADER_FP16_ABGR:
2465 packf = ac_build_cvt_pkrtz_f16;
2466 break;
2467
2468 case V_028714_SPI_SHADER_UNORM16_ABGR:
2469 packf = ac_build_cvt_pknorm_u16;
2470 break;
2471
2472 case V_028714_SPI_SHADER_SNORM16_ABGR:
2473 packf = ac_build_cvt_pknorm_i16;
2474 break;
2475
2476 case V_028714_SPI_SHADER_UINT16_ABGR:
2477 packi = ac_build_cvt_pk_u16;
2478 break;
2479
2480 case V_028714_SPI_SHADER_SINT16_ABGR:
2481 packi = ac_build_cvt_pk_i16;
2482 break;
2483
2484 case V_028714_SPI_SHADER_32_ABGR:
2485 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2486 break;
2487 }
2488
2489 /* Pack f16 or norm_i16/u16. */
2490 if (packf) {
2491 for (chan = 0; chan < 2; chan++) {
2492 LLVMValueRef pack_args[2] = {
2493 values[2 * chan],
2494 values[2 * chan + 1]
2495 };
2496 LLVMValueRef packed;
2497
2498 packed = packf(&ctx->ac, pack_args);
2499 args->out[chan] = ac_to_float(&ctx->ac, packed);
2500 }
2501 args->compr = 1; /* COMPR flag */
2502 }
2503 /* Pack i16/u16. */
2504 if (packi) {
2505 for (chan = 0; chan < 2; chan++) {
2506 LLVMValueRef pack_args[2] = {
2507 ac_to_integer(&ctx->ac, values[2 * chan]),
2508 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2509 };
2510 LLVMValueRef packed;
2511
2512 packed = packi(&ctx->ac, pack_args,
2513 is_int8 ? 8 : is_int10 ? 10 : 16,
2514 chan == 1);
2515 args->out[chan] = ac_to_float(&ctx->ac, packed);
2516 }
2517 args->compr = 1; /* COMPR flag */
2518 }
2519 }
2520
2521 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2522 LLVMValueRef alpha)
2523 {
2524 struct si_shader_context *ctx = si_shader_context(bld_base);
2525
2526 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2527 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2528 [PIPE_FUNC_LESS] = LLVMRealOLT,
2529 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2530 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2531 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2532 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2533 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2534 };
2535 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2536 assert(cond);
2537
2538 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2539 SI_PARAM_ALPHA_REF);
2540 LLVMValueRef alpha_pass =
2541 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2542 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2543 } else {
2544 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2545 }
2546 }
2547
2548 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2549 LLVMValueRef alpha,
2550 unsigned samplemask_param)
2551 {
2552 struct si_shader_context *ctx = si_shader_context(bld_base);
2553 LLVMValueRef coverage;
2554
2555 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2556 coverage = LLVMGetParam(ctx->main_fn,
2557 samplemask_param);
2558 coverage = ac_to_integer(&ctx->ac, coverage);
2559
2560 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2561 ctx->i32,
2562 &coverage, 1, AC_FUNC_ATTR_READNONE);
2563
2564 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2565 ctx->f32, "");
2566
2567 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2568 LLVMConstReal(ctx->f32,
2569 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2570
2571 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2572 }
2573
2574 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2575 struct ac_export_args *pos, LLVMValueRef *out_elts)
2576 {
2577 unsigned reg_index;
2578 unsigned chan;
2579 unsigned const_chan;
2580 LLVMValueRef base_elt;
2581 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2582 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2583 SI_VS_CONST_CLIP_PLANES, 0);
2584 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2585
2586 for (reg_index = 0; reg_index < 2; reg_index ++) {
2587 struct ac_export_args *args = &pos[2 + reg_index];
2588
2589 args->out[0] =
2590 args->out[1] =
2591 args->out[2] =
2592 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2593
2594 /* Compute dot products of position and user clip plane vectors */
2595 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2596 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2597 LLVMValueRef addr =
2598 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2599 const_chan) * 4, 0);
2600 base_elt = buffer_load_const(ctx, const_resource,
2601 addr);
2602 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2603 out_elts[const_chan], args->out[chan]);
2604 }
2605 }
2606
2607 args->enabled_channels = 0xf;
2608 args->valid_mask = 0;
2609 args->done = 0;
2610 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2611 args->compr = 0;
2612 }
2613 }
2614
2615 static void si_dump_streamout(struct pipe_stream_output_info *so)
2616 {
2617 unsigned i;
2618
2619 if (so->num_outputs)
2620 fprintf(stderr, "STREAMOUT\n");
2621
2622 for (i = 0; i < so->num_outputs; i++) {
2623 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2624 so->output[i].start_component;
2625 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2626 i, so->output[i].output_buffer,
2627 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2628 so->output[i].register_index,
2629 mask & 1 ? "x" : "",
2630 mask & 2 ? "y" : "",
2631 mask & 4 ? "z" : "",
2632 mask & 8 ? "w" : "");
2633 }
2634 }
2635
2636 void si_emit_streamout_output(struct si_shader_context *ctx,
2637 LLVMValueRef const *so_buffers,
2638 LLVMValueRef const *so_write_offsets,
2639 struct pipe_stream_output *stream_out,
2640 struct si_shader_output_values *shader_out)
2641 {
2642 unsigned buf_idx = stream_out->output_buffer;
2643 unsigned start = stream_out->start_component;
2644 unsigned num_comps = stream_out->num_components;
2645 LLVMValueRef out[4];
2646
2647 assert(num_comps && num_comps <= 4);
2648 if (!num_comps || num_comps > 4)
2649 return;
2650
2651 /* Load the output as int. */
2652 for (int j = 0; j < num_comps; j++) {
2653 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2654
2655 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2656 }
2657
2658 /* Pack the output. */
2659 LLVMValueRef vdata = NULL;
2660
2661 switch (num_comps) {
2662 case 1: /* as i32 */
2663 vdata = out[0];
2664 break;
2665 case 2: /* as v2i32 */
2666 case 3: /* as v3i32 */
2667 if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
2668 vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
2669 break;
2670 }
2671 /* as v4i32 (aligned to 4) */
2672 out[3] = LLVMGetUndef(ctx->i32);
2673 /* fall through */
2674 case 4: /* as v4i32 */
2675 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2676 break;
2677 }
2678
2679 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2680 vdata, num_comps,
2681 so_write_offsets[buf_idx],
2682 ctx->i32_0,
2683 stream_out->dst_offset * 4, 1, 1, false);
2684 }
2685
2686 /**
2687 * Write streamout data to buffers for vertex stream @p stream (different
2688 * vertex streams can occur for GS copy shaders).
2689 */
2690 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2691 struct si_shader_output_values *outputs,
2692 unsigned noutput, unsigned stream)
2693 {
2694 struct si_shader_selector *sel = ctx->shader->selector;
2695 struct pipe_stream_output_info *so = &sel->so;
2696 LLVMBuilderRef builder = ctx->ac.builder;
2697 int i;
2698 struct lp_build_if_state if_ctx;
2699
2700 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2701 LLVMValueRef so_vtx_count =
2702 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2703
2704 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2705
2706 /* can_emit = tid < so_vtx_count; */
2707 LLVMValueRef can_emit =
2708 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2709
2710 /* Emit the streamout code conditionally. This actually avoids
2711 * out-of-bounds buffer access. The hw tells us via the SGPR
2712 * (so_vtx_count) which threads are allowed to emit streamout data. */
2713 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2714 {
2715 /* The buffer offset is computed as follows:
2716 * ByteOffset = streamout_offset[buffer_id]*4 +
2717 * (streamout_write_index + thread_id)*stride[buffer_id] +
2718 * attrib_offset
2719 */
2720
2721 LLVMValueRef so_write_index =
2722 LLVMGetParam(ctx->main_fn,
2723 ctx->param_streamout_write_index);
2724
2725 /* Compute (streamout_write_index + thread_id). */
2726 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2727
2728 /* Load the descriptor and compute the write offset for each
2729 * enabled buffer. */
2730 LLVMValueRef so_write_offset[4] = {};
2731 LLVMValueRef so_buffers[4];
2732 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2733 ctx->param_rw_buffers);
2734
2735 for (i = 0; i < 4; i++) {
2736 if (!so->stride[i])
2737 continue;
2738
2739 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2740 SI_VS_STREAMOUT_BUF0 + i, 0);
2741
2742 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2743
2744 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2745 ctx->param_streamout_offset[i]);
2746 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2747
2748 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2749 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2750 so_offset);
2751 }
2752
2753 /* Write streamout data. */
2754 for (i = 0; i < so->num_outputs; i++) {
2755 unsigned reg = so->output[i].register_index;
2756
2757 if (reg >= noutput)
2758 continue;
2759
2760 if (stream != so->output[i].stream)
2761 continue;
2762
2763 si_emit_streamout_output(ctx, so_buffers, so_write_offset,
2764 &so->output[i], &outputs[reg]);
2765 }
2766 }
2767 lp_build_endif(&if_ctx);
2768 }
2769
2770 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2771 LLVMValueRef *values)
2772 {
2773 struct ac_export_args args;
2774
2775 si_llvm_init_export_args(ctx, values,
2776 V_008DFC_SQ_EXP_PARAM + index, &args);
2777 ac_build_export(&ctx->ac, &args);
2778 }
2779
2780 static void si_build_param_exports(struct si_shader_context *ctx,
2781 struct si_shader_output_values *outputs,
2782 unsigned noutput)
2783 {
2784 struct si_shader *shader = ctx->shader;
2785 unsigned param_count = 0;
2786
2787 for (unsigned i = 0; i < noutput; i++) {
2788 unsigned semantic_name = outputs[i].semantic_name;
2789 unsigned semantic_index = outputs[i].semantic_index;
2790
2791 if (outputs[i].vertex_stream[0] != 0 &&
2792 outputs[i].vertex_stream[1] != 0 &&
2793 outputs[i].vertex_stream[2] != 0 &&
2794 outputs[i].vertex_stream[3] != 0)
2795 continue;
2796
2797 switch (semantic_name) {
2798 case TGSI_SEMANTIC_LAYER:
2799 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2800 case TGSI_SEMANTIC_CLIPDIST:
2801 case TGSI_SEMANTIC_COLOR:
2802 case TGSI_SEMANTIC_BCOLOR:
2803 case TGSI_SEMANTIC_PRIMID:
2804 case TGSI_SEMANTIC_FOG:
2805 case TGSI_SEMANTIC_TEXCOORD:
2806 case TGSI_SEMANTIC_GENERIC:
2807 break;
2808 default:
2809 continue;
2810 }
2811
2812 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2813 semantic_index < SI_MAX_IO_GENERIC) &&
2814 shader->key.opt.kill_outputs &
2815 (1ull << si_shader_io_get_unique_index(semantic_name,
2816 semantic_index, true)))
2817 continue;
2818
2819 si_export_param(ctx, param_count, outputs[i].values);
2820
2821 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2822 shader->info.vs_output_param_offset[i] = param_count++;
2823 }
2824
2825 shader->info.nr_param_exports = param_count;
2826 }
2827
2828 /**
2829 * Vertex color clamping.
2830 *
2831 * This uses a state constant loaded in a user data SGPR and
2832 * an IF statement is added that clamps all colors if the constant
2833 * is true.
2834 */
2835 static void si_vertex_color_clamping(struct si_shader_context *ctx,
2836 struct si_shader_output_values *outputs,
2837 unsigned noutput)
2838 {
2839 LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
2840 bool has_colors = false;
2841
2842 /* Store original colors to alloca variables. */
2843 for (unsigned i = 0; i < noutput; i++) {
2844 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2845 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2846 continue;
2847
2848 for (unsigned j = 0; j < 4; j++) {
2849 addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
2850 LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
2851 }
2852 has_colors = true;
2853 }
2854
2855 if (!has_colors)
2856 return;
2857
2858 /* The state is in the first bit of the user SGPR. */
2859 LLVMValueRef cond = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2860 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");
2861
2862 struct lp_build_if_state if_ctx;
2863 lp_build_if(&if_ctx, &ctx->gallivm, cond);
2864
2865 /* Store clamped colors to alloca variables within the conditional block. */
2866 for (unsigned i = 0; i < noutput; i++) {
2867 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2868 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2869 continue;
2870
2871 for (unsigned j = 0; j < 4; j++) {
2872 LLVMBuildStore(ctx->ac.builder,
2873 ac_build_clamp(&ctx->ac, outputs[i].values[j]),
2874 addr[i][j]);
2875 }
2876 }
2877 lp_build_endif(&if_ctx);
2878
2879 /* Load clamped colors */
2880 for (unsigned i = 0; i < noutput; i++) {
2881 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2882 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2883 continue;
2884
2885 for (unsigned j = 0; j < 4; j++) {
2886 outputs[i].values[j] =
2887 LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
2888 }
2889 }
2890 }
2891
2892 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2893 * (position and parameter data only).
2894 */
2895 void si_llvm_export_vs(struct si_shader_context *ctx,
2896 struct si_shader_output_values *outputs,
2897 unsigned noutput)
2898 {
2899 struct si_shader *shader = ctx->shader;
2900 struct ac_export_args pos_args[4] = {};
2901 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2902 unsigned pos_idx;
2903 int i;
2904
2905 si_vertex_color_clamping(ctx, outputs, noutput);
2906
2907 /* Build position exports. */
2908 for (i = 0; i < noutput; i++) {
2909 switch (outputs[i].semantic_name) {
2910 case TGSI_SEMANTIC_POSITION:
2911 si_llvm_init_export_args(ctx, outputs[i].values,
2912 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2913 break;
2914 case TGSI_SEMANTIC_PSIZE:
2915 psize_value = outputs[i].values[0];
2916 break;
2917 case TGSI_SEMANTIC_LAYER:
2918 layer_value = outputs[i].values[0];
2919 break;
2920 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2921 viewport_index_value = outputs[i].values[0];
2922 break;
2923 case TGSI_SEMANTIC_EDGEFLAG:
2924 edgeflag_value = outputs[i].values[0];
2925 break;
2926 case TGSI_SEMANTIC_CLIPDIST:
2927 if (!shader->key.opt.clip_disable) {
2928 unsigned index = 2 + outputs[i].semantic_index;
2929 si_llvm_init_export_args(ctx, outputs[i].values,
2930 V_008DFC_SQ_EXP_POS + index,
2931 &pos_args[index]);
2932 }
2933 break;
2934 case TGSI_SEMANTIC_CLIPVERTEX:
2935 if (!shader->key.opt.clip_disable) {
2936 si_llvm_emit_clipvertex(ctx, pos_args,
2937 outputs[i].values);
2938 }
2939 break;
2940 }
2941 }
2942
2943 /* We need to add the position output manually if it's missing. */
2944 if (!pos_args[0].out[0]) {
2945 pos_args[0].enabled_channels = 0xf; /* writemask */
2946 pos_args[0].valid_mask = 0; /* EXEC mask */
2947 pos_args[0].done = 0; /* last export? */
2948 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2949 pos_args[0].compr = 0; /* COMPR flag */
2950 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2951 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2952 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2953 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2954 }
2955
2956 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2957 if (shader->selector->info.writes_psize ||
2958 shader->selector->info.writes_edgeflag ||
2959 shader->selector->info.writes_viewport_index ||
2960 shader->selector->info.writes_layer) {
2961 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2962 (shader->selector->info.writes_edgeflag << 1) |
2963 (shader->selector->info.writes_layer << 2);
2964
2965 pos_args[1].valid_mask = 0; /* EXEC mask */
2966 pos_args[1].done = 0; /* last export? */
2967 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2968 pos_args[1].compr = 0; /* COMPR flag */
2969 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2970 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2971 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2972 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2973
2974 if (shader->selector->info.writes_psize)
2975 pos_args[1].out[0] = psize_value;
2976
2977 if (shader->selector->info.writes_edgeflag) {
2978 /* The output is a float, but the hw expects an integer
2979 * with the first bit containing the edge flag. */
2980 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2981 edgeflag_value,
2982 ctx->i32, "");
2983 edgeflag_value = ac_build_umin(&ctx->ac,
2984 edgeflag_value,
2985 ctx->i32_1);
2986
2987 /* The LLVM intrinsic expects a float. */
2988 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2989 }
2990
2991 if (ctx->screen->info.chip_class >= GFX9) {
2992 /* GFX9 has the layer in out.z[10:0] and the viewport
2993 * index in out.z[19:16].
2994 */
2995 if (shader->selector->info.writes_layer)
2996 pos_args[1].out[2] = layer_value;
2997
2998 if (shader->selector->info.writes_viewport_index) {
2999 LLVMValueRef v = viewport_index_value;
3000
3001 v = ac_to_integer(&ctx->ac, v);
3002 v = LLVMBuildShl(ctx->ac.builder, v,
3003 LLVMConstInt(ctx->i32, 16, 0), "");
3004 v = LLVMBuildOr(ctx->ac.builder, v,
3005 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3006 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3007 pos_args[1].enabled_channels |= 1 << 2;
3008 }
3009 } else {
3010 if (shader->selector->info.writes_layer)
3011 pos_args[1].out[2] = layer_value;
3012
3013 if (shader->selector->info.writes_viewport_index) {
3014 pos_args[1].out[3] = viewport_index_value;
3015 pos_args[1].enabled_channels |= 1 << 3;
3016 }
3017 }
3018 }
3019
3020 for (i = 0; i < 4; i++)
3021 if (pos_args[i].out[0])
3022 shader->info.nr_pos_exports++;
3023
3024 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
3025 * Setting valid_mask=1 prevents it and has no other effect.
3026 */
3027 if (ctx->screen->info.family == CHIP_NAVI10 ||
3028 ctx->screen->info.family == CHIP_NAVI12 ||
3029 ctx->screen->info.family == CHIP_NAVI14)
3030 pos_args[0].valid_mask = 1;
3031
3032 pos_idx = 0;
3033 for (i = 0; i < 4; i++) {
3034 if (!pos_args[i].out[0])
3035 continue;
3036
3037 /* Specify the target we are exporting */
3038 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3039
3040 if (pos_idx == shader->info.nr_pos_exports)
3041 /* Specify that this is the last export */
3042 pos_args[i].done = 1;
3043
3044 ac_build_export(&ctx->ac, &pos_args[i]);
3045 }
3046
3047 /* Build parameter exports. */
3048 si_build_param_exports(ctx, outputs, noutput);
3049 }
3050
3051 /**
3052 * Forward all outputs from the vertex shader to the TES. This is only used
3053 * for the fixed function TCS.
3054 */
3055 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3056 {
3057 struct si_shader_context *ctx = si_shader_context(bld_base);
3058 LLVMValueRef invocation_id, buffer, buffer_offset;
3059 LLVMValueRef lds_vertex_stride, lds_base;
3060 uint64_t inputs;
3061
3062 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3063 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3064 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3065
3066 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3067 lds_base = get_tcs_in_current_patch_offset(ctx);
3068 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3069 lds_base);
3070
3071 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3072 while (inputs) {
3073 unsigned i = u_bit_scan64(&inputs);
3074
3075 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3076 LLVMConstInt(ctx->i32, 4 * i, 0),
3077 "");
3078
3079 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3080 get_rel_patch_id(ctx),
3081 invocation_id,
3082 LLVMConstInt(ctx->i32, i, 0));
3083
3084 LLVMValueRef value = lshs_lds_load(bld_base, ctx->ac.i32, ~0, lds_ptr);
3085
3086 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3087 buffer_offset, 0, 1, 0, false);
3088 }
3089 }
3090
3091 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3092 LLVMValueRef rel_patch_id,
3093 LLVMValueRef invocation_id,
3094 LLVMValueRef tcs_out_current_patch_data_offset,
3095 LLVMValueRef invoc0_tf_outer[4],
3096 LLVMValueRef invoc0_tf_inner[2])
3097 {
3098 struct si_shader_context *ctx = si_shader_context(bld_base);
3099 struct si_shader *shader = ctx->shader;
3100 unsigned tess_inner_index, tess_outer_index;
3101 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3102 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3103 unsigned stride, outer_comps, inner_comps, i, offset;
3104 struct lp_build_if_state if_ctx, inner_if_ctx;
3105
3106 /* Add a barrier before loading tess factors from LDS. */
3107 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3108 si_llvm_emit_barrier(NULL, bld_base, NULL);
3109
3110 /* Do this only for invocation 0, because the tess levels are per-patch,
3111 * not per-vertex.
3112 *
3113 * This can't jump, because invocation 0 executes this. It should
3114 * at least mask out the loads and stores for other invocations.
3115 */
3116 lp_build_if(&if_ctx, &ctx->gallivm,
3117 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3118 invocation_id, ctx->i32_0, ""));
3119
3120 /* Determine the layout of one tess factor element in the buffer. */
3121 switch (shader->key.part.tcs.epilog.prim_mode) {
3122 case PIPE_PRIM_LINES:
3123 stride = 2; /* 2 dwords, 1 vec2 store */
3124 outer_comps = 2;
3125 inner_comps = 0;
3126 break;
3127 case PIPE_PRIM_TRIANGLES:
3128 stride = 4; /* 4 dwords, 1 vec4 store */
3129 outer_comps = 3;
3130 inner_comps = 1;
3131 break;
3132 case PIPE_PRIM_QUADS:
3133 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3134 outer_comps = 4;
3135 inner_comps = 2;
3136 break;
3137 default:
3138 assert(0);
3139 return;
3140 }
3141
3142 for (i = 0; i < 4; i++) {
3143 inner[i] = LLVMGetUndef(ctx->i32);
3144 outer[i] = LLVMGetUndef(ctx->i32);
3145 }
3146
3147 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3148 /* Tess factors are in VGPRs. */
3149 for (i = 0; i < outer_comps; i++)
3150 outer[i] = out[i] = invoc0_tf_outer[i];
3151 for (i = 0; i < inner_comps; i++)
3152 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3153 } else {
3154 /* Load tess_inner and tess_outer from LDS.
3155 * Any invocation can write them, so we can't get them from a temporary.
3156 */
3157 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3158 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3159
3160 lds_base = tcs_out_current_patch_data_offset;
3161 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3162 LLVMConstInt(ctx->i32,
3163 tess_inner_index * 4, 0), "");
3164 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3165 LLVMConstInt(ctx->i32,
3166 tess_outer_index * 4, 0), "");
3167
3168 for (i = 0; i < outer_comps; i++) {
3169 outer[i] = out[i] =
3170 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3171 }
3172 for (i = 0; i < inner_comps; i++) {
3173 inner[i] = out[outer_comps+i] =
3174 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3175 }
3176 }
3177
3178 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3179 /* For isolines, the hardware expects tess factors in the
3180 * reverse order from what GLSL / TGSI specify.
3181 */
3182 LLVMValueRef tmp = out[0];
3183 out[0] = out[1];
3184 out[1] = tmp;
3185 }
3186
3187 /* Convert the outputs to vectors for stores. */
3188 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3189 vec1 = NULL;
3190
3191 if (stride > 4)
3192 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3193
3194 /* Get the buffer. */
3195 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3196
3197 /* Get the offset. */
3198 tf_base = LLVMGetParam(ctx->main_fn,
3199 ctx->param_tcs_factor_offset);
3200 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3201 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3202
3203 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3204 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3205 rel_patch_id, ctx->i32_0, ""));
3206
3207 /* Store the dynamic HS control word. */
3208 offset = 0;
3209 if (ctx->screen->info.chip_class <= GFX8) {
3210 ac_build_buffer_store_dword(&ctx->ac, buffer,
3211 LLVMConstInt(ctx->i32, 0x80000000, 0),
3212 1, ctx->i32_0, tf_base,
3213 offset, 1, 0, false);
3214 offset += 4;
3215 }
3216
3217 lp_build_endif(&inner_if_ctx);
3218
3219 /* Store the tessellation factors. */
3220 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3221 MIN2(stride, 4), byteoffset, tf_base,
3222 offset, 1, 0, false);
3223 offset += 16;
3224 if (vec1)
3225 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3226 stride - 4, byteoffset, tf_base,
3227 offset, 1, 0, false);
3228
3229 /* Store the tess factors into the offchip buffer if TES reads them. */
3230 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3231 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3232 LLVMValueRef tf_inner_offset;
3233 unsigned param_outer, param_inner;
3234
3235 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3236 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3237
3238 param_outer = si_shader_io_get_unique_index_patch(
3239 TGSI_SEMANTIC_TESSOUTER, 0);
3240 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3241 LLVMConstInt(ctx->i32, param_outer, 0));
3242
3243 unsigned outer_vec_size =
3244 ac_has_vec3_support(ctx->screen->info.chip_class, false) ?
3245 outer_comps : util_next_power_of_two(outer_comps);
3246 outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size);
3247
3248 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3249 outer_comps, tf_outer_offset,
3250 base, 0, 1, 0, false);
3251 if (inner_comps) {
3252 param_inner = si_shader_io_get_unique_index_patch(
3253 TGSI_SEMANTIC_TESSINNER, 0);
3254 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3255 LLVMConstInt(ctx->i32, param_inner, 0));
3256
3257 inner_vec = inner_comps == 1 ? inner[0] :
3258 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3259 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3260 inner_comps, tf_inner_offset,
3261 base, 0, 1, 0, false);
3262 }
3263 }
3264
3265 lp_build_endif(&if_ctx);
3266 }
3267
3268 static LLVMValueRef
3269 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3270 unsigned param, unsigned return_index)
3271 {
3272 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3273 LLVMGetParam(ctx->main_fn, param),
3274 return_index, "");
3275 }
3276
3277 static LLVMValueRef
3278 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3279 unsigned param, unsigned return_index)
3280 {
3281 LLVMBuilderRef builder = ctx->ac.builder;
3282 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3283
3284 return LLVMBuildInsertValue(builder, ret,
3285 ac_to_float(&ctx->ac, p),
3286 return_index, "");
3287 }
3288
3289 static LLVMValueRef
3290 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3291 unsigned param, unsigned return_index)
3292 {
3293 LLVMBuilderRef builder = ctx->ac.builder;
3294 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3295 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3296 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3297 }
3298
3299 /* This only writes the tessellation factor levels. */
3300 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3301 unsigned max_outputs,
3302 LLVMValueRef *addrs)
3303 {
3304 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3305 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3306 LLVMBuilderRef builder = ctx->ac.builder;
3307 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3308
3309 si_copy_tcs_inputs(bld_base);
3310
3311 rel_patch_id = get_rel_patch_id(ctx);
3312 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3313 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3314
3315 if (ctx->screen->info.chip_class >= GFX9) {
3316 LLVMBasicBlockRef blocks[2] = {
3317 LLVMGetInsertBlock(builder),
3318 ctx->merged_wrap_if_state.entry_block
3319 };
3320 LLVMValueRef values[2];
3321
3322 lp_build_endif(&ctx->merged_wrap_if_state);
3323
3324 values[0] = rel_patch_id;
3325 values[1] = LLVMGetUndef(ctx->i32);
3326 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3327
3328 values[0] = tf_lds_offset;
3329 values[1] = LLVMGetUndef(ctx->i32);
3330 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3331
3332 values[0] = invocation_id;
3333 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3334 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3335 }
3336
3337 /* Return epilog parameters from this function. */
3338 LLVMValueRef ret = ctx->return_value;
3339 unsigned vgpr;
3340
3341 if (ctx->screen->info.chip_class >= GFX9) {
3342 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3343 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3344 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3345 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3346 /* Tess offchip and tess factor offsets are at the beginning. */
3347 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3348 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3349 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3350 } else {
3351 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3352 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3353 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3354 GFX6_SGPR_TCS_OUT_LAYOUT);
3355 /* Tess offchip and tess factor offsets are after user SGPRs. */
3356 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3357 GFX6_TCS_NUM_USER_SGPR);
3358 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3359 GFX6_TCS_NUM_USER_SGPR + 1);
3360 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3361 }
3362
3363 /* VGPRs */
3364 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3365 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3366 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3367
3368 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3369 * the invocation_id output does not alias the tcs_rel_ids input,
3370 * which saves a V_MOV on gfx9.
3371 */
3372 vgpr += 2;
3373
3374 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3375 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3376
3377 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3378 vgpr++; /* skip the tess factor LDS offset */
3379 for (unsigned i = 0; i < 6; i++) {
3380 LLVMValueRef value =
3381 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3382 value = ac_to_float(&ctx->ac, value);
3383 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3384 }
3385 } else {
3386 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3387 }
3388 ctx->return_value = ret;
3389 }
3390
3391 /* Pass TCS inputs from LS to TCS on GFX9. */
3392 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3393 {
3394 LLVMValueRef ret = ctx->return_value;
3395
3396 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3397 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3398 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3399 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3400 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3401 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3402
3403 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3404 8 + SI_SGPR_RW_BUFFERS);
3405 ret = si_insert_input_ptr(ctx, ret,
3406 ctx->param_bindless_samplers_and_images,
3407 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3408
3409 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3410 8 + SI_SGPR_VS_STATE_BITS);
3411
3412 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3413 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3414 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3415 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3416 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3417 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3418
3419 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3420 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3421 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3422 vgpr++, "");
3423 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3424 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3425 vgpr++, "");
3426 ctx->return_value = ret;
3427 }
3428
3429 /* Pass GS inputs from ES to GS on GFX9. */
3430 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3431 {
3432 LLVMBuilderRef builder = ctx->ac.builder;
3433 LLVMValueRef ret = ctx->return_value;
3434
3435 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3436 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3437 if (ctx->shader->key.as_ngg)
3438 ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
3439 else
3440 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3441 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3442 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3443
3444 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3445 8 + SI_SGPR_RW_BUFFERS);
3446 ret = si_insert_input_ptr(ctx, ret,
3447 ctx->param_bindless_samplers_and_images,
3448 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3449
3450 unsigned vgpr;
3451 if (ctx->type == PIPE_SHADER_VERTEX)
3452 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3453 else
3454 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3455
3456 for (unsigned i = 0; i < 5; i++) {
3457 unsigned param = ctx->param_gs_vtx01_offset + i;
3458 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3459 }
3460 ctx->return_value = ret;
3461 }
3462
3463 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3464 unsigned max_outputs,
3465 LLVMValueRef *addrs)
3466 {
3467 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3468 struct si_shader *shader = ctx->shader;
3469 struct tgsi_shader_info *info = &shader->selector->info;
3470 unsigned i, chan;
3471 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3472 ctx->param_rel_auto_id);
3473 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3474 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3475 vertex_dw_stride, "");
3476
3477 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3478 * its inputs from it. */
3479 for (i = 0; i < info->num_outputs; i++) {
3480 unsigned name = info->output_semantic_name[i];
3481 unsigned index = info->output_semantic_index[i];
3482
3483 /* The ARB_shader_viewport_layer_array spec contains the
3484 * following issue:
3485 *
3486 * 2) What happens if gl_ViewportIndex or gl_Layer is
3487 * written in the vertex shader and a geometry shader is
3488 * present?
3489 *
3490 * RESOLVED: The value written by the last vertex processing
3491 * stage is used. If the last vertex processing stage
3492 * (vertex, tessellation evaluation or geometry) does not
3493 * statically assign to gl_ViewportIndex or gl_Layer, index
3494 * or layer zero is assumed.
3495 *
3496 * So writes to those outputs in VS-as-LS are simply ignored.
3497 */
3498 if (name == TGSI_SEMANTIC_LAYER ||
3499 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3500 continue;
3501
3502 int param = si_shader_io_get_unique_index(name, index, false);
3503 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3504 LLVMConstInt(ctx->i32, param * 4, 0), "");
3505
3506 for (chan = 0; chan < 4; chan++) {
3507 if (!(info->output_usagemask[i] & (1 << chan)))
3508 continue;
3509
3510 lshs_lds_store(ctx, chan, dw_addr,
3511 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3512 }
3513 }
3514
3515 if (ctx->screen->info.chip_class >= GFX9)
3516 si_set_ls_return_value_for_tcs(ctx);
3517 }
3518
3519 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3520 unsigned max_outputs,
3521 LLVMValueRef *addrs)
3522 {
3523 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3524 struct si_shader *es = ctx->shader;
3525 struct tgsi_shader_info *info = &es->selector->info;
3526 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3527 ctx->param_es2gs_offset);
3528 LLVMValueRef lds_base = NULL;
3529 unsigned chan;
3530 int i;
3531
3532 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3533 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3534 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3535 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3536 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3537 LLVMBuildMul(ctx->ac.builder, wave_idx,
3538 LLVMConstInt(ctx->i32, 64, false), ""), "");
3539 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3540 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3541 }
3542
3543 for (i = 0; i < info->num_outputs; i++) {
3544 int param;
3545
3546 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3547 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3548 continue;
3549
3550 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3551 info->output_semantic_index[i], false);
3552
3553 for (chan = 0; chan < 4; chan++) {
3554 if (!(info->output_usagemask[i] & (1 << chan)))
3555 continue;
3556
3557 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3558 out_val = ac_to_integer(&ctx->ac, out_val);
3559
3560 /* GFX9 has the ESGS ring in LDS. */
3561 if (ctx->screen->info.chip_class >= GFX9) {
3562 LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false);
3563 idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, "");
3564 ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val);
3565 continue;
3566 }
3567
3568 ac_build_buffer_store_dword(&ctx->ac,
3569 ctx->esgs_ring,
3570 out_val, 1, NULL, soffset,
3571 (4 * param + chan) * 4,
3572 1, 1, true);
3573 }
3574 }
3575
3576 if (ctx->screen->info.chip_class >= GFX9)
3577 si_set_es_return_value_for_gs(ctx);
3578 }
3579
3580 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3581 {
3582 if (ctx->screen->info.chip_class >= GFX9)
3583 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3584 else
3585 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3586 }
3587
3588 static void emit_gs_epilogue(struct si_shader_context *ctx)
3589 {
3590 if (ctx->shader->key.as_ngg) {
3591 gfx10_ngg_gs_emit_epilogue(ctx);
3592 return;
3593 }
3594
3595 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3596 si_get_gs_wave_id(ctx));
3597
3598 if (ctx->screen->info.chip_class >= GFX9)
3599 lp_build_endif(&ctx->merged_wrap_if_state);
3600 }
3601
3602 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3603 unsigned max_outputs,
3604 LLVMValueRef *addrs)
3605 {
3606 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3607 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3608
3609 assert(info->num_outputs <= max_outputs);
3610
3611 emit_gs_epilogue(ctx);
3612 }
3613
3614 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3615 {
3616 struct si_shader_context *ctx = si_shader_context(bld_base);
3617 emit_gs_epilogue(ctx);
3618 }
3619
3620 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3621 unsigned max_outputs,
3622 LLVMValueRef *addrs)
3623 {
3624 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3625 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3626 struct si_shader_output_values *outputs = NULL;
3627 int i,j;
3628
3629 assert(!ctx->shader->is_gs_copy_shader);
3630 assert(info->num_outputs <= max_outputs);
3631
3632 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3633
3634 for (i = 0; i < info->num_outputs; i++) {
3635 outputs[i].semantic_name = info->output_semantic_name[i];
3636 outputs[i].semantic_index = info->output_semantic_index[i];
3637
3638 for (j = 0; j < 4; j++) {
3639 outputs[i].values[j] =
3640 LLVMBuildLoad(ctx->ac.builder,
3641 addrs[4 * i + j],
3642 "");
3643 outputs[i].vertex_stream[j] =
3644 (info->output_streams[i] >> (2 * j)) & 3;
3645 }
3646 }
3647
3648 if (ctx->shader->selector->so.num_outputs)
3649 si_llvm_emit_streamout(ctx, outputs, i, 0);
3650
3651 /* Export PrimitiveID. */
3652 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3653 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3654 outputs[i].semantic_index = 0;
3655 outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
3656 for (j = 1; j < 4; j++)
3657 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3658
3659 memset(outputs[i].vertex_stream, 0,
3660 sizeof(outputs[i].vertex_stream));
3661 i++;
3662 }
3663
3664 si_llvm_export_vs(ctx, outputs, i);
3665 FREE(outputs);
3666 }
3667
3668 static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
3669 unsigned max_outputs,
3670 LLVMValueRef *addrs)
3671 {
3672 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3673 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3674 LLVMValueRef pos[4] = {};
3675
3676 assert(info->num_outputs <= max_outputs);
3677
3678 for (unsigned i = 0; i < info->num_outputs; i++) {
3679 if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
3680 continue;
3681
3682 for (unsigned chan = 0; chan < 4; chan++)
3683 pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3684 break;
3685 }
3686 assert(pos[0] != NULL);
3687
3688 /* Return the position output. */
3689 LLVMValueRef ret = ctx->return_value;
3690 for (unsigned chan = 0; chan < 4; chan++)
3691 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
3692 ctx->return_value = ret;
3693 }
3694
3695 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3696 {
3697 struct si_shader_context *ctx = si_shader_context(bld_base);
3698
3699 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3700 &ctx->outputs[0][0]);
3701 }
3702
3703 struct si_ps_exports {
3704 unsigned num;
3705 struct ac_export_args args[10];
3706 };
3707
3708 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3709 LLVMValueRef depth, LLVMValueRef stencil,
3710 LLVMValueRef samplemask, struct si_ps_exports *exp)
3711 {
3712 struct si_shader_context *ctx = si_shader_context(bld_base);
3713 struct ac_export_args args;
3714
3715 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3716
3717 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3718 }
3719
3720 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3721 LLVMValueRef *color, unsigned index,
3722 unsigned samplemask_param,
3723 bool is_last, struct si_ps_exports *exp)
3724 {
3725 struct si_shader_context *ctx = si_shader_context(bld_base);
3726 int i;
3727
3728 /* Clamp color */
3729 if (ctx->shader->key.part.ps.epilog.clamp_color)
3730 for (i = 0; i < 4; i++)
3731 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3732
3733 /* Alpha to one */
3734 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3735 color[3] = ctx->ac.f32_1;
3736
3737 /* Alpha test */
3738 if (index == 0 &&
3739 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3740 si_alpha_test(bld_base, color[3]);
3741
3742 /* Line & polygon smoothing */
3743 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3744 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3745 samplemask_param);
3746
3747 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3748 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3749 struct ac_export_args args[8];
3750 int c, last = -1;
3751
3752 /* Get the export arguments, also find out what the last one is. */
3753 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3754 si_llvm_init_export_args(ctx, color,
3755 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3756 if (args[c].enabled_channels)
3757 last = c;
3758 }
3759
3760 /* Emit all exports. */
3761 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3762 if (is_last && last == c) {
3763 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3764 args[c].done = 1; /* DONE bit */
3765 } else if (!args[c].enabled_channels)
3766 continue; /* unnecessary NULL export */
3767
3768 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3769 }
3770 } else {
3771 struct ac_export_args args;
3772
3773 /* Export */
3774 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3775 &args);
3776 if (is_last) {
3777 args.valid_mask = 1; /* whether the EXEC mask is valid */
3778 args.done = 1; /* DONE bit */
3779 } else if (!args.enabled_channels)
3780 return; /* unnecessary NULL export */
3781
3782 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3783 }
3784 }
3785
3786 static void si_emit_ps_exports(struct si_shader_context *ctx,
3787 struct si_ps_exports *exp)
3788 {
3789 for (unsigned i = 0; i < exp->num; i++)
3790 ac_build_export(&ctx->ac, &exp->args[i]);
3791 }
3792
3793 /**
3794 * Return PS outputs in this order:
3795 *
3796 * v[0:3] = color0.xyzw
3797 * v[4:7] = color1.xyzw
3798 * ...
3799 * vN+0 = Depth
3800 * vN+1 = Stencil
3801 * vN+2 = SampleMask
3802 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3803 *
3804 * The alpha-ref SGPR is returned via its original location.
3805 */
3806 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3807 unsigned max_outputs,
3808 LLVMValueRef *addrs)
3809 {
3810 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3811 struct si_shader *shader = ctx->shader;
3812 struct tgsi_shader_info *info = &shader->selector->info;
3813 LLVMBuilderRef builder = ctx->ac.builder;
3814 unsigned i, j, first_vgpr, vgpr;
3815
3816 LLVMValueRef color[8][4] = {};
3817 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3818 LLVMValueRef ret;
3819
3820 if (ctx->postponed_kill)
3821 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3822
3823 /* Read the output values. */
3824 for (i = 0; i < info->num_outputs; i++) {
3825 unsigned semantic_name = info->output_semantic_name[i];
3826 unsigned semantic_index = info->output_semantic_index[i];
3827
3828 switch (semantic_name) {
3829 case TGSI_SEMANTIC_COLOR:
3830 assert(semantic_index < 8);
3831 for (j = 0; j < 4; j++) {
3832 LLVMValueRef ptr = addrs[4 * i + j];
3833 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3834 color[semantic_index][j] = result;
3835 }
3836 break;
3837 case TGSI_SEMANTIC_POSITION:
3838 depth = LLVMBuildLoad(builder,
3839 addrs[4 * i + 2], "");
3840 break;
3841 case TGSI_SEMANTIC_STENCIL:
3842 stencil = LLVMBuildLoad(builder,
3843 addrs[4 * i + 1], "");
3844 break;
3845 case TGSI_SEMANTIC_SAMPLEMASK:
3846 samplemask = LLVMBuildLoad(builder,
3847 addrs[4 * i + 0], "");
3848 break;
3849 default:
3850 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
3851 semantic_name);
3852 }
3853 }
3854
3855 /* Fill the return structure. */
3856 ret = ctx->return_value;
3857
3858 /* Set SGPRs. */
3859 ret = LLVMBuildInsertValue(builder, ret,
3860 ac_to_integer(&ctx->ac,
3861 LLVMGetParam(ctx->main_fn,
3862 SI_PARAM_ALPHA_REF)),
3863 SI_SGPR_ALPHA_REF, "");
3864
3865 /* Set VGPRs */
3866 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3867 for (i = 0; i < ARRAY_SIZE(color); i++) {
3868 if (!color[i][0])
3869 continue;
3870
3871 for (j = 0; j < 4; j++)
3872 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3873 }
3874 if (depth)
3875 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3876 if (stencil)
3877 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3878 if (samplemask)
3879 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3880
3881 /* Add the input sample mask for smoothing at the end. */
3882 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3883 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3884 ret = LLVMBuildInsertValue(builder, ret,
3885 LLVMGetParam(ctx->main_fn,
3886 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3887
3888 ctx->return_value = ret;
3889 }
3890
3891 static void membar_emit(
3892 const struct lp_build_tgsi_action *action,
3893 struct lp_build_tgsi_context *bld_base,
3894 struct lp_build_emit_data *emit_data)
3895 {
3896 struct si_shader_context *ctx = si_shader_context(bld_base);
3897 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3898 unsigned flags = LLVMConstIntGetZExtValue(src0);
3899 unsigned waitcnt = NOOP_WAITCNT;
3900
3901 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3902 waitcnt &= VM_CNT & LGKM_CNT;
3903
3904 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3905 TGSI_MEMBAR_SHADER_BUFFER |
3906 TGSI_MEMBAR_SHADER_IMAGE))
3907 waitcnt &= VM_CNT;
3908
3909 if (flags & TGSI_MEMBAR_SHARED)
3910 waitcnt &= LGKM_CNT;
3911
3912 if (waitcnt != NOOP_WAITCNT)
3913 ac_build_waitcnt(&ctx->ac, waitcnt);
3914 }
3915
3916 static void clock_emit(
3917 const struct lp_build_tgsi_action *action,
3918 struct lp_build_tgsi_context *bld_base,
3919 struct lp_build_emit_data *emit_data)
3920 {
3921 struct si_shader_context *ctx = si_shader_context(bld_base);
3922 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3923
3924 emit_data->output[0] =
3925 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3926 emit_data->output[1] =
3927 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3928 }
3929
3930 static void si_llvm_emit_ddxy(
3931 const struct lp_build_tgsi_action *action,
3932 struct lp_build_tgsi_context *bld_base,
3933 struct lp_build_emit_data *emit_data)
3934 {
3935 struct si_shader_context *ctx = si_shader_context(bld_base);
3936 unsigned opcode = emit_data->info->opcode;
3937 LLVMValueRef val;
3938 int idx;
3939 unsigned mask;
3940
3941 if (opcode == TGSI_OPCODE_DDX_FINE)
3942 mask = AC_TID_MASK_LEFT;
3943 else if (opcode == TGSI_OPCODE_DDY_FINE)
3944 mask = AC_TID_MASK_TOP;
3945 else
3946 mask = AC_TID_MASK_TOP_LEFT;
3947
3948 /* for DDX we want to next X pixel, DDY next Y pixel. */
3949 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3950
3951 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3952 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3953 emit_data->output[emit_data->chan] = val;
3954 }
3955
3956 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3957 struct lp_build_tgsi_context *bld_base,
3958 struct lp_build_emit_data *emit_data)
3959 {
3960 struct si_shader_context *ctx = si_shader_context(bld_base);
3961 struct si_shader *shader = ctx->shader;
3962 const struct tgsi_shader_info *info = &shader->selector->info;
3963 LLVMValueRef interp_param;
3964 const struct tgsi_full_instruction *inst = emit_data->inst;
3965 const struct tgsi_full_src_register *input = &inst->Src[0];
3966 int input_base, input_array_size;
3967 int chan;
3968 int i;
3969 LLVMValueRef prim_mask = ctx->abi.prim_mask;
3970 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
3971 int interp_param_idx;
3972 unsigned interp;
3973 unsigned location;
3974
3975 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
3976 /* offset is in second src, first two channels */
3977 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3978 TGSI_CHAN_X);
3979 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3980 TGSI_CHAN_Y);
3981 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3982 LLVMValueRef sample_position;
3983 LLVMValueRef sample_id;
3984 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
3985
3986 /* fetch sample ID, then fetch its sample position,
3987 * and place into first two channels.
3988 */
3989 sample_id = lp_build_emit_fetch(bld_base,
3990 emit_data->inst, 1, TGSI_CHAN_X);
3991 sample_id = ac_to_integer(&ctx->ac, sample_id);
3992
3993 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
3994 * Language 4.50 spec says about interpolateAtSample:
3995 *
3996 * "Returns the value of the input interpolant variable at
3997 * the location of sample number sample. If multisample
3998 * buffers are not available, the input variable will be
3999 * evaluated at the center of the pixel. If sample sample
4000 * does not exist, the position used to interpolate the
4001 * input variable is undefined."
4002 *
4003 * This means that sample_id values outside of the valid are
4004 * in fact valid input, and the usual mechanism for loading the
4005 * sample position doesn't work.
4006 */
4007 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4008 LLVMValueRef center[4] = {
4009 LLVMConstReal(ctx->f32, 0.5),
4010 LLVMConstReal(ctx->f32, 0.5),
4011 ctx->ac.f32_0,
4012 ctx->ac.f32_0,
4013 };
4014
4015 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4016 } else {
4017 sample_position = load_sample_position(&ctx->abi, sample_id);
4018 }
4019
4020 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4021 ctx->i32_0, "");
4022
4023 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4024 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4025 ctx->i32_1, "");
4026 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4027 }
4028
4029 assert(input->Register.File == TGSI_FILE_INPUT);
4030
4031 if (input->Register.Indirect) {
4032 unsigned array_id = input->Indirect.ArrayID;
4033
4034 if (array_id) {
4035 input_base = info->input_array_first[array_id];
4036 input_array_size = info->input_array_last[array_id] - input_base + 1;
4037 } else {
4038 input_base = inst->Src[0].Register.Index;
4039 input_array_size = info->num_inputs - input_base;
4040 }
4041
4042 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4043 1, input->Register.Index - input_base);
4044 } else {
4045 input_base = inst->Src[0].Register.Index;
4046 input_array_size = 1;
4047 array_idx = ctx->i32_0;
4048 }
4049
4050 interp = shader->selector->info.input_interpolate[input_base];
4051
4052 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4053 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4054 location = TGSI_INTERPOLATE_LOC_CENTER;
4055 else
4056 location = TGSI_INTERPOLATE_LOC_CENTROID;
4057
4058 interp_param_idx = lookup_interp_param_index(interp, location);
4059 if (interp_param_idx == -1)
4060 return;
4061 else if (interp_param_idx)
4062 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4063 else
4064 interp_param = NULL;
4065
4066 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4067 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4068 LLVMValueRef ij_out[2];
4069 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4070
4071 /*
4072 * take the I then J parameters, and the DDX/Y for it, and
4073 * calculate the IJ inputs for the interpolator.
4074 * temp1 = ddx * offset/sample.x + I;
4075 * interp_param.I = ddy * offset/sample.y + temp1;
4076 * temp1 = ddx * offset/sample.x + J;
4077 * interp_param.J = ddy * offset/sample.y + temp1;
4078 */
4079 for (i = 0; i < 2; i++) {
4080 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4081 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4082 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4083 ddxy_out, ix_ll, "");
4084 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4085 ddxy_out, iy_ll, "");
4086 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4087 interp_param, ix_ll, "");
4088 LLVMValueRef temp;
4089
4090 interp_el = ac_to_float(&ctx->ac, interp_el);
4091
4092 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4093 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4094 }
4095 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4096 }
4097
4098 if (interp_param)
4099 interp_param = ac_to_float(&ctx->ac, interp_param);
4100
4101 for (chan = 0; chan < 4; chan++) {
4102 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4103 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4104
4105 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4106 LLVMValueRef v, i = NULL, j = NULL;
4107
4108 if (interp_param) {
4109 i = LLVMBuildExtractElement(
4110 ctx->ac.builder, interp_param, ctx->i32_0, "");
4111 j = LLVMBuildExtractElement(
4112 ctx->ac.builder, interp_param, ctx->i32_1, "");
4113 }
4114 v = si_build_fs_interp(ctx, input_base + idx, schan,
4115 prim_mask, i, j);
4116
4117 gather = LLVMBuildInsertElement(ctx->ac.builder,
4118 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4119 }
4120
4121 emit_data->output[chan] = LLVMBuildExtractElement(
4122 ctx->ac.builder, gather, array_idx, "");
4123 }
4124 }
4125
4126 static void vote_all_emit(
4127 const struct lp_build_tgsi_action *action,
4128 struct lp_build_tgsi_context *bld_base,
4129 struct lp_build_emit_data *emit_data)
4130 {
4131 struct si_shader_context *ctx = si_shader_context(bld_base);
4132
4133 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4134 emit_data->output[emit_data->chan] =
4135 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4136 }
4137
4138 static void vote_any_emit(
4139 const struct lp_build_tgsi_action *action,
4140 struct lp_build_tgsi_context *bld_base,
4141 struct lp_build_emit_data *emit_data)
4142 {
4143 struct si_shader_context *ctx = si_shader_context(bld_base);
4144
4145 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4146 emit_data->output[emit_data->chan] =
4147 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4148 }
4149
4150 static void vote_eq_emit(
4151 const struct lp_build_tgsi_action *action,
4152 struct lp_build_tgsi_context *bld_base,
4153 struct lp_build_emit_data *emit_data)
4154 {
4155 struct si_shader_context *ctx = si_shader_context(bld_base);
4156
4157 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4158 emit_data->output[emit_data->chan] =
4159 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4160 }
4161
4162 static void ballot_emit(
4163 const struct lp_build_tgsi_action *action,
4164 struct lp_build_tgsi_context *bld_base,
4165 struct lp_build_emit_data *emit_data)
4166 {
4167 struct si_shader_context *ctx = si_shader_context(bld_base);
4168 LLVMBuilderRef builder = ctx->ac.builder;
4169 LLVMValueRef tmp;
4170
4171 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4172 tmp = ac_build_ballot(&ctx->ac, tmp);
4173 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4174
4175 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4176 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4177 }
4178
4179 static void read_lane_emit(
4180 const struct lp_build_tgsi_action *action,
4181 struct lp_build_tgsi_context *bld_base,
4182 struct lp_build_emit_data *emit_data)
4183 {
4184 struct si_shader_context *ctx = si_shader_context(bld_base);
4185
4186 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4187 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4188 0, emit_data->src_chan);
4189
4190 /* Always read the source invocation (= lane) from the X channel. */
4191 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4192 1, TGSI_CHAN_X);
4193 emit_data->arg_count = 2;
4194 }
4195
4196 /* We currently have no other way to prevent LLVM from lifting the icmp
4197 * calls to a dominating basic block.
4198 */
4199 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4200
4201 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4202 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4203
4204 emit_data->output[emit_data->chan] =
4205 ac_build_intrinsic(&ctx->ac, action->intr_name,
4206 ctx->i32, emit_data->args, emit_data->arg_count,
4207 AC_FUNC_ATTR_READNONE |
4208 AC_FUNC_ATTR_CONVERGENT);
4209 }
4210
4211 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4212 struct lp_build_emit_data *emit_data)
4213 {
4214 struct si_shader_context *ctx = si_shader_context(bld_base);
4215 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4216 LLVMValueRef imm;
4217 unsigned stream;
4218
4219 assert(src0.File == TGSI_FILE_IMMEDIATE);
4220
4221 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4222 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4223 return stream;
4224 }
4225
4226 /* Emit one vertex from the geometry shader */
4227 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4228 unsigned stream,
4229 LLVMValueRef *addrs)
4230 {
4231 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4232
4233 if (ctx->shader->key.as_ngg) {
4234 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
4235 return;
4236 }
4237
4238 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4239 struct si_shader *shader = ctx->shader;
4240 struct lp_build_if_state if_state;
4241 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4242 ctx->param_gs2vs_offset);
4243 LLVMValueRef gs_next_vertex;
4244 LLVMValueRef can_emit;
4245 unsigned chan, offset;
4246 int i;
4247
4248 /* Write vertex attribute values to GSVS ring */
4249 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4250 ctx->gs_next_vertex[stream],
4251 "");
4252
4253 /* If this thread has already emitted the declared maximum number of
4254 * vertices, skip the write: excessive vertex emissions are not
4255 * supposed to have any effect.
4256 *
4257 * If the shader has no writes to memory, kill it instead. This skips
4258 * further memory loads and may allow LLVM to skip to the end
4259 * altogether.
4260 */
4261 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4262 LLVMConstInt(ctx->i32,
4263 shader->selector->gs_max_out_vertices, 0), "");
4264
4265 bool use_kill = !info->writes_memory;
4266 if (use_kill) {
4267 ac_build_kill_if_false(&ctx->ac, can_emit);
4268 } else {
4269 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4270 }
4271
4272 offset = 0;
4273 for (i = 0; i < info->num_outputs; i++) {
4274 for (chan = 0; chan < 4; chan++) {
4275 if (!(info->output_usagemask[i] & (1 << chan)) ||
4276 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4277 continue;
4278
4279 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4280 LLVMValueRef voffset =
4281 LLVMConstInt(ctx->i32, offset *
4282 shader->selector->gs_max_out_vertices, 0);
4283 offset++;
4284
4285 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4286 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4287 LLVMConstInt(ctx->i32, 4, 0), "");
4288
4289 out_val = ac_to_integer(&ctx->ac, out_val);
4290
4291 ac_build_buffer_store_dword(&ctx->ac,
4292 ctx->gsvs_ring[stream],
4293 out_val, 1,
4294 voffset, soffset, 0,
4295 1, 1, true);
4296 }
4297 }
4298
4299 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4300 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4301
4302 /* Signal vertex emission if vertex data was written. */
4303 if (offset) {
4304 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4305 si_get_gs_wave_id(ctx));
4306 }
4307
4308 if (!use_kill)
4309 lp_build_endif(&if_state);
4310 }
4311
4312 /* Emit one vertex from the geometry shader */
4313 static void si_tgsi_emit_vertex(
4314 const struct lp_build_tgsi_action *action,
4315 struct lp_build_tgsi_context *bld_base,
4316 struct lp_build_emit_data *emit_data)
4317 {
4318 struct si_shader_context *ctx = si_shader_context(bld_base);
4319 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4320
4321 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4322 }
4323
4324 /* Cut one primitive from the geometry shader */
4325 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4326 unsigned stream)
4327 {
4328 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4329
4330 if (ctx->shader->key.as_ngg) {
4331 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
4332 return;
4333 }
4334
4335 /* Signal primitive cut */
4336 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4337 si_get_gs_wave_id(ctx));
4338 }
4339
4340 /* Cut one primitive from the geometry shader */
4341 static void si_tgsi_emit_primitive(
4342 const struct lp_build_tgsi_action *action,
4343 struct lp_build_tgsi_context *bld_base,
4344 struct lp_build_emit_data *emit_data)
4345 {
4346 struct si_shader_context *ctx = si_shader_context(bld_base);
4347
4348 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4349 }
4350
4351 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4352 struct lp_build_tgsi_context *bld_base,
4353 struct lp_build_emit_data *emit_data)
4354 {
4355 struct si_shader_context *ctx = si_shader_context(bld_base);
4356
4357 /* GFX6 only (thanks to a hw bug workaround):
4358 * The real barrier instruction isn’t needed, because an entire patch
4359 * always fits into a single wave.
4360 */
4361 if (ctx->screen->info.chip_class == GFX6 &&
4362 ctx->type == PIPE_SHADER_TESS_CTRL) {
4363 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4364 return;
4365 }
4366
4367 ac_build_s_barrier(&ctx->ac);
4368 }
4369
4370 void si_create_function(struct si_shader_context *ctx,
4371 const char *name,
4372 LLVMTypeRef *returns, unsigned num_returns,
4373 struct si_function_info *fninfo,
4374 unsigned max_workgroup_size)
4375 {
4376 int i;
4377
4378 si_llvm_create_func(ctx, name, returns, num_returns,
4379 fninfo->types, fninfo->num_params);
4380 ctx->return_value = LLVMGetUndef(ctx->return_type);
4381
4382 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4383 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4384
4385 /* The combination of:
4386 * - noalias
4387 * - dereferenceable
4388 * - invariant.load
4389 * allows the optimization passes to move loads and reduces
4390 * SGPR spilling significantly.
4391 */
4392 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4393 AC_FUNC_ATTR_INREG);
4394
4395 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4396 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4397 AC_FUNC_ATTR_NOALIAS);
4398 ac_add_attr_dereferenceable(P, UINT64_MAX);
4399 }
4400 }
4401
4402 for (i = 0; i < fninfo->num_params; ++i) {
4403 if (fninfo->assign[i])
4404 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4405 }
4406
4407 if (ctx->screen->info.address32_hi) {
4408 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4409 "amdgpu-32bit-address-high-bits",
4410 ctx->screen->info.address32_hi);
4411 }
4412
4413 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
4414
4415 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4416 "no-signed-zeros-fp-math",
4417 "true");
4418
4419 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4420 /* These were copied from some LLVM test. */
4421 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4422 "less-precise-fpmad",
4423 "true");
4424 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4425 "no-infs-fp-math",
4426 "true");
4427 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4428 "no-nans-fp-math",
4429 "true");
4430 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4431 "unsafe-fp-math",
4432 "true");
4433 }
4434 }
4435
4436 static void declare_streamout_params(struct si_shader_context *ctx,
4437 struct pipe_stream_output_info *so,
4438 struct si_function_info *fninfo)
4439 {
4440 int i;
4441
4442 /* Streamout SGPRs. */
4443 if (so->num_outputs) {
4444 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4445 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4446 else
4447 ctx->param_streamout_config = fninfo->num_params - 1;
4448
4449 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4450 }
4451 /* A streamout buffer offset is loaded if the stride is non-zero. */
4452 for (i = 0; i < 4; i++) {
4453 if (!so->stride[i])
4454 continue;
4455
4456 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4457 }
4458 }
4459
4460 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4461 {
4462 switch (shader->selector->type) {
4463 case PIPE_SHADER_VERTEX:
4464 case PIPE_SHADER_TESS_EVAL:
4465 return shader->key.as_ngg ? 128 : 0;
4466
4467 case PIPE_SHADER_TESS_CTRL:
4468 /* Return this so that LLVM doesn't remove s_barrier
4469 * instructions on chips where we use s_barrier. */
4470 return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 64;
4471
4472 case PIPE_SHADER_GEOMETRY:
4473 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4474
4475 case PIPE_SHADER_COMPUTE:
4476 break; /* see below */
4477
4478 default:
4479 return 0;
4480 }
4481
4482 const unsigned *properties = shader->selector->info.properties;
4483 unsigned max_work_group_size =
4484 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4485 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4486 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4487
4488 if (!max_work_group_size) {
4489 /* This is a variable group size compute shader,
4490 * compile it for the maximum possible group size.
4491 */
4492 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4493 }
4494 return max_work_group_size;
4495 }
4496
4497 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4498 struct si_function_info *fninfo,
4499 bool assign_params)
4500 {
4501 LLVMTypeRef const_shader_buf_type;
4502
4503 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4504 ctx->shader->selector->info.shader_buffers_declared == 0)
4505 const_shader_buf_type = ctx->f32;
4506 else
4507 const_shader_buf_type = ctx->v4i32;
4508
4509 unsigned const_and_shader_buffers =
4510 add_arg(fninfo, ARG_SGPR,
4511 ac_array_in_const32_addr_space(const_shader_buf_type));
4512
4513 if (assign_params)
4514 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4515 }
4516
4517 static void declare_samplers_and_images(struct si_shader_context *ctx,
4518 struct si_function_info *fninfo,
4519 bool assign_params)
4520 {
4521 unsigned samplers_and_images =
4522 add_arg(fninfo, ARG_SGPR,
4523 ac_array_in_const32_addr_space(ctx->v8i32));
4524
4525 if (assign_params)
4526 ctx->param_samplers_and_images = samplers_and_images;
4527 }
4528
4529 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4530 struct si_function_info *fninfo,
4531 bool assign_params)
4532 {
4533 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4534 declare_samplers_and_images(ctx, fninfo, assign_params);
4535 }
4536
4537 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4538 struct si_function_info *fninfo)
4539 {
4540 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4541 ac_array_in_const32_addr_space(ctx->v4i32));
4542 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4543 ac_array_in_const32_addr_space(ctx->v8i32));
4544 }
4545
4546 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4547 struct si_function_info *fninfo)
4548 {
4549 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4550 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4551 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4552 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4553 }
4554
4555 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4556 struct si_function_info *fninfo,
4557 unsigned *num_prolog_vgprs)
4558 {
4559 struct si_shader *shader = ctx->shader;
4560
4561 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4562 if (shader->key.as_ls) {
4563 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4564 if (ctx->screen->info.chip_class >= GFX10) {
4565 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user VGPR */
4566 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4567 } else {
4568 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4569 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4570 }
4571 } else if (ctx->screen->info.chip_class == GFX10 &&
4572 !shader->is_gs_copy_shader) {
4573 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4574 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4575 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4576 } else {
4577 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4578 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4579 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4580 }
4581
4582 if (!shader->is_gs_copy_shader) {
4583 /* Vertex load indices. */
4584 ctx->param_vertex_index0 = fninfo->num_params;
4585 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4586 add_arg(fninfo, ARG_VGPR, ctx->i32);
4587 *num_prolog_vgprs += shader->selector->info.num_inputs;
4588 }
4589 }
4590
4591 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4592 struct si_function_info *fninfo,
4593 unsigned vs_blit_property)
4594 {
4595 ctx->param_vs_blit_inputs = fninfo->num_params;
4596 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4597 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4598 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4599
4600 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4601 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4602 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4603 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4604 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4605 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4606 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4607 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4608 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4609 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4610 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4611 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4612 }
4613 }
4614
4615 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4616 struct si_function_info *fninfo)
4617 {
4618 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4619 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4620 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4621 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4622 }
4623
4624 enum {
4625 /* Convenient merged shader definitions. */
4626 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4627 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4628 };
4629
4630 static void create_function(struct si_shader_context *ctx)
4631 {
4632 struct si_shader *shader = ctx->shader;
4633 struct si_function_info fninfo;
4634 LLVMTypeRef returns[16+32*4];
4635 unsigned i, num_return_sgprs;
4636 unsigned num_returns = 0;
4637 unsigned num_prolog_vgprs = 0;
4638 unsigned type = ctx->type;
4639 unsigned vs_blit_property =
4640 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4641
4642 si_init_function_info(&fninfo);
4643
4644 /* Set MERGED shaders. */
4645 if (ctx->screen->info.chip_class >= GFX9) {
4646 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4647 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4648 else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
4649 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4650 }
4651
4652 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4653
4654 switch (type) {
4655 case PIPE_SHADER_VERTEX:
4656 declare_global_desc_pointers(ctx, &fninfo);
4657
4658 if (vs_blit_property) {
4659 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4660
4661 /* VGPRs */
4662 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4663 break;
4664 }
4665
4666 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4667 declare_vs_specific_input_sgprs(ctx, &fninfo);
4668 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4669 ac_array_in_const32_addr_space(ctx->v4i32));
4670
4671 if (shader->key.as_es) {
4672 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4673 } else if (shader->key.as_ls) {
4674 /* no extra parameters */
4675 } else {
4676 if (shader->is_gs_copy_shader) {
4677 fninfo.num_params = ctx->param_vs_state_bits + 1;
4678 fninfo.num_sgpr_params = fninfo.num_params;
4679 }
4680
4681 /* The locations of the other parameters are assigned dynamically. */
4682 declare_streamout_params(ctx, &shader->selector->so,
4683 &fninfo);
4684 }
4685
4686 /* VGPRs */
4687 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4688
4689 /* Return values */
4690 if (shader->key.opt.vs_as_prim_discard_cs) {
4691 for (i = 0; i < 4; i++)
4692 returns[num_returns++] = ctx->f32; /* VGPRs */
4693 }
4694 break;
4695
4696 case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
4697 declare_global_desc_pointers(ctx, &fninfo);
4698 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4699 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4700 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4701 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4702 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4703 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4704 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4705
4706 /* VGPRs */
4707 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4708 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4709
4710 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4711 * placed after the user SGPRs.
4712 */
4713 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4714 returns[num_returns++] = ctx->i32; /* SGPRs */
4715 for (i = 0; i < 11; i++)
4716 returns[num_returns++] = ctx->f32; /* VGPRs */
4717 break;
4718
4719 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4720 /* Merged stages have 8 system SGPRs at the beginning. */
4721 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4722 declare_per_stage_desc_pointers(ctx, &fninfo,
4723 ctx->type == PIPE_SHADER_TESS_CTRL);
4724 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4725 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4726 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4727 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4728 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4729 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4730
4731 declare_global_desc_pointers(ctx, &fninfo);
4732 declare_per_stage_desc_pointers(ctx, &fninfo,
4733 ctx->type == PIPE_SHADER_VERTEX);
4734 declare_vs_specific_input_sgprs(ctx, &fninfo);
4735
4736 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4737 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4738 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4739 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4740 ac_array_in_const32_addr_space(ctx->v4i32));
4741
4742 /* VGPRs (first TCS, then VS) */
4743 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4744 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4745
4746 if (ctx->type == PIPE_SHADER_VERTEX) {
4747 declare_vs_input_vgprs(ctx, &fninfo,
4748 &num_prolog_vgprs);
4749
4750 /* LS return values are inputs to the TCS main shader part. */
4751 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4752 returns[num_returns++] = ctx->i32; /* SGPRs */
4753 for (i = 0; i < 2; i++)
4754 returns[num_returns++] = ctx->f32; /* VGPRs */
4755 } else {
4756 /* TCS return values are inputs to the TCS epilog.
4757 *
4758 * param_tcs_offchip_offset, param_tcs_factor_offset,
4759 * param_tcs_offchip_layout, and param_rw_buffers
4760 * should be passed to the epilog.
4761 */
4762 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4763 returns[num_returns++] = ctx->i32; /* SGPRs */
4764 for (i = 0; i < 11; i++)
4765 returns[num_returns++] = ctx->f32; /* VGPRs */
4766 }
4767 break;
4768
4769 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4770 /* Merged stages have 8 system SGPRs at the beginning. */
4771 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4772 declare_per_stage_desc_pointers(ctx, &fninfo,
4773 ctx->type == PIPE_SHADER_GEOMETRY);
4774
4775 if (ctx->shader->key.as_ngg)
4776 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
4777 else
4778 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4779
4780 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4781 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4782 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4783 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4784 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4785
4786 declare_global_desc_pointers(ctx, &fninfo);
4787 if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
4788 declare_per_stage_desc_pointers(ctx, &fninfo,
4789 (ctx->type == PIPE_SHADER_VERTEX ||
4790 ctx->type == PIPE_SHADER_TESS_EVAL));
4791 }
4792
4793 if (ctx->type == PIPE_SHADER_VERTEX) {
4794 if (vs_blit_property)
4795 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4796 else
4797 declare_vs_specific_input_sgprs(ctx, &fninfo);
4798 } else {
4799 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4800 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4801 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4802 /* Declare as many input SGPRs as the VS has. */
4803 }
4804
4805 if (ctx->type == PIPE_SHADER_VERTEX) {
4806 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4807 ac_array_in_const32_addr_space(ctx->v4i32));
4808 }
4809
4810 /* VGPRs (first GS, then VS/TES) */
4811 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4812 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4813 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4814 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4815 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4816
4817 if (ctx->type == PIPE_SHADER_VERTEX) {
4818 declare_vs_input_vgprs(ctx, &fninfo,
4819 &num_prolog_vgprs);
4820 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4821 declare_tes_input_vgprs(ctx, &fninfo);
4822 }
4823
4824 if (ctx->shader->key.as_es &&
4825 (ctx->type == PIPE_SHADER_VERTEX ||
4826 ctx->type == PIPE_SHADER_TESS_EVAL)) {
4827 unsigned num_user_sgprs;
4828
4829 if (ctx->type == PIPE_SHADER_VERTEX)
4830 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4831 else
4832 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4833
4834 /* ES return values are inputs to GS. */
4835 for (i = 0; i < 8 + num_user_sgprs; i++)
4836 returns[num_returns++] = ctx->i32; /* SGPRs */
4837 for (i = 0; i < 5; i++)
4838 returns[num_returns++] = ctx->f32; /* VGPRs */
4839 }
4840 break;
4841
4842 case PIPE_SHADER_TESS_EVAL:
4843 declare_global_desc_pointers(ctx, &fninfo);
4844 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4845 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4846 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4847 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4848
4849 if (shader->key.as_es) {
4850 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4851 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4852 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4853 } else {
4854 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4855 declare_streamout_params(ctx, &shader->selector->so,
4856 &fninfo);
4857 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4858 }
4859
4860 /* VGPRs */
4861 declare_tes_input_vgprs(ctx, &fninfo);
4862 break;
4863
4864 case PIPE_SHADER_GEOMETRY:
4865 declare_global_desc_pointers(ctx, &fninfo);
4866 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4867 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4868 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4869
4870 /* VGPRs */
4871 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4872 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4873 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4874 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4875 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4876 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4877 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4878 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4879 break;
4880
4881 case PIPE_SHADER_FRAGMENT:
4882 declare_global_desc_pointers(ctx, &fninfo);
4883 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4884 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4885 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4886 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4887
4888 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4889 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4890 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4891 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4892 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4893 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4894 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4895 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4896 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4897 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4898 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4899 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4900 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4901 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4902 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4903 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4904 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4905 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4906 shader->info.face_vgpr_index = 20;
4907 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4908 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4909 shader->info.ancillary_vgpr_index = 21;
4910 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4911 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4912 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4913
4914 /* Color inputs from the prolog. */
4915 if (shader->selector->info.colors_read) {
4916 unsigned num_color_elements =
4917 util_bitcount(shader->selector->info.colors_read);
4918
4919 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4920 for (i = 0; i < num_color_elements; i++)
4921 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4922
4923 num_prolog_vgprs += num_color_elements;
4924 }
4925
4926 /* Outputs for the epilog. */
4927 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4928 num_returns =
4929 num_return_sgprs +
4930 util_bitcount(shader->selector->info.colors_written) * 4 +
4931 shader->selector->info.writes_z +
4932 shader->selector->info.writes_stencil +
4933 shader->selector->info.writes_samplemask +
4934 1 /* SampleMaskIn */;
4935
4936 num_returns = MAX2(num_returns,
4937 num_return_sgprs +
4938 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4939
4940 for (i = 0; i < num_return_sgprs; i++)
4941 returns[i] = ctx->i32;
4942 for (; i < num_returns; i++)
4943 returns[i] = ctx->f32;
4944 break;
4945
4946 case PIPE_SHADER_COMPUTE:
4947 declare_global_desc_pointers(ctx, &fninfo);
4948 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4949 if (shader->selector->info.uses_grid_size)
4950 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4951 if (shader->selector->info.uses_block_size &&
4952 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4953 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4954
4955 unsigned cs_user_data_dwords =
4956 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_DWORDS];
4957 if (cs_user_data_dwords) {
4958 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4959 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4960 }
4961
4962 for (i = 0; i < 3; i++) {
4963 ctx->abi.workgroup_ids[i] = NULL;
4964 if (shader->selector->info.uses_block_id[i])
4965 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4966 }
4967
4968 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4969 break;
4970 default:
4971 assert(0 && "unimplemented shader");
4972 return;
4973 }
4974
4975 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4976 si_get_max_workgroup_size(shader));
4977
4978 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4979 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
4980 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4981 "InitialPSInputAddr",
4982 S_0286D0_PERSP_SAMPLE_ENA(1) |
4983 S_0286D0_PERSP_CENTER_ENA(1) |
4984 S_0286D0_PERSP_CENTROID_ENA(1) |
4985 S_0286D0_LINEAR_SAMPLE_ENA(1) |
4986 S_0286D0_LINEAR_CENTER_ENA(1) |
4987 S_0286D0_LINEAR_CENTROID_ENA(1) |
4988 S_0286D0_FRONT_FACE_ENA(1) |
4989 S_0286D0_ANCILLARY_ENA(1) |
4990 S_0286D0_POS_FIXED_PT_ENA(1));
4991 }
4992
4993 shader->info.num_input_sgprs = 0;
4994 shader->info.num_input_vgprs = 0;
4995
4996 for (i = 0; i < fninfo.num_sgpr_params; ++i)
4997 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
4998
4999 for (; i < fninfo.num_params; ++i)
5000 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5001
5002 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5003 shader->info.num_input_vgprs -= num_prolog_vgprs;
5004
5005 if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
5006 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5007 /* The LSHS size is not known until draw time, so we append it
5008 * at the end of whatever LDS use there may be in the rest of
5009 * the shader (currently none, unless LLVM decides to do its
5010 * own LDS-based lowering).
5011 */
5012 ctx->ac.lds = LLVMAddGlobalInAddressSpace(
5013 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5014 "__lds_end", AC_ADDR_SPACE_LDS);
5015 LLVMSetAlignment(ctx->ac.lds, 256);
5016 } else {
5017 ac_declare_lds_as_pointer(&ctx->ac);
5018 }
5019 }
5020 }
5021
5022 /* Ensure that the esgs ring is declared.
5023 *
5024 * We declare it with 64KB alignment as a hint that the
5025 * pointer value will always be 0.
5026 */
5027 static void declare_esgs_ring(struct si_shader_context *ctx)
5028 {
5029 if (ctx->esgs_ring)
5030 return;
5031
5032 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
5033
5034 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
5035 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5036 "esgs_ring",
5037 AC_ADDR_SPACE_LDS);
5038 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
5039 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
5040 }
5041
5042 /**
5043 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5044 * for later use.
5045 */
5046 static void preload_ring_buffers(struct si_shader_context *ctx)
5047 {
5048 LLVMBuilderRef builder = ctx->ac.builder;
5049
5050 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5051 ctx->param_rw_buffers);
5052
5053 if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) {
5054 if (ctx->screen->info.chip_class <= GFX8) {
5055 unsigned ring =
5056 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5057 : SI_ES_RING_ESGS;
5058 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5059
5060 ctx->esgs_ring =
5061 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5062 } else {
5063 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5064 /* Declare the ESGS ring as an explicit LDS symbol. */
5065 declare_esgs_ring(ctx);
5066 } else {
5067 ac_declare_lds_as_pointer(&ctx->ac);
5068 ctx->esgs_ring = ctx->ac.lds;
5069 }
5070 }
5071 }
5072
5073 if (ctx->shader->is_gs_copy_shader) {
5074 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5075
5076 ctx->gsvs_ring[0] =
5077 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5078 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5079 const struct si_shader_selector *sel = ctx->shader->selector;
5080 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5081 LLVMValueRef base_ring;
5082
5083 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5084
5085 /* The conceptual layout of the GSVS ring is
5086 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5087 * but the real memory layout is swizzled across
5088 * threads:
5089 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5090 * t16v0c0 ..
5091 * Override the buffer descriptor accordingly.
5092 */
5093 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5094 uint64_t stream_offset = 0;
5095
5096 for (unsigned stream = 0; stream < 4; ++stream) {
5097 unsigned num_components;
5098 unsigned stride;
5099 unsigned num_records;
5100 LLVMValueRef ring, tmp;
5101
5102 num_components = sel->info.num_stream_output_components[stream];
5103 if (!num_components)
5104 continue;
5105
5106 stride = 4 * num_components * sel->gs_max_out_vertices;
5107
5108 /* Limit on the stride field for <= GFX7. */
5109 assert(stride < (1 << 14));
5110
5111 num_records = 64;
5112
5113 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5114 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5115 tmp = LLVMBuildAdd(builder, tmp,
5116 LLVMConstInt(ctx->i64,
5117 stream_offset, 0), "");
5118 stream_offset += stride * 64;
5119
5120 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5121 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5122 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5123 tmp = LLVMBuildOr(builder, tmp,
5124 LLVMConstInt(ctx->i32,
5125 S_008F04_STRIDE(stride) |
5126 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5127 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5128 ring = LLVMBuildInsertElement(builder, ring,
5129 LLVMConstInt(ctx->i32, num_records, 0),
5130 LLVMConstInt(ctx->i32, 2, 0), "");
5131
5132 uint32_t rsrc3 =
5133 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5134 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5135 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5136 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5137 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5138 S_008F0C_ADD_TID_ENABLE(1);
5139
5140 if (ctx->ac.chip_class >= GFX10) {
5141 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5142 S_008F0C_OOB_SELECT(2) |
5143 S_008F0C_RESOURCE_LEVEL(1);
5144 } else {
5145 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5146 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5147 S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
5148 }
5149
5150 ring = LLVMBuildInsertElement(builder, ring,
5151 LLVMConstInt(ctx->i32, rsrc3, false),
5152 LLVMConstInt(ctx->i32, 3, 0), "");
5153
5154 ctx->gsvs_ring[stream] = ring;
5155 }
5156 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5157 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5158 }
5159 }
5160
5161 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5162 LLVMValueRef param_rw_buffers,
5163 unsigned param_pos_fixed_pt)
5164 {
5165 LLVMBuilderRef builder = ctx->ac.builder;
5166 LLVMValueRef slot, desc, offset, row, bit, address[2];
5167
5168 /* Use the fixed-point gl_FragCoord input.
5169 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5170 * per coordinate to get the repeating effect.
5171 */
5172 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5173 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5174
5175 /* Load the buffer descriptor. */
5176 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5177 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5178
5179 /* The stipple pattern is 32x32, each row has 32 bits. */
5180 offset = LLVMBuildMul(builder, address[1],
5181 LLVMConstInt(ctx->i32, 4, 0), "");
5182 row = buffer_load_const(ctx, desc, offset);
5183 row = ac_to_integer(&ctx->ac, row);
5184 bit = LLVMBuildLShr(builder, row, address[0], "");
5185 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5186 ac_build_kill_if_false(&ctx->ac, bit);
5187 }
5188
5189 /* For the UMR disassembler. */
5190 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5191 #define DEBUGGER_NUM_MARKERS 5
5192
5193 static bool si_shader_binary_open(struct si_screen *screen,
5194 struct si_shader *shader,
5195 struct ac_rtld_binary *rtld)
5196 {
5197 const struct si_shader_selector *sel = shader->selector;
5198 enum pipe_shader_type shader_type = sel ? sel->type : PIPE_SHADER_COMPUTE;
5199 const char *part_elfs[5];
5200 size_t part_sizes[5];
5201 unsigned num_parts = 0;
5202
5203 #define add_part(shader_or_part) \
5204 if (shader_or_part) { \
5205 part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
5206 part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
5207 num_parts++; \
5208 }
5209
5210 add_part(shader->prolog);
5211 add_part(shader->previous_stage);
5212 add_part(shader->prolog2);
5213 add_part(shader);
5214 add_part(shader->epilog);
5215
5216 #undef add_part
5217
5218 struct ac_rtld_symbol lds_symbols[2];
5219 unsigned num_lds_symbols = 0;
5220 unsigned esgs_ring_size = 0;
5221
5222 if (sel && screen->info.chip_class >= GFX9 &&
5223 sel->type == PIPE_SHADER_GEOMETRY && !shader->is_gs_copy_shader) {
5224 esgs_ring_size = shader->gs_info.esgs_ring_size;;
5225 }
5226
5227 if (sel && shader->key.as_ngg && sel->so.num_outputs) {
5228 unsigned esgs_vertex_bytes = 4 * (4 * sel->info.num_outputs + 1);
5229 esgs_ring_size = MAX2(esgs_ring_size,
5230 shader->ngg.max_out_verts * esgs_vertex_bytes);
5231 }
5232
5233 if (esgs_ring_size) {
5234 /* We add this symbol even on LLVM <= 8 to ensure that
5235 * shader->config.lds_size is set correctly below.
5236 */
5237 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5238 sym->name = "esgs_ring";
5239 sym->size = esgs_ring_size;
5240 sym->align = 64 * 1024;
5241 }
5242
5243 if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
5244 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5245 sym->name = "ngg_emit";
5246 sym->size = shader->ngg.ngg_emit_size * 4;
5247 sym->align = 4;
5248 }
5249
5250 bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
5251 .info = &screen->info,
5252 .options = {
5253 .halt_at_entry = screen->options.halt_shaders,
5254 },
5255 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5256 .num_parts = num_parts,
5257 .elf_ptrs = part_elfs,
5258 .elf_sizes = part_sizes,
5259 .num_shared_lds_symbols = num_lds_symbols,
5260 .shared_lds_symbols = lds_symbols });
5261
5262 if (rtld->lds_size > 0) {
5263 unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
5264 shader->config.lds_size =
5265 align(rtld->lds_size, alloc_granularity) / alloc_granularity;
5266 }
5267
5268 return ok;
5269 }
5270
5271 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
5272 {
5273 struct ac_rtld_binary rtld;
5274 si_shader_binary_open(screen, shader, &rtld);
5275 return rtld.rx_size;
5276 }
5277
5278 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
5279 {
5280 uint64_t *scratch_va = data;
5281
5282 if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
5283 *value = (uint32_t)*scratch_va;
5284 return true;
5285 }
5286 if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
5287 /* Enable scratch coalescing. */
5288 *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
5289 S_008F04_SWIZZLE_ENABLE(1);
5290 if (HAVE_LLVM < 0x0800) {
5291 /* Old LLVM created an R_ABS32_HI relocation for
5292 * this symbol. */
5293 *value <<= 32;
5294 }
5295 return true;
5296 }
5297
5298 return false;
5299 }
5300
5301 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
5302 uint64_t scratch_va)
5303 {
5304 struct ac_rtld_binary binary;
5305 if (!si_shader_binary_open(sscreen, shader, &binary))
5306 return false;
5307
5308 si_resource_reference(&shader->bo, NULL);
5309 shader->bo = si_aligned_buffer_create(&sscreen->b,
5310 sscreen->cpdma_prefetch_writes_memory ?
5311 0 : SI_RESOURCE_FLAG_READ_ONLY,
5312 PIPE_USAGE_IMMUTABLE,
5313 align(binary.rx_size, SI_CPDMA_ALIGNMENT),
5314 256);
5315 if (!shader->bo)
5316 return false;
5317
5318 /* Upload. */
5319 struct ac_rtld_upload_info u = {};
5320 u.binary = &binary;
5321 u.get_external_symbol = si_get_external_symbol;
5322 u.cb_data = &scratch_va;
5323 u.rx_va = shader->bo->gpu_address;
5324 u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5325 PIPE_TRANSFER_READ_WRITE |
5326 PIPE_TRANSFER_UNSYNCHRONIZED |
5327 RADEON_TRANSFER_TEMPORARY);
5328 if (!u.rx_ptr)
5329 return false;
5330
5331 bool ok = ac_rtld_upload(&u);
5332
5333 sscreen->ws->buffer_unmap(shader->bo->buf);
5334 ac_rtld_close(&binary);
5335
5336 return ok;
5337 }
5338
5339 static void si_shader_dump_disassembly(struct si_screen *screen,
5340 const struct si_shader_binary *binary,
5341 struct pipe_debug_callback *debug,
5342 const char *name, FILE *file)
5343 {
5344 struct ac_rtld_binary rtld_binary;
5345
5346 if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
5347 .info = &screen->info,
5348 .num_parts = 1,
5349 .elf_ptrs = &binary->elf_buffer,
5350 .elf_sizes = &binary->elf_size }))
5351 return;
5352
5353 const char *disasm;
5354 size_t nbytes;
5355
5356 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
5357 goto out;
5358
5359 if (nbytes > INT_MAX)
5360 goto out;
5361
5362 if (debug && debug->debug_message) {
5363 /* Very long debug messages are cut off, so send the
5364 * disassembly one line at a time. This causes more
5365 * overhead, but on the plus side it simplifies
5366 * parsing of resulting logs.
5367 */
5368 pipe_debug_message(debug, SHADER_INFO,
5369 "Shader Disassembly Begin");
5370
5371 uint64_t line = 0;
5372 while (line < nbytes) {
5373 int count = nbytes - line;
5374 const char *nl = memchr(disasm + line, '\n', nbytes - line);
5375 if (nl)
5376 count = nl - (disasm + line);
5377
5378 if (count) {
5379 pipe_debug_message(debug, SHADER_INFO,
5380 "%.*s", count, disasm + line);
5381 }
5382
5383 line += count + 1;
5384 }
5385
5386 pipe_debug_message(debug, SHADER_INFO,
5387 "Shader Disassembly End");
5388 }
5389
5390 if (file) {
5391 fprintf(file, "Shader %s disassembly:\n", name);
5392 fprintf(file, "%*s", (int)nbytes, disasm);
5393 }
5394
5395 out:
5396 ac_rtld_close(&rtld_binary);
5397 }
5398
5399 static void si_calculate_max_simd_waves(struct si_shader *shader)
5400 {
5401 struct si_screen *sscreen = shader->selector->screen;
5402 struct ac_shader_config *conf = &shader->config;
5403 unsigned num_inputs = shader->selector->info.num_inputs;
5404 unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
5405 unsigned lds_per_wave = 0;
5406 unsigned max_simd_waves;
5407
5408 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5409
5410 /* Compute LDS usage for PS. */
5411 switch (shader->selector->type) {
5412 case PIPE_SHADER_FRAGMENT:
5413 /* The minimum usage per wave is (num_inputs * 48). The maximum
5414 * usage is (num_inputs * 48 * 16).
5415 * We can get anything in between and it varies between waves.
5416 *
5417 * The 48 bytes per input for a single primitive is equal to
5418 * 4 bytes/component * 4 components/input * 3 points.
5419 *
5420 * Other stages don't know the size at compile time or don't
5421 * allocate LDS per wave, but instead they do it per thread group.
5422 */
5423 lds_per_wave = conf->lds_size * lds_increment +
5424 align(num_inputs * 48, lds_increment);
5425 break;
5426 case PIPE_SHADER_COMPUTE:
5427 if (shader->selector) {
5428 unsigned max_workgroup_size =
5429 si_get_max_workgroup_size(shader);
5430 lds_per_wave = (conf->lds_size * lds_increment) /
5431 DIV_ROUND_UP(max_workgroup_size, 64);
5432 }
5433 break;
5434 }
5435
5436 /* Compute the per-SIMD wave counts. */
5437 if (conf->num_sgprs) {
5438 max_simd_waves =
5439 MIN2(max_simd_waves,
5440 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5441 }
5442
5443 if (conf->num_vgprs)
5444 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5445
5446 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5447 * 16KB makes some SIMDs unoccupied). */
5448 if (lds_per_wave)
5449 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5450
5451 shader->info.max_simd_waves = max_simd_waves;
5452 }
5453
5454 void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
5455 struct si_shader *shader,
5456 struct pipe_debug_callback *debug)
5457 {
5458 const struct ac_shader_config *conf = &shader->config;
5459
5460 if (screen->options.debug_disassembly)
5461 si_shader_dump_disassembly(screen, &shader->binary, debug, "main", NULL);
5462
5463 pipe_debug_message(debug, SHADER_INFO,
5464 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5465 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5466 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5467 conf->num_sgprs, conf->num_vgprs,
5468 si_get_shader_binary_size(screen, shader),
5469 conf->lds_size, conf->scratch_bytes_per_wave,
5470 shader->info.max_simd_waves, conf->spilled_sgprs,
5471 conf->spilled_vgprs, shader->info.private_mem_vgprs);
5472 }
5473
5474 static void si_shader_dump_stats(struct si_screen *sscreen,
5475 struct si_shader *shader,
5476 unsigned processor,
5477 FILE *file,
5478 bool check_debug_option)
5479 {
5480 const struct ac_shader_config *conf = &shader->config;
5481
5482 if (!check_debug_option ||
5483 si_can_dump_shader(sscreen, processor)) {
5484 if (processor == PIPE_SHADER_FRAGMENT) {
5485 fprintf(file, "*** SHADER CONFIG ***\n"
5486 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5487 "SPI_PS_INPUT_ENA = 0x%04x\n",
5488 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5489 }
5490
5491 fprintf(file, "*** SHADER STATS ***\n"
5492 "SGPRS: %d\n"
5493 "VGPRS: %d\n"
5494 "Spilled SGPRs: %d\n"
5495 "Spilled VGPRs: %d\n"
5496 "Private memory VGPRs: %d\n"
5497 "Code Size: %d bytes\n"
5498 "LDS: %d blocks\n"
5499 "Scratch: %d bytes per wave\n"
5500 "Max Waves: %d\n"
5501 "********************\n\n\n",
5502 conf->num_sgprs, conf->num_vgprs,
5503 conf->spilled_sgprs, conf->spilled_vgprs,
5504 shader->info.private_mem_vgprs,
5505 si_get_shader_binary_size(sscreen, shader),
5506 conf->lds_size, conf->scratch_bytes_per_wave,
5507 shader->info.max_simd_waves);
5508 }
5509 }
5510
5511 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5512 {
5513 switch (processor) {
5514 case PIPE_SHADER_VERTEX:
5515 if (shader->key.as_es)
5516 return "Vertex Shader as ES";
5517 else if (shader->key.as_ls)
5518 return "Vertex Shader as LS";
5519 else if (shader->key.opt.vs_as_prim_discard_cs)
5520 return "Vertex Shader as Primitive Discard CS";
5521 else if (shader->key.as_ngg)
5522 return "Vertex Shader as ESGS";
5523 else
5524 return "Vertex Shader as VS";
5525 case PIPE_SHADER_TESS_CTRL:
5526 return "Tessellation Control Shader";
5527 case PIPE_SHADER_TESS_EVAL:
5528 if (shader->key.as_es)
5529 return "Tessellation Evaluation Shader as ES";
5530 else if (shader->key.as_ngg)
5531 return "Tessellation Evaluation Shader as ESGS";
5532 else
5533 return "Tessellation Evaluation Shader as VS";
5534 case PIPE_SHADER_GEOMETRY:
5535 if (shader->is_gs_copy_shader)
5536 return "GS Copy Shader as VS";
5537 else
5538 return "Geometry Shader";
5539 case PIPE_SHADER_FRAGMENT:
5540 return "Pixel Shader";
5541 case PIPE_SHADER_COMPUTE:
5542 return "Compute Shader";
5543 default:
5544 return "Unknown Shader";
5545 }
5546 }
5547
5548 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
5549 struct pipe_debug_callback *debug, unsigned processor,
5550 FILE *file, bool check_debug_option)
5551 {
5552 if (!check_debug_option ||
5553 si_can_dump_shader(sscreen, processor))
5554 si_dump_shader_key(processor, shader, file);
5555
5556 if (!check_debug_option && shader->binary.llvm_ir_string) {
5557 if (shader->previous_stage &&
5558 shader->previous_stage->binary.llvm_ir_string) {
5559 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5560 si_get_shader_name(shader, processor));
5561 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5562 }
5563
5564 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5565 si_get_shader_name(shader, processor));
5566 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5567 }
5568
5569 if (!check_debug_option ||
5570 (si_can_dump_shader(sscreen, processor) &&
5571 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5572 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5573
5574 if (shader->prolog)
5575 si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
5576 debug, "prolog", file);
5577 if (shader->previous_stage)
5578 si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
5579 debug, "previous stage", file);
5580 if (shader->prolog2)
5581 si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
5582 debug, "prolog2", file);
5583
5584 si_shader_dump_disassembly(sscreen, &shader->binary, debug, "main", file);
5585
5586 if (shader->epilog)
5587 si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
5588 debug, "epilog", file);
5589 fprintf(file, "\n");
5590 }
5591
5592 si_shader_dump_stats(sscreen, shader, processor, file,
5593 check_debug_option);
5594 }
5595
5596 static int si_compile_llvm(struct si_screen *sscreen,
5597 struct si_shader_binary *binary,
5598 struct ac_shader_config *conf,
5599 struct ac_llvm_compiler *compiler,
5600 LLVMModuleRef mod,
5601 struct pipe_debug_callback *debug,
5602 unsigned processor,
5603 const char *name,
5604 bool less_optimized)
5605 {
5606 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5607
5608 if (si_can_dump_shader(sscreen, processor)) {
5609 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5610
5611 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5612 fprintf(stderr, "%s LLVM IR:\n\n", name);
5613 ac_dump_module(mod);
5614 fprintf(stderr, "\n");
5615 }
5616 }
5617
5618 if (sscreen->record_llvm_ir) {
5619 char *ir = LLVMPrintModuleToString(mod);
5620 binary->llvm_ir_string = strdup(ir);
5621 LLVMDisposeMessage(ir);
5622 }
5623
5624 if (!si_replace_shader(count, binary)) {
5625 unsigned r = si_llvm_compile(mod, binary, compiler, debug,
5626 less_optimized);
5627 if (r)
5628 return r;
5629 }
5630
5631 struct ac_rtld_binary rtld;
5632 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
5633 .info = &sscreen->info,
5634 .num_parts = 1,
5635 .elf_ptrs = &binary->elf_buffer,
5636 .elf_sizes = &binary->elf_size }))
5637 return -1;
5638
5639 bool ok = ac_rtld_read_config(&rtld, conf);
5640 ac_rtld_close(&rtld);
5641 if (!ok)
5642 return -1;
5643
5644 /* Enable 64-bit and 16-bit denormals, because there is no performance
5645 * cost.
5646 *
5647 * If denormals are enabled, all floating-point output modifiers are
5648 * ignored.
5649 *
5650 * Don't enable denormals for 32-bit floats, because:
5651 * - Floating-point output modifiers would be ignored by the hw.
5652 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5653 * have to stop using those.
5654 * - GFX6 & GFX7 would be very slow.
5655 */
5656 conf->float_mode |= V_00B028_FP_64_DENORMS;
5657
5658 return 0;
5659 }
5660
5661 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5662 {
5663 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5664 LLVMBuildRetVoid(ctx->ac.builder);
5665 else
5666 LLVMBuildRet(ctx->ac.builder, ret);
5667 }
5668
5669 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5670 struct si_shader *
5671 si_generate_gs_copy_shader(struct si_screen *sscreen,
5672 struct ac_llvm_compiler *compiler,
5673 struct si_shader_selector *gs_selector,
5674 struct pipe_debug_callback *debug)
5675 {
5676 struct si_shader_context ctx;
5677 struct si_shader *shader;
5678 LLVMBuilderRef builder;
5679 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5680 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5681 int i;
5682
5683
5684 shader = CALLOC_STRUCT(si_shader);
5685 if (!shader)
5686 return NULL;
5687
5688 /* We can leave the fence as permanently signaled because the GS copy
5689 * shader only becomes visible globally after it has been compiled. */
5690 util_queue_fence_init(&shader->ready);
5691
5692 shader->selector = gs_selector;
5693 shader->is_gs_copy_shader = true;
5694
5695 si_init_shader_ctx(&ctx, sscreen, compiler);
5696 ctx.shader = shader;
5697 ctx.type = PIPE_SHADER_VERTEX;
5698
5699 builder = ctx.ac.builder;
5700
5701 create_function(&ctx);
5702 preload_ring_buffers(&ctx);
5703
5704 LLVMValueRef voffset =
5705 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5706 LLVMConstInt(ctx.i32, 4, 0), "");
5707
5708 /* Fetch the vertex stream ID.*/
5709 LLVMValueRef stream_id;
5710
5711 if (gs_selector->so.num_outputs)
5712 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5713 else
5714 stream_id = ctx.i32_0;
5715
5716 /* Fill in output information. */
5717 for (i = 0; i < gsinfo->num_outputs; ++i) {
5718 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5719 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5720
5721 for (int chan = 0; chan < 4; chan++) {
5722 outputs[i].vertex_stream[chan] =
5723 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5724 }
5725 }
5726
5727 LLVMBasicBlockRef end_bb;
5728 LLVMValueRef switch_inst;
5729
5730 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5731 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5732
5733 for (int stream = 0; stream < 4; stream++) {
5734 LLVMBasicBlockRef bb;
5735 unsigned offset;
5736
5737 if (!gsinfo->num_stream_output_components[stream])
5738 continue;
5739
5740 if (stream > 0 && !gs_selector->so.num_outputs)
5741 continue;
5742
5743 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5744 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5745 LLVMPositionBuilderAtEnd(builder, bb);
5746
5747 /* Fetch vertex data from GSVS ring */
5748 offset = 0;
5749 for (i = 0; i < gsinfo->num_outputs; ++i) {
5750 for (unsigned chan = 0; chan < 4; chan++) {
5751 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5752 outputs[i].vertex_stream[chan] != stream) {
5753 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5754 continue;
5755 }
5756
5757 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5758 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5759 offset++;
5760
5761 outputs[i].values[chan] =
5762 ac_build_buffer_load(&ctx.ac,
5763 ctx.gsvs_ring[0], 1,
5764 ctx.i32_0, voffset,
5765 soffset, 0, 1, 1,
5766 true, false);
5767 }
5768 }
5769
5770 /* Streamout and exports. */
5771 if (gs_selector->so.num_outputs) {
5772 si_llvm_emit_streamout(&ctx, outputs,
5773 gsinfo->num_outputs,
5774 stream);
5775 }
5776
5777 if (stream == 0)
5778 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5779
5780 LLVMBuildBr(builder, end_bb);
5781 }
5782
5783 LLVMPositionBuilderAtEnd(builder, end_bb);
5784
5785 LLVMBuildRetVoid(ctx.ac.builder);
5786
5787 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5788 si_llvm_optimize_module(&ctx);
5789
5790 bool ok = false;
5791 if (si_compile_llvm(sscreen, &ctx.shader->binary,
5792 &ctx.shader->config, ctx.compiler,
5793 ctx.ac.module,
5794 debug, PIPE_SHADER_GEOMETRY,
5795 "GS Copy Shader", false) == 0) {
5796 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5797 fprintf(stderr, "GS Copy Shader:\n");
5798 si_shader_dump(sscreen, ctx.shader, debug,
5799 PIPE_SHADER_GEOMETRY, stderr, true);
5800
5801 if (!ctx.shader->config.scratch_bytes_per_wave)
5802 ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
5803 else
5804 ok = true;
5805 }
5806
5807 si_llvm_dispose(&ctx);
5808
5809 if (!ok) {
5810 FREE(shader);
5811 shader = NULL;
5812 } else {
5813 si_fix_resource_usage(sscreen, shader);
5814 }
5815 return shader;
5816 }
5817
5818 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5819 const struct si_vs_prolog_bits *prolog,
5820 const char *prefix, FILE *f)
5821 {
5822 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5823 prefix, prolog->instance_divisor_is_one);
5824 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5825 prefix, prolog->instance_divisor_is_fetched);
5826 fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n",
5827 prefix, prolog->unpack_instance_id_from_vertex_id);
5828 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5829 prefix, prolog->ls_vgpr_fix);
5830
5831 fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
5832 fprintf(f, " mono.vs.fix_fetch = {");
5833 for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
5834 union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
5835 if (i)
5836 fprintf(f, ", ");
5837 if (!fix.bits)
5838 fprintf(f, "0");
5839 else
5840 fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
5841 fix.u.num_channels_m1, fix.u.format);
5842 }
5843 fprintf(f, "}\n");
5844 }
5845
5846 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5847 FILE *f)
5848 {
5849 const struct si_shader_key *key = &shader->key;
5850
5851 fprintf(f, "SHADER KEY\n");
5852
5853 switch (processor) {
5854 case PIPE_SHADER_VERTEX:
5855 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5856 "part.vs.prolog", f);
5857 fprintf(f, " as_es = %u\n", key->as_es);
5858 fprintf(f, " as_ls = %u\n", key->as_ls);
5859 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5860 key->mono.u.vs_export_prim_id);
5861 fprintf(f, " opt.vs_as_prim_discard_cs = %u\n",
5862 key->opt.vs_as_prim_discard_cs);
5863 fprintf(f, " opt.cs_prim_type = %s\n",
5864 tgsi_primitive_names[key->opt.cs_prim_type]);
5865 fprintf(f, " opt.cs_indexed = %u\n",
5866 key->opt.cs_indexed);
5867 fprintf(f, " opt.cs_instancing = %u\n",
5868 key->opt.cs_instancing);
5869 fprintf(f, " opt.cs_primitive_restart = %u\n",
5870 key->opt.cs_primitive_restart);
5871 fprintf(f, " opt.cs_provoking_vertex_first = %u\n",
5872 key->opt.cs_provoking_vertex_first);
5873 fprintf(f, " opt.cs_need_correct_orientation = %u\n",
5874 key->opt.cs_need_correct_orientation);
5875 fprintf(f, " opt.cs_cull_front = %u\n",
5876 key->opt.cs_cull_front);
5877 fprintf(f, " opt.cs_cull_back = %u\n",
5878 key->opt.cs_cull_back);
5879 fprintf(f, " opt.cs_cull_z = %u\n",
5880 key->opt.cs_cull_z);
5881 fprintf(f, " opt.cs_halfz_clip_space = %u\n",
5882 key->opt.cs_halfz_clip_space);
5883 break;
5884
5885 case PIPE_SHADER_TESS_CTRL:
5886 if (shader->selector->screen->info.chip_class >= GFX9) {
5887 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5888 "part.tcs.ls_prolog", f);
5889 }
5890 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5891 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5892 break;
5893
5894 case PIPE_SHADER_TESS_EVAL:
5895 fprintf(f, " as_es = %u\n", key->as_es);
5896 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5897 key->mono.u.vs_export_prim_id);
5898 break;
5899
5900 case PIPE_SHADER_GEOMETRY:
5901 if (shader->is_gs_copy_shader)
5902 break;
5903
5904 if (shader->selector->screen->info.chip_class >= GFX9 &&
5905 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5906 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5907 "part.gs.vs_prolog", f);
5908 }
5909 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5910 break;
5911
5912 case PIPE_SHADER_COMPUTE:
5913 break;
5914
5915 case PIPE_SHADER_FRAGMENT:
5916 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5917 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5918 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5919 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5920 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5921 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5922 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5923 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5924 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5925 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5926 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5927 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5928 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5929 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5930 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5931 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5932 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5933 break;
5934
5935 default:
5936 assert(0);
5937 }
5938
5939 if ((processor == PIPE_SHADER_GEOMETRY ||
5940 processor == PIPE_SHADER_TESS_EVAL ||
5941 processor == PIPE_SHADER_VERTEX) &&
5942 !key->as_es && !key->as_ls) {
5943 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5944 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5945 }
5946 }
5947
5948 static void si_init_shader_ctx(struct si_shader_context *ctx,
5949 struct si_screen *sscreen,
5950 struct ac_llvm_compiler *compiler)
5951 {
5952 struct lp_build_tgsi_context *bld_base;
5953
5954 si_llvm_context_init(ctx, sscreen, compiler);
5955
5956 bld_base = &ctx->bld_base;
5957 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5958
5959 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5960 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5961 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5962
5963 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5964
5965 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5966
5967 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5968 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5969 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5970 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5971
5972 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5973 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5974 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5975 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5976 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5977 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5978 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5979 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5980
5981 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5982 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5983 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5984 }
5985
5986 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
5987 {
5988 struct si_shader *shader = ctx->shader;
5989 struct tgsi_shader_info *info = &shader->selector->info;
5990
5991 if ((ctx->type != PIPE_SHADER_VERTEX &&
5992 ctx->type != PIPE_SHADER_TESS_EVAL) ||
5993 shader->key.as_ls ||
5994 shader->key.as_es)
5995 return;
5996
5997 ac_optimize_vs_outputs(&ctx->ac,
5998 ctx->main_fn,
5999 shader->info.vs_output_param_offset,
6000 info->num_outputs,
6001 &shader->info.nr_param_exports);
6002 }
6003
6004 static void si_init_exec_from_input(struct si_shader_context *ctx,
6005 unsigned param, unsigned bitoffset)
6006 {
6007 LLVMValueRef args[] = {
6008 LLVMGetParam(ctx->main_fn, param),
6009 LLVMConstInt(ctx->i32, bitoffset, 0),
6010 };
6011 ac_build_intrinsic(&ctx->ac,
6012 "llvm.amdgcn.init.exec.from.input",
6013 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6014 }
6015
6016 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6017 const struct si_vs_prolog_bits *key)
6018 {
6019 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6020 * VS prolog. */
6021 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6022 }
6023
6024 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6025 {
6026 struct si_shader *shader = ctx->shader;
6027 struct si_shader_selector *sel = shader->selector;
6028 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6029
6030 // TODO clean all this up!
6031 switch (ctx->type) {
6032 case PIPE_SHADER_VERTEX:
6033 ctx->load_input = declare_input_vs;
6034 if (shader->key.as_ls)
6035 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6036 else if (shader->key.as_es)
6037 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6038 else if (shader->key.opt.vs_as_prim_discard_cs)
6039 ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
6040 else if (shader->key.as_ngg)
6041 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6042 else
6043 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6044 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6045 ctx->abi.load_base_vertex = get_base_vertex;
6046 break;
6047 case PIPE_SHADER_TESS_CTRL:
6048 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6049 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6050 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6051 bld_base->emit_store = store_output_tcs;
6052 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6053 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6054 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6055 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6056 break;
6057 case PIPE_SHADER_TESS_EVAL:
6058 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6059 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6060 ctx->abi.load_tess_coord = si_load_tess_coord;
6061 ctx->abi.load_tess_level = si_load_tess_level;
6062 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6063 if (shader->key.as_es)
6064 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6065 else {
6066 if (shader->key.as_ngg)
6067 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6068 else
6069 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6070 }
6071 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6072 break;
6073 case PIPE_SHADER_GEOMETRY:
6074 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6075 ctx->abi.load_inputs = si_nir_load_input_gs;
6076 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6077 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6078 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6079 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6080 break;
6081 case PIPE_SHADER_FRAGMENT:
6082 ctx->load_input = declare_input_fs;
6083 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6084 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6085 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6086 ctx->abi.load_sample_position = load_sample_position;
6087 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6088 ctx->abi.emit_kill = si_llvm_emit_kill;
6089 break;
6090 case PIPE_SHADER_COMPUTE:
6091 ctx->abi.load_local_group_size = get_block_size;
6092 break;
6093 default:
6094 assert(!"Unsupported shader type");
6095 return false;
6096 }
6097
6098 ctx->abi.load_ubo = load_ubo;
6099 ctx->abi.load_ssbo = load_ssbo;
6100
6101 create_function(ctx);
6102 preload_ring_buffers(ctx);
6103
6104 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6105 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6106 for (unsigned i = 0; i < 6; i++) {
6107 ctx->invoc0_tess_factors[i] =
6108 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6109 }
6110 }
6111
6112 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6113 for (unsigned i = 0; i < 4; i++) {
6114 ctx->gs_next_vertex[i] =
6115 ac_build_alloca(&ctx->ac, ctx->i32, "");
6116 }
6117 if (shader->key.as_ngg) {
6118 for (unsigned i = 0; i < 4; ++i) {
6119 ctx->gs_curprim_verts[i] =
6120 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6121 ctx->gs_generated_prims[i] =
6122 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6123 }
6124
6125 unsigned scratch_size = 8;
6126 if (sel->so.num_outputs)
6127 scratch_size = 44;
6128
6129 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
6130 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6131 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6132 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
6133 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6134
6135 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6136 LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
6137 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
6138 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
6139 }
6140 }
6141
6142 if (shader->key.as_ngg && ctx->type != PIPE_SHADER_GEOMETRY) {
6143 /* Unconditionally declare scratch space base for streamout and
6144 * vertex compaction. Whether space is actually allocated is
6145 * determined during linking / PM4 creation.
6146 *
6147 * Add an extra dword per vertex to ensure an odd stride, which
6148 * avoids bank conflicts for SoA accesses.
6149 */
6150 declare_esgs_ring(ctx);
6151
6152 /* This is really only needed when streamout and / or vertex
6153 * compaction is enabled.
6154 */
6155 LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
6156 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6157 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6158 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
6159 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6160 }
6161
6162 /* For GFX9 merged shaders:
6163 * - Set EXEC for the first shader. If the prolog is present, set
6164 * EXEC there instead.
6165 * - Add a barrier before the second shader.
6166 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6167 * an if-statement. This is required for correctness in geometry
6168 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6169 * GS_CUT messages.
6170 *
6171 * For monolithic merged shaders, the first shader is wrapped in an
6172 * if-block together with its prolog in si_build_wrapper_function.
6173 *
6174 * NGG vertex and tess eval shaders running as the last
6175 * vertex/geometry stage handle execution explicitly using
6176 * if-statements.
6177 */
6178 if (ctx->screen->info.chip_class >= GFX9) {
6179 if (!shader->is_monolithic &&
6180 sel->info.num_instructions > 1 && /* not empty shader */
6181 (shader->key.as_es || shader->key.as_ls) &&
6182 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6183 (ctx->type == PIPE_SHADER_VERTEX &&
6184 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6185 si_init_exec_from_input(ctx,
6186 ctx->param_merged_wave_info, 0);
6187 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6188 ctx->type == PIPE_SHADER_GEOMETRY ||
6189 shader->key.as_ngg) {
6190 LLVMValueRef num_threads;
6191 bool nested_barrier;
6192
6193 if (!shader->is_monolithic ||
6194 (ctx->type == PIPE_SHADER_TESS_EVAL &&
6195 shader->key.as_ngg))
6196 ac_init_exec_full_mask(&ctx->ac);
6197
6198 if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6199 ctx->type == PIPE_SHADER_GEOMETRY) {
6200 if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
6201 gfx10_ngg_gs_emit_prologue(ctx);
6202 nested_barrier = false;
6203 } else {
6204 nested_barrier = true;
6205 }
6206
6207 /* Number of patches / primitives */
6208 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6209 } else {
6210 /* Number of vertices */
6211 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
6212 nested_barrier = false;
6213 }
6214
6215 LLVMValueRef ena =
6216 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6217 ac_get_thread_id(&ctx->ac), num_threads, "");
6218 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6219
6220 if (nested_barrier) {
6221 /* Execute a barrier before the second shader in
6222 * a merged shader.
6223 *
6224 * Execute the barrier inside the conditional block,
6225 * so that empty waves can jump directly to s_endpgm,
6226 * which will also signal the barrier.
6227 *
6228 * This is possible in gfx9, because an empty wave
6229 * for the second shader does not participate in
6230 * the epilogue. With NGG, empty waves may still
6231 * be required to export data (e.g. GS output vertices),
6232 * so we cannot let them exit early.
6233 *
6234 * If the shader is TCS and the TCS epilog is present
6235 * and contains a barrier, it will wait there and then
6236 * reach s_endpgm.
6237 */
6238 si_llvm_emit_barrier(NULL, bld_base, NULL);
6239 }
6240 }
6241 }
6242
6243 if (sel->force_correct_derivs_after_kill) {
6244 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6245 /* true = don't kill. */
6246 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6247 ctx->postponed_kill);
6248 }
6249
6250 if (sel->tokens) {
6251 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6252 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6253 return false;
6254 }
6255 } else {
6256 if (!si_nir_build_llvm(ctx, sel->nir)) {
6257 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6258 return false;
6259 }
6260 }
6261
6262 si_llvm_build_ret(ctx, ctx->return_value);
6263 return true;
6264 }
6265
6266 /**
6267 * Compute the VS prolog key, which contains all the information needed to
6268 * build the VS prolog function, and set shader->info bits where needed.
6269 *
6270 * \param info Shader info of the vertex shader.
6271 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6272 * \param prolog_key Key of the VS prolog
6273 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6274 * \param key Output shader part key.
6275 */
6276 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6277 unsigned num_input_sgprs,
6278 const struct si_vs_prolog_bits *prolog_key,
6279 struct si_shader *shader_out,
6280 union si_shader_part_key *key)
6281 {
6282 memset(key, 0, sizeof(*key));
6283 key->vs_prolog.states = *prolog_key;
6284 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6285 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6286 key->vs_prolog.as_ls = shader_out->key.as_ls;
6287 key->vs_prolog.as_es = shader_out->key.as_es;
6288 key->vs_prolog.as_ngg = shader_out->key.as_ngg;
6289
6290 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6291 key->vs_prolog.as_ls = 1;
6292 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6293 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6294 key->vs_prolog.as_es = 1;
6295 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6296 } else if (shader_out->key.as_ngg) {
6297 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6298 }
6299
6300 /* Enable loading the InstanceID VGPR. */
6301 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6302
6303 if ((key->vs_prolog.states.instance_divisor_is_one |
6304 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6305 shader_out->info.uses_instanceid = true;
6306 }
6307
6308 /**
6309 * Compute the PS prolog key, which contains all the information needed to
6310 * build the PS prolog function, and set related bits in shader->config.
6311 */
6312 static void si_get_ps_prolog_key(struct si_shader *shader,
6313 union si_shader_part_key *key,
6314 bool separate_prolog)
6315 {
6316 struct tgsi_shader_info *info = &shader->selector->info;
6317
6318 memset(key, 0, sizeof(*key));
6319 key->ps_prolog.states = shader->key.part.ps.prolog;
6320 key->ps_prolog.colors_read = info->colors_read;
6321 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6322 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6323 key->ps_prolog.wqm = info->uses_derivatives &&
6324 (key->ps_prolog.colors_read ||
6325 key->ps_prolog.states.force_persp_sample_interp ||
6326 key->ps_prolog.states.force_linear_sample_interp ||
6327 key->ps_prolog.states.force_persp_center_interp ||
6328 key->ps_prolog.states.force_linear_center_interp ||
6329 key->ps_prolog.states.bc_optimize_for_persp ||
6330 key->ps_prolog.states.bc_optimize_for_linear);
6331 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6332
6333 if (info->colors_read) {
6334 unsigned *color = shader->selector->color_attr_index;
6335
6336 if (shader->key.part.ps.prolog.color_two_side) {
6337 /* BCOLORs are stored after the last input. */
6338 key->ps_prolog.num_interp_inputs = info->num_inputs;
6339 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6340 if (separate_prolog)
6341 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6342 }
6343
6344 for (unsigned i = 0; i < 2; i++) {
6345 unsigned interp = info->input_interpolate[color[i]];
6346 unsigned location = info->input_interpolate_loc[color[i]];
6347
6348 if (!(info->colors_read & (0xf << i*4)))
6349 continue;
6350
6351 key->ps_prolog.color_attr_index[i] = color[i];
6352
6353 if (shader->key.part.ps.prolog.flatshade_colors &&
6354 interp == TGSI_INTERPOLATE_COLOR)
6355 interp = TGSI_INTERPOLATE_CONSTANT;
6356
6357 switch (interp) {
6358 case TGSI_INTERPOLATE_CONSTANT:
6359 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6360 break;
6361 case TGSI_INTERPOLATE_PERSPECTIVE:
6362 case TGSI_INTERPOLATE_COLOR:
6363 /* Force the interpolation location for colors here. */
6364 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6365 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6366 if (shader->key.part.ps.prolog.force_persp_center_interp)
6367 location = TGSI_INTERPOLATE_LOC_CENTER;
6368
6369 switch (location) {
6370 case TGSI_INTERPOLATE_LOC_SAMPLE:
6371 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6372 if (separate_prolog) {
6373 shader->config.spi_ps_input_ena |=
6374 S_0286CC_PERSP_SAMPLE_ENA(1);
6375 }
6376 break;
6377 case TGSI_INTERPOLATE_LOC_CENTER:
6378 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6379 if (separate_prolog) {
6380 shader->config.spi_ps_input_ena |=
6381 S_0286CC_PERSP_CENTER_ENA(1);
6382 }
6383 break;
6384 case TGSI_INTERPOLATE_LOC_CENTROID:
6385 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6386 if (separate_prolog) {
6387 shader->config.spi_ps_input_ena |=
6388 S_0286CC_PERSP_CENTROID_ENA(1);
6389 }
6390 break;
6391 default:
6392 assert(0);
6393 }
6394 break;
6395 case TGSI_INTERPOLATE_LINEAR:
6396 /* Force the interpolation location for colors here. */
6397 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6398 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6399 if (shader->key.part.ps.prolog.force_linear_center_interp)
6400 location = TGSI_INTERPOLATE_LOC_CENTER;
6401
6402 /* The VGPR assignment for non-monolithic shaders
6403 * works because InitialPSInputAddr is set on the
6404 * main shader and PERSP_PULL_MODEL is never used.
6405 */
6406 switch (location) {
6407 case TGSI_INTERPOLATE_LOC_SAMPLE:
6408 key->ps_prolog.color_interp_vgpr_index[i] =
6409 separate_prolog ? 6 : 9;
6410 if (separate_prolog) {
6411 shader->config.spi_ps_input_ena |=
6412 S_0286CC_LINEAR_SAMPLE_ENA(1);
6413 }
6414 break;
6415 case TGSI_INTERPOLATE_LOC_CENTER:
6416 key->ps_prolog.color_interp_vgpr_index[i] =
6417 separate_prolog ? 8 : 11;
6418 if (separate_prolog) {
6419 shader->config.spi_ps_input_ena |=
6420 S_0286CC_LINEAR_CENTER_ENA(1);
6421 }
6422 break;
6423 case TGSI_INTERPOLATE_LOC_CENTROID:
6424 key->ps_prolog.color_interp_vgpr_index[i] =
6425 separate_prolog ? 10 : 13;
6426 if (separate_prolog) {
6427 shader->config.spi_ps_input_ena |=
6428 S_0286CC_LINEAR_CENTROID_ENA(1);
6429 }
6430 break;
6431 default:
6432 assert(0);
6433 }
6434 break;
6435 default:
6436 assert(0);
6437 }
6438 }
6439 }
6440 }
6441
6442 /**
6443 * Check whether a PS prolog is required based on the key.
6444 */
6445 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6446 {
6447 return key->ps_prolog.colors_read ||
6448 key->ps_prolog.states.force_persp_sample_interp ||
6449 key->ps_prolog.states.force_linear_sample_interp ||
6450 key->ps_prolog.states.force_persp_center_interp ||
6451 key->ps_prolog.states.force_linear_center_interp ||
6452 key->ps_prolog.states.bc_optimize_for_persp ||
6453 key->ps_prolog.states.bc_optimize_for_linear ||
6454 key->ps_prolog.states.poly_stipple ||
6455 key->ps_prolog.states.samplemask_log_ps_iter;
6456 }
6457
6458 /**
6459 * Compute the PS epilog key, which contains all the information needed to
6460 * build the PS epilog function.
6461 */
6462 static void si_get_ps_epilog_key(struct si_shader *shader,
6463 union si_shader_part_key *key)
6464 {
6465 struct tgsi_shader_info *info = &shader->selector->info;
6466 memset(key, 0, sizeof(*key));
6467 key->ps_epilog.colors_written = info->colors_written;
6468 key->ps_epilog.writes_z = info->writes_z;
6469 key->ps_epilog.writes_stencil = info->writes_stencil;
6470 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6471 key->ps_epilog.states = shader->key.part.ps.epilog;
6472 }
6473
6474 /**
6475 * Build the GS prolog function. Rotate the input vertices for triangle strips
6476 * with adjacency.
6477 */
6478 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6479 union si_shader_part_key *key)
6480 {
6481 unsigned num_sgprs, num_vgprs;
6482 struct si_function_info fninfo;
6483 LLVMBuilderRef builder = ctx->ac.builder;
6484 LLVMTypeRef returns[48];
6485 LLVMValueRef func, ret;
6486
6487 si_init_function_info(&fninfo);
6488
6489 if (ctx->screen->info.chip_class >= GFX9) {
6490 if (key->gs_prolog.states.gfx9_prev_is_vs)
6491 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6492 else
6493 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6494 num_vgprs = 5; /* ES inputs are not needed by GS */
6495 } else {
6496 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6497 num_vgprs = 8;
6498 }
6499
6500 for (unsigned i = 0; i < num_sgprs; ++i) {
6501 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6502 returns[i] = ctx->i32;
6503 }
6504
6505 for (unsigned i = 0; i < num_vgprs; ++i) {
6506 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6507 returns[num_sgprs + i] = ctx->f32;
6508 }
6509
6510 /* Create the function. */
6511 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6512 &fninfo, 0);
6513 func = ctx->main_fn;
6514
6515 /* Set the full EXEC mask for the prolog, because we are only fiddling
6516 * with registers here. The main shader part will set the correct EXEC
6517 * mask.
6518 */
6519 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6520 ac_init_exec_full_mask(&ctx->ac);
6521
6522 /* Copy inputs to outputs. This should be no-op, as the registers match,
6523 * but it will prevent the compiler from overwriting them unintentionally.
6524 */
6525 ret = ctx->return_value;
6526 for (unsigned i = 0; i < num_sgprs; i++) {
6527 LLVMValueRef p = LLVMGetParam(func, i);
6528 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6529 }
6530 for (unsigned i = 0; i < num_vgprs; i++) {
6531 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6532 p = ac_to_float(&ctx->ac, p);
6533 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6534 }
6535
6536 if (key->gs_prolog.states.tri_strip_adj_fix) {
6537 /* Remap the input vertices for every other primitive. */
6538 const unsigned gfx6_vtx_params[6] = {
6539 num_sgprs,
6540 num_sgprs + 1,
6541 num_sgprs + 3,
6542 num_sgprs + 4,
6543 num_sgprs + 5,
6544 num_sgprs + 6
6545 };
6546 const unsigned gfx9_vtx_params[3] = {
6547 num_sgprs,
6548 num_sgprs + 1,
6549 num_sgprs + 4,
6550 };
6551 LLVMValueRef vtx_in[6], vtx_out[6];
6552 LLVMValueRef prim_id, rotate;
6553
6554 if (ctx->screen->info.chip_class >= GFX9) {
6555 for (unsigned i = 0; i < 3; i++) {
6556 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6557 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6558 }
6559 } else {
6560 for (unsigned i = 0; i < 6; i++)
6561 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6562 }
6563
6564 prim_id = LLVMGetParam(func, num_sgprs + 2);
6565 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6566
6567 for (unsigned i = 0; i < 6; ++i) {
6568 LLVMValueRef base, rotated;
6569 base = vtx_in[i];
6570 rotated = vtx_in[(i + 4) % 6];
6571 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6572 }
6573
6574 if (ctx->screen->info.chip_class >= GFX9) {
6575 for (unsigned i = 0; i < 3; i++) {
6576 LLVMValueRef hi, out;
6577
6578 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6579 LLVMConstInt(ctx->i32, 16, 0), "");
6580 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6581 out = ac_to_float(&ctx->ac, out);
6582 ret = LLVMBuildInsertValue(builder, ret, out,
6583 gfx9_vtx_params[i], "");
6584 }
6585 } else {
6586 for (unsigned i = 0; i < 6; i++) {
6587 LLVMValueRef out;
6588
6589 out = ac_to_float(&ctx->ac, vtx_out[i]);
6590 ret = LLVMBuildInsertValue(builder, ret, out,
6591 gfx6_vtx_params[i], "");
6592 }
6593 }
6594 }
6595
6596 LLVMBuildRet(builder, ret);
6597 }
6598
6599 /**
6600 * Given a list of shader part functions, build a wrapper function that
6601 * runs them in sequence to form a monolithic shader.
6602 */
6603 static void si_build_wrapper_function(struct si_shader_context *ctx,
6604 LLVMValueRef *parts,
6605 unsigned num_parts,
6606 unsigned main_part,
6607 unsigned next_shader_first_part)
6608 {
6609 LLVMBuilderRef builder = ctx->ac.builder;
6610 /* PS epilog has one arg per color component; gfx9 merged shader
6611 * prologs need to forward 32 user SGPRs.
6612 */
6613 struct si_function_info fninfo;
6614 LLVMValueRef initial[64], out[64];
6615 LLVMTypeRef function_type;
6616 unsigned num_first_params;
6617 unsigned num_out, initial_num_out;
6618 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6619 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6620 unsigned num_sgprs, num_vgprs;
6621 unsigned gprs;
6622 struct lp_build_if_state if_state;
6623
6624 si_init_function_info(&fninfo);
6625
6626 for (unsigned i = 0; i < num_parts; ++i) {
6627 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6628 AC_FUNC_ATTR_ALWAYSINLINE);
6629 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6630 }
6631
6632 /* The parameters of the wrapper function correspond to those of the
6633 * first part in terms of SGPRs and VGPRs, but we use the types of the
6634 * main part to get the right types. This is relevant for the
6635 * dereferenceable attribute on descriptor table pointers.
6636 */
6637 num_sgprs = 0;
6638 num_vgprs = 0;
6639
6640 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6641 num_first_params = LLVMCountParamTypes(function_type);
6642
6643 for (unsigned i = 0; i < num_first_params; ++i) {
6644 LLVMValueRef param = LLVMGetParam(parts[0], i);
6645
6646 if (ac_is_sgpr_param(param)) {
6647 assert(num_vgprs == 0);
6648 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6649 } else {
6650 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6651 }
6652 }
6653
6654 gprs = 0;
6655 while (gprs < num_sgprs + num_vgprs) {
6656 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6657 LLVMTypeRef type = LLVMTypeOf(param);
6658 unsigned size = ac_get_type_size(type) / 4;
6659
6660 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6661
6662 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6663 assert(gprs + size <= num_sgprs + num_vgprs &&
6664 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6665
6666 gprs += size;
6667 }
6668
6669 /* Prepare the return type. */
6670 unsigned num_returns = 0;
6671 LLVMTypeRef returns[32], last_func_type, return_type;
6672
6673 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
6674 return_type = LLVMGetReturnType(last_func_type);
6675
6676 switch (LLVMGetTypeKind(return_type)) {
6677 case LLVMStructTypeKind:
6678 num_returns = LLVMCountStructElementTypes(return_type);
6679 assert(num_returns <= ARRAY_SIZE(returns));
6680 LLVMGetStructElementTypes(return_type, returns);
6681 break;
6682 case LLVMVoidTypeKind:
6683 break;
6684 default:
6685 unreachable("unexpected type");
6686 }
6687
6688 si_create_function(ctx, "wrapper", returns, num_returns, &fninfo,
6689 si_get_max_workgroup_size(ctx->shader));
6690
6691 if (is_merged_shader(ctx))
6692 ac_init_exec_full_mask(&ctx->ac);
6693
6694 /* Record the arguments of the function as if they were an output of
6695 * a previous part.
6696 */
6697 num_out = 0;
6698 num_out_sgpr = 0;
6699
6700 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6701 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6702 LLVMTypeRef param_type = LLVMTypeOf(param);
6703 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6704 unsigned size = ac_get_type_size(param_type) / 4;
6705
6706 if (size == 1) {
6707 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6708 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6709 param_type = ctx->i32;
6710 }
6711
6712 if (param_type != out_type)
6713 param = LLVMBuildBitCast(builder, param, out_type, "");
6714 out[num_out++] = param;
6715 } else {
6716 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6717
6718 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6719 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6720 param_type = ctx->i64;
6721 }
6722
6723 if (param_type != vector_type)
6724 param = LLVMBuildBitCast(builder, param, vector_type, "");
6725
6726 for (unsigned j = 0; j < size; ++j)
6727 out[num_out++] = LLVMBuildExtractElement(
6728 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6729 }
6730
6731 if (i < fninfo.num_sgpr_params)
6732 num_out_sgpr = num_out;
6733 }
6734
6735 memcpy(initial, out, sizeof(out));
6736 initial_num_out = num_out;
6737 initial_num_out_sgpr = num_out_sgpr;
6738
6739 /* Now chain the parts. */
6740 LLVMValueRef ret;
6741 for (unsigned part = 0; part < num_parts; ++part) {
6742 LLVMValueRef in[48];
6743 LLVMTypeRef ret_type;
6744 unsigned out_idx = 0;
6745 unsigned num_params = LLVMCountParams(parts[part]);
6746
6747 /* Merged shaders are executed conditionally depending
6748 * on the number of enabled threads passed in the input SGPRs. */
6749 if (is_multi_part_shader(ctx) && part == 0) {
6750 LLVMValueRef ena, count = initial[3];
6751
6752 count = LLVMBuildAnd(builder, count,
6753 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6754 ena = LLVMBuildICmp(builder, LLVMIntULT,
6755 ac_get_thread_id(&ctx->ac), count, "");
6756 lp_build_if(&if_state, &ctx->gallivm, ena);
6757 }
6758
6759 /* Derive arguments for the next part from outputs of the
6760 * previous one.
6761 */
6762 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6763 LLVMValueRef param;
6764 LLVMTypeRef param_type;
6765 bool is_sgpr;
6766 unsigned param_size;
6767 LLVMValueRef arg = NULL;
6768
6769 param = LLVMGetParam(parts[part], param_idx);
6770 param_type = LLVMTypeOf(param);
6771 param_size = ac_get_type_size(param_type) / 4;
6772 is_sgpr = ac_is_sgpr_param(param);
6773
6774 if (is_sgpr) {
6775 ac_add_function_attr(ctx->ac.context, parts[part],
6776 param_idx + 1, AC_FUNC_ATTR_INREG);
6777 } else if (out_idx < num_out_sgpr) {
6778 /* Skip returned SGPRs the current part doesn't
6779 * declare on the input. */
6780 out_idx = num_out_sgpr;
6781 }
6782
6783 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6784
6785 if (param_size == 1)
6786 arg = out[out_idx];
6787 else
6788 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6789
6790 if (LLVMTypeOf(arg) != param_type) {
6791 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6792 if (LLVMGetPointerAddressSpace(param_type) ==
6793 AC_ADDR_SPACE_CONST_32BIT) {
6794 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6795 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6796 } else {
6797 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6798 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6799 }
6800 } else {
6801 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6802 }
6803 }
6804
6805 in[param_idx] = arg;
6806 out_idx += param_size;
6807 }
6808
6809 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
6810
6811 if (is_multi_part_shader(ctx) &&
6812 part + 1 == next_shader_first_part) {
6813 lp_build_endif(&if_state);
6814
6815 /* The second half of the merged shader should use
6816 * the inputs from the toplevel (wrapper) function,
6817 * not the return value from the last call.
6818 *
6819 * That's because the last call was executed condi-
6820 * tionally, so we can't consume it in the main
6821 * block.
6822 */
6823 memcpy(out, initial, sizeof(initial));
6824 num_out = initial_num_out;
6825 num_out_sgpr = initial_num_out_sgpr;
6826 continue;
6827 }
6828
6829 /* Extract the returned GPRs. */
6830 ret_type = LLVMTypeOf(ret);
6831 num_out = 0;
6832 num_out_sgpr = 0;
6833
6834 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6835 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6836
6837 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6838
6839 for (unsigned i = 0; i < ret_size; ++i) {
6840 LLVMValueRef val =
6841 LLVMBuildExtractValue(builder, ret, i, "");
6842
6843 assert(num_out < ARRAY_SIZE(out));
6844 out[num_out++] = val;
6845
6846 if (LLVMTypeOf(val) == ctx->i32) {
6847 assert(num_out_sgpr + 1 == num_out);
6848 num_out_sgpr = num_out;
6849 }
6850 }
6851 }
6852 }
6853
6854 /* Return the value from the last part. */
6855 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6856 LLVMBuildRetVoid(builder);
6857 else
6858 LLVMBuildRet(builder, ret);
6859 }
6860
6861 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6862 struct si_shader_selector *sel)
6863 {
6864 if (!compiler->low_opt_passes)
6865 return false;
6866
6867 /* Assume a slow CPU. */
6868 assert(!sel->screen->info.has_dedicated_vram &&
6869 sel->screen->info.chip_class <= GFX8);
6870
6871 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6872 * buffer stores. */
6873 return sel->type == PIPE_SHADER_COMPUTE &&
6874 sel->info.num_memory_instructions > 1000;
6875 }
6876
6877 int si_compile_tgsi_shader(struct si_screen *sscreen,
6878 struct ac_llvm_compiler *compiler,
6879 struct si_shader *shader,
6880 struct pipe_debug_callback *debug)
6881 {
6882 struct si_shader_selector *sel = shader->selector;
6883 struct si_shader_context ctx;
6884 int r = -1;
6885
6886 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6887 * conversion fails. */
6888 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6889 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6890 if (sel->tokens)
6891 tgsi_dump(sel->tokens, 0);
6892 else
6893 nir_print_shader(sel->nir, stderr);
6894 si_dump_streamout(&sel->so);
6895 }
6896
6897 si_init_shader_ctx(&ctx, sscreen, compiler);
6898 si_llvm_context_set_tgsi(&ctx, shader);
6899
6900 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6901 sizeof(shader->info.vs_output_param_offset));
6902
6903 shader->info.uses_instanceid = sel->info.uses_instanceid;
6904
6905 if (!si_compile_tgsi_main(&ctx)) {
6906 si_llvm_dispose(&ctx);
6907 return -1;
6908 }
6909
6910 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6911 LLVMValueRef parts[2];
6912 bool need_prolog = sel->vs_needs_prolog;
6913
6914 parts[1] = ctx.main_fn;
6915
6916 if (need_prolog) {
6917 union si_shader_part_key prolog_key;
6918 si_get_vs_prolog_key(&sel->info,
6919 shader->info.num_input_sgprs,
6920 &shader->key.part.vs.prolog,
6921 shader, &prolog_key);
6922 si_build_vs_prolog_function(&ctx, &prolog_key);
6923 parts[0] = ctx.main_fn;
6924 }
6925
6926 si_build_wrapper_function(&ctx, parts + !need_prolog,
6927 1 + need_prolog, need_prolog, 0);
6928
6929 if (ctx.shader->key.opt.vs_as_prim_discard_cs)
6930 si_build_prim_discard_compute_shader(&ctx);
6931 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6932 if (sscreen->info.chip_class >= GFX9) {
6933 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6934 LLVMValueRef parts[4];
6935 bool vs_needs_prolog =
6936 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6937
6938 /* TCS main part */
6939 parts[2] = ctx.main_fn;
6940
6941 /* TCS epilog */
6942 union si_shader_part_key tcs_epilog_key;
6943 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6944 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6945 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6946 parts[3] = ctx.main_fn;
6947
6948 /* VS as LS main part */
6949 struct si_shader shader_ls = {};
6950 shader_ls.selector = ls;
6951 shader_ls.key.as_ls = 1;
6952 shader_ls.key.mono = shader->key.mono;
6953 shader_ls.key.opt = shader->key.opt;
6954 shader_ls.is_monolithic = true;
6955 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6956
6957 if (!si_compile_tgsi_main(&ctx)) {
6958 si_llvm_dispose(&ctx);
6959 return -1;
6960 }
6961 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6962 parts[1] = ctx.main_fn;
6963
6964 /* LS prolog */
6965 if (vs_needs_prolog) {
6966 union si_shader_part_key vs_prolog_key;
6967 si_get_vs_prolog_key(&ls->info,
6968 shader_ls.info.num_input_sgprs,
6969 &shader->key.part.tcs.ls_prolog,
6970 shader, &vs_prolog_key);
6971 vs_prolog_key.vs_prolog.is_monolithic = true;
6972 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6973 parts[0] = ctx.main_fn;
6974 }
6975
6976 /* Reset the shader context. */
6977 ctx.shader = shader;
6978 ctx.type = PIPE_SHADER_TESS_CTRL;
6979
6980 si_build_wrapper_function(&ctx,
6981 parts + !vs_needs_prolog,
6982 4 - !vs_needs_prolog, vs_needs_prolog,
6983 vs_needs_prolog ? 2 : 1);
6984 } else {
6985 LLVMValueRef parts[2];
6986 union si_shader_part_key epilog_key;
6987
6988 parts[0] = ctx.main_fn;
6989
6990 memset(&epilog_key, 0, sizeof(epilog_key));
6991 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6992 si_build_tcs_epilog_function(&ctx, &epilog_key);
6993 parts[1] = ctx.main_fn;
6994
6995 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6996 }
6997 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6998 if (ctx.screen->info.chip_class >= GFX9) {
6999 struct si_shader_selector *es = shader->key.part.gs.es;
7000 LLVMValueRef es_prolog = NULL;
7001 LLVMValueRef es_main = NULL;
7002 LLVMValueRef gs_prolog = NULL;
7003 LLVMValueRef gs_main = ctx.main_fn;
7004
7005 /* GS prolog */
7006 union si_shader_part_key gs_prolog_key;
7007 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
7008 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7009 gs_prolog_key.gs_prolog.is_monolithic = true;
7010 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
7011 gs_prolog = ctx.main_fn;
7012
7013 /* ES main part */
7014 struct si_shader shader_es = {};
7015 shader_es.selector = es;
7016 shader_es.key.as_es = 1;
7017 shader_es.key.mono = shader->key.mono;
7018 shader_es.key.opt = shader->key.opt;
7019 shader_es.is_monolithic = true;
7020 si_llvm_context_set_tgsi(&ctx, &shader_es);
7021
7022 if (!si_compile_tgsi_main(&ctx)) {
7023 si_llvm_dispose(&ctx);
7024 return -1;
7025 }
7026 shader->info.uses_instanceid |= es->info.uses_instanceid;
7027 es_main = ctx.main_fn;
7028
7029 /* ES prolog */
7030 if (es->vs_needs_prolog) {
7031 union si_shader_part_key vs_prolog_key;
7032 si_get_vs_prolog_key(&es->info,
7033 shader_es.info.num_input_sgprs,
7034 &shader->key.part.gs.vs_prolog,
7035 shader, &vs_prolog_key);
7036 vs_prolog_key.vs_prolog.is_monolithic = true;
7037 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7038 es_prolog = ctx.main_fn;
7039 }
7040
7041 /* Reset the shader context. */
7042 ctx.shader = shader;
7043 ctx.type = PIPE_SHADER_GEOMETRY;
7044
7045 /* Prepare the array of shader parts. */
7046 LLVMValueRef parts[4];
7047 unsigned num_parts = 0, main_part, next_first_part;
7048
7049 if (es_prolog)
7050 parts[num_parts++] = es_prolog;
7051
7052 parts[main_part = num_parts++] = es_main;
7053 parts[next_first_part = num_parts++] = gs_prolog;
7054 parts[num_parts++] = gs_main;
7055
7056 si_build_wrapper_function(&ctx, parts, num_parts,
7057 main_part, next_first_part);
7058 } else {
7059 LLVMValueRef parts[2];
7060 union si_shader_part_key prolog_key;
7061
7062 parts[1] = ctx.main_fn;
7063
7064 memset(&prolog_key, 0, sizeof(prolog_key));
7065 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7066 si_build_gs_prolog_function(&ctx, &prolog_key);
7067 parts[0] = ctx.main_fn;
7068
7069 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
7070 }
7071 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7072 LLVMValueRef parts[3];
7073 union si_shader_part_key prolog_key;
7074 union si_shader_part_key epilog_key;
7075 bool need_prolog;
7076
7077 si_get_ps_prolog_key(shader, &prolog_key, false);
7078 need_prolog = si_need_ps_prolog(&prolog_key);
7079
7080 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7081
7082 if (need_prolog) {
7083 si_build_ps_prolog_function(&ctx, &prolog_key);
7084 parts[0] = ctx.main_fn;
7085 }
7086
7087 si_get_ps_epilog_key(shader, &epilog_key);
7088 si_build_ps_epilog_function(&ctx, &epilog_key);
7089 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7090
7091 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7092 need_prolog ? 1 : 0, 0);
7093 }
7094
7095 si_llvm_optimize_module(&ctx);
7096
7097 /* Post-optimization transformations and analysis. */
7098 si_optimize_vs_outputs(&ctx);
7099
7100 if ((debug && debug->debug_message) ||
7101 si_can_dump_shader(sscreen, ctx.type)) {
7102 ctx.shader->info.private_mem_vgprs =
7103 ac_count_scratch_private_memory(ctx.main_fn);
7104 }
7105
7106 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7107 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7108 LLVMPointerTypeKind);
7109
7110 /* Compile to bytecode. */
7111 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7112 ctx.ac.module, debug, ctx.type,
7113 si_get_shader_name(shader, ctx.type),
7114 si_should_optimize_less(compiler, shader->selector));
7115 si_llvm_dispose(&ctx);
7116 if (r) {
7117 fprintf(stderr, "LLVM failed to compile shader\n");
7118 return r;
7119 }
7120
7121 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7122 * LLVM 3.9svn has this bug.
7123 */
7124 if (sel->type == PIPE_SHADER_COMPUTE) {
7125 unsigned wave_size = 64;
7126 unsigned max_vgprs = 256;
7127 unsigned max_sgprs = sscreen->info.chip_class >= GFX8 ? 800 : 512;
7128 unsigned max_sgprs_per_wave = 128;
7129 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7130 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7131 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7132
7133 max_vgprs = max_vgprs / min_waves_per_simd;
7134 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7135
7136 if (shader->config.num_sgprs > max_sgprs ||
7137 shader->config.num_vgprs > max_vgprs) {
7138 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7139 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7140 shader->config.num_sgprs, shader->config.num_vgprs,
7141 max_sgprs, max_vgprs);
7142
7143 /* Just terminate the process, because dependent
7144 * shaders can hang due to bad input data, but use
7145 * the env var to allow shader-db to work.
7146 */
7147 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7148 abort();
7149 }
7150 }
7151
7152 /* Add the scratch offset to input SGPRs. */
7153 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
7154 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7155
7156 /* Calculate the number of fragment input VGPRs. */
7157 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7158 shader->info.num_input_vgprs = 0;
7159 shader->info.face_vgpr_index = -1;
7160 shader->info.ancillary_vgpr_index = -1;
7161
7162 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7163 shader->info.num_input_vgprs += 2;
7164 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7165 shader->info.num_input_vgprs += 2;
7166 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7167 shader->info.num_input_vgprs += 2;
7168 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7169 shader->info.num_input_vgprs += 3;
7170 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7171 shader->info.num_input_vgprs += 2;
7172 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7173 shader->info.num_input_vgprs += 2;
7174 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7175 shader->info.num_input_vgprs += 2;
7176 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7177 shader->info.num_input_vgprs += 1;
7178 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7179 shader->info.num_input_vgprs += 1;
7180 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7181 shader->info.num_input_vgprs += 1;
7182 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7183 shader->info.num_input_vgprs += 1;
7184 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7185 shader->info.num_input_vgprs += 1;
7186 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7187 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7188 shader->info.num_input_vgprs += 1;
7189 }
7190 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7191 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7192 shader->info.num_input_vgprs += 1;
7193 }
7194 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7195 shader->info.num_input_vgprs += 1;
7196 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7197 shader->info.num_input_vgprs += 1;
7198 }
7199
7200 si_calculate_max_simd_waves(shader);
7201 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
7202 return 0;
7203 }
7204
7205 /**
7206 * Create, compile and return a shader part (prolog or epilog).
7207 *
7208 * \param sscreen screen
7209 * \param list list of shader parts of the same category
7210 * \param type shader type
7211 * \param key shader part key
7212 * \param prolog whether the part being requested is a prolog
7213 * \param tm LLVM target machine
7214 * \param debug debug callback
7215 * \param build the callback responsible for building the main function
7216 * \return non-NULL on success
7217 */
7218 static struct si_shader_part *
7219 si_get_shader_part(struct si_screen *sscreen,
7220 struct si_shader_part **list,
7221 enum pipe_shader_type type,
7222 bool prolog,
7223 union si_shader_part_key *key,
7224 struct ac_llvm_compiler *compiler,
7225 struct pipe_debug_callback *debug,
7226 void (*build)(struct si_shader_context *,
7227 union si_shader_part_key *),
7228 const char *name)
7229 {
7230 struct si_shader_part *result;
7231
7232 mtx_lock(&sscreen->shader_parts_mutex);
7233
7234 /* Find existing. */
7235 for (result = *list; result; result = result->next) {
7236 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7237 mtx_unlock(&sscreen->shader_parts_mutex);
7238 return result;
7239 }
7240 }
7241
7242 /* Compile a new one. */
7243 result = CALLOC_STRUCT(si_shader_part);
7244 result->key = *key;
7245
7246 struct si_shader shader = {};
7247 struct si_shader_context ctx;
7248
7249 si_init_shader_ctx(&ctx, sscreen, compiler);
7250 ctx.shader = &shader;
7251 ctx.type = type;
7252
7253 switch (type) {
7254 case PIPE_SHADER_VERTEX:
7255 shader.key.as_ls = key->vs_prolog.as_ls;
7256 shader.key.as_es = key->vs_prolog.as_es;
7257 shader.key.as_ngg = key->vs_prolog.as_ngg;
7258 break;
7259 case PIPE_SHADER_TESS_CTRL:
7260 assert(!prolog);
7261 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7262 break;
7263 case PIPE_SHADER_GEOMETRY:
7264 assert(prolog);
7265 break;
7266 case PIPE_SHADER_FRAGMENT:
7267 if (prolog)
7268 shader.key.part.ps.prolog = key->ps_prolog.states;
7269 else
7270 shader.key.part.ps.epilog = key->ps_epilog.states;
7271 break;
7272 default:
7273 unreachable("bad shader part");
7274 }
7275
7276 build(&ctx, key);
7277
7278 /* Compile. */
7279 si_llvm_optimize_module(&ctx);
7280
7281 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7282 ctx.ac.module, debug, ctx.type, name, false)) {
7283 FREE(result);
7284 result = NULL;
7285 goto out;
7286 }
7287
7288 result->next = *list;
7289 *list = result;
7290
7291 out:
7292 si_llvm_dispose(&ctx);
7293 mtx_unlock(&sscreen->shader_parts_mutex);
7294 return result;
7295 }
7296
7297 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7298 {
7299 LLVMValueRef ptr[2], list;
7300 bool merged_shader = is_merged_shader(ctx);
7301
7302 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7303 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7304 ac_array_in_const32_addr_space(ctx->v4i32), "");
7305 return list;
7306 }
7307
7308 /**
7309 * Build the vertex shader prolog function.
7310 *
7311 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7312 * All inputs are returned unmodified. The vertex load indices are
7313 * stored after them, which will be used by the API VS for fetching inputs.
7314 *
7315 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7316 * input_v0,
7317 * input_v1,
7318 * input_v2,
7319 * input_v3,
7320 * (VertexID + BaseVertex),
7321 * (InstanceID + StartInstance),
7322 * (InstanceID / 2 + StartInstance)
7323 */
7324 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7325 union si_shader_part_key *key)
7326 {
7327 struct si_function_info fninfo;
7328 LLVMTypeRef *returns;
7329 LLVMValueRef ret, func;
7330 int num_returns, i;
7331 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7332 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7333 LLVMValueRef input_vgprs[9];
7334 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7335 num_input_vgprs;
7336 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7337
7338 si_init_function_info(&fninfo);
7339
7340 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7341 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7342 sizeof(LLVMTypeRef));
7343 num_returns = 0;
7344
7345 /* Declare input and output SGPRs. */
7346 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7347 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7348 returns[num_returns++] = ctx->i32;
7349 }
7350
7351 /* Preloaded VGPRs (outputs must be floats) */
7352 for (i = 0; i < num_input_vgprs; i++) {
7353 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7354 returns[num_returns++] = ctx->f32;
7355 }
7356
7357 /* Vertex load indices. */
7358 for (i = 0; i <= key->vs_prolog.last_input; i++)
7359 returns[num_returns++] = ctx->f32;
7360
7361 /* Create the function. */
7362 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7363 func = ctx->main_fn;
7364
7365 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7366 if (!key->vs_prolog.is_monolithic)
7367 si_init_exec_from_input(ctx, 3, 0);
7368
7369 if (key->vs_prolog.as_ls &&
7370 ctx->screen->has_ls_vgpr_init_bug) {
7371 /* If there are no HS threads, SPI loads the LS VGPRs
7372 * starting at VGPR 0. Shift them back to where they
7373 * belong.
7374 */
7375 LLVMValueRef has_hs_threads =
7376 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7377 si_unpack_param(ctx, 3, 8, 8),
7378 ctx->i32_0, "");
7379
7380 for (i = 4; i > 0; --i) {
7381 input_vgprs[i + 1] =
7382 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7383 input_vgprs[i + 1],
7384 input_vgprs[i - 1], "");
7385 }
7386 }
7387 }
7388
7389 unsigned vertex_id_vgpr = first_vs_vgpr;
7390 unsigned instance_id_vgpr =
7391 ctx->screen->info.chip_class >= GFX10 ?
7392 first_vs_vgpr + 3 :
7393 first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
7394
7395 ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
7396 ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
7397
7398 /* InstanceID = VertexID >> 16;
7399 * VertexID = VertexID & 0xffff;
7400 */
7401 if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
7402 ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
7403 LLVMConstInt(ctx->i32, 16, 0), "");
7404 ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
7405 LLVMConstInt(ctx->i32, 0xffff, 0), "");
7406 }
7407
7408 /* Copy inputs to outputs. This should be no-op, as the registers match,
7409 * but it will prevent the compiler from overwriting them unintentionally.
7410 */
7411 ret = ctx->return_value;
7412 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7413 LLVMValueRef p = LLVMGetParam(func, i);
7414 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7415 }
7416 for (i = 0; i < num_input_vgprs; i++) {
7417 LLVMValueRef p = input_vgprs[i];
7418
7419 if (i == vertex_id_vgpr)
7420 p = ctx->abi.vertex_id;
7421 else if (i == instance_id_vgpr)
7422 p = ctx->abi.instance_id;
7423
7424 p = ac_to_float(&ctx->ac, p);
7425 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7426 key->vs_prolog.num_input_sgprs + i, "");
7427 }
7428
7429 struct lp_build_if_state wrap_if_state;
7430 LLVMValueRef original_ret = ret;
7431 bool wrapped = false;
7432
7433 if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
7434 LLVMValueRef num_threads;
7435 LLVMValueRef ena;
7436
7437 num_threads = si_unpack_param(ctx, 3, 0, 8);
7438 ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
7439 ac_get_thread_id(&ctx->ac), num_threads, "");
7440 lp_build_if(&wrap_if_state, &ctx->gallivm, ena);
7441 wrapped = true;
7442 }
7443
7444 /* Compute vertex load indices from instance divisors. */
7445 LLVMValueRef instance_divisor_constbuf = NULL;
7446
7447 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7448 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7449 LLVMValueRef buf_index =
7450 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7451 instance_divisor_constbuf =
7452 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7453 }
7454
7455 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7456 bool divisor_is_one =
7457 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7458 bool divisor_is_fetched =
7459 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7460 LLVMValueRef index = NULL;
7461
7462 if (divisor_is_one) {
7463 index = ctx->abi.instance_id;
7464 } else if (divisor_is_fetched) {
7465 LLVMValueRef udiv_factors[4];
7466
7467 for (unsigned j = 0; j < 4; j++) {
7468 udiv_factors[j] =
7469 buffer_load_const(ctx, instance_divisor_constbuf,
7470 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7471 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7472 }
7473 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7474 * Such InstanceID might not be achievable in a reasonable time though.
7475 */
7476 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7477 udiv_factors[0], udiv_factors[1],
7478 udiv_factors[2], udiv_factors[3]);
7479 }
7480
7481 if (divisor_is_one || divisor_is_fetched) {
7482 /* Add StartInstance. */
7483 index = LLVMBuildAdd(ctx->ac.builder, index,
7484 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7485 SI_SGPR_START_INSTANCE), "");
7486 } else {
7487 /* VertexID + BaseVertex */
7488 index = LLVMBuildAdd(ctx->ac.builder,
7489 ctx->abi.vertex_id,
7490 LLVMGetParam(func, user_sgpr_base +
7491 SI_SGPR_BASE_VERTEX), "");
7492 }
7493
7494 index = ac_to_float(&ctx->ac, index);
7495 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7496 fninfo.num_params + i, "");
7497 }
7498
7499 if (wrapped) {
7500 lp_build_endif(&wrap_if_state);
7501
7502 LLVMValueRef values[2] = {
7503 ret,
7504 original_ret
7505 };
7506 LLVMBasicBlockRef bbs[2] = {
7507 wrap_if_state.true_block,
7508 wrap_if_state.entry_block
7509 };
7510 ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
7511 }
7512
7513 si_llvm_build_ret(ctx, ret);
7514 }
7515
7516 static bool si_get_vs_prolog(struct si_screen *sscreen,
7517 struct ac_llvm_compiler *compiler,
7518 struct si_shader *shader,
7519 struct pipe_debug_callback *debug,
7520 struct si_shader *main_part,
7521 const struct si_vs_prolog_bits *key)
7522 {
7523 struct si_shader_selector *vs = main_part->selector;
7524
7525 if (!si_vs_needs_prolog(vs, key))
7526 return true;
7527
7528 /* Get the prolog. */
7529 union si_shader_part_key prolog_key;
7530 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7531 key, shader, &prolog_key);
7532
7533 shader->prolog =
7534 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7535 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7536 debug, si_build_vs_prolog_function,
7537 "Vertex Shader Prolog");
7538 return shader->prolog != NULL;
7539 }
7540
7541 /**
7542 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7543 */
7544 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7545 struct ac_llvm_compiler *compiler,
7546 struct si_shader *shader,
7547 struct pipe_debug_callback *debug)
7548 {
7549 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7550 &shader->key.part.vs.prolog);
7551 }
7552
7553 /**
7554 * Compile the TCS epilog function. This writes tesselation factors to memory
7555 * based on the output primitive type of the tesselator (determined by TES).
7556 */
7557 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7558 union si_shader_part_key *key)
7559 {
7560 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7561 struct si_function_info fninfo;
7562 LLVMValueRef func;
7563
7564 si_init_function_info(&fninfo);
7565
7566 if (ctx->screen->info.chip_class >= GFX9) {
7567 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7568 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7569 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7570 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7571 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7572 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7573 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7574 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7575 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7576 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7577 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7578 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7579 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7580 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7581 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7582 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7583 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7584 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7585 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7586 } else {
7587 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7588 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7589 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7590 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7591 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7592 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7593 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7594 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7595 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7596 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7597 }
7598
7599 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7600 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7601 unsigned tess_factors_idx =
7602 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7603 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7604 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7605
7606 for (unsigned i = 0; i < 6; i++)
7607 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7608
7609 /* Create the function. */
7610 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7611 ctx->screen->info.chip_class >= GFX7 ? 128 : 64);
7612 ac_declare_lds_as_pointer(&ctx->ac);
7613 func = ctx->main_fn;
7614
7615 LLVMValueRef invoc0_tess_factors[6];
7616 for (unsigned i = 0; i < 6; i++)
7617 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7618
7619 si_write_tess_factors(bld_base,
7620 LLVMGetParam(func, tess_factors_idx),
7621 LLVMGetParam(func, tess_factors_idx + 1),
7622 LLVMGetParam(func, tess_factors_idx + 2),
7623 invoc0_tess_factors, invoc0_tess_factors + 4);
7624
7625 LLVMBuildRetVoid(ctx->ac.builder);
7626 }
7627
7628 /**
7629 * Select and compile (or reuse) TCS parts (epilog).
7630 */
7631 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7632 struct ac_llvm_compiler *compiler,
7633 struct si_shader *shader,
7634 struct pipe_debug_callback *debug)
7635 {
7636 if (sscreen->info.chip_class >= GFX9) {
7637 struct si_shader *ls_main_part =
7638 shader->key.part.tcs.ls->main_shader_part_ls;
7639
7640 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7641 &shader->key.part.tcs.ls_prolog))
7642 return false;
7643
7644 shader->previous_stage = ls_main_part;
7645 }
7646
7647 /* Get the epilog. */
7648 union si_shader_part_key epilog_key;
7649 memset(&epilog_key, 0, sizeof(epilog_key));
7650 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7651
7652 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7653 PIPE_SHADER_TESS_CTRL, false,
7654 &epilog_key, compiler, debug,
7655 si_build_tcs_epilog_function,
7656 "Tessellation Control Shader Epilog");
7657 return shader->epilog != NULL;
7658 }
7659
7660 /**
7661 * Select and compile (or reuse) GS parts (prolog).
7662 */
7663 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7664 struct ac_llvm_compiler *compiler,
7665 struct si_shader *shader,
7666 struct pipe_debug_callback *debug)
7667 {
7668 if (sscreen->info.chip_class >= GFX9) {
7669 struct si_shader *es_main_part =
7670 shader->key.part.gs.es->main_shader_part_es;
7671
7672 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7673 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7674 &shader->key.part.gs.vs_prolog))
7675 return false;
7676
7677 shader->previous_stage = es_main_part;
7678 }
7679
7680 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7681 return true;
7682
7683 union si_shader_part_key prolog_key;
7684 memset(&prolog_key, 0, sizeof(prolog_key));
7685 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7686
7687 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7688 PIPE_SHADER_GEOMETRY, true,
7689 &prolog_key, compiler, debug,
7690 si_build_gs_prolog_function,
7691 "Geometry Shader Prolog");
7692 return shader->prolog2 != NULL;
7693 }
7694
7695 /**
7696 * Build the pixel shader prolog function. This handles:
7697 * - two-side color selection and interpolation
7698 * - overriding interpolation parameters for the API PS
7699 * - polygon stippling
7700 *
7701 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7702 * overriden by other states. (e.g. per-sample interpolation)
7703 * Interpolated colors are stored after the preloaded VGPRs.
7704 */
7705 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7706 union si_shader_part_key *key)
7707 {
7708 struct si_function_info fninfo;
7709 LLVMValueRef ret, func;
7710 int num_returns, i, num_color_channels;
7711
7712 assert(si_need_ps_prolog(key));
7713
7714 si_init_function_info(&fninfo);
7715
7716 /* Declare inputs. */
7717 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7718 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7719
7720 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7721 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7722
7723 /* Declare outputs (same as inputs + add colors if needed) */
7724 num_returns = fninfo.num_params;
7725 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7726 for (i = 0; i < num_color_channels; i++)
7727 fninfo.types[num_returns++] = ctx->f32;
7728
7729 /* Create the function. */
7730 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7731 &fninfo, 0);
7732 func = ctx->main_fn;
7733
7734 /* Copy inputs to outputs. This should be no-op, as the registers match,
7735 * but it will prevent the compiler from overwriting them unintentionally.
7736 */
7737 ret = ctx->return_value;
7738 for (i = 0; i < fninfo.num_params; i++) {
7739 LLVMValueRef p = LLVMGetParam(func, i);
7740 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7741 }
7742
7743 /* Polygon stippling. */
7744 if (key->ps_prolog.states.poly_stipple) {
7745 /* POS_FIXED_PT is always last. */
7746 unsigned pos = key->ps_prolog.num_input_sgprs +
7747 key->ps_prolog.num_input_vgprs - 1;
7748 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7749
7750 si_llvm_emit_polygon_stipple(ctx, list, pos);
7751 }
7752
7753 if (key->ps_prolog.states.bc_optimize_for_persp ||
7754 key->ps_prolog.states.bc_optimize_for_linear) {
7755 unsigned i, base = key->ps_prolog.num_input_sgprs;
7756 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7757
7758 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7759 * The hw doesn't compute CENTROID if the whole wave only
7760 * contains fully-covered quads.
7761 *
7762 * PRIM_MASK is after user SGPRs.
7763 */
7764 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7765 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7766 LLVMConstInt(ctx->i32, 31, 0), "");
7767 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7768 ctx->i1, "");
7769
7770 if (key->ps_prolog.states.bc_optimize_for_persp) {
7771 /* Read PERSP_CENTER. */
7772 for (i = 0; i < 2; i++)
7773 center[i] = LLVMGetParam(func, base + 2 + i);
7774 /* Read PERSP_CENTROID. */
7775 for (i = 0; i < 2; i++)
7776 centroid[i] = LLVMGetParam(func, base + 4 + i);
7777 /* Select PERSP_CENTROID. */
7778 for (i = 0; i < 2; i++) {
7779 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7780 center[i], centroid[i], "");
7781 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7782 tmp, base + 4 + i, "");
7783 }
7784 }
7785 if (key->ps_prolog.states.bc_optimize_for_linear) {
7786 /* Read LINEAR_CENTER. */
7787 for (i = 0; i < 2; i++)
7788 center[i] = LLVMGetParam(func, base + 8 + i);
7789 /* Read LINEAR_CENTROID. */
7790 for (i = 0; i < 2; i++)
7791 centroid[i] = LLVMGetParam(func, base + 10 + i);
7792 /* Select LINEAR_CENTROID. */
7793 for (i = 0; i < 2; i++) {
7794 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7795 center[i], centroid[i], "");
7796 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7797 tmp, base + 10 + i, "");
7798 }
7799 }
7800 }
7801
7802 /* Force per-sample interpolation. */
7803 if (key->ps_prolog.states.force_persp_sample_interp) {
7804 unsigned i, base = key->ps_prolog.num_input_sgprs;
7805 LLVMValueRef persp_sample[2];
7806
7807 /* Read PERSP_SAMPLE. */
7808 for (i = 0; i < 2; i++)
7809 persp_sample[i] = LLVMGetParam(func, base + i);
7810 /* Overwrite PERSP_CENTER. */
7811 for (i = 0; i < 2; i++)
7812 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7813 persp_sample[i], base + 2 + i, "");
7814 /* Overwrite PERSP_CENTROID. */
7815 for (i = 0; i < 2; i++)
7816 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7817 persp_sample[i], base + 4 + i, "");
7818 }
7819 if (key->ps_prolog.states.force_linear_sample_interp) {
7820 unsigned i, base = key->ps_prolog.num_input_sgprs;
7821 LLVMValueRef linear_sample[2];
7822
7823 /* Read LINEAR_SAMPLE. */
7824 for (i = 0; i < 2; i++)
7825 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7826 /* Overwrite LINEAR_CENTER. */
7827 for (i = 0; i < 2; i++)
7828 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7829 linear_sample[i], base + 8 + i, "");
7830 /* Overwrite LINEAR_CENTROID. */
7831 for (i = 0; i < 2; i++)
7832 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7833 linear_sample[i], base + 10 + i, "");
7834 }
7835
7836 /* Force center interpolation. */
7837 if (key->ps_prolog.states.force_persp_center_interp) {
7838 unsigned i, base = key->ps_prolog.num_input_sgprs;
7839 LLVMValueRef persp_center[2];
7840
7841 /* Read PERSP_CENTER. */
7842 for (i = 0; i < 2; i++)
7843 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7844 /* Overwrite PERSP_SAMPLE. */
7845 for (i = 0; i < 2; i++)
7846 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7847 persp_center[i], base + i, "");
7848 /* Overwrite PERSP_CENTROID. */
7849 for (i = 0; i < 2; i++)
7850 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7851 persp_center[i], base + 4 + i, "");
7852 }
7853 if (key->ps_prolog.states.force_linear_center_interp) {
7854 unsigned i, base = key->ps_prolog.num_input_sgprs;
7855 LLVMValueRef linear_center[2];
7856
7857 /* Read LINEAR_CENTER. */
7858 for (i = 0; i < 2; i++)
7859 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7860 /* Overwrite LINEAR_SAMPLE. */
7861 for (i = 0; i < 2; i++)
7862 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7863 linear_center[i], base + 6 + i, "");
7864 /* Overwrite LINEAR_CENTROID. */
7865 for (i = 0; i < 2; i++)
7866 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7867 linear_center[i], base + 10 + i, "");
7868 }
7869
7870 /* Interpolate colors. */
7871 unsigned color_out_idx = 0;
7872 for (i = 0; i < 2; i++) {
7873 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7874 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7875 key->ps_prolog.face_vgpr_index;
7876 LLVMValueRef interp[2], color[4];
7877 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7878
7879 if (!writemask)
7880 continue;
7881
7882 /* If the interpolation qualifier is not CONSTANT (-1). */
7883 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7884 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7885 key->ps_prolog.color_interp_vgpr_index[i];
7886
7887 /* Get the (i,j) updated by bc_optimize handling. */
7888 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7889 interp_vgpr, "");
7890 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7891 interp_vgpr + 1, "");
7892 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7893 }
7894
7895 /* Use the absolute location of the input. */
7896 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7897
7898 if (key->ps_prolog.states.color_two_side) {
7899 face = LLVMGetParam(func, face_vgpr);
7900 face = ac_to_integer(&ctx->ac, face);
7901 }
7902
7903 interp_fs_input(ctx,
7904 key->ps_prolog.color_attr_index[i],
7905 TGSI_SEMANTIC_COLOR, i,
7906 key->ps_prolog.num_interp_inputs,
7907 key->ps_prolog.colors_read, interp_ij,
7908 prim_mask, face, color);
7909
7910 while (writemask) {
7911 unsigned chan = u_bit_scan(&writemask);
7912 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7913 fninfo.num_params + color_out_idx++, "");
7914 }
7915 }
7916
7917 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7918 * says:
7919 *
7920 * "When per-sample shading is active due to the use of a fragment
7921 * input qualified by sample or due to the use of the gl_SampleID
7922 * or gl_SamplePosition variables, only the bit for the current
7923 * sample is set in gl_SampleMaskIn. When state specifies multiple
7924 * fragment shader invocations for a given fragment, the sample
7925 * mask for any single fragment shader invocation may specify a
7926 * subset of the covered samples for the fragment. In this case,
7927 * the bit corresponding to each covered sample will be set in
7928 * exactly one fragment shader invocation."
7929 *
7930 * The samplemask loaded by hardware is always the coverage of the
7931 * entire pixel/fragment, so mask bits out based on the sample ID.
7932 */
7933 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7934 /* The bit pattern matches that used by fixed function fragment
7935 * processing. */
7936 static const uint16_t ps_iter_masks[] = {
7937 0xffff, /* not used */
7938 0x5555,
7939 0x1111,
7940 0x0101,
7941 0x0001,
7942 };
7943 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7944
7945 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7946 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7947 key->ps_prolog.ancillary_vgpr_index;
7948 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7949 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7950
7951 samplemask = ac_to_integer(&ctx->ac, samplemask);
7952 samplemask = LLVMBuildAnd(
7953 ctx->ac.builder,
7954 samplemask,
7955 LLVMBuildShl(ctx->ac.builder,
7956 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7957 sampleid, ""),
7958 "");
7959 samplemask = ac_to_float(&ctx->ac, samplemask);
7960
7961 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7962 ancillary_vgpr + 1, "");
7963 }
7964
7965 /* Tell LLVM to insert WQM instruction sequence when needed. */
7966 if (key->ps_prolog.wqm) {
7967 LLVMAddTargetDependentFunctionAttr(func,
7968 "amdgpu-ps-wqm-outputs", "");
7969 }
7970
7971 si_llvm_build_ret(ctx, ret);
7972 }
7973
7974 /**
7975 * Build the pixel shader epilog function. This handles everything that must be
7976 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7977 */
7978 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7979 union si_shader_part_key *key)
7980 {
7981 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7982 struct si_function_info fninfo;
7983 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7984 int i;
7985 struct si_ps_exports exp = {};
7986
7987 si_init_function_info(&fninfo);
7988
7989 /* Declare input SGPRs. */
7990 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7991 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7992 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7993 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7994 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7995
7996 /* Declare input VGPRs. */
7997 unsigned required_num_params =
7998 fninfo.num_sgpr_params +
7999 util_bitcount(key->ps_epilog.colors_written) * 4 +
8000 key->ps_epilog.writes_z +
8001 key->ps_epilog.writes_stencil +
8002 key->ps_epilog.writes_samplemask;
8003
8004 required_num_params = MAX2(required_num_params,
8005 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8006
8007 while (fninfo.num_params < required_num_params)
8008 add_arg(&fninfo, ARG_VGPR, ctx->f32);
8009
8010 /* Create the function. */
8011 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
8012 /* Disable elimination of unused inputs. */
8013 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
8014 "InitialPSInputAddr", 0xffffff);
8015
8016 /* Process colors. */
8017 unsigned vgpr = fninfo.num_sgpr_params;
8018 unsigned colors_written = key->ps_epilog.colors_written;
8019 int last_color_export = -1;
8020
8021 /* Find the last color export. */
8022 if (!key->ps_epilog.writes_z &&
8023 !key->ps_epilog.writes_stencil &&
8024 !key->ps_epilog.writes_samplemask) {
8025 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8026
8027 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8028 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8029 /* Just set this if any of the colorbuffers are enabled. */
8030 if (spi_format &
8031 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8032 last_color_export = 0;
8033 } else {
8034 for (i = 0; i < 8; i++)
8035 if (colors_written & (1 << i) &&
8036 (spi_format >> (i * 4)) & 0xf)
8037 last_color_export = i;
8038 }
8039 }
8040
8041 while (colors_written) {
8042 LLVMValueRef color[4];
8043 int mrt = u_bit_scan(&colors_written);
8044
8045 for (i = 0; i < 4; i++)
8046 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8047
8048 si_export_mrt_color(bld_base, color, mrt,
8049 fninfo.num_params - 1,
8050 mrt == last_color_export, &exp);
8051 }
8052
8053 /* Process depth, stencil, samplemask. */
8054 if (key->ps_epilog.writes_z)
8055 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8056 if (key->ps_epilog.writes_stencil)
8057 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8058 if (key->ps_epilog.writes_samplemask)
8059 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8060
8061 if (depth || stencil || samplemask)
8062 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8063 else if (last_color_export == -1)
8064 ac_build_export_null(&ctx->ac);
8065
8066 if (exp.num)
8067 si_emit_ps_exports(ctx, &exp);
8068
8069 /* Compile. */
8070 LLVMBuildRetVoid(ctx->ac.builder);
8071 }
8072
8073 /**
8074 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8075 */
8076 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8077 struct ac_llvm_compiler *compiler,
8078 struct si_shader *shader,
8079 struct pipe_debug_callback *debug)
8080 {
8081 union si_shader_part_key prolog_key;
8082 union si_shader_part_key epilog_key;
8083
8084 /* Get the prolog. */
8085 si_get_ps_prolog_key(shader, &prolog_key, true);
8086
8087 /* The prolog is a no-op if these aren't set. */
8088 if (si_need_ps_prolog(&prolog_key)) {
8089 shader->prolog =
8090 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8091 PIPE_SHADER_FRAGMENT, true,
8092 &prolog_key, compiler, debug,
8093 si_build_ps_prolog_function,
8094 "Fragment Shader Prolog");
8095 if (!shader->prolog)
8096 return false;
8097 }
8098
8099 /* Get the epilog. */
8100 si_get_ps_epilog_key(shader, &epilog_key);
8101
8102 shader->epilog =
8103 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8104 PIPE_SHADER_FRAGMENT, false,
8105 &epilog_key, compiler, debug,
8106 si_build_ps_epilog_function,
8107 "Fragment Shader Epilog");
8108 if (!shader->epilog)
8109 return false;
8110
8111 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8112 if (shader->key.part.ps.prolog.poly_stipple) {
8113 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8114 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8115 }
8116
8117 /* Set up the enable bits for per-sample shading if needed. */
8118 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8119 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8120 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8121 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8122 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8123 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8124 }
8125 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8126 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8127 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8128 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8129 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8130 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8131 }
8132 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8133 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8134 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8135 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8136 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8137 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8138 }
8139 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8140 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8141 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8142 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8143 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8144 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8145 }
8146
8147 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8148 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8149 !(shader->config.spi_ps_input_ena & 0xf)) {
8150 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8151 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8152 }
8153
8154 /* At least one pair of interpolation weights must be enabled. */
8155 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8156 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8157 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8158 }
8159
8160 /* Samplemask fixup requires the sample ID. */
8161 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8162 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8163 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8164 }
8165
8166 /* The sample mask input is always enabled, because the API shader always
8167 * passes it through to the epilog. Disable it here if it's unused.
8168 */
8169 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8170 !shader->selector->info.reads_samplemask)
8171 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8172
8173 return true;
8174 }
8175
8176 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8177 unsigned *lds_size)
8178 {
8179 /* If tessellation is all offchip and on-chip GS isn't used, this
8180 * workaround is not needed.
8181 */
8182 return;
8183
8184 /* SPI barrier management bug:
8185 * Make sure we have at least 4k of LDS in use to avoid the bug.
8186 * It applies to workgroup sizes of more than one wavefront.
8187 */
8188 if (sscreen->info.family == CHIP_BONAIRE ||
8189 sscreen->info.family == CHIP_KABINI)
8190 *lds_size = MAX2(*lds_size, 8);
8191 }
8192
8193 static void si_fix_resource_usage(struct si_screen *sscreen,
8194 struct si_shader *shader)
8195 {
8196 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8197
8198 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8199
8200 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8201 si_get_max_workgroup_size(shader) > 64) {
8202 si_multiwave_lds_size_workaround(sscreen,
8203 &shader->config.lds_size);
8204 }
8205 }
8206
8207 bool si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8208 struct si_shader *shader,
8209 struct pipe_debug_callback *debug)
8210 {
8211 struct si_shader_selector *sel = shader->selector;
8212 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8213 int r;
8214
8215 /* LS, ES, VS are compiled on demand if the main part hasn't been
8216 * compiled for that stage.
8217 *
8218 * GS are compiled on demand if the main part hasn't been compiled
8219 * for the chosen NGG-ness.
8220 *
8221 * Vertex shaders are compiled on demand when a vertex fetch
8222 * workaround must be applied.
8223 */
8224 if (shader->is_monolithic) {
8225 /* Monolithic shader (compiled as a whole, has many variants,
8226 * may take a long time to compile).
8227 */
8228 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8229 if (r)
8230 return false;
8231 } else {
8232 /* The shader consists of several parts:
8233 *
8234 * - the middle part is the user shader, it has 1 variant only
8235 * and it was compiled during the creation of the shader
8236 * selector
8237 * - the prolog part is inserted at the beginning
8238 * - the epilog part is inserted at the end
8239 *
8240 * The prolog and epilog have many (but simple) variants.
8241 *
8242 * Starting with gfx9, geometry and tessellation control
8243 * shaders also contain the prolog and user shader parts of
8244 * the previous shader stage.
8245 */
8246
8247 if (!mainp)
8248 return false;
8249
8250 /* Copy the compiled TGSI shader data over. */
8251 shader->is_binary_shared = true;
8252 shader->binary = mainp->binary;
8253 shader->config = mainp->config;
8254 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8255 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8256 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8257 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8258 memcpy(shader->info.vs_output_param_offset,
8259 mainp->info.vs_output_param_offset,
8260 sizeof(mainp->info.vs_output_param_offset));
8261 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8262 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8263 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8264
8265 /* Select prologs and/or epilogs. */
8266 switch (sel->type) {
8267 case PIPE_SHADER_VERTEX:
8268 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8269 return false;
8270 break;
8271 case PIPE_SHADER_TESS_CTRL:
8272 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8273 return false;
8274 break;
8275 case PIPE_SHADER_TESS_EVAL:
8276 break;
8277 case PIPE_SHADER_GEOMETRY:
8278 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8279 return false;
8280 break;
8281 case PIPE_SHADER_FRAGMENT:
8282 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8283 return false;
8284
8285 /* Make sure we have at least as many VGPRs as there
8286 * are allocated inputs.
8287 */
8288 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8289 shader->info.num_input_vgprs);
8290 break;
8291 }
8292
8293 /* Update SGPR and VGPR counts. */
8294 if (shader->prolog) {
8295 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8296 shader->prolog->config.num_sgprs);
8297 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8298 shader->prolog->config.num_vgprs);
8299 }
8300 if (shader->previous_stage) {
8301 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8302 shader->previous_stage->config.num_sgprs);
8303 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8304 shader->previous_stage->config.num_vgprs);
8305 shader->config.spilled_sgprs =
8306 MAX2(shader->config.spilled_sgprs,
8307 shader->previous_stage->config.spilled_sgprs);
8308 shader->config.spilled_vgprs =
8309 MAX2(shader->config.spilled_vgprs,
8310 shader->previous_stage->config.spilled_vgprs);
8311 shader->info.private_mem_vgprs =
8312 MAX2(shader->info.private_mem_vgprs,
8313 shader->previous_stage->info.private_mem_vgprs);
8314 shader->config.scratch_bytes_per_wave =
8315 MAX2(shader->config.scratch_bytes_per_wave,
8316 shader->previous_stage->config.scratch_bytes_per_wave);
8317 shader->info.uses_instanceid |=
8318 shader->previous_stage->info.uses_instanceid;
8319 }
8320 if (shader->prolog2) {
8321 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8322 shader->prolog2->config.num_sgprs);
8323 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8324 shader->prolog2->config.num_vgprs);
8325 }
8326 if (shader->epilog) {
8327 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8328 shader->epilog->config.num_sgprs);
8329 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8330 shader->epilog->config.num_vgprs);
8331 }
8332 si_calculate_max_simd_waves(shader);
8333 }
8334
8335 if (shader->key.as_ngg) {
8336 assert(!shader->key.as_es && !shader->key.as_ls);
8337 gfx10_ngg_calculate_subgroup_info(shader);
8338 } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
8339 gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
8340 }
8341
8342 si_fix_resource_usage(sscreen, shader);
8343 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8344 stderr, true);
8345
8346 /* Upload. */
8347 if (!si_shader_binary_upload(sscreen, shader, 0)) {
8348 fprintf(stderr, "LLVM failed to upload shader\n");
8349 return false;
8350 }
8351
8352 return true;
8353 }
8354
8355 void si_shader_destroy(struct si_shader *shader)
8356 {
8357 if (shader->scratch_bo)
8358 si_resource_reference(&shader->scratch_bo, NULL);
8359
8360 si_resource_reference(&shader->bo, NULL);
8361
8362 if (!shader->is_binary_shared)
8363 si_shader_binary_clean(&shader->binary);
8364
8365 free(shader->shader_log);
8366 }