radeonsi: stop using lp_build_emit_llvm_unary/binary
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_util.h"
29 #include "tgsi/tgsi_dump.h"
30
31 #include "ac_exp_param.h"
32 #include "ac_shader_util.h"
33 #include "ac_llvm_util.h"
34 #include "si_shader_internal.h"
35 #include "si_pipe.h"
36 #include "sid.h"
37
38 #include "compiler/nir/nir.h"
39
40 static const char *scratch_rsrc_dword0_symbol =
41 "SCRATCH_RSRC_DWORD0";
42
43 static const char *scratch_rsrc_dword1_symbol =
44 "SCRATCH_RSRC_DWORD1";
45
46 struct si_shader_output_values
47 {
48 LLVMValueRef values[4];
49 unsigned semantic_name;
50 unsigned semantic_index;
51 ubyte vertex_stream[4];
52 };
53
54 /**
55 * Used to collect types and other info about arguments of the LLVM function
56 * before the function is created.
57 */
58 struct si_function_info {
59 LLVMTypeRef types[100];
60 LLVMValueRef *assign[100];
61 unsigned num_sgpr_params;
62 unsigned num_params;
63 };
64
65 enum si_arg_regfile {
66 ARG_SGPR,
67 ARG_VGPR
68 };
69
70 static void si_init_shader_ctx(struct si_shader_context *ctx,
71 struct si_screen *sscreen,
72 struct si_compiler *compiler);
73
74 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
75 struct lp_build_tgsi_context *bld_base,
76 struct lp_build_emit_data *emit_data);
77
78 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
79 FILE *f);
80
81 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
88 union si_shader_part_key *key);
89
90 /* Ideally pass the sample mask input to the PS epilog as v14, which
91 * is its usual location, so that the shader doesn't have to add v_mov.
92 */
93 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
94
95 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
96 LLVMTypeRef type)
97 {
98 if (type == ctx->ac.i64 || type == ctx->ac.f64)
99 return true;
100
101 return false;
102 }
103
104 static bool is_merged_shader(struct si_shader *shader)
105 {
106 if (shader->selector->screen->info.chip_class <= VI)
107 return false;
108
109 return shader->key.as_ls ||
110 shader->key.as_es ||
111 shader->selector->type == PIPE_SHADER_TESS_CTRL ||
112 shader->selector->type == PIPE_SHADER_GEOMETRY;
113 }
114
115 static void si_init_function_info(struct si_function_info *fninfo)
116 {
117 fninfo->num_params = 0;
118 fninfo->num_sgpr_params = 0;
119 }
120
121 static unsigned add_arg_assign(struct si_function_info *fninfo,
122 enum si_arg_regfile regfile, LLVMTypeRef type,
123 LLVMValueRef *assign)
124 {
125 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
126
127 unsigned idx = fninfo->num_params++;
128 assert(idx < ARRAY_SIZE(fninfo->types));
129
130 if (regfile == ARG_SGPR)
131 fninfo->num_sgpr_params = fninfo->num_params;
132
133 fninfo->types[idx] = type;
134 fninfo->assign[idx] = assign;
135 return idx;
136 }
137
138 static unsigned add_arg(struct si_function_info *fninfo,
139 enum si_arg_regfile regfile, LLVMTypeRef type)
140 {
141 return add_arg_assign(fninfo, regfile, type, NULL);
142 }
143
144 static void add_arg_assign_checked(struct si_function_info *fninfo,
145 enum si_arg_regfile regfile, LLVMTypeRef type,
146 LLVMValueRef *assign, unsigned idx)
147 {
148 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
149 assert(actual == idx);
150 }
151
152 static void add_arg_checked(struct si_function_info *fninfo,
153 enum si_arg_regfile regfile, LLVMTypeRef type,
154 unsigned idx)
155 {
156 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
157 }
158
159 /**
160 * Returns a unique index for a per-patch semantic name and index. The index
161 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
162 * can be calculated.
163 */
164 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
165 {
166 switch (semantic_name) {
167 case TGSI_SEMANTIC_TESSOUTER:
168 return 0;
169 case TGSI_SEMANTIC_TESSINNER:
170 return 1;
171 case TGSI_SEMANTIC_PATCH:
172 assert(index < 30);
173 return 2 + index;
174
175 default:
176 assert(!"invalid semantic name");
177 return 0;
178 }
179 }
180
181 /**
182 * Returns a unique index for a semantic name and index. The index must be
183 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
184 * calculated.
185 */
186 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
187 unsigned is_varying)
188 {
189 switch (semantic_name) {
190 case TGSI_SEMANTIC_POSITION:
191 return 0;
192 case TGSI_SEMANTIC_GENERIC:
193 /* Since some shader stages use the the highest used IO index
194 * to determine the size to allocate for inputs/outputs
195 * (in LDS, tess and GS rings). GENERIC should be placed right
196 * after POSITION to make that size as small as possible.
197 */
198 if (index < SI_MAX_IO_GENERIC)
199 return 1 + index;
200
201 assert(!"invalid generic index");
202 return 0;
203 case TGSI_SEMANTIC_PSIZE:
204 return SI_MAX_IO_GENERIC + 1;
205 case TGSI_SEMANTIC_CLIPDIST:
206 assert(index <= 1);
207 return SI_MAX_IO_GENERIC + 2 + index;
208 case TGSI_SEMANTIC_FOG:
209 return SI_MAX_IO_GENERIC + 4;
210 case TGSI_SEMANTIC_LAYER:
211 return SI_MAX_IO_GENERIC + 5;
212 case TGSI_SEMANTIC_VIEWPORT_INDEX:
213 return SI_MAX_IO_GENERIC + 6;
214 case TGSI_SEMANTIC_PRIMID:
215 return SI_MAX_IO_GENERIC + 7;
216 case TGSI_SEMANTIC_COLOR:
217 assert(index < 2);
218 return SI_MAX_IO_GENERIC + 8 + index;
219 case TGSI_SEMANTIC_BCOLOR:
220 assert(index < 2);
221 /* If it's a varying, COLOR and BCOLOR alias. */
222 if (is_varying)
223 return SI_MAX_IO_GENERIC + 8 + index;
224 else
225 return SI_MAX_IO_GENERIC + 10 + index;
226 case TGSI_SEMANTIC_TEXCOORD:
227 assert(index < 8);
228 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
229 return SI_MAX_IO_GENERIC + 12 + index;
230 case TGSI_SEMANTIC_CLIPVERTEX:
231 return 63;
232 default:
233 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
234 assert(!"invalid semantic name");
235 return 0;
236 }
237 }
238
239 /**
240 * Get the value of a shader input parameter and extract a bitfield.
241 */
242 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
243 LLVMValueRef value, unsigned rshift,
244 unsigned bitwidth)
245 {
246 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
247 value = ac_to_integer(&ctx->ac, value);
248
249 if (rshift)
250 value = LLVMBuildLShr(ctx->ac.builder, value,
251 LLVMConstInt(ctx->i32, rshift, 0), "");
252
253 if (rshift + bitwidth < 32) {
254 unsigned mask = (1 << bitwidth) - 1;
255 value = LLVMBuildAnd(ctx->ac.builder, value,
256 LLVMConstInt(ctx->i32, mask, 0), "");
257 }
258
259 return value;
260 }
261
262 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
263 unsigned param, unsigned rshift,
264 unsigned bitwidth)
265 {
266 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
267
268 return unpack_llvm_param(ctx, value, rshift, bitwidth);
269 }
270
271 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
272 {
273 switch (ctx->type) {
274 case PIPE_SHADER_TESS_CTRL:
275 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
276
277 case PIPE_SHADER_TESS_EVAL:
278 return LLVMGetParam(ctx->main_fn,
279 ctx->param_tes_rel_patch_id);
280
281 default:
282 assert(0);
283 return NULL;
284 }
285 }
286
287 /* Tessellation shaders pass outputs to the next shader using LDS.
288 *
289 * LS outputs = TCS inputs
290 * TCS outputs = TES inputs
291 *
292 * The LDS layout is:
293 * - TCS inputs for patch 0
294 * - TCS inputs for patch 1
295 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
296 * - ...
297 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
298 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
299 * - TCS outputs for patch 1
300 * - Per-patch TCS outputs for patch 1
301 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
302 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
303 * - ...
304 *
305 * All three shaders VS(LS), TCS, TES share the same LDS space.
306 */
307
308 static LLVMValueRef
309 get_tcs_in_patch_stride(struct si_shader_context *ctx)
310 {
311 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
312 }
313
314 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
315 {
316 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
317
318 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
319 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
320
321 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
322 }
323
324 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
325 {
326 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
327
328 return LLVMConstInt(ctx->i32, stride, 0);
329 }
330
331 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
332 {
333 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
334 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
335
336 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
337 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
338 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
339 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
340 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
341 num_patch_outputs * 4;
342 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
343 }
344
345 static LLVMValueRef
346 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
347 {
348 return LLVMBuildMul(ctx->ac.builder,
349 si_unpack_param(ctx,
350 ctx->param_tcs_out_lds_offsets,
351 0, 16),
352 LLVMConstInt(ctx->i32, 4, 0), "");
353 }
354
355 static LLVMValueRef
356 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
357 {
358 return LLVMBuildMul(ctx->ac.builder,
359 si_unpack_param(ctx,
360 ctx->param_tcs_out_lds_offsets,
361 16, 16),
362 LLVMConstInt(ctx->i32, 4, 0), "");
363 }
364
365 static LLVMValueRef
366 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
367 {
368 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
369 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
370
371 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
372 }
373
374 static LLVMValueRef
375 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
376 {
377 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
382 LLVMBuildMul(ctx->ac.builder, patch_stride,
383 rel_patch_id, ""),
384 "");
385 }
386
387 static LLVMValueRef
388 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
389 {
390 LLVMValueRef patch0_patch_data_offset =
391 get_tcs_out_patch0_patch_data_offset(ctx);
392 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
393 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
394
395 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
396 LLVMBuildMul(ctx->ac.builder, patch_stride,
397 rel_patch_id, ""),
398 "");
399 }
400
401 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
402 {
403 unsigned tcs_out_vertices =
404 ctx->shader->selector ?
405 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
406
407 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
408 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
409 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
410
411 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
412 }
413
414 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
415 {
416 unsigned stride;
417
418 switch (ctx->type) {
419 case PIPE_SHADER_VERTEX:
420 stride = util_last_bit64(ctx->shader->selector->outputs_written);
421 return LLVMConstInt(ctx->i32, stride * 4, 0);
422
423 case PIPE_SHADER_TESS_CTRL:
424 if (ctx->screen->info.chip_class >= GFX9 &&
425 ctx->shader->is_monolithic) {
426 stride = util_last_bit64(ctx->shader->key.part.tcs.ls->outputs_written);
427 return LLVMConstInt(ctx->i32, stride * 4, 0);
428 }
429 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
430
431 default:
432 assert(0);
433 return NULL;
434 }
435 }
436
437 static LLVMValueRef get_instance_index_for_fetch(
438 struct si_shader_context *ctx,
439 unsigned param_start_instance, LLVMValueRef divisor)
440 {
441 LLVMValueRef result = ctx->abi.instance_id;
442
443 /* The division must be done before START_INSTANCE is added. */
444 if (divisor != ctx->i32_1)
445 result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
446
447 return LLVMBuildAdd(ctx->ac.builder, result,
448 LLVMGetParam(ctx->main_fn, param_start_instance), "");
449 }
450
451 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
452 * to float. */
453 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
454 LLVMValueRef vec4,
455 unsigned double_index)
456 {
457 LLVMBuilderRef builder = ctx->ac.builder;
458 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
459 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
460 LLVMVectorType(f64, 2), "");
461 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
462 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
463 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
464 }
465
466 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
467 LLVMValueRef i32, unsigned index)
468 {
469 assert(index <= 1);
470
471 if (index == 1)
472 return LLVMBuildAShr(ctx->ac.builder, i32,
473 LLVMConstInt(ctx->i32, 16, 0), "");
474
475 return LLVMBuildSExt(ctx->ac.builder,
476 LLVMBuildTrunc(ctx->ac.builder, i32,
477 ctx->ac.i16, ""),
478 ctx->i32, "");
479 }
480
481 void si_llvm_load_input_vs(
482 struct si_shader_context *ctx,
483 unsigned input_index,
484 LLVMValueRef out[4])
485 {
486 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
487 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
488
489 if (vs_blit_property) {
490 LLVMValueRef vertex_id = ctx->abi.vertex_id;
491 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
492 LLVMIntULE, vertex_id,
493 ctx->i32_1, "");
494 /* Use LLVMIntNE, because we have 3 vertices and only
495 * the middle one should use y2.
496 */
497 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
498 LLVMIntNE, vertex_id,
499 ctx->i32_1, "");
500
501 if (input_index == 0) {
502 /* Position: */
503 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs);
505 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 1);
507
508 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
509 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
510 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
511 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
512
513 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
514 x1, x2, "");
515 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
516 y1, y2, "");
517
518 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
519 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
520 out[2] = LLVMGetParam(ctx->main_fn,
521 ctx->param_vs_blit_inputs + 2);
522 out[3] = ctx->ac.f32_1;
523 return;
524 }
525
526 /* Color or texture coordinates: */
527 assert(input_index == 1);
528
529 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
530 for (int i = 0; i < 4; i++) {
531 out[i] = LLVMGetParam(ctx->main_fn,
532 ctx->param_vs_blit_inputs + 3 + i);
533 }
534 } else {
535 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
536 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
537 ctx->param_vs_blit_inputs + 3);
538 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
539 ctx->param_vs_blit_inputs + 4);
540 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
541 ctx->param_vs_blit_inputs + 5);
542 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
543 ctx->param_vs_blit_inputs + 6);
544
545 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
546 x1, x2, "");
547 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
548 y1, y2, "");
549 out[2] = LLVMGetParam(ctx->main_fn,
550 ctx->param_vs_blit_inputs + 7);
551 out[3] = LLVMGetParam(ctx->main_fn,
552 ctx->param_vs_blit_inputs + 8);
553 }
554 return;
555 }
556
557 unsigned chan;
558 unsigned fix_fetch;
559 unsigned num_fetches;
560 unsigned fetch_stride;
561 unsigned num_channels;
562
563 LLVMValueRef t_list_ptr;
564 LLVMValueRef t_offset;
565 LLVMValueRef t_list;
566 LLVMValueRef vertex_index;
567 LLVMValueRef input[3];
568
569 /* Load the T list */
570 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
571
572 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
573
574 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
575
576 vertex_index = LLVMGetParam(ctx->main_fn,
577 ctx->param_vertex_index0 +
578 input_index);
579
580 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
581
582 /* Do multiple loads for special formats. */
583 switch (fix_fetch) {
584 case SI_FIX_FETCH_RGB_64_FLOAT:
585 num_fetches = 3; /* 3 2-dword loads */
586 fetch_stride = 8;
587 num_channels = 2;
588 break;
589 case SI_FIX_FETCH_RGBA_64_FLOAT:
590 num_fetches = 2; /* 2 4-dword loads */
591 fetch_stride = 16;
592 num_channels = 4;
593 break;
594 case SI_FIX_FETCH_RGB_8:
595 case SI_FIX_FETCH_RGB_8_INT:
596 num_fetches = 3;
597 fetch_stride = 1;
598 num_channels = 1;
599 break;
600 case SI_FIX_FETCH_RGB_16:
601 case SI_FIX_FETCH_RGB_16_INT:
602 num_fetches = 3;
603 fetch_stride = 2;
604 num_channels = 1;
605 break;
606 default:
607 num_fetches = 1;
608 fetch_stride = 0;
609 num_channels = util_last_bit(info->input_usage_mask[input_index]);
610 }
611
612 for (unsigned i = 0; i < num_fetches; i++) {
613 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
614
615 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
616 vertex_index, voffset,
617 num_channels, false, true);
618 input[i] = ac_build_expand_to_vec4(&ctx->ac, input[i], num_channels);
619 }
620
621 /* Break up the vec4 into individual components */
622 for (chan = 0; chan < 4; chan++) {
623 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
624 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
625 input[0], llvm_chan, "");
626 }
627
628 switch (fix_fetch) {
629 case SI_FIX_FETCH_A2_SNORM:
630 case SI_FIX_FETCH_A2_SSCALED:
631 case SI_FIX_FETCH_A2_SINT: {
632 /* The hardware returns an unsigned value; convert it to a
633 * signed one.
634 */
635 LLVMValueRef tmp = out[3];
636 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
637
638 /* First, recover the sign-extended signed integer value. */
639 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
640 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
641 else
642 tmp = ac_to_integer(&ctx->ac, tmp);
643
644 /* For the integer-like cases, do a natural sign extension.
645 *
646 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
647 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
648 * exponent.
649 */
650 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
651 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
652 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
653 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
654
655 /* Convert back to the right type. */
656 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
657 LLVMValueRef clamp;
658 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
659 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
660 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
661 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
662 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
663 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
664 }
665
666 out[3] = tmp;
667 break;
668 }
669 case SI_FIX_FETCH_RGBA_32_UNORM:
670 case SI_FIX_FETCH_RGBX_32_UNORM:
671 for (chan = 0; chan < 4; chan++) {
672 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
673 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
674 out[chan], ctx->f32, "");
675 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
676 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
677 }
678 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
679 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
680 out[3] = LLVMConstReal(ctx->f32, 1);
681 break;
682 case SI_FIX_FETCH_RGBA_32_SNORM:
683 case SI_FIX_FETCH_RGBX_32_SNORM:
684 case SI_FIX_FETCH_RGBA_32_FIXED:
685 case SI_FIX_FETCH_RGBX_32_FIXED: {
686 double scale;
687 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
688 scale = 1.0 / 0x10000;
689 else
690 scale = 1.0 / INT_MAX;
691
692 for (chan = 0; chan < 4; chan++) {
693 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
694 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
695 out[chan], ctx->f32, "");
696 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
697 LLVMConstReal(ctx->f32, scale), "");
698 }
699 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
700 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
701 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
702 out[3] = LLVMConstReal(ctx->f32, 1);
703 break;
704 }
705 case SI_FIX_FETCH_RGBA_32_USCALED:
706 for (chan = 0; chan < 4; chan++) {
707 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
708 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
709 out[chan], ctx->f32, "");
710 }
711 break;
712 case SI_FIX_FETCH_RGBA_32_SSCALED:
713 for (chan = 0; chan < 4; chan++) {
714 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
715 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
716 out[chan], ctx->f32, "");
717 }
718 break;
719 case SI_FIX_FETCH_RG_64_FLOAT:
720 for (chan = 0; chan < 2; chan++)
721 out[chan] = extract_double_to_float(ctx, input[0], chan);
722
723 out[2] = LLVMConstReal(ctx->f32, 0);
724 out[3] = LLVMConstReal(ctx->f32, 1);
725 break;
726 case SI_FIX_FETCH_RGB_64_FLOAT:
727 for (chan = 0; chan < 3; chan++)
728 out[chan] = extract_double_to_float(ctx, input[chan], 0);
729
730 out[3] = LLVMConstReal(ctx->f32, 1);
731 break;
732 case SI_FIX_FETCH_RGBA_64_FLOAT:
733 for (chan = 0; chan < 4; chan++) {
734 out[chan] = extract_double_to_float(ctx, input[chan / 2],
735 chan % 2);
736 }
737 break;
738 case SI_FIX_FETCH_RGB_8:
739 case SI_FIX_FETCH_RGB_8_INT:
740 case SI_FIX_FETCH_RGB_16:
741 case SI_FIX_FETCH_RGB_16_INT:
742 for (chan = 0; chan < 3; chan++) {
743 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
744 input[chan],
745 ctx->i32_0, "");
746 }
747 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
748 fix_fetch == SI_FIX_FETCH_RGB_16) {
749 out[3] = LLVMConstReal(ctx->f32, 1);
750 } else {
751 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
752 }
753 break;
754 }
755 }
756
757 static void declare_input_vs(
758 struct si_shader_context *ctx,
759 unsigned input_index,
760 const struct tgsi_full_declaration *decl,
761 LLVMValueRef out[4])
762 {
763 si_llvm_load_input_vs(ctx, input_index, out);
764 }
765
766 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
767 unsigned swizzle)
768 {
769 if (swizzle > 0)
770 return ctx->i32_0;
771
772 switch (ctx->type) {
773 case PIPE_SHADER_VERTEX:
774 return LLVMGetParam(ctx->main_fn,
775 ctx->param_vs_prim_id);
776 case PIPE_SHADER_TESS_CTRL:
777 return ctx->abi.tcs_patch_id;
778 case PIPE_SHADER_TESS_EVAL:
779 return ctx->abi.tes_patch_id;
780 case PIPE_SHADER_GEOMETRY:
781 return ctx->abi.gs_prim_id;
782 default:
783 assert(0);
784 return ctx->i32_0;
785 }
786 }
787
788 /**
789 * Return the value of tgsi_ind_register for indexing.
790 * This is the indirect index with the constant offset added to it.
791 */
792 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
793 const struct tgsi_ind_register *ind,
794 unsigned addr_mul,
795 int rel_index)
796 {
797 LLVMValueRef result;
798
799 if (ind->File == TGSI_FILE_ADDRESS) {
800 result = ctx->addrs[ind->Index][ind->Swizzle];
801 result = LLVMBuildLoad(ctx->ac.builder, result, "");
802 } else {
803 struct tgsi_full_src_register src = {};
804
805 src.Register.File = ind->File;
806 src.Register.Index = ind->Index;
807
808 /* Set the second index to 0 for constants. */
809 if (ind->File == TGSI_FILE_CONSTANT)
810 src.Register.Dimension = 1;
811
812 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
813 TGSI_TYPE_SIGNED,
814 ind->Swizzle);
815 result = ac_to_integer(&ctx->ac, result);
816 }
817
818 if (addr_mul != 1)
819 result = LLVMBuildMul(ctx->ac.builder, result,
820 LLVMConstInt(ctx->i32, addr_mul, 0), "");
821 result = LLVMBuildAdd(ctx->ac.builder, result,
822 LLVMConstInt(ctx->i32, rel_index, 0), "");
823 return result;
824 }
825
826 /**
827 * Like si_get_indirect_index, but restricts the return value to a (possibly
828 * undefined) value inside [0..num).
829 */
830 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
831 const struct tgsi_ind_register *ind,
832 int rel_index, unsigned num)
833 {
834 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
835
836 return si_llvm_bound_index(ctx, result, num);
837 }
838
839 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
840 LLVMValueRef vertex_dw_stride,
841 LLVMValueRef base_addr,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index,
844 unsigned input_index,
845 ubyte *name,
846 ubyte *index,
847 bool is_patch)
848 {
849 if (vertex_dw_stride) {
850 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
851 LLVMBuildMul(ctx->ac.builder, vertex_index,
852 vertex_dw_stride, ""), "");
853 }
854
855 if (param_index) {
856 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
857 LLVMBuildMul(ctx->ac.builder, param_index,
858 LLVMConstInt(ctx->i32, 4, 0), ""), "");
859 }
860
861 int param = is_patch ?
862 si_shader_io_get_unique_index_patch(name[input_index],
863 index[input_index]) :
864 si_shader_io_get_unique_index(name[input_index],
865 index[input_index], false);
866
867 /* Add the base address of the element. */
868 return LLVMBuildAdd(ctx->ac.builder, base_addr,
869 LLVMConstInt(ctx->i32, param * 4, 0), "");
870 }
871
872 /**
873 * Calculate a dword address given an input or output register and a stride.
874 */
875 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
876 const struct tgsi_full_dst_register *dst,
877 const struct tgsi_full_src_register *src,
878 LLVMValueRef vertex_dw_stride,
879 LLVMValueRef base_addr)
880 {
881 struct tgsi_shader_info *info = &ctx->shader->selector->info;
882 ubyte *name, *index, *array_first;
883 int input_index;
884 struct tgsi_full_dst_register reg;
885 LLVMValueRef vertex_index = NULL;
886 LLVMValueRef ind_index = NULL;
887
888 /* Set the register description. The address computation is the same
889 * for sources and destinations. */
890 if (src) {
891 reg.Register.File = src->Register.File;
892 reg.Register.Index = src->Register.Index;
893 reg.Register.Indirect = src->Register.Indirect;
894 reg.Register.Dimension = src->Register.Dimension;
895 reg.Indirect = src->Indirect;
896 reg.Dimension = src->Dimension;
897 reg.DimIndirect = src->DimIndirect;
898 } else
899 reg = *dst;
900
901 /* If the register is 2-dimensional (e.g. an array of vertices
902 * in a primitive), calculate the base address of the vertex. */
903 if (reg.Register.Dimension) {
904 if (reg.Dimension.Indirect)
905 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
906 1, reg.Dimension.Index);
907 else
908 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
909 }
910
911 /* Get information about the register. */
912 if (reg.Register.File == TGSI_FILE_INPUT) {
913 name = info->input_semantic_name;
914 index = info->input_semantic_index;
915 array_first = info->input_array_first;
916 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
917 name = info->output_semantic_name;
918 index = info->output_semantic_index;
919 array_first = info->output_array_first;
920 } else {
921 assert(0);
922 return NULL;
923 }
924
925 if (reg.Register.Indirect) {
926 /* Add the relative address of the element. */
927 if (reg.Indirect.ArrayID)
928 input_index = array_first[reg.Indirect.ArrayID];
929 else
930 input_index = reg.Register.Index;
931
932 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
933 1, reg.Register.Index - input_index);
934 } else {
935 input_index = reg.Register.Index;
936 }
937
938 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
939 base_addr, vertex_index,
940 ind_index, input_index,
941 name, index,
942 !reg.Register.Dimension);
943 }
944
945 /* The offchip buffer layout for TCS->TES is
946 *
947 * - attribute 0 of patch 0 vertex 0
948 * - attribute 0 of patch 0 vertex 1
949 * - attribute 0 of patch 0 vertex 2
950 * ...
951 * - attribute 0 of patch 1 vertex 0
952 * - attribute 0 of patch 1 vertex 1
953 * ...
954 * - attribute 1 of patch 0 vertex 0
955 * - attribute 1 of patch 0 vertex 1
956 * ...
957 * - per patch attribute 0 of patch 0
958 * - per patch attribute 0 of patch 1
959 * ...
960 *
961 * Note that every attribute has 4 components.
962 */
963 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
964 LLVMValueRef rel_patch_id,
965 LLVMValueRef vertex_index,
966 LLVMValueRef param_index)
967 {
968 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
969 LLVMValueRef param_stride, constant16;
970
971 vertices_per_patch = get_num_tcs_out_vertices(ctx);
972 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
973 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
974 num_patches, "");
975
976 constant16 = LLVMConstInt(ctx->i32, 16, 0);
977 if (vertex_index) {
978 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
979 vertices_per_patch, "");
980
981 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
982 vertex_index, "");
983
984 param_stride = total_vertices;
985 } else {
986 base_addr = rel_patch_id;
987 param_stride = num_patches;
988 }
989
990 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
991 LLVMBuildMul(ctx->ac.builder, param_index,
992 param_stride, ""), "");
993
994 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
995
996 if (!vertex_index) {
997 LLVMValueRef patch_data_offset =
998 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
999
1000 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1001 patch_data_offset, "");
1002 }
1003 return base_addr;
1004 }
1005
1006 /* This is a generic helper that can be shared by the NIR and TGSI backends */
1007 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1008 struct si_shader_context *ctx,
1009 LLVMValueRef vertex_index,
1010 LLVMValueRef param_index,
1011 unsigned param_base,
1012 ubyte *name,
1013 ubyte *index,
1014 bool is_patch)
1015 {
1016 unsigned param_index_base;
1017
1018 param_index_base = is_patch ?
1019 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1020 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
1021
1022 if (param_index) {
1023 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1024 LLVMConstInt(ctx->i32, param_index_base, 0),
1025 "");
1026 } else {
1027 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1028 }
1029
1030 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1031 vertex_index, param_index);
1032 }
1033
1034 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1035 struct si_shader_context *ctx,
1036 const struct tgsi_full_dst_register *dst,
1037 const struct tgsi_full_src_register *src)
1038 {
1039 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1040 ubyte *name, *index, *array_first;
1041 struct tgsi_full_src_register reg;
1042 LLVMValueRef vertex_index = NULL;
1043 LLVMValueRef param_index = NULL;
1044 unsigned param_base;
1045
1046 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1047
1048 if (reg.Register.Dimension) {
1049
1050 if (reg.Dimension.Indirect)
1051 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1052 1, reg.Dimension.Index);
1053 else
1054 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1055 }
1056
1057 /* Get information about the register. */
1058 if (reg.Register.File == TGSI_FILE_INPUT) {
1059 name = info->input_semantic_name;
1060 index = info->input_semantic_index;
1061 array_first = info->input_array_first;
1062 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1063 name = info->output_semantic_name;
1064 index = info->output_semantic_index;
1065 array_first = info->output_array_first;
1066 } else {
1067 assert(0);
1068 return NULL;
1069 }
1070
1071 if (reg.Register.Indirect) {
1072 if (reg.Indirect.ArrayID)
1073 param_base = array_first[reg.Indirect.ArrayID];
1074 else
1075 param_base = reg.Register.Index;
1076
1077 param_index = si_get_indirect_index(ctx, &reg.Indirect,
1078 1, reg.Register.Index - param_base);
1079
1080 } else {
1081 param_base = reg.Register.Index;
1082 }
1083
1084 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1085 param_index, param_base,
1086 name, index, !reg.Register.Dimension);
1087 }
1088
1089 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1090 LLVMTypeRef type, unsigned swizzle,
1091 LLVMValueRef buffer, LLVMValueRef offset,
1092 LLVMValueRef base, bool can_speculate)
1093 {
1094 struct si_shader_context *ctx = si_shader_context(bld_base);
1095 LLVMValueRef value, value2;
1096 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1097
1098 if (swizzle == ~0) {
1099 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1100 0, 1, 0, can_speculate, false);
1101
1102 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1103 }
1104
1105 if (!llvm_type_is_64bit(ctx, type)) {
1106 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1107 0, 1, 0, can_speculate, false);
1108
1109 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1110 return LLVMBuildExtractElement(ctx->ac.builder, value,
1111 LLVMConstInt(ctx->i32, swizzle, 0), "");
1112 }
1113
1114 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1115 swizzle * 4, 1, 0, can_speculate, false);
1116
1117 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1118 swizzle * 4 + 4, 1, 0, can_speculate, false);
1119
1120 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1121 }
1122
1123 /**
1124 * Load from LDS.
1125 *
1126 * \param type output value type
1127 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1128 * \param dw_addr address in dwords
1129 */
1130 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1131 LLVMTypeRef type, unsigned swizzle,
1132 LLVMValueRef dw_addr)
1133 {
1134 struct si_shader_context *ctx = si_shader_context(bld_base);
1135 LLVMValueRef value;
1136
1137 if (swizzle == ~0) {
1138 LLVMValueRef values[TGSI_NUM_CHANNELS];
1139
1140 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1141 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1142
1143 return ac_build_gather_values(&ctx->ac, values,
1144 TGSI_NUM_CHANNELS);
1145 }
1146
1147 /* Split 64-bit loads. */
1148 if (llvm_type_is_64bit(ctx, type)) {
1149 LLVMValueRef lo, hi;
1150
1151 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1152 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1153 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1154 }
1155
1156 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1157 LLVMConstInt(ctx->i32, swizzle, 0), "");
1158
1159 value = ac_lds_load(&ctx->ac, dw_addr);
1160
1161 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1162 }
1163
1164 /**
1165 * Store to LDS.
1166 *
1167 * \param swizzle offset (typically 0..3)
1168 * \param dw_addr address in dwords
1169 * \param value value to store
1170 */
1171 static void lds_store(struct si_shader_context *ctx,
1172 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1173 LLVMValueRef value)
1174 {
1175 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1176 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1177
1178 ac_lds_store(&ctx->ac, dw_addr, value);
1179 }
1180
1181 enum si_tess_ring {
1182 TCS_FACTOR_RING,
1183 TESS_OFFCHIP_RING_TCS,
1184 TESS_OFFCHIP_RING_TES,
1185 };
1186
1187 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1188 enum si_tess_ring ring)
1189 {
1190 LLVMBuilderRef builder = ctx->ac.builder;
1191 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1192 ctx->param_tcs_out_lds_layout;
1193 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1194
1195 /* TCS only receives high 13 bits of the address. */
1196 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1197 addr = LLVMBuildAnd(builder, addr,
1198 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1199 }
1200
1201 if (ring == TCS_FACTOR_RING) {
1202 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1203 addr = LLVMBuildAdd(builder, addr,
1204 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1205 }
1206
1207 LLVMValueRef desc[4];
1208 desc[0] = addr;
1209 desc[1] = LLVMConstInt(ctx->i32,
1210 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1211 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1212 desc[3] = LLVMConstInt(ctx->i32,
1213 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1214 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1215 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1216 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1217 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1218 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0);
1219
1220 return ac_build_gather_values(&ctx->ac, desc, 4);
1221 }
1222
1223 static LLVMValueRef fetch_input_tcs(
1224 struct lp_build_tgsi_context *bld_base,
1225 const struct tgsi_full_src_register *reg,
1226 enum tgsi_opcode_type type, unsigned swizzle)
1227 {
1228 struct si_shader_context *ctx = si_shader_context(bld_base);
1229 LLVMValueRef dw_addr, stride;
1230
1231 stride = get_tcs_in_vertex_dw_stride(ctx);
1232 dw_addr = get_tcs_in_current_patch_offset(ctx);
1233 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1234
1235 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1236 }
1237
1238 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1239 LLVMTypeRef type,
1240 LLVMValueRef vertex_index,
1241 LLVMValueRef param_index,
1242 unsigned const_index,
1243 unsigned location,
1244 unsigned driver_location,
1245 unsigned component,
1246 unsigned num_components,
1247 bool is_patch,
1248 bool is_compact,
1249 bool load_input)
1250 {
1251 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1252 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1253 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1254 LLVMValueRef dw_addr, stride;
1255
1256 driver_location = driver_location / 4;
1257
1258 if (load_input) {
1259 stride = get_tcs_in_vertex_dw_stride(ctx);
1260 dw_addr = get_tcs_in_current_patch_offset(ctx);
1261 } else {
1262 if (is_patch) {
1263 stride = NULL;
1264 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1265 } else {
1266 stride = get_tcs_out_vertex_dw_stride(ctx);
1267 dw_addr = get_tcs_out_current_patch_offset(ctx);
1268 }
1269 }
1270
1271 if (param_index) {
1272 /* Add the constant index to the indirect index */
1273 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1274 LLVMConstInt(ctx->i32, const_index, 0), "");
1275 } else {
1276 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1277 }
1278
1279 ubyte *names;
1280 ubyte *indices;
1281 if (load_input) {
1282 names = info->input_semantic_name;
1283 indices = info->input_semantic_index;
1284 } else {
1285 names = info->output_semantic_name;
1286 indices = info->output_semantic_index;
1287 }
1288
1289 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1290 vertex_index, param_index,
1291 driver_location,
1292 names, indices,
1293 is_patch);
1294
1295 LLVMValueRef value[4];
1296 for (unsigned i = 0; i < num_components; i++) {
1297 unsigned offset = i;
1298 if (llvm_type_is_64bit(ctx, type))
1299 offset *= 2;
1300
1301 offset += component;
1302 value[i + component] = lds_load(bld_base, type, offset, dw_addr);
1303 }
1304
1305 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1306 }
1307
1308 static LLVMValueRef fetch_output_tcs(
1309 struct lp_build_tgsi_context *bld_base,
1310 const struct tgsi_full_src_register *reg,
1311 enum tgsi_opcode_type type, unsigned swizzle)
1312 {
1313 struct si_shader_context *ctx = si_shader_context(bld_base);
1314 LLVMValueRef dw_addr, stride;
1315
1316 if (reg->Register.Dimension) {
1317 stride = get_tcs_out_vertex_dw_stride(ctx);
1318 dw_addr = get_tcs_out_current_patch_offset(ctx);
1319 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1320 } else {
1321 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1322 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1323 }
1324
1325 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1326 }
1327
1328 static LLVMValueRef fetch_input_tes(
1329 struct lp_build_tgsi_context *bld_base,
1330 const struct tgsi_full_src_register *reg,
1331 enum tgsi_opcode_type type, unsigned swizzle)
1332 {
1333 struct si_shader_context *ctx = si_shader_context(bld_base);
1334 LLVMValueRef base, addr;
1335
1336 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1337 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1338
1339 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1340 ctx->tess_offchip_ring, base, addr, true);
1341 }
1342
1343 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1344 LLVMTypeRef type,
1345 LLVMValueRef vertex_index,
1346 LLVMValueRef param_index,
1347 unsigned const_index,
1348 unsigned location,
1349 unsigned driver_location,
1350 unsigned component,
1351 unsigned num_components,
1352 bool is_patch,
1353 bool is_compact,
1354 bool load_input)
1355 {
1356 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1357 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1358 LLVMValueRef base, addr;
1359
1360 driver_location = driver_location / 4;
1361
1362 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1363
1364 if (param_index) {
1365 /* Add the constant index to the indirect index */
1366 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1367 LLVMConstInt(ctx->i32, const_index, 0), "");
1368 } else {
1369 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1370 }
1371
1372 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1373 param_index, driver_location,
1374 info->input_semantic_name,
1375 info->input_semantic_index,
1376 is_patch);
1377
1378 /* TODO: This will generate rather ordinary llvm code, although it
1379 * should be easy for the optimiser to fix up. In future we might want
1380 * to refactor buffer_load(), but for now this maximises code sharing
1381 * between the NIR and TGSI backends.
1382 */
1383 LLVMValueRef value[4];
1384 for (unsigned i = 0; i < num_components; i++) {
1385 unsigned offset = i;
1386 if (llvm_type_is_64bit(ctx, type))
1387 offset *= 2;
1388
1389 offset += component;
1390 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1391 ctx->tess_offchip_ring, base, addr, true);
1392 }
1393
1394 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1395 }
1396
1397 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1398 const struct tgsi_full_instruction *inst,
1399 const struct tgsi_opcode_info *info,
1400 unsigned index,
1401 LLVMValueRef dst[4])
1402 {
1403 struct si_shader_context *ctx = si_shader_context(bld_base);
1404 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1405 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1406 unsigned chan_index;
1407 LLVMValueRef dw_addr, stride;
1408 LLVMValueRef buffer, base, buf_addr;
1409 LLVMValueRef values[4];
1410 bool skip_lds_store;
1411 bool is_tess_factor = false, is_tess_inner = false;
1412
1413 /* Only handle per-patch and per-vertex outputs here.
1414 * Vectors will be lowered to scalars and this function will be called again.
1415 */
1416 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1417 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1418 si_llvm_emit_store(bld_base, inst, info, index, dst);
1419 return;
1420 }
1421
1422 if (reg->Register.Dimension) {
1423 stride = get_tcs_out_vertex_dw_stride(ctx);
1424 dw_addr = get_tcs_out_current_patch_offset(ctx);
1425 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1426 skip_lds_store = !sh_info->reads_pervertex_outputs;
1427 } else {
1428 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1429 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1430 skip_lds_store = !sh_info->reads_perpatch_outputs;
1431
1432 if (!reg->Register.Indirect) {
1433 int name = sh_info->output_semantic_name[reg->Register.Index];
1434
1435 /* Always write tess factors into LDS for the TCS epilog. */
1436 if (name == TGSI_SEMANTIC_TESSINNER ||
1437 name == TGSI_SEMANTIC_TESSOUTER) {
1438 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1439 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1440 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1441 is_tess_factor = true;
1442 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1443 }
1444 }
1445 }
1446
1447 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1448
1449 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1450 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1451
1452 uint32_t writemask = reg->Register.WriteMask;
1453 while (writemask) {
1454 chan_index = u_bit_scan(&writemask);
1455 LLVMValueRef value = dst[chan_index];
1456
1457 if (inst->Instruction.Saturate)
1458 value = ac_build_clamp(&ctx->ac, value);
1459
1460 /* Skip LDS stores if there is no LDS read of this output. */
1461 if (!skip_lds_store)
1462 lds_store(ctx, chan_index, dw_addr, value);
1463
1464 value = ac_to_integer(&ctx->ac, value);
1465 values[chan_index] = value;
1466
1467 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1468 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1469 buf_addr, base,
1470 4 * chan_index, 1, 0, true, false);
1471 }
1472
1473 /* Write tess factors into VGPRs for the epilog. */
1474 if (is_tess_factor &&
1475 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1476 if (!is_tess_inner) {
1477 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1478 ctx->invoc0_tess_factors[chan_index]);
1479 } else if (chan_index < 2) {
1480 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1481 ctx->invoc0_tess_factors[4 + chan_index]);
1482 }
1483 }
1484 }
1485
1486 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1487 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1488 values, 4);
1489 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1490 base, 0, 1, 0, true, false);
1491 }
1492 }
1493
1494 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1495 const struct nir_variable *var,
1496 LLVMValueRef vertex_index,
1497 LLVMValueRef param_index,
1498 unsigned const_index,
1499 LLVMValueRef src,
1500 unsigned writemask)
1501 {
1502 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1503 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1504 const unsigned component = var->data.location_frac;
1505 const bool is_patch = var->data.patch;
1506 unsigned driver_location = var->data.driver_location;
1507 LLVMValueRef dw_addr, stride;
1508 LLVMValueRef buffer, base, addr;
1509 LLVMValueRef values[4];
1510 bool skip_lds_store;
1511 bool is_tess_factor = false, is_tess_inner = false;
1512
1513 driver_location = driver_location / 4;
1514
1515 if (param_index) {
1516 /* Add the constant index to the indirect index */
1517 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1518 LLVMConstInt(ctx->i32, const_index, 0), "");
1519 } else {
1520 if (const_index != 0)
1521 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1522 }
1523
1524 if (!is_patch) {
1525 stride = get_tcs_out_vertex_dw_stride(ctx);
1526 dw_addr = get_tcs_out_current_patch_offset(ctx);
1527 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1528 vertex_index, param_index,
1529 driver_location,
1530 info->output_semantic_name,
1531 info->output_semantic_index,
1532 is_patch);
1533
1534 skip_lds_store = !info->reads_pervertex_outputs;
1535 } else {
1536 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1537 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1538 vertex_index, param_index,
1539 driver_location,
1540 info->output_semantic_name,
1541 info->output_semantic_index,
1542 is_patch);
1543
1544 skip_lds_store = !info->reads_perpatch_outputs;
1545
1546 if (!param_index) {
1547 int name = info->output_semantic_name[driver_location];
1548
1549 /* Always write tess factors into LDS for the TCS epilog. */
1550 if (name == TGSI_SEMANTIC_TESSINNER ||
1551 name == TGSI_SEMANTIC_TESSOUTER) {
1552 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1553 skip_lds_store = !info->reads_tessfactor_outputs &&
1554 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1555 is_tess_factor = true;
1556 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1557 }
1558 }
1559 }
1560
1561 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1562
1563 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1564
1565 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1566 param_index, driver_location,
1567 info->output_semantic_name,
1568 info->output_semantic_index,
1569 is_patch);
1570
1571 for (unsigned chan = 0; chan < 4; chan++) {
1572 if (!(writemask & (1 << chan)))
1573 continue;
1574 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1575
1576 /* Skip LDS stores if there is no LDS read of this output. */
1577 if (!skip_lds_store)
1578 lds_store(ctx, chan, dw_addr, value);
1579
1580 value = ac_to_integer(&ctx->ac, value);
1581 values[chan] = value;
1582
1583 if (writemask != 0xF && !is_tess_factor) {
1584 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1585 addr, base,
1586 4 * chan, 1, 0, true, false);
1587 }
1588
1589 /* Write tess factors into VGPRs for the epilog. */
1590 if (is_tess_factor &&
1591 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1592 if (!is_tess_inner) {
1593 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1594 ctx->invoc0_tess_factors[chan]);
1595 } else if (chan < 2) {
1596 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1597 ctx->invoc0_tess_factors[4 + chan]);
1598 }
1599 }
1600 }
1601
1602 if (writemask == 0xF && !is_tess_factor) {
1603 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1604 values, 4);
1605 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1606 base, 0, 1, 0, true, false);
1607 }
1608 }
1609
1610 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1611 unsigned input_index,
1612 unsigned vtx_offset_param,
1613 LLVMTypeRef type,
1614 unsigned swizzle)
1615 {
1616 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1617 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1618 struct si_shader *shader = ctx->shader;
1619 LLVMValueRef vtx_offset, soffset;
1620 struct tgsi_shader_info *info = &shader->selector->info;
1621 unsigned semantic_name = info->input_semantic_name[input_index];
1622 unsigned semantic_index = info->input_semantic_index[input_index];
1623 unsigned param;
1624 LLVMValueRef value;
1625
1626 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1627
1628 /* GFX9 has the ESGS ring in LDS. */
1629 if (ctx->screen->info.chip_class >= GFX9) {
1630 unsigned index = vtx_offset_param;
1631
1632 switch (index / 2) {
1633 case 0:
1634 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1635 index % 2 ? 16 : 0, 16);
1636 break;
1637 case 1:
1638 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1639 index % 2 ? 16 : 0, 16);
1640 break;
1641 case 2:
1642 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1643 index % 2 ? 16 : 0, 16);
1644 break;
1645 default:
1646 assert(0);
1647 return NULL;
1648 }
1649
1650 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1651 LLVMConstInt(ctx->i32, param * 4, 0), "");
1652 return lds_load(bld_base, type, swizzle, vtx_offset);
1653 }
1654
1655 /* GFX6: input load from the ESGS ring in memory. */
1656 if (swizzle == ~0) {
1657 LLVMValueRef values[TGSI_NUM_CHANNELS];
1658 unsigned chan;
1659 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1660 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1661 type, chan);
1662 }
1663 return ac_build_gather_values(&ctx->ac, values,
1664 TGSI_NUM_CHANNELS);
1665 }
1666
1667 /* Get the vertex offset parameter on GFX6. */
1668 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1669
1670 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1671 LLVMConstInt(ctx->i32, 4, 0), "");
1672
1673 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1674
1675 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1676 vtx_offset, soffset, 0, 1, 0, true, false);
1677 if (llvm_type_is_64bit(ctx, type)) {
1678 LLVMValueRef value2;
1679 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1680
1681 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1682 ctx->i32_0, vtx_offset, soffset,
1683 0, 1, 0, true, false);
1684 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1685 }
1686 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1687 }
1688
1689 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1690 unsigned location,
1691 unsigned driver_location,
1692 unsigned component,
1693 unsigned num_components,
1694 unsigned vertex_index,
1695 unsigned const_index,
1696 LLVMTypeRef type)
1697 {
1698 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1699
1700 LLVMValueRef value[4];
1701 for (unsigned i = 0; i < num_components; i++) {
1702 unsigned offset = i;
1703 if (llvm_type_is_64bit(ctx, type))
1704 offset *= 2;
1705
1706 offset += component;
1707 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1708 vertex_index, type, offset);
1709 }
1710
1711 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1712 }
1713
1714 static LLVMValueRef fetch_input_gs(
1715 struct lp_build_tgsi_context *bld_base,
1716 const struct tgsi_full_src_register *reg,
1717 enum tgsi_opcode_type type,
1718 unsigned swizzle)
1719 {
1720 struct si_shader_context *ctx = si_shader_context(bld_base);
1721 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1722
1723 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1724 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1725 return get_primitive_id(ctx, swizzle);
1726
1727 if (!reg->Register.Dimension)
1728 return NULL;
1729
1730 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1731 reg->Dimension.Index,
1732 tgsi2llvmtype(bld_base, type),
1733 swizzle);
1734 }
1735
1736 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1737 {
1738 switch (interpolate) {
1739 case TGSI_INTERPOLATE_CONSTANT:
1740 return 0;
1741
1742 case TGSI_INTERPOLATE_LINEAR:
1743 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1744 return SI_PARAM_LINEAR_SAMPLE;
1745 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1746 return SI_PARAM_LINEAR_CENTROID;
1747 else
1748 return SI_PARAM_LINEAR_CENTER;
1749 break;
1750 case TGSI_INTERPOLATE_COLOR:
1751 case TGSI_INTERPOLATE_PERSPECTIVE:
1752 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1753 return SI_PARAM_PERSP_SAMPLE;
1754 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1755 return SI_PARAM_PERSP_CENTROID;
1756 else
1757 return SI_PARAM_PERSP_CENTER;
1758 break;
1759 default:
1760 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1761 return -1;
1762 }
1763 }
1764
1765 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1766 unsigned attr_index, unsigned chan,
1767 LLVMValueRef prim_mask,
1768 LLVMValueRef i, LLVMValueRef j)
1769 {
1770 if (i || j) {
1771 return ac_build_fs_interp(&ctx->ac,
1772 LLVMConstInt(ctx->i32, chan, 0),
1773 LLVMConstInt(ctx->i32, attr_index, 0),
1774 prim_mask, i, j);
1775 }
1776 return ac_build_fs_interp_mov(&ctx->ac,
1777 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1778 LLVMConstInt(ctx->i32, chan, 0),
1779 LLVMConstInt(ctx->i32, attr_index, 0),
1780 prim_mask);
1781 }
1782
1783 /**
1784 * Interpolate a fragment shader input.
1785 *
1786 * @param ctx context
1787 * @param input_index index of the input in hardware
1788 * @param semantic_name TGSI_SEMANTIC_*
1789 * @param semantic_index semantic index
1790 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1791 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1792 * @param interp_param interpolation weights (i,j)
1793 * @param prim_mask SI_PARAM_PRIM_MASK
1794 * @param face SI_PARAM_FRONT_FACE
1795 * @param result the return value (4 components)
1796 */
1797 static void interp_fs_input(struct si_shader_context *ctx,
1798 unsigned input_index,
1799 unsigned semantic_name,
1800 unsigned semantic_index,
1801 unsigned num_interp_inputs,
1802 unsigned colors_read_mask,
1803 LLVMValueRef interp_param,
1804 LLVMValueRef prim_mask,
1805 LLVMValueRef face,
1806 LLVMValueRef result[4])
1807 {
1808 LLVMValueRef i = NULL, j = NULL;
1809 unsigned chan;
1810
1811 /* fs.constant returns the param from the middle vertex, so it's not
1812 * really useful for flat shading. It's meant to be used for custom
1813 * interpolation (but the intrinsic can't fetch from the other two
1814 * vertices).
1815 *
1816 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1817 * to do the right thing. The only reason we use fs.constant is that
1818 * fs.interp cannot be used on integers, because they can be equal
1819 * to NaN.
1820 *
1821 * When interp is false we will use fs.constant or for newer llvm,
1822 * amdgcn.interp.mov.
1823 */
1824 bool interp = interp_param != NULL;
1825
1826 if (interp) {
1827 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1828 LLVMVectorType(ctx->f32, 2), "");
1829
1830 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1831 ctx->i32_0, "");
1832 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1833 ctx->i32_1, "");
1834 }
1835
1836 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1837 ctx->shader->key.part.ps.prolog.color_two_side) {
1838 LLVMValueRef is_face_positive;
1839
1840 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1841 * otherwise it's at offset "num_inputs".
1842 */
1843 unsigned back_attr_offset = num_interp_inputs;
1844 if (semantic_index == 1 && colors_read_mask & 0xf)
1845 back_attr_offset += 1;
1846
1847 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1848 face, ctx->i32_0, "");
1849
1850 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1851 LLVMValueRef front, back;
1852
1853 front = si_build_fs_interp(ctx,
1854 input_index, chan,
1855 prim_mask, i, j);
1856 back = si_build_fs_interp(ctx,
1857 back_attr_offset, chan,
1858 prim_mask, i, j);
1859
1860 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1861 is_face_positive,
1862 front,
1863 back,
1864 "");
1865 }
1866 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1867 result[0] = si_build_fs_interp(ctx, input_index,
1868 0, prim_mask, i, j);
1869 result[1] =
1870 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1871 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1872 } else {
1873 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1874 result[chan] = si_build_fs_interp(ctx,
1875 input_index, chan,
1876 prim_mask, i, j);
1877 }
1878 }
1879 }
1880
1881 void si_llvm_load_input_fs(
1882 struct si_shader_context *ctx,
1883 unsigned input_index,
1884 LLVMValueRef out[4])
1885 {
1886 struct si_shader *shader = ctx->shader;
1887 struct tgsi_shader_info *info = &shader->selector->info;
1888 LLVMValueRef main_fn = ctx->main_fn;
1889 LLVMValueRef interp_param = NULL;
1890 int interp_param_idx;
1891 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1892 unsigned semantic_index = info->input_semantic_index[input_index];
1893 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1894 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1895
1896 /* Get colors from input VGPRs (set by the prolog). */
1897 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1898 unsigned colors_read = shader->selector->info.colors_read;
1899 unsigned mask = colors_read >> (semantic_index * 4);
1900 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1901 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1902 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1903
1904 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1905 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1906 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1907 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1908 return;
1909 }
1910
1911 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1912 if (interp_param_idx == -1)
1913 return;
1914 else if (interp_param_idx) {
1915 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1916 }
1917
1918 interp_fs_input(ctx, input_index, semantic_name,
1919 semantic_index, 0, /* this param is unused */
1920 shader->selector->info.colors_read, interp_param,
1921 ctx->abi.prim_mask,
1922 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1923 &out[0]);
1924 }
1925
1926 static void declare_input_fs(
1927 struct si_shader_context *ctx,
1928 unsigned input_index,
1929 const struct tgsi_full_declaration *decl,
1930 LLVMValueRef out[4])
1931 {
1932 si_llvm_load_input_fs(ctx, input_index, out);
1933 }
1934
1935 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1936 {
1937 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1938 }
1939
1940 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1941 {
1942 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1943
1944 /* For non-indexed draws, the base vertex set by the driver
1945 * (for direct draws) or the CP (for indirect draws) is the
1946 * first vertex ID, but GLSL expects 0 to be returned.
1947 */
1948 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1949 ctx->param_vs_state_bits);
1950 LLVMValueRef indexed;
1951
1952 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1953 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1954
1955 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1956 ctx->i32_0, "");
1957 }
1958
1959 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1960 {
1961 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1962
1963 LLVMValueRef values[3];
1964 LLVMValueRef result;
1965 unsigned i;
1966 unsigned *properties = ctx->shader->selector->info.properties;
1967
1968 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1969 unsigned sizes[3] = {
1970 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1971 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1972 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1973 };
1974
1975 for (i = 0; i < 3; ++i)
1976 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1977
1978 result = ac_build_gather_values(&ctx->ac, values, 3);
1979 } else {
1980 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1981 }
1982
1983 return result;
1984 }
1985
1986 /**
1987 * Load a dword from a constant buffer.
1988 */
1989 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1990 LLVMValueRef resource,
1991 LLVMValueRef offset)
1992 {
1993 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1994 0, 0, 0, true, true);
1995 }
1996
1997 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1998 {
1999 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2000 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2001 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
2002 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
2003
2004 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
2005 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
2006 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
2007
2008 LLVMValueRef pos[4] = {
2009 buffer_load_const(ctx, resource, offset0),
2010 buffer_load_const(ctx, resource, offset1),
2011 LLVMConstReal(ctx->f32, 0),
2012 LLVMConstReal(ctx->f32, 0)
2013 };
2014
2015 return ac_build_gather_values(&ctx->ac, pos, 4);
2016 }
2017
2018 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
2019 {
2020 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2021 return ac_to_integer(&ctx->ac, abi->sample_coverage);
2022 }
2023
2024 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
2025 {
2026 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2027 LLVMValueRef coord[4] = {
2028 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
2029 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
2030 ctx->ac.f32_0,
2031 ctx->ac.f32_0
2032 };
2033
2034 /* For triangles, the vector should be (u, v, 1-u-v). */
2035 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
2036 PIPE_PRIM_TRIANGLES) {
2037 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
2038 LLVMBuildFAdd(ctx->ac.builder,
2039 coord[0], coord[1], ""), "");
2040 }
2041 return ac_build_gather_values(&ctx->ac, coord, 4);
2042 }
2043
2044 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
2045 unsigned semantic_name)
2046 {
2047 LLVMValueRef base, addr;
2048
2049 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
2050
2051 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
2052 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
2053 LLVMConstInt(ctx->i32, param, 0));
2054
2055 return buffer_load(&ctx->bld_base, ctx->f32,
2056 ~0, ctx->tess_offchip_ring, base, addr, true);
2057
2058 }
2059
2060 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
2061 unsigned varying_id)
2062 {
2063 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2064 unsigned semantic_name;
2065
2066 switch (varying_id) {
2067 case VARYING_SLOT_TESS_LEVEL_INNER:
2068 semantic_name = TGSI_SEMANTIC_TESSINNER;
2069 break;
2070 case VARYING_SLOT_TESS_LEVEL_OUTER:
2071 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2072 break;
2073 default:
2074 unreachable("unknown tess level");
2075 }
2076
2077 return load_tess_level(ctx, semantic_name);
2078
2079 }
2080
2081 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2082 {
2083 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2084 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2085 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2086 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2087 return get_num_tcs_out_vertices(ctx);
2088 else
2089 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2090 }
2091
2092 void si_load_system_value(struct si_shader_context *ctx,
2093 unsigned index,
2094 const struct tgsi_full_declaration *decl)
2095 {
2096 LLVMValueRef value = 0;
2097
2098 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2099
2100 switch (decl->Semantic.Name) {
2101 case TGSI_SEMANTIC_INSTANCEID:
2102 value = ctx->abi.instance_id;
2103 break;
2104
2105 case TGSI_SEMANTIC_VERTEXID:
2106 value = LLVMBuildAdd(ctx->ac.builder,
2107 ctx->abi.vertex_id,
2108 ctx->abi.base_vertex, "");
2109 break;
2110
2111 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2112 /* Unused. Clarify the meaning in indexed vs. non-indexed
2113 * draws if this is ever used again. */
2114 assert(false);
2115 break;
2116
2117 case TGSI_SEMANTIC_BASEVERTEX:
2118 value = get_base_vertex(&ctx->abi);
2119 break;
2120
2121 case TGSI_SEMANTIC_BASEINSTANCE:
2122 value = ctx->abi.start_instance;
2123 break;
2124
2125 case TGSI_SEMANTIC_DRAWID:
2126 value = ctx->abi.draw_id;
2127 break;
2128
2129 case TGSI_SEMANTIC_INVOCATIONID:
2130 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2131 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2132 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2133 value = ctx->abi.gs_invocation_id;
2134 else
2135 assert(!"INVOCATIONID not implemented");
2136 break;
2137
2138 case TGSI_SEMANTIC_POSITION:
2139 {
2140 LLVMValueRef pos[4] = {
2141 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2142 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2143 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2144 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2145 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2146 };
2147 value = ac_build_gather_values(&ctx->ac, pos, 4);
2148 break;
2149 }
2150
2151 case TGSI_SEMANTIC_FACE:
2152 value = ctx->abi.front_face;
2153 break;
2154
2155 case TGSI_SEMANTIC_SAMPLEID:
2156 value = si_get_sample_id(ctx);
2157 break;
2158
2159 case TGSI_SEMANTIC_SAMPLEPOS: {
2160 LLVMValueRef pos[4] = {
2161 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2162 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2163 LLVMConstReal(ctx->f32, 0),
2164 LLVMConstReal(ctx->f32, 0)
2165 };
2166 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2167 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2168 value = ac_build_gather_values(&ctx->ac, pos, 4);
2169 break;
2170 }
2171
2172 case TGSI_SEMANTIC_SAMPLEMASK:
2173 /* This can only occur with the OpenGL Core profile, which
2174 * doesn't support smoothing.
2175 */
2176 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2177 break;
2178
2179 case TGSI_SEMANTIC_TESSCOORD:
2180 value = si_load_tess_coord(&ctx->abi);
2181 break;
2182
2183 case TGSI_SEMANTIC_VERTICESIN:
2184 value = si_load_patch_vertices_in(&ctx->abi);
2185 break;
2186
2187 case TGSI_SEMANTIC_TESSINNER:
2188 case TGSI_SEMANTIC_TESSOUTER:
2189 value = load_tess_level(ctx, decl->Semantic.Name);
2190 break;
2191
2192 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2193 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2194 {
2195 LLVMValueRef buf, slot, val[4];
2196 int i, offset;
2197
2198 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2199 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2200 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2201 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2202
2203 for (i = 0; i < 4; i++)
2204 val[i] = buffer_load_const(ctx, buf,
2205 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2206 value = ac_build_gather_values(&ctx->ac, val, 4);
2207 break;
2208 }
2209
2210 case TGSI_SEMANTIC_PRIMID:
2211 value = get_primitive_id(ctx, 0);
2212 break;
2213
2214 case TGSI_SEMANTIC_GRID_SIZE:
2215 value = ctx->abi.num_work_groups;
2216 break;
2217
2218 case TGSI_SEMANTIC_BLOCK_SIZE:
2219 value = get_block_size(&ctx->abi);
2220 break;
2221
2222 case TGSI_SEMANTIC_BLOCK_ID:
2223 {
2224 LLVMValueRef values[3];
2225
2226 for (int i = 0; i < 3; i++) {
2227 values[i] = ctx->i32_0;
2228 if (ctx->abi.workgroup_ids[i]) {
2229 values[i] = ctx->abi.workgroup_ids[i];
2230 }
2231 }
2232 value = ac_build_gather_values(&ctx->ac, values, 3);
2233 break;
2234 }
2235
2236 case TGSI_SEMANTIC_THREAD_ID:
2237 value = ctx->abi.local_invocation_ids;
2238 break;
2239
2240 case TGSI_SEMANTIC_HELPER_INVOCATION:
2241 value = ac_build_intrinsic(&ctx->ac,
2242 "llvm.amdgcn.ps.live",
2243 ctx->i1, NULL, 0,
2244 AC_FUNC_ATTR_READNONE);
2245 value = LLVMBuildNot(ctx->ac.builder, value, "");
2246 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2247 break;
2248
2249 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2250 value = LLVMConstInt(ctx->i32, 64, 0);
2251 break;
2252
2253 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2254 value = ac_get_thread_id(&ctx->ac);
2255 break;
2256
2257 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2258 {
2259 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2260 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2261 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2262 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2263 break;
2264 }
2265
2266 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2267 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2268 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2269 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2270 {
2271 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2272 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2273 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2274 /* All bits set except LSB */
2275 value = LLVMConstInt(ctx->i64, -2, 0);
2276 } else {
2277 /* All bits set */
2278 value = LLVMConstInt(ctx->i64, -1, 0);
2279 }
2280 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2281 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2282 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2283 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2284 value = LLVMBuildNot(ctx->ac.builder, value, "");
2285 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2286 break;
2287 }
2288
2289 default:
2290 assert(!"unknown system value");
2291 return;
2292 }
2293
2294 ctx->system_values[index] = value;
2295 }
2296
2297 void si_declare_compute_memory(struct si_shader_context *ctx)
2298 {
2299 struct si_shader_selector *sel = ctx->shader->selector;
2300
2301 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_LOCAL_ADDR_SPACE);
2302 LLVMValueRef var;
2303
2304 assert(!ctx->ac.lds);
2305
2306 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2307 LLVMArrayType(ctx->i8, sel->local_size),
2308 "compute_lds",
2309 AC_LOCAL_ADDR_SPACE);
2310 LLVMSetAlignment(var, 4);
2311
2312 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2313 }
2314
2315 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2316 const struct tgsi_full_declaration *decl)
2317 {
2318 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2319 assert(decl->Range.First == decl->Range.Last);
2320
2321 si_declare_compute_memory(ctx);
2322 }
2323
2324 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2325 {
2326 LLVMValueRef ptr =
2327 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2328 struct si_shader_selector *sel = ctx->shader->selector;
2329
2330 /* Do the bounds checking with a descriptor, because
2331 * doing computation and manual bounds checking of 64-bit
2332 * addresses generates horrible VALU code with very high
2333 * VGPR usage and very low SIMD occupancy.
2334 */
2335 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2336
2337 LLVMValueRef desc0, desc1;
2338 if (HAVE_32BIT_POINTERS) {
2339 desc0 = ptr;
2340 desc1 = LLVMConstInt(ctx->i32,
2341 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2342 } else {
2343 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2344 desc0 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, "");
2345 desc1 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, "");
2346 /* Mask out all bits except BASE_ADDRESS_HI. */
2347 desc1 = LLVMBuildAnd(ctx->ac.builder, desc1,
2348 LLVMConstInt(ctx->i32, ~C_008F04_BASE_ADDRESS_HI, 0), "");
2349 }
2350
2351 LLVMValueRef desc_elems[] = {
2352 desc0,
2353 desc1,
2354 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2355 LLVMConstInt(ctx->i32,
2356 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2357 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2358 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2359 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2360 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2361 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2362 };
2363
2364 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2365 }
2366
2367 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2368 {
2369 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2370 ctx->param_const_and_shader_buffers);
2371
2372 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2373 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2374 }
2375
2376 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2377 {
2378 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2379 struct si_shader_selector *sel = ctx->shader->selector;
2380
2381 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2382
2383 if (sel->info.const_buffers_declared == 1 &&
2384 sel->info.shader_buffers_declared == 0) {
2385 return load_const_buffer_desc_fast_path(ctx);
2386 }
2387
2388 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2389 index = LLVMBuildAdd(ctx->ac.builder, index,
2390 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2391
2392 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2393 }
2394
2395 static LLVMValueRef
2396 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2397 {
2398 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2399 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2400 ctx->param_const_and_shader_buffers);
2401
2402 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2403 index = LLVMBuildSub(ctx->ac.builder,
2404 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2405 index, "");
2406
2407 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2408 }
2409
2410 static LLVMValueRef fetch_constant(
2411 struct lp_build_tgsi_context *bld_base,
2412 const struct tgsi_full_src_register *reg,
2413 enum tgsi_opcode_type type,
2414 unsigned swizzle)
2415 {
2416 struct si_shader_context *ctx = si_shader_context(bld_base);
2417 struct si_shader_selector *sel = ctx->shader->selector;
2418 const struct tgsi_ind_register *ireg = &reg->Indirect;
2419 unsigned buf, idx;
2420
2421 LLVMValueRef addr, bufp;
2422
2423 if (swizzle == LP_CHAN_ALL) {
2424 unsigned chan;
2425 LLVMValueRef values[4];
2426 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2427 values[chan] = fetch_constant(bld_base, reg, type, chan);
2428
2429 return ac_build_gather_values(&ctx->ac, values, 4);
2430 }
2431
2432 /* Split 64-bit loads. */
2433 if (tgsi_type_is_64bit(type)) {
2434 LLVMValueRef lo, hi;
2435
2436 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2437 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2438 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2439 lo, hi);
2440 }
2441
2442 idx = reg->Register.Index * 4 + swizzle;
2443 if (reg->Register.Indirect) {
2444 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2445 } else {
2446 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2447 }
2448
2449 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2450 if (sel->info.const_buffers_declared == 1 &&
2451 sel->info.shader_buffers_declared == 0) {
2452
2453 /* This enables use of s_load_dword and flat_load_dword for const buffer 0
2454 * loads, and up to x4 load opcode merging. However, it leads to horrible
2455 * code reducing SIMD wave occupancy from 8 to 2 in many cases.
2456 *
2457 * Using s_buffer_load_dword (x1) seems to be the best option right now.
2458 *
2459 * LLVM 5.0 on SI doesn't insert a required s_nop between SALU setting
2460 * a descriptor and s_buffer_load_dword using it, so we can't expand
2461 * the pointer into a full descriptor like below. We have to use
2462 * s_load_dword instead. The only case when LLVM 5.0 would select
2463 * s_buffer_load_dword (that we have to prevent) is when we use use
2464 * a literal offset where we don't need bounds checking.
2465 */
2466 if (ctx->screen->info.chip_class == SI && HAVE_LLVM < 0x0600 &&
2467 !reg->Register.Indirect) {
2468 LLVMValueRef ptr =
2469 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2470
2471 addr = LLVMBuildLShr(ctx->ac.builder, addr, LLVMConstInt(ctx->i32, 2, 0), "");
2472 LLVMValueRef result = ac_build_load_invariant(&ctx->ac, ptr, addr);
2473 return bitcast(bld_base, type, result);
2474 }
2475
2476 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2477 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2478 return bitcast(bld_base, type, result);
2479 }
2480
2481 assert(reg->Register.Dimension);
2482 buf = reg->Dimension.Index;
2483
2484 if (reg->Dimension.Indirect) {
2485 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2486 LLVMValueRef index;
2487 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2488 reg->Dimension.Index,
2489 ctx->num_const_buffers);
2490 index = LLVMBuildAdd(ctx->ac.builder, index,
2491 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2492 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2493 } else
2494 bufp = load_const_buffer_desc(ctx, buf);
2495
2496 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2497 }
2498
2499 /* Initialize arguments for the shader export intrinsic */
2500 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2501 LLVMValueRef *values,
2502 unsigned target,
2503 struct ac_export_args *args)
2504 {
2505 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2506 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2507 unsigned chan;
2508 bool is_int8, is_int10;
2509
2510 /* Default is 0xf. Adjusted below depending on the format. */
2511 args->enabled_channels = 0xf; /* writemask */
2512
2513 /* Specify whether the EXEC mask represents the valid mask */
2514 args->valid_mask = 0;
2515
2516 /* Specify whether this is the last export */
2517 args->done = 0;
2518
2519 /* Specify the target we are exporting */
2520 args->target = target;
2521
2522 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2523 const struct si_shader_key *key = &ctx->shader->key;
2524 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2525 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2526
2527 assert(cbuf >= 0 && cbuf < 8);
2528 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2529 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2530 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2531 }
2532
2533 args->compr = false;
2534 args->out[0] = f32undef;
2535 args->out[1] = f32undef;
2536 args->out[2] = f32undef;
2537 args->out[3] = f32undef;
2538
2539 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2540 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2541 unsigned bits, bool hi) = NULL;
2542
2543 switch (spi_shader_col_format) {
2544 case V_028714_SPI_SHADER_ZERO:
2545 args->enabled_channels = 0; /* writemask */
2546 args->target = V_008DFC_SQ_EXP_NULL;
2547 break;
2548
2549 case V_028714_SPI_SHADER_32_R:
2550 args->enabled_channels = 1; /* writemask */
2551 args->out[0] = values[0];
2552 break;
2553
2554 case V_028714_SPI_SHADER_32_GR:
2555 args->enabled_channels = 0x3; /* writemask */
2556 args->out[0] = values[0];
2557 args->out[1] = values[1];
2558 break;
2559
2560 case V_028714_SPI_SHADER_32_AR:
2561 args->enabled_channels = 0x9; /* writemask */
2562 args->out[0] = values[0];
2563 args->out[3] = values[3];
2564 break;
2565
2566 case V_028714_SPI_SHADER_FP16_ABGR:
2567 packf = ac_build_cvt_pkrtz_f16;
2568 break;
2569
2570 case V_028714_SPI_SHADER_UNORM16_ABGR:
2571 packf = ac_build_cvt_pknorm_u16;
2572 break;
2573
2574 case V_028714_SPI_SHADER_SNORM16_ABGR:
2575 packf = ac_build_cvt_pknorm_i16;
2576 break;
2577
2578 case V_028714_SPI_SHADER_UINT16_ABGR:
2579 packi = ac_build_cvt_pk_u16;
2580 break;
2581
2582 case V_028714_SPI_SHADER_SINT16_ABGR:
2583 packi = ac_build_cvt_pk_i16;
2584 break;
2585
2586 case V_028714_SPI_SHADER_32_ABGR:
2587 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2588 break;
2589 }
2590
2591 /* Pack f16 or norm_i16/u16. */
2592 if (packf) {
2593 for (chan = 0; chan < 2; chan++) {
2594 LLVMValueRef pack_args[2] = {
2595 values[2 * chan],
2596 values[2 * chan + 1]
2597 };
2598 LLVMValueRef packed;
2599
2600 packed = packf(&ctx->ac, pack_args);
2601 args->out[chan] = ac_to_float(&ctx->ac, packed);
2602 }
2603 args->compr = 1; /* COMPR flag */
2604 }
2605 /* Pack i16/u16. */
2606 if (packi) {
2607 for (chan = 0; chan < 2; chan++) {
2608 LLVMValueRef pack_args[2] = {
2609 ac_to_integer(&ctx->ac, values[2 * chan]),
2610 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2611 };
2612 LLVMValueRef packed;
2613
2614 packed = packi(&ctx->ac, pack_args,
2615 is_int8 ? 8 : is_int10 ? 10 : 16,
2616 chan == 1);
2617 args->out[chan] = ac_to_float(&ctx->ac, packed);
2618 }
2619 args->compr = 1; /* COMPR flag */
2620 }
2621 }
2622
2623 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2624 LLVMValueRef alpha)
2625 {
2626 struct si_shader_context *ctx = si_shader_context(bld_base);
2627
2628 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2629 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2630 [PIPE_FUNC_LESS] = LLVMRealOLT,
2631 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2632 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2633 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2634 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2635 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2636 };
2637 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2638 assert(cond);
2639
2640 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2641 SI_PARAM_ALPHA_REF);
2642 LLVMValueRef alpha_pass =
2643 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2644 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2645 } else {
2646 ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2647 }
2648 }
2649
2650 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2651 LLVMValueRef alpha,
2652 unsigned samplemask_param)
2653 {
2654 struct si_shader_context *ctx = si_shader_context(bld_base);
2655 LLVMValueRef coverage;
2656
2657 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2658 coverage = LLVMGetParam(ctx->main_fn,
2659 samplemask_param);
2660 coverage = ac_to_integer(&ctx->ac, coverage);
2661
2662 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2663 ctx->i32,
2664 &coverage, 1, AC_FUNC_ATTR_READNONE);
2665
2666 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2667 ctx->f32, "");
2668
2669 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2670 LLVMConstReal(ctx->f32,
2671 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2672
2673 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2674 }
2675
2676 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2677 struct ac_export_args *pos, LLVMValueRef *out_elts)
2678 {
2679 unsigned reg_index;
2680 unsigned chan;
2681 unsigned const_chan;
2682 LLVMValueRef base_elt;
2683 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2684 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2685 SI_VS_CONST_CLIP_PLANES, 0);
2686 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2687
2688 for (reg_index = 0; reg_index < 2; reg_index ++) {
2689 struct ac_export_args *args = &pos[2 + reg_index];
2690
2691 args->out[0] =
2692 args->out[1] =
2693 args->out[2] =
2694 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2695
2696 /* Compute dot products of position and user clip plane vectors */
2697 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2698 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2699 LLVMValueRef addr =
2700 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2701 const_chan) * 4, 0);
2702 base_elt = buffer_load_const(ctx, const_resource,
2703 addr);
2704 args->out[chan] =
2705 LLVMBuildFAdd(ctx->ac.builder, args->out[chan],
2706 LLVMBuildFMul(ctx->ac.builder, base_elt,
2707 out_elts[const_chan], ""), "");
2708 }
2709 }
2710
2711 args->enabled_channels = 0xf;
2712 args->valid_mask = 0;
2713 args->done = 0;
2714 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2715 args->compr = 0;
2716 }
2717 }
2718
2719 static void si_dump_streamout(struct pipe_stream_output_info *so)
2720 {
2721 unsigned i;
2722
2723 if (so->num_outputs)
2724 fprintf(stderr, "STREAMOUT\n");
2725
2726 for (i = 0; i < so->num_outputs; i++) {
2727 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2728 so->output[i].start_component;
2729 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2730 i, so->output[i].output_buffer,
2731 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2732 so->output[i].register_index,
2733 mask & 1 ? "x" : "",
2734 mask & 2 ? "y" : "",
2735 mask & 4 ? "z" : "",
2736 mask & 8 ? "w" : "");
2737 }
2738 }
2739
2740 static void emit_streamout_output(struct si_shader_context *ctx,
2741 LLVMValueRef const *so_buffers,
2742 LLVMValueRef const *so_write_offsets,
2743 struct pipe_stream_output *stream_out,
2744 struct si_shader_output_values *shader_out)
2745 {
2746 unsigned buf_idx = stream_out->output_buffer;
2747 unsigned start = stream_out->start_component;
2748 unsigned num_comps = stream_out->num_components;
2749 LLVMValueRef out[4];
2750
2751 assert(num_comps && num_comps <= 4);
2752 if (!num_comps || num_comps > 4)
2753 return;
2754
2755 /* Load the output as int. */
2756 for (int j = 0; j < num_comps; j++) {
2757 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2758
2759 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2760 }
2761
2762 /* Pack the output. */
2763 LLVMValueRef vdata = NULL;
2764
2765 switch (num_comps) {
2766 case 1: /* as i32 */
2767 vdata = out[0];
2768 break;
2769 case 2: /* as v2i32 */
2770 case 3: /* as v4i32 (aligned to 4) */
2771 case 4: /* as v4i32 */
2772 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2773 for (int j = 0; j < num_comps; j++) {
2774 vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2775 LLVMConstInt(ctx->i32, j, 0), "");
2776 }
2777 break;
2778 }
2779
2780 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2781 vdata, num_comps,
2782 so_write_offsets[buf_idx],
2783 ctx->i32_0,
2784 stream_out->dst_offset * 4, 1, 1, true, false);
2785 }
2786
2787 /**
2788 * Write streamout data to buffers for vertex stream @p stream (different
2789 * vertex streams can occur for GS copy shaders).
2790 */
2791 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2792 struct si_shader_output_values *outputs,
2793 unsigned noutput, unsigned stream)
2794 {
2795 struct si_shader_selector *sel = ctx->shader->selector;
2796 struct pipe_stream_output_info *so = &sel->so;
2797 LLVMBuilderRef builder = ctx->ac.builder;
2798 int i;
2799 struct lp_build_if_state if_ctx;
2800
2801 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2802 LLVMValueRef so_vtx_count =
2803 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2804
2805 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2806
2807 /* can_emit = tid < so_vtx_count; */
2808 LLVMValueRef can_emit =
2809 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2810
2811 /* Emit the streamout code conditionally. This actually avoids
2812 * out-of-bounds buffer access. The hw tells us via the SGPR
2813 * (so_vtx_count) which threads are allowed to emit streamout data. */
2814 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2815 {
2816 /* The buffer offset is computed as follows:
2817 * ByteOffset = streamout_offset[buffer_id]*4 +
2818 * (streamout_write_index + thread_id)*stride[buffer_id] +
2819 * attrib_offset
2820 */
2821
2822 LLVMValueRef so_write_index =
2823 LLVMGetParam(ctx->main_fn,
2824 ctx->param_streamout_write_index);
2825
2826 /* Compute (streamout_write_index + thread_id). */
2827 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2828
2829 /* Load the descriptor and compute the write offset for each
2830 * enabled buffer. */
2831 LLVMValueRef so_write_offset[4] = {};
2832 LLVMValueRef so_buffers[4];
2833 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2834 ctx->param_rw_buffers);
2835
2836 for (i = 0; i < 4; i++) {
2837 if (!so->stride[i])
2838 continue;
2839
2840 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2841 SI_VS_STREAMOUT_BUF0 + i, 0);
2842
2843 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2844
2845 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2846 ctx->param_streamout_offset[i]);
2847 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2848
2849 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2850 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2851 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2852 }
2853
2854 /* Write streamout data. */
2855 for (i = 0; i < so->num_outputs; i++) {
2856 unsigned reg = so->output[i].register_index;
2857
2858 if (reg >= noutput)
2859 continue;
2860
2861 if (stream != so->output[i].stream)
2862 continue;
2863
2864 emit_streamout_output(ctx, so_buffers, so_write_offset,
2865 &so->output[i], &outputs[reg]);
2866 }
2867 }
2868 lp_build_endif(&if_ctx);
2869 }
2870
2871 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2872 LLVMValueRef *values)
2873 {
2874 struct ac_export_args args;
2875
2876 si_llvm_init_export_args(ctx, values,
2877 V_008DFC_SQ_EXP_PARAM + index, &args);
2878 ac_build_export(&ctx->ac, &args);
2879 }
2880
2881 static void si_build_param_exports(struct si_shader_context *ctx,
2882 struct si_shader_output_values *outputs,
2883 unsigned noutput)
2884 {
2885 struct si_shader *shader = ctx->shader;
2886 unsigned param_count = 0;
2887
2888 for (unsigned i = 0; i < noutput; i++) {
2889 unsigned semantic_name = outputs[i].semantic_name;
2890 unsigned semantic_index = outputs[i].semantic_index;
2891
2892 if (outputs[i].vertex_stream[0] != 0 &&
2893 outputs[i].vertex_stream[1] != 0 &&
2894 outputs[i].vertex_stream[2] != 0 &&
2895 outputs[i].vertex_stream[3] != 0)
2896 continue;
2897
2898 switch (semantic_name) {
2899 case TGSI_SEMANTIC_LAYER:
2900 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2901 case TGSI_SEMANTIC_CLIPDIST:
2902 case TGSI_SEMANTIC_COLOR:
2903 case TGSI_SEMANTIC_BCOLOR:
2904 case TGSI_SEMANTIC_PRIMID:
2905 case TGSI_SEMANTIC_FOG:
2906 case TGSI_SEMANTIC_TEXCOORD:
2907 case TGSI_SEMANTIC_GENERIC:
2908 break;
2909 default:
2910 continue;
2911 }
2912
2913 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2914 semantic_index < SI_MAX_IO_GENERIC) &&
2915 shader->key.opt.kill_outputs &
2916 (1ull << si_shader_io_get_unique_index(semantic_name,
2917 semantic_index, true)))
2918 continue;
2919
2920 si_export_param(ctx, param_count, outputs[i].values);
2921
2922 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2923 shader->info.vs_output_param_offset[i] = param_count++;
2924 }
2925
2926 shader->info.nr_param_exports = param_count;
2927 }
2928
2929 /* Generate export instructions for hardware VS shader stage */
2930 static void si_llvm_export_vs(struct si_shader_context *ctx,
2931 struct si_shader_output_values *outputs,
2932 unsigned noutput)
2933 {
2934 struct si_shader *shader = ctx->shader;
2935 struct ac_export_args pos_args[4] = {};
2936 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2937 unsigned pos_idx;
2938 int i;
2939
2940 /* Build position exports. */
2941 for (i = 0; i < noutput; i++) {
2942 switch (outputs[i].semantic_name) {
2943 case TGSI_SEMANTIC_POSITION:
2944 si_llvm_init_export_args(ctx, outputs[i].values,
2945 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2946 break;
2947 case TGSI_SEMANTIC_PSIZE:
2948 psize_value = outputs[i].values[0];
2949 break;
2950 case TGSI_SEMANTIC_LAYER:
2951 layer_value = outputs[i].values[0];
2952 break;
2953 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2954 viewport_index_value = outputs[i].values[0];
2955 break;
2956 case TGSI_SEMANTIC_EDGEFLAG:
2957 edgeflag_value = outputs[i].values[0];
2958 break;
2959 case TGSI_SEMANTIC_CLIPDIST:
2960 if (!shader->key.opt.clip_disable) {
2961 unsigned index = 2 + outputs[i].semantic_index;
2962 si_llvm_init_export_args(ctx, outputs[i].values,
2963 V_008DFC_SQ_EXP_POS + index,
2964 &pos_args[index]);
2965 }
2966 break;
2967 case TGSI_SEMANTIC_CLIPVERTEX:
2968 if (!shader->key.opt.clip_disable) {
2969 si_llvm_emit_clipvertex(ctx, pos_args,
2970 outputs[i].values);
2971 }
2972 break;
2973 }
2974 }
2975
2976 /* We need to add the position output manually if it's missing. */
2977 if (!pos_args[0].out[0]) {
2978 pos_args[0].enabled_channels = 0xf; /* writemask */
2979 pos_args[0].valid_mask = 0; /* EXEC mask */
2980 pos_args[0].done = 0; /* last export? */
2981 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2982 pos_args[0].compr = 0; /* COMPR flag */
2983 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2984 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2985 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2986 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2987 }
2988
2989 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2990 if (shader->selector->info.writes_psize ||
2991 shader->selector->info.writes_edgeflag ||
2992 shader->selector->info.writes_viewport_index ||
2993 shader->selector->info.writes_layer) {
2994 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2995 (shader->selector->info.writes_edgeflag << 1) |
2996 (shader->selector->info.writes_layer << 2);
2997
2998 pos_args[1].valid_mask = 0; /* EXEC mask */
2999 pos_args[1].done = 0; /* last export? */
3000 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
3001 pos_args[1].compr = 0; /* COMPR flag */
3002 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
3003 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
3004 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
3005 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
3006
3007 if (shader->selector->info.writes_psize)
3008 pos_args[1].out[0] = psize_value;
3009
3010 if (shader->selector->info.writes_edgeflag) {
3011 /* The output is a float, but the hw expects an integer
3012 * with the first bit containing the edge flag. */
3013 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
3014 edgeflag_value,
3015 ctx->i32, "");
3016 edgeflag_value = ac_build_umin(&ctx->ac,
3017 edgeflag_value,
3018 ctx->i32_1);
3019
3020 /* The LLVM intrinsic expects a float. */
3021 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
3022 }
3023
3024 if (ctx->screen->info.chip_class >= GFX9) {
3025 /* GFX9 has the layer in out.z[10:0] and the viewport
3026 * index in out.z[19:16].
3027 */
3028 if (shader->selector->info.writes_layer)
3029 pos_args[1].out[2] = layer_value;
3030
3031 if (shader->selector->info.writes_viewport_index) {
3032 LLVMValueRef v = viewport_index_value;
3033
3034 v = ac_to_integer(&ctx->ac, v);
3035 v = LLVMBuildShl(ctx->ac.builder, v,
3036 LLVMConstInt(ctx->i32, 16, 0), "");
3037 v = LLVMBuildOr(ctx->ac.builder, v,
3038 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3039 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3040 pos_args[1].enabled_channels |= 1 << 2;
3041 }
3042 } else {
3043 if (shader->selector->info.writes_layer)
3044 pos_args[1].out[2] = layer_value;
3045
3046 if (shader->selector->info.writes_viewport_index) {
3047 pos_args[1].out[3] = viewport_index_value;
3048 pos_args[1].enabled_channels |= 1 << 3;
3049 }
3050 }
3051 }
3052
3053 for (i = 0; i < 4; i++)
3054 if (pos_args[i].out[0])
3055 shader->info.nr_pos_exports++;
3056
3057 pos_idx = 0;
3058 for (i = 0; i < 4; i++) {
3059 if (!pos_args[i].out[0])
3060 continue;
3061
3062 /* Specify the target we are exporting */
3063 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3064
3065 if (pos_idx == shader->info.nr_pos_exports)
3066 /* Specify that this is the last export */
3067 pos_args[i].done = 1;
3068
3069 ac_build_export(&ctx->ac, &pos_args[i]);
3070 }
3071
3072 /* Build parameter exports. */
3073 si_build_param_exports(ctx, outputs, noutput);
3074 }
3075
3076 /**
3077 * Forward all outputs from the vertex shader to the TES. This is only used
3078 * for the fixed function TCS.
3079 */
3080 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3081 {
3082 struct si_shader_context *ctx = si_shader_context(bld_base);
3083 LLVMValueRef invocation_id, buffer, buffer_offset;
3084 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3085 uint64_t inputs;
3086
3087 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3088 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3089 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3090
3091 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3092 lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3093 lds_vertex_stride, "");
3094 lds_base = get_tcs_in_current_patch_offset(ctx);
3095 lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3096
3097 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3098 while (inputs) {
3099 unsigned i = u_bit_scan64(&inputs);
3100
3101 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3102 LLVMConstInt(ctx->i32, 4 * i, 0),
3103 "");
3104
3105 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3106 get_rel_patch_id(ctx),
3107 invocation_id,
3108 LLVMConstInt(ctx->i32, i, 0));
3109
3110 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3111 lds_ptr);
3112
3113 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3114 buffer_offset, 0, 1, 0, true, false);
3115 }
3116 }
3117
3118 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3119 LLVMValueRef rel_patch_id,
3120 LLVMValueRef invocation_id,
3121 LLVMValueRef tcs_out_current_patch_data_offset,
3122 LLVMValueRef invoc0_tf_outer[4],
3123 LLVMValueRef invoc0_tf_inner[2])
3124 {
3125 struct si_shader_context *ctx = si_shader_context(bld_base);
3126 struct si_shader *shader = ctx->shader;
3127 unsigned tess_inner_index, tess_outer_index;
3128 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3129 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3130 unsigned stride, outer_comps, inner_comps, i, offset;
3131 struct lp_build_if_state if_ctx, inner_if_ctx;
3132
3133 /* Add a barrier before loading tess factors from LDS. */
3134 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3135 si_llvm_emit_barrier(NULL, bld_base, NULL);
3136
3137 /* Do this only for invocation 0, because the tess levels are per-patch,
3138 * not per-vertex.
3139 *
3140 * This can't jump, because invocation 0 executes this. It should
3141 * at least mask out the loads and stores for other invocations.
3142 */
3143 lp_build_if(&if_ctx, &ctx->gallivm,
3144 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3145 invocation_id, ctx->i32_0, ""));
3146
3147 /* Determine the layout of one tess factor element in the buffer. */
3148 switch (shader->key.part.tcs.epilog.prim_mode) {
3149 case PIPE_PRIM_LINES:
3150 stride = 2; /* 2 dwords, 1 vec2 store */
3151 outer_comps = 2;
3152 inner_comps = 0;
3153 break;
3154 case PIPE_PRIM_TRIANGLES:
3155 stride = 4; /* 4 dwords, 1 vec4 store */
3156 outer_comps = 3;
3157 inner_comps = 1;
3158 break;
3159 case PIPE_PRIM_QUADS:
3160 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3161 outer_comps = 4;
3162 inner_comps = 2;
3163 break;
3164 default:
3165 assert(0);
3166 return;
3167 }
3168
3169 for (i = 0; i < 4; i++) {
3170 inner[i] = LLVMGetUndef(ctx->i32);
3171 outer[i] = LLVMGetUndef(ctx->i32);
3172 }
3173
3174 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3175 /* Tess factors are in VGPRs. */
3176 for (i = 0; i < outer_comps; i++)
3177 outer[i] = out[i] = invoc0_tf_outer[i];
3178 for (i = 0; i < inner_comps; i++)
3179 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3180 } else {
3181 /* Load tess_inner and tess_outer from LDS.
3182 * Any invocation can write them, so we can't get them from a temporary.
3183 */
3184 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3185 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3186
3187 lds_base = tcs_out_current_patch_data_offset;
3188 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3189 LLVMConstInt(ctx->i32,
3190 tess_inner_index * 4, 0), "");
3191 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3192 LLVMConstInt(ctx->i32,
3193 tess_outer_index * 4, 0), "");
3194
3195 for (i = 0; i < outer_comps; i++) {
3196 outer[i] = out[i] =
3197 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3198 }
3199 for (i = 0; i < inner_comps; i++) {
3200 inner[i] = out[outer_comps+i] =
3201 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3202 }
3203 }
3204
3205 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3206 /* For isolines, the hardware expects tess factors in the
3207 * reverse order from what GLSL / TGSI specify.
3208 */
3209 LLVMValueRef tmp = out[0];
3210 out[0] = out[1];
3211 out[1] = tmp;
3212 }
3213
3214 /* Convert the outputs to vectors for stores. */
3215 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3216 vec1 = NULL;
3217
3218 if (stride > 4)
3219 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3220
3221 /* Get the buffer. */
3222 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3223
3224 /* Get the offset. */
3225 tf_base = LLVMGetParam(ctx->main_fn,
3226 ctx->param_tcs_factor_offset);
3227 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3228 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3229
3230 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3231 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3232 rel_patch_id, ctx->i32_0, ""));
3233
3234 /* Store the dynamic HS control word. */
3235 offset = 0;
3236 if (ctx->screen->info.chip_class <= VI) {
3237 ac_build_buffer_store_dword(&ctx->ac, buffer,
3238 LLVMConstInt(ctx->i32, 0x80000000, 0),
3239 1, ctx->i32_0, tf_base,
3240 offset, 1, 0, true, false);
3241 offset += 4;
3242 }
3243
3244 lp_build_endif(&inner_if_ctx);
3245
3246 /* Store the tessellation factors. */
3247 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3248 MIN2(stride, 4), byteoffset, tf_base,
3249 offset, 1, 0, true, false);
3250 offset += 16;
3251 if (vec1)
3252 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3253 stride - 4, byteoffset, tf_base,
3254 offset, 1, 0, true, false);
3255
3256 /* Store the tess factors into the offchip buffer if TES reads them. */
3257 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3258 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3259 LLVMValueRef tf_inner_offset;
3260 unsigned param_outer, param_inner;
3261
3262 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3263 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3264
3265 param_outer = si_shader_io_get_unique_index_patch(
3266 TGSI_SEMANTIC_TESSOUTER, 0);
3267 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3268 LLVMConstInt(ctx->i32, param_outer, 0));
3269
3270 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3271 util_next_power_of_two(outer_comps));
3272
3273 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3274 outer_comps, tf_outer_offset,
3275 base, 0, 1, 0, true, false);
3276 if (inner_comps) {
3277 param_inner = si_shader_io_get_unique_index_patch(
3278 TGSI_SEMANTIC_TESSINNER, 0);
3279 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3280 LLVMConstInt(ctx->i32, param_inner, 0));
3281
3282 inner_vec = inner_comps == 1 ? inner[0] :
3283 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3284 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3285 inner_comps, tf_inner_offset,
3286 base, 0, 1, 0, true, false);
3287 }
3288 }
3289
3290 lp_build_endif(&if_ctx);
3291 }
3292
3293 static LLVMValueRef
3294 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3295 unsigned param, unsigned return_index)
3296 {
3297 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3298 LLVMGetParam(ctx->main_fn, param),
3299 return_index, "");
3300 }
3301
3302 static LLVMValueRef
3303 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3304 unsigned param, unsigned return_index)
3305 {
3306 LLVMBuilderRef builder = ctx->ac.builder;
3307 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3308
3309 return LLVMBuildInsertValue(builder, ret,
3310 ac_to_float(&ctx->ac, p),
3311 return_index, "");
3312 }
3313
3314 static LLVMValueRef
3315 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3316 unsigned param, unsigned return_index)
3317 {
3318 LLVMBuilderRef builder = ctx->ac.builder;
3319 LLVMValueRef ptr, lo, hi;
3320
3321 if (HAVE_32BIT_POINTERS) {
3322 ptr = LLVMGetParam(ctx->main_fn, param);
3323 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3324 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3325 }
3326
3327 ptr = LLVMGetParam(ctx->main_fn, param);
3328 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3329 ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3330 lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3331 hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3332 ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3333 return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3334 }
3335
3336 /* This only writes the tessellation factor levels. */
3337 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3338 unsigned max_outputs,
3339 LLVMValueRef *addrs)
3340 {
3341 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3342 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3343 LLVMBuilderRef builder = ctx->ac.builder;
3344 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3345
3346 si_copy_tcs_inputs(bld_base);
3347
3348 rel_patch_id = get_rel_patch_id(ctx);
3349 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3350 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3351
3352 if (ctx->screen->info.chip_class >= GFX9) {
3353 LLVMBasicBlockRef blocks[2] = {
3354 LLVMGetInsertBlock(builder),
3355 ctx->merged_wrap_if_state.entry_block
3356 };
3357 LLVMValueRef values[2];
3358
3359 lp_build_endif(&ctx->merged_wrap_if_state);
3360
3361 values[0] = rel_patch_id;
3362 values[1] = LLVMGetUndef(ctx->i32);
3363 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3364
3365 values[0] = tf_lds_offset;
3366 values[1] = LLVMGetUndef(ctx->i32);
3367 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3368
3369 values[0] = invocation_id;
3370 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3371 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3372 }
3373
3374 /* Return epilog parameters from this function. */
3375 LLVMValueRef ret = ctx->return_value;
3376 unsigned vgpr;
3377
3378 if (ctx->screen->info.chip_class >= GFX9) {
3379 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3380 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3381 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3382 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3383 /* Tess offchip and tess factor offsets are at the beginning. */
3384 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3385 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3386 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3387 } else {
3388 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3389 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3390 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3391 GFX6_SGPR_TCS_OUT_LAYOUT);
3392 /* Tess offchip and tess factor offsets are after user SGPRs. */
3393 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3394 GFX6_TCS_NUM_USER_SGPR);
3395 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3396 GFX6_TCS_NUM_USER_SGPR + 1);
3397 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3398 }
3399
3400 /* VGPRs */
3401 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3402 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3403 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3404
3405 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3406 * the invocation_id output does not alias the tcs_rel_ids input,
3407 * which saves a V_MOV on gfx9.
3408 */
3409 vgpr += 2;
3410
3411 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3412 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3413
3414 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3415 vgpr++; /* skip the tess factor LDS offset */
3416 for (unsigned i = 0; i < 6; i++) {
3417 LLVMValueRef value =
3418 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3419 value = ac_to_float(&ctx->ac, value);
3420 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3421 }
3422 } else {
3423 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3424 }
3425 ctx->return_value = ret;
3426 }
3427
3428 /* Pass TCS inputs from LS to TCS on GFX9. */
3429 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3430 {
3431 LLVMValueRef ret = ctx->return_value;
3432
3433 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3434 if (HAVE_32BIT_POINTERS)
3435 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3436 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3437 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3438 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3439 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3440
3441 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3442 8 + SI_SGPR_RW_BUFFERS);
3443 ret = si_insert_input_ptr(ctx, ret,
3444 ctx->param_bindless_samplers_and_images,
3445 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3446
3447 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3448 8 + SI_SGPR_VS_STATE_BITS);
3449
3450 #if !HAVE_32BIT_POINTERS
3451 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 1,
3452 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3453 #endif
3454
3455 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3456 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3457 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3458 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3459 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3460 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3461
3462 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3463 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3464 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3465 vgpr++, "");
3466 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3467 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3468 vgpr++, "");
3469 ctx->return_value = ret;
3470 }
3471
3472 /* Pass GS inputs from ES to GS on GFX9. */
3473 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3474 {
3475 LLVMValueRef ret = ctx->return_value;
3476
3477 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3478 if (HAVE_32BIT_POINTERS)
3479 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3480 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3481 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3482 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3483
3484 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3485 8 + SI_SGPR_RW_BUFFERS);
3486 ret = si_insert_input_ptr(ctx, ret,
3487 ctx->param_bindless_samplers_and_images,
3488 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3489
3490 #if !HAVE_32BIT_POINTERS
3491 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 1,
3492 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3493 #endif
3494
3495 unsigned vgpr;
3496 if (ctx->type == PIPE_SHADER_VERTEX)
3497 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3498 else
3499 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3500
3501 for (unsigned i = 0; i < 5; i++) {
3502 unsigned param = ctx->param_gs_vtx01_offset + i;
3503 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3504 }
3505 ctx->return_value = ret;
3506 }
3507
3508 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3509 unsigned max_outputs,
3510 LLVMValueRef *addrs)
3511 {
3512 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3513 struct si_shader *shader = ctx->shader;
3514 struct tgsi_shader_info *info = &shader->selector->info;
3515 unsigned i, chan;
3516 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3517 ctx->param_rel_auto_id);
3518 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3519 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3520 vertex_dw_stride, "");
3521
3522 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3523 * its inputs from it. */
3524 for (i = 0; i < info->num_outputs; i++) {
3525 unsigned name = info->output_semantic_name[i];
3526 unsigned index = info->output_semantic_index[i];
3527
3528 /* The ARB_shader_viewport_layer_array spec contains the
3529 * following issue:
3530 *
3531 * 2) What happens if gl_ViewportIndex or gl_Layer is
3532 * written in the vertex shader and a geometry shader is
3533 * present?
3534 *
3535 * RESOLVED: The value written by the last vertex processing
3536 * stage is used. If the last vertex processing stage
3537 * (vertex, tessellation evaluation or geometry) does not
3538 * statically assign to gl_ViewportIndex or gl_Layer, index
3539 * or layer zero is assumed.
3540 *
3541 * So writes to those outputs in VS-as-LS are simply ignored.
3542 */
3543 if (name == TGSI_SEMANTIC_LAYER ||
3544 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3545 continue;
3546
3547 int param = si_shader_io_get_unique_index(name, index, false);
3548 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3549 LLVMConstInt(ctx->i32, param * 4, 0), "");
3550
3551 for (chan = 0; chan < 4; chan++) {
3552 if (!(info->output_usagemask[i] & (1 << chan)))
3553 continue;
3554
3555 lds_store(ctx, chan, dw_addr,
3556 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3557 }
3558 }
3559
3560 if (ctx->screen->info.chip_class >= GFX9)
3561 si_set_ls_return_value_for_tcs(ctx);
3562 }
3563
3564 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3565 unsigned max_outputs,
3566 LLVMValueRef *addrs)
3567 {
3568 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3569 struct si_shader *es = ctx->shader;
3570 struct tgsi_shader_info *info = &es->selector->info;
3571 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3572 ctx->param_es2gs_offset);
3573 LLVMValueRef lds_base = NULL;
3574 unsigned chan;
3575 int i;
3576
3577 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3578 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3579 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3580 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3581 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3582 LLVMBuildMul(ctx->ac.builder, wave_idx,
3583 LLVMConstInt(ctx->i32, 64, false), ""), "");
3584 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3585 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3586 }
3587
3588 for (i = 0; i < info->num_outputs; i++) {
3589 int param;
3590
3591 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3592 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3593 continue;
3594
3595 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3596 info->output_semantic_index[i], false);
3597
3598 for (chan = 0; chan < 4; chan++) {
3599 if (!(info->output_usagemask[i] & (1 << chan)))
3600 continue;
3601
3602 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3603 out_val = ac_to_integer(&ctx->ac, out_val);
3604
3605 /* GFX9 has the ESGS ring in LDS. */
3606 if (ctx->screen->info.chip_class >= GFX9) {
3607 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3608 continue;
3609 }
3610
3611 ac_build_buffer_store_dword(&ctx->ac,
3612 ctx->esgs_ring,
3613 out_val, 1, NULL, soffset,
3614 (4 * param + chan) * 4,
3615 1, 1, true, true);
3616 }
3617 }
3618
3619 if (ctx->screen->info.chip_class >= GFX9)
3620 si_set_es_return_value_for_gs(ctx);
3621 }
3622
3623 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3624 {
3625 if (ctx->screen->info.chip_class >= GFX9)
3626 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3627 else
3628 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3629 }
3630
3631 static void emit_gs_epilogue(struct si_shader_context *ctx)
3632 {
3633 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3634 si_get_gs_wave_id(ctx));
3635
3636 if (ctx->screen->info.chip_class >= GFX9)
3637 lp_build_endif(&ctx->merged_wrap_if_state);
3638 }
3639
3640 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3641 unsigned max_outputs,
3642 LLVMValueRef *addrs)
3643 {
3644 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3645 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3646
3647 assert(info->num_outputs <= max_outputs);
3648
3649 emit_gs_epilogue(ctx);
3650 }
3651
3652 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3653 {
3654 struct si_shader_context *ctx = si_shader_context(bld_base);
3655 emit_gs_epilogue(ctx);
3656 }
3657
3658 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3659 unsigned max_outputs,
3660 LLVMValueRef *addrs)
3661 {
3662 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3663 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3664 struct si_shader_output_values *outputs = NULL;
3665 int i,j;
3666
3667 assert(!ctx->shader->is_gs_copy_shader);
3668 assert(info->num_outputs <= max_outputs);
3669
3670 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3671
3672 /* Vertex color clamping.
3673 *
3674 * This uses a state constant loaded in a user data SGPR and
3675 * an IF statement is added that clamps all colors if the constant
3676 * is true.
3677 */
3678 if (ctx->type == PIPE_SHADER_VERTEX) {
3679 struct lp_build_if_state if_ctx;
3680 LLVMValueRef cond = NULL;
3681 LLVMValueRef addr, val;
3682
3683 for (i = 0; i < info->num_outputs; i++) {
3684 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3685 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3686 continue;
3687
3688 /* We've found a color. */
3689 if (!cond) {
3690 /* The state is in the first bit of the user SGPR. */
3691 cond = LLVMGetParam(ctx->main_fn,
3692 ctx->param_vs_state_bits);
3693 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3694 ctx->i1, "");
3695 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3696 }
3697
3698 for (j = 0; j < 4; j++) {
3699 addr = addrs[4 * i + j];
3700 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3701 val = ac_build_clamp(&ctx->ac, val);
3702 LLVMBuildStore(ctx->ac.builder, val, addr);
3703 }
3704 }
3705
3706 if (cond)
3707 lp_build_endif(&if_ctx);
3708 }
3709
3710 for (i = 0; i < info->num_outputs; i++) {
3711 outputs[i].semantic_name = info->output_semantic_name[i];
3712 outputs[i].semantic_index = info->output_semantic_index[i];
3713
3714 for (j = 0; j < 4; j++) {
3715 outputs[i].values[j] =
3716 LLVMBuildLoad(ctx->ac.builder,
3717 addrs[4 * i + j],
3718 "");
3719 outputs[i].vertex_stream[j] =
3720 (info->output_streams[i] >> (2 * j)) & 3;
3721 }
3722 }
3723
3724 if (ctx->shader->selector->so.num_outputs)
3725 si_llvm_emit_streamout(ctx, outputs, i, 0);
3726
3727 /* Export PrimitiveID. */
3728 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3729 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3730 outputs[i].semantic_index = 0;
3731 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3732 for (j = 1; j < 4; j++)
3733 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3734
3735 memset(outputs[i].vertex_stream, 0,
3736 sizeof(outputs[i].vertex_stream));
3737 i++;
3738 }
3739
3740 si_llvm_export_vs(ctx, outputs, i);
3741 FREE(outputs);
3742 }
3743
3744 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3745 {
3746 struct si_shader_context *ctx = si_shader_context(bld_base);
3747
3748 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3749 &ctx->outputs[0][0]);
3750 }
3751
3752 struct si_ps_exports {
3753 unsigned num;
3754 struct ac_export_args args[10];
3755 };
3756
3757 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3758 LLVMValueRef depth, LLVMValueRef stencil,
3759 LLVMValueRef samplemask, struct si_ps_exports *exp)
3760 {
3761 struct si_shader_context *ctx = si_shader_context(bld_base);
3762 struct ac_export_args args;
3763
3764 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3765
3766 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3767 }
3768
3769 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3770 LLVMValueRef *color, unsigned index,
3771 unsigned samplemask_param,
3772 bool is_last, struct si_ps_exports *exp)
3773 {
3774 struct si_shader_context *ctx = si_shader_context(bld_base);
3775 int i;
3776
3777 /* Clamp color */
3778 if (ctx->shader->key.part.ps.epilog.clamp_color)
3779 for (i = 0; i < 4; i++)
3780 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3781
3782 /* Alpha to one */
3783 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3784 color[3] = ctx->ac.f32_1;
3785
3786 /* Alpha test */
3787 if (index == 0 &&
3788 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3789 si_alpha_test(bld_base, color[3]);
3790
3791 /* Line & polygon smoothing */
3792 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3793 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3794 samplemask_param);
3795
3796 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3797 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3798 struct ac_export_args args[8];
3799 int c, last = -1;
3800
3801 /* Get the export arguments, also find out what the last one is. */
3802 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3803 si_llvm_init_export_args(ctx, color,
3804 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3805 if (args[c].enabled_channels)
3806 last = c;
3807 }
3808
3809 /* Emit all exports. */
3810 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3811 if (is_last && last == c) {
3812 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3813 args[c].done = 1; /* DONE bit */
3814 } else if (!args[c].enabled_channels)
3815 continue; /* unnecessary NULL export */
3816
3817 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3818 }
3819 } else {
3820 struct ac_export_args args;
3821
3822 /* Export */
3823 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3824 &args);
3825 if (is_last) {
3826 args.valid_mask = 1; /* whether the EXEC mask is valid */
3827 args.done = 1; /* DONE bit */
3828 } else if (!args.enabled_channels)
3829 return; /* unnecessary NULL export */
3830
3831 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3832 }
3833 }
3834
3835 static void si_emit_ps_exports(struct si_shader_context *ctx,
3836 struct si_ps_exports *exp)
3837 {
3838 for (unsigned i = 0; i < exp->num; i++)
3839 ac_build_export(&ctx->ac, &exp->args[i]);
3840 }
3841
3842 /**
3843 * Return PS outputs in this order:
3844 *
3845 * v[0:3] = color0.xyzw
3846 * v[4:7] = color1.xyzw
3847 * ...
3848 * vN+0 = Depth
3849 * vN+1 = Stencil
3850 * vN+2 = SampleMask
3851 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3852 *
3853 * The alpha-ref SGPR is returned via its original location.
3854 */
3855 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3856 unsigned max_outputs,
3857 LLVMValueRef *addrs)
3858 {
3859 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3860 struct si_shader *shader = ctx->shader;
3861 struct tgsi_shader_info *info = &shader->selector->info;
3862 LLVMBuilderRef builder = ctx->ac.builder;
3863 unsigned i, j, first_vgpr, vgpr;
3864
3865 LLVMValueRef color[8][4] = {};
3866 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3867 LLVMValueRef ret;
3868
3869 if (ctx->postponed_kill)
3870 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3871
3872 /* Read the output values. */
3873 for (i = 0; i < info->num_outputs; i++) {
3874 unsigned semantic_name = info->output_semantic_name[i];
3875 unsigned semantic_index = info->output_semantic_index[i];
3876
3877 switch (semantic_name) {
3878 case TGSI_SEMANTIC_COLOR:
3879 assert(semantic_index < 8);
3880 for (j = 0; j < 4; j++) {
3881 LLVMValueRef ptr = addrs[4 * i + j];
3882 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3883 color[semantic_index][j] = result;
3884 }
3885 break;
3886 case TGSI_SEMANTIC_POSITION:
3887 depth = LLVMBuildLoad(builder,
3888 addrs[4 * i + 2], "");
3889 break;
3890 case TGSI_SEMANTIC_STENCIL:
3891 stencil = LLVMBuildLoad(builder,
3892 addrs[4 * i + 1], "");
3893 break;
3894 case TGSI_SEMANTIC_SAMPLEMASK:
3895 samplemask = LLVMBuildLoad(builder,
3896 addrs[4 * i + 0], "");
3897 break;
3898 default:
3899 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3900 semantic_name);
3901 }
3902 }
3903
3904 /* Fill the return structure. */
3905 ret = ctx->return_value;
3906
3907 /* Set SGPRs. */
3908 ret = LLVMBuildInsertValue(builder, ret,
3909 ac_to_integer(&ctx->ac,
3910 LLVMGetParam(ctx->main_fn,
3911 SI_PARAM_ALPHA_REF)),
3912 SI_SGPR_ALPHA_REF, "");
3913
3914 /* Set VGPRs */
3915 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3916 for (i = 0; i < ARRAY_SIZE(color); i++) {
3917 if (!color[i][0])
3918 continue;
3919
3920 for (j = 0; j < 4; j++)
3921 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3922 }
3923 if (depth)
3924 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3925 if (stencil)
3926 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3927 if (samplemask)
3928 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3929
3930 /* Add the input sample mask for smoothing at the end. */
3931 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3932 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3933 ret = LLVMBuildInsertValue(builder, ret,
3934 LLVMGetParam(ctx->main_fn,
3935 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3936
3937 ctx->return_value = ret;
3938 }
3939
3940 static void membar_emit(
3941 const struct lp_build_tgsi_action *action,
3942 struct lp_build_tgsi_context *bld_base,
3943 struct lp_build_emit_data *emit_data)
3944 {
3945 struct si_shader_context *ctx = si_shader_context(bld_base);
3946 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3947 unsigned flags = LLVMConstIntGetZExtValue(src0);
3948 unsigned waitcnt = NOOP_WAITCNT;
3949
3950 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3951 waitcnt &= VM_CNT & LGKM_CNT;
3952
3953 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3954 TGSI_MEMBAR_SHADER_BUFFER |
3955 TGSI_MEMBAR_SHADER_IMAGE))
3956 waitcnt &= VM_CNT;
3957
3958 if (flags & TGSI_MEMBAR_SHARED)
3959 waitcnt &= LGKM_CNT;
3960
3961 if (waitcnt != NOOP_WAITCNT)
3962 ac_build_waitcnt(&ctx->ac, waitcnt);
3963 }
3964
3965 static void clock_emit(
3966 const struct lp_build_tgsi_action *action,
3967 struct lp_build_tgsi_context *bld_base,
3968 struct lp_build_emit_data *emit_data)
3969 {
3970 struct si_shader_context *ctx = si_shader_context(bld_base);
3971 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3972
3973 emit_data->output[0] =
3974 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3975 emit_data->output[1] =
3976 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3977 }
3978
3979 static void si_llvm_emit_ddxy(
3980 const struct lp_build_tgsi_action *action,
3981 struct lp_build_tgsi_context *bld_base,
3982 struct lp_build_emit_data *emit_data)
3983 {
3984 struct si_shader_context *ctx = si_shader_context(bld_base);
3985 unsigned opcode = emit_data->info->opcode;
3986 LLVMValueRef val;
3987 int idx;
3988 unsigned mask;
3989
3990 if (opcode == TGSI_OPCODE_DDX_FINE)
3991 mask = AC_TID_MASK_LEFT;
3992 else if (opcode == TGSI_OPCODE_DDY_FINE)
3993 mask = AC_TID_MASK_TOP;
3994 else
3995 mask = AC_TID_MASK_TOP_LEFT;
3996
3997 /* for DDX we want to next X pixel, DDY next Y pixel. */
3998 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3999
4000 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
4001 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
4002 emit_data->output[emit_data->chan] = val;
4003 }
4004
4005 /*
4006 * this takes an I,J coordinate pair,
4007 * and works out the X and Y derivatives.
4008 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
4009 */
4010 static LLVMValueRef si_llvm_emit_ddxy_interp(
4011 struct lp_build_tgsi_context *bld_base,
4012 LLVMValueRef interp_ij)
4013 {
4014 struct si_shader_context *ctx = si_shader_context(bld_base);
4015 LLVMValueRef result[4], a;
4016 unsigned i;
4017
4018 for (i = 0; i < 2; i++) {
4019 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
4020 LLVMConstInt(ctx->i32, i, 0), "");
4021 result[i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 1,
4022 ac_to_integer(&ctx->ac, a)); /* DDX */
4023 result[2+i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 2,
4024 ac_to_integer(&ctx->ac, a)); /* DDY */
4025 }
4026
4027 return ac_build_gather_values(&ctx->ac, result, 4);
4028 }
4029
4030 static void interp_fetch_args(
4031 struct lp_build_tgsi_context *bld_base,
4032 struct lp_build_emit_data *emit_data)
4033 {
4034 struct si_shader_context *ctx = si_shader_context(bld_base);
4035 const struct tgsi_full_instruction *inst = emit_data->inst;
4036
4037 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4038 /* offset is in second src, first two channels */
4039 emit_data->args[0] = lp_build_emit_fetch(bld_base,
4040 emit_data->inst, 1,
4041 TGSI_CHAN_X);
4042 emit_data->args[1] = lp_build_emit_fetch(bld_base,
4043 emit_data->inst, 1,
4044 TGSI_CHAN_Y);
4045 emit_data->arg_count = 2;
4046 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4047 LLVMValueRef sample_position;
4048 LLVMValueRef sample_id;
4049 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4050
4051 /* fetch sample ID, then fetch its sample position,
4052 * and place into first two channels.
4053 */
4054 sample_id = lp_build_emit_fetch(bld_base,
4055 emit_data->inst, 1, TGSI_CHAN_X);
4056 sample_id = ac_to_integer(&ctx->ac, sample_id);
4057
4058 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4059 * Language 4.50 spec says about interpolateAtSample:
4060 *
4061 * "Returns the value of the input interpolant variable at
4062 * the location of sample number sample. If multisample
4063 * buffers are not available, the input variable will be
4064 * evaluated at the center of the pixel. If sample sample
4065 * does not exist, the position used to interpolate the
4066 * input variable is undefined."
4067 *
4068 * This means that sample_id values outside of the valid are
4069 * in fact valid input, and the usual mechanism for loading the
4070 * sample position doesn't work.
4071 */
4072 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4073 LLVMValueRef center[4] = {
4074 LLVMConstReal(ctx->f32, 0.5),
4075 LLVMConstReal(ctx->f32, 0.5),
4076 ctx->ac.f32_0,
4077 ctx->ac.f32_0,
4078 };
4079
4080 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4081 } else {
4082 sample_position = load_sample_position(&ctx->abi, sample_id);
4083 }
4084
4085 emit_data->args[0] = LLVMBuildExtractElement(ctx->ac.builder,
4086 sample_position,
4087 ctx->i32_0, "");
4088
4089 emit_data->args[0] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[0], halfval, "");
4090 emit_data->args[1] = LLVMBuildExtractElement(ctx->ac.builder,
4091 sample_position,
4092 ctx->i32_1, "");
4093 emit_data->args[1] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[1], halfval, "");
4094 emit_data->arg_count = 2;
4095 }
4096 }
4097
4098 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4099 struct lp_build_tgsi_context *bld_base,
4100 struct lp_build_emit_data *emit_data)
4101 {
4102 struct si_shader_context *ctx = si_shader_context(bld_base);
4103 struct si_shader *shader = ctx->shader;
4104 const struct tgsi_shader_info *info = &shader->selector->info;
4105 LLVMValueRef interp_param;
4106 const struct tgsi_full_instruction *inst = emit_data->inst;
4107 const struct tgsi_full_src_register *input = &inst->Src[0];
4108 int input_base, input_array_size;
4109 int chan;
4110 int i;
4111 LLVMValueRef prim_mask = ctx->abi.prim_mask;
4112 LLVMValueRef array_idx;
4113 int interp_param_idx;
4114 unsigned interp;
4115 unsigned location;
4116
4117 assert(input->Register.File == TGSI_FILE_INPUT);
4118
4119 if (input->Register.Indirect) {
4120 unsigned array_id = input->Indirect.ArrayID;
4121
4122 if (array_id) {
4123 input_base = info->input_array_first[array_id];
4124 input_array_size = info->input_array_last[array_id] - input_base + 1;
4125 } else {
4126 input_base = inst->Src[0].Register.Index;
4127 input_array_size = info->num_inputs - input_base;
4128 }
4129
4130 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4131 1, input->Register.Index - input_base);
4132 } else {
4133 input_base = inst->Src[0].Register.Index;
4134 input_array_size = 1;
4135 array_idx = ctx->i32_0;
4136 }
4137
4138 interp = shader->selector->info.input_interpolate[input_base];
4139
4140 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4141 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4142 location = TGSI_INTERPOLATE_LOC_CENTER;
4143 else
4144 location = TGSI_INTERPOLATE_LOC_CENTROID;
4145
4146 interp_param_idx = lookup_interp_param_index(interp, location);
4147 if (interp_param_idx == -1)
4148 return;
4149 else if (interp_param_idx)
4150 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4151 else
4152 interp_param = NULL;
4153
4154 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4155 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4156 LLVMValueRef ij_out[2];
4157 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4158
4159 /*
4160 * take the I then J parameters, and the DDX/Y for it, and
4161 * calculate the IJ inputs for the interpolator.
4162 * temp1 = ddx * offset/sample.x + I;
4163 * interp_param.I = ddy * offset/sample.y + temp1;
4164 * temp1 = ddx * offset/sample.x + J;
4165 * interp_param.J = ddy * offset/sample.y + temp1;
4166 */
4167 for (i = 0; i < 2; i++) {
4168 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4169 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4170 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4171 ddxy_out, ix_ll, "");
4172 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4173 ddxy_out, iy_ll, "");
4174 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4175 interp_param, ix_ll, "");
4176 LLVMValueRef temp1, temp2;
4177
4178 interp_el = ac_to_float(&ctx->ac, interp_el);
4179
4180 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, emit_data->args[0], "");
4181
4182 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4183
4184 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, emit_data->args[1], "");
4185
4186 ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4187 }
4188 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4189 }
4190
4191 if (interp_param)
4192 interp_param = ac_to_float(&ctx->ac, interp_param);
4193
4194 for (chan = 0; chan < 4; chan++) {
4195 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4196 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4197
4198 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4199 LLVMValueRef v, i = NULL, j = NULL;
4200
4201 if (interp_param) {
4202 i = LLVMBuildExtractElement(
4203 ctx->ac.builder, interp_param, ctx->i32_0, "");
4204 j = LLVMBuildExtractElement(
4205 ctx->ac.builder, interp_param, ctx->i32_1, "");
4206 }
4207 v = si_build_fs_interp(ctx, input_base + idx, schan,
4208 prim_mask, i, j);
4209
4210 gather = LLVMBuildInsertElement(ctx->ac.builder,
4211 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4212 }
4213
4214 emit_data->output[chan] = LLVMBuildExtractElement(
4215 ctx->ac.builder, gather, array_idx, "");
4216 }
4217 }
4218
4219 static void vote_all_emit(
4220 const struct lp_build_tgsi_action *action,
4221 struct lp_build_tgsi_context *bld_base,
4222 struct lp_build_emit_data *emit_data)
4223 {
4224 struct si_shader_context *ctx = si_shader_context(bld_base);
4225
4226 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4227 emit_data->output[emit_data->chan] =
4228 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4229 }
4230
4231 static void vote_any_emit(
4232 const struct lp_build_tgsi_action *action,
4233 struct lp_build_tgsi_context *bld_base,
4234 struct lp_build_emit_data *emit_data)
4235 {
4236 struct si_shader_context *ctx = si_shader_context(bld_base);
4237
4238 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4239 emit_data->output[emit_data->chan] =
4240 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4241 }
4242
4243 static void vote_eq_emit(
4244 const struct lp_build_tgsi_action *action,
4245 struct lp_build_tgsi_context *bld_base,
4246 struct lp_build_emit_data *emit_data)
4247 {
4248 struct si_shader_context *ctx = si_shader_context(bld_base);
4249
4250 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4251 emit_data->output[emit_data->chan] =
4252 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4253 }
4254
4255 static void ballot_emit(
4256 const struct lp_build_tgsi_action *action,
4257 struct lp_build_tgsi_context *bld_base,
4258 struct lp_build_emit_data *emit_data)
4259 {
4260 struct si_shader_context *ctx = si_shader_context(bld_base);
4261 LLVMBuilderRef builder = ctx->ac.builder;
4262 LLVMValueRef tmp;
4263
4264 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4265 tmp = ac_build_ballot(&ctx->ac, tmp);
4266 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4267
4268 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4269 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4270 }
4271
4272 static void read_invoc_fetch_args(
4273 struct lp_build_tgsi_context *bld_base,
4274 struct lp_build_emit_data *emit_data)
4275 {
4276 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4277 0, emit_data->src_chan);
4278
4279 /* Always read the source invocation (= lane) from the X channel. */
4280 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4281 1, TGSI_CHAN_X);
4282 emit_data->arg_count = 2;
4283 }
4284
4285 static void read_lane_emit(
4286 const struct lp_build_tgsi_action *action,
4287 struct lp_build_tgsi_context *bld_base,
4288 struct lp_build_emit_data *emit_data)
4289 {
4290 struct si_shader_context *ctx = si_shader_context(bld_base);
4291
4292 /* We currently have no other way to prevent LLVM from lifting the icmp
4293 * calls to a dominating basic block.
4294 */
4295 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4296
4297 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4298 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4299
4300 emit_data->output[emit_data->chan] =
4301 ac_build_intrinsic(&ctx->ac, action->intr_name,
4302 ctx->i32, emit_data->args, emit_data->arg_count,
4303 AC_FUNC_ATTR_READNONE |
4304 AC_FUNC_ATTR_CONVERGENT);
4305 }
4306
4307 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4308 struct lp_build_emit_data *emit_data)
4309 {
4310 struct si_shader_context *ctx = si_shader_context(bld_base);
4311 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4312 LLVMValueRef imm;
4313 unsigned stream;
4314
4315 assert(src0.File == TGSI_FILE_IMMEDIATE);
4316
4317 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4318 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4319 return stream;
4320 }
4321
4322 /* Emit one vertex from the geometry shader */
4323 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4324 unsigned stream,
4325 LLVMValueRef *addrs)
4326 {
4327 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4328 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4329 struct si_shader *shader = ctx->shader;
4330 struct lp_build_if_state if_state;
4331 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4332 ctx->param_gs2vs_offset);
4333 LLVMValueRef gs_next_vertex;
4334 LLVMValueRef can_emit;
4335 unsigned chan, offset;
4336 int i;
4337
4338 /* Write vertex attribute values to GSVS ring */
4339 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4340 ctx->gs_next_vertex[stream],
4341 "");
4342
4343 /* If this thread has already emitted the declared maximum number of
4344 * vertices, skip the write: excessive vertex emissions are not
4345 * supposed to have any effect.
4346 *
4347 * If the shader has no writes to memory, kill it instead. This skips
4348 * further memory loads and may allow LLVM to skip to the end
4349 * altogether.
4350 */
4351 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4352 LLVMConstInt(ctx->i32,
4353 shader->selector->gs_max_out_vertices, 0), "");
4354
4355 bool use_kill = !info->writes_memory;
4356 if (use_kill) {
4357 ac_build_kill_if_false(&ctx->ac, can_emit);
4358 } else {
4359 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4360 }
4361
4362 offset = 0;
4363 for (i = 0; i < info->num_outputs; i++) {
4364 for (chan = 0; chan < 4; chan++) {
4365 if (!(info->output_usagemask[i] & (1 << chan)) ||
4366 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4367 continue;
4368
4369 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4370 LLVMValueRef voffset =
4371 LLVMConstInt(ctx->i32, offset *
4372 shader->selector->gs_max_out_vertices, 0);
4373 offset++;
4374
4375 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4376 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4377 LLVMConstInt(ctx->i32, 4, 0), "");
4378
4379 out_val = ac_to_integer(&ctx->ac, out_val);
4380
4381 ac_build_buffer_store_dword(&ctx->ac,
4382 ctx->gsvs_ring[stream],
4383 out_val, 1,
4384 voffset, soffset, 0,
4385 1, 1, true, true);
4386 }
4387 }
4388
4389 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4390 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4391
4392 /* Signal vertex emission */
4393 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4394 si_get_gs_wave_id(ctx));
4395 if (!use_kill)
4396 lp_build_endif(&if_state);
4397 }
4398
4399 /* Emit one vertex from the geometry shader */
4400 static void si_tgsi_emit_vertex(
4401 const struct lp_build_tgsi_action *action,
4402 struct lp_build_tgsi_context *bld_base,
4403 struct lp_build_emit_data *emit_data)
4404 {
4405 struct si_shader_context *ctx = si_shader_context(bld_base);
4406 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4407
4408 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4409 }
4410
4411 /* Cut one primitive from the geometry shader */
4412 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4413 unsigned stream)
4414 {
4415 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4416
4417 /* Signal primitive cut */
4418 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4419 si_get_gs_wave_id(ctx));
4420 }
4421
4422 /* Cut one primitive from the geometry shader */
4423 static void si_tgsi_emit_primitive(
4424 const struct lp_build_tgsi_action *action,
4425 struct lp_build_tgsi_context *bld_base,
4426 struct lp_build_emit_data *emit_data)
4427 {
4428 struct si_shader_context *ctx = si_shader_context(bld_base);
4429
4430 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4431 }
4432
4433 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4434 struct lp_build_tgsi_context *bld_base,
4435 struct lp_build_emit_data *emit_data)
4436 {
4437 struct si_shader_context *ctx = si_shader_context(bld_base);
4438
4439 /* SI only (thanks to a hw bug workaround):
4440 * The real barrier instruction isn’t needed, because an entire patch
4441 * always fits into a single wave.
4442 */
4443 if (ctx->screen->info.chip_class == SI &&
4444 ctx->type == PIPE_SHADER_TESS_CTRL) {
4445 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4446 return;
4447 }
4448
4449 ac_build_intrinsic(&ctx->ac,
4450 "llvm.amdgcn.s.barrier",
4451 ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
4452 }
4453
4454 static const struct lp_build_tgsi_action interp_action = {
4455 .fetch_args = interp_fetch_args,
4456 .emit = build_interp_intrinsic,
4457 };
4458
4459 static void si_create_function(struct si_shader_context *ctx,
4460 const char *name,
4461 LLVMTypeRef *returns, unsigned num_returns,
4462 struct si_function_info *fninfo,
4463 unsigned max_workgroup_size)
4464 {
4465 int i;
4466
4467 si_llvm_create_func(ctx, name, returns, num_returns,
4468 fninfo->types, fninfo->num_params);
4469 ctx->return_value = LLVMGetUndef(ctx->return_type);
4470
4471 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4472 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4473
4474 /* The combination of:
4475 * - noalias
4476 * - dereferenceable
4477 * - invariant.load
4478 * allows the optimization passes to move loads and reduces
4479 * SGPR spilling significantly.
4480 */
4481 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4482 AC_FUNC_ATTR_INREG);
4483
4484 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4485 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4486 AC_FUNC_ATTR_NOALIAS);
4487 ac_add_attr_dereferenceable(P, UINT64_MAX);
4488 }
4489 }
4490
4491 for (i = 0; i < fninfo->num_params; ++i) {
4492 if (fninfo->assign[i])
4493 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4494 }
4495
4496 if (ctx->screen->info.address32_hi) {
4497 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4498 "amdgpu-32bit-address-high-bits",
4499 ctx->screen->info.address32_hi);
4500 }
4501
4502 if (max_workgroup_size) {
4503 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4504 "amdgpu-max-work-group-size",
4505 max_workgroup_size);
4506 }
4507 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4508 "no-signed-zeros-fp-math",
4509 "true");
4510
4511 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4512 /* These were copied from some LLVM test. */
4513 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4514 "less-precise-fpmad",
4515 "true");
4516 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4517 "no-infs-fp-math",
4518 "true");
4519 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4520 "no-nans-fp-math",
4521 "true");
4522 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4523 "unsafe-fp-math",
4524 "true");
4525 }
4526 }
4527
4528 static void declare_streamout_params(struct si_shader_context *ctx,
4529 struct pipe_stream_output_info *so,
4530 struct si_function_info *fninfo)
4531 {
4532 int i;
4533
4534 /* Streamout SGPRs. */
4535 if (so->num_outputs) {
4536 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4537 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4538 else
4539 ctx->param_streamout_config = fninfo->num_params - 1;
4540
4541 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4542 }
4543 /* A streamout buffer offset is loaded if the stride is non-zero. */
4544 for (i = 0; i < 4; i++) {
4545 if (!so->stride[i])
4546 continue;
4547
4548 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4549 }
4550 }
4551
4552 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4553 {
4554 switch (shader->selector->type) {
4555 case PIPE_SHADER_TESS_CTRL:
4556 /* Return this so that LLVM doesn't remove s_barrier
4557 * instructions on chips where we use s_barrier. */
4558 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4559
4560 case PIPE_SHADER_GEOMETRY:
4561 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4562
4563 case PIPE_SHADER_COMPUTE:
4564 break; /* see below */
4565
4566 default:
4567 return 0;
4568 }
4569
4570 const unsigned *properties = shader->selector->info.properties;
4571 unsigned max_work_group_size =
4572 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4573 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4574 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4575
4576 if (!max_work_group_size) {
4577 /* This is a variable group size compute shader,
4578 * compile it for the maximum possible group size.
4579 */
4580 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4581 }
4582 return max_work_group_size;
4583 }
4584
4585 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4586 struct si_function_info *fninfo,
4587 bool assign_params)
4588 {
4589 LLVMTypeRef const_shader_buf_type;
4590
4591 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4592 ctx->shader->selector->info.shader_buffers_declared == 0)
4593 const_shader_buf_type = ctx->f32;
4594 else
4595 const_shader_buf_type = ctx->v4i32;
4596
4597 unsigned const_and_shader_buffers =
4598 add_arg(fninfo, ARG_SGPR,
4599 ac_array_in_const32_addr_space(const_shader_buf_type));
4600
4601 if (assign_params)
4602 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4603 }
4604
4605 static void declare_samplers_and_images(struct si_shader_context *ctx,
4606 struct si_function_info *fninfo,
4607 bool assign_params)
4608 {
4609 unsigned samplers_and_images =
4610 add_arg(fninfo, ARG_SGPR,
4611 ac_array_in_const32_addr_space(ctx->v8i32));
4612
4613 if (assign_params)
4614 ctx->param_samplers_and_images = samplers_and_images;
4615 }
4616
4617 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4618 struct si_function_info *fninfo,
4619 bool assign_params)
4620 {
4621 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4622 declare_samplers_and_images(ctx, fninfo, assign_params);
4623 }
4624
4625 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4626 struct si_function_info *fninfo)
4627 {
4628 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4629 ac_array_in_const32_addr_space(ctx->v4i32));
4630 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4631 ac_array_in_const32_addr_space(ctx->v8i32));
4632 }
4633
4634 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4635 struct si_function_info *fninfo)
4636 {
4637 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4638 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4639 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4640 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4641 }
4642
4643 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4644 struct si_function_info *fninfo,
4645 unsigned *num_prolog_vgprs)
4646 {
4647 struct si_shader *shader = ctx->shader;
4648
4649 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4650 if (shader->key.as_ls) {
4651 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4652 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4653 } else {
4654 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4655 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4656 }
4657 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4658
4659 if (!shader->is_gs_copy_shader) {
4660 /* Vertex load indices. */
4661 ctx->param_vertex_index0 = fninfo->num_params;
4662 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4663 add_arg(fninfo, ARG_VGPR, ctx->i32);
4664 *num_prolog_vgprs += shader->selector->info.num_inputs;
4665 }
4666 }
4667
4668 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4669 struct si_function_info *fninfo)
4670 {
4671 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4672 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4673 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4674 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4675 }
4676
4677 enum {
4678 /* Convenient merged shader definitions. */
4679 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4680 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4681 };
4682
4683 static void create_function(struct si_shader_context *ctx)
4684 {
4685 struct si_shader *shader = ctx->shader;
4686 struct si_function_info fninfo;
4687 LLVMTypeRef returns[16+32*4];
4688 unsigned i, num_return_sgprs;
4689 unsigned num_returns = 0;
4690 unsigned num_prolog_vgprs = 0;
4691 unsigned type = ctx->type;
4692 unsigned vs_blit_property =
4693 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4694
4695 si_init_function_info(&fninfo);
4696
4697 /* Set MERGED shaders. */
4698 if (ctx->screen->info.chip_class >= GFX9) {
4699 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4700 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4701 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4702 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4703 }
4704
4705 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4706
4707 switch (type) {
4708 case PIPE_SHADER_VERTEX:
4709 declare_global_desc_pointers(ctx, &fninfo);
4710
4711 if (vs_blit_property) {
4712 ctx->param_vs_blit_inputs = fninfo.num_params;
4713 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4714 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4715 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4716
4717 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4718 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4719 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4720 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4721 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4722 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4723 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4724 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4725 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4726 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4727 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4728 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4729 }
4730
4731 /* VGPRs */
4732 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4733 break;
4734 }
4735
4736 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4737 declare_vs_specific_input_sgprs(ctx, &fninfo);
4738 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4739 ac_array_in_const32_addr_space(ctx->v4i32));
4740
4741 if (shader->key.as_es) {
4742 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4743 } else if (shader->key.as_ls) {
4744 /* no extra parameters */
4745 } else {
4746 if (shader->is_gs_copy_shader) {
4747 fninfo.num_params = ctx->param_rw_buffers + 1;
4748 fninfo.num_sgpr_params = fninfo.num_params;
4749 }
4750
4751 /* The locations of the other parameters are assigned dynamically. */
4752 declare_streamout_params(ctx, &shader->selector->so,
4753 &fninfo);
4754 }
4755
4756 /* VGPRs */
4757 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4758 break;
4759
4760 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4761 declare_global_desc_pointers(ctx, &fninfo);
4762 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4763 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4764 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4765 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4766 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4767 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4768 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4769
4770 /* VGPRs */
4771 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4772 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4773
4774 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4775 * placed after the user SGPRs.
4776 */
4777 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4778 returns[num_returns++] = ctx->i32; /* SGPRs */
4779 for (i = 0; i < 11; i++)
4780 returns[num_returns++] = ctx->f32; /* VGPRs */
4781 break;
4782
4783 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4784 /* Merged stages have 8 system SGPRs at the beginning. */
4785 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4786 if (HAVE_32BIT_POINTERS) {
4787 declare_per_stage_desc_pointers(ctx, &fninfo,
4788 ctx->type == PIPE_SHADER_TESS_CTRL);
4789 } else {
4790 declare_const_and_shader_buffers(ctx, &fninfo,
4791 ctx->type == PIPE_SHADER_TESS_CTRL);
4792 }
4793 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4794 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4795 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4796 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4797 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4798 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4799
4800 declare_global_desc_pointers(ctx, &fninfo);
4801 declare_per_stage_desc_pointers(ctx, &fninfo,
4802 ctx->type == PIPE_SHADER_VERTEX);
4803 declare_vs_specific_input_sgprs(ctx, &fninfo);
4804
4805 if (!HAVE_32BIT_POINTERS) {
4806 declare_samplers_and_images(ctx, &fninfo,
4807 ctx->type == PIPE_SHADER_TESS_CTRL);
4808 }
4809 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4810 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4811 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4812 if (!HAVE_32BIT_POINTERS) /* Align to 2 dwords. */
4813 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4814 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4815 ac_array_in_const32_addr_space(ctx->v4i32));
4816
4817 /* VGPRs (first TCS, then VS) */
4818 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4819 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4820
4821 if (ctx->type == PIPE_SHADER_VERTEX) {
4822 declare_vs_input_vgprs(ctx, &fninfo,
4823 &num_prolog_vgprs);
4824
4825 /* LS return values are inputs to the TCS main shader part. */
4826 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4827 returns[num_returns++] = ctx->i32; /* SGPRs */
4828 for (i = 0; i < 2; i++)
4829 returns[num_returns++] = ctx->f32; /* VGPRs */
4830 } else {
4831 /* TCS return values are inputs to the TCS epilog.
4832 *
4833 * param_tcs_offchip_offset, param_tcs_factor_offset,
4834 * param_tcs_offchip_layout, and param_rw_buffers
4835 * should be passed to the epilog.
4836 */
4837 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4838 returns[num_returns++] = ctx->i32; /* SGPRs */
4839 for (i = 0; i < 11; i++)
4840 returns[num_returns++] = ctx->f32; /* VGPRs */
4841 }
4842 break;
4843
4844 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4845 /* Merged stages have 8 system SGPRs at the beginning. */
4846 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4847 if (HAVE_32BIT_POINTERS) {
4848 declare_per_stage_desc_pointers(ctx, &fninfo,
4849 ctx->type == PIPE_SHADER_GEOMETRY);
4850 } else {
4851 declare_const_and_shader_buffers(ctx, &fninfo,
4852 ctx->type == PIPE_SHADER_GEOMETRY);
4853 }
4854 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4855 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4856 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4857 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4858 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4859 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4860
4861 declare_global_desc_pointers(ctx, &fninfo);
4862 declare_per_stage_desc_pointers(ctx, &fninfo,
4863 (ctx->type == PIPE_SHADER_VERTEX ||
4864 ctx->type == PIPE_SHADER_TESS_EVAL));
4865 if (ctx->type == PIPE_SHADER_VERTEX) {
4866 declare_vs_specific_input_sgprs(ctx, &fninfo);
4867 } else {
4868 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4869 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4870 if (!HAVE_32BIT_POINTERS) {
4871 /* Declare as many input SGPRs as the VS has. */
4872 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4873 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4874 }
4875 }
4876
4877 if (!HAVE_32BIT_POINTERS) {
4878 declare_samplers_and_images(ctx, &fninfo,
4879 ctx->type == PIPE_SHADER_GEOMETRY);
4880 }
4881 if (ctx->type == PIPE_SHADER_VERTEX) {
4882 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4883 ac_array_in_const32_addr_space(ctx->v4i32));
4884 }
4885
4886 /* VGPRs (first GS, then VS/TES) */
4887 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4888 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4889 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4890 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4891 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4892
4893 if (ctx->type == PIPE_SHADER_VERTEX) {
4894 declare_vs_input_vgprs(ctx, &fninfo,
4895 &num_prolog_vgprs);
4896 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4897 declare_tes_input_vgprs(ctx, &fninfo);
4898 }
4899
4900 if (ctx->type == PIPE_SHADER_VERTEX ||
4901 ctx->type == PIPE_SHADER_TESS_EVAL) {
4902 unsigned num_user_sgprs;
4903
4904 if (ctx->type == PIPE_SHADER_VERTEX)
4905 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4906 else
4907 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4908
4909 /* ES return values are inputs to GS. */
4910 for (i = 0; i < 8 + num_user_sgprs; i++)
4911 returns[num_returns++] = ctx->i32; /* SGPRs */
4912 for (i = 0; i < 5; i++)
4913 returns[num_returns++] = ctx->f32; /* VGPRs */
4914 }
4915 break;
4916
4917 case PIPE_SHADER_TESS_EVAL:
4918 declare_global_desc_pointers(ctx, &fninfo);
4919 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4920 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4921 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4922
4923 if (shader->key.as_es) {
4924 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4925 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4926 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4927 } else {
4928 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4929 declare_streamout_params(ctx, &shader->selector->so,
4930 &fninfo);
4931 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4932 }
4933
4934 /* VGPRs */
4935 declare_tes_input_vgprs(ctx, &fninfo);
4936 break;
4937
4938 case PIPE_SHADER_GEOMETRY:
4939 declare_global_desc_pointers(ctx, &fninfo);
4940 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4941 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4942 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4943
4944 /* VGPRs */
4945 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4946 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4947 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4948 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4949 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4950 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4951 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4952 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4953 break;
4954
4955 case PIPE_SHADER_FRAGMENT:
4956 declare_global_desc_pointers(ctx, &fninfo);
4957 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4958 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4959 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4960 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4961
4962 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4963 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4964 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4965 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4966 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4967 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4968 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4969 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4970 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4971 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4972 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4973 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4974 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4975 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4976 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4977 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4978 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4979 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4980 shader->info.face_vgpr_index = 20;
4981 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4982 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4983 shader->info.ancillary_vgpr_index = 21;
4984 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4985 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4986 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4987
4988 /* Color inputs from the prolog. */
4989 if (shader->selector->info.colors_read) {
4990 unsigned num_color_elements =
4991 util_bitcount(shader->selector->info.colors_read);
4992
4993 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4994 for (i = 0; i < num_color_elements; i++)
4995 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4996
4997 num_prolog_vgprs += num_color_elements;
4998 }
4999
5000 /* Outputs for the epilog. */
5001 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
5002 num_returns =
5003 num_return_sgprs +
5004 util_bitcount(shader->selector->info.colors_written) * 4 +
5005 shader->selector->info.writes_z +
5006 shader->selector->info.writes_stencil +
5007 shader->selector->info.writes_samplemask +
5008 1 /* SampleMaskIn */;
5009
5010 num_returns = MAX2(num_returns,
5011 num_return_sgprs +
5012 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
5013
5014 for (i = 0; i < num_return_sgprs; i++)
5015 returns[i] = ctx->i32;
5016 for (; i < num_returns; i++)
5017 returns[i] = ctx->f32;
5018 break;
5019
5020 case PIPE_SHADER_COMPUTE:
5021 declare_global_desc_pointers(ctx, &fninfo);
5022 declare_per_stage_desc_pointers(ctx, &fninfo, true);
5023 if (shader->selector->info.uses_grid_size)
5024 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
5025 if (shader->selector->info.uses_block_size)
5026 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
5027
5028 for (i = 0; i < 3; i++) {
5029 ctx->abi.workgroup_ids[i] = NULL;
5030 if (shader->selector->info.uses_block_id[i])
5031 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
5032 }
5033
5034 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
5035 break;
5036 default:
5037 assert(0 && "unimplemented shader");
5038 return;
5039 }
5040
5041 si_create_function(ctx, "main", returns, num_returns, &fninfo,
5042 si_get_max_workgroup_size(shader));
5043
5044 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5045 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
5046 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
5047 "InitialPSInputAddr",
5048 S_0286D0_PERSP_SAMPLE_ENA(1) |
5049 S_0286D0_PERSP_CENTER_ENA(1) |
5050 S_0286D0_PERSP_CENTROID_ENA(1) |
5051 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5052 S_0286D0_LINEAR_CENTER_ENA(1) |
5053 S_0286D0_LINEAR_CENTROID_ENA(1) |
5054 S_0286D0_FRONT_FACE_ENA(1) |
5055 S_0286D0_ANCILLARY_ENA(1) |
5056 S_0286D0_POS_FIXED_PT_ENA(1));
5057 }
5058
5059 shader->info.num_input_sgprs = 0;
5060 shader->info.num_input_vgprs = 0;
5061
5062 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5063 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5064
5065 for (; i < fninfo.num_params; ++i)
5066 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5067
5068 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5069 shader->info.num_input_vgprs -= num_prolog_vgprs;
5070
5071 if (shader->key.as_ls ||
5072 ctx->type == PIPE_SHADER_TESS_CTRL ||
5073 /* GFX9 has the ESGS ring buffer in LDS. */
5074 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5075 ac_declare_lds_as_pointer(&ctx->ac);
5076 }
5077
5078 /**
5079 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5080 * for later use.
5081 */
5082 static void preload_ring_buffers(struct si_shader_context *ctx)
5083 {
5084 LLVMBuilderRef builder = ctx->ac.builder;
5085
5086 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5087 ctx->param_rw_buffers);
5088
5089 if (ctx->screen->info.chip_class <= VI &&
5090 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5091 unsigned ring =
5092 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5093 : SI_ES_RING_ESGS;
5094 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5095
5096 ctx->esgs_ring =
5097 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5098 }
5099
5100 if (ctx->shader->is_gs_copy_shader) {
5101 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5102
5103 ctx->gsvs_ring[0] =
5104 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5105 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5106 const struct si_shader_selector *sel = ctx->shader->selector;
5107 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5108 LLVMValueRef base_ring;
5109
5110 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5111
5112 /* The conceptual layout of the GSVS ring is
5113 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5114 * but the real memory layout is swizzled across
5115 * threads:
5116 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5117 * t16v0c0 ..
5118 * Override the buffer descriptor accordingly.
5119 */
5120 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5121 uint64_t stream_offset = 0;
5122
5123 for (unsigned stream = 0; stream < 4; ++stream) {
5124 unsigned num_components;
5125 unsigned stride;
5126 unsigned num_records;
5127 LLVMValueRef ring, tmp;
5128
5129 num_components = sel->info.num_stream_output_components[stream];
5130 if (!num_components)
5131 continue;
5132
5133 stride = 4 * num_components * sel->gs_max_out_vertices;
5134
5135 /* Limit on the stride field for <= CIK. */
5136 assert(stride < (1 << 14));
5137
5138 num_records = 64;
5139
5140 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5141 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5142 tmp = LLVMBuildAdd(builder, tmp,
5143 LLVMConstInt(ctx->i64,
5144 stream_offset, 0), "");
5145 stream_offset += stride * 64;
5146
5147 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5148 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5149 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5150 tmp = LLVMBuildOr(builder, tmp,
5151 LLVMConstInt(ctx->i32,
5152 S_008F04_STRIDE(stride) |
5153 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5154 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5155 ring = LLVMBuildInsertElement(builder, ring,
5156 LLVMConstInt(ctx->i32, num_records, 0),
5157 LLVMConstInt(ctx->i32, 2, 0), "");
5158 ring = LLVMBuildInsertElement(builder, ring,
5159 LLVMConstInt(ctx->i32,
5160 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5161 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5162 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5163 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5164 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5165 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5166 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5167 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5168 S_008F0C_ADD_TID_ENABLE(1),
5169 0),
5170 LLVMConstInt(ctx->i32, 3, 0), "");
5171
5172 ctx->gsvs_ring[stream] = ring;
5173 }
5174 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5175 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5176 }
5177 }
5178
5179 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5180 LLVMValueRef param_rw_buffers,
5181 unsigned param_pos_fixed_pt)
5182 {
5183 LLVMBuilderRef builder = ctx->ac.builder;
5184 LLVMValueRef slot, desc, offset, row, bit, address[2];
5185
5186 /* Use the fixed-point gl_FragCoord input.
5187 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5188 * per coordinate to get the repeating effect.
5189 */
5190 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5191 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5192
5193 /* Load the buffer descriptor. */
5194 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5195 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5196
5197 /* The stipple pattern is 32x32, each row has 32 bits. */
5198 offset = LLVMBuildMul(builder, address[1],
5199 LLVMConstInt(ctx->i32, 4, 0), "");
5200 row = buffer_load_const(ctx, desc, offset);
5201 row = ac_to_integer(&ctx->ac, row);
5202 bit = LLVMBuildLShr(builder, row, address[0], "");
5203 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5204 ac_build_kill_if_false(&ctx->ac, bit);
5205 }
5206
5207 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5208 struct si_shader_config *conf,
5209 unsigned symbol_offset)
5210 {
5211 unsigned i;
5212 const unsigned char *config =
5213 ac_shader_binary_config_start(binary, symbol_offset);
5214 bool really_needs_scratch = false;
5215
5216 /* LLVM adds SGPR spills to the scratch size.
5217 * Find out if we really need the scratch buffer.
5218 */
5219 for (i = 0; i < binary->reloc_count; i++) {
5220 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5221
5222 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5223 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5224 really_needs_scratch = true;
5225 break;
5226 }
5227 }
5228
5229 /* XXX: We may be able to emit some of these values directly rather than
5230 * extracting fields to be emitted later.
5231 */
5232
5233 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5234 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5235 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5236 switch (reg) {
5237 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5238 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5239 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5240 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5241 case R_00B848_COMPUTE_PGM_RSRC1:
5242 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5243 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5244 conf->float_mode = G_00B028_FLOAT_MODE(value);
5245 conf->rsrc1 = value;
5246 break;
5247 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5248 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5249 break;
5250 case R_00B84C_COMPUTE_PGM_RSRC2:
5251 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5252 conf->rsrc2 = value;
5253 break;
5254 case R_0286CC_SPI_PS_INPUT_ENA:
5255 conf->spi_ps_input_ena = value;
5256 break;
5257 case R_0286D0_SPI_PS_INPUT_ADDR:
5258 conf->spi_ps_input_addr = value;
5259 break;
5260 case R_0286E8_SPI_TMPRING_SIZE:
5261 case R_00B860_COMPUTE_TMPRING_SIZE:
5262 /* WAVESIZE is in units of 256 dwords. */
5263 if (really_needs_scratch)
5264 conf->scratch_bytes_per_wave =
5265 G_00B860_WAVESIZE(value) * 256 * 4;
5266 break;
5267 case 0x4: /* SPILLED_SGPRS */
5268 conf->spilled_sgprs = value;
5269 break;
5270 case 0x8: /* SPILLED_VGPRS */
5271 conf->spilled_vgprs = value;
5272 break;
5273 default:
5274 {
5275 static bool printed;
5276
5277 if (!printed) {
5278 fprintf(stderr, "Warning: LLVM emitted unknown "
5279 "config register: 0x%x\n", reg);
5280 printed = true;
5281 }
5282 }
5283 break;
5284 }
5285 }
5286
5287 if (!conf->spi_ps_input_addr)
5288 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5289 }
5290
5291 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5292 uint64_t scratch_va)
5293 {
5294 unsigned i;
5295 uint32_t scratch_rsrc_dword0 = scratch_va;
5296 uint32_t scratch_rsrc_dword1 =
5297 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5298
5299 /* Enable scratch coalescing. */
5300 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5301
5302 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5303 const struct ac_shader_reloc *reloc =
5304 &shader->binary.relocs[i];
5305 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5306 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5307 &scratch_rsrc_dword0, 4);
5308 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5309 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5310 &scratch_rsrc_dword1, 4);
5311 }
5312 }
5313 }
5314
5315 /* For the UMR disassembler. */
5316 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5317 #define DEBUGGER_NUM_MARKERS 5
5318
5319 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5320 {
5321 unsigned size = shader->binary.code_size;
5322
5323 if (shader->prolog)
5324 size += shader->prolog->binary.code_size;
5325 if (shader->previous_stage)
5326 size += shader->previous_stage->binary.code_size;
5327 if (shader->prolog2)
5328 size += shader->prolog2->binary.code_size;
5329 if (shader->epilog)
5330 size += shader->epilog->binary.code_size;
5331 return size + DEBUGGER_NUM_MARKERS * 4;
5332 }
5333
5334 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5335 {
5336 const struct ac_shader_binary *prolog =
5337 shader->prolog ? &shader->prolog->binary : NULL;
5338 const struct ac_shader_binary *previous_stage =
5339 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5340 const struct ac_shader_binary *prolog2 =
5341 shader->prolog2 ? &shader->prolog2->binary : NULL;
5342 const struct ac_shader_binary *epilog =
5343 shader->epilog ? &shader->epilog->binary : NULL;
5344 const struct ac_shader_binary *mainb = &shader->binary;
5345 unsigned bo_size = si_get_shader_binary_size(shader) +
5346 (!epilog ? mainb->rodata_size : 0);
5347 unsigned char *ptr;
5348
5349 assert(!prolog || !prolog->rodata_size);
5350 assert(!previous_stage || !previous_stage->rodata_size);
5351 assert(!prolog2 || !prolog2->rodata_size);
5352 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5353 !mainb->rodata_size);
5354 assert(!epilog || !epilog->rodata_size);
5355
5356 r600_resource_reference(&shader->bo, NULL);
5357 shader->bo = si_aligned_buffer_create(&sscreen->b,
5358 sscreen->cpdma_prefetch_writes_memory ?
5359 0 : SI_RESOURCE_FLAG_READ_ONLY,
5360 PIPE_USAGE_IMMUTABLE,
5361 align(bo_size, SI_CPDMA_ALIGNMENT),
5362 256);
5363 if (!shader->bo)
5364 return -ENOMEM;
5365
5366 /* Upload. */
5367 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5368 PIPE_TRANSFER_READ_WRITE |
5369 PIPE_TRANSFER_UNSYNCHRONIZED);
5370
5371 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5372 * endian-independent. */
5373 if (prolog) {
5374 memcpy(ptr, prolog->code, prolog->code_size);
5375 ptr += prolog->code_size;
5376 }
5377 if (previous_stage) {
5378 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5379 ptr += previous_stage->code_size;
5380 }
5381 if (prolog2) {
5382 memcpy(ptr, prolog2->code, prolog2->code_size);
5383 ptr += prolog2->code_size;
5384 }
5385
5386 memcpy(ptr, mainb->code, mainb->code_size);
5387 ptr += mainb->code_size;
5388
5389 if (epilog) {
5390 memcpy(ptr, epilog->code, epilog->code_size);
5391 ptr += epilog->code_size;
5392 } else if (mainb->rodata_size > 0) {
5393 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5394 ptr += mainb->rodata_size;
5395 }
5396
5397 /* Add end-of-code markers for the UMR disassembler. */
5398 uint32_t *ptr32 = (uint32_t*)ptr;
5399 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
5400 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
5401
5402 sscreen->ws->buffer_unmap(shader->bo->buf);
5403 return 0;
5404 }
5405
5406 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5407 struct pipe_debug_callback *debug,
5408 const char *name, FILE *file)
5409 {
5410 char *line, *p;
5411 unsigned i, count;
5412
5413 if (binary->disasm_string) {
5414 fprintf(file, "Shader %s disassembly:\n", name);
5415 fprintf(file, "%s", binary->disasm_string);
5416
5417 if (debug && debug->debug_message) {
5418 /* Very long debug messages are cut off, so send the
5419 * disassembly one line at a time. This causes more
5420 * overhead, but on the plus side it simplifies
5421 * parsing of resulting logs.
5422 */
5423 pipe_debug_message(debug, SHADER_INFO,
5424 "Shader Disassembly Begin");
5425
5426 line = binary->disasm_string;
5427 while (*line) {
5428 p = util_strchrnul(line, '\n');
5429 count = p - line;
5430
5431 if (count) {
5432 pipe_debug_message(debug, SHADER_INFO,
5433 "%.*s", count, line);
5434 }
5435
5436 if (!*p)
5437 break;
5438 line = p + 1;
5439 }
5440
5441 pipe_debug_message(debug, SHADER_INFO,
5442 "Shader Disassembly End");
5443 }
5444 } else {
5445 fprintf(file, "Shader %s binary:\n", name);
5446 for (i = 0; i < binary->code_size; i += 4) {
5447 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5448 binary->code[i + 3], binary->code[i + 2],
5449 binary->code[i + 1], binary->code[i]);
5450 }
5451 }
5452 }
5453
5454 static void si_calculate_max_simd_waves(struct si_shader *shader)
5455 {
5456 struct si_screen *sscreen = shader->selector->screen;
5457 struct si_shader_config *conf = &shader->config;
5458 unsigned num_inputs = shader->selector->info.num_inputs;
5459 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5460 unsigned lds_per_wave = 0;
5461 unsigned max_simd_waves;
5462
5463 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5464
5465 /* Compute LDS usage for PS. */
5466 switch (shader->selector->type) {
5467 case PIPE_SHADER_FRAGMENT:
5468 /* The minimum usage per wave is (num_inputs * 48). The maximum
5469 * usage is (num_inputs * 48 * 16).
5470 * We can get anything in between and it varies between waves.
5471 *
5472 * The 48 bytes per input for a single primitive is equal to
5473 * 4 bytes/component * 4 components/input * 3 points.
5474 *
5475 * Other stages don't know the size at compile time or don't
5476 * allocate LDS per wave, but instead they do it per thread group.
5477 */
5478 lds_per_wave = conf->lds_size * lds_increment +
5479 align(num_inputs * 48, lds_increment);
5480 break;
5481 case PIPE_SHADER_COMPUTE:
5482 if (shader->selector) {
5483 unsigned max_workgroup_size =
5484 si_get_max_workgroup_size(shader);
5485 lds_per_wave = (conf->lds_size * lds_increment) /
5486 DIV_ROUND_UP(max_workgroup_size, 64);
5487 }
5488 break;
5489 }
5490
5491 /* Compute the per-SIMD wave counts. */
5492 if (conf->num_sgprs) {
5493 if (sscreen->info.chip_class >= VI)
5494 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5495 else
5496 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5497 }
5498
5499 if (conf->num_vgprs)
5500 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5501
5502 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5503 * 16KB makes some SIMDs unoccupied). */
5504 if (lds_per_wave)
5505 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5506
5507 conf->max_simd_waves = max_simd_waves;
5508 }
5509
5510 void si_shader_dump_stats_for_shader_db(const struct si_shader *shader,
5511 struct pipe_debug_callback *debug)
5512 {
5513 const struct si_shader_config *conf = &shader->config;
5514
5515 pipe_debug_message(debug, SHADER_INFO,
5516 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5517 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5518 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5519 conf->num_sgprs, conf->num_vgprs,
5520 si_get_shader_binary_size(shader),
5521 conf->lds_size, conf->scratch_bytes_per_wave,
5522 conf->max_simd_waves, conf->spilled_sgprs,
5523 conf->spilled_vgprs, conf->private_mem_vgprs);
5524 }
5525
5526 static void si_shader_dump_stats(struct si_screen *sscreen,
5527 const struct si_shader *shader,
5528 unsigned processor,
5529 FILE *file,
5530 bool check_debug_option)
5531 {
5532 const struct si_shader_config *conf = &shader->config;
5533
5534 if (!check_debug_option ||
5535 si_can_dump_shader(sscreen, processor)) {
5536 if (processor == PIPE_SHADER_FRAGMENT) {
5537 fprintf(file, "*** SHADER CONFIG ***\n"
5538 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5539 "SPI_PS_INPUT_ENA = 0x%04x\n",
5540 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5541 }
5542
5543 fprintf(file, "*** SHADER STATS ***\n"
5544 "SGPRS: %d\n"
5545 "VGPRS: %d\n"
5546 "Spilled SGPRs: %d\n"
5547 "Spilled VGPRs: %d\n"
5548 "Private memory VGPRs: %d\n"
5549 "Code Size: %d bytes\n"
5550 "LDS: %d blocks\n"
5551 "Scratch: %d bytes per wave\n"
5552 "Max Waves: %d\n"
5553 "********************\n\n\n",
5554 conf->num_sgprs, conf->num_vgprs,
5555 conf->spilled_sgprs, conf->spilled_vgprs,
5556 conf->private_mem_vgprs,
5557 si_get_shader_binary_size(shader),
5558 conf->lds_size, conf->scratch_bytes_per_wave,
5559 conf->max_simd_waves);
5560 }
5561 }
5562
5563 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5564 {
5565 switch (processor) {
5566 case PIPE_SHADER_VERTEX:
5567 if (shader->key.as_es)
5568 return "Vertex Shader as ES";
5569 else if (shader->key.as_ls)
5570 return "Vertex Shader as LS";
5571 else
5572 return "Vertex Shader as VS";
5573 case PIPE_SHADER_TESS_CTRL:
5574 return "Tessellation Control Shader";
5575 case PIPE_SHADER_TESS_EVAL:
5576 if (shader->key.as_es)
5577 return "Tessellation Evaluation Shader as ES";
5578 else
5579 return "Tessellation Evaluation Shader as VS";
5580 case PIPE_SHADER_GEOMETRY:
5581 if (shader->is_gs_copy_shader)
5582 return "GS Copy Shader as VS";
5583 else
5584 return "Geometry Shader";
5585 case PIPE_SHADER_FRAGMENT:
5586 return "Pixel Shader";
5587 case PIPE_SHADER_COMPUTE:
5588 return "Compute Shader";
5589 default:
5590 return "Unknown Shader";
5591 }
5592 }
5593
5594 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5595 struct pipe_debug_callback *debug, unsigned processor,
5596 FILE *file, bool check_debug_option)
5597 {
5598 if (!check_debug_option ||
5599 si_can_dump_shader(sscreen, processor))
5600 si_dump_shader_key(processor, shader, file);
5601
5602 if (!check_debug_option && shader->binary.llvm_ir_string) {
5603 if (shader->previous_stage &&
5604 shader->previous_stage->binary.llvm_ir_string) {
5605 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5606 si_get_shader_name(shader, processor));
5607 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5608 }
5609
5610 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5611 si_get_shader_name(shader, processor));
5612 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5613 }
5614
5615 if (!check_debug_option ||
5616 (si_can_dump_shader(sscreen, processor) &&
5617 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5618 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5619
5620 if (shader->prolog)
5621 si_shader_dump_disassembly(&shader->prolog->binary,
5622 debug, "prolog", file);
5623 if (shader->previous_stage)
5624 si_shader_dump_disassembly(&shader->previous_stage->binary,
5625 debug, "previous stage", file);
5626 if (shader->prolog2)
5627 si_shader_dump_disassembly(&shader->prolog2->binary,
5628 debug, "prolog2", file);
5629
5630 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5631
5632 if (shader->epilog)
5633 si_shader_dump_disassembly(&shader->epilog->binary,
5634 debug, "epilog", file);
5635 fprintf(file, "\n");
5636 }
5637
5638 si_shader_dump_stats(sscreen, shader, processor, file,
5639 check_debug_option);
5640 }
5641
5642 static int si_compile_llvm(struct si_screen *sscreen,
5643 struct ac_shader_binary *binary,
5644 struct si_shader_config *conf,
5645 struct si_compiler *compiler,
5646 LLVMModuleRef mod,
5647 struct pipe_debug_callback *debug,
5648 unsigned processor,
5649 const char *name)
5650 {
5651 int r = 0;
5652 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5653
5654 if (si_can_dump_shader(sscreen, processor)) {
5655 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5656
5657 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5658 fprintf(stderr, "%s LLVM IR:\n\n", name);
5659 ac_dump_module(mod);
5660 fprintf(stderr, "\n");
5661 }
5662 }
5663
5664 if (sscreen->record_llvm_ir) {
5665 char *ir = LLVMPrintModuleToString(mod);
5666 binary->llvm_ir_string = strdup(ir);
5667 LLVMDisposeMessage(ir);
5668 }
5669
5670 if (!si_replace_shader(count, binary)) {
5671 r = si_llvm_compile(mod, binary, compiler, debug);
5672 if (r)
5673 return r;
5674 }
5675
5676 si_shader_binary_read_config(binary, conf, 0);
5677
5678 /* Enable 64-bit and 16-bit denormals, because there is no performance
5679 * cost.
5680 *
5681 * If denormals are enabled, all floating-point output modifiers are
5682 * ignored.
5683 *
5684 * Don't enable denormals for 32-bit floats, because:
5685 * - Floating-point output modifiers would be ignored by the hw.
5686 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5687 * have to stop using those.
5688 * - SI & CI would be very slow.
5689 */
5690 conf->float_mode |= V_00B028_FP_64_DENORMS;
5691
5692 FREE(binary->config);
5693 FREE(binary->global_symbol_offsets);
5694 binary->config = NULL;
5695 binary->global_symbol_offsets = NULL;
5696
5697 /* Some shaders can't have rodata because their binaries can be
5698 * concatenated.
5699 */
5700 if (binary->rodata_size &&
5701 (processor == PIPE_SHADER_VERTEX ||
5702 processor == PIPE_SHADER_TESS_CTRL ||
5703 processor == PIPE_SHADER_TESS_EVAL ||
5704 processor == PIPE_SHADER_FRAGMENT)) {
5705 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5706 return -EINVAL;
5707 }
5708
5709 return r;
5710 }
5711
5712 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5713 {
5714 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5715 LLVMBuildRetVoid(ctx->ac.builder);
5716 else
5717 LLVMBuildRet(ctx->ac.builder, ret);
5718 }
5719
5720 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5721 struct si_shader *
5722 si_generate_gs_copy_shader(struct si_screen *sscreen,
5723 struct si_compiler *compiler,
5724 struct si_shader_selector *gs_selector,
5725 struct pipe_debug_callback *debug)
5726 {
5727 struct si_shader_context ctx;
5728 struct si_shader *shader;
5729 LLVMBuilderRef builder;
5730 struct si_shader_output_values *outputs;
5731 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5732 int i, r;
5733
5734 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
5735
5736 if (!outputs)
5737 return NULL;
5738
5739 shader = CALLOC_STRUCT(si_shader);
5740 if (!shader) {
5741 FREE(outputs);
5742 return NULL;
5743 }
5744
5745 /* We can leave the fence as permanently signaled because the GS copy
5746 * shader only becomes visible globally after it has been compiled. */
5747 util_queue_fence_init(&shader->ready);
5748
5749 shader->selector = gs_selector;
5750 shader->is_gs_copy_shader = true;
5751
5752 si_init_shader_ctx(&ctx, sscreen, compiler);
5753 ctx.shader = shader;
5754 ctx.type = PIPE_SHADER_VERTEX;
5755
5756 builder = ctx.ac.builder;
5757
5758 create_function(&ctx);
5759 preload_ring_buffers(&ctx);
5760
5761 LLVMValueRef voffset =
5762 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5763 LLVMConstInt(ctx.i32, 4, 0), "");
5764
5765 /* Fetch the vertex stream ID.*/
5766 LLVMValueRef stream_id;
5767
5768 if (gs_selector->so.num_outputs)
5769 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5770 else
5771 stream_id = ctx.i32_0;
5772
5773 /* Fill in output information. */
5774 for (i = 0; i < gsinfo->num_outputs; ++i) {
5775 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5776 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5777
5778 for (int chan = 0; chan < 4; chan++) {
5779 outputs[i].vertex_stream[chan] =
5780 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5781 }
5782 }
5783
5784 LLVMBasicBlockRef end_bb;
5785 LLVMValueRef switch_inst;
5786
5787 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5788 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5789
5790 for (int stream = 0; stream < 4; stream++) {
5791 LLVMBasicBlockRef bb;
5792 unsigned offset;
5793
5794 if (!gsinfo->num_stream_output_components[stream])
5795 continue;
5796
5797 if (stream > 0 && !gs_selector->so.num_outputs)
5798 continue;
5799
5800 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5801 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5802 LLVMPositionBuilderAtEnd(builder, bb);
5803
5804 /* Fetch vertex data from GSVS ring */
5805 offset = 0;
5806 for (i = 0; i < gsinfo->num_outputs; ++i) {
5807 for (unsigned chan = 0; chan < 4; chan++) {
5808 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5809 outputs[i].vertex_stream[chan] != stream) {
5810 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5811 continue;
5812 }
5813
5814 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5815 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5816 offset++;
5817
5818 outputs[i].values[chan] =
5819 ac_build_buffer_load(&ctx.ac,
5820 ctx.gsvs_ring[0], 1,
5821 ctx.i32_0, voffset,
5822 soffset, 0, 1, 1,
5823 true, false);
5824 }
5825 }
5826
5827 /* Streamout and exports. */
5828 if (gs_selector->so.num_outputs) {
5829 si_llvm_emit_streamout(&ctx, outputs,
5830 gsinfo->num_outputs,
5831 stream);
5832 }
5833
5834 if (stream == 0)
5835 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5836
5837 LLVMBuildBr(builder, end_bb);
5838 }
5839
5840 LLVMPositionBuilderAtEnd(builder, end_bb);
5841
5842 LLVMBuildRetVoid(ctx.ac.builder);
5843
5844 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5845 si_llvm_optimize_module(&ctx);
5846
5847 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5848 &ctx.shader->config, ctx.compiler,
5849 ctx.ac.module,
5850 debug, PIPE_SHADER_GEOMETRY,
5851 "GS Copy Shader");
5852 if (!r) {
5853 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5854 fprintf(stderr, "GS Copy Shader:\n");
5855 si_shader_dump(sscreen, ctx.shader, debug,
5856 PIPE_SHADER_GEOMETRY, stderr, true);
5857 r = si_shader_binary_upload(sscreen, ctx.shader);
5858 }
5859
5860 si_llvm_dispose(&ctx);
5861
5862 FREE(outputs);
5863
5864 if (r != 0) {
5865 FREE(shader);
5866 shader = NULL;
5867 }
5868 return shader;
5869 }
5870
5871 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5872 const struct si_vs_prolog_bits *prolog,
5873 const char *prefix, FILE *f)
5874 {
5875 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5876 prefix, prolog->instance_divisor_is_one);
5877 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5878 prefix, prolog->instance_divisor_is_fetched);
5879 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5880 prefix, prolog->ls_vgpr_fix);
5881
5882 fprintf(f, " mono.vs.fix_fetch = {");
5883 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5884 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5885 fprintf(f, "}\n");
5886 }
5887
5888 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5889 FILE *f)
5890 {
5891 const struct si_shader_key *key = &shader->key;
5892
5893 fprintf(f, "SHADER KEY\n");
5894
5895 switch (processor) {
5896 case PIPE_SHADER_VERTEX:
5897 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5898 "part.vs.prolog", f);
5899 fprintf(f, " as_es = %u\n", key->as_es);
5900 fprintf(f, " as_ls = %u\n", key->as_ls);
5901 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5902 key->mono.u.vs_export_prim_id);
5903 break;
5904
5905 case PIPE_SHADER_TESS_CTRL:
5906 if (shader->selector->screen->info.chip_class >= GFX9) {
5907 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5908 "part.tcs.ls_prolog", f);
5909 }
5910 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5911 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5912 break;
5913
5914 case PIPE_SHADER_TESS_EVAL:
5915 fprintf(f, " as_es = %u\n", key->as_es);
5916 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5917 key->mono.u.vs_export_prim_id);
5918 break;
5919
5920 case PIPE_SHADER_GEOMETRY:
5921 if (shader->is_gs_copy_shader)
5922 break;
5923
5924 if (shader->selector->screen->info.chip_class >= GFX9 &&
5925 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5926 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5927 "part.gs.vs_prolog", f);
5928 }
5929 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5930 break;
5931
5932 case PIPE_SHADER_COMPUTE:
5933 break;
5934
5935 case PIPE_SHADER_FRAGMENT:
5936 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5937 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5938 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5939 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5940 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5941 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5942 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5943 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5944 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5945 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5946 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5947 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5948 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5949 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5950 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5951 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5952 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5953 break;
5954
5955 default:
5956 assert(0);
5957 }
5958
5959 if ((processor == PIPE_SHADER_GEOMETRY ||
5960 processor == PIPE_SHADER_TESS_EVAL ||
5961 processor == PIPE_SHADER_VERTEX) &&
5962 !key->as_es && !key->as_ls) {
5963 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5964 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5965 }
5966 }
5967
5968 static void si_init_shader_ctx(struct si_shader_context *ctx,
5969 struct si_screen *sscreen,
5970 struct si_compiler *compiler)
5971 {
5972 struct lp_build_tgsi_context *bld_base;
5973
5974 si_llvm_context_init(ctx, sscreen, compiler);
5975
5976 bld_base = &ctx->bld_base;
5977 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5978
5979 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
5980 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
5981 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
5982
5983 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5984
5985 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5986
5987 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5988 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5989 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5990 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5991
5992 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5993 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5994 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5995 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5996 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5997 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5998 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5999 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
6000 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6001
6002 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6003 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6004 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6005 }
6006
6007 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6008 {
6009 struct si_shader *shader = ctx->shader;
6010 struct tgsi_shader_info *info = &shader->selector->info;
6011
6012 if ((ctx->type != PIPE_SHADER_VERTEX &&
6013 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6014 shader->key.as_ls ||
6015 shader->key.as_es)
6016 return;
6017
6018 ac_optimize_vs_outputs(&ctx->ac,
6019 ctx->main_fn,
6020 shader->info.vs_output_param_offset,
6021 info->num_outputs,
6022 &shader->info.nr_param_exports);
6023 }
6024
6025 static void si_init_exec_from_input(struct si_shader_context *ctx,
6026 unsigned param, unsigned bitoffset)
6027 {
6028 LLVMValueRef args[] = {
6029 LLVMGetParam(ctx->main_fn, param),
6030 LLVMConstInt(ctx->i32, bitoffset, 0),
6031 };
6032 ac_build_intrinsic(&ctx->ac,
6033 "llvm.amdgcn.init.exec.from.input",
6034 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6035 }
6036
6037 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6038 const struct si_vs_prolog_bits *key)
6039 {
6040 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6041 * VS prolog. */
6042 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6043 }
6044
6045 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6046 {
6047 struct si_shader *shader = ctx->shader;
6048 struct si_shader_selector *sel = shader->selector;
6049 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6050
6051 // TODO clean all this up!
6052 switch (ctx->type) {
6053 case PIPE_SHADER_VERTEX:
6054 ctx->load_input = declare_input_vs;
6055 if (shader->key.as_ls)
6056 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6057 else if (shader->key.as_es)
6058 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6059 else
6060 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6061 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6062 ctx->abi.load_base_vertex = get_base_vertex;
6063 break;
6064 case PIPE_SHADER_TESS_CTRL:
6065 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6066 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6067 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6068 bld_base->emit_store = store_output_tcs;
6069 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6070 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6071 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6072 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6073 break;
6074 case PIPE_SHADER_TESS_EVAL:
6075 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6076 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6077 ctx->abi.load_tess_coord = si_load_tess_coord;
6078 ctx->abi.load_tess_level = si_load_tess_level;
6079 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6080 if (shader->key.as_es)
6081 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6082 else
6083 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6084 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6085 break;
6086 case PIPE_SHADER_GEOMETRY:
6087 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6088 ctx->abi.load_inputs = si_nir_load_input_gs;
6089 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6090 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6091 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6092 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6093 break;
6094 case PIPE_SHADER_FRAGMENT:
6095 ctx->load_input = declare_input_fs;
6096 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6097 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6098 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6099 ctx->abi.load_sample_position = load_sample_position;
6100 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6101 ctx->abi.emit_kill = si_llvm_emit_kill;
6102 break;
6103 case PIPE_SHADER_COMPUTE:
6104 ctx->abi.load_local_group_size = get_block_size;
6105 break;
6106 default:
6107 assert(!"Unsupported shader type");
6108 return false;
6109 }
6110
6111 ctx->abi.load_ubo = load_ubo;
6112 ctx->abi.load_ssbo = load_ssbo;
6113
6114 create_function(ctx);
6115 preload_ring_buffers(ctx);
6116
6117 /* For GFX9 merged shaders:
6118 * - Set EXEC for the first shader. If the prolog is present, set
6119 * EXEC there instead.
6120 * - Add a barrier before the second shader.
6121 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6122 * an if-statement. This is required for correctness in geometry
6123 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6124 * GS_CUT messages.
6125 *
6126 * For monolithic merged shaders, the first shader is wrapped in an
6127 * if-block together with its prolog in si_build_wrapper_function.
6128 */
6129 if (ctx->screen->info.chip_class >= GFX9) {
6130 if (!shader->is_monolithic &&
6131 sel->info.num_instructions > 1 && /* not empty shader */
6132 (shader->key.as_es || shader->key.as_ls) &&
6133 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6134 (ctx->type == PIPE_SHADER_VERTEX &&
6135 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6136 si_init_exec_from_input(ctx,
6137 ctx->param_merged_wave_info, 0);
6138 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6139 ctx->type == PIPE_SHADER_GEOMETRY) {
6140 if (!shader->is_monolithic)
6141 ac_init_exec_full_mask(&ctx->ac);
6142
6143 /* The barrier must execute for all shaders in a
6144 * threadgroup.
6145 */
6146 si_llvm_emit_barrier(NULL, bld_base, NULL);
6147
6148 LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6149 LLVMValueRef ena =
6150 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6151 ac_get_thread_id(&ctx->ac), num_threads, "");
6152 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6153 }
6154 }
6155
6156 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6157 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6158 for (unsigned i = 0; i < 6; i++) {
6159 ctx->invoc0_tess_factors[i] =
6160 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6161 }
6162 }
6163
6164 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6165 int i;
6166 for (i = 0; i < 4; i++) {
6167 ctx->gs_next_vertex[i] =
6168 ac_build_alloca(&ctx->ac, ctx->i32, "");
6169 }
6170 }
6171
6172 if (sel->force_correct_derivs_after_kill) {
6173 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6174 /* true = don't kill. */
6175 LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6176 ctx->postponed_kill);
6177 }
6178
6179 if (sel->tokens) {
6180 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6181 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6182 return false;
6183 }
6184 } else {
6185 if (!si_nir_build_llvm(ctx, sel->nir)) {
6186 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6187 return false;
6188 }
6189 }
6190
6191 si_llvm_build_ret(ctx, ctx->return_value);
6192 return true;
6193 }
6194
6195 /**
6196 * Compute the VS prolog key, which contains all the information needed to
6197 * build the VS prolog function, and set shader->info bits where needed.
6198 *
6199 * \param info Shader info of the vertex shader.
6200 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6201 * \param prolog_key Key of the VS prolog
6202 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6203 * \param key Output shader part key.
6204 */
6205 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6206 unsigned num_input_sgprs,
6207 const struct si_vs_prolog_bits *prolog_key,
6208 struct si_shader *shader_out,
6209 union si_shader_part_key *key)
6210 {
6211 memset(key, 0, sizeof(*key));
6212 key->vs_prolog.states = *prolog_key;
6213 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6214 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6215 key->vs_prolog.as_ls = shader_out->key.as_ls;
6216 key->vs_prolog.as_es = shader_out->key.as_es;
6217
6218 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6219 key->vs_prolog.as_ls = 1;
6220 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6221 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6222 key->vs_prolog.as_es = 1;
6223 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6224 }
6225
6226 /* Enable loading the InstanceID VGPR. */
6227 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6228
6229 if ((key->vs_prolog.states.instance_divisor_is_one |
6230 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6231 shader_out->info.uses_instanceid = true;
6232 }
6233
6234 /**
6235 * Compute the PS prolog key, which contains all the information needed to
6236 * build the PS prolog function, and set related bits in shader->config.
6237 */
6238 static void si_get_ps_prolog_key(struct si_shader *shader,
6239 union si_shader_part_key *key,
6240 bool separate_prolog)
6241 {
6242 struct tgsi_shader_info *info = &shader->selector->info;
6243
6244 memset(key, 0, sizeof(*key));
6245 key->ps_prolog.states = shader->key.part.ps.prolog;
6246 key->ps_prolog.colors_read = info->colors_read;
6247 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6248 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6249 key->ps_prolog.wqm = info->uses_derivatives &&
6250 (key->ps_prolog.colors_read ||
6251 key->ps_prolog.states.force_persp_sample_interp ||
6252 key->ps_prolog.states.force_linear_sample_interp ||
6253 key->ps_prolog.states.force_persp_center_interp ||
6254 key->ps_prolog.states.force_linear_center_interp ||
6255 key->ps_prolog.states.bc_optimize_for_persp ||
6256 key->ps_prolog.states.bc_optimize_for_linear);
6257 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6258
6259 if (info->colors_read) {
6260 unsigned *color = shader->selector->color_attr_index;
6261
6262 if (shader->key.part.ps.prolog.color_two_side) {
6263 /* BCOLORs are stored after the last input. */
6264 key->ps_prolog.num_interp_inputs = info->num_inputs;
6265 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6266 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6267 }
6268
6269 for (unsigned i = 0; i < 2; i++) {
6270 unsigned interp = info->input_interpolate[color[i]];
6271 unsigned location = info->input_interpolate_loc[color[i]];
6272
6273 if (!(info->colors_read & (0xf << i*4)))
6274 continue;
6275
6276 key->ps_prolog.color_attr_index[i] = color[i];
6277
6278 if (shader->key.part.ps.prolog.flatshade_colors &&
6279 interp == TGSI_INTERPOLATE_COLOR)
6280 interp = TGSI_INTERPOLATE_CONSTANT;
6281
6282 switch (interp) {
6283 case TGSI_INTERPOLATE_CONSTANT:
6284 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6285 break;
6286 case TGSI_INTERPOLATE_PERSPECTIVE:
6287 case TGSI_INTERPOLATE_COLOR:
6288 /* Force the interpolation location for colors here. */
6289 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6290 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6291 if (shader->key.part.ps.prolog.force_persp_center_interp)
6292 location = TGSI_INTERPOLATE_LOC_CENTER;
6293
6294 switch (location) {
6295 case TGSI_INTERPOLATE_LOC_SAMPLE:
6296 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6297 shader->config.spi_ps_input_ena |=
6298 S_0286CC_PERSP_SAMPLE_ENA(1);
6299 break;
6300 case TGSI_INTERPOLATE_LOC_CENTER:
6301 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6302 shader->config.spi_ps_input_ena |=
6303 S_0286CC_PERSP_CENTER_ENA(1);
6304 break;
6305 case TGSI_INTERPOLATE_LOC_CENTROID:
6306 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6307 shader->config.spi_ps_input_ena |=
6308 S_0286CC_PERSP_CENTROID_ENA(1);
6309 break;
6310 default:
6311 assert(0);
6312 }
6313 break;
6314 case TGSI_INTERPOLATE_LINEAR:
6315 /* Force the interpolation location for colors here. */
6316 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6317 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6318 if (shader->key.part.ps.prolog.force_linear_center_interp)
6319 location = TGSI_INTERPOLATE_LOC_CENTER;
6320
6321 /* The VGPR assignment for non-monolithic shaders
6322 * works because InitialPSInputAddr is set on the
6323 * main shader and PERSP_PULL_MODEL is never used.
6324 */
6325 switch (location) {
6326 case TGSI_INTERPOLATE_LOC_SAMPLE:
6327 key->ps_prolog.color_interp_vgpr_index[i] =
6328 separate_prolog ? 6 : 9;
6329 shader->config.spi_ps_input_ena |=
6330 S_0286CC_LINEAR_SAMPLE_ENA(1);
6331 break;
6332 case TGSI_INTERPOLATE_LOC_CENTER:
6333 key->ps_prolog.color_interp_vgpr_index[i] =
6334 separate_prolog ? 8 : 11;
6335 shader->config.spi_ps_input_ena |=
6336 S_0286CC_LINEAR_CENTER_ENA(1);
6337 break;
6338 case TGSI_INTERPOLATE_LOC_CENTROID:
6339 key->ps_prolog.color_interp_vgpr_index[i] =
6340 separate_prolog ? 10 : 13;
6341 shader->config.spi_ps_input_ena |=
6342 S_0286CC_LINEAR_CENTROID_ENA(1);
6343 break;
6344 default:
6345 assert(0);
6346 }
6347 break;
6348 default:
6349 assert(0);
6350 }
6351 }
6352 }
6353 }
6354
6355 /**
6356 * Check whether a PS prolog is required based on the key.
6357 */
6358 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6359 {
6360 return key->ps_prolog.colors_read ||
6361 key->ps_prolog.states.force_persp_sample_interp ||
6362 key->ps_prolog.states.force_linear_sample_interp ||
6363 key->ps_prolog.states.force_persp_center_interp ||
6364 key->ps_prolog.states.force_linear_center_interp ||
6365 key->ps_prolog.states.bc_optimize_for_persp ||
6366 key->ps_prolog.states.bc_optimize_for_linear ||
6367 key->ps_prolog.states.poly_stipple ||
6368 key->ps_prolog.states.samplemask_log_ps_iter;
6369 }
6370
6371 /**
6372 * Compute the PS epilog key, which contains all the information needed to
6373 * build the PS epilog function.
6374 */
6375 static void si_get_ps_epilog_key(struct si_shader *shader,
6376 union si_shader_part_key *key)
6377 {
6378 struct tgsi_shader_info *info = &shader->selector->info;
6379 memset(key, 0, sizeof(*key));
6380 key->ps_epilog.colors_written = info->colors_written;
6381 key->ps_epilog.writes_z = info->writes_z;
6382 key->ps_epilog.writes_stencil = info->writes_stencil;
6383 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6384 key->ps_epilog.states = shader->key.part.ps.epilog;
6385 }
6386
6387 /**
6388 * Build the GS prolog function. Rotate the input vertices for triangle strips
6389 * with adjacency.
6390 */
6391 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6392 union si_shader_part_key *key)
6393 {
6394 unsigned num_sgprs, num_vgprs;
6395 struct si_function_info fninfo;
6396 LLVMBuilderRef builder = ctx->ac.builder;
6397 LLVMTypeRef returns[48];
6398 LLVMValueRef func, ret;
6399
6400 si_init_function_info(&fninfo);
6401
6402 if (ctx->screen->info.chip_class >= GFX9) {
6403 if (key->gs_prolog.states.gfx9_prev_is_vs)
6404 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6405 else
6406 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6407 num_vgprs = 5; /* ES inputs are not needed by GS */
6408 } else {
6409 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6410 num_vgprs = 8;
6411 }
6412
6413 for (unsigned i = 0; i < num_sgprs; ++i) {
6414 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6415 returns[i] = ctx->i32;
6416 }
6417
6418 for (unsigned i = 0; i < num_vgprs; ++i) {
6419 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6420 returns[num_sgprs + i] = ctx->f32;
6421 }
6422
6423 /* Create the function. */
6424 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6425 &fninfo, 0);
6426 func = ctx->main_fn;
6427
6428 /* Set the full EXEC mask for the prolog, because we are only fiddling
6429 * with registers here. The main shader part will set the correct EXEC
6430 * mask.
6431 */
6432 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6433 ac_init_exec_full_mask(&ctx->ac);
6434
6435 /* Copy inputs to outputs. This should be no-op, as the registers match,
6436 * but it will prevent the compiler from overwriting them unintentionally.
6437 */
6438 ret = ctx->return_value;
6439 for (unsigned i = 0; i < num_sgprs; i++) {
6440 LLVMValueRef p = LLVMGetParam(func, i);
6441 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6442 }
6443 for (unsigned i = 0; i < num_vgprs; i++) {
6444 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6445 p = ac_to_float(&ctx->ac, p);
6446 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6447 }
6448
6449 if (key->gs_prolog.states.tri_strip_adj_fix) {
6450 /* Remap the input vertices for every other primitive. */
6451 const unsigned gfx6_vtx_params[6] = {
6452 num_sgprs,
6453 num_sgprs + 1,
6454 num_sgprs + 3,
6455 num_sgprs + 4,
6456 num_sgprs + 5,
6457 num_sgprs + 6
6458 };
6459 const unsigned gfx9_vtx_params[3] = {
6460 num_sgprs,
6461 num_sgprs + 1,
6462 num_sgprs + 4,
6463 };
6464 LLVMValueRef vtx_in[6], vtx_out[6];
6465 LLVMValueRef prim_id, rotate;
6466
6467 if (ctx->screen->info.chip_class >= GFX9) {
6468 for (unsigned i = 0; i < 3; i++) {
6469 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6470 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6471 }
6472 } else {
6473 for (unsigned i = 0; i < 6; i++)
6474 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6475 }
6476
6477 prim_id = LLVMGetParam(func, num_sgprs + 2);
6478 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6479
6480 for (unsigned i = 0; i < 6; ++i) {
6481 LLVMValueRef base, rotated;
6482 base = vtx_in[i];
6483 rotated = vtx_in[(i + 4) % 6];
6484 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6485 }
6486
6487 if (ctx->screen->info.chip_class >= GFX9) {
6488 for (unsigned i = 0; i < 3; i++) {
6489 LLVMValueRef hi, out;
6490
6491 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6492 LLVMConstInt(ctx->i32, 16, 0), "");
6493 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6494 out = ac_to_float(&ctx->ac, out);
6495 ret = LLVMBuildInsertValue(builder, ret, out,
6496 gfx9_vtx_params[i], "");
6497 }
6498 } else {
6499 for (unsigned i = 0; i < 6; i++) {
6500 LLVMValueRef out;
6501
6502 out = ac_to_float(&ctx->ac, vtx_out[i]);
6503 ret = LLVMBuildInsertValue(builder, ret, out,
6504 gfx6_vtx_params[i], "");
6505 }
6506 }
6507 }
6508
6509 LLVMBuildRet(builder, ret);
6510 }
6511
6512 /**
6513 * Given a list of shader part functions, build a wrapper function that
6514 * runs them in sequence to form a monolithic shader.
6515 */
6516 static void si_build_wrapper_function(struct si_shader_context *ctx,
6517 LLVMValueRef *parts,
6518 unsigned num_parts,
6519 unsigned main_part,
6520 unsigned next_shader_first_part)
6521 {
6522 LLVMBuilderRef builder = ctx->ac.builder;
6523 /* PS epilog has one arg per color component; gfx9 merged shader
6524 * prologs need to forward 32 user SGPRs.
6525 */
6526 struct si_function_info fninfo;
6527 LLVMValueRef initial[64], out[64];
6528 LLVMTypeRef function_type;
6529 unsigned num_first_params;
6530 unsigned num_out, initial_num_out;
6531 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6532 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6533 unsigned num_sgprs, num_vgprs;
6534 unsigned gprs;
6535 struct lp_build_if_state if_state;
6536
6537 si_init_function_info(&fninfo);
6538
6539 for (unsigned i = 0; i < num_parts; ++i) {
6540 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6541 AC_FUNC_ATTR_ALWAYSINLINE);
6542 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6543 }
6544
6545 /* The parameters of the wrapper function correspond to those of the
6546 * first part in terms of SGPRs and VGPRs, but we use the types of the
6547 * main part to get the right types. This is relevant for the
6548 * dereferenceable attribute on descriptor table pointers.
6549 */
6550 num_sgprs = 0;
6551 num_vgprs = 0;
6552
6553 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6554 num_first_params = LLVMCountParamTypes(function_type);
6555
6556 for (unsigned i = 0; i < num_first_params; ++i) {
6557 LLVMValueRef param = LLVMGetParam(parts[0], i);
6558
6559 if (ac_is_sgpr_param(param)) {
6560 assert(num_vgprs == 0);
6561 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6562 } else {
6563 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6564 }
6565 }
6566
6567 gprs = 0;
6568 while (gprs < num_sgprs + num_vgprs) {
6569 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6570 LLVMTypeRef type = LLVMTypeOf(param);
6571 unsigned size = ac_get_type_size(type) / 4;
6572
6573 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6574
6575 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6576 assert(gprs + size <= num_sgprs + num_vgprs &&
6577 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6578
6579 gprs += size;
6580 }
6581
6582 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6583 si_get_max_workgroup_size(ctx->shader));
6584
6585 if (is_merged_shader(ctx->shader))
6586 ac_init_exec_full_mask(&ctx->ac);
6587
6588 /* Record the arguments of the function as if they were an output of
6589 * a previous part.
6590 */
6591 num_out = 0;
6592 num_out_sgpr = 0;
6593
6594 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6595 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6596 LLVMTypeRef param_type = LLVMTypeOf(param);
6597 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6598 unsigned size = ac_get_type_size(param_type) / 4;
6599
6600 if (size == 1) {
6601 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6602 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6603 param_type = ctx->i32;
6604 }
6605
6606 if (param_type != out_type)
6607 param = LLVMBuildBitCast(builder, param, out_type, "");
6608 out[num_out++] = param;
6609 } else {
6610 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6611
6612 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6613 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6614 param_type = ctx->i64;
6615 }
6616
6617 if (param_type != vector_type)
6618 param = LLVMBuildBitCast(builder, param, vector_type, "");
6619
6620 for (unsigned j = 0; j < size; ++j)
6621 out[num_out++] = LLVMBuildExtractElement(
6622 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6623 }
6624
6625 if (i < fninfo.num_sgpr_params)
6626 num_out_sgpr = num_out;
6627 }
6628
6629 memcpy(initial, out, sizeof(out));
6630 initial_num_out = num_out;
6631 initial_num_out_sgpr = num_out_sgpr;
6632
6633 /* Now chain the parts. */
6634 for (unsigned part = 0; part < num_parts; ++part) {
6635 LLVMValueRef in[48];
6636 LLVMValueRef ret;
6637 LLVMTypeRef ret_type;
6638 unsigned out_idx = 0;
6639 unsigned num_params = LLVMCountParams(parts[part]);
6640
6641 /* Merged shaders are executed conditionally depending
6642 * on the number of enabled threads passed in the input SGPRs. */
6643 if (is_merged_shader(ctx->shader) && part == 0) {
6644 LLVMValueRef ena, count = initial[3];
6645
6646 count = LLVMBuildAnd(builder, count,
6647 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6648 ena = LLVMBuildICmp(builder, LLVMIntULT,
6649 ac_get_thread_id(&ctx->ac), count, "");
6650 lp_build_if(&if_state, &ctx->gallivm, ena);
6651 }
6652
6653 /* Derive arguments for the next part from outputs of the
6654 * previous one.
6655 */
6656 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6657 LLVMValueRef param;
6658 LLVMTypeRef param_type;
6659 bool is_sgpr;
6660 unsigned param_size;
6661 LLVMValueRef arg = NULL;
6662
6663 param = LLVMGetParam(parts[part], param_idx);
6664 param_type = LLVMTypeOf(param);
6665 param_size = ac_get_type_size(param_type) / 4;
6666 is_sgpr = ac_is_sgpr_param(param);
6667
6668 if (is_sgpr) {
6669 ac_add_function_attr(ctx->ac.context, parts[part],
6670 param_idx + 1, AC_FUNC_ATTR_INREG);
6671 } else if (out_idx < num_out_sgpr) {
6672 /* Skip returned SGPRs the current part doesn't
6673 * declare on the input. */
6674 out_idx = num_out_sgpr;
6675 }
6676
6677 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6678
6679 if (param_size == 1)
6680 arg = out[out_idx];
6681 else
6682 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6683
6684 if (LLVMTypeOf(arg) != param_type) {
6685 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6686 if (LLVMGetPointerAddressSpace(param_type) ==
6687 AC_CONST_32BIT_ADDR_SPACE) {
6688 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6689 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6690 } else {
6691 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6692 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6693 }
6694 } else {
6695 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6696 }
6697 }
6698
6699 in[param_idx] = arg;
6700 out_idx += param_size;
6701 }
6702
6703 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6704
6705 if (is_merged_shader(ctx->shader) &&
6706 part + 1 == next_shader_first_part) {
6707 lp_build_endif(&if_state);
6708
6709 /* The second half of the merged shader should use
6710 * the inputs from the toplevel (wrapper) function,
6711 * not the return value from the last call.
6712 *
6713 * That's because the last call was executed condi-
6714 * tionally, so we can't consume it in the main
6715 * block.
6716 */
6717 memcpy(out, initial, sizeof(initial));
6718 num_out = initial_num_out;
6719 num_out_sgpr = initial_num_out_sgpr;
6720 continue;
6721 }
6722
6723 /* Extract the returned GPRs. */
6724 ret_type = LLVMTypeOf(ret);
6725 num_out = 0;
6726 num_out_sgpr = 0;
6727
6728 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6729 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6730
6731 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6732
6733 for (unsigned i = 0; i < ret_size; ++i) {
6734 LLVMValueRef val =
6735 LLVMBuildExtractValue(builder, ret, i, "");
6736
6737 assert(num_out < ARRAY_SIZE(out));
6738 out[num_out++] = val;
6739
6740 if (LLVMTypeOf(val) == ctx->i32) {
6741 assert(num_out_sgpr + 1 == num_out);
6742 num_out_sgpr = num_out;
6743 }
6744 }
6745 }
6746 }
6747
6748 LLVMBuildRetVoid(builder);
6749 }
6750
6751 int si_compile_tgsi_shader(struct si_screen *sscreen,
6752 struct si_compiler *compiler,
6753 struct si_shader *shader,
6754 struct pipe_debug_callback *debug)
6755 {
6756 struct si_shader_selector *sel = shader->selector;
6757 struct si_shader_context ctx;
6758 int r = -1;
6759
6760 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6761 * conversion fails. */
6762 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6763 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6764 if (sel->tokens)
6765 tgsi_dump(sel->tokens, 0);
6766 else
6767 nir_print_shader(sel->nir, stderr);
6768 si_dump_streamout(&sel->so);
6769 }
6770
6771 si_init_shader_ctx(&ctx, sscreen, compiler);
6772 si_llvm_context_set_tgsi(&ctx, shader);
6773
6774 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6775 sizeof(shader->info.vs_output_param_offset));
6776
6777 shader->info.uses_instanceid = sel->info.uses_instanceid;
6778
6779 if (!si_compile_tgsi_main(&ctx)) {
6780 si_llvm_dispose(&ctx);
6781 return -1;
6782 }
6783
6784 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6785 LLVMValueRef parts[2];
6786 bool need_prolog = sel->vs_needs_prolog;
6787
6788 parts[1] = ctx.main_fn;
6789
6790 if (need_prolog) {
6791 union si_shader_part_key prolog_key;
6792 si_get_vs_prolog_key(&sel->info,
6793 shader->info.num_input_sgprs,
6794 &shader->key.part.vs.prolog,
6795 shader, &prolog_key);
6796 si_build_vs_prolog_function(&ctx, &prolog_key);
6797 parts[0] = ctx.main_fn;
6798 }
6799
6800 si_build_wrapper_function(&ctx, parts + !need_prolog,
6801 1 + need_prolog, need_prolog, 0);
6802 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6803 if (sscreen->info.chip_class >= GFX9) {
6804 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6805 LLVMValueRef parts[4];
6806 bool vs_needs_prolog =
6807 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6808
6809 /* TCS main part */
6810 parts[2] = ctx.main_fn;
6811
6812 /* TCS epilog */
6813 union si_shader_part_key tcs_epilog_key;
6814 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6815 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6816 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6817 parts[3] = ctx.main_fn;
6818
6819 /* VS as LS main part */
6820 struct si_shader shader_ls = {};
6821 shader_ls.selector = ls;
6822 shader_ls.key.as_ls = 1;
6823 shader_ls.key.mono = shader->key.mono;
6824 shader_ls.key.opt = shader->key.opt;
6825 shader_ls.is_monolithic = true;
6826 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6827
6828 if (!si_compile_tgsi_main(&ctx)) {
6829 si_llvm_dispose(&ctx);
6830 return -1;
6831 }
6832 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6833 parts[1] = ctx.main_fn;
6834
6835 /* LS prolog */
6836 if (vs_needs_prolog) {
6837 union si_shader_part_key vs_prolog_key;
6838 si_get_vs_prolog_key(&ls->info,
6839 shader_ls.info.num_input_sgprs,
6840 &shader->key.part.tcs.ls_prolog,
6841 shader, &vs_prolog_key);
6842 vs_prolog_key.vs_prolog.is_monolithic = true;
6843 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6844 parts[0] = ctx.main_fn;
6845 }
6846
6847 /* Reset the shader context. */
6848 ctx.shader = shader;
6849 ctx.type = PIPE_SHADER_TESS_CTRL;
6850
6851 si_build_wrapper_function(&ctx,
6852 parts + !vs_needs_prolog,
6853 4 - !vs_needs_prolog, vs_needs_prolog,
6854 vs_needs_prolog ? 2 : 1);
6855 } else {
6856 LLVMValueRef parts[2];
6857 union si_shader_part_key epilog_key;
6858
6859 parts[0] = ctx.main_fn;
6860
6861 memset(&epilog_key, 0, sizeof(epilog_key));
6862 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6863 si_build_tcs_epilog_function(&ctx, &epilog_key);
6864 parts[1] = ctx.main_fn;
6865
6866 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6867 }
6868 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6869 if (ctx.screen->info.chip_class >= GFX9) {
6870 struct si_shader_selector *es = shader->key.part.gs.es;
6871 LLVMValueRef es_prolog = NULL;
6872 LLVMValueRef es_main = NULL;
6873 LLVMValueRef gs_prolog = NULL;
6874 LLVMValueRef gs_main = ctx.main_fn;
6875
6876 /* GS prolog */
6877 union si_shader_part_key gs_prolog_key;
6878 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6879 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6880 gs_prolog_key.gs_prolog.is_monolithic = true;
6881 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6882 gs_prolog = ctx.main_fn;
6883
6884 /* ES main part */
6885 struct si_shader shader_es = {};
6886 shader_es.selector = es;
6887 shader_es.key.as_es = 1;
6888 shader_es.key.mono = shader->key.mono;
6889 shader_es.key.opt = shader->key.opt;
6890 shader_es.is_monolithic = true;
6891 si_llvm_context_set_tgsi(&ctx, &shader_es);
6892
6893 if (!si_compile_tgsi_main(&ctx)) {
6894 si_llvm_dispose(&ctx);
6895 return -1;
6896 }
6897 shader->info.uses_instanceid |= es->info.uses_instanceid;
6898 es_main = ctx.main_fn;
6899
6900 /* ES prolog */
6901 if (es->vs_needs_prolog) {
6902 union si_shader_part_key vs_prolog_key;
6903 si_get_vs_prolog_key(&es->info,
6904 shader_es.info.num_input_sgprs,
6905 &shader->key.part.gs.vs_prolog,
6906 shader, &vs_prolog_key);
6907 vs_prolog_key.vs_prolog.is_monolithic = true;
6908 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6909 es_prolog = ctx.main_fn;
6910 }
6911
6912 /* Reset the shader context. */
6913 ctx.shader = shader;
6914 ctx.type = PIPE_SHADER_GEOMETRY;
6915
6916 /* Prepare the array of shader parts. */
6917 LLVMValueRef parts[4];
6918 unsigned num_parts = 0, main_part, next_first_part;
6919
6920 if (es_prolog)
6921 parts[num_parts++] = es_prolog;
6922
6923 parts[main_part = num_parts++] = es_main;
6924 parts[next_first_part = num_parts++] = gs_prolog;
6925 parts[num_parts++] = gs_main;
6926
6927 si_build_wrapper_function(&ctx, parts, num_parts,
6928 main_part, next_first_part);
6929 } else {
6930 LLVMValueRef parts[2];
6931 union si_shader_part_key prolog_key;
6932
6933 parts[1] = ctx.main_fn;
6934
6935 memset(&prolog_key, 0, sizeof(prolog_key));
6936 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6937 si_build_gs_prolog_function(&ctx, &prolog_key);
6938 parts[0] = ctx.main_fn;
6939
6940 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6941 }
6942 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6943 LLVMValueRef parts[3];
6944 union si_shader_part_key prolog_key;
6945 union si_shader_part_key epilog_key;
6946 bool need_prolog;
6947
6948 si_get_ps_prolog_key(shader, &prolog_key, false);
6949 need_prolog = si_need_ps_prolog(&prolog_key);
6950
6951 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6952
6953 if (need_prolog) {
6954 si_build_ps_prolog_function(&ctx, &prolog_key);
6955 parts[0] = ctx.main_fn;
6956 }
6957
6958 si_get_ps_epilog_key(shader, &epilog_key);
6959 si_build_ps_epilog_function(&ctx, &epilog_key);
6960 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6961
6962 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6963 need_prolog ? 1 : 0, 0);
6964 }
6965
6966 si_llvm_optimize_module(&ctx);
6967
6968 /* Post-optimization transformations and analysis. */
6969 si_optimize_vs_outputs(&ctx);
6970
6971 if ((debug && debug->debug_message) ||
6972 si_can_dump_shader(sscreen, ctx.type)) {
6973 ctx.shader->config.private_mem_vgprs =
6974 ac_count_scratch_private_memory(ctx.main_fn);
6975 }
6976
6977 /* Make sure the input is a pointer and not integer followed by inttoptr. */
6978 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
6979 LLVMPointerTypeKind);
6980
6981 /* Compile to bytecode. */
6982 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
6983 ctx.ac.module, debug, ctx.type, "TGSI shader");
6984 si_llvm_dispose(&ctx);
6985 if (r) {
6986 fprintf(stderr, "LLVM failed to compile shader\n");
6987 return r;
6988 }
6989
6990 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
6991 * LLVM 3.9svn has this bug.
6992 */
6993 if (sel->type == PIPE_SHADER_COMPUTE) {
6994 unsigned wave_size = 64;
6995 unsigned max_vgprs = 256;
6996 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
6997 unsigned max_sgprs_per_wave = 128;
6998 unsigned max_block_threads = si_get_max_workgroup_size(shader);
6999 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7000 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7001
7002 max_vgprs = max_vgprs / min_waves_per_simd;
7003 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7004
7005 if (shader->config.num_sgprs > max_sgprs ||
7006 shader->config.num_vgprs > max_vgprs) {
7007 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7008 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7009 shader->config.num_sgprs, shader->config.num_vgprs,
7010 max_sgprs, max_vgprs);
7011
7012 /* Just terminate the process, because dependent
7013 * shaders can hang due to bad input data, but use
7014 * the env var to allow shader-db to work.
7015 */
7016 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7017 abort();
7018 }
7019 }
7020
7021 /* Add the scratch offset to input SGPRs. */
7022 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
7023 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7024
7025 /* Calculate the number of fragment input VGPRs. */
7026 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7027 shader->info.num_input_vgprs = 0;
7028 shader->info.face_vgpr_index = -1;
7029 shader->info.ancillary_vgpr_index = -1;
7030
7031 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7032 shader->info.num_input_vgprs += 2;
7033 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7034 shader->info.num_input_vgprs += 2;
7035 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7036 shader->info.num_input_vgprs += 2;
7037 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7038 shader->info.num_input_vgprs += 3;
7039 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7040 shader->info.num_input_vgprs += 2;
7041 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7042 shader->info.num_input_vgprs += 2;
7043 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7044 shader->info.num_input_vgprs += 2;
7045 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7046 shader->info.num_input_vgprs += 1;
7047 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7048 shader->info.num_input_vgprs += 1;
7049 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7050 shader->info.num_input_vgprs += 1;
7051 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7052 shader->info.num_input_vgprs += 1;
7053 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7054 shader->info.num_input_vgprs += 1;
7055 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7056 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7057 shader->info.num_input_vgprs += 1;
7058 }
7059 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7060 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7061 shader->info.num_input_vgprs += 1;
7062 }
7063 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7064 shader->info.num_input_vgprs += 1;
7065 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7066 shader->info.num_input_vgprs += 1;
7067 }
7068
7069 si_calculate_max_simd_waves(shader);
7070 si_shader_dump_stats_for_shader_db(shader, debug);
7071 return 0;
7072 }
7073
7074 /**
7075 * Create, compile and return a shader part (prolog or epilog).
7076 *
7077 * \param sscreen screen
7078 * \param list list of shader parts of the same category
7079 * \param type shader type
7080 * \param key shader part key
7081 * \param prolog whether the part being requested is a prolog
7082 * \param tm LLVM target machine
7083 * \param debug debug callback
7084 * \param build the callback responsible for building the main function
7085 * \return non-NULL on success
7086 */
7087 static struct si_shader_part *
7088 si_get_shader_part(struct si_screen *sscreen,
7089 struct si_shader_part **list,
7090 enum pipe_shader_type type,
7091 bool prolog,
7092 union si_shader_part_key *key,
7093 struct si_compiler *compiler,
7094 struct pipe_debug_callback *debug,
7095 void (*build)(struct si_shader_context *,
7096 union si_shader_part_key *),
7097 const char *name)
7098 {
7099 struct si_shader_part *result;
7100
7101 mtx_lock(&sscreen->shader_parts_mutex);
7102
7103 /* Find existing. */
7104 for (result = *list; result; result = result->next) {
7105 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7106 mtx_unlock(&sscreen->shader_parts_mutex);
7107 return result;
7108 }
7109 }
7110
7111 /* Compile a new one. */
7112 result = CALLOC_STRUCT(si_shader_part);
7113 result->key = *key;
7114
7115 struct si_shader shader = {};
7116 struct si_shader_context ctx;
7117
7118 si_init_shader_ctx(&ctx, sscreen, compiler);
7119 ctx.shader = &shader;
7120 ctx.type = type;
7121
7122 switch (type) {
7123 case PIPE_SHADER_VERTEX:
7124 shader.key.as_ls = key->vs_prolog.as_ls;
7125 shader.key.as_es = key->vs_prolog.as_es;
7126 break;
7127 case PIPE_SHADER_TESS_CTRL:
7128 assert(!prolog);
7129 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7130 break;
7131 case PIPE_SHADER_GEOMETRY:
7132 assert(prolog);
7133 break;
7134 case PIPE_SHADER_FRAGMENT:
7135 if (prolog)
7136 shader.key.part.ps.prolog = key->ps_prolog.states;
7137 else
7138 shader.key.part.ps.epilog = key->ps_epilog.states;
7139 break;
7140 default:
7141 unreachable("bad shader part");
7142 }
7143
7144 build(&ctx, key);
7145
7146 /* Compile. */
7147 si_llvm_optimize_module(&ctx);
7148
7149 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7150 ctx.ac.module, debug, ctx.type, name)) {
7151 FREE(result);
7152 result = NULL;
7153 goto out;
7154 }
7155
7156 result->next = *list;
7157 *list = result;
7158
7159 out:
7160 si_llvm_dispose(&ctx);
7161 mtx_unlock(&sscreen->shader_parts_mutex);
7162 return result;
7163 }
7164
7165 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7166 {
7167 LLVMValueRef ptr[2], list;
7168 bool is_merged_shader =
7169 ctx->screen->info.chip_class >= GFX9 &&
7170 (ctx->type == PIPE_SHADER_TESS_CTRL ||
7171 ctx->type == PIPE_SHADER_GEOMETRY ||
7172 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7173
7174 if (HAVE_32BIT_POINTERS) {
7175 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7176 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7177 ac_array_in_const32_addr_space(ctx->v4i32), "");
7178 return list;
7179 }
7180
7181 /* Get the pointer to rw buffers. */
7182 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7183 ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS + 1);
7184 list = ac_build_gather_values(&ctx->ac, ptr, 2);
7185 list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7186 list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7187 ac_array_in_const_addr_space(ctx->v4i32), "");
7188 return list;
7189 }
7190
7191 /**
7192 * Build the vertex shader prolog function.
7193 *
7194 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7195 * All inputs are returned unmodified. The vertex load indices are
7196 * stored after them, which will be used by the API VS for fetching inputs.
7197 *
7198 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7199 * input_v0,
7200 * input_v1,
7201 * input_v2,
7202 * input_v3,
7203 * (VertexID + BaseVertex),
7204 * (InstanceID + StartInstance),
7205 * (InstanceID / 2 + StartInstance)
7206 */
7207 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7208 union si_shader_part_key *key)
7209 {
7210 struct si_function_info fninfo;
7211 LLVMTypeRef *returns;
7212 LLVMValueRef ret, func;
7213 int num_returns, i;
7214 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7215 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7216 LLVMValueRef input_vgprs[9];
7217 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7218 num_input_vgprs;
7219 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7220
7221 si_init_function_info(&fninfo);
7222
7223 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7224 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7225 sizeof(LLVMTypeRef));
7226 num_returns = 0;
7227
7228 /* Declare input and output SGPRs. */
7229 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7230 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7231 returns[num_returns++] = ctx->i32;
7232 }
7233
7234 /* Preloaded VGPRs (outputs must be floats) */
7235 for (i = 0; i < num_input_vgprs; i++) {
7236 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7237 returns[num_returns++] = ctx->f32;
7238 }
7239
7240 /* Vertex load indices. */
7241 for (i = 0; i <= key->vs_prolog.last_input; i++)
7242 returns[num_returns++] = ctx->f32;
7243
7244 /* Create the function. */
7245 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7246 func = ctx->main_fn;
7247
7248 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7249 if (!key->vs_prolog.is_monolithic)
7250 si_init_exec_from_input(ctx, 3, 0);
7251
7252 if (key->vs_prolog.as_ls &&
7253 ctx->screen->has_ls_vgpr_init_bug) {
7254 /* If there are no HS threads, SPI loads the LS VGPRs
7255 * starting at VGPR 0. Shift them back to where they
7256 * belong.
7257 */
7258 LLVMValueRef has_hs_threads =
7259 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7260 si_unpack_param(ctx, 3, 8, 8),
7261 ctx->i32_0, "");
7262
7263 for (i = 4; i > 0; --i) {
7264 input_vgprs[i + 1] =
7265 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7266 input_vgprs[i + 1],
7267 input_vgprs[i - 1], "");
7268 }
7269 }
7270 }
7271
7272 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7273 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7274
7275 /* Copy inputs to outputs. This should be no-op, as the registers match,
7276 * but it will prevent the compiler from overwriting them unintentionally.
7277 */
7278 ret = ctx->return_value;
7279 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7280 LLVMValueRef p = LLVMGetParam(func, i);
7281 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7282 }
7283 for (i = 0; i < num_input_vgprs; i++) {
7284 LLVMValueRef p = input_vgprs[i];
7285 p = ac_to_float(&ctx->ac, p);
7286 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7287 key->vs_prolog.num_input_sgprs + i, "");
7288 }
7289
7290 /* Compute vertex load indices from instance divisors. */
7291 LLVMValueRef instance_divisor_constbuf = NULL;
7292
7293 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7294 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7295 LLVMValueRef buf_index =
7296 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7297 instance_divisor_constbuf =
7298 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7299 }
7300
7301 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7302 bool divisor_is_one =
7303 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7304 bool divisor_is_fetched =
7305 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7306 LLVMValueRef index;
7307
7308 if (divisor_is_one || divisor_is_fetched) {
7309 LLVMValueRef divisor = ctx->i32_1;
7310
7311 if (divisor_is_fetched) {
7312 divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7313 LLVMConstInt(ctx->i32, i * 4, 0));
7314 divisor = ac_to_integer(&ctx->ac, divisor);
7315 }
7316
7317 /* InstanceID / Divisor + StartInstance */
7318 index = get_instance_index_for_fetch(ctx,
7319 user_sgpr_base +
7320 SI_SGPR_START_INSTANCE,
7321 divisor);
7322 } else {
7323 /* VertexID + BaseVertex */
7324 index = LLVMBuildAdd(ctx->ac.builder,
7325 ctx->abi.vertex_id,
7326 LLVMGetParam(func, user_sgpr_base +
7327 SI_SGPR_BASE_VERTEX), "");
7328 }
7329
7330 index = ac_to_float(&ctx->ac, index);
7331 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7332 fninfo.num_params + i, "");
7333 }
7334
7335 si_llvm_build_ret(ctx, ret);
7336 }
7337
7338 static bool si_get_vs_prolog(struct si_screen *sscreen,
7339 struct si_compiler *compiler,
7340 struct si_shader *shader,
7341 struct pipe_debug_callback *debug,
7342 struct si_shader *main_part,
7343 const struct si_vs_prolog_bits *key)
7344 {
7345 struct si_shader_selector *vs = main_part->selector;
7346
7347 if (!si_vs_needs_prolog(vs, key))
7348 return true;
7349
7350 /* Get the prolog. */
7351 union si_shader_part_key prolog_key;
7352 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7353 key, shader, &prolog_key);
7354
7355 shader->prolog =
7356 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7357 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7358 debug, si_build_vs_prolog_function,
7359 "Vertex Shader Prolog");
7360 return shader->prolog != NULL;
7361 }
7362
7363 /**
7364 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7365 */
7366 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7367 struct si_compiler *compiler,
7368 struct si_shader *shader,
7369 struct pipe_debug_callback *debug)
7370 {
7371 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7372 &shader->key.part.vs.prolog);
7373 }
7374
7375 /**
7376 * Compile the TCS epilog function. This writes tesselation factors to memory
7377 * based on the output primitive type of the tesselator (determined by TES).
7378 */
7379 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7380 union si_shader_part_key *key)
7381 {
7382 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7383 struct si_function_info fninfo;
7384 LLVMValueRef func;
7385
7386 si_init_function_info(&fninfo);
7387
7388 if (ctx->screen->info.chip_class >= GFX9) {
7389 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7390 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7391 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7392 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7393 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7394 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7395 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7396 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7397 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7398 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7399 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7400 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7401 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7402 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7403 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7404 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7405 if (!HAVE_32BIT_POINTERS)
7406 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7407 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7408 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7409 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7410 } else {
7411 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7412 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7413 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7414 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7415 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7416 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7417 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7418 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7419 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7420 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7421 }
7422
7423 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7424 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7425 unsigned tess_factors_idx =
7426 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7427 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7428 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7429
7430 for (unsigned i = 0; i < 6; i++)
7431 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7432
7433 /* Create the function. */
7434 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7435 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7436 ac_declare_lds_as_pointer(&ctx->ac);
7437 func = ctx->main_fn;
7438
7439 LLVMValueRef invoc0_tess_factors[6];
7440 for (unsigned i = 0; i < 6; i++)
7441 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7442
7443 si_write_tess_factors(bld_base,
7444 LLVMGetParam(func, tess_factors_idx),
7445 LLVMGetParam(func, tess_factors_idx + 1),
7446 LLVMGetParam(func, tess_factors_idx + 2),
7447 invoc0_tess_factors, invoc0_tess_factors + 4);
7448
7449 LLVMBuildRetVoid(ctx->ac.builder);
7450 }
7451
7452 /**
7453 * Select and compile (or reuse) TCS parts (epilog).
7454 */
7455 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7456 struct si_compiler *compiler,
7457 struct si_shader *shader,
7458 struct pipe_debug_callback *debug)
7459 {
7460 if (sscreen->info.chip_class >= GFX9) {
7461 struct si_shader *ls_main_part =
7462 shader->key.part.tcs.ls->main_shader_part_ls;
7463
7464 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7465 &shader->key.part.tcs.ls_prolog))
7466 return false;
7467
7468 shader->previous_stage = ls_main_part;
7469 }
7470
7471 /* Get the epilog. */
7472 union si_shader_part_key epilog_key;
7473 memset(&epilog_key, 0, sizeof(epilog_key));
7474 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7475
7476 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7477 PIPE_SHADER_TESS_CTRL, false,
7478 &epilog_key, compiler, debug,
7479 si_build_tcs_epilog_function,
7480 "Tessellation Control Shader Epilog");
7481 return shader->epilog != NULL;
7482 }
7483
7484 /**
7485 * Select and compile (or reuse) GS parts (prolog).
7486 */
7487 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7488 struct si_compiler *compiler,
7489 struct si_shader *shader,
7490 struct pipe_debug_callback *debug)
7491 {
7492 if (sscreen->info.chip_class >= GFX9) {
7493 struct si_shader *es_main_part =
7494 shader->key.part.gs.es->main_shader_part_es;
7495
7496 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7497 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7498 &shader->key.part.gs.vs_prolog))
7499 return false;
7500
7501 shader->previous_stage = es_main_part;
7502 }
7503
7504 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7505 return true;
7506
7507 union si_shader_part_key prolog_key;
7508 memset(&prolog_key, 0, sizeof(prolog_key));
7509 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7510
7511 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7512 PIPE_SHADER_GEOMETRY, true,
7513 &prolog_key, compiler, debug,
7514 si_build_gs_prolog_function,
7515 "Geometry Shader Prolog");
7516 return shader->prolog2 != NULL;
7517 }
7518
7519 /**
7520 * Build the pixel shader prolog function. This handles:
7521 * - two-side color selection and interpolation
7522 * - overriding interpolation parameters for the API PS
7523 * - polygon stippling
7524 *
7525 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7526 * overriden by other states. (e.g. per-sample interpolation)
7527 * Interpolated colors are stored after the preloaded VGPRs.
7528 */
7529 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7530 union si_shader_part_key *key)
7531 {
7532 struct si_function_info fninfo;
7533 LLVMValueRef ret, func;
7534 int num_returns, i, num_color_channels;
7535
7536 assert(si_need_ps_prolog(key));
7537
7538 si_init_function_info(&fninfo);
7539
7540 /* Declare inputs. */
7541 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7542 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7543
7544 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7545 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7546
7547 /* Declare outputs (same as inputs + add colors if needed) */
7548 num_returns = fninfo.num_params;
7549 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7550 for (i = 0; i < num_color_channels; i++)
7551 fninfo.types[num_returns++] = ctx->f32;
7552
7553 /* Create the function. */
7554 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7555 &fninfo, 0);
7556 func = ctx->main_fn;
7557
7558 /* Copy inputs to outputs. This should be no-op, as the registers match,
7559 * but it will prevent the compiler from overwriting them unintentionally.
7560 */
7561 ret = ctx->return_value;
7562 for (i = 0; i < fninfo.num_params; i++) {
7563 LLVMValueRef p = LLVMGetParam(func, i);
7564 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7565 }
7566
7567 /* Polygon stippling. */
7568 if (key->ps_prolog.states.poly_stipple) {
7569 /* POS_FIXED_PT is always last. */
7570 unsigned pos = key->ps_prolog.num_input_sgprs +
7571 key->ps_prolog.num_input_vgprs - 1;
7572 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7573
7574 si_llvm_emit_polygon_stipple(ctx, list, pos);
7575 }
7576
7577 if (key->ps_prolog.states.bc_optimize_for_persp ||
7578 key->ps_prolog.states.bc_optimize_for_linear) {
7579 unsigned i, base = key->ps_prolog.num_input_sgprs;
7580 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7581
7582 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7583 * The hw doesn't compute CENTROID if the whole wave only
7584 * contains fully-covered quads.
7585 *
7586 * PRIM_MASK is after user SGPRs.
7587 */
7588 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7589 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7590 LLVMConstInt(ctx->i32, 31, 0), "");
7591 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7592 ctx->i1, "");
7593
7594 if (key->ps_prolog.states.bc_optimize_for_persp) {
7595 /* Read PERSP_CENTER. */
7596 for (i = 0; i < 2; i++)
7597 center[i] = LLVMGetParam(func, base + 2 + i);
7598 /* Read PERSP_CENTROID. */
7599 for (i = 0; i < 2; i++)
7600 centroid[i] = LLVMGetParam(func, base + 4 + i);
7601 /* Select PERSP_CENTROID. */
7602 for (i = 0; i < 2; i++) {
7603 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7604 center[i], centroid[i], "");
7605 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7606 tmp, base + 4 + i, "");
7607 }
7608 }
7609 if (key->ps_prolog.states.bc_optimize_for_linear) {
7610 /* Read LINEAR_CENTER. */
7611 for (i = 0; i < 2; i++)
7612 center[i] = LLVMGetParam(func, base + 8 + i);
7613 /* Read LINEAR_CENTROID. */
7614 for (i = 0; i < 2; i++)
7615 centroid[i] = LLVMGetParam(func, base + 10 + i);
7616 /* Select LINEAR_CENTROID. */
7617 for (i = 0; i < 2; i++) {
7618 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7619 center[i], centroid[i], "");
7620 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7621 tmp, base + 10 + i, "");
7622 }
7623 }
7624 }
7625
7626 /* Force per-sample interpolation. */
7627 if (key->ps_prolog.states.force_persp_sample_interp) {
7628 unsigned i, base = key->ps_prolog.num_input_sgprs;
7629 LLVMValueRef persp_sample[2];
7630
7631 /* Read PERSP_SAMPLE. */
7632 for (i = 0; i < 2; i++)
7633 persp_sample[i] = LLVMGetParam(func, base + i);
7634 /* Overwrite PERSP_CENTER. */
7635 for (i = 0; i < 2; i++)
7636 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7637 persp_sample[i], base + 2 + i, "");
7638 /* Overwrite PERSP_CENTROID. */
7639 for (i = 0; i < 2; i++)
7640 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7641 persp_sample[i], base + 4 + i, "");
7642 }
7643 if (key->ps_prolog.states.force_linear_sample_interp) {
7644 unsigned i, base = key->ps_prolog.num_input_sgprs;
7645 LLVMValueRef linear_sample[2];
7646
7647 /* Read LINEAR_SAMPLE. */
7648 for (i = 0; i < 2; i++)
7649 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7650 /* Overwrite LINEAR_CENTER. */
7651 for (i = 0; i < 2; i++)
7652 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7653 linear_sample[i], base + 8 + i, "");
7654 /* Overwrite LINEAR_CENTROID. */
7655 for (i = 0; i < 2; i++)
7656 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7657 linear_sample[i], base + 10 + i, "");
7658 }
7659
7660 /* Force center interpolation. */
7661 if (key->ps_prolog.states.force_persp_center_interp) {
7662 unsigned i, base = key->ps_prolog.num_input_sgprs;
7663 LLVMValueRef persp_center[2];
7664
7665 /* Read PERSP_CENTER. */
7666 for (i = 0; i < 2; i++)
7667 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7668 /* Overwrite PERSP_SAMPLE. */
7669 for (i = 0; i < 2; i++)
7670 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7671 persp_center[i], base + i, "");
7672 /* Overwrite PERSP_CENTROID. */
7673 for (i = 0; i < 2; i++)
7674 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7675 persp_center[i], base + 4 + i, "");
7676 }
7677 if (key->ps_prolog.states.force_linear_center_interp) {
7678 unsigned i, base = key->ps_prolog.num_input_sgprs;
7679 LLVMValueRef linear_center[2];
7680
7681 /* Read LINEAR_CENTER. */
7682 for (i = 0; i < 2; i++)
7683 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7684 /* Overwrite LINEAR_SAMPLE. */
7685 for (i = 0; i < 2; i++)
7686 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7687 linear_center[i], base + 6 + i, "");
7688 /* Overwrite LINEAR_CENTROID. */
7689 for (i = 0; i < 2; i++)
7690 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7691 linear_center[i], base + 10 + i, "");
7692 }
7693
7694 /* Interpolate colors. */
7695 unsigned color_out_idx = 0;
7696 for (i = 0; i < 2; i++) {
7697 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7698 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7699 key->ps_prolog.face_vgpr_index;
7700 LLVMValueRef interp[2], color[4];
7701 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7702
7703 if (!writemask)
7704 continue;
7705
7706 /* If the interpolation qualifier is not CONSTANT (-1). */
7707 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7708 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7709 key->ps_prolog.color_interp_vgpr_index[i];
7710
7711 /* Get the (i,j) updated by bc_optimize handling. */
7712 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7713 interp_vgpr, "");
7714 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7715 interp_vgpr + 1, "");
7716 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7717 }
7718
7719 /* Use the absolute location of the input. */
7720 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7721
7722 if (key->ps_prolog.states.color_two_side) {
7723 face = LLVMGetParam(func, face_vgpr);
7724 face = ac_to_integer(&ctx->ac, face);
7725 }
7726
7727 interp_fs_input(ctx,
7728 key->ps_prolog.color_attr_index[i],
7729 TGSI_SEMANTIC_COLOR, i,
7730 key->ps_prolog.num_interp_inputs,
7731 key->ps_prolog.colors_read, interp_ij,
7732 prim_mask, face, color);
7733
7734 while (writemask) {
7735 unsigned chan = u_bit_scan(&writemask);
7736 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7737 fninfo.num_params + color_out_idx++, "");
7738 }
7739 }
7740
7741 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7742 * says:
7743 *
7744 * "When per-sample shading is active due to the use of a fragment
7745 * input qualified by sample or due to the use of the gl_SampleID
7746 * or gl_SamplePosition variables, only the bit for the current
7747 * sample is set in gl_SampleMaskIn. When state specifies multiple
7748 * fragment shader invocations for a given fragment, the sample
7749 * mask for any single fragment shader invocation may specify a
7750 * subset of the covered samples for the fragment. In this case,
7751 * the bit corresponding to each covered sample will be set in
7752 * exactly one fragment shader invocation."
7753 *
7754 * The samplemask loaded by hardware is always the coverage of the
7755 * entire pixel/fragment, so mask bits out based on the sample ID.
7756 */
7757 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7758 /* The bit pattern matches that used by fixed function fragment
7759 * processing. */
7760 static const uint16_t ps_iter_masks[] = {
7761 0xffff, /* not used */
7762 0x5555,
7763 0x1111,
7764 0x0101,
7765 0x0001,
7766 };
7767 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7768
7769 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7770 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7771 key->ps_prolog.ancillary_vgpr_index;
7772 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7773 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7774
7775 samplemask = ac_to_integer(&ctx->ac, samplemask);
7776 samplemask = LLVMBuildAnd(
7777 ctx->ac.builder,
7778 samplemask,
7779 LLVMBuildShl(ctx->ac.builder,
7780 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7781 sampleid, ""),
7782 "");
7783 samplemask = ac_to_float(&ctx->ac, samplemask);
7784
7785 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7786 ancillary_vgpr + 1, "");
7787 }
7788
7789 /* Tell LLVM to insert WQM instruction sequence when needed. */
7790 if (key->ps_prolog.wqm) {
7791 LLVMAddTargetDependentFunctionAttr(func,
7792 "amdgpu-ps-wqm-outputs", "");
7793 }
7794
7795 si_llvm_build_ret(ctx, ret);
7796 }
7797
7798 /**
7799 * Build the pixel shader epilog function. This handles everything that must be
7800 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7801 */
7802 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7803 union si_shader_part_key *key)
7804 {
7805 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7806 struct si_function_info fninfo;
7807 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7808 int i;
7809 struct si_ps_exports exp = {};
7810
7811 si_init_function_info(&fninfo);
7812
7813 /* Declare input SGPRs. */
7814 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7815 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7816 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7817 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7818 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7819
7820 /* Declare input VGPRs. */
7821 unsigned required_num_params =
7822 fninfo.num_sgpr_params +
7823 util_bitcount(key->ps_epilog.colors_written) * 4 +
7824 key->ps_epilog.writes_z +
7825 key->ps_epilog.writes_stencil +
7826 key->ps_epilog.writes_samplemask;
7827
7828 required_num_params = MAX2(required_num_params,
7829 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7830
7831 while (fninfo.num_params < required_num_params)
7832 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7833
7834 /* Create the function. */
7835 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7836 /* Disable elimination of unused inputs. */
7837 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
7838 "InitialPSInputAddr", 0xffffff);
7839
7840 /* Process colors. */
7841 unsigned vgpr = fninfo.num_sgpr_params;
7842 unsigned colors_written = key->ps_epilog.colors_written;
7843 int last_color_export = -1;
7844
7845 /* Find the last color export. */
7846 if (!key->ps_epilog.writes_z &&
7847 !key->ps_epilog.writes_stencil &&
7848 !key->ps_epilog.writes_samplemask) {
7849 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7850
7851 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7852 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7853 /* Just set this if any of the colorbuffers are enabled. */
7854 if (spi_format &
7855 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7856 last_color_export = 0;
7857 } else {
7858 for (i = 0; i < 8; i++)
7859 if (colors_written & (1 << i) &&
7860 (spi_format >> (i * 4)) & 0xf)
7861 last_color_export = i;
7862 }
7863 }
7864
7865 while (colors_written) {
7866 LLVMValueRef color[4];
7867 int mrt = u_bit_scan(&colors_written);
7868
7869 for (i = 0; i < 4; i++)
7870 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7871
7872 si_export_mrt_color(bld_base, color, mrt,
7873 fninfo.num_params - 1,
7874 mrt == last_color_export, &exp);
7875 }
7876
7877 /* Process depth, stencil, samplemask. */
7878 if (key->ps_epilog.writes_z)
7879 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7880 if (key->ps_epilog.writes_stencil)
7881 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7882 if (key->ps_epilog.writes_samplemask)
7883 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7884
7885 if (depth || stencil || samplemask)
7886 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7887 else if (last_color_export == -1)
7888 ac_build_export_null(&ctx->ac);
7889
7890 if (exp.num)
7891 si_emit_ps_exports(ctx, &exp);
7892
7893 /* Compile. */
7894 LLVMBuildRetVoid(ctx->ac.builder);
7895 }
7896
7897 /**
7898 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7899 */
7900 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7901 struct si_compiler *compiler,
7902 struct si_shader *shader,
7903 struct pipe_debug_callback *debug)
7904 {
7905 union si_shader_part_key prolog_key;
7906 union si_shader_part_key epilog_key;
7907
7908 /* Get the prolog. */
7909 si_get_ps_prolog_key(shader, &prolog_key, true);
7910
7911 /* The prolog is a no-op if these aren't set. */
7912 if (si_need_ps_prolog(&prolog_key)) {
7913 shader->prolog =
7914 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7915 PIPE_SHADER_FRAGMENT, true,
7916 &prolog_key, compiler, debug,
7917 si_build_ps_prolog_function,
7918 "Fragment Shader Prolog");
7919 if (!shader->prolog)
7920 return false;
7921 }
7922
7923 /* Get the epilog. */
7924 si_get_ps_epilog_key(shader, &epilog_key);
7925
7926 shader->epilog =
7927 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7928 PIPE_SHADER_FRAGMENT, false,
7929 &epilog_key, compiler, debug,
7930 si_build_ps_epilog_function,
7931 "Fragment Shader Epilog");
7932 if (!shader->epilog)
7933 return false;
7934
7935 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7936 if (shader->key.part.ps.prolog.poly_stipple) {
7937 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7938 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7939 }
7940
7941 /* Set up the enable bits for per-sample shading if needed. */
7942 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7943 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7944 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7945 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7946 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7947 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7948 }
7949 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7950 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7951 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7952 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7953 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7954 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7955 }
7956 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7957 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7958 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7959 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7960 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7961 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7962 }
7963 if (shader->key.part.ps.prolog.force_linear_center_interp &&
7964 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7965 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7966 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7967 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7968 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7969 }
7970
7971 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7972 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7973 !(shader->config.spi_ps_input_ena & 0xf)) {
7974 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7975 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7976 }
7977
7978 /* At least one pair of interpolation weights must be enabled. */
7979 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7980 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7981 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7982 }
7983
7984 /* Samplemask fixup requires the sample ID. */
7985 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
7986 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
7987 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
7988 }
7989
7990 /* The sample mask input is always enabled, because the API shader always
7991 * passes it through to the epilog. Disable it here if it's unused.
7992 */
7993 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
7994 !shader->selector->info.reads_samplemask)
7995 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
7996
7997 return true;
7998 }
7999
8000 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8001 unsigned *lds_size)
8002 {
8003 /* If tessellation is all offchip and on-chip GS isn't used, this
8004 * workaround is not needed.
8005 */
8006 return;
8007
8008 /* SPI barrier management bug:
8009 * Make sure we have at least 4k of LDS in use to avoid the bug.
8010 * It applies to workgroup sizes of more than one wavefront.
8011 */
8012 if (sscreen->info.family == CHIP_BONAIRE ||
8013 sscreen->info.family == CHIP_KABINI ||
8014 sscreen->info.family == CHIP_MULLINS)
8015 *lds_size = MAX2(*lds_size, 8);
8016 }
8017
8018 static void si_fix_resource_usage(struct si_screen *sscreen,
8019 struct si_shader *shader)
8020 {
8021 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8022
8023 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8024
8025 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8026 si_get_max_workgroup_size(shader) > 64) {
8027 si_multiwave_lds_size_workaround(sscreen,
8028 &shader->config.lds_size);
8029 }
8030 }
8031
8032 int si_shader_create(struct si_screen *sscreen, struct si_compiler *compiler,
8033 struct si_shader *shader,
8034 struct pipe_debug_callback *debug)
8035 {
8036 struct si_shader_selector *sel = shader->selector;
8037 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8038 int r;
8039
8040 /* LS, ES, VS are compiled on demand if the main part hasn't been
8041 * compiled for that stage.
8042 *
8043 * Vertex shaders are compiled on demand when a vertex fetch
8044 * workaround must be applied.
8045 */
8046 if (shader->is_monolithic) {
8047 /* Monolithic shader (compiled as a whole, has many variants,
8048 * may take a long time to compile).
8049 */
8050 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8051 if (r)
8052 return r;
8053 } else {
8054 /* The shader consists of several parts:
8055 *
8056 * - the middle part is the user shader, it has 1 variant only
8057 * and it was compiled during the creation of the shader
8058 * selector
8059 * - the prolog part is inserted at the beginning
8060 * - the epilog part is inserted at the end
8061 *
8062 * The prolog and epilog have many (but simple) variants.
8063 *
8064 * Starting with gfx9, geometry and tessellation control
8065 * shaders also contain the prolog and user shader parts of
8066 * the previous shader stage.
8067 */
8068
8069 if (!mainp)
8070 return -1;
8071
8072 /* Copy the compiled TGSI shader data over. */
8073 shader->is_binary_shared = true;
8074 shader->binary = mainp->binary;
8075 shader->config = mainp->config;
8076 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8077 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8078 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8079 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8080 memcpy(shader->info.vs_output_param_offset,
8081 mainp->info.vs_output_param_offset,
8082 sizeof(mainp->info.vs_output_param_offset));
8083 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8084 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8085 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8086
8087 /* Select prologs and/or epilogs. */
8088 switch (sel->type) {
8089 case PIPE_SHADER_VERTEX:
8090 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8091 return -1;
8092 break;
8093 case PIPE_SHADER_TESS_CTRL:
8094 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8095 return -1;
8096 break;
8097 case PIPE_SHADER_TESS_EVAL:
8098 break;
8099 case PIPE_SHADER_GEOMETRY:
8100 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8101 return -1;
8102 break;
8103 case PIPE_SHADER_FRAGMENT:
8104 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8105 return -1;
8106
8107 /* Make sure we have at least as many VGPRs as there
8108 * are allocated inputs.
8109 */
8110 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8111 shader->info.num_input_vgprs);
8112 break;
8113 }
8114
8115 /* Update SGPR and VGPR counts. */
8116 if (shader->prolog) {
8117 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8118 shader->prolog->config.num_sgprs);
8119 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8120 shader->prolog->config.num_vgprs);
8121 }
8122 if (shader->previous_stage) {
8123 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8124 shader->previous_stage->config.num_sgprs);
8125 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8126 shader->previous_stage->config.num_vgprs);
8127 shader->config.spilled_sgprs =
8128 MAX2(shader->config.spilled_sgprs,
8129 shader->previous_stage->config.spilled_sgprs);
8130 shader->config.spilled_vgprs =
8131 MAX2(shader->config.spilled_vgprs,
8132 shader->previous_stage->config.spilled_vgprs);
8133 shader->config.private_mem_vgprs =
8134 MAX2(shader->config.private_mem_vgprs,
8135 shader->previous_stage->config.private_mem_vgprs);
8136 shader->config.scratch_bytes_per_wave =
8137 MAX2(shader->config.scratch_bytes_per_wave,
8138 shader->previous_stage->config.scratch_bytes_per_wave);
8139 shader->info.uses_instanceid |=
8140 shader->previous_stage->info.uses_instanceid;
8141 }
8142 if (shader->prolog2) {
8143 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8144 shader->prolog2->config.num_sgprs);
8145 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8146 shader->prolog2->config.num_vgprs);
8147 }
8148 if (shader->epilog) {
8149 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8150 shader->epilog->config.num_sgprs);
8151 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8152 shader->epilog->config.num_vgprs);
8153 }
8154 si_calculate_max_simd_waves(shader);
8155 }
8156
8157 si_fix_resource_usage(sscreen, shader);
8158 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8159 stderr, true);
8160
8161 /* Upload. */
8162 r = si_shader_binary_upload(sscreen, shader);
8163 if (r) {
8164 fprintf(stderr, "LLVM failed to upload shader\n");
8165 return r;
8166 }
8167
8168 return 0;
8169 }
8170
8171 void si_shader_destroy(struct si_shader *shader)
8172 {
8173 if (shader->scratch_bo)
8174 r600_resource_reference(&shader->scratch_bo, NULL);
8175
8176 r600_resource_reference(&shader->bo, NULL);
8177
8178 if (!shader->is_binary_shared)
8179 ac_shader_binary_clean(&shader->binary);
8180
8181 free(shader->shader_log);
8182 }