radeonsi/gfx10: implement si_shader_vs
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_strings.h"
29 #include "tgsi/tgsi_util.h"
30 #include "tgsi/tgsi_dump.h"
31 #include "tgsi/tgsi_from_mesa.h"
32
33 #include "ac_binary.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36 #include "ac_rtld.h"
37 #include "ac_llvm_util.h"
38 #include "si_shader_internal.h"
39 #include "si_pipe.h"
40 #include "sid.h"
41
42 #include "compiler/nir/nir.h"
43
44 static const char scratch_rsrc_dword0_symbol[] =
45 "SCRATCH_RSRC_DWORD0";
46
47 static const char scratch_rsrc_dword1_symbol[] =
48 "SCRATCH_RSRC_DWORD1";
49
50 static void si_init_shader_ctx(struct si_shader_context *ctx,
51 struct si_screen *sscreen,
52 struct ac_llvm_compiler *compiler);
53
54 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
55 struct lp_build_tgsi_context *bld_base,
56 struct lp_build_emit_data *emit_data);
57
58 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
59 FILE *f);
60
61 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
62 union si_shader_part_key *key);
63 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
64 union si_shader_part_key *key);
65 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
66 union si_shader_part_key *key);
67 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
68 union si_shader_part_key *key);
69 static void si_fix_resource_usage(struct si_screen *sscreen,
70 struct si_shader *shader);
71
72 /* Ideally pass the sample mask input to the PS epilog as v14, which
73 * is its usual location, so that the shader doesn't have to add v_mov.
74 */
75 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
76
77 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
78 LLVMTypeRef type)
79 {
80 if (type == ctx->ac.i64 || type == ctx->ac.f64)
81 return true;
82
83 return false;
84 }
85
86 /** Whether the shader runs as a combination of multiple API shaders */
87 static bool is_multi_part_shader(struct si_shader_context *ctx)
88 {
89 if (ctx->screen->info.chip_class <= GFX8)
90 return false;
91
92 return ctx->shader->key.as_ls ||
93 ctx->shader->key.as_es ||
94 ctx->type == PIPE_SHADER_TESS_CTRL ||
95 ctx->type == PIPE_SHADER_GEOMETRY;
96 }
97
98 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
99 static bool is_merged_shader(struct si_shader_context *ctx)
100 {
101 return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
102 }
103
104 void si_init_function_info(struct si_function_info *fninfo)
105 {
106 fninfo->num_params = 0;
107 fninfo->num_sgpr_params = 0;
108 }
109
110 unsigned add_arg_assign(struct si_function_info *fninfo,
111 enum si_arg_regfile regfile, LLVMTypeRef type,
112 LLVMValueRef *assign)
113 {
114 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
115
116 unsigned idx = fninfo->num_params++;
117 assert(idx < ARRAY_SIZE(fninfo->types));
118
119 if (regfile == ARG_SGPR)
120 fninfo->num_sgpr_params = fninfo->num_params;
121
122 fninfo->types[idx] = type;
123 fninfo->assign[idx] = assign;
124 return idx;
125 }
126
127 static unsigned add_arg(struct si_function_info *fninfo,
128 enum si_arg_regfile regfile, LLVMTypeRef type)
129 {
130 return add_arg_assign(fninfo, regfile, type, NULL);
131 }
132
133 static void add_arg_assign_checked(struct si_function_info *fninfo,
134 enum si_arg_regfile regfile, LLVMTypeRef type,
135 LLVMValueRef *assign, unsigned idx)
136 {
137 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
138 assert(actual == idx);
139 }
140
141 static void add_arg_checked(struct si_function_info *fninfo,
142 enum si_arg_regfile regfile, LLVMTypeRef type,
143 unsigned idx)
144 {
145 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
146 }
147
148 /**
149 * Returns a unique index for a per-patch semantic name and index. The index
150 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
151 * can be calculated.
152 */
153 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
154 {
155 switch (semantic_name) {
156 case TGSI_SEMANTIC_TESSOUTER:
157 return 0;
158 case TGSI_SEMANTIC_TESSINNER:
159 return 1;
160 case TGSI_SEMANTIC_PATCH:
161 assert(index < 30);
162 return 2 + index;
163
164 default:
165 assert(!"invalid semantic name");
166 return 0;
167 }
168 }
169
170 /**
171 * Returns a unique index for a semantic name and index. The index must be
172 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
173 * calculated.
174 */
175 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
176 unsigned is_varying)
177 {
178 switch (semantic_name) {
179 case TGSI_SEMANTIC_POSITION:
180 return 0;
181 case TGSI_SEMANTIC_GENERIC:
182 /* Since some shader stages use the the highest used IO index
183 * to determine the size to allocate for inputs/outputs
184 * (in LDS, tess and GS rings). GENERIC should be placed right
185 * after POSITION to make that size as small as possible.
186 */
187 if (index < SI_MAX_IO_GENERIC)
188 return 1 + index;
189
190 assert(!"invalid generic index");
191 return 0;
192 case TGSI_SEMANTIC_PSIZE:
193 return SI_MAX_IO_GENERIC + 1;
194 case TGSI_SEMANTIC_CLIPDIST:
195 assert(index <= 1);
196 return SI_MAX_IO_GENERIC + 2 + index;
197 case TGSI_SEMANTIC_FOG:
198 return SI_MAX_IO_GENERIC + 4;
199 case TGSI_SEMANTIC_LAYER:
200 return SI_MAX_IO_GENERIC + 5;
201 case TGSI_SEMANTIC_VIEWPORT_INDEX:
202 return SI_MAX_IO_GENERIC + 6;
203 case TGSI_SEMANTIC_PRIMID:
204 return SI_MAX_IO_GENERIC + 7;
205 case TGSI_SEMANTIC_COLOR:
206 assert(index < 2);
207 return SI_MAX_IO_GENERIC + 8 + index;
208 case TGSI_SEMANTIC_BCOLOR:
209 assert(index < 2);
210 /* If it's a varying, COLOR and BCOLOR alias. */
211 if (is_varying)
212 return SI_MAX_IO_GENERIC + 8 + index;
213 else
214 return SI_MAX_IO_GENERIC + 10 + index;
215 case TGSI_SEMANTIC_TEXCOORD:
216 assert(index < 8);
217 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
218 return SI_MAX_IO_GENERIC + 12 + index;
219 case TGSI_SEMANTIC_CLIPVERTEX:
220 return 63;
221 default:
222 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
223 assert(!"invalid semantic name");
224 return 0;
225 }
226 }
227
228 /**
229 * Get the value of a shader input parameter and extract a bitfield.
230 */
231 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
232 LLVMValueRef value, unsigned rshift,
233 unsigned bitwidth)
234 {
235 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
236 value = ac_to_integer(&ctx->ac, value);
237
238 if (rshift)
239 value = LLVMBuildLShr(ctx->ac.builder, value,
240 LLVMConstInt(ctx->i32, rshift, 0), "");
241
242 if (rshift + bitwidth < 32) {
243 unsigned mask = (1 << bitwidth) - 1;
244 value = LLVMBuildAnd(ctx->ac.builder, value,
245 LLVMConstInt(ctx->i32, mask, 0), "");
246 }
247
248 return value;
249 }
250
251 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
252 unsigned param, unsigned rshift,
253 unsigned bitwidth)
254 {
255 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
256
257 return unpack_llvm_param(ctx, value, rshift, bitwidth);
258 }
259
260 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
261 {
262 switch (ctx->type) {
263 case PIPE_SHADER_TESS_CTRL:
264 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
265
266 case PIPE_SHADER_TESS_EVAL:
267 return LLVMGetParam(ctx->main_fn,
268 ctx->param_tes_rel_patch_id);
269
270 default:
271 assert(0);
272 return NULL;
273 }
274 }
275
276 /* Tessellation shaders pass outputs to the next shader using LDS.
277 *
278 * LS outputs = TCS inputs
279 * TCS outputs = TES inputs
280 *
281 * The LDS layout is:
282 * - TCS inputs for patch 0
283 * - TCS inputs for patch 1
284 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
285 * - ...
286 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
287 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
288 * - TCS outputs for patch 1
289 * - Per-patch TCS outputs for patch 1
290 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
291 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
292 * - ...
293 *
294 * All three shaders VS(LS), TCS, TES share the same LDS space.
295 */
296
297 static LLVMValueRef
298 get_tcs_in_patch_stride(struct si_shader_context *ctx)
299 {
300 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
301 }
302
303 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
304 {
305 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
306
307 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
308 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
309
310 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
311 }
312
313 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
314 {
315 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
316
317 return LLVMConstInt(ctx->i32, stride, 0);
318 }
319
320 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
321 {
322 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
323 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
324
325 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
326 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
327 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
328 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
329 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
330 num_patch_outputs * 4;
331 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
332 }
333
334 static LLVMValueRef
335 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
336 {
337 return LLVMBuildMul(ctx->ac.builder,
338 si_unpack_param(ctx,
339 ctx->param_tcs_out_lds_offsets,
340 0, 16),
341 LLVMConstInt(ctx->i32, 4, 0), "");
342 }
343
344 static LLVMValueRef
345 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
346 {
347 return LLVMBuildMul(ctx->ac.builder,
348 si_unpack_param(ctx,
349 ctx->param_tcs_out_lds_offsets,
350 16, 16),
351 LLVMConstInt(ctx->i32, 4, 0), "");
352 }
353
354 static LLVMValueRef
355 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
356 {
357 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
358 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
359
360 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
361 }
362
363 static LLVMValueRef
364 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
365 {
366 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
367 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
368 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
369
370 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
371 }
372
373 static LLVMValueRef
374 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
375 {
376 LLVMValueRef patch0_patch_data_offset =
377 get_tcs_out_patch0_patch_data_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
382 }
383
384 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
385 {
386 unsigned tcs_out_vertices =
387 ctx->shader->selector ?
388 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
389
390 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
391 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
392 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
393
394 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
395 }
396
397 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
398 {
399 unsigned stride;
400
401 switch (ctx->type) {
402 case PIPE_SHADER_VERTEX:
403 stride = ctx->shader->selector->lshs_vertex_stride / 4;
404 return LLVMConstInt(ctx->i32, stride, 0);
405
406 case PIPE_SHADER_TESS_CTRL:
407 if (ctx->screen->info.chip_class >= GFX9 &&
408 ctx->shader->is_monolithic) {
409 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
410 return LLVMConstInt(ctx->i32, stride, 0);
411 }
412 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
413
414 default:
415 assert(0);
416 return NULL;
417 }
418 }
419
420 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
421 LLVMValueRef i32, unsigned index)
422 {
423 assert(index <= 1);
424
425 if (index == 1)
426 return LLVMBuildAShr(ctx->ac.builder, i32,
427 LLVMConstInt(ctx->i32, 16, 0), "");
428
429 return LLVMBuildSExt(ctx->ac.builder,
430 LLVMBuildTrunc(ctx->ac.builder, i32,
431 ctx->ac.i16, ""),
432 ctx->i32, "");
433 }
434
435 void si_llvm_load_input_vs(
436 struct si_shader_context *ctx,
437 unsigned input_index,
438 LLVMValueRef out[4])
439 {
440 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
441 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
442
443 if (vs_blit_property) {
444 LLVMValueRef vertex_id = ctx->abi.vertex_id;
445 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
446 LLVMIntULE, vertex_id,
447 ctx->i32_1, "");
448 /* Use LLVMIntNE, because we have 3 vertices and only
449 * the middle one should use y2.
450 */
451 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
452 LLVMIntNE, vertex_id,
453 ctx->i32_1, "");
454
455 if (input_index == 0) {
456 /* Position: */
457 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
458 ctx->param_vs_blit_inputs);
459 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
460 ctx->param_vs_blit_inputs + 1);
461
462 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
463 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
464 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
465 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
466
467 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
468 x1, x2, "");
469 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
470 y1, y2, "");
471
472 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
473 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
474 out[2] = LLVMGetParam(ctx->main_fn,
475 ctx->param_vs_blit_inputs + 2);
476 out[3] = ctx->ac.f32_1;
477 return;
478 }
479
480 /* Color or texture coordinates: */
481 assert(input_index == 1);
482
483 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
484 for (int i = 0; i < 4; i++) {
485 out[i] = LLVMGetParam(ctx->main_fn,
486 ctx->param_vs_blit_inputs + 3 + i);
487 }
488 } else {
489 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
490 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
491 ctx->param_vs_blit_inputs + 3);
492 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
493 ctx->param_vs_blit_inputs + 4);
494 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
495 ctx->param_vs_blit_inputs + 5);
496 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
497 ctx->param_vs_blit_inputs + 6);
498
499 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
500 x1, x2, "");
501 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
502 y1, y2, "");
503 out[2] = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs + 7);
505 out[3] = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 8);
507 }
508 return;
509 }
510
511 union si_vs_fix_fetch fix_fetch;
512 LLVMValueRef t_list_ptr;
513 LLVMValueRef t_offset;
514 LLVMValueRef t_list;
515 LLVMValueRef vertex_index;
516 LLVMValueRef tmp;
517
518 /* Load the T list */
519 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
520
521 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
522
523 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
524
525 vertex_index = LLVMGetParam(ctx->main_fn,
526 ctx->param_vertex_index0 +
527 input_index);
528
529 /* Use the open-coded implementation for all loads of doubles and
530 * of dword-sized data that needs fixups. We need to insert conversion
531 * code anyway, and the amd/common code does it for us.
532 *
533 * Note: On LLVM <= 8, we can only open-code formats with
534 * channel size >= 4 bytes.
535 */
536 bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
537 fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
538 if (opencode ||
539 (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
540 (fix_fetch.u.log_size == 2)) {
541 tmp = ac_build_opencoded_load_format(
542 &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
543 fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
544 t_list, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0,
545 false, false, true);
546 for (unsigned i = 0; i < 4; ++i)
547 out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
548 return;
549 }
550
551 /* Do multiple loads for special formats. */
552 unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
553 LLVMValueRef fetches[4];
554 unsigned num_fetches;
555 unsigned fetch_stride;
556 unsigned channels_per_fetch;
557
558 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
559 num_fetches = MIN2(required_channels, 3);
560 fetch_stride = 1 << fix_fetch.u.log_size;
561 channels_per_fetch = 1;
562 } else {
563 num_fetches = 1;
564 fetch_stride = 0;
565 channels_per_fetch = required_channels;
566 }
567
568 for (unsigned i = 0; i < num_fetches; ++i) {
569 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
570 fetches[i] = ac_build_buffer_load_format(&ctx->ac, t_list, vertex_index, voffset,
571 channels_per_fetch, false, true);
572 }
573
574 if (num_fetches == 1 && channels_per_fetch > 1) {
575 LLVMValueRef fetch = fetches[0];
576 for (unsigned i = 0; i < channels_per_fetch; ++i) {
577 tmp = LLVMConstInt(ctx->i32, i, false);
578 fetches[i] = LLVMBuildExtractElement(
579 ctx->ac.builder, fetch, tmp, "");
580 }
581 num_fetches = channels_per_fetch;
582 channels_per_fetch = 1;
583 }
584
585 for (unsigned i = num_fetches; i < 4; ++i)
586 fetches[i] = LLVMGetUndef(ctx->f32);
587
588 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
589 required_channels == 4) {
590 if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
591 fetches[3] = ctx->ac.i32_1;
592 else
593 fetches[3] = ctx->ac.f32_1;
594 } else if (fix_fetch.u.log_size == 3 &&
595 (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
596 fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
597 fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
598 required_channels == 4) {
599 /* For 2_10_10_10, the hardware returns an unsigned value;
600 * convert it to a signed one.
601 */
602 LLVMValueRef tmp = fetches[3];
603 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
604
605 /* First, recover the sign-extended signed integer value. */
606 if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
607 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
608 else
609 tmp = ac_to_integer(&ctx->ac, tmp);
610
611 /* For the integer-like cases, do a natural sign extension.
612 *
613 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
614 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
615 * exponent.
616 */
617 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
618 fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
619 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
620 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
621
622 /* Convert back to the right type. */
623 if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
624 LLVMValueRef clamp;
625 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
626 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
627 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
628 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
629 } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
630 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
631 }
632
633 fetches[3] = tmp;
634 }
635
636 for (unsigned i = 0; i < 4; ++i)
637 out[i] = ac_to_float(&ctx->ac, fetches[i]);
638 }
639
640 static void declare_input_vs(
641 struct si_shader_context *ctx,
642 unsigned input_index,
643 const struct tgsi_full_declaration *decl,
644 LLVMValueRef out[4])
645 {
646 si_llvm_load_input_vs(ctx, input_index, out);
647 }
648
649 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
650 unsigned swizzle)
651 {
652 if (swizzle > 0)
653 return ctx->i32_0;
654
655 switch (ctx->type) {
656 case PIPE_SHADER_VERTEX:
657 return LLVMGetParam(ctx->main_fn,
658 ctx->param_vs_prim_id);
659 case PIPE_SHADER_TESS_CTRL:
660 return ctx->abi.tcs_patch_id;
661 case PIPE_SHADER_TESS_EVAL:
662 return ctx->abi.tes_patch_id;
663 case PIPE_SHADER_GEOMETRY:
664 return ctx->abi.gs_prim_id;
665 default:
666 assert(0);
667 return ctx->i32_0;
668 }
669 }
670
671 /**
672 * Return the value of tgsi_ind_register for indexing.
673 * This is the indirect index with the constant offset added to it.
674 */
675 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
676 const struct tgsi_ind_register *ind,
677 unsigned addr_mul,
678 int rel_index)
679 {
680 LLVMValueRef result;
681
682 if (ind->File == TGSI_FILE_ADDRESS) {
683 result = ctx->addrs[ind->Index][ind->Swizzle];
684 result = LLVMBuildLoad(ctx->ac.builder, result, "");
685 } else {
686 struct tgsi_full_src_register src = {};
687
688 src.Register.File = ind->File;
689 src.Register.Index = ind->Index;
690
691 /* Set the second index to 0 for constants. */
692 if (ind->File == TGSI_FILE_CONSTANT)
693 src.Register.Dimension = 1;
694
695 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
696 TGSI_TYPE_SIGNED,
697 ind->Swizzle);
698 result = ac_to_integer(&ctx->ac, result);
699 }
700
701 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
702 LLVMConstInt(ctx->i32, rel_index, 0));
703 }
704
705 /**
706 * Like si_get_indirect_index, but restricts the return value to a (possibly
707 * undefined) value inside [0..num).
708 */
709 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
710 const struct tgsi_ind_register *ind,
711 int rel_index, unsigned num)
712 {
713 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
714
715 return si_llvm_bound_index(ctx, result, num);
716 }
717
718 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
719 LLVMValueRef vertex_dw_stride,
720 LLVMValueRef base_addr,
721 LLVMValueRef vertex_index,
722 LLVMValueRef param_index,
723 unsigned input_index,
724 ubyte *name,
725 ubyte *index,
726 bool is_patch)
727 {
728 if (vertex_dw_stride) {
729 base_addr = ac_build_imad(&ctx->ac, vertex_index,
730 vertex_dw_stride, base_addr);
731 }
732
733 if (param_index) {
734 base_addr = ac_build_imad(&ctx->ac, param_index,
735 LLVMConstInt(ctx->i32, 4, 0), base_addr);
736 }
737
738 int param = is_patch ?
739 si_shader_io_get_unique_index_patch(name[input_index],
740 index[input_index]) :
741 si_shader_io_get_unique_index(name[input_index],
742 index[input_index], false);
743
744 /* Add the base address of the element. */
745 return LLVMBuildAdd(ctx->ac.builder, base_addr,
746 LLVMConstInt(ctx->i32, param * 4, 0), "");
747 }
748
749 /**
750 * Calculate a dword address given an input or output register and a stride.
751 */
752 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
753 const struct tgsi_full_dst_register *dst,
754 const struct tgsi_full_src_register *src,
755 LLVMValueRef vertex_dw_stride,
756 LLVMValueRef base_addr)
757 {
758 struct tgsi_shader_info *info = &ctx->shader->selector->info;
759 ubyte *name, *index, *array_first;
760 int input_index;
761 struct tgsi_full_dst_register reg;
762 LLVMValueRef vertex_index = NULL;
763 LLVMValueRef ind_index = NULL;
764
765 /* Set the register description. The address computation is the same
766 * for sources and destinations. */
767 if (src) {
768 reg.Register.File = src->Register.File;
769 reg.Register.Index = src->Register.Index;
770 reg.Register.Indirect = src->Register.Indirect;
771 reg.Register.Dimension = src->Register.Dimension;
772 reg.Indirect = src->Indirect;
773 reg.Dimension = src->Dimension;
774 reg.DimIndirect = src->DimIndirect;
775 } else
776 reg = *dst;
777
778 /* If the register is 2-dimensional (e.g. an array of vertices
779 * in a primitive), calculate the base address of the vertex. */
780 if (reg.Register.Dimension) {
781 if (reg.Dimension.Indirect)
782 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
783 1, reg.Dimension.Index);
784 else
785 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
786 }
787
788 /* Get information about the register. */
789 if (reg.Register.File == TGSI_FILE_INPUT) {
790 name = info->input_semantic_name;
791 index = info->input_semantic_index;
792 array_first = info->input_array_first;
793 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
794 name = info->output_semantic_name;
795 index = info->output_semantic_index;
796 array_first = info->output_array_first;
797 } else {
798 assert(0);
799 return NULL;
800 }
801
802 if (reg.Register.Indirect) {
803 /* Add the relative address of the element. */
804 if (reg.Indirect.ArrayID)
805 input_index = array_first[reg.Indirect.ArrayID];
806 else
807 input_index = reg.Register.Index;
808
809 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
810 1, reg.Register.Index - input_index);
811 } else {
812 input_index = reg.Register.Index;
813 }
814
815 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
816 base_addr, vertex_index,
817 ind_index, input_index,
818 name, index,
819 !reg.Register.Dimension);
820 }
821
822 /* The offchip buffer layout for TCS->TES is
823 *
824 * - attribute 0 of patch 0 vertex 0
825 * - attribute 0 of patch 0 vertex 1
826 * - attribute 0 of patch 0 vertex 2
827 * ...
828 * - attribute 0 of patch 1 vertex 0
829 * - attribute 0 of patch 1 vertex 1
830 * ...
831 * - attribute 1 of patch 0 vertex 0
832 * - attribute 1 of patch 0 vertex 1
833 * ...
834 * - per patch attribute 0 of patch 0
835 * - per patch attribute 0 of patch 1
836 * ...
837 *
838 * Note that every attribute has 4 components.
839 */
840 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
841 LLVMValueRef rel_patch_id,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index)
844 {
845 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
846 LLVMValueRef param_stride, constant16;
847
848 vertices_per_patch = get_num_tcs_out_vertices(ctx);
849 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
850 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
851 num_patches, "");
852
853 constant16 = LLVMConstInt(ctx->i32, 16, 0);
854 if (vertex_index) {
855 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
856 vertices_per_patch, vertex_index);
857 param_stride = total_vertices;
858 } else {
859 base_addr = rel_patch_id;
860 param_stride = num_patches;
861 }
862
863 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
864 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
865
866 if (!vertex_index) {
867 LLVMValueRef patch_data_offset =
868 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
869
870 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
871 patch_data_offset, "");
872 }
873 return base_addr;
874 }
875
876 /* This is a generic helper that can be shared by the NIR and TGSI backends */
877 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
878 struct si_shader_context *ctx,
879 LLVMValueRef vertex_index,
880 LLVMValueRef param_index,
881 unsigned param_base,
882 ubyte *name,
883 ubyte *index,
884 bool is_patch)
885 {
886 unsigned param_index_base;
887
888 param_index_base = is_patch ?
889 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
890 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
891
892 if (param_index) {
893 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
894 LLVMConstInt(ctx->i32, param_index_base, 0),
895 "");
896 } else {
897 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
898 }
899
900 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
901 vertex_index, param_index);
902 }
903
904 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
905 struct si_shader_context *ctx,
906 const struct tgsi_full_dst_register *dst,
907 const struct tgsi_full_src_register *src)
908 {
909 struct tgsi_shader_info *info = &ctx->shader->selector->info;
910 ubyte *name, *index, *array_first;
911 struct tgsi_full_src_register reg;
912 LLVMValueRef vertex_index = NULL;
913 LLVMValueRef param_index = NULL;
914 unsigned param_base;
915
916 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
917
918 if (reg.Register.Dimension) {
919
920 if (reg.Dimension.Indirect)
921 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
922 1, reg.Dimension.Index);
923 else
924 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
925 }
926
927 /* Get information about the register. */
928 if (reg.Register.File == TGSI_FILE_INPUT) {
929 name = info->input_semantic_name;
930 index = info->input_semantic_index;
931 array_first = info->input_array_first;
932 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
933 name = info->output_semantic_name;
934 index = info->output_semantic_index;
935 array_first = info->output_array_first;
936 } else {
937 assert(0);
938 return NULL;
939 }
940
941 if (reg.Register.Indirect) {
942 if (reg.Indirect.ArrayID)
943 param_base = array_first[reg.Indirect.ArrayID];
944 else
945 param_base = reg.Register.Index;
946
947 param_index = si_get_indirect_index(ctx, &reg.Indirect,
948 1, reg.Register.Index - param_base);
949
950 } else {
951 param_base = reg.Register.Index;
952 }
953
954 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
955 param_index, param_base,
956 name, index, !reg.Register.Dimension);
957 }
958
959 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
960 LLVMTypeRef type, unsigned swizzle,
961 LLVMValueRef buffer, LLVMValueRef offset,
962 LLVMValueRef base, bool can_speculate)
963 {
964 struct si_shader_context *ctx = si_shader_context(bld_base);
965 LLVMValueRef value, value2;
966 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
967
968 if (swizzle == ~0) {
969 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
970 0, 1, 0, can_speculate, false);
971
972 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
973 }
974
975 if (!llvm_type_is_64bit(ctx, type)) {
976 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
977 0, 1, 0, can_speculate, false);
978
979 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
980 return LLVMBuildExtractElement(ctx->ac.builder, value,
981 LLVMConstInt(ctx->i32, swizzle, 0), "");
982 }
983
984 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
985 swizzle * 4, 1, 0, can_speculate, false);
986
987 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
988 swizzle * 4 + 4, 1, 0, can_speculate, false);
989
990 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
991 }
992
993 /**
994 * Load from LSHS LDS storage.
995 *
996 * \param type output value type
997 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
998 * \param dw_addr address in dwords
999 */
1000 static LLVMValueRef lshs_lds_load(struct lp_build_tgsi_context *bld_base,
1001 LLVMTypeRef type, unsigned swizzle,
1002 LLVMValueRef dw_addr)
1003 {
1004 struct si_shader_context *ctx = si_shader_context(bld_base);
1005 LLVMValueRef value;
1006
1007 if (swizzle == ~0) {
1008 LLVMValueRef values[TGSI_NUM_CHANNELS];
1009
1010 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1011 values[chan] = lshs_lds_load(bld_base, type, chan, dw_addr);
1012
1013 return ac_build_gather_values(&ctx->ac, values,
1014 TGSI_NUM_CHANNELS);
1015 }
1016
1017 /* Split 64-bit loads. */
1018 if (llvm_type_is_64bit(ctx, type)) {
1019 LLVMValueRef lo, hi;
1020
1021 lo = lshs_lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1022 hi = lshs_lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1023 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1024 }
1025
1026 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1027 LLVMConstInt(ctx->i32, swizzle, 0), "");
1028
1029 value = ac_lds_load(&ctx->ac, dw_addr);
1030
1031 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1032 }
1033
1034 /**
1035 * Store to LSHS LDS storage.
1036 *
1037 * \param swizzle offset (typically 0..3)
1038 * \param dw_addr address in dwords
1039 * \param value value to store
1040 */
1041 static void lshs_lds_store(struct si_shader_context *ctx,
1042 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1043 LLVMValueRef value)
1044 {
1045 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1046 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1047
1048 ac_lds_store(&ctx->ac, dw_addr, value);
1049 }
1050
1051 enum si_tess_ring {
1052 TCS_FACTOR_RING,
1053 TESS_OFFCHIP_RING_TCS,
1054 TESS_OFFCHIP_RING_TES,
1055 };
1056
1057 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1058 enum si_tess_ring ring)
1059 {
1060 LLVMBuilderRef builder = ctx->ac.builder;
1061 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1062 ctx->param_tcs_out_lds_layout;
1063 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1064
1065 /* TCS only receives high 13 bits of the address. */
1066 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1067 addr = LLVMBuildAnd(builder, addr,
1068 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1069 }
1070
1071 if (ring == TCS_FACTOR_RING) {
1072 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1073 addr = LLVMBuildAdd(builder, addr,
1074 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1075 }
1076
1077 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1078 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1079 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1080 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1081
1082 if (ctx->screen->info.chip_class >= GFX10)
1083 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1084 S_008F0C_OOB_SELECT(3) |
1085 S_008F0C_RESOURCE_LEVEL(1);
1086 else
1087 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1088 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1089
1090 LLVMValueRef desc[4];
1091 desc[0] = addr;
1092 desc[1] = LLVMConstInt(ctx->i32,
1093 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1094 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1095 desc[3] = LLVMConstInt(ctx->i32, rsrc3, false);
1096
1097 return ac_build_gather_values(&ctx->ac, desc, 4);
1098 }
1099
1100 static LLVMValueRef fetch_input_tcs(
1101 struct lp_build_tgsi_context *bld_base,
1102 const struct tgsi_full_src_register *reg,
1103 enum tgsi_opcode_type type, unsigned swizzle_in)
1104 {
1105 struct si_shader_context *ctx = si_shader_context(bld_base);
1106 LLVMValueRef dw_addr, stride;
1107 unsigned swizzle = swizzle_in & 0xffff;
1108 stride = get_tcs_in_vertex_dw_stride(ctx);
1109 dw_addr = get_tcs_in_current_patch_offset(ctx);
1110 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1111
1112 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1113 }
1114
1115 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1116 LLVMTypeRef type,
1117 LLVMValueRef vertex_index,
1118 LLVMValueRef param_index,
1119 unsigned const_index,
1120 unsigned location,
1121 unsigned driver_location,
1122 unsigned component,
1123 unsigned num_components,
1124 bool is_patch,
1125 bool is_compact,
1126 bool load_input)
1127 {
1128 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1129 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1130 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1131 LLVMValueRef dw_addr, stride;
1132
1133 driver_location = driver_location / 4;
1134
1135 if (load_input) {
1136 stride = get_tcs_in_vertex_dw_stride(ctx);
1137 dw_addr = get_tcs_in_current_patch_offset(ctx);
1138 } else {
1139 if (is_patch) {
1140 stride = NULL;
1141 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1142 } else {
1143 stride = get_tcs_out_vertex_dw_stride(ctx);
1144 dw_addr = get_tcs_out_current_patch_offset(ctx);
1145 }
1146 }
1147
1148 if (param_index) {
1149 /* Add the constant index to the indirect index */
1150 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1151 LLVMConstInt(ctx->i32, const_index, 0), "");
1152 } else {
1153 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1154 }
1155
1156 ubyte *names;
1157 ubyte *indices;
1158 if (load_input) {
1159 names = info->input_semantic_name;
1160 indices = info->input_semantic_index;
1161 } else {
1162 names = info->output_semantic_name;
1163 indices = info->output_semantic_index;
1164 }
1165
1166 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1167 vertex_index, param_index,
1168 driver_location,
1169 names, indices,
1170 is_patch);
1171
1172 LLVMValueRef value[4];
1173 for (unsigned i = 0; i < num_components; i++) {
1174 unsigned offset = i;
1175 if (llvm_type_is_64bit(ctx, type))
1176 offset *= 2;
1177
1178 offset += component;
1179 value[i + component] = lshs_lds_load(bld_base, type, offset, dw_addr);
1180 }
1181
1182 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1183 }
1184
1185 static LLVMValueRef fetch_output_tcs(
1186 struct lp_build_tgsi_context *bld_base,
1187 const struct tgsi_full_src_register *reg,
1188 enum tgsi_opcode_type type, unsigned swizzle_in)
1189 {
1190 struct si_shader_context *ctx = si_shader_context(bld_base);
1191 LLVMValueRef dw_addr, stride;
1192 unsigned swizzle = (swizzle_in & 0xffff);
1193
1194 if (reg->Register.Dimension) {
1195 stride = get_tcs_out_vertex_dw_stride(ctx);
1196 dw_addr = get_tcs_out_current_patch_offset(ctx);
1197 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1198 } else {
1199 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1200 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1201 }
1202
1203 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1204 }
1205
1206 static LLVMValueRef fetch_input_tes(
1207 struct lp_build_tgsi_context *bld_base,
1208 const struct tgsi_full_src_register *reg,
1209 enum tgsi_opcode_type type, unsigned swizzle_in)
1210 {
1211 struct si_shader_context *ctx = si_shader_context(bld_base);
1212 LLVMValueRef base, addr;
1213 unsigned swizzle = (swizzle_in & 0xffff);
1214
1215 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1216 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1217
1218 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1219 ctx->tess_offchip_ring, base, addr, true);
1220 }
1221
1222 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1223 LLVMTypeRef type,
1224 LLVMValueRef vertex_index,
1225 LLVMValueRef param_index,
1226 unsigned const_index,
1227 unsigned location,
1228 unsigned driver_location,
1229 unsigned component,
1230 unsigned num_components,
1231 bool is_patch,
1232 bool is_compact,
1233 bool load_input)
1234 {
1235 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1236 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1237 LLVMValueRef base, addr;
1238
1239 driver_location = driver_location / 4;
1240
1241 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1242
1243 if (param_index) {
1244 /* Add the constant index to the indirect index */
1245 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1246 LLVMConstInt(ctx->i32, const_index, 0), "");
1247 } else {
1248 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1249 }
1250
1251 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1252 param_index, driver_location,
1253 info->input_semantic_name,
1254 info->input_semantic_index,
1255 is_patch);
1256
1257 /* TODO: This will generate rather ordinary llvm code, although it
1258 * should be easy for the optimiser to fix up. In future we might want
1259 * to refactor buffer_load(), but for now this maximises code sharing
1260 * between the NIR and TGSI backends.
1261 */
1262 LLVMValueRef value[4];
1263 for (unsigned i = 0; i < num_components; i++) {
1264 unsigned offset = i;
1265 if (llvm_type_is_64bit(ctx, type)) {
1266 offset *= 2;
1267 if (offset == 4) {
1268 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1269 vertex_index,
1270 param_index,
1271 driver_location + 1,
1272 info->input_semantic_name,
1273 info->input_semantic_index,
1274 is_patch);
1275 }
1276
1277 offset = offset % 4;
1278 }
1279
1280 offset += component;
1281 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1282 ctx->tess_offchip_ring, base, addr, true);
1283 }
1284
1285 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1286 }
1287
1288 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1289 const struct tgsi_full_instruction *inst,
1290 const struct tgsi_opcode_info *info,
1291 unsigned index,
1292 LLVMValueRef dst[4])
1293 {
1294 struct si_shader_context *ctx = si_shader_context(bld_base);
1295 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1296 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1297 unsigned chan_index;
1298 LLVMValueRef dw_addr, stride;
1299 LLVMValueRef buffer, base, buf_addr;
1300 LLVMValueRef values[4];
1301 bool skip_lds_store;
1302 bool is_tess_factor = false, is_tess_inner = false;
1303
1304 /* Only handle per-patch and per-vertex outputs here.
1305 * Vectors will be lowered to scalars and this function will be called again.
1306 */
1307 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1308 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1309 si_llvm_emit_store(bld_base, inst, info, index, dst);
1310 return;
1311 }
1312
1313 if (reg->Register.Dimension) {
1314 stride = get_tcs_out_vertex_dw_stride(ctx);
1315 dw_addr = get_tcs_out_current_patch_offset(ctx);
1316 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1317 skip_lds_store = !sh_info->reads_pervertex_outputs;
1318 } else {
1319 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1320 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1321 skip_lds_store = !sh_info->reads_perpatch_outputs;
1322
1323 if (!reg->Register.Indirect) {
1324 int name = sh_info->output_semantic_name[reg->Register.Index];
1325
1326 /* Always write tess factors into LDS for the TCS epilog. */
1327 if (name == TGSI_SEMANTIC_TESSINNER ||
1328 name == TGSI_SEMANTIC_TESSOUTER) {
1329 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1330 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1331 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1332 is_tess_factor = true;
1333 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1334 }
1335 }
1336 }
1337
1338 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1339
1340 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1341 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1342
1343 uint32_t writemask = reg->Register.WriteMask;
1344 while (writemask) {
1345 chan_index = u_bit_scan(&writemask);
1346 LLVMValueRef value = dst[chan_index];
1347
1348 if (inst->Instruction.Saturate)
1349 value = ac_build_clamp(&ctx->ac, value);
1350
1351 /* Skip LDS stores if there is no LDS read of this output. */
1352 if (!skip_lds_store)
1353 lshs_lds_store(ctx, chan_index, dw_addr, value);
1354
1355 value = ac_to_integer(&ctx->ac, value);
1356 values[chan_index] = value;
1357
1358 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1359 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1360 buf_addr, base,
1361 4 * chan_index, 1, 0, false);
1362 }
1363
1364 /* Write tess factors into VGPRs for the epilog. */
1365 if (is_tess_factor &&
1366 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1367 if (!is_tess_inner) {
1368 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1369 ctx->invoc0_tess_factors[chan_index]);
1370 } else if (chan_index < 2) {
1371 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1372 ctx->invoc0_tess_factors[4 + chan_index]);
1373 }
1374 }
1375 }
1376
1377 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1378 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1379 values, 4);
1380 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1381 base, 0, 1, 0, false);
1382 }
1383 }
1384
1385 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1386 const struct nir_variable *var,
1387 LLVMValueRef vertex_index,
1388 LLVMValueRef param_index,
1389 unsigned const_index,
1390 LLVMValueRef src,
1391 unsigned writemask)
1392 {
1393 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1394 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1395 const unsigned component = var->data.location_frac;
1396 const bool is_patch = var->data.patch;
1397 unsigned driver_location = var->data.driver_location;
1398 LLVMValueRef dw_addr, stride;
1399 LLVMValueRef buffer, base, addr;
1400 LLVMValueRef values[8];
1401 bool skip_lds_store;
1402 bool is_tess_factor = false, is_tess_inner = false;
1403
1404 driver_location = driver_location / 4;
1405
1406 if (param_index) {
1407 /* Add the constant index to the indirect index */
1408 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1409 LLVMConstInt(ctx->i32, const_index, 0), "");
1410 } else {
1411 if (const_index != 0)
1412 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1413 }
1414
1415 if (!is_patch) {
1416 stride = get_tcs_out_vertex_dw_stride(ctx);
1417 dw_addr = get_tcs_out_current_patch_offset(ctx);
1418 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1419 vertex_index, param_index,
1420 driver_location,
1421 info->output_semantic_name,
1422 info->output_semantic_index,
1423 is_patch);
1424
1425 skip_lds_store = !info->reads_pervertex_outputs;
1426 } else {
1427 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1428 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1429 vertex_index, param_index,
1430 driver_location,
1431 info->output_semantic_name,
1432 info->output_semantic_index,
1433 is_patch);
1434
1435 skip_lds_store = !info->reads_perpatch_outputs;
1436
1437 if (!param_index) {
1438 int name = info->output_semantic_name[driver_location];
1439
1440 /* Always write tess factors into LDS for the TCS epilog. */
1441 if (name == TGSI_SEMANTIC_TESSINNER ||
1442 name == TGSI_SEMANTIC_TESSOUTER) {
1443 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1444 skip_lds_store = !info->reads_tessfactor_outputs &&
1445 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1446 is_tess_factor = true;
1447 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1448 }
1449 }
1450 }
1451
1452 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1453
1454 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1455
1456 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1457 param_index, driver_location,
1458 info->output_semantic_name,
1459 info->output_semantic_index,
1460 is_patch);
1461
1462 for (unsigned chan = 0; chan < 8; chan++) {
1463 if (!(writemask & (1 << chan)))
1464 continue;
1465 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1466
1467 unsigned buffer_store_offset = chan % 4;
1468 if (chan == 4) {
1469 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1470 vertex_index,
1471 param_index,
1472 driver_location + 1,
1473 info->output_semantic_name,
1474 info->output_semantic_index,
1475 is_patch);
1476 }
1477
1478 /* Skip LDS stores if there is no LDS read of this output. */
1479 if (!skip_lds_store)
1480 lshs_lds_store(ctx, chan, dw_addr, value);
1481
1482 value = ac_to_integer(&ctx->ac, value);
1483 values[chan] = value;
1484
1485 if (writemask != 0xF && !is_tess_factor) {
1486 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1487 addr, base,
1488 4 * buffer_store_offset,
1489 1, 0, false);
1490 }
1491
1492 /* Write tess factors into VGPRs for the epilog. */
1493 if (is_tess_factor &&
1494 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1495 if (!is_tess_inner) {
1496 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1497 ctx->invoc0_tess_factors[chan]);
1498 } else if (chan < 2) {
1499 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1500 ctx->invoc0_tess_factors[4 + chan]);
1501 }
1502 }
1503 }
1504
1505 if (writemask == 0xF && !is_tess_factor) {
1506 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1507 values, 4);
1508 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1509 base, 0, 1, 0, false);
1510 }
1511 }
1512
1513 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1514 unsigned input_index,
1515 unsigned vtx_offset_param,
1516 LLVMTypeRef type,
1517 unsigned swizzle)
1518 {
1519 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1520 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1521 struct si_shader *shader = ctx->shader;
1522 LLVMValueRef vtx_offset, soffset;
1523 struct tgsi_shader_info *info = &shader->selector->info;
1524 unsigned semantic_name = info->input_semantic_name[input_index];
1525 unsigned semantic_index = info->input_semantic_index[input_index];
1526 unsigned param;
1527 LLVMValueRef value;
1528
1529 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1530
1531 /* GFX9 has the ESGS ring in LDS. */
1532 if (ctx->screen->info.chip_class >= GFX9) {
1533 unsigned index = vtx_offset_param;
1534
1535 switch (index / 2) {
1536 case 0:
1537 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1538 index % 2 ? 16 : 0, 16);
1539 break;
1540 case 1:
1541 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1542 index % 2 ? 16 : 0, 16);
1543 break;
1544 case 2:
1545 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1546 index % 2 ? 16 : 0, 16);
1547 break;
1548 default:
1549 assert(0);
1550 return NULL;
1551 }
1552
1553 unsigned offset = param * 4 + swizzle;
1554 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1555 LLVMConstInt(ctx->i32, offset, false), "");
1556
1557 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset);
1558 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1559 if (llvm_type_is_64bit(ctx, type)) {
1560 ptr = LLVMBuildGEP(ctx->ac.builder, ptr,
1561 &ctx->ac.i32_1, 1, "");
1562 LLVMValueRef values[2] = {
1563 value,
1564 LLVMBuildLoad(ctx->ac.builder, ptr, "")
1565 };
1566 value = ac_build_gather_values(&ctx->ac, values, 2);
1567 }
1568 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1569 }
1570
1571 /* GFX6: input load from the ESGS ring in memory. */
1572 if (swizzle == ~0) {
1573 LLVMValueRef values[TGSI_NUM_CHANNELS];
1574 unsigned chan;
1575 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1576 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1577 type, chan);
1578 }
1579 return ac_build_gather_values(&ctx->ac, values,
1580 TGSI_NUM_CHANNELS);
1581 }
1582
1583 /* Get the vertex offset parameter on GFX6. */
1584 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1585
1586 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1587 LLVMConstInt(ctx->i32, 4, 0), "");
1588
1589 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1590
1591 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1592 vtx_offset, soffset, 0, 1, 0, true, false);
1593 if (llvm_type_is_64bit(ctx, type)) {
1594 LLVMValueRef value2;
1595 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1596
1597 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1598 ctx->i32_0, vtx_offset, soffset,
1599 0, 1, 0, true, false);
1600 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1601 }
1602 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1603 }
1604
1605 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1606 unsigned location,
1607 unsigned driver_location,
1608 unsigned component,
1609 unsigned num_components,
1610 unsigned vertex_index,
1611 unsigned const_index,
1612 LLVMTypeRef type)
1613 {
1614 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1615
1616 LLVMValueRef value[4];
1617 for (unsigned i = 0; i < num_components; i++) {
1618 unsigned offset = i;
1619 if (llvm_type_is_64bit(ctx, type))
1620 offset *= 2;
1621
1622 offset += component;
1623 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1624 vertex_index, type, offset);
1625 }
1626
1627 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1628 }
1629
1630 static LLVMValueRef fetch_input_gs(
1631 struct lp_build_tgsi_context *bld_base,
1632 const struct tgsi_full_src_register *reg,
1633 enum tgsi_opcode_type type,
1634 unsigned swizzle_in)
1635 {
1636 struct si_shader_context *ctx = si_shader_context(bld_base);
1637 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1638 unsigned swizzle = swizzle_in & 0xffff;
1639
1640 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1641 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1642 return si_get_primitive_id(ctx, swizzle);
1643
1644 if (!reg->Register.Dimension)
1645 return NULL;
1646
1647 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1648 reg->Dimension.Index,
1649 tgsi2llvmtype(bld_base, type),
1650 swizzle);
1651 }
1652
1653 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1654 {
1655 switch (interpolate) {
1656 case TGSI_INTERPOLATE_CONSTANT:
1657 return 0;
1658
1659 case TGSI_INTERPOLATE_LINEAR:
1660 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1661 return SI_PARAM_LINEAR_SAMPLE;
1662 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1663 return SI_PARAM_LINEAR_CENTROID;
1664 else
1665 return SI_PARAM_LINEAR_CENTER;
1666 break;
1667 case TGSI_INTERPOLATE_COLOR:
1668 case TGSI_INTERPOLATE_PERSPECTIVE:
1669 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1670 return SI_PARAM_PERSP_SAMPLE;
1671 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1672 return SI_PARAM_PERSP_CENTROID;
1673 else
1674 return SI_PARAM_PERSP_CENTER;
1675 break;
1676 default:
1677 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1678 return -1;
1679 }
1680 }
1681
1682 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1683 unsigned attr_index, unsigned chan,
1684 LLVMValueRef prim_mask,
1685 LLVMValueRef i, LLVMValueRef j)
1686 {
1687 if (i || j) {
1688 return ac_build_fs_interp(&ctx->ac,
1689 LLVMConstInt(ctx->i32, chan, 0),
1690 LLVMConstInt(ctx->i32, attr_index, 0),
1691 prim_mask, i, j);
1692 }
1693 return ac_build_fs_interp_mov(&ctx->ac,
1694 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1695 LLVMConstInt(ctx->i32, chan, 0),
1696 LLVMConstInt(ctx->i32, attr_index, 0),
1697 prim_mask);
1698 }
1699
1700 /**
1701 * Interpolate a fragment shader input.
1702 *
1703 * @param ctx context
1704 * @param input_index index of the input in hardware
1705 * @param semantic_name TGSI_SEMANTIC_*
1706 * @param semantic_index semantic index
1707 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1708 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1709 * @param interp_param interpolation weights (i,j)
1710 * @param prim_mask SI_PARAM_PRIM_MASK
1711 * @param face SI_PARAM_FRONT_FACE
1712 * @param result the return value (4 components)
1713 */
1714 static void interp_fs_input(struct si_shader_context *ctx,
1715 unsigned input_index,
1716 unsigned semantic_name,
1717 unsigned semantic_index,
1718 unsigned num_interp_inputs,
1719 unsigned colors_read_mask,
1720 LLVMValueRef interp_param,
1721 LLVMValueRef prim_mask,
1722 LLVMValueRef face,
1723 LLVMValueRef result[4])
1724 {
1725 LLVMValueRef i = NULL, j = NULL;
1726 unsigned chan;
1727
1728 /* fs.constant returns the param from the middle vertex, so it's not
1729 * really useful for flat shading. It's meant to be used for custom
1730 * interpolation (but the intrinsic can't fetch from the other two
1731 * vertices).
1732 *
1733 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1734 * to do the right thing. The only reason we use fs.constant is that
1735 * fs.interp cannot be used on integers, because they can be equal
1736 * to NaN.
1737 *
1738 * When interp is false we will use fs.constant or for newer llvm,
1739 * amdgcn.interp.mov.
1740 */
1741 bool interp = interp_param != NULL;
1742
1743 if (interp) {
1744 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1745 LLVMVectorType(ctx->f32, 2), "");
1746
1747 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1748 ctx->i32_0, "");
1749 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1750 ctx->i32_1, "");
1751 }
1752
1753 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1754 ctx->shader->key.part.ps.prolog.color_two_side) {
1755 LLVMValueRef is_face_positive;
1756
1757 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1758 * otherwise it's at offset "num_inputs".
1759 */
1760 unsigned back_attr_offset = num_interp_inputs;
1761 if (semantic_index == 1 && colors_read_mask & 0xf)
1762 back_attr_offset += 1;
1763
1764 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1765 face, ctx->i32_0, "");
1766
1767 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1768 LLVMValueRef front, back;
1769
1770 front = si_build_fs_interp(ctx,
1771 input_index, chan,
1772 prim_mask, i, j);
1773 back = si_build_fs_interp(ctx,
1774 back_attr_offset, chan,
1775 prim_mask, i, j);
1776
1777 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1778 is_face_positive,
1779 front,
1780 back,
1781 "");
1782 }
1783 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1784 result[0] = si_build_fs_interp(ctx, input_index,
1785 0, prim_mask, i, j);
1786 result[1] =
1787 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1788 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1789 } else {
1790 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1791 result[chan] = si_build_fs_interp(ctx,
1792 input_index, chan,
1793 prim_mask, i, j);
1794 }
1795 }
1796 }
1797
1798 void si_llvm_load_input_fs(
1799 struct si_shader_context *ctx,
1800 unsigned input_index,
1801 LLVMValueRef out[4])
1802 {
1803 struct si_shader *shader = ctx->shader;
1804 struct tgsi_shader_info *info = &shader->selector->info;
1805 LLVMValueRef main_fn = ctx->main_fn;
1806 LLVMValueRef interp_param = NULL;
1807 int interp_param_idx;
1808 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1809 unsigned semantic_index = info->input_semantic_index[input_index];
1810 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1811 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1812
1813 /* Get colors from input VGPRs (set by the prolog). */
1814 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1815 unsigned colors_read = shader->selector->info.colors_read;
1816 unsigned mask = colors_read >> (semantic_index * 4);
1817 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1818 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1819 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1820
1821 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1822 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1823 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1824 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1825 return;
1826 }
1827
1828 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1829 if (interp_param_idx == -1)
1830 return;
1831 else if (interp_param_idx) {
1832 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1833 }
1834
1835 interp_fs_input(ctx, input_index, semantic_name,
1836 semantic_index, 0, /* this param is unused */
1837 shader->selector->info.colors_read, interp_param,
1838 ctx->abi.prim_mask,
1839 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1840 &out[0]);
1841 }
1842
1843 static void declare_input_fs(
1844 struct si_shader_context *ctx,
1845 unsigned input_index,
1846 const struct tgsi_full_declaration *decl,
1847 LLVMValueRef out[4])
1848 {
1849 si_llvm_load_input_fs(ctx, input_index, out);
1850 }
1851
1852 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1853 {
1854 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1855 }
1856
1857 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1858 {
1859 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1860
1861 /* For non-indexed draws, the base vertex set by the driver
1862 * (for direct draws) or the CP (for indirect draws) is the
1863 * first vertex ID, but GLSL expects 0 to be returned.
1864 */
1865 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1866 ctx->param_vs_state_bits);
1867 LLVMValueRef indexed;
1868
1869 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1870 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1871
1872 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1873 ctx->i32_0, "");
1874 }
1875
1876 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1877 {
1878 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1879
1880 LLVMValueRef values[3];
1881 LLVMValueRef result;
1882 unsigned i;
1883 unsigned *properties = ctx->shader->selector->info.properties;
1884
1885 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1886 unsigned sizes[3] = {
1887 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1888 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1889 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1890 };
1891
1892 for (i = 0; i < 3; ++i)
1893 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1894
1895 result = ac_build_gather_values(&ctx->ac, values, 3);
1896 } else {
1897 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1898 }
1899
1900 return result;
1901 }
1902
1903 /**
1904 * Load a dword from a constant buffer.
1905 */
1906 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1907 LLVMValueRef resource,
1908 LLVMValueRef offset)
1909 {
1910 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1911 0, 0, 0, true, true);
1912 }
1913
1914 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1915 {
1916 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1917 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1918 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1919 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1920
1921 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1922 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1923 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1924
1925 LLVMValueRef pos[4] = {
1926 buffer_load_const(ctx, resource, offset0),
1927 buffer_load_const(ctx, resource, offset1),
1928 LLVMConstReal(ctx->f32, 0),
1929 LLVMConstReal(ctx->f32, 0)
1930 };
1931
1932 return ac_build_gather_values(&ctx->ac, pos, 4);
1933 }
1934
1935 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1936 {
1937 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1938 return ac_to_integer(&ctx->ac, abi->sample_coverage);
1939 }
1940
1941 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
1942 {
1943 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1944 LLVMValueRef coord[4] = {
1945 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1946 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1947 ctx->ac.f32_0,
1948 ctx->ac.f32_0
1949 };
1950
1951 /* For triangles, the vector should be (u, v, 1-u-v). */
1952 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1953 PIPE_PRIM_TRIANGLES) {
1954 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1955 LLVMBuildFAdd(ctx->ac.builder,
1956 coord[0], coord[1], ""), "");
1957 }
1958 return ac_build_gather_values(&ctx->ac, coord, 4);
1959 }
1960
1961 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1962 unsigned semantic_name)
1963 {
1964 LLVMValueRef base, addr;
1965
1966 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1967
1968 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1969 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1970 LLVMConstInt(ctx->i32, param, 0));
1971
1972 return buffer_load(&ctx->bld_base, ctx->f32,
1973 ~0, ctx->tess_offchip_ring, base, addr, true);
1974
1975 }
1976
1977 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1978 unsigned varying_id)
1979 {
1980 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1981 unsigned semantic_name;
1982
1983 switch (varying_id) {
1984 case VARYING_SLOT_TESS_LEVEL_INNER:
1985 semantic_name = TGSI_SEMANTIC_TESSINNER;
1986 break;
1987 case VARYING_SLOT_TESS_LEVEL_OUTER:
1988 semantic_name = TGSI_SEMANTIC_TESSOUTER;
1989 break;
1990 default:
1991 unreachable("unknown tess level");
1992 }
1993
1994 return load_tess_level(ctx, semantic_name);
1995
1996 }
1997
1998 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
1999 {
2000 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2001 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2002 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2003 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2004 return get_num_tcs_out_vertices(ctx);
2005 else
2006 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2007 }
2008
2009 void si_load_system_value(struct si_shader_context *ctx,
2010 unsigned index,
2011 const struct tgsi_full_declaration *decl)
2012 {
2013 LLVMValueRef value = 0;
2014
2015 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2016
2017 switch (decl->Semantic.Name) {
2018 case TGSI_SEMANTIC_INSTANCEID:
2019 value = ctx->abi.instance_id;
2020 break;
2021
2022 case TGSI_SEMANTIC_VERTEXID:
2023 value = LLVMBuildAdd(ctx->ac.builder,
2024 ctx->abi.vertex_id,
2025 ctx->abi.base_vertex, "");
2026 break;
2027
2028 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2029 /* Unused. Clarify the meaning in indexed vs. non-indexed
2030 * draws if this is ever used again. */
2031 assert(false);
2032 break;
2033
2034 case TGSI_SEMANTIC_BASEVERTEX:
2035 value = get_base_vertex(&ctx->abi);
2036 break;
2037
2038 case TGSI_SEMANTIC_BASEINSTANCE:
2039 value = ctx->abi.start_instance;
2040 break;
2041
2042 case TGSI_SEMANTIC_DRAWID:
2043 value = ctx->abi.draw_id;
2044 break;
2045
2046 case TGSI_SEMANTIC_INVOCATIONID:
2047 if (ctx->type == PIPE_SHADER_TESS_CTRL) {
2048 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2049 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
2050 if (ctx->screen->info.chip_class >= GFX10) {
2051 value = LLVMBuildAnd(ctx->ac.builder,
2052 ctx->abi.gs_invocation_id,
2053 LLVMConstInt(ctx->i32, 127, 0), "");
2054 } else {
2055 value = ctx->abi.gs_invocation_id;
2056 }
2057 } else {
2058 assert(!"INVOCATIONID not implemented");
2059 }
2060 break;
2061
2062 case TGSI_SEMANTIC_POSITION:
2063 {
2064 LLVMValueRef pos[4] = {
2065 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2066 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2067 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2068 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2069 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2070 };
2071 value = ac_build_gather_values(&ctx->ac, pos, 4);
2072 break;
2073 }
2074
2075 case TGSI_SEMANTIC_FACE:
2076 value = ctx->abi.front_face;
2077 break;
2078
2079 case TGSI_SEMANTIC_SAMPLEID:
2080 value = si_get_sample_id(ctx);
2081 break;
2082
2083 case TGSI_SEMANTIC_SAMPLEPOS: {
2084 LLVMValueRef pos[4] = {
2085 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2086 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2087 LLVMConstReal(ctx->f32, 0),
2088 LLVMConstReal(ctx->f32, 0)
2089 };
2090 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2091 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2092 value = ac_build_gather_values(&ctx->ac, pos, 4);
2093 break;
2094 }
2095
2096 case TGSI_SEMANTIC_SAMPLEMASK:
2097 /* This can only occur with the OpenGL Core profile, which
2098 * doesn't support smoothing.
2099 */
2100 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2101 break;
2102
2103 case TGSI_SEMANTIC_TESSCOORD:
2104 value = si_load_tess_coord(&ctx->abi);
2105 break;
2106
2107 case TGSI_SEMANTIC_VERTICESIN:
2108 value = si_load_patch_vertices_in(&ctx->abi);
2109 break;
2110
2111 case TGSI_SEMANTIC_TESSINNER:
2112 case TGSI_SEMANTIC_TESSOUTER:
2113 value = load_tess_level(ctx, decl->Semantic.Name);
2114 break;
2115
2116 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2117 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2118 {
2119 LLVMValueRef buf, slot, val[4];
2120 int i, offset;
2121
2122 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2123 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2124 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2125 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2126
2127 for (i = 0; i < 4; i++)
2128 val[i] = buffer_load_const(ctx, buf,
2129 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2130 value = ac_build_gather_values(&ctx->ac, val, 4);
2131 break;
2132 }
2133
2134 case TGSI_SEMANTIC_PRIMID:
2135 value = si_get_primitive_id(ctx, 0);
2136 break;
2137
2138 case TGSI_SEMANTIC_GRID_SIZE:
2139 value = ctx->abi.num_work_groups;
2140 break;
2141
2142 case TGSI_SEMANTIC_BLOCK_SIZE:
2143 value = get_block_size(&ctx->abi);
2144 break;
2145
2146 case TGSI_SEMANTIC_BLOCK_ID:
2147 {
2148 LLVMValueRef values[3];
2149
2150 for (int i = 0; i < 3; i++) {
2151 values[i] = ctx->i32_0;
2152 if (ctx->abi.workgroup_ids[i]) {
2153 values[i] = ctx->abi.workgroup_ids[i];
2154 }
2155 }
2156 value = ac_build_gather_values(&ctx->ac, values, 3);
2157 break;
2158 }
2159
2160 case TGSI_SEMANTIC_THREAD_ID:
2161 value = ctx->abi.local_invocation_ids;
2162 break;
2163
2164 case TGSI_SEMANTIC_HELPER_INVOCATION:
2165 value = ac_build_load_helper_invocation(&ctx->ac);
2166 break;
2167
2168 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2169 value = LLVMConstInt(ctx->i32, 64, 0);
2170 break;
2171
2172 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2173 value = ac_get_thread_id(&ctx->ac);
2174 break;
2175
2176 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2177 {
2178 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2179 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2180 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2181 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2182 break;
2183 }
2184
2185 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2186 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2187 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2188 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2189 {
2190 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2191 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2192 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2193 /* All bits set except LSB */
2194 value = LLVMConstInt(ctx->i64, -2, 0);
2195 } else {
2196 /* All bits set */
2197 value = LLVMConstInt(ctx->i64, -1, 0);
2198 }
2199 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2200 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2201 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2202 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2203 value = LLVMBuildNot(ctx->ac.builder, value, "");
2204 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2205 break;
2206 }
2207
2208 case TGSI_SEMANTIC_CS_USER_DATA:
2209 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2210 break;
2211
2212 default:
2213 assert(!"unknown system value");
2214 return;
2215 }
2216
2217 ctx->system_values[index] = value;
2218 }
2219
2220 void si_declare_compute_memory(struct si_shader_context *ctx)
2221 {
2222 struct si_shader_selector *sel = ctx->shader->selector;
2223 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2224
2225 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2226 LLVMValueRef var;
2227
2228 assert(!ctx->ac.lds);
2229
2230 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2231 LLVMArrayType(ctx->i8, lds_size),
2232 "compute_lds",
2233 AC_ADDR_SPACE_LDS);
2234 LLVMSetAlignment(var, 64 * 1024);
2235
2236 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2237 }
2238
2239 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2240 const struct tgsi_full_declaration *decl)
2241 {
2242 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2243 assert(decl->Range.First == decl->Range.Last);
2244
2245 si_declare_compute_memory(ctx);
2246 }
2247
2248 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2249 {
2250 LLVMValueRef ptr =
2251 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2252 struct si_shader_selector *sel = ctx->shader->selector;
2253
2254 /* Do the bounds checking with a descriptor, because
2255 * doing computation and manual bounds checking of 64-bit
2256 * addresses generates horrible VALU code with very high
2257 * VGPR usage and very low SIMD occupancy.
2258 */
2259 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2260
2261 LLVMValueRef desc0, desc1;
2262 desc0 = ptr;
2263 desc1 = LLVMConstInt(ctx->i32,
2264 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2265
2266 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2267 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2268 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2269 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2270
2271 if (ctx->screen->info.chip_class >= GFX10)
2272 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2273 S_008F0C_OOB_SELECT(3) |
2274 S_008F0C_RESOURCE_LEVEL(1);
2275 else
2276 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2277 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2278
2279 LLVMValueRef desc_elems[] = {
2280 desc0,
2281 desc1,
2282 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2283 LLVMConstInt(ctx->i32, rsrc3, false)
2284 };
2285
2286 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2287 }
2288
2289 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2290 {
2291 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2292 ctx->param_const_and_shader_buffers);
2293
2294 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2295 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2296 }
2297
2298 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2299 {
2300 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2301 struct si_shader_selector *sel = ctx->shader->selector;
2302
2303 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2304
2305 if (sel->info.const_buffers_declared == 1 &&
2306 sel->info.shader_buffers_declared == 0) {
2307 return load_const_buffer_desc_fast_path(ctx);
2308 }
2309
2310 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2311 index = LLVMBuildAdd(ctx->ac.builder, index,
2312 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2313
2314 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2315 }
2316
2317 static LLVMValueRef
2318 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2319 {
2320 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2321 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2322 ctx->param_const_and_shader_buffers);
2323
2324 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2325 index = LLVMBuildSub(ctx->ac.builder,
2326 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2327 index, "");
2328
2329 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2330 }
2331
2332 static LLVMValueRef fetch_constant(
2333 struct lp_build_tgsi_context *bld_base,
2334 const struct tgsi_full_src_register *reg,
2335 enum tgsi_opcode_type type,
2336 unsigned swizzle_in)
2337 {
2338 struct si_shader_context *ctx = si_shader_context(bld_base);
2339 struct si_shader_selector *sel = ctx->shader->selector;
2340 const struct tgsi_ind_register *ireg = &reg->Indirect;
2341 unsigned buf, idx;
2342 unsigned swizzle = swizzle_in & 0xffff;
2343
2344 LLVMValueRef addr, bufp;
2345
2346 if (swizzle_in == LP_CHAN_ALL) {
2347 unsigned chan;
2348 LLVMValueRef values[4];
2349 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2350 values[chan] = fetch_constant(bld_base, reg, type, chan);
2351
2352 return ac_build_gather_values(&ctx->ac, values, 4);
2353 }
2354
2355 /* Split 64-bit loads. */
2356 if (tgsi_type_is_64bit(type)) {
2357 LLVMValueRef lo, hi;
2358
2359 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2360 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2361 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2362 lo, hi);
2363 }
2364
2365 idx = reg->Register.Index * 4 + swizzle;
2366 if (reg->Register.Indirect) {
2367 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2368 } else {
2369 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2370 }
2371
2372 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2373 if (sel->info.const_buffers_declared == 1 &&
2374 sel->info.shader_buffers_declared == 0) {
2375 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2376 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2377 return bitcast(bld_base, type, result);
2378 }
2379
2380 assert(reg->Register.Dimension);
2381 buf = reg->Dimension.Index;
2382
2383 if (reg->Dimension.Indirect) {
2384 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2385 LLVMValueRef index;
2386 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2387 reg->Dimension.Index,
2388 ctx->num_const_buffers);
2389 index = LLVMBuildAdd(ctx->ac.builder, index,
2390 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2391 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2392 } else
2393 bufp = load_const_buffer_desc(ctx, buf);
2394
2395 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2396 }
2397
2398 /* Initialize arguments for the shader export intrinsic */
2399 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2400 LLVMValueRef *values,
2401 unsigned target,
2402 struct ac_export_args *args)
2403 {
2404 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2405 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2406 unsigned chan;
2407 bool is_int8, is_int10;
2408
2409 /* Default is 0xf. Adjusted below depending on the format. */
2410 args->enabled_channels = 0xf; /* writemask */
2411
2412 /* Specify whether the EXEC mask represents the valid mask */
2413 args->valid_mask = 0;
2414
2415 /* Specify whether this is the last export */
2416 args->done = 0;
2417
2418 /* Specify the target we are exporting */
2419 args->target = target;
2420
2421 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2422 const struct si_shader_key *key = &ctx->shader->key;
2423 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2424 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2425
2426 assert(cbuf >= 0 && cbuf < 8);
2427 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2428 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2429 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2430 }
2431
2432 args->compr = false;
2433 args->out[0] = f32undef;
2434 args->out[1] = f32undef;
2435 args->out[2] = f32undef;
2436 args->out[3] = f32undef;
2437
2438 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2439 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2440 unsigned bits, bool hi) = NULL;
2441
2442 switch (spi_shader_col_format) {
2443 case V_028714_SPI_SHADER_ZERO:
2444 args->enabled_channels = 0; /* writemask */
2445 args->target = V_008DFC_SQ_EXP_NULL;
2446 break;
2447
2448 case V_028714_SPI_SHADER_32_R:
2449 args->enabled_channels = 1; /* writemask */
2450 args->out[0] = values[0];
2451 break;
2452
2453 case V_028714_SPI_SHADER_32_GR:
2454 args->enabled_channels = 0x3; /* writemask */
2455 args->out[0] = values[0];
2456 args->out[1] = values[1];
2457 break;
2458
2459 case V_028714_SPI_SHADER_32_AR:
2460 if (ctx->screen->info.chip_class >= GFX10) {
2461 args->enabled_channels = 0x3; /* writemask */
2462 args->out[0] = values[0];
2463 args->out[1] = values[3];
2464 } else {
2465 args->enabled_channels = 0x9; /* writemask */
2466 args->out[0] = values[0];
2467 args->out[3] = values[3];
2468 }
2469 break;
2470
2471 case V_028714_SPI_SHADER_FP16_ABGR:
2472 packf = ac_build_cvt_pkrtz_f16;
2473 break;
2474
2475 case V_028714_SPI_SHADER_UNORM16_ABGR:
2476 packf = ac_build_cvt_pknorm_u16;
2477 break;
2478
2479 case V_028714_SPI_SHADER_SNORM16_ABGR:
2480 packf = ac_build_cvt_pknorm_i16;
2481 break;
2482
2483 case V_028714_SPI_SHADER_UINT16_ABGR:
2484 packi = ac_build_cvt_pk_u16;
2485 break;
2486
2487 case V_028714_SPI_SHADER_SINT16_ABGR:
2488 packi = ac_build_cvt_pk_i16;
2489 break;
2490
2491 case V_028714_SPI_SHADER_32_ABGR:
2492 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2493 break;
2494 }
2495
2496 /* Pack f16 or norm_i16/u16. */
2497 if (packf) {
2498 for (chan = 0; chan < 2; chan++) {
2499 LLVMValueRef pack_args[2] = {
2500 values[2 * chan],
2501 values[2 * chan + 1]
2502 };
2503 LLVMValueRef packed;
2504
2505 packed = packf(&ctx->ac, pack_args);
2506 args->out[chan] = ac_to_float(&ctx->ac, packed);
2507 }
2508 args->compr = 1; /* COMPR flag */
2509 }
2510 /* Pack i16/u16. */
2511 if (packi) {
2512 for (chan = 0; chan < 2; chan++) {
2513 LLVMValueRef pack_args[2] = {
2514 ac_to_integer(&ctx->ac, values[2 * chan]),
2515 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2516 };
2517 LLVMValueRef packed;
2518
2519 packed = packi(&ctx->ac, pack_args,
2520 is_int8 ? 8 : is_int10 ? 10 : 16,
2521 chan == 1);
2522 args->out[chan] = ac_to_float(&ctx->ac, packed);
2523 }
2524 args->compr = 1; /* COMPR flag */
2525 }
2526 }
2527
2528 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2529 LLVMValueRef alpha)
2530 {
2531 struct si_shader_context *ctx = si_shader_context(bld_base);
2532
2533 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2534 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2535 [PIPE_FUNC_LESS] = LLVMRealOLT,
2536 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2537 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2538 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2539 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2540 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2541 };
2542 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2543 assert(cond);
2544
2545 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2546 SI_PARAM_ALPHA_REF);
2547 LLVMValueRef alpha_pass =
2548 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2549 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2550 } else {
2551 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2552 }
2553 }
2554
2555 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2556 LLVMValueRef alpha,
2557 unsigned samplemask_param)
2558 {
2559 struct si_shader_context *ctx = si_shader_context(bld_base);
2560 LLVMValueRef coverage;
2561
2562 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2563 coverage = LLVMGetParam(ctx->main_fn,
2564 samplemask_param);
2565 coverage = ac_to_integer(&ctx->ac, coverage);
2566
2567 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2568 ctx->i32,
2569 &coverage, 1, AC_FUNC_ATTR_READNONE);
2570
2571 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2572 ctx->f32, "");
2573
2574 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2575 LLVMConstReal(ctx->f32,
2576 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2577
2578 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2579 }
2580
2581 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2582 struct ac_export_args *pos, LLVMValueRef *out_elts)
2583 {
2584 unsigned reg_index;
2585 unsigned chan;
2586 unsigned const_chan;
2587 LLVMValueRef base_elt;
2588 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2589 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2590 SI_VS_CONST_CLIP_PLANES, 0);
2591 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2592
2593 for (reg_index = 0; reg_index < 2; reg_index ++) {
2594 struct ac_export_args *args = &pos[2 + reg_index];
2595
2596 args->out[0] =
2597 args->out[1] =
2598 args->out[2] =
2599 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2600
2601 /* Compute dot products of position and user clip plane vectors */
2602 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2603 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2604 LLVMValueRef addr =
2605 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2606 const_chan) * 4, 0);
2607 base_elt = buffer_load_const(ctx, const_resource,
2608 addr);
2609 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2610 out_elts[const_chan], args->out[chan]);
2611 }
2612 }
2613
2614 args->enabled_channels = 0xf;
2615 args->valid_mask = 0;
2616 args->done = 0;
2617 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2618 args->compr = 0;
2619 }
2620 }
2621
2622 static void si_dump_streamout(struct pipe_stream_output_info *so)
2623 {
2624 unsigned i;
2625
2626 if (so->num_outputs)
2627 fprintf(stderr, "STREAMOUT\n");
2628
2629 for (i = 0; i < so->num_outputs; i++) {
2630 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2631 so->output[i].start_component;
2632 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2633 i, so->output[i].output_buffer,
2634 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2635 so->output[i].register_index,
2636 mask & 1 ? "x" : "",
2637 mask & 2 ? "y" : "",
2638 mask & 4 ? "z" : "",
2639 mask & 8 ? "w" : "");
2640 }
2641 }
2642
2643 void si_emit_streamout_output(struct si_shader_context *ctx,
2644 LLVMValueRef const *so_buffers,
2645 LLVMValueRef const *so_write_offsets,
2646 struct pipe_stream_output *stream_out,
2647 struct si_shader_output_values *shader_out)
2648 {
2649 unsigned buf_idx = stream_out->output_buffer;
2650 unsigned start = stream_out->start_component;
2651 unsigned num_comps = stream_out->num_components;
2652 LLVMValueRef out[4];
2653
2654 assert(num_comps && num_comps <= 4);
2655 if (!num_comps || num_comps > 4)
2656 return;
2657
2658 /* Load the output as int. */
2659 for (int j = 0; j < num_comps; j++) {
2660 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2661
2662 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2663 }
2664
2665 /* Pack the output. */
2666 LLVMValueRef vdata = NULL;
2667
2668 switch (num_comps) {
2669 case 1: /* as i32 */
2670 vdata = out[0];
2671 break;
2672 case 2: /* as v2i32 */
2673 case 3: /* as v3i32 */
2674 if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
2675 vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
2676 break;
2677 }
2678 /* as v4i32 (aligned to 4) */
2679 out[3] = LLVMGetUndef(ctx->i32);
2680 /* fall through */
2681 case 4: /* as v4i32 */
2682 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2683 break;
2684 }
2685
2686 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2687 vdata, num_comps,
2688 so_write_offsets[buf_idx],
2689 ctx->i32_0,
2690 stream_out->dst_offset * 4, 1, 1, false);
2691 }
2692
2693 /**
2694 * Write streamout data to buffers for vertex stream @p stream (different
2695 * vertex streams can occur for GS copy shaders).
2696 */
2697 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2698 struct si_shader_output_values *outputs,
2699 unsigned noutput, unsigned stream)
2700 {
2701 struct si_shader_selector *sel = ctx->shader->selector;
2702 struct pipe_stream_output_info *so = &sel->so;
2703 LLVMBuilderRef builder = ctx->ac.builder;
2704 int i;
2705 struct lp_build_if_state if_ctx;
2706
2707 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2708 LLVMValueRef so_vtx_count =
2709 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2710
2711 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2712
2713 /* can_emit = tid < so_vtx_count; */
2714 LLVMValueRef can_emit =
2715 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2716
2717 /* Emit the streamout code conditionally. This actually avoids
2718 * out-of-bounds buffer access. The hw tells us via the SGPR
2719 * (so_vtx_count) which threads are allowed to emit streamout data. */
2720 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2721 {
2722 /* The buffer offset is computed as follows:
2723 * ByteOffset = streamout_offset[buffer_id]*4 +
2724 * (streamout_write_index + thread_id)*stride[buffer_id] +
2725 * attrib_offset
2726 */
2727
2728 LLVMValueRef so_write_index =
2729 LLVMGetParam(ctx->main_fn,
2730 ctx->param_streamout_write_index);
2731
2732 /* Compute (streamout_write_index + thread_id). */
2733 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2734
2735 /* Load the descriptor and compute the write offset for each
2736 * enabled buffer. */
2737 LLVMValueRef so_write_offset[4] = {};
2738 LLVMValueRef so_buffers[4];
2739 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2740 ctx->param_rw_buffers);
2741
2742 for (i = 0; i < 4; i++) {
2743 if (!so->stride[i])
2744 continue;
2745
2746 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2747 SI_VS_STREAMOUT_BUF0 + i, 0);
2748
2749 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2750
2751 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2752 ctx->param_streamout_offset[i]);
2753 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2754
2755 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2756 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2757 so_offset);
2758 }
2759
2760 /* Write streamout data. */
2761 for (i = 0; i < so->num_outputs; i++) {
2762 unsigned reg = so->output[i].register_index;
2763
2764 if (reg >= noutput)
2765 continue;
2766
2767 if (stream != so->output[i].stream)
2768 continue;
2769
2770 si_emit_streamout_output(ctx, so_buffers, so_write_offset,
2771 &so->output[i], &outputs[reg]);
2772 }
2773 }
2774 lp_build_endif(&if_ctx);
2775 }
2776
2777 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2778 LLVMValueRef *values)
2779 {
2780 struct ac_export_args args;
2781
2782 si_llvm_init_export_args(ctx, values,
2783 V_008DFC_SQ_EXP_PARAM + index, &args);
2784 ac_build_export(&ctx->ac, &args);
2785 }
2786
2787 static void si_build_param_exports(struct si_shader_context *ctx,
2788 struct si_shader_output_values *outputs,
2789 unsigned noutput)
2790 {
2791 struct si_shader *shader = ctx->shader;
2792 unsigned param_count = 0;
2793
2794 for (unsigned i = 0; i < noutput; i++) {
2795 unsigned semantic_name = outputs[i].semantic_name;
2796 unsigned semantic_index = outputs[i].semantic_index;
2797
2798 if (outputs[i].vertex_stream[0] != 0 &&
2799 outputs[i].vertex_stream[1] != 0 &&
2800 outputs[i].vertex_stream[2] != 0 &&
2801 outputs[i].vertex_stream[3] != 0)
2802 continue;
2803
2804 switch (semantic_name) {
2805 case TGSI_SEMANTIC_LAYER:
2806 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2807 case TGSI_SEMANTIC_CLIPDIST:
2808 case TGSI_SEMANTIC_COLOR:
2809 case TGSI_SEMANTIC_BCOLOR:
2810 case TGSI_SEMANTIC_PRIMID:
2811 case TGSI_SEMANTIC_FOG:
2812 case TGSI_SEMANTIC_TEXCOORD:
2813 case TGSI_SEMANTIC_GENERIC:
2814 break;
2815 default:
2816 continue;
2817 }
2818
2819 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2820 semantic_index < SI_MAX_IO_GENERIC) &&
2821 shader->key.opt.kill_outputs &
2822 (1ull << si_shader_io_get_unique_index(semantic_name,
2823 semantic_index, true)))
2824 continue;
2825
2826 si_export_param(ctx, param_count, outputs[i].values);
2827
2828 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2829 shader->info.vs_output_param_offset[i] = param_count++;
2830 }
2831
2832 shader->info.nr_param_exports = param_count;
2833 }
2834
2835 /**
2836 * Vertex color clamping.
2837 *
2838 * This uses a state constant loaded in a user data SGPR and
2839 * an IF statement is added that clamps all colors if the constant
2840 * is true.
2841 */
2842 static void si_vertex_color_clamping(struct si_shader_context *ctx,
2843 struct si_shader_output_values *outputs,
2844 unsigned noutput)
2845 {
2846 LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
2847 bool has_colors = false;
2848
2849 /* Store original colors to alloca variables. */
2850 for (unsigned i = 0; i < noutput; i++) {
2851 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2852 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2853 continue;
2854
2855 for (unsigned j = 0; j < 4; j++) {
2856 addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
2857 LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
2858 }
2859 has_colors = true;
2860 }
2861
2862 if (!has_colors)
2863 return;
2864
2865 /* The state is in the first bit of the user SGPR. */
2866 LLVMValueRef cond = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2867 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");
2868
2869 struct lp_build_if_state if_ctx;
2870 lp_build_if(&if_ctx, &ctx->gallivm, cond);
2871
2872 /* Store clamped colors to alloca variables within the conditional block. */
2873 for (unsigned i = 0; i < noutput; i++) {
2874 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2875 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2876 continue;
2877
2878 for (unsigned j = 0; j < 4; j++) {
2879 LLVMBuildStore(ctx->ac.builder,
2880 ac_build_clamp(&ctx->ac, outputs[i].values[j]),
2881 addr[i][j]);
2882 }
2883 }
2884 lp_build_endif(&if_ctx);
2885
2886 /* Load clamped colors */
2887 for (unsigned i = 0; i < noutput; i++) {
2888 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2889 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2890 continue;
2891
2892 for (unsigned j = 0; j < 4; j++) {
2893 outputs[i].values[j] =
2894 LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
2895 }
2896 }
2897 }
2898
2899 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2900 * (position and parameter data only).
2901 */
2902 void si_llvm_export_vs(struct si_shader_context *ctx,
2903 struct si_shader_output_values *outputs,
2904 unsigned noutput)
2905 {
2906 struct si_shader *shader = ctx->shader;
2907 struct ac_export_args pos_args[4] = {};
2908 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2909 unsigned pos_idx;
2910 int i;
2911
2912 si_vertex_color_clamping(ctx, outputs, noutput);
2913
2914 /* Build position exports. */
2915 for (i = 0; i < noutput; i++) {
2916 switch (outputs[i].semantic_name) {
2917 case TGSI_SEMANTIC_POSITION:
2918 si_llvm_init_export_args(ctx, outputs[i].values,
2919 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2920 break;
2921 case TGSI_SEMANTIC_PSIZE:
2922 psize_value = outputs[i].values[0];
2923 break;
2924 case TGSI_SEMANTIC_LAYER:
2925 layer_value = outputs[i].values[0];
2926 break;
2927 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2928 viewport_index_value = outputs[i].values[0];
2929 break;
2930 case TGSI_SEMANTIC_EDGEFLAG:
2931 edgeflag_value = outputs[i].values[0];
2932 break;
2933 case TGSI_SEMANTIC_CLIPDIST:
2934 if (!shader->key.opt.clip_disable) {
2935 unsigned index = 2 + outputs[i].semantic_index;
2936 si_llvm_init_export_args(ctx, outputs[i].values,
2937 V_008DFC_SQ_EXP_POS + index,
2938 &pos_args[index]);
2939 }
2940 break;
2941 case TGSI_SEMANTIC_CLIPVERTEX:
2942 if (!shader->key.opt.clip_disable) {
2943 si_llvm_emit_clipvertex(ctx, pos_args,
2944 outputs[i].values);
2945 }
2946 break;
2947 }
2948 }
2949
2950 /* We need to add the position output manually if it's missing. */
2951 if (!pos_args[0].out[0]) {
2952 pos_args[0].enabled_channels = 0xf; /* writemask */
2953 pos_args[0].valid_mask = 0; /* EXEC mask */
2954 pos_args[0].done = 0; /* last export? */
2955 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2956 pos_args[0].compr = 0; /* COMPR flag */
2957 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2958 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2959 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2960 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2961 }
2962
2963 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2964 if (shader->selector->info.writes_psize ||
2965 shader->selector->info.writes_edgeflag ||
2966 shader->selector->info.writes_viewport_index ||
2967 shader->selector->info.writes_layer) {
2968 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2969 (shader->selector->info.writes_edgeflag << 1) |
2970 (shader->selector->info.writes_layer << 2);
2971
2972 pos_args[1].valid_mask = 0; /* EXEC mask */
2973 pos_args[1].done = 0; /* last export? */
2974 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2975 pos_args[1].compr = 0; /* COMPR flag */
2976 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2977 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2978 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2979 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2980
2981 if (shader->selector->info.writes_psize)
2982 pos_args[1].out[0] = psize_value;
2983
2984 if (shader->selector->info.writes_edgeflag) {
2985 /* The output is a float, but the hw expects an integer
2986 * with the first bit containing the edge flag. */
2987 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2988 edgeflag_value,
2989 ctx->i32, "");
2990 edgeflag_value = ac_build_umin(&ctx->ac,
2991 edgeflag_value,
2992 ctx->i32_1);
2993
2994 /* The LLVM intrinsic expects a float. */
2995 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2996 }
2997
2998 if (ctx->screen->info.chip_class >= GFX9) {
2999 /* GFX9 has the layer in out.z[10:0] and the viewport
3000 * index in out.z[19:16].
3001 */
3002 if (shader->selector->info.writes_layer)
3003 pos_args[1].out[2] = layer_value;
3004
3005 if (shader->selector->info.writes_viewport_index) {
3006 LLVMValueRef v = viewport_index_value;
3007
3008 v = ac_to_integer(&ctx->ac, v);
3009 v = LLVMBuildShl(ctx->ac.builder, v,
3010 LLVMConstInt(ctx->i32, 16, 0), "");
3011 v = LLVMBuildOr(ctx->ac.builder, v,
3012 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3013 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3014 pos_args[1].enabled_channels |= 1 << 2;
3015 }
3016 } else {
3017 if (shader->selector->info.writes_layer)
3018 pos_args[1].out[2] = layer_value;
3019
3020 if (shader->selector->info.writes_viewport_index) {
3021 pos_args[1].out[3] = viewport_index_value;
3022 pos_args[1].enabled_channels |= 1 << 3;
3023 }
3024 }
3025 }
3026
3027 for (i = 0; i < 4; i++)
3028 if (pos_args[i].out[0])
3029 shader->info.nr_pos_exports++;
3030
3031 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
3032 * Setting valid_mask=1 prevents it and has no other effect.
3033 */
3034 if (ctx->screen->info.family == CHIP_NAVI10 ||
3035 ctx->screen->info.family == CHIP_NAVI12 ||
3036 ctx->screen->info.family == CHIP_NAVI14)
3037 pos_args[0].valid_mask = 1;
3038
3039 pos_idx = 0;
3040 for (i = 0; i < 4; i++) {
3041 if (!pos_args[i].out[0])
3042 continue;
3043
3044 /* Specify the target we are exporting */
3045 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3046
3047 if (pos_idx == shader->info.nr_pos_exports)
3048 /* Specify that this is the last export */
3049 pos_args[i].done = 1;
3050
3051 ac_build_export(&ctx->ac, &pos_args[i]);
3052 }
3053
3054 /* Build parameter exports. */
3055 si_build_param_exports(ctx, outputs, noutput);
3056 }
3057
3058 /**
3059 * Forward all outputs from the vertex shader to the TES. This is only used
3060 * for the fixed function TCS.
3061 */
3062 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3063 {
3064 struct si_shader_context *ctx = si_shader_context(bld_base);
3065 LLVMValueRef invocation_id, buffer, buffer_offset;
3066 LLVMValueRef lds_vertex_stride, lds_base;
3067 uint64_t inputs;
3068
3069 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3070 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3071 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3072
3073 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3074 lds_base = get_tcs_in_current_patch_offset(ctx);
3075 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3076 lds_base);
3077
3078 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3079 while (inputs) {
3080 unsigned i = u_bit_scan64(&inputs);
3081
3082 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3083 LLVMConstInt(ctx->i32, 4 * i, 0),
3084 "");
3085
3086 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3087 get_rel_patch_id(ctx),
3088 invocation_id,
3089 LLVMConstInt(ctx->i32, i, 0));
3090
3091 LLVMValueRef value = lshs_lds_load(bld_base, ctx->ac.i32, ~0, lds_ptr);
3092
3093 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3094 buffer_offset, 0, 1, 0, false);
3095 }
3096 }
3097
3098 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3099 LLVMValueRef rel_patch_id,
3100 LLVMValueRef invocation_id,
3101 LLVMValueRef tcs_out_current_patch_data_offset,
3102 LLVMValueRef invoc0_tf_outer[4],
3103 LLVMValueRef invoc0_tf_inner[2])
3104 {
3105 struct si_shader_context *ctx = si_shader_context(bld_base);
3106 struct si_shader *shader = ctx->shader;
3107 unsigned tess_inner_index, tess_outer_index;
3108 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3109 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3110 unsigned stride, outer_comps, inner_comps, i, offset;
3111 struct lp_build_if_state if_ctx, inner_if_ctx;
3112
3113 /* Add a barrier before loading tess factors from LDS. */
3114 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3115 si_llvm_emit_barrier(NULL, bld_base, NULL);
3116
3117 /* Do this only for invocation 0, because the tess levels are per-patch,
3118 * not per-vertex.
3119 *
3120 * This can't jump, because invocation 0 executes this. It should
3121 * at least mask out the loads and stores for other invocations.
3122 */
3123 lp_build_if(&if_ctx, &ctx->gallivm,
3124 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3125 invocation_id, ctx->i32_0, ""));
3126
3127 /* Determine the layout of one tess factor element in the buffer. */
3128 switch (shader->key.part.tcs.epilog.prim_mode) {
3129 case PIPE_PRIM_LINES:
3130 stride = 2; /* 2 dwords, 1 vec2 store */
3131 outer_comps = 2;
3132 inner_comps = 0;
3133 break;
3134 case PIPE_PRIM_TRIANGLES:
3135 stride = 4; /* 4 dwords, 1 vec4 store */
3136 outer_comps = 3;
3137 inner_comps = 1;
3138 break;
3139 case PIPE_PRIM_QUADS:
3140 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3141 outer_comps = 4;
3142 inner_comps = 2;
3143 break;
3144 default:
3145 assert(0);
3146 return;
3147 }
3148
3149 for (i = 0; i < 4; i++) {
3150 inner[i] = LLVMGetUndef(ctx->i32);
3151 outer[i] = LLVMGetUndef(ctx->i32);
3152 }
3153
3154 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3155 /* Tess factors are in VGPRs. */
3156 for (i = 0; i < outer_comps; i++)
3157 outer[i] = out[i] = invoc0_tf_outer[i];
3158 for (i = 0; i < inner_comps; i++)
3159 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3160 } else {
3161 /* Load tess_inner and tess_outer from LDS.
3162 * Any invocation can write them, so we can't get them from a temporary.
3163 */
3164 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3165 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3166
3167 lds_base = tcs_out_current_patch_data_offset;
3168 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3169 LLVMConstInt(ctx->i32,
3170 tess_inner_index * 4, 0), "");
3171 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3172 LLVMConstInt(ctx->i32,
3173 tess_outer_index * 4, 0), "");
3174
3175 for (i = 0; i < outer_comps; i++) {
3176 outer[i] = out[i] =
3177 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3178 }
3179 for (i = 0; i < inner_comps; i++) {
3180 inner[i] = out[outer_comps+i] =
3181 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3182 }
3183 }
3184
3185 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3186 /* For isolines, the hardware expects tess factors in the
3187 * reverse order from what GLSL / TGSI specify.
3188 */
3189 LLVMValueRef tmp = out[0];
3190 out[0] = out[1];
3191 out[1] = tmp;
3192 }
3193
3194 /* Convert the outputs to vectors for stores. */
3195 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3196 vec1 = NULL;
3197
3198 if (stride > 4)
3199 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3200
3201 /* Get the buffer. */
3202 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3203
3204 /* Get the offset. */
3205 tf_base = LLVMGetParam(ctx->main_fn,
3206 ctx->param_tcs_factor_offset);
3207 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3208 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3209
3210 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3211 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3212 rel_patch_id, ctx->i32_0, ""));
3213
3214 /* Store the dynamic HS control word. */
3215 offset = 0;
3216 if (ctx->screen->info.chip_class <= GFX8) {
3217 ac_build_buffer_store_dword(&ctx->ac, buffer,
3218 LLVMConstInt(ctx->i32, 0x80000000, 0),
3219 1, ctx->i32_0, tf_base,
3220 offset, 1, 0, false);
3221 offset += 4;
3222 }
3223
3224 lp_build_endif(&inner_if_ctx);
3225
3226 /* Store the tessellation factors. */
3227 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3228 MIN2(stride, 4), byteoffset, tf_base,
3229 offset, 1, 0, false);
3230 offset += 16;
3231 if (vec1)
3232 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3233 stride - 4, byteoffset, tf_base,
3234 offset, 1, 0, false);
3235
3236 /* Store the tess factors into the offchip buffer if TES reads them. */
3237 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3238 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3239 LLVMValueRef tf_inner_offset;
3240 unsigned param_outer, param_inner;
3241
3242 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3243 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3244
3245 param_outer = si_shader_io_get_unique_index_patch(
3246 TGSI_SEMANTIC_TESSOUTER, 0);
3247 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3248 LLVMConstInt(ctx->i32, param_outer, 0));
3249
3250 unsigned outer_vec_size =
3251 ac_has_vec3_support(ctx->screen->info.chip_class, false) ?
3252 outer_comps : util_next_power_of_two(outer_comps);
3253 outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size);
3254
3255 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3256 outer_comps, tf_outer_offset,
3257 base, 0, 1, 0, false);
3258 if (inner_comps) {
3259 param_inner = si_shader_io_get_unique_index_patch(
3260 TGSI_SEMANTIC_TESSINNER, 0);
3261 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3262 LLVMConstInt(ctx->i32, param_inner, 0));
3263
3264 inner_vec = inner_comps == 1 ? inner[0] :
3265 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3266 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3267 inner_comps, tf_inner_offset,
3268 base, 0, 1, 0, false);
3269 }
3270 }
3271
3272 lp_build_endif(&if_ctx);
3273 }
3274
3275 static LLVMValueRef
3276 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3277 unsigned param, unsigned return_index)
3278 {
3279 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3280 LLVMGetParam(ctx->main_fn, param),
3281 return_index, "");
3282 }
3283
3284 static LLVMValueRef
3285 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3286 unsigned param, unsigned return_index)
3287 {
3288 LLVMBuilderRef builder = ctx->ac.builder;
3289 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3290
3291 return LLVMBuildInsertValue(builder, ret,
3292 ac_to_float(&ctx->ac, p),
3293 return_index, "");
3294 }
3295
3296 static LLVMValueRef
3297 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3298 unsigned param, unsigned return_index)
3299 {
3300 LLVMBuilderRef builder = ctx->ac.builder;
3301 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3302 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3303 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3304 }
3305
3306 /* This only writes the tessellation factor levels. */
3307 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3308 unsigned max_outputs,
3309 LLVMValueRef *addrs)
3310 {
3311 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3312 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3313 LLVMBuilderRef builder = ctx->ac.builder;
3314 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3315
3316 si_copy_tcs_inputs(bld_base);
3317
3318 rel_patch_id = get_rel_patch_id(ctx);
3319 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3320 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3321
3322 if (ctx->screen->info.chip_class >= GFX9) {
3323 LLVMBasicBlockRef blocks[2] = {
3324 LLVMGetInsertBlock(builder),
3325 ctx->merged_wrap_if_state.entry_block
3326 };
3327 LLVMValueRef values[2];
3328
3329 lp_build_endif(&ctx->merged_wrap_if_state);
3330
3331 values[0] = rel_patch_id;
3332 values[1] = LLVMGetUndef(ctx->i32);
3333 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3334
3335 values[0] = tf_lds_offset;
3336 values[1] = LLVMGetUndef(ctx->i32);
3337 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3338
3339 values[0] = invocation_id;
3340 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3341 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3342 }
3343
3344 /* Return epilog parameters from this function. */
3345 LLVMValueRef ret = ctx->return_value;
3346 unsigned vgpr;
3347
3348 if (ctx->screen->info.chip_class >= GFX9) {
3349 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3350 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3351 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3352 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3353 /* Tess offchip and tess factor offsets are at the beginning. */
3354 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3355 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3356 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3357 } else {
3358 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3359 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3360 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3361 GFX6_SGPR_TCS_OUT_LAYOUT);
3362 /* Tess offchip and tess factor offsets are after user SGPRs. */
3363 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3364 GFX6_TCS_NUM_USER_SGPR);
3365 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3366 GFX6_TCS_NUM_USER_SGPR + 1);
3367 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3368 }
3369
3370 /* VGPRs */
3371 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3372 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3373 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3374
3375 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3376 * the invocation_id output does not alias the tcs_rel_ids input,
3377 * which saves a V_MOV on gfx9.
3378 */
3379 vgpr += 2;
3380
3381 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3382 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3383
3384 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3385 vgpr++; /* skip the tess factor LDS offset */
3386 for (unsigned i = 0; i < 6; i++) {
3387 LLVMValueRef value =
3388 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3389 value = ac_to_float(&ctx->ac, value);
3390 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3391 }
3392 } else {
3393 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3394 }
3395 ctx->return_value = ret;
3396 }
3397
3398 /* Pass TCS inputs from LS to TCS on GFX9. */
3399 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3400 {
3401 LLVMValueRef ret = ctx->return_value;
3402
3403 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3404 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3405 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3406 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3407 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3408 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3409
3410 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3411 8 + SI_SGPR_RW_BUFFERS);
3412 ret = si_insert_input_ptr(ctx, ret,
3413 ctx->param_bindless_samplers_and_images,
3414 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3415
3416 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3417 8 + SI_SGPR_VS_STATE_BITS);
3418
3419 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3420 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3421 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3422 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3423 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3424 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3425
3426 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3427 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3428 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3429 vgpr++, "");
3430 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3431 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3432 vgpr++, "");
3433 ctx->return_value = ret;
3434 }
3435
3436 /* Pass GS inputs from ES to GS on GFX9. */
3437 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3438 {
3439 LLVMBuilderRef builder = ctx->ac.builder;
3440 LLVMValueRef ret = ctx->return_value;
3441
3442 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3443 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3444 if (ctx->shader->key.as_ngg)
3445 ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
3446 else
3447 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3448 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3449 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3450
3451 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3452 8 + SI_SGPR_RW_BUFFERS);
3453 ret = si_insert_input_ptr(ctx, ret,
3454 ctx->param_bindless_samplers_and_images,
3455 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3456 if (ctx->screen->info.chip_class >= GFX10) {
3457 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits,
3458 8 + SI_SGPR_VS_STATE_BITS);
3459 }
3460
3461 unsigned vgpr;
3462 if (ctx->type == PIPE_SHADER_VERTEX)
3463 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3464 else
3465 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3466
3467 for (unsigned i = 0; i < 5; i++) {
3468 unsigned param = ctx->param_gs_vtx01_offset + i;
3469 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3470 }
3471 ctx->return_value = ret;
3472 }
3473
3474 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3475 unsigned max_outputs,
3476 LLVMValueRef *addrs)
3477 {
3478 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3479 struct si_shader *shader = ctx->shader;
3480 struct tgsi_shader_info *info = &shader->selector->info;
3481 unsigned i, chan;
3482 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3483 ctx->param_rel_auto_id);
3484 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3485 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3486 vertex_dw_stride, "");
3487
3488 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3489 * its inputs from it. */
3490 for (i = 0; i < info->num_outputs; i++) {
3491 unsigned name = info->output_semantic_name[i];
3492 unsigned index = info->output_semantic_index[i];
3493
3494 /* The ARB_shader_viewport_layer_array spec contains the
3495 * following issue:
3496 *
3497 * 2) What happens if gl_ViewportIndex or gl_Layer is
3498 * written in the vertex shader and a geometry shader is
3499 * present?
3500 *
3501 * RESOLVED: The value written by the last vertex processing
3502 * stage is used. If the last vertex processing stage
3503 * (vertex, tessellation evaluation or geometry) does not
3504 * statically assign to gl_ViewportIndex or gl_Layer, index
3505 * or layer zero is assumed.
3506 *
3507 * So writes to those outputs in VS-as-LS are simply ignored.
3508 */
3509 if (name == TGSI_SEMANTIC_LAYER ||
3510 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3511 continue;
3512
3513 int param = si_shader_io_get_unique_index(name, index, false);
3514 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3515 LLVMConstInt(ctx->i32, param * 4, 0), "");
3516
3517 for (chan = 0; chan < 4; chan++) {
3518 if (!(info->output_usagemask[i] & (1 << chan)))
3519 continue;
3520
3521 lshs_lds_store(ctx, chan, dw_addr,
3522 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3523 }
3524 }
3525
3526 if (ctx->screen->info.chip_class >= GFX9)
3527 si_set_ls_return_value_for_tcs(ctx);
3528 }
3529
3530 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3531 unsigned max_outputs,
3532 LLVMValueRef *addrs)
3533 {
3534 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3535 struct si_shader *es = ctx->shader;
3536 struct tgsi_shader_info *info = &es->selector->info;
3537 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3538 ctx->param_es2gs_offset);
3539 LLVMValueRef lds_base = NULL;
3540 unsigned chan;
3541 int i;
3542
3543 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3544 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3545 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3546 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3547 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3548 LLVMBuildMul(ctx->ac.builder, wave_idx,
3549 LLVMConstInt(ctx->i32, 64, false), ""), "");
3550 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3551 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3552 }
3553
3554 for (i = 0; i < info->num_outputs; i++) {
3555 int param;
3556
3557 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3558 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3559 continue;
3560
3561 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3562 info->output_semantic_index[i], false);
3563
3564 for (chan = 0; chan < 4; chan++) {
3565 if (!(info->output_usagemask[i] & (1 << chan)))
3566 continue;
3567
3568 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3569 out_val = ac_to_integer(&ctx->ac, out_val);
3570
3571 /* GFX9 has the ESGS ring in LDS. */
3572 if (ctx->screen->info.chip_class >= GFX9) {
3573 LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false);
3574 idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, "");
3575 ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val);
3576 continue;
3577 }
3578
3579 ac_build_buffer_store_dword(&ctx->ac,
3580 ctx->esgs_ring,
3581 out_val, 1, NULL, soffset,
3582 (4 * param + chan) * 4,
3583 1, 1, true);
3584 }
3585 }
3586
3587 if (ctx->screen->info.chip_class >= GFX9)
3588 si_set_es_return_value_for_gs(ctx);
3589 }
3590
3591 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3592 {
3593 if (ctx->screen->info.chip_class >= GFX9)
3594 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3595 else
3596 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3597 }
3598
3599 static void emit_gs_epilogue(struct si_shader_context *ctx)
3600 {
3601 if (ctx->shader->key.as_ngg) {
3602 gfx10_ngg_gs_emit_epilogue(ctx);
3603 return;
3604 }
3605
3606 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3607 si_get_gs_wave_id(ctx));
3608
3609 if (ctx->screen->info.chip_class >= GFX9)
3610 lp_build_endif(&ctx->merged_wrap_if_state);
3611 }
3612
3613 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3614 unsigned max_outputs,
3615 LLVMValueRef *addrs)
3616 {
3617 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3618 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3619
3620 assert(info->num_outputs <= max_outputs);
3621
3622 emit_gs_epilogue(ctx);
3623 }
3624
3625 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3626 {
3627 struct si_shader_context *ctx = si_shader_context(bld_base);
3628 emit_gs_epilogue(ctx);
3629 }
3630
3631 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3632 unsigned max_outputs,
3633 LLVMValueRef *addrs)
3634 {
3635 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3636 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3637 struct si_shader_output_values *outputs = NULL;
3638 int i,j;
3639
3640 assert(!ctx->shader->is_gs_copy_shader);
3641 assert(info->num_outputs <= max_outputs);
3642
3643 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3644
3645 for (i = 0; i < info->num_outputs; i++) {
3646 outputs[i].semantic_name = info->output_semantic_name[i];
3647 outputs[i].semantic_index = info->output_semantic_index[i];
3648
3649 for (j = 0; j < 4; j++) {
3650 outputs[i].values[j] =
3651 LLVMBuildLoad(ctx->ac.builder,
3652 addrs[4 * i + j],
3653 "");
3654 outputs[i].vertex_stream[j] =
3655 (info->output_streams[i] >> (2 * j)) & 3;
3656 }
3657 }
3658
3659 if (ctx->ac.chip_class <= GFX9 &&
3660 ctx->shader->selector->so.num_outputs)
3661 si_llvm_emit_streamout(ctx, outputs, i, 0);
3662
3663 /* Export PrimitiveID. */
3664 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3665 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3666 outputs[i].semantic_index = 0;
3667 outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
3668 for (j = 1; j < 4; j++)
3669 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3670
3671 memset(outputs[i].vertex_stream, 0,
3672 sizeof(outputs[i].vertex_stream));
3673 i++;
3674 }
3675
3676 si_llvm_export_vs(ctx, outputs, i);
3677 FREE(outputs);
3678 }
3679
3680 static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
3681 unsigned max_outputs,
3682 LLVMValueRef *addrs)
3683 {
3684 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3685 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3686 LLVMValueRef pos[4] = {};
3687
3688 assert(info->num_outputs <= max_outputs);
3689
3690 for (unsigned i = 0; i < info->num_outputs; i++) {
3691 if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
3692 continue;
3693
3694 for (unsigned chan = 0; chan < 4; chan++)
3695 pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3696 break;
3697 }
3698 assert(pos[0] != NULL);
3699
3700 /* Return the position output. */
3701 LLVMValueRef ret = ctx->return_value;
3702 for (unsigned chan = 0; chan < 4; chan++)
3703 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
3704 ctx->return_value = ret;
3705 }
3706
3707 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3708 {
3709 struct si_shader_context *ctx = si_shader_context(bld_base);
3710
3711 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3712 &ctx->outputs[0][0]);
3713 }
3714
3715 struct si_ps_exports {
3716 unsigned num;
3717 struct ac_export_args args[10];
3718 };
3719
3720 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3721 LLVMValueRef depth, LLVMValueRef stencil,
3722 LLVMValueRef samplemask, struct si_ps_exports *exp)
3723 {
3724 struct si_shader_context *ctx = si_shader_context(bld_base);
3725 struct ac_export_args args;
3726
3727 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3728
3729 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3730 }
3731
3732 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3733 LLVMValueRef *color, unsigned index,
3734 unsigned samplemask_param,
3735 bool is_last, struct si_ps_exports *exp)
3736 {
3737 struct si_shader_context *ctx = si_shader_context(bld_base);
3738 int i;
3739
3740 /* Clamp color */
3741 if (ctx->shader->key.part.ps.epilog.clamp_color)
3742 for (i = 0; i < 4; i++)
3743 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3744
3745 /* Alpha to one */
3746 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3747 color[3] = ctx->ac.f32_1;
3748
3749 /* Alpha test */
3750 if (index == 0 &&
3751 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3752 si_alpha_test(bld_base, color[3]);
3753
3754 /* Line & polygon smoothing */
3755 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3756 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3757 samplemask_param);
3758
3759 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3760 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3761 struct ac_export_args args[8];
3762 int c, last = -1;
3763
3764 /* Get the export arguments, also find out what the last one is. */
3765 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3766 si_llvm_init_export_args(ctx, color,
3767 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3768 if (args[c].enabled_channels)
3769 last = c;
3770 }
3771
3772 /* Emit all exports. */
3773 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3774 if (is_last && last == c) {
3775 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3776 args[c].done = 1; /* DONE bit */
3777 } else if (!args[c].enabled_channels)
3778 continue; /* unnecessary NULL export */
3779
3780 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3781 }
3782 } else {
3783 struct ac_export_args args;
3784
3785 /* Export */
3786 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3787 &args);
3788 if (is_last) {
3789 args.valid_mask = 1; /* whether the EXEC mask is valid */
3790 args.done = 1; /* DONE bit */
3791 } else if (!args.enabled_channels)
3792 return; /* unnecessary NULL export */
3793
3794 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3795 }
3796 }
3797
3798 static void si_emit_ps_exports(struct si_shader_context *ctx,
3799 struct si_ps_exports *exp)
3800 {
3801 for (unsigned i = 0; i < exp->num; i++)
3802 ac_build_export(&ctx->ac, &exp->args[i]);
3803 }
3804
3805 /**
3806 * Return PS outputs in this order:
3807 *
3808 * v[0:3] = color0.xyzw
3809 * v[4:7] = color1.xyzw
3810 * ...
3811 * vN+0 = Depth
3812 * vN+1 = Stencil
3813 * vN+2 = SampleMask
3814 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3815 *
3816 * The alpha-ref SGPR is returned via its original location.
3817 */
3818 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3819 unsigned max_outputs,
3820 LLVMValueRef *addrs)
3821 {
3822 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3823 struct si_shader *shader = ctx->shader;
3824 struct tgsi_shader_info *info = &shader->selector->info;
3825 LLVMBuilderRef builder = ctx->ac.builder;
3826 unsigned i, j, first_vgpr, vgpr;
3827
3828 LLVMValueRef color[8][4] = {};
3829 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3830 LLVMValueRef ret;
3831
3832 if (ctx->postponed_kill)
3833 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3834
3835 /* Read the output values. */
3836 for (i = 0; i < info->num_outputs; i++) {
3837 unsigned semantic_name = info->output_semantic_name[i];
3838 unsigned semantic_index = info->output_semantic_index[i];
3839
3840 switch (semantic_name) {
3841 case TGSI_SEMANTIC_COLOR:
3842 assert(semantic_index < 8);
3843 for (j = 0; j < 4; j++) {
3844 LLVMValueRef ptr = addrs[4 * i + j];
3845 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3846 color[semantic_index][j] = result;
3847 }
3848 break;
3849 case TGSI_SEMANTIC_POSITION:
3850 depth = LLVMBuildLoad(builder,
3851 addrs[4 * i + 2], "");
3852 break;
3853 case TGSI_SEMANTIC_STENCIL:
3854 stencil = LLVMBuildLoad(builder,
3855 addrs[4 * i + 1], "");
3856 break;
3857 case TGSI_SEMANTIC_SAMPLEMASK:
3858 samplemask = LLVMBuildLoad(builder,
3859 addrs[4 * i + 0], "");
3860 break;
3861 default:
3862 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
3863 semantic_name);
3864 }
3865 }
3866
3867 /* Fill the return structure. */
3868 ret = ctx->return_value;
3869
3870 /* Set SGPRs. */
3871 ret = LLVMBuildInsertValue(builder, ret,
3872 ac_to_integer(&ctx->ac,
3873 LLVMGetParam(ctx->main_fn,
3874 SI_PARAM_ALPHA_REF)),
3875 SI_SGPR_ALPHA_REF, "");
3876
3877 /* Set VGPRs */
3878 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3879 for (i = 0; i < ARRAY_SIZE(color); i++) {
3880 if (!color[i][0])
3881 continue;
3882
3883 for (j = 0; j < 4; j++)
3884 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3885 }
3886 if (depth)
3887 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3888 if (stencil)
3889 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3890 if (samplemask)
3891 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3892
3893 /* Add the input sample mask for smoothing at the end. */
3894 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3895 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3896 ret = LLVMBuildInsertValue(builder, ret,
3897 LLVMGetParam(ctx->main_fn,
3898 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3899
3900 ctx->return_value = ret;
3901 }
3902
3903 static void membar_emit(
3904 const struct lp_build_tgsi_action *action,
3905 struct lp_build_tgsi_context *bld_base,
3906 struct lp_build_emit_data *emit_data)
3907 {
3908 struct si_shader_context *ctx = si_shader_context(bld_base);
3909 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3910 unsigned flags = LLVMConstIntGetZExtValue(src0);
3911 unsigned waitcnt = NOOP_WAITCNT;
3912
3913 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3914 waitcnt &= VM_CNT & LGKM_CNT;
3915
3916 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3917 TGSI_MEMBAR_SHADER_BUFFER |
3918 TGSI_MEMBAR_SHADER_IMAGE))
3919 waitcnt &= VM_CNT;
3920
3921 if (flags & TGSI_MEMBAR_SHARED)
3922 waitcnt &= LGKM_CNT;
3923
3924 if (waitcnt != NOOP_WAITCNT)
3925 ac_build_waitcnt(&ctx->ac, waitcnt);
3926 }
3927
3928 static void clock_emit(
3929 const struct lp_build_tgsi_action *action,
3930 struct lp_build_tgsi_context *bld_base,
3931 struct lp_build_emit_data *emit_data)
3932 {
3933 struct si_shader_context *ctx = si_shader_context(bld_base);
3934 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3935
3936 emit_data->output[0] =
3937 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3938 emit_data->output[1] =
3939 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3940 }
3941
3942 static void si_llvm_emit_ddxy(
3943 const struct lp_build_tgsi_action *action,
3944 struct lp_build_tgsi_context *bld_base,
3945 struct lp_build_emit_data *emit_data)
3946 {
3947 struct si_shader_context *ctx = si_shader_context(bld_base);
3948 unsigned opcode = emit_data->info->opcode;
3949 LLVMValueRef val;
3950 int idx;
3951 unsigned mask;
3952
3953 if (opcode == TGSI_OPCODE_DDX_FINE)
3954 mask = AC_TID_MASK_LEFT;
3955 else if (opcode == TGSI_OPCODE_DDY_FINE)
3956 mask = AC_TID_MASK_TOP;
3957 else
3958 mask = AC_TID_MASK_TOP_LEFT;
3959
3960 /* for DDX we want to next X pixel, DDY next Y pixel. */
3961 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3962
3963 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3964 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3965 emit_data->output[emit_data->chan] = val;
3966 }
3967
3968 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3969 struct lp_build_tgsi_context *bld_base,
3970 struct lp_build_emit_data *emit_data)
3971 {
3972 struct si_shader_context *ctx = si_shader_context(bld_base);
3973 struct si_shader *shader = ctx->shader;
3974 const struct tgsi_shader_info *info = &shader->selector->info;
3975 LLVMValueRef interp_param;
3976 const struct tgsi_full_instruction *inst = emit_data->inst;
3977 const struct tgsi_full_src_register *input = &inst->Src[0];
3978 int input_base, input_array_size;
3979 int chan;
3980 int i;
3981 LLVMValueRef prim_mask = ctx->abi.prim_mask;
3982 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
3983 int interp_param_idx;
3984 unsigned interp;
3985 unsigned location;
3986
3987 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
3988 /* offset is in second src, first two channels */
3989 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3990 TGSI_CHAN_X);
3991 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3992 TGSI_CHAN_Y);
3993 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3994 LLVMValueRef sample_position;
3995 LLVMValueRef sample_id;
3996 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
3997
3998 /* fetch sample ID, then fetch its sample position,
3999 * and place into first two channels.
4000 */
4001 sample_id = lp_build_emit_fetch(bld_base,
4002 emit_data->inst, 1, TGSI_CHAN_X);
4003 sample_id = ac_to_integer(&ctx->ac, sample_id);
4004
4005 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4006 * Language 4.50 spec says about interpolateAtSample:
4007 *
4008 * "Returns the value of the input interpolant variable at
4009 * the location of sample number sample. If multisample
4010 * buffers are not available, the input variable will be
4011 * evaluated at the center of the pixel. If sample sample
4012 * does not exist, the position used to interpolate the
4013 * input variable is undefined."
4014 *
4015 * This means that sample_id values outside of the valid are
4016 * in fact valid input, and the usual mechanism for loading the
4017 * sample position doesn't work.
4018 */
4019 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4020 LLVMValueRef center[4] = {
4021 LLVMConstReal(ctx->f32, 0.5),
4022 LLVMConstReal(ctx->f32, 0.5),
4023 ctx->ac.f32_0,
4024 ctx->ac.f32_0,
4025 };
4026
4027 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4028 } else {
4029 sample_position = load_sample_position(&ctx->abi, sample_id);
4030 }
4031
4032 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4033 ctx->i32_0, "");
4034
4035 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4036 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4037 ctx->i32_1, "");
4038 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4039 }
4040
4041 assert(input->Register.File == TGSI_FILE_INPUT);
4042
4043 if (input->Register.Indirect) {
4044 unsigned array_id = input->Indirect.ArrayID;
4045
4046 if (array_id) {
4047 input_base = info->input_array_first[array_id];
4048 input_array_size = info->input_array_last[array_id] - input_base + 1;
4049 } else {
4050 input_base = inst->Src[0].Register.Index;
4051 input_array_size = info->num_inputs - input_base;
4052 }
4053
4054 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4055 1, input->Register.Index - input_base);
4056 } else {
4057 input_base = inst->Src[0].Register.Index;
4058 input_array_size = 1;
4059 array_idx = ctx->i32_0;
4060 }
4061
4062 interp = shader->selector->info.input_interpolate[input_base];
4063
4064 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4065 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4066 location = TGSI_INTERPOLATE_LOC_CENTER;
4067 else
4068 location = TGSI_INTERPOLATE_LOC_CENTROID;
4069
4070 interp_param_idx = lookup_interp_param_index(interp, location);
4071 if (interp_param_idx == -1)
4072 return;
4073 else if (interp_param_idx)
4074 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4075 else
4076 interp_param = NULL;
4077
4078 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4079 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4080 LLVMValueRef ij_out[2];
4081 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4082
4083 /*
4084 * take the I then J parameters, and the DDX/Y for it, and
4085 * calculate the IJ inputs for the interpolator.
4086 * temp1 = ddx * offset/sample.x + I;
4087 * interp_param.I = ddy * offset/sample.y + temp1;
4088 * temp1 = ddx * offset/sample.x + J;
4089 * interp_param.J = ddy * offset/sample.y + temp1;
4090 */
4091 for (i = 0; i < 2; i++) {
4092 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4093 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4094 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4095 ddxy_out, ix_ll, "");
4096 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4097 ddxy_out, iy_ll, "");
4098 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4099 interp_param, ix_ll, "");
4100 LLVMValueRef temp;
4101
4102 interp_el = ac_to_float(&ctx->ac, interp_el);
4103
4104 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4105 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4106 }
4107 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4108 }
4109
4110 if (interp_param)
4111 interp_param = ac_to_float(&ctx->ac, interp_param);
4112
4113 for (chan = 0; chan < 4; chan++) {
4114 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4115 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4116
4117 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4118 LLVMValueRef v, i = NULL, j = NULL;
4119
4120 if (interp_param) {
4121 i = LLVMBuildExtractElement(
4122 ctx->ac.builder, interp_param, ctx->i32_0, "");
4123 j = LLVMBuildExtractElement(
4124 ctx->ac.builder, interp_param, ctx->i32_1, "");
4125 }
4126 v = si_build_fs_interp(ctx, input_base + idx, schan,
4127 prim_mask, i, j);
4128
4129 gather = LLVMBuildInsertElement(ctx->ac.builder,
4130 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4131 }
4132
4133 emit_data->output[chan] = LLVMBuildExtractElement(
4134 ctx->ac.builder, gather, array_idx, "");
4135 }
4136 }
4137
4138 static void vote_all_emit(
4139 const struct lp_build_tgsi_action *action,
4140 struct lp_build_tgsi_context *bld_base,
4141 struct lp_build_emit_data *emit_data)
4142 {
4143 struct si_shader_context *ctx = si_shader_context(bld_base);
4144
4145 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4146 emit_data->output[emit_data->chan] =
4147 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4148 }
4149
4150 static void vote_any_emit(
4151 const struct lp_build_tgsi_action *action,
4152 struct lp_build_tgsi_context *bld_base,
4153 struct lp_build_emit_data *emit_data)
4154 {
4155 struct si_shader_context *ctx = si_shader_context(bld_base);
4156
4157 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4158 emit_data->output[emit_data->chan] =
4159 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4160 }
4161
4162 static void vote_eq_emit(
4163 const struct lp_build_tgsi_action *action,
4164 struct lp_build_tgsi_context *bld_base,
4165 struct lp_build_emit_data *emit_data)
4166 {
4167 struct si_shader_context *ctx = si_shader_context(bld_base);
4168
4169 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4170 emit_data->output[emit_data->chan] =
4171 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4172 }
4173
4174 static void ballot_emit(
4175 const struct lp_build_tgsi_action *action,
4176 struct lp_build_tgsi_context *bld_base,
4177 struct lp_build_emit_data *emit_data)
4178 {
4179 struct si_shader_context *ctx = si_shader_context(bld_base);
4180 LLVMBuilderRef builder = ctx->ac.builder;
4181 LLVMValueRef tmp;
4182
4183 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4184 tmp = ac_build_ballot(&ctx->ac, tmp);
4185 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4186
4187 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4188 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4189 }
4190
4191 static void read_lane_emit(
4192 const struct lp_build_tgsi_action *action,
4193 struct lp_build_tgsi_context *bld_base,
4194 struct lp_build_emit_data *emit_data)
4195 {
4196 struct si_shader_context *ctx = si_shader_context(bld_base);
4197
4198 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4199 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4200 0, emit_data->src_chan);
4201
4202 /* Always read the source invocation (= lane) from the X channel. */
4203 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4204 1, TGSI_CHAN_X);
4205 emit_data->arg_count = 2;
4206 }
4207
4208 /* We currently have no other way to prevent LLVM from lifting the icmp
4209 * calls to a dominating basic block.
4210 */
4211 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4212
4213 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4214 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4215
4216 emit_data->output[emit_data->chan] =
4217 ac_build_intrinsic(&ctx->ac, action->intr_name,
4218 ctx->i32, emit_data->args, emit_data->arg_count,
4219 AC_FUNC_ATTR_READNONE |
4220 AC_FUNC_ATTR_CONVERGENT);
4221 }
4222
4223 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4224 struct lp_build_emit_data *emit_data)
4225 {
4226 struct si_shader_context *ctx = si_shader_context(bld_base);
4227 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4228 LLVMValueRef imm;
4229 unsigned stream;
4230
4231 assert(src0.File == TGSI_FILE_IMMEDIATE);
4232
4233 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4234 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4235 return stream;
4236 }
4237
4238 /* Emit one vertex from the geometry shader */
4239 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4240 unsigned stream,
4241 LLVMValueRef *addrs)
4242 {
4243 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4244
4245 if (ctx->shader->key.as_ngg) {
4246 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
4247 return;
4248 }
4249
4250 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4251 struct si_shader *shader = ctx->shader;
4252 struct lp_build_if_state if_state;
4253 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4254 ctx->param_gs2vs_offset);
4255 LLVMValueRef gs_next_vertex;
4256 LLVMValueRef can_emit;
4257 unsigned chan, offset;
4258 int i;
4259
4260 /* Write vertex attribute values to GSVS ring */
4261 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4262 ctx->gs_next_vertex[stream],
4263 "");
4264
4265 /* If this thread has already emitted the declared maximum number of
4266 * vertices, skip the write: excessive vertex emissions are not
4267 * supposed to have any effect.
4268 *
4269 * If the shader has no writes to memory, kill it instead. This skips
4270 * further memory loads and may allow LLVM to skip to the end
4271 * altogether.
4272 */
4273 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4274 LLVMConstInt(ctx->i32,
4275 shader->selector->gs_max_out_vertices, 0), "");
4276
4277 bool use_kill = !info->writes_memory;
4278 if (use_kill) {
4279 ac_build_kill_if_false(&ctx->ac, can_emit);
4280 } else {
4281 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4282 }
4283
4284 offset = 0;
4285 for (i = 0; i < info->num_outputs; i++) {
4286 for (chan = 0; chan < 4; chan++) {
4287 if (!(info->output_usagemask[i] & (1 << chan)) ||
4288 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4289 continue;
4290
4291 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4292 LLVMValueRef voffset =
4293 LLVMConstInt(ctx->i32, offset *
4294 shader->selector->gs_max_out_vertices, 0);
4295 offset++;
4296
4297 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4298 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4299 LLVMConstInt(ctx->i32, 4, 0), "");
4300
4301 out_val = ac_to_integer(&ctx->ac, out_val);
4302
4303 ac_build_buffer_store_dword(&ctx->ac,
4304 ctx->gsvs_ring[stream],
4305 out_val, 1,
4306 voffset, soffset, 0,
4307 1, 1, true);
4308 }
4309 }
4310
4311 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4312 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4313
4314 /* Signal vertex emission if vertex data was written. */
4315 if (offset) {
4316 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4317 si_get_gs_wave_id(ctx));
4318 }
4319
4320 if (!use_kill)
4321 lp_build_endif(&if_state);
4322 }
4323
4324 /* Emit one vertex from the geometry shader */
4325 static void si_tgsi_emit_vertex(
4326 const struct lp_build_tgsi_action *action,
4327 struct lp_build_tgsi_context *bld_base,
4328 struct lp_build_emit_data *emit_data)
4329 {
4330 struct si_shader_context *ctx = si_shader_context(bld_base);
4331 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4332
4333 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4334 }
4335
4336 /* Cut one primitive from the geometry shader */
4337 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4338 unsigned stream)
4339 {
4340 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4341
4342 if (ctx->shader->key.as_ngg) {
4343 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
4344 return;
4345 }
4346
4347 /* Signal primitive cut */
4348 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4349 si_get_gs_wave_id(ctx));
4350 }
4351
4352 /* Cut one primitive from the geometry shader */
4353 static void si_tgsi_emit_primitive(
4354 const struct lp_build_tgsi_action *action,
4355 struct lp_build_tgsi_context *bld_base,
4356 struct lp_build_emit_data *emit_data)
4357 {
4358 struct si_shader_context *ctx = si_shader_context(bld_base);
4359
4360 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4361 }
4362
4363 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4364 struct lp_build_tgsi_context *bld_base,
4365 struct lp_build_emit_data *emit_data)
4366 {
4367 struct si_shader_context *ctx = si_shader_context(bld_base);
4368
4369 /* GFX6 only (thanks to a hw bug workaround):
4370 * The real barrier instruction isn’t needed, because an entire patch
4371 * always fits into a single wave.
4372 */
4373 if (ctx->screen->info.chip_class == GFX6 &&
4374 ctx->type == PIPE_SHADER_TESS_CTRL) {
4375 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4376 return;
4377 }
4378
4379 ac_build_s_barrier(&ctx->ac);
4380 }
4381
4382 void si_create_function(struct si_shader_context *ctx,
4383 const char *name,
4384 LLVMTypeRef *returns, unsigned num_returns,
4385 struct si_function_info *fninfo,
4386 unsigned max_workgroup_size)
4387 {
4388 int i;
4389
4390 si_llvm_create_func(ctx, name, returns, num_returns,
4391 fninfo->types, fninfo->num_params);
4392 ctx->return_value = LLVMGetUndef(ctx->return_type);
4393
4394 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4395 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4396
4397 /* The combination of:
4398 * - noalias
4399 * - dereferenceable
4400 * - invariant.load
4401 * allows the optimization passes to move loads and reduces
4402 * SGPR spilling significantly.
4403 */
4404 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4405 AC_FUNC_ATTR_INREG);
4406
4407 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4408 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4409 AC_FUNC_ATTR_NOALIAS);
4410 ac_add_attr_dereferenceable(P, UINT64_MAX);
4411 }
4412 }
4413
4414 for (i = 0; i < fninfo->num_params; ++i) {
4415 if (fninfo->assign[i])
4416 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4417 }
4418
4419 if (ctx->screen->info.address32_hi) {
4420 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4421 "amdgpu-32bit-address-high-bits",
4422 ctx->screen->info.address32_hi);
4423 }
4424
4425 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
4426
4427 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4428 "no-signed-zeros-fp-math",
4429 "true");
4430
4431 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4432 /* These were copied from some LLVM test. */
4433 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4434 "less-precise-fpmad",
4435 "true");
4436 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4437 "no-infs-fp-math",
4438 "true");
4439 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4440 "no-nans-fp-math",
4441 "true");
4442 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4443 "unsafe-fp-math",
4444 "true");
4445 }
4446 }
4447
4448 static void declare_streamout_params(struct si_shader_context *ctx,
4449 struct pipe_stream_output_info *so,
4450 struct si_function_info *fninfo)
4451 {
4452 if (ctx->ac.chip_class >= GFX10)
4453 return;
4454
4455 /* Streamout SGPRs. */
4456 if (so->num_outputs) {
4457 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4458 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4459 else
4460 ctx->param_streamout_config = fninfo->num_params - 1;
4461
4462 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4463 }
4464 /* A streamout buffer offset is loaded if the stride is non-zero. */
4465 for (int i = 0; i < 4; i++) {
4466 if (!so->stride[i])
4467 continue;
4468
4469 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4470 }
4471 }
4472
4473 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4474 {
4475 switch (shader->selector->type) {
4476 case PIPE_SHADER_VERTEX:
4477 case PIPE_SHADER_TESS_EVAL:
4478 return shader->key.as_ngg ? 128 : 0;
4479
4480 case PIPE_SHADER_TESS_CTRL:
4481 /* Return this so that LLVM doesn't remove s_barrier
4482 * instructions on chips where we use s_barrier. */
4483 return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 64;
4484
4485 case PIPE_SHADER_GEOMETRY:
4486 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4487
4488 case PIPE_SHADER_COMPUTE:
4489 break; /* see below */
4490
4491 default:
4492 return 0;
4493 }
4494
4495 const unsigned *properties = shader->selector->info.properties;
4496 unsigned max_work_group_size =
4497 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4498 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4499 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4500
4501 if (!max_work_group_size) {
4502 /* This is a variable group size compute shader,
4503 * compile it for the maximum possible group size.
4504 */
4505 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4506 }
4507 return max_work_group_size;
4508 }
4509
4510 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4511 struct si_function_info *fninfo,
4512 bool assign_params)
4513 {
4514 LLVMTypeRef const_shader_buf_type;
4515
4516 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4517 ctx->shader->selector->info.shader_buffers_declared == 0)
4518 const_shader_buf_type = ctx->f32;
4519 else
4520 const_shader_buf_type = ctx->v4i32;
4521
4522 unsigned const_and_shader_buffers =
4523 add_arg(fninfo, ARG_SGPR,
4524 ac_array_in_const32_addr_space(const_shader_buf_type));
4525
4526 if (assign_params)
4527 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4528 }
4529
4530 static void declare_samplers_and_images(struct si_shader_context *ctx,
4531 struct si_function_info *fninfo,
4532 bool assign_params)
4533 {
4534 unsigned samplers_and_images =
4535 add_arg(fninfo, ARG_SGPR,
4536 ac_array_in_const32_addr_space(ctx->v8i32));
4537
4538 if (assign_params)
4539 ctx->param_samplers_and_images = samplers_and_images;
4540 }
4541
4542 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4543 struct si_function_info *fninfo,
4544 bool assign_params)
4545 {
4546 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4547 declare_samplers_and_images(ctx, fninfo, assign_params);
4548 }
4549
4550 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4551 struct si_function_info *fninfo)
4552 {
4553 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4554 ac_array_in_const32_addr_space(ctx->v4i32));
4555 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4556 ac_array_in_const32_addr_space(ctx->v8i32));
4557 }
4558
4559 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4560 struct si_function_info *fninfo)
4561 {
4562 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4563 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4564 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4565 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4566 }
4567
4568 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4569 struct si_function_info *fninfo,
4570 unsigned *num_prolog_vgprs)
4571 {
4572 struct si_shader *shader = ctx->shader;
4573
4574 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4575 if (shader->key.as_ls) {
4576 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4577 if (ctx->screen->info.chip_class >= GFX10) {
4578 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user VGPR */
4579 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4580 } else {
4581 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4582 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4583 }
4584 } else if (ctx->screen->info.chip_class == GFX10 &&
4585 !shader->is_gs_copy_shader) {
4586 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4587 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4588 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4589 } else {
4590 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4591 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4592 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4593 }
4594
4595 if (!shader->is_gs_copy_shader) {
4596 /* Vertex load indices. */
4597 ctx->param_vertex_index0 = fninfo->num_params;
4598 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4599 add_arg(fninfo, ARG_VGPR, ctx->i32);
4600 *num_prolog_vgprs += shader->selector->info.num_inputs;
4601 }
4602 }
4603
4604 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4605 struct si_function_info *fninfo,
4606 unsigned vs_blit_property)
4607 {
4608 ctx->param_vs_blit_inputs = fninfo->num_params;
4609 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4610 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4611 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4612
4613 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4614 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4615 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4616 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4617 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4618 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4619 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4620 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4621 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4622 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4623 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4624 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4625 }
4626 }
4627
4628 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4629 struct si_function_info *fninfo)
4630 {
4631 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4632 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4633 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4634 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4635 }
4636
4637 enum {
4638 /* Convenient merged shader definitions. */
4639 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4640 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4641 };
4642
4643 static void create_function(struct si_shader_context *ctx)
4644 {
4645 struct si_shader *shader = ctx->shader;
4646 struct si_function_info fninfo;
4647 LLVMTypeRef returns[16+32*4];
4648 unsigned i, num_return_sgprs;
4649 unsigned num_returns = 0;
4650 unsigned num_prolog_vgprs = 0;
4651 unsigned type = ctx->type;
4652 unsigned vs_blit_property =
4653 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4654
4655 si_init_function_info(&fninfo);
4656
4657 /* Set MERGED shaders. */
4658 if (ctx->screen->info.chip_class >= GFX9) {
4659 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4660 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4661 else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
4662 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4663 }
4664
4665 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4666
4667 switch (type) {
4668 case PIPE_SHADER_VERTEX:
4669 declare_global_desc_pointers(ctx, &fninfo);
4670
4671 if (vs_blit_property) {
4672 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4673
4674 /* VGPRs */
4675 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4676 break;
4677 }
4678
4679 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4680 declare_vs_specific_input_sgprs(ctx, &fninfo);
4681 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4682 ac_array_in_const32_addr_space(ctx->v4i32));
4683
4684 if (shader->key.as_es) {
4685 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4686 } else if (shader->key.as_ls) {
4687 /* no extra parameters */
4688 } else {
4689 if (shader->is_gs_copy_shader) {
4690 fninfo.num_params = ctx->param_vs_state_bits + 1;
4691 fninfo.num_sgpr_params = fninfo.num_params;
4692 }
4693
4694 /* The locations of the other parameters are assigned dynamically. */
4695 declare_streamout_params(ctx, &shader->selector->so,
4696 &fninfo);
4697 }
4698
4699 /* VGPRs */
4700 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4701
4702 /* Return values */
4703 if (shader->key.opt.vs_as_prim_discard_cs) {
4704 for (i = 0; i < 4; i++)
4705 returns[num_returns++] = ctx->f32; /* VGPRs */
4706 }
4707 break;
4708
4709 case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
4710 declare_global_desc_pointers(ctx, &fninfo);
4711 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4712 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4713 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4714 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4715 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4716 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4717 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4718
4719 /* VGPRs */
4720 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4721 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4722
4723 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4724 * placed after the user SGPRs.
4725 */
4726 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4727 returns[num_returns++] = ctx->i32; /* SGPRs */
4728 for (i = 0; i < 11; i++)
4729 returns[num_returns++] = ctx->f32; /* VGPRs */
4730 break;
4731
4732 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4733 /* Merged stages have 8 system SGPRs at the beginning. */
4734 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4735 declare_per_stage_desc_pointers(ctx, &fninfo,
4736 ctx->type == PIPE_SHADER_TESS_CTRL);
4737 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4738 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4739 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4740 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4741 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4742 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4743
4744 declare_global_desc_pointers(ctx, &fninfo);
4745 declare_per_stage_desc_pointers(ctx, &fninfo,
4746 ctx->type == PIPE_SHADER_VERTEX);
4747 declare_vs_specific_input_sgprs(ctx, &fninfo);
4748
4749 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4750 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4751 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4752 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4753 ac_array_in_const32_addr_space(ctx->v4i32));
4754
4755 /* VGPRs (first TCS, then VS) */
4756 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4757 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4758
4759 if (ctx->type == PIPE_SHADER_VERTEX) {
4760 declare_vs_input_vgprs(ctx, &fninfo,
4761 &num_prolog_vgprs);
4762
4763 /* LS return values are inputs to the TCS main shader part. */
4764 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4765 returns[num_returns++] = ctx->i32; /* SGPRs */
4766 for (i = 0; i < 2; i++)
4767 returns[num_returns++] = ctx->f32; /* VGPRs */
4768 } else {
4769 /* TCS return values are inputs to the TCS epilog.
4770 *
4771 * param_tcs_offchip_offset, param_tcs_factor_offset,
4772 * param_tcs_offchip_layout, and param_rw_buffers
4773 * should be passed to the epilog.
4774 */
4775 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4776 returns[num_returns++] = ctx->i32; /* SGPRs */
4777 for (i = 0; i < 11; i++)
4778 returns[num_returns++] = ctx->f32; /* VGPRs */
4779 }
4780 break;
4781
4782 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4783 /* Merged stages have 8 system SGPRs at the beginning. */
4784 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4785 declare_per_stage_desc_pointers(ctx, &fninfo,
4786 ctx->type == PIPE_SHADER_GEOMETRY);
4787
4788 if (ctx->shader->key.as_ngg)
4789 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
4790 else
4791 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4792
4793 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4794 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4795 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4796 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4797 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4798
4799 declare_global_desc_pointers(ctx, &fninfo);
4800 if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
4801 declare_per_stage_desc_pointers(ctx, &fninfo,
4802 (ctx->type == PIPE_SHADER_VERTEX ||
4803 ctx->type == PIPE_SHADER_TESS_EVAL));
4804 }
4805
4806 if (ctx->type == PIPE_SHADER_VERTEX) {
4807 if (vs_blit_property)
4808 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4809 else
4810 declare_vs_specific_input_sgprs(ctx, &fninfo);
4811 } else {
4812 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4813 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4814 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4815 /* Declare as many input SGPRs as the VS has. */
4816 }
4817
4818 if (ctx->type == PIPE_SHADER_VERTEX) {
4819 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4820 ac_array_in_const32_addr_space(ctx->v4i32));
4821 }
4822
4823 /* VGPRs (first GS, then VS/TES) */
4824 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4825 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4826 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4827 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4828 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4829
4830 if (ctx->type == PIPE_SHADER_VERTEX) {
4831 declare_vs_input_vgprs(ctx, &fninfo,
4832 &num_prolog_vgprs);
4833 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4834 declare_tes_input_vgprs(ctx, &fninfo);
4835 }
4836
4837 if (ctx->shader->key.as_es &&
4838 (ctx->type == PIPE_SHADER_VERTEX ||
4839 ctx->type == PIPE_SHADER_TESS_EVAL)) {
4840 unsigned num_user_sgprs;
4841
4842 if (ctx->type == PIPE_SHADER_VERTEX)
4843 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4844 else
4845 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4846
4847 /* ES return values are inputs to GS. */
4848 for (i = 0; i < 8 + num_user_sgprs; i++)
4849 returns[num_returns++] = ctx->i32; /* SGPRs */
4850 for (i = 0; i < 5; i++)
4851 returns[num_returns++] = ctx->f32; /* VGPRs */
4852 }
4853 break;
4854
4855 case PIPE_SHADER_TESS_EVAL:
4856 declare_global_desc_pointers(ctx, &fninfo);
4857 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4858 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4859 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4860 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4861
4862 if (shader->key.as_es) {
4863 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4864 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4865 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4866 } else {
4867 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4868 declare_streamout_params(ctx, &shader->selector->so,
4869 &fninfo);
4870 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4871 }
4872
4873 /* VGPRs */
4874 declare_tes_input_vgprs(ctx, &fninfo);
4875 break;
4876
4877 case PIPE_SHADER_GEOMETRY:
4878 declare_global_desc_pointers(ctx, &fninfo);
4879 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4880 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4881 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4882
4883 /* VGPRs */
4884 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4885 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4886 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4887 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4888 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4889 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4890 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4891 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4892 break;
4893
4894 case PIPE_SHADER_FRAGMENT:
4895 declare_global_desc_pointers(ctx, &fninfo);
4896 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4897 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4898 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4899 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4900
4901 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4902 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4903 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4904 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4905 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4906 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4907 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4908 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4909 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4910 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4911 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4912 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4913 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4914 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4915 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4916 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4917 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4918 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4919 shader->info.face_vgpr_index = 20;
4920 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4921 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4922 shader->info.ancillary_vgpr_index = 21;
4923 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4924 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4925 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4926
4927 /* Color inputs from the prolog. */
4928 if (shader->selector->info.colors_read) {
4929 unsigned num_color_elements =
4930 util_bitcount(shader->selector->info.colors_read);
4931
4932 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4933 for (i = 0; i < num_color_elements; i++)
4934 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4935
4936 num_prolog_vgprs += num_color_elements;
4937 }
4938
4939 /* Outputs for the epilog. */
4940 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4941 num_returns =
4942 num_return_sgprs +
4943 util_bitcount(shader->selector->info.colors_written) * 4 +
4944 shader->selector->info.writes_z +
4945 shader->selector->info.writes_stencil +
4946 shader->selector->info.writes_samplemask +
4947 1 /* SampleMaskIn */;
4948
4949 num_returns = MAX2(num_returns,
4950 num_return_sgprs +
4951 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4952
4953 for (i = 0; i < num_return_sgprs; i++)
4954 returns[i] = ctx->i32;
4955 for (; i < num_returns; i++)
4956 returns[i] = ctx->f32;
4957 break;
4958
4959 case PIPE_SHADER_COMPUTE:
4960 declare_global_desc_pointers(ctx, &fninfo);
4961 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4962 if (shader->selector->info.uses_grid_size)
4963 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4964 if (shader->selector->info.uses_block_size &&
4965 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4966 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4967
4968 unsigned cs_user_data_dwords =
4969 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_DWORDS];
4970 if (cs_user_data_dwords) {
4971 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4972 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4973 }
4974
4975 for (i = 0; i < 3; i++) {
4976 ctx->abi.workgroup_ids[i] = NULL;
4977 if (shader->selector->info.uses_block_id[i])
4978 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4979 }
4980
4981 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4982 break;
4983 default:
4984 assert(0 && "unimplemented shader");
4985 return;
4986 }
4987
4988 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4989 si_get_max_workgroup_size(shader));
4990
4991 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4992 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
4993 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4994 "InitialPSInputAddr",
4995 S_0286D0_PERSP_SAMPLE_ENA(1) |
4996 S_0286D0_PERSP_CENTER_ENA(1) |
4997 S_0286D0_PERSP_CENTROID_ENA(1) |
4998 S_0286D0_LINEAR_SAMPLE_ENA(1) |
4999 S_0286D0_LINEAR_CENTER_ENA(1) |
5000 S_0286D0_LINEAR_CENTROID_ENA(1) |
5001 S_0286D0_FRONT_FACE_ENA(1) |
5002 S_0286D0_ANCILLARY_ENA(1) |
5003 S_0286D0_POS_FIXED_PT_ENA(1));
5004 }
5005
5006 shader->info.num_input_sgprs = 0;
5007 shader->info.num_input_vgprs = 0;
5008
5009 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5010 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5011
5012 for (; i < fninfo.num_params; ++i)
5013 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5014
5015 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5016 shader->info.num_input_vgprs -= num_prolog_vgprs;
5017
5018 if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
5019 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5020 /* The LSHS size is not known until draw time, so we append it
5021 * at the end of whatever LDS use there may be in the rest of
5022 * the shader (currently none, unless LLVM decides to do its
5023 * own LDS-based lowering).
5024 */
5025 ctx->ac.lds = LLVMAddGlobalInAddressSpace(
5026 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5027 "__lds_end", AC_ADDR_SPACE_LDS);
5028 LLVMSetAlignment(ctx->ac.lds, 256);
5029 } else {
5030 ac_declare_lds_as_pointer(&ctx->ac);
5031 }
5032 }
5033 }
5034
5035 /* Ensure that the esgs ring is declared.
5036 *
5037 * We declare it with 64KB alignment as a hint that the
5038 * pointer value will always be 0.
5039 */
5040 static void declare_esgs_ring(struct si_shader_context *ctx)
5041 {
5042 if (ctx->esgs_ring)
5043 return;
5044
5045 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
5046
5047 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
5048 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5049 "esgs_ring",
5050 AC_ADDR_SPACE_LDS);
5051 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
5052 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
5053 }
5054
5055 /**
5056 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5057 * for later use.
5058 */
5059 static void preload_ring_buffers(struct si_shader_context *ctx)
5060 {
5061 LLVMBuilderRef builder = ctx->ac.builder;
5062
5063 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5064 ctx->param_rw_buffers);
5065
5066 if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) {
5067 if (ctx->screen->info.chip_class <= GFX8) {
5068 unsigned ring =
5069 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5070 : SI_ES_RING_ESGS;
5071 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5072
5073 ctx->esgs_ring =
5074 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5075 } else {
5076 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5077 /* Declare the ESGS ring as an explicit LDS symbol. */
5078 declare_esgs_ring(ctx);
5079 } else {
5080 ac_declare_lds_as_pointer(&ctx->ac);
5081 ctx->esgs_ring = ctx->ac.lds;
5082 }
5083 }
5084 }
5085
5086 if (ctx->shader->is_gs_copy_shader) {
5087 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5088
5089 ctx->gsvs_ring[0] =
5090 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5091 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5092 const struct si_shader_selector *sel = ctx->shader->selector;
5093 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5094 LLVMValueRef base_ring;
5095
5096 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5097
5098 /* The conceptual layout of the GSVS ring is
5099 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5100 * but the real memory layout is swizzled across
5101 * threads:
5102 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5103 * t16v0c0 ..
5104 * Override the buffer descriptor accordingly.
5105 */
5106 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5107 uint64_t stream_offset = 0;
5108
5109 for (unsigned stream = 0; stream < 4; ++stream) {
5110 unsigned num_components;
5111 unsigned stride;
5112 unsigned num_records;
5113 LLVMValueRef ring, tmp;
5114
5115 num_components = sel->info.num_stream_output_components[stream];
5116 if (!num_components)
5117 continue;
5118
5119 stride = 4 * num_components * sel->gs_max_out_vertices;
5120
5121 /* Limit on the stride field for <= GFX7. */
5122 assert(stride < (1 << 14));
5123
5124 num_records = 64;
5125
5126 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5127 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5128 tmp = LLVMBuildAdd(builder, tmp,
5129 LLVMConstInt(ctx->i64,
5130 stream_offset, 0), "");
5131 stream_offset += stride * 64;
5132
5133 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5134 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5135 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5136 tmp = LLVMBuildOr(builder, tmp,
5137 LLVMConstInt(ctx->i32,
5138 S_008F04_STRIDE(stride) |
5139 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5140 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5141 ring = LLVMBuildInsertElement(builder, ring,
5142 LLVMConstInt(ctx->i32, num_records, 0),
5143 LLVMConstInt(ctx->i32, 2, 0), "");
5144
5145 uint32_t rsrc3 =
5146 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5147 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5148 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5149 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5150 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5151 S_008F0C_ADD_TID_ENABLE(1);
5152
5153 if (ctx->ac.chip_class >= GFX10) {
5154 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5155 S_008F0C_OOB_SELECT(2) |
5156 S_008F0C_RESOURCE_LEVEL(1);
5157 } else {
5158 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5159 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5160 S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
5161 }
5162
5163 ring = LLVMBuildInsertElement(builder, ring,
5164 LLVMConstInt(ctx->i32, rsrc3, false),
5165 LLVMConstInt(ctx->i32, 3, 0), "");
5166
5167 ctx->gsvs_ring[stream] = ring;
5168 }
5169 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5170 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5171 }
5172 }
5173
5174 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5175 LLVMValueRef param_rw_buffers,
5176 unsigned param_pos_fixed_pt)
5177 {
5178 LLVMBuilderRef builder = ctx->ac.builder;
5179 LLVMValueRef slot, desc, offset, row, bit, address[2];
5180
5181 /* Use the fixed-point gl_FragCoord input.
5182 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5183 * per coordinate to get the repeating effect.
5184 */
5185 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5186 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5187
5188 /* Load the buffer descriptor. */
5189 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5190 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5191
5192 /* The stipple pattern is 32x32, each row has 32 bits. */
5193 offset = LLVMBuildMul(builder, address[1],
5194 LLVMConstInt(ctx->i32, 4, 0), "");
5195 row = buffer_load_const(ctx, desc, offset);
5196 row = ac_to_integer(&ctx->ac, row);
5197 bit = LLVMBuildLShr(builder, row, address[0], "");
5198 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5199 ac_build_kill_if_false(&ctx->ac, bit);
5200 }
5201
5202 /* For the UMR disassembler. */
5203 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5204 #define DEBUGGER_NUM_MARKERS 5
5205
5206 static bool si_shader_binary_open(struct si_screen *screen,
5207 struct si_shader *shader,
5208 struct ac_rtld_binary *rtld)
5209 {
5210 const struct si_shader_selector *sel = shader->selector;
5211 enum pipe_shader_type shader_type = sel ? sel->type : PIPE_SHADER_COMPUTE;
5212 const char *part_elfs[5];
5213 size_t part_sizes[5];
5214 unsigned num_parts = 0;
5215
5216 #define add_part(shader_or_part) \
5217 if (shader_or_part) { \
5218 part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
5219 part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
5220 num_parts++; \
5221 }
5222
5223 add_part(shader->prolog);
5224 add_part(shader->previous_stage);
5225 add_part(shader->prolog2);
5226 add_part(shader);
5227 add_part(shader->epilog);
5228
5229 #undef add_part
5230
5231 struct ac_rtld_symbol lds_symbols[2];
5232 unsigned num_lds_symbols = 0;
5233 unsigned esgs_ring_size = 0;
5234
5235 if (sel && screen->info.chip_class >= GFX9 &&
5236 sel->type == PIPE_SHADER_GEOMETRY && !shader->is_gs_copy_shader) {
5237 esgs_ring_size = shader->gs_info.esgs_ring_size;
5238 }
5239
5240 if (sel && shader->key.as_ngg) {
5241 if (sel->so.num_outputs) {
5242 unsigned esgs_vertex_bytes = 4 * (4 * sel->info.num_outputs + 1);
5243 esgs_ring_size = MAX2(esgs_ring_size,
5244 shader->ngg.max_out_verts * esgs_vertex_bytes);
5245 }
5246
5247 /* GS stores Primitive IDs into LDS at the address corresponding
5248 * to the ES thread of the provoking vertex. All ES threads
5249 * load and export PrimitiveID for their thread.
5250 */
5251 if (sel->type == PIPE_SHADER_VERTEX &&
5252 shader->key.mono.u.vs_export_prim_id)
5253 esgs_ring_size = MAX2(esgs_ring_size, shader->ngg.max_out_verts * 4);
5254 }
5255
5256 if (esgs_ring_size) {
5257 /* We add this symbol even on LLVM <= 8 to ensure that
5258 * shader->config.lds_size is set correctly below.
5259 */
5260 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5261 sym->name = "esgs_ring";
5262 sym->size = esgs_ring_size;
5263 sym->align = 64 * 1024;
5264 }
5265
5266 if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
5267 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5268 sym->name = "ngg_emit";
5269 sym->size = shader->ngg.ngg_emit_size * 4;
5270 sym->align = 4;
5271 }
5272
5273 bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
5274 .info = &screen->info,
5275 .options = {
5276 .halt_at_entry = screen->options.halt_shaders,
5277 },
5278 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5279 .num_parts = num_parts,
5280 .elf_ptrs = part_elfs,
5281 .elf_sizes = part_sizes,
5282 .num_shared_lds_symbols = num_lds_symbols,
5283 .shared_lds_symbols = lds_symbols });
5284
5285 if (rtld->lds_size > 0) {
5286 unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
5287 shader->config.lds_size =
5288 align(rtld->lds_size, alloc_granularity) / alloc_granularity;
5289 }
5290
5291 return ok;
5292 }
5293
5294 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
5295 {
5296 struct ac_rtld_binary rtld;
5297 si_shader_binary_open(screen, shader, &rtld);
5298 return rtld.rx_size;
5299 }
5300
5301 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
5302 {
5303 uint64_t *scratch_va = data;
5304
5305 if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
5306 *value = (uint32_t)*scratch_va;
5307 return true;
5308 }
5309 if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
5310 /* Enable scratch coalescing. */
5311 *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
5312 S_008F04_SWIZZLE_ENABLE(1);
5313 if (HAVE_LLVM < 0x0800) {
5314 /* Old LLVM created an R_ABS32_HI relocation for
5315 * this symbol. */
5316 *value <<= 32;
5317 }
5318 return true;
5319 }
5320
5321 return false;
5322 }
5323
5324 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
5325 uint64_t scratch_va)
5326 {
5327 struct ac_rtld_binary binary;
5328 if (!si_shader_binary_open(sscreen, shader, &binary))
5329 return false;
5330
5331 si_resource_reference(&shader->bo, NULL);
5332 shader->bo = si_aligned_buffer_create(&sscreen->b,
5333 sscreen->cpdma_prefetch_writes_memory ?
5334 0 : SI_RESOURCE_FLAG_READ_ONLY,
5335 PIPE_USAGE_IMMUTABLE,
5336 align(binary.rx_size, SI_CPDMA_ALIGNMENT),
5337 256);
5338 if (!shader->bo)
5339 return false;
5340
5341 /* Upload. */
5342 struct ac_rtld_upload_info u = {};
5343 u.binary = &binary;
5344 u.get_external_symbol = si_get_external_symbol;
5345 u.cb_data = &scratch_va;
5346 u.rx_va = shader->bo->gpu_address;
5347 u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5348 PIPE_TRANSFER_READ_WRITE |
5349 PIPE_TRANSFER_UNSYNCHRONIZED |
5350 RADEON_TRANSFER_TEMPORARY);
5351 if (!u.rx_ptr)
5352 return false;
5353
5354 bool ok = ac_rtld_upload(&u);
5355
5356 sscreen->ws->buffer_unmap(shader->bo->buf);
5357 ac_rtld_close(&binary);
5358
5359 return ok;
5360 }
5361
5362 static void si_shader_dump_disassembly(struct si_screen *screen,
5363 const struct si_shader_binary *binary,
5364 struct pipe_debug_callback *debug,
5365 const char *name, FILE *file)
5366 {
5367 struct ac_rtld_binary rtld_binary;
5368
5369 if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
5370 .info = &screen->info,
5371 .num_parts = 1,
5372 .elf_ptrs = &binary->elf_buffer,
5373 .elf_sizes = &binary->elf_size }))
5374 return;
5375
5376 const char *disasm;
5377 size_t nbytes;
5378
5379 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
5380 goto out;
5381
5382 if (nbytes > INT_MAX)
5383 goto out;
5384
5385 if (debug && debug->debug_message) {
5386 /* Very long debug messages are cut off, so send the
5387 * disassembly one line at a time. This causes more
5388 * overhead, but on the plus side it simplifies
5389 * parsing of resulting logs.
5390 */
5391 pipe_debug_message(debug, SHADER_INFO,
5392 "Shader Disassembly Begin");
5393
5394 uint64_t line = 0;
5395 while (line < nbytes) {
5396 int count = nbytes - line;
5397 const char *nl = memchr(disasm + line, '\n', nbytes - line);
5398 if (nl)
5399 count = nl - (disasm + line);
5400
5401 if (count) {
5402 pipe_debug_message(debug, SHADER_INFO,
5403 "%.*s", count, disasm + line);
5404 }
5405
5406 line += count + 1;
5407 }
5408
5409 pipe_debug_message(debug, SHADER_INFO,
5410 "Shader Disassembly End");
5411 }
5412
5413 if (file) {
5414 fprintf(file, "Shader %s disassembly:\n", name);
5415 fprintf(file, "%*s", (int)nbytes, disasm);
5416 }
5417
5418 out:
5419 ac_rtld_close(&rtld_binary);
5420 }
5421
5422 static void si_calculate_max_simd_waves(struct si_shader *shader)
5423 {
5424 struct si_screen *sscreen = shader->selector->screen;
5425 struct ac_shader_config *conf = &shader->config;
5426 unsigned num_inputs = shader->selector->info.num_inputs;
5427 unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
5428 unsigned lds_per_wave = 0;
5429 unsigned max_simd_waves;
5430
5431 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5432
5433 /* Compute LDS usage for PS. */
5434 switch (shader->selector->type) {
5435 case PIPE_SHADER_FRAGMENT:
5436 /* The minimum usage per wave is (num_inputs * 48). The maximum
5437 * usage is (num_inputs * 48 * 16).
5438 * We can get anything in between and it varies between waves.
5439 *
5440 * The 48 bytes per input for a single primitive is equal to
5441 * 4 bytes/component * 4 components/input * 3 points.
5442 *
5443 * Other stages don't know the size at compile time or don't
5444 * allocate LDS per wave, but instead they do it per thread group.
5445 */
5446 lds_per_wave = conf->lds_size * lds_increment +
5447 align(num_inputs * 48, lds_increment);
5448 break;
5449 case PIPE_SHADER_COMPUTE:
5450 if (shader->selector) {
5451 unsigned max_workgroup_size =
5452 si_get_max_workgroup_size(shader);
5453 lds_per_wave = (conf->lds_size * lds_increment) /
5454 DIV_ROUND_UP(max_workgroup_size, 64);
5455 }
5456 break;
5457 }
5458
5459 /* Compute the per-SIMD wave counts. */
5460 if (conf->num_sgprs) {
5461 max_simd_waves =
5462 MIN2(max_simd_waves,
5463 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5464 }
5465
5466 if (conf->num_vgprs)
5467 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5468
5469 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5470 * 16KB makes some SIMDs unoccupied). */
5471 if (lds_per_wave)
5472 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5473
5474 shader->info.max_simd_waves = max_simd_waves;
5475 }
5476
5477 void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
5478 struct si_shader *shader,
5479 struct pipe_debug_callback *debug)
5480 {
5481 const struct ac_shader_config *conf = &shader->config;
5482
5483 if (screen->options.debug_disassembly)
5484 si_shader_dump_disassembly(screen, &shader->binary, debug, "main", NULL);
5485
5486 pipe_debug_message(debug, SHADER_INFO,
5487 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5488 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5489 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5490 conf->num_sgprs, conf->num_vgprs,
5491 si_get_shader_binary_size(screen, shader),
5492 conf->lds_size, conf->scratch_bytes_per_wave,
5493 shader->info.max_simd_waves, conf->spilled_sgprs,
5494 conf->spilled_vgprs, shader->info.private_mem_vgprs);
5495 }
5496
5497 static void si_shader_dump_stats(struct si_screen *sscreen,
5498 struct si_shader *shader,
5499 unsigned processor,
5500 FILE *file,
5501 bool check_debug_option)
5502 {
5503 const struct ac_shader_config *conf = &shader->config;
5504
5505 if (!check_debug_option ||
5506 si_can_dump_shader(sscreen, processor)) {
5507 if (processor == PIPE_SHADER_FRAGMENT) {
5508 fprintf(file, "*** SHADER CONFIG ***\n"
5509 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5510 "SPI_PS_INPUT_ENA = 0x%04x\n",
5511 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5512 }
5513
5514 fprintf(file, "*** SHADER STATS ***\n"
5515 "SGPRS: %d\n"
5516 "VGPRS: %d\n"
5517 "Spilled SGPRs: %d\n"
5518 "Spilled VGPRs: %d\n"
5519 "Private memory VGPRs: %d\n"
5520 "Code Size: %d bytes\n"
5521 "LDS: %d blocks\n"
5522 "Scratch: %d bytes per wave\n"
5523 "Max Waves: %d\n"
5524 "********************\n\n\n",
5525 conf->num_sgprs, conf->num_vgprs,
5526 conf->spilled_sgprs, conf->spilled_vgprs,
5527 shader->info.private_mem_vgprs,
5528 si_get_shader_binary_size(sscreen, shader),
5529 conf->lds_size, conf->scratch_bytes_per_wave,
5530 shader->info.max_simd_waves);
5531 }
5532 }
5533
5534 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5535 {
5536 switch (processor) {
5537 case PIPE_SHADER_VERTEX:
5538 if (shader->key.as_es)
5539 return "Vertex Shader as ES";
5540 else if (shader->key.as_ls)
5541 return "Vertex Shader as LS";
5542 else if (shader->key.opt.vs_as_prim_discard_cs)
5543 return "Vertex Shader as Primitive Discard CS";
5544 else if (shader->key.as_ngg)
5545 return "Vertex Shader as ESGS";
5546 else
5547 return "Vertex Shader as VS";
5548 case PIPE_SHADER_TESS_CTRL:
5549 return "Tessellation Control Shader";
5550 case PIPE_SHADER_TESS_EVAL:
5551 if (shader->key.as_es)
5552 return "Tessellation Evaluation Shader as ES";
5553 else if (shader->key.as_ngg)
5554 return "Tessellation Evaluation Shader as ESGS";
5555 else
5556 return "Tessellation Evaluation Shader as VS";
5557 case PIPE_SHADER_GEOMETRY:
5558 if (shader->is_gs_copy_shader)
5559 return "GS Copy Shader as VS";
5560 else
5561 return "Geometry Shader";
5562 case PIPE_SHADER_FRAGMENT:
5563 return "Pixel Shader";
5564 case PIPE_SHADER_COMPUTE:
5565 return "Compute Shader";
5566 default:
5567 return "Unknown Shader";
5568 }
5569 }
5570
5571 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
5572 struct pipe_debug_callback *debug, unsigned processor,
5573 FILE *file, bool check_debug_option)
5574 {
5575 if (!check_debug_option ||
5576 si_can_dump_shader(sscreen, processor))
5577 si_dump_shader_key(processor, shader, file);
5578
5579 if (!check_debug_option && shader->binary.llvm_ir_string) {
5580 if (shader->previous_stage &&
5581 shader->previous_stage->binary.llvm_ir_string) {
5582 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5583 si_get_shader_name(shader, processor));
5584 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5585 }
5586
5587 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5588 si_get_shader_name(shader, processor));
5589 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5590 }
5591
5592 if (!check_debug_option ||
5593 (si_can_dump_shader(sscreen, processor) &&
5594 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5595 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5596
5597 if (shader->prolog)
5598 si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
5599 debug, "prolog", file);
5600 if (shader->previous_stage)
5601 si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
5602 debug, "previous stage", file);
5603 if (shader->prolog2)
5604 si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
5605 debug, "prolog2", file);
5606
5607 si_shader_dump_disassembly(sscreen, &shader->binary, debug, "main", file);
5608
5609 if (shader->epilog)
5610 si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
5611 debug, "epilog", file);
5612 fprintf(file, "\n");
5613 }
5614
5615 si_shader_dump_stats(sscreen, shader, processor, file,
5616 check_debug_option);
5617 }
5618
5619 static int si_compile_llvm(struct si_screen *sscreen,
5620 struct si_shader_binary *binary,
5621 struct ac_shader_config *conf,
5622 struct ac_llvm_compiler *compiler,
5623 LLVMModuleRef mod,
5624 struct pipe_debug_callback *debug,
5625 unsigned processor,
5626 const char *name,
5627 bool less_optimized)
5628 {
5629 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5630
5631 if (si_can_dump_shader(sscreen, processor)) {
5632 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5633
5634 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5635 fprintf(stderr, "%s LLVM IR:\n\n", name);
5636 ac_dump_module(mod);
5637 fprintf(stderr, "\n");
5638 }
5639 }
5640
5641 if (sscreen->record_llvm_ir) {
5642 char *ir = LLVMPrintModuleToString(mod);
5643 binary->llvm_ir_string = strdup(ir);
5644 LLVMDisposeMessage(ir);
5645 }
5646
5647 if (!si_replace_shader(count, binary)) {
5648 unsigned r = si_llvm_compile(mod, binary, compiler, debug,
5649 less_optimized);
5650 if (r)
5651 return r;
5652 }
5653
5654 struct ac_rtld_binary rtld;
5655 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
5656 .info = &sscreen->info,
5657 .num_parts = 1,
5658 .elf_ptrs = &binary->elf_buffer,
5659 .elf_sizes = &binary->elf_size }))
5660 return -1;
5661
5662 bool ok = ac_rtld_read_config(&rtld, conf);
5663 ac_rtld_close(&rtld);
5664 if (!ok)
5665 return -1;
5666
5667 /* Enable 64-bit and 16-bit denormals, because there is no performance
5668 * cost.
5669 *
5670 * If denormals are enabled, all floating-point output modifiers are
5671 * ignored.
5672 *
5673 * Don't enable denormals for 32-bit floats, because:
5674 * - Floating-point output modifiers would be ignored by the hw.
5675 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5676 * have to stop using those.
5677 * - GFX6 & GFX7 would be very slow.
5678 */
5679 conf->float_mode |= V_00B028_FP_64_DENORMS;
5680
5681 return 0;
5682 }
5683
5684 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5685 {
5686 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5687 LLVMBuildRetVoid(ctx->ac.builder);
5688 else
5689 LLVMBuildRet(ctx->ac.builder, ret);
5690 }
5691
5692 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5693 struct si_shader *
5694 si_generate_gs_copy_shader(struct si_screen *sscreen,
5695 struct ac_llvm_compiler *compiler,
5696 struct si_shader_selector *gs_selector,
5697 struct pipe_debug_callback *debug)
5698 {
5699 struct si_shader_context ctx;
5700 struct si_shader *shader;
5701 LLVMBuilderRef builder;
5702 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5703 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5704 int i;
5705
5706
5707 shader = CALLOC_STRUCT(si_shader);
5708 if (!shader)
5709 return NULL;
5710
5711 /* We can leave the fence as permanently signaled because the GS copy
5712 * shader only becomes visible globally after it has been compiled. */
5713 util_queue_fence_init(&shader->ready);
5714
5715 shader->selector = gs_selector;
5716 shader->is_gs_copy_shader = true;
5717
5718 si_init_shader_ctx(&ctx, sscreen, compiler);
5719 ctx.shader = shader;
5720 ctx.type = PIPE_SHADER_VERTEX;
5721
5722 builder = ctx.ac.builder;
5723
5724 create_function(&ctx);
5725 preload_ring_buffers(&ctx);
5726
5727 LLVMValueRef voffset =
5728 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5729 LLVMConstInt(ctx.i32, 4, 0), "");
5730
5731 /* Fetch the vertex stream ID.*/
5732 LLVMValueRef stream_id;
5733
5734 if (gs_selector->so.num_outputs)
5735 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5736 else
5737 stream_id = ctx.i32_0;
5738
5739 /* Fill in output information. */
5740 for (i = 0; i < gsinfo->num_outputs; ++i) {
5741 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5742 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5743
5744 for (int chan = 0; chan < 4; chan++) {
5745 outputs[i].vertex_stream[chan] =
5746 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5747 }
5748 }
5749
5750 LLVMBasicBlockRef end_bb;
5751 LLVMValueRef switch_inst;
5752
5753 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5754 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5755
5756 for (int stream = 0; stream < 4; stream++) {
5757 LLVMBasicBlockRef bb;
5758 unsigned offset;
5759
5760 if (!gsinfo->num_stream_output_components[stream])
5761 continue;
5762
5763 if (stream > 0 && !gs_selector->so.num_outputs)
5764 continue;
5765
5766 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5767 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5768 LLVMPositionBuilderAtEnd(builder, bb);
5769
5770 /* Fetch vertex data from GSVS ring */
5771 offset = 0;
5772 for (i = 0; i < gsinfo->num_outputs; ++i) {
5773 for (unsigned chan = 0; chan < 4; chan++) {
5774 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5775 outputs[i].vertex_stream[chan] != stream) {
5776 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5777 continue;
5778 }
5779
5780 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5781 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5782 offset++;
5783
5784 outputs[i].values[chan] =
5785 ac_build_buffer_load(&ctx.ac,
5786 ctx.gsvs_ring[0], 1,
5787 ctx.i32_0, voffset,
5788 soffset, 0, 1, 1,
5789 true, false);
5790 }
5791 }
5792
5793 /* Streamout and exports. */
5794 if (ctx.ac.chip_class <= GFX9 && gs_selector->so.num_outputs) {
5795 si_llvm_emit_streamout(&ctx, outputs,
5796 gsinfo->num_outputs,
5797 stream);
5798 }
5799
5800 if (stream == 0)
5801 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5802
5803 LLVMBuildBr(builder, end_bb);
5804 }
5805
5806 LLVMPositionBuilderAtEnd(builder, end_bb);
5807
5808 LLVMBuildRetVoid(ctx.ac.builder);
5809
5810 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5811 si_llvm_optimize_module(&ctx);
5812
5813 bool ok = false;
5814 if (si_compile_llvm(sscreen, &ctx.shader->binary,
5815 &ctx.shader->config, ctx.compiler,
5816 ctx.ac.module,
5817 debug, PIPE_SHADER_GEOMETRY,
5818 "GS Copy Shader", false) == 0) {
5819 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5820 fprintf(stderr, "GS Copy Shader:\n");
5821 si_shader_dump(sscreen, ctx.shader, debug,
5822 PIPE_SHADER_GEOMETRY, stderr, true);
5823
5824 if (!ctx.shader->config.scratch_bytes_per_wave)
5825 ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
5826 else
5827 ok = true;
5828 }
5829
5830 si_llvm_dispose(&ctx);
5831
5832 if (!ok) {
5833 FREE(shader);
5834 shader = NULL;
5835 } else {
5836 si_fix_resource_usage(sscreen, shader);
5837 }
5838 return shader;
5839 }
5840
5841 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5842 const struct si_vs_prolog_bits *prolog,
5843 const char *prefix, FILE *f)
5844 {
5845 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5846 prefix, prolog->instance_divisor_is_one);
5847 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5848 prefix, prolog->instance_divisor_is_fetched);
5849 fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n",
5850 prefix, prolog->unpack_instance_id_from_vertex_id);
5851 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5852 prefix, prolog->ls_vgpr_fix);
5853
5854 fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
5855 fprintf(f, " mono.vs.fix_fetch = {");
5856 for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
5857 union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
5858 if (i)
5859 fprintf(f, ", ");
5860 if (!fix.bits)
5861 fprintf(f, "0");
5862 else
5863 fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
5864 fix.u.num_channels_m1, fix.u.format);
5865 }
5866 fprintf(f, "}\n");
5867 }
5868
5869 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5870 FILE *f)
5871 {
5872 const struct si_shader_key *key = &shader->key;
5873
5874 fprintf(f, "SHADER KEY\n");
5875
5876 switch (processor) {
5877 case PIPE_SHADER_VERTEX:
5878 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5879 "part.vs.prolog", f);
5880 fprintf(f, " as_es = %u\n", key->as_es);
5881 fprintf(f, " as_ls = %u\n", key->as_ls);
5882 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5883 key->mono.u.vs_export_prim_id);
5884 fprintf(f, " opt.vs_as_prim_discard_cs = %u\n",
5885 key->opt.vs_as_prim_discard_cs);
5886 fprintf(f, " opt.cs_prim_type = %s\n",
5887 tgsi_primitive_names[key->opt.cs_prim_type]);
5888 fprintf(f, " opt.cs_indexed = %u\n",
5889 key->opt.cs_indexed);
5890 fprintf(f, " opt.cs_instancing = %u\n",
5891 key->opt.cs_instancing);
5892 fprintf(f, " opt.cs_primitive_restart = %u\n",
5893 key->opt.cs_primitive_restart);
5894 fprintf(f, " opt.cs_provoking_vertex_first = %u\n",
5895 key->opt.cs_provoking_vertex_first);
5896 fprintf(f, " opt.cs_need_correct_orientation = %u\n",
5897 key->opt.cs_need_correct_orientation);
5898 fprintf(f, " opt.cs_cull_front = %u\n",
5899 key->opt.cs_cull_front);
5900 fprintf(f, " opt.cs_cull_back = %u\n",
5901 key->opt.cs_cull_back);
5902 fprintf(f, " opt.cs_cull_z = %u\n",
5903 key->opt.cs_cull_z);
5904 fprintf(f, " opt.cs_halfz_clip_space = %u\n",
5905 key->opt.cs_halfz_clip_space);
5906 break;
5907
5908 case PIPE_SHADER_TESS_CTRL:
5909 if (shader->selector->screen->info.chip_class >= GFX9) {
5910 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5911 "part.tcs.ls_prolog", f);
5912 }
5913 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5914 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5915 break;
5916
5917 case PIPE_SHADER_TESS_EVAL:
5918 fprintf(f, " as_es = %u\n", key->as_es);
5919 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5920 key->mono.u.vs_export_prim_id);
5921 break;
5922
5923 case PIPE_SHADER_GEOMETRY:
5924 if (shader->is_gs_copy_shader)
5925 break;
5926
5927 if (shader->selector->screen->info.chip_class >= GFX9 &&
5928 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5929 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5930 "part.gs.vs_prolog", f);
5931 }
5932 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5933 break;
5934
5935 case PIPE_SHADER_COMPUTE:
5936 break;
5937
5938 case PIPE_SHADER_FRAGMENT:
5939 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5940 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5941 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5942 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5943 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5944 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5945 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5946 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5947 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5948 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5949 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5950 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5951 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5952 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5953 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5954 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5955 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5956 break;
5957
5958 default:
5959 assert(0);
5960 }
5961
5962 if ((processor == PIPE_SHADER_GEOMETRY ||
5963 processor == PIPE_SHADER_TESS_EVAL ||
5964 processor == PIPE_SHADER_VERTEX) &&
5965 !key->as_es && !key->as_ls) {
5966 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5967 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5968 }
5969 }
5970
5971 static void si_init_shader_ctx(struct si_shader_context *ctx,
5972 struct si_screen *sscreen,
5973 struct ac_llvm_compiler *compiler)
5974 {
5975 struct lp_build_tgsi_context *bld_base;
5976
5977 si_llvm_context_init(ctx, sscreen, compiler);
5978
5979 bld_base = &ctx->bld_base;
5980 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5981
5982 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5983 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5984 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5985
5986 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5987
5988 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5989
5990 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5991 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5992 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5993 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5994
5995 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5996 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5997 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5998 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5999 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
6000 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
6001 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6002 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6003
6004 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6005 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6006 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6007 }
6008
6009 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6010 {
6011 struct si_shader *shader = ctx->shader;
6012 struct tgsi_shader_info *info = &shader->selector->info;
6013
6014 if ((ctx->type != PIPE_SHADER_VERTEX &&
6015 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6016 shader->key.as_ls ||
6017 shader->key.as_es)
6018 return;
6019
6020 ac_optimize_vs_outputs(&ctx->ac,
6021 ctx->main_fn,
6022 shader->info.vs_output_param_offset,
6023 info->num_outputs,
6024 &shader->info.nr_param_exports);
6025 }
6026
6027 static void si_init_exec_from_input(struct si_shader_context *ctx,
6028 unsigned param, unsigned bitoffset)
6029 {
6030 LLVMValueRef args[] = {
6031 LLVMGetParam(ctx->main_fn, param),
6032 LLVMConstInt(ctx->i32, bitoffset, 0),
6033 };
6034 ac_build_intrinsic(&ctx->ac,
6035 "llvm.amdgcn.init.exec.from.input",
6036 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6037 }
6038
6039 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6040 const struct si_vs_prolog_bits *key)
6041 {
6042 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6043 * VS prolog. */
6044 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6045 }
6046
6047 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6048 {
6049 struct si_shader *shader = ctx->shader;
6050 struct si_shader_selector *sel = shader->selector;
6051 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6052
6053 // TODO clean all this up!
6054 switch (ctx->type) {
6055 case PIPE_SHADER_VERTEX:
6056 ctx->load_input = declare_input_vs;
6057 if (shader->key.as_ls)
6058 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6059 else if (shader->key.as_es)
6060 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6061 else if (shader->key.opt.vs_as_prim_discard_cs)
6062 ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
6063 else if (shader->key.as_ngg)
6064 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6065 else
6066 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6067 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6068 ctx->abi.load_base_vertex = get_base_vertex;
6069 break;
6070 case PIPE_SHADER_TESS_CTRL:
6071 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6072 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6073 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6074 bld_base->emit_store = store_output_tcs;
6075 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6076 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6077 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6078 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6079 break;
6080 case PIPE_SHADER_TESS_EVAL:
6081 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6082 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6083 ctx->abi.load_tess_coord = si_load_tess_coord;
6084 ctx->abi.load_tess_level = si_load_tess_level;
6085 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6086 if (shader->key.as_es)
6087 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6088 else if (shader->key.as_ngg)
6089 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6090 else
6091 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6092 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6093 break;
6094 case PIPE_SHADER_GEOMETRY:
6095 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6096 ctx->abi.load_inputs = si_nir_load_input_gs;
6097 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6098 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6099 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6100 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6101 break;
6102 case PIPE_SHADER_FRAGMENT:
6103 ctx->load_input = declare_input_fs;
6104 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6105 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6106 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6107 ctx->abi.load_sample_position = load_sample_position;
6108 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6109 ctx->abi.emit_kill = si_llvm_emit_kill;
6110 break;
6111 case PIPE_SHADER_COMPUTE:
6112 ctx->abi.load_local_group_size = get_block_size;
6113 break;
6114 default:
6115 assert(!"Unsupported shader type");
6116 return false;
6117 }
6118
6119 ctx->abi.load_ubo = load_ubo;
6120 ctx->abi.load_ssbo = load_ssbo;
6121
6122 create_function(ctx);
6123 preload_ring_buffers(ctx);
6124
6125 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6126 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6127 for (unsigned i = 0; i < 6; i++) {
6128 ctx->invoc0_tess_factors[i] =
6129 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6130 }
6131 }
6132
6133 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6134 for (unsigned i = 0; i < 4; i++) {
6135 ctx->gs_next_vertex[i] =
6136 ac_build_alloca(&ctx->ac, ctx->i32, "");
6137 }
6138 if (shader->key.as_ngg) {
6139 for (unsigned i = 0; i < 4; ++i) {
6140 ctx->gs_curprim_verts[i] =
6141 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6142 ctx->gs_generated_prims[i] =
6143 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6144 }
6145
6146 unsigned scratch_size = 8;
6147 if (sel->so.num_outputs)
6148 scratch_size = 44;
6149
6150 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
6151 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6152 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6153 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
6154 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6155
6156 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6157 LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
6158 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
6159 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
6160 }
6161 }
6162
6163 if (shader->key.as_ngg && ctx->type != PIPE_SHADER_GEOMETRY) {
6164 /* Unconditionally declare scratch space base for streamout and
6165 * vertex compaction. Whether space is actually allocated is
6166 * determined during linking / PM4 creation.
6167 *
6168 * Add an extra dword per vertex to ensure an odd stride, which
6169 * avoids bank conflicts for SoA accesses.
6170 */
6171 declare_esgs_ring(ctx);
6172
6173 /* This is really only needed when streamout and / or vertex
6174 * compaction is enabled.
6175 */
6176 LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
6177 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6178 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6179 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
6180 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6181 }
6182
6183 /* For GFX9 merged shaders:
6184 * - Set EXEC for the first shader. If the prolog is present, set
6185 * EXEC there instead.
6186 * - Add a barrier before the second shader.
6187 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6188 * an if-statement. This is required for correctness in geometry
6189 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6190 * GS_CUT messages.
6191 *
6192 * For monolithic merged shaders, the first shader is wrapped in an
6193 * if-block together with its prolog in si_build_wrapper_function.
6194 *
6195 * NGG vertex and tess eval shaders running as the last
6196 * vertex/geometry stage handle execution explicitly using
6197 * if-statements.
6198 */
6199 if (ctx->screen->info.chip_class >= GFX9) {
6200 if (!shader->is_monolithic &&
6201 sel->info.num_instructions > 1 && /* not empty shader */
6202 (shader->key.as_es || shader->key.as_ls) &&
6203 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6204 (ctx->type == PIPE_SHADER_VERTEX &&
6205 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6206 si_init_exec_from_input(ctx,
6207 ctx->param_merged_wave_info, 0);
6208 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6209 ctx->type == PIPE_SHADER_GEOMETRY ||
6210 shader->key.as_ngg) {
6211 LLVMValueRef num_threads;
6212 bool nested_barrier;
6213
6214 if (!shader->is_monolithic ||
6215 (ctx->type == PIPE_SHADER_TESS_EVAL &&
6216 shader->key.as_ngg))
6217 ac_init_exec_full_mask(&ctx->ac);
6218
6219 if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6220 ctx->type == PIPE_SHADER_GEOMETRY) {
6221 if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
6222 gfx10_ngg_gs_emit_prologue(ctx);
6223 nested_barrier = false;
6224 } else {
6225 nested_barrier = true;
6226 }
6227
6228 /* Number of patches / primitives */
6229 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6230 } else {
6231 /* Number of vertices */
6232 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
6233 nested_barrier = false;
6234 }
6235
6236 LLVMValueRef ena =
6237 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6238 ac_get_thread_id(&ctx->ac), num_threads, "");
6239 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6240
6241 if (nested_barrier) {
6242 /* Execute a barrier before the second shader in
6243 * a merged shader.
6244 *
6245 * Execute the barrier inside the conditional block,
6246 * so that empty waves can jump directly to s_endpgm,
6247 * which will also signal the barrier.
6248 *
6249 * This is possible in gfx9, because an empty wave
6250 * for the second shader does not participate in
6251 * the epilogue. With NGG, empty waves may still
6252 * be required to export data (e.g. GS output vertices),
6253 * so we cannot let them exit early.
6254 *
6255 * If the shader is TCS and the TCS epilog is present
6256 * and contains a barrier, it will wait there and then
6257 * reach s_endpgm.
6258 */
6259 si_llvm_emit_barrier(NULL, bld_base, NULL);
6260 }
6261 }
6262 }
6263
6264 if (sel->force_correct_derivs_after_kill) {
6265 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6266 /* true = don't kill. */
6267 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6268 ctx->postponed_kill);
6269 }
6270
6271 if (sel->tokens) {
6272 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6273 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6274 return false;
6275 }
6276 } else {
6277 if (!si_nir_build_llvm(ctx, sel->nir)) {
6278 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6279 return false;
6280 }
6281 }
6282
6283 si_llvm_build_ret(ctx, ctx->return_value);
6284 return true;
6285 }
6286
6287 /**
6288 * Compute the VS prolog key, which contains all the information needed to
6289 * build the VS prolog function, and set shader->info bits where needed.
6290 *
6291 * \param info Shader info of the vertex shader.
6292 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6293 * \param prolog_key Key of the VS prolog
6294 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6295 * \param key Output shader part key.
6296 */
6297 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6298 unsigned num_input_sgprs,
6299 const struct si_vs_prolog_bits *prolog_key,
6300 struct si_shader *shader_out,
6301 union si_shader_part_key *key)
6302 {
6303 memset(key, 0, sizeof(*key));
6304 key->vs_prolog.states = *prolog_key;
6305 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6306 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6307 key->vs_prolog.as_ls = shader_out->key.as_ls;
6308 key->vs_prolog.as_es = shader_out->key.as_es;
6309 key->vs_prolog.as_ngg = shader_out->key.as_ngg;
6310
6311 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6312 key->vs_prolog.as_ls = 1;
6313 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6314 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6315 key->vs_prolog.as_es = 1;
6316 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6317 } else if (shader_out->key.as_ngg) {
6318 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6319 }
6320
6321 /* Enable loading the InstanceID VGPR. */
6322 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6323
6324 if ((key->vs_prolog.states.instance_divisor_is_one |
6325 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6326 shader_out->info.uses_instanceid = true;
6327 }
6328
6329 /**
6330 * Compute the PS prolog key, which contains all the information needed to
6331 * build the PS prolog function, and set related bits in shader->config.
6332 */
6333 static void si_get_ps_prolog_key(struct si_shader *shader,
6334 union si_shader_part_key *key,
6335 bool separate_prolog)
6336 {
6337 struct tgsi_shader_info *info = &shader->selector->info;
6338
6339 memset(key, 0, sizeof(*key));
6340 key->ps_prolog.states = shader->key.part.ps.prolog;
6341 key->ps_prolog.colors_read = info->colors_read;
6342 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6343 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6344 key->ps_prolog.wqm = info->uses_derivatives &&
6345 (key->ps_prolog.colors_read ||
6346 key->ps_prolog.states.force_persp_sample_interp ||
6347 key->ps_prolog.states.force_linear_sample_interp ||
6348 key->ps_prolog.states.force_persp_center_interp ||
6349 key->ps_prolog.states.force_linear_center_interp ||
6350 key->ps_prolog.states.bc_optimize_for_persp ||
6351 key->ps_prolog.states.bc_optimize_for_linear);
6352 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6353
6354 if (info->colors_read) {
6355 unsigned *color = shader->selector->color_attr_index;
6356
6357 if (shader->key.part.ps.prolog.color_two_side) {
6358 /* BCOLORs are stored after the last input. */
6359 key->ps_prolog.num_interp_inputs = info->num_inputs;
6360 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6361 if (separate_prolog)
6362 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6363 }
6364
6365 for (unsigned i = 0; i < 2; i++) {
6366 unsigned interp = info->input_interpolate[color[i]];
6367 unsigned location = info->input_interpolate_loc[color[i]];
6368
6369 if (!(info->colors_read & (0xf << i*4)))
6370 continue;
6371
6372 key->ps_prolog.color_attr_index[i] = color[i];
6373
6374 if (shader->key.part.ps.prolog.flatshade_colors &&
6375 interp == TGSI_INTERPOLATE_COLOR)
6376 interp = TGSI_INTERPOLATE_CONSTANT;
6377
6378 switch (interp) {
6379 case TGSI_INTERPOLATE_CONSTANT:
6380 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6381 break;
6382 case TGSI_INTERPOLATE_PERSPECTIVE:
6383 case TGSI_INTERPOLATE_COLOR:
6384 /* Force the interpolation location for colors here. */
6385 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6386 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6387 if (shader->key.part.ps.prolog.force_persp_center_interp)
6388 location = TGSI_INTERPOLATE_LOC_CENTER;
6389
6390 switch (location) {
6391 case TGSI_INTERPOLATE_LOC_SAMPLE:
6392 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6393 if (separate_prolog) {
6394 shader->config.spi_ps_input_ena |=
6395 S_0286CC_PERSP_SAMPLE_ENA(1);
6396 }
6397 break;
6398 case TGSI_INTERPOLATE_LOC_CENTER:
6399 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6400 if (separate_prolog) {
6401 shader->config.spi_ps_input_ena |=
6402 S_0286CC_PERSP_CENTER_ENA(1);
6403 }
6404 break;
6405 case TGSI_INTERPOLATE_LOC_CENTROID:
6406 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6407 if (separate_prolog) {
6408 shader->config.spi_ps_input_ena |=
6409 S_0286CC_PERSP_CENTROID_ENA(1);
6410 }
6411 break;
6412 default:
6413 assert(0);
6414 }
6415 break;
6416 case TGSI_INTERPOLATE_LINEAR:
6417 /* Force the interpolation location for colors here. */
6418 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6419 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6420 if (shader->key.part.ps.prolog.force_linear_center_interp)
6421 location = TGSI_INTERPOLATE_LOC_CENTER;
6422
6423 /* The VGPR assignment for non-monolithic shaders
6424 * works because InitialPSInputAddr is set on the
6425 * main shader and PERSP_PULL_MODEL is never used.
6426 */
6427 switch (location) {
6428 case TGSI_INTERPOLATE_LOC_SAMPLE:
6429 key->ps_prolog.color_interp_vgpr_index[i] =
6430 separate_prolog ? 6 : 9;
6431 if (separate_prolog) {
6432 shader->config.spi_ps_input_ena |=
6433 S_0286CC_LINEAR_SAMPLE_ENA(1);
6434 }
6435 break;
6436 case TGSI_INTERPOLATE_LOC_CENTER:
6437 key->ps_prolog.color_interp_vgpr_index[i] =
6438 separate_prolog ? 8 : 11;
6439 if (separate_prolog) {
6440 shader->config.spi_ps_input_ena |=
6441 S_0286CC_LINEAR_CENTER_ENA(1);
6442 }
6443 break;
6444 case TGSI_INTERPOLATE_LOC_CENTROID:
6445 key->ps_prolog.color_interp_vgpr_index[i] =
6446 separate_prolog ? 10 : 13;
6447 if (separate_prolog) {
6448 shader->config.spi_ps_input_ena |=
6449 S_0286CC_LINEAR_CENTROID_ENA(1);
6450 }
6451 break;
6452 default:
6453 assert(0);
6454 }
6455 break;
6456 default:
6457 assert(0);
6458 }
6459 }
6460 }
6461 }
6462
6463 /**
6464 * Check whether a PS prolog is required based on the key.
6465 */
6466 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6467 {
6468 return key->ps_prolog.colors_read ||
6469 key->ps_prolog.states.force_persp_sample_interp ||
6470 key->ps_prolog.states.force_linear_sample_interp ||
6471 key->ps_prolog.states.force_persp_center_interp ||
6472 key->ps_prolog.states.force_linear_center_interp ||
6473 key->ps_prolog.states.bc_optimize_for_persp ||
6474 key->ps_prolog.states.bc_optimize_for_linear ||
6475 key->ps_prolog.states.poly_stipple ||
6476 key->ps_prolog.states.samplemask_log_ps_iter;
6477 }
6478
6479 /**
6480 * Compute the PS epilog key, which contains all the information needed to
6481 * build the PS epilog function.
6482 */
6483 static void si_get_ps_epilog_key(struct si_shader *shader,
6484 union si_shader_part_key *key)
6485 {
6486 struct tgsi_shader_info *info = &shader->selector->info;
6487 memset(key, 0, sizeof(*key));
6488 key->ps_epilog.colors_written = info->colors_written;
6489 key->ps_epilog.writes_z = info->writes_z;
6490 key->ps_epilog.writes_stencil = info->writes_stencil;
6491 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6492 key->ps_epilog.states = shader->key.part.ps.epilog;
6493 }
6494
6495 /**
6496 * Build the GS prolog function. Rotate the input vertices for triangle strips
6497 * with adjacency.
6498 */
6499 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6500 union si_shader_part_key *key)
6501 {
6502 unsigned num_sgprs, num_vgprs;
6503 struct si_function_info fninfo;
6504 LLVMBuilderRef builder = ctx->ac.builder;
6505 LLVMTypeRef returns[48];
6506 LLVMValueRef func, ret;
6507
6508 si_init_function_info(&fninfo);
6509
6510 if (ctx->screen->info.chip_class >= GFX9) {
6511 if (key->gs_prolog.states.gfx9_prev_is_vs)
6512 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6513 else
6514 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6515 num_vgprs = 5; /* ES inputs are not needed by GS */
6516 } else {
6517 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6518 num_vgprs = 8;
6519 }
6520
6521 for (unsigned i = 0; i < num_sgprs; ++i) {
6522 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6523 returns[i] = ctx->i32;
6524 }
6525
6526 for (unsigned i = 0; i < num_vgprs; ++i) {
6527 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6528 returns[num_sgprs + i] = ctx->f32;
6529 }
6530
6531 /* Create the function. */
6532 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6533 &fninfo, 0);
6534 func = ctx->main_fn;
6535
6536 /* Set the full EXEC mask for the prolog, because we are only fiddling
6537 * with registers here. The main shader part will set the correct EXEC
6538 * mask.
6539 */
6540 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6541 ac_init_exec_full_mask(&ctx->ac);
6542
6543 /* Copy inputs to outputs. This should be no-op, as the registers match,
6544 * but it will prevent the compiler from overwriting them unintentionally.
6545 */
6546 ret = ctx->return_value;
6547 for (unsigned i = 0; i < num_sgprs; i++) {
6548 LLVMValueRef p = LLVMGetParam(func, i);
6549 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6550 }
6551 for (unsigned i = 0; i < num_vgprs; i++) {
6552 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6553 p = ac_to_float(&ctx->ac, p);
6554 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6555 }
6556
6557 if (key->gs_prolog.states.tri_strip_adj_fix) {
6558 /* Remap the input vertices for every other primitive. */
6559 const unsigned gfx6_vtx_params[6] = {
6560 num_sgprs,
6561 num_sgprs + 1,
6562 num_sgprs + 3,
6563 num_sgprs + 4,
6564 num_sgprs + 5,
6565 num_sgprs + 6
6566 };
6567 const unsigned gfx9_vtx_params[3] = {
6568 num_sgprs,
6569 num_sgprs + 1,
6570 num_sgprs + 4,
6571 };
6572 LLVMValueRef vtx_in[6], vtx_out[6];
6573 LLVMValueRef prim_id, rotate;
6574
6575 if (ctx->screen->info.chip_class >= GFX9) {
6576 for (unsigned i = 0; i < 3; i++) {
6577 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6578 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6579 }
6580 } else {
6581 for (unsigned i = 0; i < 6; i++)
6582 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6583 }
6584
6585 prim_id = LLVMGetParam(func, num_sgprs + 2);
6586 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6587
6588 for (unsigned i = 0; i < 6; ++i) {
6589 LLVMValueRef base, rotated;
6590 base = vtx_in[i];
6591 rotated = vtx_in[(i + 4) % 6];
6592 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6593 }
6594
6595 if (ctx->screen->info.chip_class >= GFX9) {
6596 for (unsigned i = 0; i < 3; i++) {
6597 LLVMValueRef hi, out;
6598
6599 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6600 LLVMConstInt(ctx->i32, 16, 0), "");
6601 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6602 out = ac_to_float(&ctx->ac, out);
6603 ret = LLVMBuildInsertValue(builder, ret, out,
6604 gfx9_vtx_params[i], "");
6605 }
6606 } else {
6607 for (unsigned i = 0; i < 6; i++) {
6608 LLVMValueRef out;
6609
6610 out = ac_to_float(&ctx->ac, vtx_out[i]);
6611 ret = LLVMBuildInsertValue(builder, ret, out,
6612 gfx6_vtx_params[i], "");
6613 }
6614 }
6615 }
6616
6617 LLVMBuildRet(builder, ret);
6618 }
6619
6620 /**
6621 * Given a list of shader part functions, build a wrapper function that
6622 * runs them in sequence to form a monolithic shader.
6623 */
6624 static void si_build_wrapper_function(struct si_shader_context *ctx,
6625 LLVMValueRef *parts,
6626 unsigned num_parts,
6627 unsigned main_part,
6628 unsigned next_shader_first_part)
6629 {
6630 LLVMBuilderRef builder = ctx->ac.builder;
6631 /* PS epilog has one arg per color component; gfx9 merged shader
6632 * prologs need to forward 32 user SGPRs.
6633 */
6634 struct si_function_info fninfo;
6635 LLVMValueRef initial[64], out[64];
6636 LLVMTypeRef function_type;
6637 unsigned num_first_params;
6638 unsigned num_out, initial_num_out;
6639 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6640 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6641 unsigned num_sgprs, num_vgprs;
6642 unsigned gprs;
6643 struct lp_build_if_state if_state;
6644
6645 si_init_function_info(&fninfo);
6646
6647 for (unsigned i = 0; i < num_parts; ++i) {
6648 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6649 AC_FUNC_ATTR_ALWAYSINLINE);
6650 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6651 }
6652
6653 /* The parameters of the wrapper function correspond to those of the
6654 * first part in terms of SGPRs and VGPRs, but we use the types of the
6655 * main part to get the right types. This is relevant for the
6656 * dereferenceable attribute on descriptor table pointers.
6657 */
6658 num_sgprs = 0;
6659 num_vgprs = 0;
6660
6661 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6662 num_first_params = LLVMCountParamTypes(function_type);
6663
6664 for (unsigned i = 0; i < num_first_params; ++i) {
6665 LLVMValueRef param = LLVMGetParam(parts[0], i);
6666
6667 if (ac_is_sgpr_param(param)) {
6668 assert(num_vgprs == 0);
6669 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6670 } else {
6671 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6672 }
6673 }
6674
6675 gprs = 0;
6676 while (gprs < num_sgprs + num_vgprs) {
6677 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6678 LLVMTypeRef type = LLVMTypeOf(param);
6679 unsigned size = ac_get_type_size(type) / 4;
6680
6681 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6682
6683 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6684 assert(gprs + size <= num_sgprs + num_vgprs &&
6685 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6686
6687 gprs += size;
6688 }
6689
6690 /* Prepare the return type. */
6691 unsigned num_returns = 0;
6692 LLVMTypeRef returns[32], last_func_type, return_type;
6693
6694 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
6695 return_type = LLVMGetReturnType(last_func_type);
6696
6697 switch (LLVMGetTypeKind(return_type)) {
6698 case LLVMStructTypeKind:
6699 num_returns = LLVMCountStructElementTypes(return_type);
6700 assert(num_returns <= ARRAY_SIZE(returns));
6701 LLVMGetStructElementTypes(return_type, returns);
6702 break;
6703 case LLVMVoidTypeKind:
6704 break;
6705 default:
6706 unreachable("unexpected type");
6707 }
6708
6709 si_create_function(ctx, "wrapper", returns, num_returns, &fninfo,
6710 si_get_max_workgroup_size(ctx->shader));
6711
6712 if (is_merged_shader(ctx))
6713 ac_init_exec_full_mask(&ctx->ac);
6714
6715 /* Record the arguments of the function as if they were an output of
6716 * a previous part.
6717 */
6718 num_out = 0;
6719 num_out_sgpr = 0;
6720
6721 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6722 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6723 LLVMTypeRef param_type = LLVMTypeOf(param);
6724 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6725 unsigned size = ac_get_type_size(param_type) / 4;
6726
6727 if (size == 1) {
6728 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6729 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6730 param_type = ctx->i32;
6731 }
6732
6733 if (param_type != out_type)
6734 param = LLVMBuildBitCast(builder, param, out_type, "");
6735 out[num_out++] = param;
6736 } else {
6737 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6738
6739 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6740 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6741 param_type = ctx->i64;
6742 }
6743
6744 if (param_type != vector_type)
6745 param = LLVMBuildBitCast(builder, param, vector_type, "");
6746
6747 for (unsigned j = 0; j < size; ++j)
6748 out[num_out++] = LLVMBuildExtractElement(
6749 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6750 }
6751
6752 if (i < fninfo.num_sgpr_params)
6753 num_out_sgpr = num_out;
6754 }
6755
6756 memcpy(initial, out, sizeof(out));
6757 initial_num_out = num_out;
6758 initial_num_out_sgpr = num_out_sgpr;
6759
6760 /* Now chain the parts. */
6761 LLVMValueRef ret;
6762 for (unsigned part = 0; part < num_parts; ++part) {
6763 LLVMValueRef in[48];
6764 LLVMTypeRef ret_type;
6765 unsigned out_idx = 0;
6766 unsigned num_params = LLVMCountParams(parts[part]);
6767
6768 /* Merged shaders are executed conditionally depending
6769 * on the number of enabled threads passed in the input SGPRs. */
6770 if (is_multi_part_shader(ctx) && part == 0) {
6771 LLVMValueRef ena, count = initial[3];
6772
6773 count = LLVMBuildAnd(builder, count,
6774 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6775 ena = LLVMBuildICmp(builder, LLVMIntULT,
6776 ac_get_thread_id(&ctx->ac), count, "");
6777 lp_build_if(&if_state, &ctx->gallivm, ena);
6778 }
6779
6780 /* Derive arguments for the next part from outputs of the
6781 * previous one.
6782 */
6783 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6784 LLVMValueRef param;
6785 LLVMTypeRef param_type;
6786 bool is_sgpr;
6787 unsigned param_size;
6788 LLVMValueRef arg = NULL;
6789
6790 param = LLVMGetParam(parts[part], param_idx);
6791 param_type = LLVMTypeOf(param);
6792 param_size = ac_get_type_size(param_type) / 4;
6793 is_sgpr = ac_is_sgpr_param(param);
6794
6795 if (is_sgpr) {
6796 ac_add_function_attr(ctx->ac.context, parts[part],
6797 param_idx + 1, AC_FUNC_ATTR_INREG);
6798 } else if (out_idx < num_out_sgpr) {
6799 /* Skip returned SGPRs the current part doesn't
6800 * declare on the input. */
6801 out_idx = num_out_sgpr;
6802 }
6803
6804 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6805
6806 if (param_size == 1)
6807 arg = out[out_idx];
6808 else
6809 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6810
6811 if (LLVMTypeOf(arg) != param_type) {
6812 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6813 if (LLVMGetPointerAddressSpace(param_type) ==
6814 AC_ADDR_SPACE_CONST_32BIT) {
6815 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6816 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6817 } else {
6818 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6819 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6820 }
6821 } else {
6822 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6823 }
6824 }
6825
6826 in[param_idx] = arg;
6827 out_idx += param_size;
6828 }
6829
6830 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
6831
6832 if (is_multi_part_shader(ctx) &&
6833 part + 1 == next_shader_first_part) {
6834 lp_build_endif(&if_state);
6835
6836 /* The second half of the merged shader should use
6837 * the inputs from the toplevel (wrapper) function,
6838 * not the return value from the last call.
6839 *
6840 * That's because the last call was executed condi-
6841 * tionally, so we can't consume it in the main
6842 * block.
6843 */
6844 memcpy(out, initial, sizeof(initial));
6845 num_out = initial_num_out;
6846 num_out_sgpr = initial_num_out_sgpr;
6847 continue;
6848 }
6849
6850 /* Extract the returned GPRs. */
6851 ret_type = LLVMTypeOf(ret);
6852 num_out = 0;
6853 num_out_sgpr = 0;
6854
6855 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6856 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6857
6858 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6859
6860 for (unsigned i = 0; i < ret_size; ++i) {
6861 LLVMValueRef val =
6862 LLVMBuildExtractValue(builder, ret, i, "");
6863
6864 assert(num_out < ARRAY_SIZE(out));
6865 out[num_out++] = val;
6866
6867 if (LLVMTypeOf(val) == ctx->i32) {
6868 assert(num_out_sgpr + 1 == num_out);
6869 num_out_sgpr = num_out;
6870 }
6871 }
6872 }
6873 }
6874
6875 /* Return the value from the last part. */
6876 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6877 LLVMBuildRetVoid(builder);
6878 else
6879 LLVMBuildRet(builder, ret);
6880 }
6881
6882 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6883 struct si_shader_selector *sel)
6884 {
6885 if (!compiler->low_opt_passes)
6886 return false;
6887
6888 /* Assume a slow CPU. */
6889 assert(!sel->screen->info.has_dedicated_vram &&
6890 sel->screen->info.chip_class <= GFX8);
6891
6892 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6893 * buffer stores. */
6894 return sel->type == PIPE_SHADER_COMPUTE &&
6895 sel->info.num_memory_instructions > 1000;
6896 }
6897
6898 int si_compile_tgsi_shader(struct si_screen *sscreen,
6899 struct ac_llvm_compiler *compiler,
6900 struct si_shader *shader,
6901 struct pipe_debug_callback *debug)
6902 {
6903 struct si_shader_selector *sel = shader->selector;
6904 struct si_shader_context ctx;
6905 int r = -1;
6906
6907 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6908 * conversion fails. */
6909 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6910 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6911 if (sel->tokens)
6912 tgsi_dump(sel->tokens, 0);
6913 else
6914 nir_print_shader(sel->nir, stderr);
6915 si_dump_streamout(&sel->so);
6916 }
6917
6918 si_init_shader_ctx(&ctx, sscreen, compiler);
6919 si_llvm_context_set_tgsi(&ctx, shader);
6920
6921 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6922 sizeof(shader->info.vs_output_param_offset));
6923
6924 shader->info.uses_instanceid = sel->info.uses_instanceid;
6925
6926 if (!si_compile_tgsi_main(&ctx)) {
6927 si_llvm_dispose(&ctx);
6928 return -1;
6929 }
6930
6931 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6932 LLVMValueRef parts[2];
6933 bool need_prolog = sel->vs_needs_prolog;
6934
6935 parts[1] = ctx.main_fn;
6936
6937 if (need_prolog) {
6938 union si_shader_part_key prolog_key;
6939 si_get_vs_prolog_key(&sel->info,
6940 shader->info.num_input_sgprs,
6941 &shader->key.part.vs.prolog,
6942 shader, &prolog_key);
6943 si_build_vs_prolog_function(&ctx, &prolog_key);
6944 parts[0] = ctx.main_fn;
6945 }
6946
6947 si_build_wrapper_function(&ctx, parts + !need_prolog,
6948 1 + need_prolog, need_prolog, 0);
6949
6950 if (ctx.shader->key.opt.vs_as_prim_discard_cs)
6951 si_build_prim_discard_compute_shader(&ctx);
6952 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6953 if (sscreen->info.chip_class >= GFX9) {
6954 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6955 LLVMValueRef parts[4];
6956 bool vs_needs_prolog =
6957 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6958
6959 /* TCS main part */
6960 parts[2] = ctx.main_fn;
6961
6962 /* TCS epilog */
6963 union si_shader_part_key tcs_epilog_key;
6964 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6965 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6966 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6967 parts[3] = ctx.main_fn;
6968
6969 /* VS as LS main part */
6970 struct si_shader shader_ls = {};
6971 shader_ls.selector = ls;
6972 shader_ls.key.as_ls = 1;
6973 shader_ls.key.mono = shader->key.mono;
6974 shader_ls.key.opt = shader->key.opt;
6975 shader_ls.is_monolithic = true;
6976 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6977
6978 if (!si_compile_tgsi_main(&ctx)) {
6979 si_llvm_dispose(&ctx);
6980 return -1;
6981 }
6982 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6983 parts[1] = ctx.main_fn;
6984
6985 /* LS prolog */
6986 if (vs_needs_prolog) {
6987 union si_shader_part_key vs_prolog_key;
6988 si_get_vs_prolog_key(&ls->info,
6989 shader_ls.info.num_input_sgprs,
6990 &shader->key.part.tcs.ls_prolog,
6991 shader, &vs_prolog_key);
6992 vs_prolog_key.vs_prolog.is_monolithic = true;
6993 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6994 parts[0] = ctx.main_fn;
6995 }
6996
6997 /* Reset the shader context. */
6998 ctx.shader = shader;
6999 ctx.type = PIPE_SHADER_TESS_CTRL;
7000
7001 si_build_wrapper_function(&ctx,
7002 parts + !vs_needs_prolog,
7003 4 - !vs_needs_prolog, vs_needs_prolog,
7004 vs_needs_prolog ? 2 : 1);
7005 } else {
7006 LLVMValueRef parts[2];
7007 union si_shader_part_key epilog_key;
7008
7009 parts[0] = ctx.main_fn;
7010
7011 memset(&epilog_key, 0, sizeof(epilog_key));
7012 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7013 si_build_tcs_epilog_function(&ctx, &epilog_key);
7014 parts[1] = ctx.main_fn;
7015
7016 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
7017 }
7018 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7019 if (ctx.screen->info.chip_class >= GFX9) {
7020 struct si_shader_selector *es = shader->key.part.gs.es;
7021 LLVMValueRef es_prolog = NULL;
7022 LLVMValueRef es_main = NULL;
7023 LLVMValueRef gs_prolog = NULL;
7024 LLVMValueRef gs_main = ctx.main_fn;
7025
7026 /* GS prolog */
7027 union si_shader_part_key gs_prolog_key;
7028 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
7029 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7030 gs_prolog_key.gs_prolog.is_monolithic = true;
7031 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
7032 gs_prolog = ctx.main_fn;
7033
7034 /* ES main part */
7035 struct si_shader shader_es = {};
7036 shader_es.selector = es;
7037 shader_es.key.as_es = 1;
7038 shader_es.key.mono = shader->key.mono;
7039 shader_es.key.opt = shader->key.opt;
7040 shader_es.is_monolithic = true;
7041 si_llvm_context_set_tgsi(&ctx, &shader_es);
7042
7043 if (!si_compile_tgsi_main(&ctx)) {
7044 si_llvm_dispose(&ctx);
7045 return -1;
7046 }
7047 shader->info.uses_instanceid |= es->info.uses_instanceid;
7048 es_main = ctx.main_fn;
7049
7050 /* ES prolog */
7051 if (es->vs_needs_prolog) {
7052 union si_shader_part_key vs_prolog_key;
7053 si_get_vs_prolog_key(&es->info,
7054 shader_es.info.num_input_sgprs,
7055 &shader->key.part.gs.vs_prolog,
7056 shader, &vs_prolog_key);
7057 vs_prolog_key.vs_prolog.is_monolithic = true;
7058 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7059 es_prolog = ctx.main_fn;
7060 }
7061
7062 /* Reset the shader context. */
7063 ctx.shader = shader;
7064 ctx.type = PIPE_SHADER_GEOMETRY;
7065
7066 /* Prepare the array of shader parts. */
7067 LLVMValueRef parts[4];
7068 unsigned num_parts = 0, main_part, next_first_part;
7069
7070 if (es_prolog)
7071 parts[num_parts++] = es_prolog;
7072
7073 parts[main_part = num_parts++] = es_main;
7074 parts[next_first_part = num_parts++] = gs_prolog;
7075 parts[num_parts++] = gs_main;
7076
7077 si_build_wrapper_function(&ctx, parts, num_parts,
7078 main_part, next_first_part);
7079 } else {
7080 LLVMValueRef parts[2];
7081 union si_shader_part_key prolog_key;
7082
7083 parts[1] = ctx.main_fn;
7084
7085 memset(&prolog_key, 0, sizeof(prolog_key));
7086 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7087 si_build_gs_prolog_function(&ctx, &prolog_key);
7088 parts[0] = ctx.main_fn;
7089
7090 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
7091 }
7092 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7093 LLVMValueRef parts[3];
7094 union si_shader_part_key prolog_key;
7095 union si_shader_part_key epilog_key;
7096 bool need_prolog;
7097
7098 si_get_ps_prolog_key(shader, &prolog_key, false);
7099 need_prolog = si_need_ps_prolog(&prolog_key);
7100
7101 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7102
7103 if (need_prolog) {
7104 si_build_ps_prolog_function(&ctx, &prolog_key);
7105 parts[0] = ctx.main_fn;
7106 }
7107
7108 si_get_ps_epilog_key(shader, &epilog_key);
7109 si_build_ps_epilog_function(&ctx, &epilog_key);
7110 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7111
7112 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7113 need_prolog ? 1 : 0, 0);
7114 }
7115
7116 si_llvm_optimize_module(&ctx);
7117
7118 /* Post-optimization transformations and analysis. */
7119 si_optimize_vs_outputs(&ctx);
7120
7121 if ((debug && debug->debug_message) ||
7122 si_can_dump_shader(sscreen, ctx.type)) {
7123 ctx.shader->info.private_mem_vgprs =
7124 ac_count_scratch_private_memory(ctx.main_fn);
7125 }
7126
7127 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7128 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7129 LLVMPointerTypeKind);
7130
7131 /* Compile to bytecode. */
7132 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7133 ctx.ac.module, debug, ctx.type,
7134 si_get_shader_name(shader, ctx.type),
7135 si_should_optimize_less(compiler, shader->selector));
7136 si_llvm_dispose(&ctx);
7137 if (r) {
7138 fprintf(stderr, "LLVM failed to compile shader\n");
7139 return r;
7140 }
7141
7142 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7143 * LLVM 3.9svn has this bug.
7144 */
7145 if (sel->type == PIPE_SHADER_COMPUTE) {
7146 unsigned wave_size = 64;
7147 unsigned max_vgprs = 256;
7148 unsigned max_sgprs = sscreen->info.chip_class >= GFX8 ? 800 : 512;
7149 unsigned max_sgprs_per_wave = 128;
7150 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7151 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7152 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7153
7154 max_vgprs = max_vgprs / min_waves_per_simd;
7155 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7156
7157 if (shader->config.num_sgprs > max_sgprs ||
7158 shader->config.num_vgprs > max_vgprs) {
7159 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7160 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7161 shader->config.num_sgprs, shader->config.num_vgprs,
7162 max_sgprs, max_vgprs);
7163
7164 /* Just terminate the process, because dependent
7165 * shaders can hang due to bad input data, but use
7166 * the env var to allow shader-db to work.
7167 */
7168 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7169 abort();
7170 }
7171 }
7172
7173 /* Add the scratch offset to input SGPRs. */
7174 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
7175 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7176
7177 /* Calculate the number of fragment input VGPRs. */
7178 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7179 shader->info.num_input_vgprs = 0;
7180 shader->info.face_vgpr_index = -1;
7181 shader->info.ancillary_vgpr_index = -1;
7182
7183 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7184 shader->info.num_input_vgprs += 2;
7185 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7186 shader->info.num_input_vgprs += 2;
7187 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7188 shader->info.num_input_vgprs += 2;
7189 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7190 shader->info.num_input_vgprs += 3;
7191 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7192 shader->info.num_input_vgprs += 2;
7193 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7194 shader->info.num_input_vgprs += 2;
7195 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7196 shader->info.num_input_vgprs += 2;
7197 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7198 shader->info.num_input_vgprs += 1;
7199 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7200 shader->info.num_input_vgprs += 1;
7201 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7202 shader->info.num_input_vgprs += 1;
7203 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7204 shader->info.num_input_vgprs += 1;
7205 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7206 shader->info.num_input_vgprs += 1;
7207 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7208 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7209 shader->info.num_input_vgprs += 1;
7210 }
7211 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7212 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7213 shader->info.num_input_vgprs += 1;
7214 }
7215 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7216 shader->info.num_input_vgprs += 1;
7217 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7218 shader->info.num_input_vgprs += 1;
7219 }
7220
7221 si_calculate_max_simd_waves(shader);
7222 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
7223 return 0;
7224 }
7225
7226 /**
7227 * Create, compile and return a shader part (prolog or epilog).
7228 *
7229 * \param sscreen screen
7230 * \param list list of shader parts of the same category
7231 * \param type shader type
7232 * \param key shader part key
7233 * \param prolog whether the part being requested is a prolog
7234 * \param tm LLVM target machine
7235 * \param debug debug callback
7236 * \param build the callback responsible for building the main function
7237 * \return non-NULL on success
7238 */
7239 static struct si_shader_part *
7240 si_get_shader_part(struct si_screen *sscreen,
7241 struct si_shader_part **list,
7242 enum pipe_shader_type type,
7243 bool prolog,
7244 union si_shader_part_key *key,
7245 struct ac_llvm_compiler *compiler,
7246 struct pipe_debug_callback *debug,
7247 void (*build)(struct si_shader_context *,
7248 union si_shader_part_key *),
7249 const char *name)
7250 {
7251 struct si_shader_part *result;
7252
7253 mtx_lock(&sscreen->shader_parts_mutex);
7254
7255 /* Find existing. */
7256 for (result = *list; result; result = result->next) {
7257 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7258 mtx_unlock(&sscreen->shader_parts_mutex);
7259 return result;
7260 }
7261 }
7262
7263 /* Compile a new one. */
7264 result = CALLOC_STRUCT(si_shader_part);
7265 result->key = *key;
7266
7267 struct si_shader shader = {};
7268 struct si_shader_context ctx;
7269
7270 si_init_shader_ctx(&ctx, sscreen, compiler);
7271 ctx.shader = &shader;
7272 ctx.type = type;
7273
7274 switch (type) {
7275 case PIPE_SHADER_VERTEX:
7276 shader.key.as_ls = key->vs_prolog.as_ls;
7277 shader.key.as_es = key->vs_prolog.as_es;
7278 shader.key.as_ngg = key->vs_prolog.as_ngg;
7279 break;
7280 case PIPE_SHADER_TESS_CTRL:
7281 assert(!prolog);
7282 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7283 break;
7284 case PIPE_SHADER_GEOMETRY:
7285 assert(prolog);
7286 break;
7287 case PIPE_SHADER_FRAGMENT:
7288 if (prolog)
7289 shader.key.part.ps.prolog = key->ps_prolog.states;
7290 else
7291 shader.key.part.ps.epilog = key->ps_epilog.states;
7292 break;
7293 default:
7294 unreachable("bad shader part");
7295 }
7296
7297 build(&ctx, key);
7298
7299 /* Compile. */
7300 si_llvm_optimize_module(&ctx);
7301
7302 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7303 ctx.ac.module, debug, ctx.type, name, false)) {
7304 FREE(result);
7305 result = NULL;
7306 goto out;
7307 }
7308
7309 result->next = *list;
7310 *list = result;
7311
7312 out:
7313 si_llvm_dispose(&ctx);
7314 mtx_unlock(&sscreen->shader_parts_mutex);
7315 return result;
7316 }
7317
7318 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7319 {
7320 LLVMValueRef ptr[2], list;
7321 bool merged_shader = is_merged_shader(ctx);
7322
7323 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7324 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7325 ac_array_in_const32_addr_space(ctx->v4i32), "");
7326 return list;
7327 }
7328
7329 /**
7330 * Build the vertex shader prolog function.
7331 *
7332 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7333 * All inputs are returned unmodified. The vertex load indices are
7334 * stored after them, which will be used by the API VS for fetching inputs.
7335 *
7336 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7337 * input_v0,
7338 * input_v1,
7339 * input_v2,
7340 * input_v3,
7341 * (VertexID + BaseVertex),
7342 * (InstanceID + StartInstance),
7343 * (InstanceID / 2 + StartInstance)
7344 */
7345 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7346 union si_shader_part_key *key)
7347 {
7348 struct si_function_info fninfo;
7349 LLVMTypeRef *returns;
7350 LLVMValueRef ret, func;
7351 int num_returns, i;
7352 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7353 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7354 LLVMValueRef input_vgprs[9];
7355 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7356 num_input_vgprs;
7357 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7358
7359 si_init_function_info(&fninfo);
7360
7361 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7362 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7363 sizeof(LLVMTypeRef));
7364 num_returns = 0;
7365
7366 /* Declare input and output SGPRs. */
7367 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7368 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7369 returns[num_returns++] = ctx->i32;
7370 }
7371
7372 /* Preloaded VGPRs (outputs must be floats) */
7373 for (i = 0; i < num_input_vgprs; i++) {
7374 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7375 returns[num_returns++] = ctx->f32;
7376 }
7377
7378 /* Vertex load indices. */
7379 for (i = 0; i <= key->vs_prolog.last_input; i++)
7380 returns[num_returns++] = ctx->f32;
7381
7382 /* Create the function. */
7383 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7384 func = ctx->main_fn;
7385
7386 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7387 if (!key->vs_prolog.is_monolithic)
7388 si_init_exec_from_input(ctx, 3, 0);
7389
7390 if (key->vs_prolog.as_ls &&
7391 ctx->screen->has_ls_vgpr_init_bug) {
7392 /* If there are no HS threads, SPI loads the LS VGPRs
7393 * starting at VGPR 0. Shift them back to where they
7394 * belong.
7395 */
7396 LLVMValueRef has_hs_threads =
7397 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7398 si_unpack_param(ctx, 3, 8, 8),
7399 ctx->i32_0, "");
7400
7401 for (i = 4; i > 0; --i) {
7402 input_vgprs[i + 1] =
7403 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7404 input_vgprs[i + 1],
7405 input_vgprs[i - 1], "");
7406 }
7407 }
7408 }
7409
7410 unsigned vertex_id_vgpr = first_vs_vgpr;
7411 unsigned instance_id_vgpr =
7412 ctx->screen->info.chip_class >= GFX10 ?
7413 first_vs_vgpr + 3 :
7414 first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
7415
7416 ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
7417 ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
7418
7419 /* InstanceID = VertexID >> 16;
7420 * VertexID = VertexID & 0xffff;
7421 */
7422 if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
7423 ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
7424 LLVMConstInt(ctx->i32, 16, 0), "");
7425 ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
7426 LLVMConstInt(ctx->i32, 0xffff, 0), "");
7427 }
7428
7429 /* Copy inputs to outputs. This should be no-op, as the registers match,
7430 * but it will prevent the compiler from overwriting them unintentionally.
7431 */
7432 ret = ctx->return_value;
7433 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7434 LLVMValueRef p = LLVMGetParam(func, i);
7435 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7436 }
7437 for (i = 0; i < num_input_vgprs; i++) {
7438 LLVMValueRef p = input_vgprs[i];
7439
7440 if (i == vertex_id_vgpr)
7441 p = ctx->abi.vertex_id;
7442 else if (i == instance_id_vgpr)
7443 p = ctx->abi.instance_id;
7444
7445 p = ac_to_float(&ctx->ac, p);
7446 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7447 key->vs_prolog.num_input_sgprs + i, "");
7448 }
7449
7450 struct lp_build_if_state wrap_if_state;
7451 LLVMValueRef original_ret = ret;
7452 bool wrapped = false;
7453
7454 if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
7455 LLVMValueRef num_threads;
7456 LLVMValueRef ena;
7457
7458 num_threads = si_unpack_param(ctx, 3, 0, 8);
7459 ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
7460 ac_get_thread_id(&ctx->ac), num_threads, "");
7461 lp_build_if(&wrap_if_state, &ctx->gallivm, ena);
7462 wrapped = true;
7463 }
7464
7465 /* Compute vertex load indices from instance divisors. */
7466 LLVMValueRef instance_divisor_constbuf = NULL;
7467
7468 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7469 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7470 LLVMValueRef buf_index =
7471 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7472 instance_divisor_constbuf =
7473 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7474 }
7475
7476 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7477 bool divisor_is_one =
7478 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7479 bool divisor_is_fetched =
7480 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7481 LLVMValueRef index = NULL;
7482
7483 if (divisor_is_one) {
7484 index = ctx->abi.instance_id;
7485 } else if (divisor_is_fetched) {
7486 LLVMValueRef udiv_factors[4];
7487
7488 for (unsigned j = 0; j < 4; j++) {
7489 udiv_factors[j] =
7490 buffer_load_const(ctx, instance_divisor_constbuf,
7491 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7492 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7493 }
7494 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7495 * Such InstanceID might not be achievable in a reasonable time though.
7496 */
7497 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7498 udiv_factors[0], udiv_factors[1],
7499 udiv_factors[2], udiv_factors[3]);
7500 }
7501
7502 if (divisor_is_one || divisor_is_fetched) {
7503 /* Add StartInstance. */
7504 index = LLVMBuildAdd(ctx->ac.builder, index,
7505 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7506 SI_SGPR_START_INSTANCE), "");
7507 } else {
7508 /* VertexID + BaseVertex */
7509 index = LLVMBuildAdd(ctx->ac.builder,
7510 ctx->abi.vertex_id,
7511 LLVMGetParam(func, user_sgpr_base +
7512 SI_SGPR_BASE_VERTEX), "");
7513 }
7514
7515 index = ac_to_float(&ctx->ac, index);
7516 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7517 fninfo.num_params + i, "");
7518 }
7519
7520 if (wrapped) {
7521 lp_build_endif(&wrap_if_state);
7522
7523 LLVMValueRef values[2] = {
7524 ret,
7525 original_ret
7526 };
7527 LLVMBasicBlockRef bbs[2] = {
7528 wrap_if_state.true_block,
7529 wrap_if_state.entry_block
7530 };
7531 ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
7532 }
7533
7534 si_llvm_build_ret(ctx, ret);
7535 }
7536
7537 static bool si_get_vs_prolog(struct si_screen *sscreen,
7538 struct ac_llvm_compiler *compiler,
7539 struct si_shader *shader,
7540 struct pipe_debug_callback *debug,
7541 struct si_shader *main_part,
7542 const struct si_vs_prolog_bits *key)
7543 {
7544 struct si_shader_selector *vs = main_part->selector;
7545
7546 if (!si_vs_needs_prolog(vs, key))
7547 return true;
7548
7549 /* Get the prolog. */
7550 union si_shader_part_key prolog_key;
7551 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7552 key, shader, &prolog_key);
7553
7554 shader->prolog =
7555 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7556 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7557 debug, si_build_vs_prolog_function,
7558 "Vertex Shader Prolog");
7559 return shader->prolog != NULL;
7560 }
7561
7562 /**
7563 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7564 */
7565 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7566 struct ac_llvm_compiler *compiler,
7567 struct si_shader *shader,
7568 struct pipe_debug_callback *debug)
7569 {
7570 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7571 &shader->key.part.vs.prolog);
7572 }
7573
7574 /**
7575 * Compile the TCS epilog function. This writes tesselation factors to memory
7576 * based on the output primitive type of the tesselator (determined by TES).
7577 */
7578 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7579 union si_shader_part_key *key)
7580 {
7581 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7582 struct si_function_info fninfo;
7583 LLVMValueRef func;
7584
7585 si_init_function_info(&fninfo);
7586
7587 if (ctx->screen->info.chip_class >= GFX9) {
7588 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7589 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7590 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7591 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7592 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7593 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7594 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7595 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7596 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7597 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7598 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7599 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7600 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7601 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7602 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7603 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7604 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7605 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7606 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7607 } else {
7608 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7609 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7610 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7611 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7612 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7613 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7614 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7615 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7616 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7617 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7618 }
7619
7620 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7621 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7622 unsigned tess_factors_idx =
7623 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7624 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7625 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7626
7627 for (unsigned i = 0; i < 6; i++)
7628 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7629
7630 /* Create the function. */
7631 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7632 ctx->screen->info.chip_class >= GFX7 ? 128 : 64);
7633 ac_declare_lds_as_pointer(&ctx->ac);
7634 func = ctx->main_fn;
7635
7636 LLVMValueRef invoc0_tess_factors[6];
7637 for (unsigned i = 0; i < 6; i++)
7638 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7639
7640 si_write_tess_factors(bld_base,
7641 LLVMGetParam(func, tess_factors_idx),
7642 LLVMGetParam(func, tess_factors_idx + 1),
7643 LLVMGetParam(func, tess_factors_idx + 2),
7644 invoc0_tess_factors, invoc0_tess_factors + 4);
7645
7646 LLVMBuildRetVoid(ctx->ac.builder);
7647 }
7648
7649 /**
7650 * Select and compile (or reuse) TCS parts (epilog).
7651 */
7652 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7653 struct ac_llvm_compiler *compiler,
7654 struct si_shader *shader,
7655 struct pipe_debug_callback *debug)
7656 {
7657 if (sscreen->info.chip_class >= GFX9) {
7658 struct si_shader *ls_main_part =
7659 shader->key.part.tcs.ls->main_shader_part_ls;
7660
7661 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7662 &shader->key.part.tcs.ls_prolog))
7663 return false;
7664
7665 shader->previous_stage = ls_main_part;
7666 }
7667
7668 /* Get the epilog. */
7669 union si_shader_part_key epilog_key;
7670 memset(&epilog_key, 0, sizeof(epilog_key));
7671 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7672
7673 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7674 PIPE_SHADER_TESS_CTRL, false,
7675 &epilog_key, compiler, debug,
7676 si_build_tcs_epilog_function,
7677 "Tessellation Control Shader Epilog");
7678 return shader->epilog != NULL;
7679 }
7680
7681 /**
7682 * Select and compile (or reuse) GS parts (prolog).
7683 */
7684 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7685 struct ac_llvm_compiler *compiler,
7686 struct si_shader *shader,
7687 struct pipe_debug_callback *debug)
7688 {
7689 if (sscreen->info.chip_class >= GFX9) {
7690 struct si_shader *es_main_part =
7691 shader->key.part.gs.es->main_shader_part_es;
7692
7693 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7694 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7695 &shader->key.part.gs.vs_prolog))
7696 return false;
7697
7698 shader->previous_stage = es_main_part;
7699 }
7700
7701 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7702 return true;
7703
7704 union si_shader_part_key prolog_key;
7705 memset(&prolog_key, 0, sizeof(prolog_key));
7706 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7707
7708 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7709 PIPE_SHADER_GEOMETRY, true,
7710 &prolog_key, compiler, debug,
7711 si_build_gs_prolog_function,
7712 "Geometry Shader Prolog");
7713 return shader->prolog2 != NULL;
7714 }
7715
7716 /**
7717 * Build the pixel shader prolog function. This handles:
7718 * - two-side color selection and interpolation
7719 * - overriding interpolation parameters for the API PS
7720 * - polygon stippling
7721 *
7722 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7723 * overriden by other states. (e.g. per-sample interpolation)
7724 * Interpolated colors are stored after the preloaded VGPRs.
7725 */
7726 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7727 union si_shader_part_key *key)
7728 {
7729 struct si_function_info fninfo;
7730 LLVMValueRef ret, func;
7731 int num_returns, i, num_color_channels;
7732
7733 assert(si_need_ps_prolog(key));
7734
7735 si_init_function_info(&fninfo);
7736
7737 /* Declare inputs. */
7738 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7739 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7740
7741 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7742 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7743
7744 /* Declare outputs (same as inputs + add colors if needed) */
7745 num_returns = fninfo.num_params;
7746 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7747 for (i = 0; i < num_color_channels; i++)
7748 fninfo.types[num_returns++] = ctx->f32;
7749
7750 /* Create the function. */
7751 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7752 &fninfo, 0);
7753 func = ctx->main_fn;
7754
7755 /* Copy inputs to outputs. This should be no-op, as the registers match,
7756 * but it will prevent the compiler from overwriting them unintentionally.
7757 */
7758 ret = ctx->return_value;
7759 for (i = 0; i < fninfo.num_params; i++) {
7760 LLVMValueRef p = LLVMGetParam(func, i);
7761 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7762 }
7763
7764 /* Polygon stippling. */
7765 if (key->ps_prolog.states.poly_stipple) {
7766 /* POS_FIXED_PT is always last. */
7767 unsigned pos = key->ps_prolog.num_input_sgprs +
7768 key->ps_prolog.num_input_vgprs - 1;
7769 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7770
7771 si_llvm_emit_polygon_stipple(ctx, list, pos);
7772 }
7773
7774 if (key->ps_prolog.states.bc_optimize_for_persp ||
7775 key->ps_prolog.states.bc_optimize_for_linear) {
7776 unsigned i, base = key->ps_prolog.num_input_sgprs;
7777 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7778
7779 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7780 * The hw doesn't compute CENTROID if the whole wave only
7781 * contains fully-covered quads.
7782 *
7783 * PRIM_MASK is after user SGPRs.
7784 */
7785 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7786 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7787 LLVMConstInt(ctx->i32, 31, 0), "");
7788 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7789 ctx->i1, "");
7790
7791 if (key->ps_prolog.states.bc_optimize_for_persp) {
7792 /* Read PERSP_CENTER. */
7793 for (i = 0; i < 2; i++)
7794 center[i] = LLVMGetParam(func, base + 2 + i);
7795 /* Read PERSP_CENTROID. */
7796 for (i = 0; i < 2; i++)
7797 centroid[i] = LLVMGetParam(func, base + 4 + i);
7798 /* Select PERSP_CENTROID. */
7799 for (i = 0; i < 2; i++) {
7800 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7801 center[i], centroid[i], "");
7802 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7803 tmp, base + 4 + i, "");
7804 }
7805 }
7806 if (key->ps_prolog.states.bc_optimize_for_linear) {
7807 /* Read LINEAR_CENTER. */
7808 for (i = 0; i < 2; i++)
7809 center[i] = LLVMGetParam(func, base + 8 + i);
7810 /* Read LINEAR_CENTROID. */
7811 for (i = 0; i < 2; i++)
7812 centroid[i] = LLVMGetParam(func, base + 10 + i);
7813 /* Select LINEAR_CENTROID. */
7814 for (i = 0; i < 2; i++) {
7815 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7816 center[i], centroid[i], "");
7817 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7818 tmp, base + 10 + i, "");
7819 }
7820 }
7821 }
7822
7823 /* Force per-sample interpolation. */
7824 if (key->ps_prolog.states.force_persp_sample_interp) {
7825 unsigned i, base = key->ps_prolog.num_input_sgprs;
7826 LLVMValueRef persp_sample[2];
7827
7828 /* Read PERSP_SAMPLE. */
7829 for (i = 0; i < 2; i++)
7830 persp_sample[i] = LLVMGetParam(func, base + i);
7831 /* Overwrite PERSP_CENTER. */
7832 for (i = 0; i < 2; i++)
7833 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7834 persp_sample[i], base + 2 + i, "");
7835 /* Overwrite PERSP_CENTROID. */
7836 for (i = 0; i < 2; i++)
7837 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7838 persp_sample[i], base + 4 + i, "");
7839 }
7840 if (key->ps_prolog.states.force_linear_sample_interp) {
7841 unsigned i, base = key->ps_prolog.num_input_sgprs;
7842 LLVMValueRef linear_sample[2];
7843
7844 /* Read LINEAR_SAMPLE. */
7845 for (i = 0; i < 2; i++)
7846 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7847 /* Overwrite LINEAR_CENTER. */
7848 for (i = 0; i < 2; i++)
7849 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7850 linear_sample[i], base + 8 + i, "");
7851 /* Overwrite LINEAR_CENTROID. */
7852 for (i = 0; i < 2; i++)
7853 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7854 linear_sample[i], base + 10 + i, "");
7855 }
7856
7857 /* Force center interpolation. */
7858 if (key->ps_prolog.states.force_persp_center_interp) {
7859 unsigned i, base = key->ps_prolog.num_input_sgprs;
7860 LLVMValueRef persp_center[2];
7861
7862 /* Read PERSP_CENTER. */
7863 for (i = 0; i < 2; i++)
7864 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7865 /* Overwrite PERSP_SAMPLE. */
7866 for (i = 0; i < 2; i++)
7867 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7868 persp_center[i], base + i, "");
7869 /* Overwrite PERSP_CENTROID. */
7870 for (i = 0; i < 2; i++)
7871 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7872 persp_center[i], base + 4 + i, "");
7873 }
7874 if (key->ps_prolog.states.force_linear_center_interp) {
7875 unsigned i, base = key->ps_prolog.num_input_sgprs;
7876 LLVMValueRef linear_center[2];
7877
7878 /* Read LINEAR_CENTER. */
7879 for (i = 0; i < 2; i++)
7880 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7881 /* Overwrite LINEAR_SAMPLE. */
7882 for (i = 0; i < 2; i++)
7883 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7884 linear_center[i], base + 6 + i, "");
7885 /* Overwrite LINEAR_CENTROID. */
7886 for (i = 0; i < 2; i++)
7887 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7888 linear_center[i], base + 10 + i, "");
7889 }
7890
7891 /* Interpolate colors. */
7892 unsigned color_out_idx = 0;
7893 for (i = 0; i < 2; i++) {
7894 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7895 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7896 key->ps_prolog.face_vgpr_index;
7897 LLVMValueRef interp[2], color[4];
7898 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7899
7900 if (!writemask)
7901 continue;
7902
7903 /* If the interpolation qualifier is not CONSTANT (-1). */
7904 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7905 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7906 key->ps_prolog.color_interp_vgpr_index[i];
7907
7908 /* Get the (i,j) updated by bc_optimize handling. */
7909 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7910 interp_vgpr, "");
7911 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7912 interp_vgpr + 1, "");
7913 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7914 }
7915
7916 /* Use the absolute location of the input. */
7917 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7918
7919 if (key->ps_prolog.states.color_two_side) {
7920 face = LLVMGetParam(func, face_vgpr);
7921 face = ac_to_integer(&ctx->ac, face);
7922 }
7923
7924 interp_fs_input(ctx,
7925 key->ps_prolog.color_attr_index[i],
7926 TGSI_SEMANTIC_COLOR, i,
7927 key->ps_prolog.num_interp_inputs,
7928 key->ps_prolog.colors_read, interp_ij,
7929 prim_mask, face, color);
7930
7931 while (writemask) {
7932 unsigned chan = u_bit_scan(&writemask);
7933 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7934 fninfo.num_params + color_out_idx++, "");
7935 }
7936 }
7937
7938 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7939 * says:
7940 *
7941 * "When per-sample shading is active due to the use of a fragment
7942 * input qualified by sample or due to the use of the gl_SampleID
7943 * or gl_SamplePosition variables, only the bit for the current
7944 * sample is set in gl_SampleMaskIn. When state specifies multiple
7945 * fragment shader invocations for a given fragment, the sample
7946 * mask for any single fragment shader invocation may specify a
7947 * subset of the covered samples for the fragment. In this case,
7948 * the bit corresponding to each covered sample will be set in
7949 * exactly one fragment shader invocation."
7950 *
7951 * The samplemask loaded by hardware is always the coverage of the
7952 * entire pixel/fragment, so mask bits out based on the sample ID.
7953 */
7954 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7955 /* The bit pattern matches that used by fixed function fragment
7956 * processing. */
7957 static const uint16_t ps_iter_masks[] = {
7958 0xffff, /* not used */
7959 0x5555,
7960 0x1111,
7961 0x0101,
7962 0x0001,
7963 };
7964 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7965
7966 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7967 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7968 key->ps_prolog.ancillary_vgpr_index;
7969 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7970 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7971
7972 samplemask = ac_to_integer(&ctx->ac, samplemask);
7973 samplemask = LLVMBuildAnd(
7974 ctx->ac.builder,
7975 samplemask,
7976 LLVMBuildShl(ctx->ac.builder,
7977 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7978 sampleid, ""),
7979 "");
7980 samplemask = ac_to_float(&ctx->ac, samplemask);
7981
7982 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7983 ancillary_vgpr + 1, "");
7984 }
7985
7986 /* Tell LLVM to insert WQM instruction sequence when needed. */
7987 if (key->ps_prolog.wqm) {
7988 LLVMAddTargetDependentFunctionAttr(func,
7989 "amdgpu-ps-wqm-outputs", "");
7990 }
7991
7992 si_llvm_build_ret(ctx, ret);
7993 }
7994
7995 /**
7996 * Build the pixel shader epilog function. This handles everything that must be
7997 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7998 */
7999 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8000 union si_shader_part_key *key)
8001 {
8002 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8003 struct si_function_info fninfo;
8004 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8005 int i;
8006 struct si_ps_exports exp = {};
8007
8008 si_init_function_info(&fninfo);
8009
8010 /* Declare input SGPRs. */
8011 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8012 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8013 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8014 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8015 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
8016
8017 /* Declare input VGPRs. */
8018 unsigned required_num_params =
8019 fninfo.num_sgpr_params +
8020 util_bitcount(key->ps_epilog.colors_written) * 4 +
8021 key->ps_epilog.writes_z +
8022 key->ps_epilog.writes_stencil +
8023 key->ps_epilog.writes_samplemask;
8024
8025 required_num_params = MAX2(required_num_params,
8026 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8027
8028 while (fninfo.num_params < required_num_params)
8029 add_arg(&fninfo, ARG_VGPR, ctx->f32);
8030
8031 /* Create the function. */
8032 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
8033 /* Disable elimination of unused inputs. */
8034 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
8035 "InitialPSInputAddr", 0xffffff);
8036
8037 /* Process colors. */
8038 unsigned vgpr = fninfo.num_sgpr_params;
8039 unsigned colors_written = key->ps_epilog.colors_written;
8040 int last_color_export = -1;
8041
8042 /* Find the last color export. */
8043 if (!key->ps_epilog.writes_z &&
8044 !key->ps_epilog.writes_stencil &&
8045 !key->ps_epilog.writes_samplemask) {
8046 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8047
8048 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8049 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8050 /* Just set this if any of the colorbuffers are enabled. */
8051 if (spi_format &
8052 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8053 last_color_export = 0;
8054 } else {
8055 for (i = 0; i < 8; i++)
8056 if (colors_written & (1 << i) &&
8057 (spi_format >> (i * 4)) & 0xf)
8058 last_color_export = i;
8059 }
8060 }
8061
8062 while (colors_written) {
8063 LLVMValueRef color[4];
8064 int mrt = u_bit_scan(&colors_written);
8065
8066 for (i = 0; i < 4; i++)
8067 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8068
8069 si_export_mrt_color(bld_base, color, mrt,
8070 fninfo.num_params - 1,
8071 mrt == last_color_export, &exp);
8072 }
8073
8074 /* Process depth, stencil, samplemask. */
8075 if (key->ps_epilog.writes_z)
8076 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8077 if (key->ps_epilog.writes_stencil)
8078 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8079 if (key->ps_epilog.writes_samplemask)
8080 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8081
8082 if (depth || stencil || samplemask)
8083 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8084 else if (last_color_export == -1)
8085 ac_build_export_null(&ctx->ac);
8086
8087 if (exp.num)
8088 si_emit_ps_exports(ctx, &exp);
8089
8090 /* Compile. */
8091 LLVMBuildRetVoid(ctx->ac.builder);
8092 }
8093
8094 /**
8095 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8096 */
8097 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8098 struct ac_llvm_compiler *compiler,
8099 struct si_shader *shader,
8100 struct pipe_debug_callback *debug)
8101 {
8102 union si_shader_part_key prolog_key;
8103 union si_shader_part_key epilog_key;
8104
8105 /* Get the prolog. */
8106 si_get_ps_prolog_key(shader, &prolog_key, true);
8107
8108 /* The prolog is a no-op if these aren't set. */
8109 if (si_need_ps_prolog(&prolog_key)) {
8110 shader->prolog =
8111 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8112 PIPE_SHADER_FRAGMENT, true,
8113 &prolog_key, compiler, debug,
8114 si_build_ps_prolog_function,
8115 "Fragment Shader Prolog");
8116 if (!shader->prolog)
8117 return false;
8118 }
8119
8120 /* Get the epilog. */
8121 si_get_ps_epilog_key(shader, &epilog_key);
8122
8123 shader->epilog =
8124 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8125 PIPE_SHADER_FRAGMENT, false,
8126 &epilog_key, compiler, debug,
8127 si_build_ps_epilog_function,
8128 "Fragment Shader Epilog");
8129 if (!shader->epilog)
8130 return false;
8131
8132 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8133 if (shader->key.part.ps.prolog.poly_stipple) {
8134 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8135 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8136 }
8137
8138 /* Set up the enable bits for per-sample shading if needed. */
8139 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8140 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8141 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8142 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8143 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8144 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8145 }
8146 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8147 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8148 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8149 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8150 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8151 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8152 }
8153 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8154 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8155 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8156 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8157 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8158 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8159 }
8160 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8161 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8162 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8163 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8164 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8165 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8166 }
8167
8168 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8169 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8170 !(shader->config.spi_ps_input_ena & 0xf)) {
8171 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8172 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8173 }
8174
8175 /* At least one pair of interpolation weights must be enabled. */
8176 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8177 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8178 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8179 }
8180
8181 /* Samplemask fixup requires the sample ID. */
8182 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8183 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8184 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8185 }
8186
8187 /* The sample mask input is always enabled, because the API shader always
8188 * passes it through to the epilog. Disable it here if it's unused.
8189 */
8190 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8191 !shader->selector->info.reads_samplemask)
8192 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8193
8194 return true;
8195 }
8196
8197 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8198 unsigned *lds_size)
8199 {
8200 /* If tessellation is all offchip and on-chip GS isn't used, this
8201 * workaround is not needed.
8202 */
8203 return;
8204
8205 /* SPI barrier management bug:
8206 * Make sure we have at least 4k of LDS in use to avoid the bug.
8207 * It applies to workgroup sizes of more than one wavefront.
8208 */
8209 if (sscreen->info.family == CHIP_BONAIRE ||
8210 sscreen->info.family == CHIP_KABINI)
8211 *lds_size = MAX2(*lds_size, 8);
8212 }
8213
8214 static void si_fix_resource_usage(struct si_screen *sscreen,
8215 struct si_shader *shader)
8216 {
8217 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8218
8219 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8220
8221 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8222 si_get_max_workgroup_size(shader) > 64) {
8223 si_multiwave_lds_size_workaround(sscreen,
8224 &shader->config.lds_size);
8225 }
8226 }
8227
8228 bool si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8229 struct si_shader *shader,
8230 struct pipe_debug_callback *debug)
8231 {
8232 struct si_shader_selector *sel = shader->selector;
8233 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8234 int r;
8235
8236 /* LS, ES, VS are compiled on demand if the main part hasn't been
8237 * compiled for that stage.
8238 *
8239 * GS are compiled on demand if the main part hasn't been compiled
8240 * for the chosen NGG-ness.
8241 *
8242 * Vertex shaders are compiled on demand when a vertex fetch
8243 * workaround must be applied.
8244 */
8245 if (shader->is_monolithic) {
8246 /* Monolithic shader (compiled as a whole, has many variants,
8247 * may take a long time to compile).
8248 */
8249 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8250 if (r)
8251 return false;
8252 } else {
8253 /* The shader consists of several parts:
8254 *
8255 * - the middle part is the user shader, it has 1 variant only
8256 * and it was compiled during the creation of the shader
8257 * selector
8258 * - the prolog part is inserted at the beginning
8259 * - the epilog part is inserted at the end
8260 *
8261 * The prolog and epilog have many (but simple) variants.
8262 *
8263 * Starting with gfx9, geometry and tessellation control
8264 * shaders also contain the prolog and user shader parts of
8265 * the previous shader stage.
8266 */
8267
8268 if (!mainp)
8269 return false;
8270
8271 /* Copy the compiled TGSI shader data over. */
8272 shader->is_binary_shared = true;
8273 shader->binary = mainp->binary;
8274 shader->config = mainp->config;
8275 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8276 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8277 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8278 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8279 memcpy(shader->info.vs_output_param_offset,
8280 mainp->info.vs_output_param_offset,
8281 sizeof(mainp->info.vs_output_param_offset));
8282 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8283 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8284 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8285
8286 /* Select prologs and/or epilogs. */
8287 switch (sel->type) {
8288 case PIPE_SHADER_VERTEX:
8289 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8290 return false;
8291 break;
8292 case PIPE_SHADER_TESS_CTRL:
8293 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8294 return false;
8295 break;
8296 case PIPE_SHADER_TESS_EVAL:
8297 break;
8298 case PIPE_SHADER_GEOMETRY:
8299 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8300 return false;
8301 break;
8302 case PIPE_SHADER_FRAGMENT:
8303 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8304 return false;
8305
8306 /* Make sure we have at least as many VGPRs as there
8307 * are allocated inputs.
8308 */
8309 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8310 shader->info.num_input_vgprs);
8311 break;
8312 }
8313
8314 /* Update SGPR and VGPR counts. */
8315 if (shader->prolog) {
8316 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8317 shader->prolog->config.num_sgprs);
8318 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8319 shader->prolog->config.num_vgprs);
8320 }
8321 if (shader->previous_stage) {
8322 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8323 shader->previous_stage->config.num_sgprs);
8324 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8325 shader->previous_stage->config.num_vgprs);
8326 shader->config.spilled_sgprs =
8327 MAX2(shader->config.spilled_sgprs,
8328 shader->previous_stage->config.spilled_sgprs);
8329 shader->config.spilled_vgprs =
8330 MAX2(shader->config.spilled_vgprs,
8331 shader->previous_stage->config.spilled_vgprs);
8332 shader->info.private_mem_vgprs =
8333 MAX2(shader->info.private_mem_vgprs,
8334 shader->previous_stage->info.private_mem_vgprs);
8335 shader->config.scratch_bytes_per_wave =
8336 MAX2(shader->config.scratch_bytes_per_wave,
8337 shader->previous_stage->config.scratch_bytes_per_wave);
8338 shader->info.uses_instanceid |=
8339 shader->previous_stage->info.uses_instanceid;
8340 }
8341 if (shader->prolog2) {
8342 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8343 shader->prolog2->config.num_sgprs);
8344 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8345 shader->prolog2->config.num_vgprs);
8346 }
8347 if (shader->epilog) {
8348 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8349 shader->epilog->config.num_sgprs);
8350 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8351 shader->epilog->config.num_vgprs);
8352 }
8353 si_calculate_max_simd_waves(shader);
8354 }
8355
8356 if (shader->key.as_ngg) {
8357 assert(!shader->key.as_es && !shader->key.as_ls);
8358 gfx10_ngg_calculate_subgroup_info(shader);
8359 } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
8360 gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
8361 }
8362
8363 si_fix_resource_usage(sscreen, shader);
8364 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8365 stderr, true);
8366
8367 /* Upload. */
8368 if (!si_shader_binary_upload(sscreen, shader, 0)) {
8369 fprintf(stderr, "LLVM failed to upload shader\n");
8370 return false;
8371 }
8372
8373 return true;
8374 }
8375
8376 void si_shader_destroy(struct si_shader *shader)
8377 {
8378 if (shader->scratch_bo)
8379 si_resource_reference(&shader->scratch_bo, NULL);
8380
8381 si_resource_reference(&shader->bo, NULL);
8382
8383 if (!shader->is_binary_shared)
8384 si_shader_binary_clean(&shader->binary);
8385
8386 free(shader->shader_log);
8387 }