radeonsi: separate the call to si_llvm_emit_streamout from exports
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Tom Stellard <thomas.stellard@amd.com>
25 * Michel Dänzer <michel.daenzer@amd.com>
26 * Christian König <christian.koenig@amd.com>
27 */
28
29 #include "gallivm/lp_bld_const.h"
30 #include "gallivm/lp_bld_gather.h"
31 #include "gallivm/lp_bld_intr.h"
32 #include "gallivm/lp_bld_logic.h"
33 #include "gallivm/lp_bld_arit.h"
34 #include "gallivm/lp_bld_flow.h"
35 #include "gallivm/lp_bld_misc.h"
36 #include "radeon/radeon_elf_util.h"
37 #include "util/u_memory.h"
38 #include "util/u_string.h"
39 #include "tgsi/tgsi_build.h"
40 #include "tgsi/tgsi_util.h"
41 #include "tgsi/tgsi_dump.h"
42
43 #include "ac_llvm_util.h"
44 #include "si_shader_internal.h"
45 #include "si_pipe.h"
46 #include "sid.h"
47
48
49 static const char *scratch_rsrc_dword0_symbol =
50 "SCRATCH_RSRC_DWORD0";
51
52 static const char *scratch_rsrc_dword1_symbol =
53 "SCRATCH_RSRC_DWORD1";
54
55 struct si_shader_output_values
56 {
57 LLVMValueRef values[4];
58 unsigned semantic_name;
59 unsigned semantic_index;
60 ubyte vertex_stream[4];
61 };
62
63 static void si_init_shader_ctx(struct si_shader_context *ctx,
64 struct si_screen *sscreen,
65 struct si_shader *shader,
66 LLVMTargetMachineRef tm);
67
68 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
69 struct lp_build_tgsi_context *bld_base,
70 struct lp_build_emit_data *emit_data);
71
72 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
73 FILE *f);
74
75 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
76 union si_shader_part_key *key);
77 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
78 union si_shader_part_key *key);
79 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
80 union si_shader_part_key *key);
81 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85
86 /* Ideally pass the sample mask input to the PS epilog as v13, which
87 * is its usual location, so that the shader doesn't have to add v_mov.
88 */
89 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 13
90
91 /* The VS location of the PrimitiveID input is the same in the epilog,
92 * so that the main shader part doesn't have to move it.
93 */
94 #define VS_EPILOG_PRIMID_LOC 2
95
96 enum {
97 CONST_ADDR_SPACE = 2,
98 LOCAL_ADDR_SPACE = 3,
99 };
100
101 #define SENDMSG_GS 2
102 #define SENDMSG_GS_DONE 3
103
104 #define SENDMSG_GS_OP_NOP (0 << 4)
105 #define SENDMSG_GS_OP_CUT (1 << 4)
106 #define SENDMSG_GS_OP_EMIT (2 << 4)
107 #define SENDMSG_GS_OP_EMIT_CUT (3 << 4)
108
109 /**
110 * Returns a unique index for a semantic name and index. The index must be
111 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
112 * calculated.
113 */
114 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
115 {
116 switch (semantic_name) {
117 case TGSI_SEMANTIC_POSITION:
118 return 0;
119 case TGSI_SEMANTIC_PSIZE:
120 return 1;
121 case TGSI_SEMANTIC_CLIPDIST:
122 assert(index <= 1);
123 return 2 + index;
124 case TGSI_SEMANTIC_GENERIC:
125 if (index <= 63-4)
126 return 4 + index;
127
128 assert(!"invalid generic index");
129 return 0;
130
131 /* patch indices are completely separate and thus start from 0 */
132 case TGSI_SEMANTIC_TESSOUTER:
133 return 0;
134 case TGSI_SEMANTIC_TESSINNER:
135 return 1;
136 case TGSI_SEMANTIC_PATCH:
137 return 2 + index;
138
139 default:
140 assert(!"invalid semantic name");
141 return 0;
142 }
143 }
144
145 unsigned si_shader_io_get_unique_index2(unsigned name, unsigned index)
146 {
147 switch (name) {
148 case TGSI_SEMANTIC_FOG:
149 return 0;
150 case TGSI_SEMANTIC_LAYER:
151 return 1;
152 case TGSI_SEMANTIC_VIEWPORT_INDEX:
153 return 2;
154 case TGSI_SEMANTIC_PRIMID:
155 return 3;
156 case TGSI_SEMANTIC_COLOR: /* these alias */
157 case TGSI_SEMANTIC_BCOLOR:
158 return 4 + index;
159 case TGSI_SEMANTIC_TEXCOORD:
160 return 6 + index;
161 default:
162 assert(!"invalid semantic name");
163 return 0;
164 }
165 }
166
167 /**
168 * Get the value of a shader input parameter and extract a bitfield.
169 */
170 static LLVMValueRef unpack_param(struct si_shader_context *ctx,
171 unsigned param, unsigned rshift,
172 unsigned bitwidth)
173 {
174 struct gallivm_state *gallivm = &ctx->gallivm;
175 LLVMValueRef value = LLVMGetParam(ctx->main_fn,
176 param);
177
178 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
179 value = bitcast(&ctx->soa.bld_base,
180 TGSI_TYPE_UNSIGNED, value);
181
182 if (rshift)
183 value = LLVMBuildLShr(gallivm->builder, value,
184 lp_build_const_int32(gallivm, rshift), "");
185
186 if (rshift + bitwidth < 32) {
187 unsigned mask = (1 << bitwidth) - 1;
188 value = LLVMBuildAnd(gallivm->builder, value,
189 lp_build_const_int32(gallivm, mask), "");
190 }
191
192 return value;
193 }
194
195 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
196 {
197 switch (ctx->type) {
198 case PIPE_SHADER_TESS_CTRL:
199 return unpack_param(ctx, SI_PARAM_REL_IDS, 0, 8);
200
201 case PIPE_SHADER_TESS_EVAL:
202 return LLVMGetParam(ctx->main_fn,
203 ctx->param_tes_rel_patch_id);
204
205 default:
206 assert(0);
207 return NULL;
208 }
209 }
210
211 /* Tessellation shaders pass outputs to the next shader using LDS.
212 *
213 * LS outputs = TCS inputs
214 * TCS outputs = TES inputs
215 *
216 * The LDS layout is:
217 * - TCS inputs for patch 0
218 * - TCS inputs for patch 1
219 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
220 * - ...
221 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
222 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
223 * - TCS outputs for patch 1
224 * - Per-patch TCS outputs for patch 1
225 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
226 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
227 * - ...
228 *
229 * All three shaders VS(LS), TCS, TES share the same LDS space.
230 */
231
232 static LLVMValueRef
233 get_tcs_in_patch_stride(struct si_shader_context *ctx)
234 {
235 if (ctx->type == PIPE_SHADER_VERTEX)
236 return unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 0, 13);
237 else if (ctx->type == PIPE_SHADER_TESS_CTRL)
238 return unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 0, 13);
239 else {
240 assert(0);
241 return NULL;
242 }
243 }
244
245 static LLVMValueRef
246 get_tcs_out_patch_stride(struct si_shader_context *ctx)
247 {
248 return unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13);
249 }
250
251 static LLVMValueRef
252 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
253 {
254 return lp_build_mul_imm(&ctx->soa.bld_base.uint_bld,
255 unpack_param(ctx,
256 SI_PARAM_TCS_OUT_OFFSETS,
257 0, 16),
258 4);
259 }
260
261 static LLVMValueRef
262 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
263 {
264 return lp_build_mul_imm(&ctx->soa.bld_base.uint_bld,
265 unpack_param(ctx,
266 SI_PARAM_TCS_OUT_OFFSETS,
267 16, 16),
268 4);
269 }
270
271 static LLVMValueRef
272 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
273 {
274 struct gallivm_state *gallivm = &ctx->gallivm;
275 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
276 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
277
278 return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, "");
279 }
280
281 static LLVMValueRef
282 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
283 {
284 struct gallivm_state *gallivm = &ctx->gallivm;
285 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
286 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
287 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
288
289 return LLVMBuildAdd(gallivm->builder, patch0_offset,
290 LLVMBuildMul(gallivm->builder, patch_stride,
291 rel_patch_id, ""),
292 "");
293 }
294
295 static LLVMValueRef
296 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
297 {
298 struct gallivm_state *gallivm = &ctx->gallivm;
299 LLVMValueRef patch0_patch_data_offset =
300 get_tcs_out_patch0_patch_data_offset(ctx);
301 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
302 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
303
304 return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset,
305 LLVMBuildMul(gallivm->builder, patch_stride,
306 rel_patch_id, ""),
307 "");
308 }
309
310 static LLVMValueRef build_gep0(struct si_shader_context *ctx,
311 LLVMValueRef base_ptr, LLVMValueRef index)
312 {
313 LLVMValueRef indices[2] = {
314 LLVMConstInt(ctx->i32, 0, 0),
315 index,
316 };
317 return LLVMBuildGEP(ctx->gallivm.builder, base_ptr,
318 indices, 2, "");
319 }
320
321 static void build_indexed_store(struct si_shader_context *ctx,
322 LLVMValueRef base_ptr, LLVMValueRef index,
323 LLVMValueRef value)
324 {
325 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
326 struct gallivm_state *gallivm = bld_base->base.gallivm;
327
328 LLVMBuildStore(gallivm->builder, value,
329 build_gep0(ctx, base_ptr, index));
330 }
331
332 /**
333 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
334 * It's equivalent to doing a load from &base_ptr[index].
335 *
336 * \param base_ptr Where the array starts.
337 * \param index The element index into the array.
338 * \param uniform Whether the base_ptr and index can be assumed to be
339 * dynamically uniform
340 */
341 static LLVMValueRef build_indexed_load(struct si_shader_context *ctx,
342 LLVMValueRef base_ptr, LLVMValueRef index,
343 bool uniform)
344 {
345 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
346 struct gallivm_state *gallivm = bld_base->base.gallivm;
347 LLVMValueRef pointer;
348
349 pointer = build_gep0(ctx, base_ptr, index);
350 if (uniform)
351 LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
352 return LLVMBuildLoad(gallivm->builder, pointer, "");
353 }
354
355 /**
356 * Do a load from &base_ptr[index], but also add a flag that it's loading
357 * a constant from a dynamically uniform index.
358 */
359 static LLVMValueRef build_indexed_load_const(
360 struct si_shader_context *ctx,
361 LLVMValueRef base_ptr, LLVMValueRef index)
362 {
363 LLVMValueRef result = build_indexed_load(ctx, base_ptr, index, true);
364 LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
365 return result;
366 }
367
368 static LLVMValueRef get_instance_index_for_fetch(
369 struct si_shader_context *radeon_bld,
370 unsigned param_start_instance, unsigned divisor)
371 {
372 struct si_shader_context *ctx =
373 si_shader_context(&radeon_bld->soa.bld_base);
374 struct gallivm_state *gallivm = radeon_bld->soa.bld_base.base.gallivm;
375
376 LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn,
377 ctx->param_instance_id);
378
379 /* The division must be done before START_INSTANCE is added. */
380 if (divisor > 1)
381 result = LLVMBuildUDiv(gallivm->builder, result,
382 lp_build_const_int32(gallivm, divisor), "");
383
384 return LLVMBuildAdd(gallivm->builder, result,
385 LLVMGetParam(radeon_bld->main_fn, param_start_instance), "");
386 }
387
388 static void declare_input_vs(
389 struct si_shader_context *ctx,
390 unsigned input_index,
391 const struct tgsi_full_declaration *decl,
392 LLVMValueRef out[4])
393 {
394 struct lp_build_context *base = &ctx->soa.bld_base.base;
395 struct gallivm_state *gallivm = base->gallivm;
396
397 unsigned chan;
398 unsigned fix_fetch;
399
400 LLVMValueRef t_list_ptr;
401 LLVMValueRef t_offset;
402 LLVMValueRef t_list;
403 LLVMValueRef attribute_offset;
404 LLVMValueRef buffer_index;
405 LLVMValueRef args[3];
406 LLVMValueRef input;
407
408 /* Load the T list */
409 t_list_ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_VERTEX_BUFFERS);
410
411 t_offset = lp_build_const_int32(gallivm, input_index);
412
413 t_list = build_indexed_load_const(ctx, t_list_ptr, t_offset);
414
415 /* Build the attribute offset */
416 attribute_offset = lp_build_const_int32(gallivm, 0);
417
418 buffer_index = LLVMGetParam(ctx->main_fn,
419 ctx->param_vertex_index0 +
420 input_index);
421
422 args[0] = t_list;
423 args[1] = attribute_offset;
424 args[2] = buffer_index;
425 input = lp_build_intrinsic(gallivm->builder,
426 "llvm.SI.vs.load.input", ctx->v4f32, args, 3,
427 LP_FUNC_ATTR_READNONE);
428
429 /* Break up the vec4 into individual components */
430 for (chan = 0; chan < 4; chan++) {
431 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
432 out[chan] = LLVMBuildExtractElement(gallivm->builder,
433 input, llvm_chan, "");
434 }
435
436 fix_fetch = (ctx->shader->key.mono.vs.fix_fetch >> (2 * input_index)) & 3;
437 if (fix_fetch) {
438 /* The hardware returns an unsigned value; convert it to a
439 * signed one.
440 */
441 LLVMValueRef tmp = out[3];
442 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
443
444 /* First, recover the sign-extended signed integer value. */
445 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
446 tmp = LLVMBuildFPToUI(gallivm->builder, tmp, ctx->i32, "");
447 else
448 tmp = LLVMBuildBitCast(gallivm->builder, tmp, ctx->i32, "");
449
450 /* For the integer-like cases, do a natural sign extension.
451 *
452 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
453 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
454 * exponent.
455 */
456 tmp = LLVMBuildShl(gallivm->builder, tmp,
457 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
458 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
459 tmp = LLVMBuildAShr(gallivm->builder, tmp, c30, "");
460
461 /* Convert back to the right type. */
462 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
463 LLVMValueRef clamp;
464 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
465 tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
466 clamp = LLVMBuildFCmp(gallivm->builder, LLVMRealULT, tmp, neg_one, "");
467 tmp = LLVMBuildSelect(gallivm->builder, clamp, neg_one, tmp, "");
468 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
469 tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
470 }
471
472 out[3] = tmp;
473 }
474 }
475
476 static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base,
477 unsigned swizzle)
478 {
479 struct si_shader_context *ctx = si_shader_context(bld_base);
480
481 if (swizzle > 0)
482 return bld_base->uint_bld.zero;
483
484 switch (ctx->type) {
485 case PIPE_SHADER_VERTEX:
486 return LLVMGetParam(ctx->main_fn,
487 ctx->param_vs_prim_id);
488 case PIPE_SHADER_TESS_CTRL:
489 return LLVMGetParam(ctx->main_fn,
490 SI_PARAM_PATCH_ID);
491 case PIPE_SHADER_TESS_EVAL:
492 return LLVMGetParam(ctx->main_fn,
493 ctx->param_tes_patch_id);
494 case PIPE_SHADER_GEOMETRY:
495 return LLVMGetParam(ctx->main_fn,
496 SI_PARAM_PRIMITIVE_ID);
497 default:
498 assert(0);
499 return bld_base->uint_bld.zero;
500 }
501 }
502
503 /**
504 * Return the value of tgsi_ind_register for indexing.
505 * This is the indirect index with the constant offset added to it.
506 */
507 static LLVMValueRef get_indirect_index(struct si_shader_context *ctx,
508 const struct tgsi_ind_register *ind,
509 int rel_index)
510 {
511 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
512 LLVMValueRef result;
513
514 result = ctx->soa.addr[ind->Index][ind->Swizzle];
515 result = LLVMBuildLoad(gallivm->builder, result, "");
516 result = LLVMBuildAdd(gallivm->builder, result,
517 lp_build_const_int32(gallivm, rel_index), "");
518 return result;
519 }
520
521 /**
522 * Like get_indirect_index, but restricts the return value to a (possibly
523 * undefined) value inside [0..num).
524 */
525 static LLVMValueRef get_bounded_indirect_index(struct si_shader_context *ctx,
526 const struct tgsi_ind_register *ind,
527 int rel_index, unsigned num)
528 {
529 LLVMValueRef result = get_indirect_index(ctx, ind, rel_index);
530
531 /* LLVM 3.8: If indirect resource indexing is used:
532 * - SI & CIK hang
533 * - VI crashes
534 */
535 if (HAVE_LLVM <= 0x0308)
536 return LLVMGetUndef(ctx->i32);
537
538 return si_llvm_bound_index(ctx, result, num);
539 }
540
541
542 /**
543 * Calculate a dword address given an input or output register and a stride.
544 */
545 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
546 const struct tgsi_full_dst_register *dst,
547 const struct tgsi_full_src_register *src,
548 LLVMValueRef vertex_dw_stride,
549 LLVMValueRef base_addr)
550 {
551 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
552 struct tgsi_shader_info *info = &ctx->shader->selector->info;
553 ubyte *name, *index, *array_first;
554 int first, param;
555 struct tgsi_full_dst_register reg;
556
557 /* Set the register description. The address computation is the same
558 * for sources and destinations. */
559 if (src) {
560 reg.Register.File = src->Register.File;
561 reg.Register.Index = src->Register.Index;
562 reg.Register.Indirect = src->Register.Indirect;
563 reg.Register.Dimension = src->Register.Dimension;
564 reg.Indirect = src->Indirect;
565 reg.Dimension = src->Dimension;
566 reg.DimIndirect = src->DimIndirect;
567 } else
568 reg = *dst;
569
570 /* If the register is 2-dimensional (e.g. an array of vertices
571 * in a primitive), calculate the base address of the vertex. */
572 if (reg.Register.Dimension) {
573 LLVMValueRef index;
574
575 if (reg.Dimension.Indirect)
576 index = get_indirect_index(ctx, &reg.DimIndirect,
577 reg.Dimension.Index);
578 else
579 index = lp_build_const_int32(gallivm, reg.Dimension.Index);
580
581 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
582 LLVMBuildMul(gallivm->builder, index,
583 vertex_dw_stride, ""), "");
584 }
585
586 /* Get information about the register. */
587 if (reg.Register.File == TGSI_FILE_INPUT) {
588 name = info->input_semantic_name;
589 index = info->input_semantic_index;
590 array_first = info->input_array_first;
591 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
592 name = info->output_semantic_name;
593 index = info->output_semantic_index;
594 array_first = info->output_array_first;
595 } else {
596 assert(0);
597 return NULL;
598 }
599
600 if (reg.Register.Indirect) {
601 /* Add the relative address of the element. */
602 LLVMValueRef ind_index;
603
604 if (reg.Indirect.ArrayID)
605 first = array_first[reg.Indirect.ArrayID];
606 else
607 first = reg.Register.Index;
608
609 ind_index = get_indirect_index(ctx, &reg.Indirect,
610 reg.Register.Index - first);
611
612 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
613 LLVMBuildMul(gallivm->builder, ind_index,
614 lp_build_const_int32(gallivm, 4), ""), "");
615
616 param = si_shader_io_get_unique_index(name[first], index[first]);
617 } else {
618 param = si_shader_io_get_unique_index(name[reg.Register.Index],
619 index[reg.Register.Index]);
620 }
621
622 /* Add the base address of the element. */
623 return LLVMBuildAdd(gallivm->builder, base_addr,
624 lp_build_const_int32(gallivm, param * 4), "");
625 }
626
627 /* The offchip buffer layout for TCS->TES is
628 *
629 * - attribute 0 of patch 0 vertex 0
630 * - attribute 0 of patch 0 vertex 1
631 * - attribute 0 of patch 0 vertex 2
632 * ...
633 * - attribute 0 of patch 1 vertex 0
634 * - attribute 0 of patch 1 vertex 1
635 * ...
636 * - attribute 1 of patch 0 vertex 0
637 * - attribute 1 of patch 0 vertex 1
638 * ...
639 * - per patch attribute 0 of patch 0
640 * - per patch attribute 0 of patch 1
641 * ...
642 *
643 * Note that every attribute has 4 components.
644 */
645 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
646 LLVMValueRef vertex_index,
647 LLVMValueRef param_index)
648 {
649 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
650 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
651 LLVMValueRef param_stride, constant16;
652
653 vertices_per_patch = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 6);
654 num_patches = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 0, 9);
655 total_vertices = LLVMBuildMul(gallivm->builder, vertices_per_patch,
656 num_patches, "");
657
658 constant16 = lp_build_const_int32(gallivm, 16);
659 if (vertex_index) {
660 base_addr = LLVMBuildMul(gallivm->builder, get_rel_patch_id(ctx),
661 vertices_per_patch, "");
662
663 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
664 vertex_index, "");
665
666 param_stride = total_vertices;
667 } else {
668 base_addr = get_rel_patch_id(ctx);
669 param_stride = num_patches;
670 }
671
672 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
673 LLVMBuildMul(gallivm->builder, param_index,
674 param_stride, ""), "");
675
676 base_addr = LLVMBuildMul(gallivm->builder, base_addr, constant16, "");
677
678 if (!vertex_index) {
679 LLVMValueRef patch_data_offset =
680 unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 16, 16);
681
682 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
683 patch_data_offset, "");
684 }
685 return base_addr;
686 }
687
688 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
689 struct si_shader_context *ctx,
690 const struct tgsi_full_dst_register *dst,
691 const struct tgsi_full_src_register *src)
692 {
693 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
694 struct tgsi_shader_info *info = &ctx->shader->selector->info;
695 ubyte *name, *index, *array_first;
696 struct tgsi_full_src_register reg;
697 LLVMValueRef vertex_index = NULL;
698 LLVMValueRef param_index = NULL;
699 unsigned param_index_base, param_base;
700
701 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
702
703 if (reg.Register.Dimension) {
704
705 if (reg.Dimension.Indirect)
706 vertex_index = get_indirect_index(ctx, &reg.DimIndirect,
707 reg.Dimension.Index);
708 else
709 vertex_index = lp_build_const_int32(gallivm,
710 reg.Dimension.Index);
711 }
712
713 /* Get information about the register. */
714 if (reg.Register.File == TGSI_FILE_INPUT) {
715 name = info->input_semantic_name;
716 index = info->input_semantic_index;
717 array_first = info->input_array_first;
718 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
719 name = info->output_semantic_name;
720 index = info->output_semantic_index;
721 array_first = info->output_array_first;
722 } else {
723 assert(0);
724 return NULL;
725 }
726
727 if (reg.Register.Indirect) {
728 if (reg.Indirect.ArrayID)
729 param_base = array_first[reg.Indirect.ArrayID];
730 else
731 param_base = reg.Register.Index;
732
733 param_index = get_indirect_index(ctx, &reg.Indirect,
734 reg.Register.Index - param_base);
735
736 } else {
737 param_base = reg.Register.Index;
738 param_index = lp_build_const_int32(gallivm, 0);
739 }
740
741 param_index_base = si_shader_io_get_unique_index(name[param_base],
742 index[param_base]);
743
744 param_index = LLVMBuildAdd(gallivm->builder, param_index,
745 lp_build_const_int32(gallivm, param_index_base),
746 "");
747
748 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
749 }
750
751 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
752 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
753 * or v4i32 (num_channels=3,4). */
754 static void build_tbuffer_store(struct si_shader_context *ctx,
755 LLVMValueRef rsrc,
756 LLVMValueRef vdata,
757 unsigned num_channels,
758 LLVMValueRef vaddr,
759 LLVMValueRef soffset,
760 unsigned inst_offset,
761 unsigned dfmt,
762 unsigned nfmt,
763 unsigned offen,
764 unsigned idxen,
765 unsigned glc,
766 unsigned slc,
767 unsigned tfe)
768 {
769 struct gallivm_state *gallivm = &ctx->gallivm;
770 LLVMValueRef args[] = {
771 rsrc,
772 vdata,
773 LLVMConstInt(ctx->i32, num_channels, 0),
774 vaddr,
775 soffset,
776 LLVMConstInt(ctx->i32, inst_offset, 0),
777 LLVMConstInt(ctx->i32, dfmt, 0),
778 LLVMConstInt(ctx->i32, nfmt, 0),
779 LLVMConstInt(ctx->i32, offen, 0),
780 LLVMConstInt(ctx->i32, idxen, 0),
781 LLVMConstInt(ctx->i32, glc, 0),
782 LLVMConstInt(ctx->i32, slc, 0),
783 LLVMConstInt(ctx->i32, tfe, 0)
784 };
785
786 /* The instruction offset field has 12 bits */
787 assert(offen || inst_offset < (1 << 12));
788
789 /* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
790 unsigned func = CLAMP(num_channels, 1, 3) - 1;
791 const char *types[] = {"i32", "v2i32", "v4i32"};
792 char name[256];
793 snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
794
795 lp_build_intrinsic(gallivm->builder, name, ctx->voidt,
796 args, ARRAY_SIZE(args), 0);
797 }
798
799 static void build_tbuffer_store_dwords(struct si_shader_context *ctx,
800 LLVMValueRef rsrc,
801 LLVMValueRef vdata,
802 unsigned num_channels,
803 LLVMValueRef vaddr,
804 LLVMValueRef soffset,
805 unsigned inst_offset)
806 {
807 static unsigned dfmt[] = {
808 V_008F0C_BUF_DATA_FORMAT_32,
809 V_008F0C_BUF_DATA_FORMAT_32_32,
810 V_008F0C_BUF_DATA_FORMAT_32_32_32,
811 V_008F0C_BUF_DATA_FORMAT_32_32_32_32
812 };
813 assert(num_channels >= 1 && num_channels <= 4);
814
815 build_tbuffer_store(ctx, rsrc, vdata, num_channels, vaddr, soffset,
816 inst_offset, dfmt[num_channels-1],
817 V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
818 }
819
820 static LLVMValueRef build_buffer_load(struct si_shader_context *ctx,
821 LLVMValueRef rsrc,
822 int num_channels,
823 LLVMValueRef vindex,
824 LLVMValueRef voffset,
825 LLVMValueRef soffset,
826 unsigned inst_offset,
827 unsigned glc,
828 unsigned slc)
829 {
830 struct gallivm_state *gallivm = &ctx->gallivm;
831 unsigned func = CLAMP(num_channels, 1, 3) - 1;
832
833 if (HAVE_LLVM >= 0x309) {
834 LLVMValueRef args[] = {
835 LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v4i32, ""),
836 vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
837 LLVMConstInt(ctx->i32, inst_offset, 0),
838 LLVMConstInt(ctx->i1, glc, 0),
839 LLVMConstInt(ctx->i1, slc, 0)
840 };
841
842 LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
843 ctx->v4f32};
844 const char *type_names[] = {"f32", "v2f32", "v4f32"};
845 char name[256];
846
847 if (voffset) {
848 args[2] = LLVMBuildAdd(gallivm->builder, args[2], voffset,
849 "");
850 }
851
852 if (soffset) {
853 args[2] = LLVMBuildAdd(gallivm->builder, args[2], soffset,
854 "");
855 }
856
857 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
858 type_names[func]);
859
860 return lp_build_intrinsic(gallivm->builder, name, types[func], args,
861 ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
862 } else {
863 LLVMValueRef args[] = {
864 LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v16i8, ""),
865 voffset ? voffset : vindex,
866 soffset,
867 LLVMConstInt(ctx->i32, inst_offset, 0),
868 LLVMConstInt(ctx->i32, voffset ? 1 : 0, 0), // offen
869 LLVMConstInt(ctx->i32, vindex ? 1 : 0, 0), //idxen
870 LLVMConstInt(ctx->i32, glc, 0),
871 LLVMConstInt(ctx->i32, slc, 0),
872 LLVMConstInt(ctx->i32, 0, 0), // TFE
873 };
874
875 LLVMTypeRef types[] = {ctx->i32, LLVMVectorType(ctx->i32, 2),
876 ctx->v4i32};
877 const char *type_names[] = {"i32", "v2i32", "v4i32"};
878 const char *arg_type = "i32";
879 char name[256];
880
881 if (voffset && vindex) {
882 LLVMValueRef vaddr[] = {vindex, voffset};
883
884 arg_type = "v2i32";
885 args[1] = lp_build_gather_values(gallivm, vaddr, 2);
886 }
887
888 snprintf(name, sizeof(name), "llvm.SI.buffer.load.dword.%s.%s",
889 type_names[func], arg_type);
890
891 return lp_build_intrinsic(gallivm->builder, name, types[func], args,
892 ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
893 }
894 }
895
896 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
897 enum tgsi_opcode_type type, unsigned swizzle,
898 LLVMValueRef buffer, LLVMValueRef offset,
899 LLVMValueRef base)
900 {
901 struct si_shader_context *ctx = si_shader_context(bld_base);
902 struct gallivm_state *gallivm = bld_base->base.gallivm;
903 LLVMValueRef value, value2;
904 LLVMTypeRef llvm_type = tgsi2llvmtype(bld_base, type);
905 LLVMTypeRef vec_type = LLVMVectorType(llvm_type, 4);
906
907 if (swizzle == ~0) {
908 value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
909 0, 1, 0);
910
911 return LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
912 }
913
914 if (!tgsi_type_is_64bit(type)) {
915 value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
916 0, 1, 0);
917
918 value = LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
919 return LLVMBuildExtractElement(gallivm->builder, value,
920 lp_build_const_int32(gallivm, swizzle), "");
921 }
922
923 value = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
924 swizzle * 4, 1, 0);
925
926 value2 = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
927 swizzle * 4 + 4, 1, 0);
928
929 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
930 }
931
932 /**
933 * Load from LDS.
934 *
935 * \param type output value type
936 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
937 * \param dw_addr address in dwords
938 */
939 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
940 enum tgsi_opcode_type type, unsigned swizzle,
941 LLVMValueRef dw_addr)
942 {
943 struct si_shader_context *ctx = si_shader_context(bld_base);
944 struct gallivm_state *gallivm = bld_base->base.gallivm;
945 LLVMValueRef value;
946
947 if (swizzle == ~0) {
948 LLVMValueRef values[TGSI_NUM_CHANNELS];
949
950 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
951 values[chan] = lds_load(bld_base, type, chan, dw_addr);
952
953 return lp_build_gather_values(bld_base->base.gallivm, values,
954 TGSI_NUM_CHANNELS);
955 }
956
957 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
958 lp_build_const_int32(gallivm, swizzle));
959
960 value = build_indexed_load(ctx, ctx->lds, dw_addr, false);
961 if (tgsi_type_is_64bit(type)) {
962 LLVMValueRef value2;
963 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
964 lp_build_const_int32(gallivm, 1));
965 value2 = build_indexed_load(ctx, ctx->lds, dw_addr, false);
966 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
967 }
968
969 return LLVMBuildBitCast(gallivm->builder, value,
970 tgsi2llvmtype(bld_base, type), "");
971 }
972
973 /**
974 * Store to LDS.
975 *
976 * \param swizzle offset (typically 0..3)
977 * \param dw_addr address in dwords
978 * \param value value to store
979 */
980 static void lds_store(struct lp_build_tgsi_context *bld_base,
981 unsigned swizzle, LLVMValueRef dw_addr,
982 LLVMValueRef value)
983 {
984 struct si_shader_context *ctx = si_shader_context(bld_base);
985 struct gallivm_state *gallivm = bld_base->base.gallivm;
986
987 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
988 lp_build_const_int32(gallivm, swizzle));
989
990 value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
991 build_indexed_store(ctx, ctx->lds,
992 dw_addr, value);
993 }
994
995 static LLVMValueRef fetch_input_tcs(
996 struct lp_build_tgsi_context *bld_base,
997 const struct tgsi_full_src_register *reg,
998 enum tgsi_opcode_type type, unsigned swizzle)
999 {
1000 struct si_shader_context *ctx = si_shader_context(bld_base);
1001 LLVMValueRef dw_addr, stride;
1002
1003 stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
1004 dw_addr = get_tcs_in_current_patch_offset(ctx);
1005 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1006
1007 return lds_load(bld_base, type, swizzle, dw_addr);
1008 }
1009
1010 static LLVMValueRef fetch_output_tcs(
1011 struct lp_build_tgsi_context *bld_base,
1012 const struct tgsi_full_src_register *reg,
1013 enum tgsi_opcode_type type, unsigned swizzle)
1014 {
1015 struct si_shader_context *ctx = si_shader_context(bld_base);
1016 LLVMValueRef dw_addr, stride;
1017
1018 if (reg->Register.Dimension) {
1019 stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
1020 dw_addr = get_tcs_out_current_patch_offset(ctx);
1021 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1022 } else {
1023 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1024 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1025 }
1026
1027 return lds_load(bld_base, type, swizzle, dw_addr);
1028 }
1029
1030 static LLVMValueRef fetch_input_tes(
1031 struct lp_build_tgsi_context *bld_base,
1032 const struct tgsi_full_src_register *reg,
1033 enum tgsi_opcode_type type, unsigned swizzle)
1034 {
1035 struct si_shader_context *ctx = si_shader_context(bld_base);
1036 struct gallivm_state *gallivm = bld_base->base.gallivm;
1037 LLVMValueRef rw_buffers, buffer, base, addr;
1038
1039 rw_buffers = LLVMGetParam(ctx->main_fn,
1040 SI_PARAM_RW_BUFFERS);
1041 buffer = build_indexed_load_const(ctx, rw_buffers,
1042 lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1043
1044 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1045 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1046
1047 return buffer_load(bld_base, type, swizzle, buffer, base, addr);
1048 }
1049
1050 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1051 const struct tgsi_full_instruction *inst,
1052 const struct tgsi_opcode_info *info,
1053 LLVMValueRef dst[4])
1054 {
1055 struct si_shader_context *ctx = si_shader_context(bld_base);
1056 struct gallivm_state *gallivm = bld_base->base.gallivm;
1057 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
1058 unsigned chan_index;
1059 LLVMValueRef dw_addr, stride;
1060 LLVMValueRef rw_buffers, buffer, base, buf_addr;
1061 LLVMValueRef values[4];
1062
1063 /* Only handle per-patch and per-vertex outputs here.
1064 * Vectors will be lowered to scalars and this function will be called again.
1065 */
1066 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1067 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1068 si_llvm_emit_store(bld_base, inst, info, dst);
1069 return;
1070 }
1071
1072 if (reg->Register.Dimension) {
1073 stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
1074 dw_addr = get_tcs_out_current_patch_offset(ctx);
1075 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1076 } else {
1077 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1078 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1079 }
1080
1081 rw_buffers = LLVMGetParam(ctx->main_fn,
1082 SI_PARAM_RW_BUFFERS);
1083 buffer = build_indexed_load_const(ctx, rw_buffers,
1084 lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1085
1086 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1087 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1088
1089
1090 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
1091 LLVMValueRef value = dst[chan_index];
1092
1093 if (inst->Instruction.Saturate)
1094 value = si_llvm_saturate(bld_base, value);
1095
1096 lds_store(bld_base, chan_index, dw_addr, value);
1097
1098 value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
1099 values[chan_index] = value;
1100
1101 if (inst->Dst[0].Register.WriteMask != 0xF) {
1102 build_tbuffer_store_dwords(ctx, buffer, value, 1,
1103 buf_addr, base,
1104 4 * chan_index);
1105 }
1106 }
1107
1108 if (inst->Dst[0].Register.WriteMask == 0xF) {
1109 LLVMValueRef value = lp_build_gather_values(bld_base->base.gallivm,
1110 values, 4);
1111 build_tbuffer_store_dwords(ctx, buffer, value, 4, buf_addr,
1112 base, 0);
1113 }
1114 }
1115
1116 static LLVMValueRef fetch_input_gs(
1117 struct lp_build_tgsi_context *bld_base,
1118 const struct tgsi_full_src_register *reg,
1119 enum tgsi_opcode_type type,
1120 unsigned swizzle)
1121 {
1122 struct lp_build_context *base = &bld_base->base;
1123 struct si_shader_context *ctx = si_shader_context(bld_base);
1124 struct si_shader *shader = ctx->shader;
1125 struct lp_build_context *uint = &ctx->soa.bld_base.uint_bld;
1126 struct gallivm_state *gallivm = base->gallivm;
1127 LLVMValueRef vtx_offset;
1128 LLVMValueRef args[9];
1129 unsigned vtx_offset_param;
1130 struct tgsi_shader_info *info = &shader->selector->info;
1131 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1132 unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
1133 unsigned param;
1134 LLVMValueRef value;
1135
1136 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1137 return get_primitive_id(bld_base, swizzle);
1138
1139 if (!reg->Register.Dimension)
1140 return NULL;
1141
1142 if (swizzle == ~0) {
1143 LLVMValueRef values[TGSI_NUM_CHANNELS];
1144 unsigned chan;
1145 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1146 values[chan] = fetch_input_gs(bld_base, reg, type, chan);
1147 }
1148 return lp_build_gather_values(bld_base->base.gallivm, values,
1149 TGSI_NUM_CHANNELS);
1150 }
1151
1152 /* Get the vertex offset parameter */
1153 vtx_offset_param = reg->Dimension.Index;
1154 if (vtx_offset_param < 2) {
1155 vtx_offset_param += SI_PARAM_VTX0_OFFSET;
1156 } else {
1157 assert(vtx_offset_param < 6);
1158 vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
1159 }
1160 vtx_offset = lp_build_mul_imm(uint,
1161 LLVMGetParam(ctx->main_fn,
1162 vtx_offset_param),
1163 4);
1164
1165 param = si_shader_io_get_unique_index(semantic_name, semantic_index);
1166 args[0] = ctx->esgs_ring;
1167 args[1] = vtx_offset;
1168 args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle) * 256);
1169 args[3] = uint->zero;
1170 args[4] = uint->one; /* OFFEN */
1171 args[5] = uint->zero; /* IDXEN */
1172 args[6] = uint->one; /* GLC */
1173 args[7] = uint->zero; /* SLC */
1174 args[8] = uint->zero; /* TFE */
1175
1176 value = lp_build_intrinsic(gallivm->builder,
1177 "llvm.SI.buffer.load.dword.i32.i32",
1178 ctx->i32, args, 9,
1179 LP_FUNC_ATTR_READONLY);
1180 if (tgsi_type_is_64bit(type)) {
1181 LLVMValueRef value2;
1182 args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle + 1) * 256);
1183 value2 = lp_build_intrinsic(gallivm->builder,
1184 "llvm.SI.buffer.load.dword.i32.i32",
1185 ctx->i32, args, 9,
1186 LP_FUNC_ATTR_READONLY);
1187 return si_llvm_emit_fetch_64bit(bld_base, type,
1188 value, value2);
1189 }
1190 return LLVMBuildBitCast(gallivm->builder,
1191 value,
1192 tgsi2llvmtype(bld_base, type), "");
1193 }
1194
1195 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1196 {
1197 switch (interpolate) {
1198 case TGSI_INTERPOLATE_CONSTANT:
1199 return 0;
1200
1201 case TGSI_INTERPOLATE_LINEAR:
1202 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1203 return SI_PARAM_LINEAR_SAMPLE;
1204 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1205 return SI_PARAM_LINEAR_CENTROID;
1206 else
1207 return SI_PARAM_LINEAR_CENTER;
1208 break;
1209 case TGSI_INTERPOLATE_COLOR:
1210 case TGSI_INTERPOLATE_PERSPECTIVE:
1211 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1212 return SI_PARAM_PERSP_SAMPLE;
1213 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1214 return SI_PARAM_PERSP_CENTROID;
1215 else
1216 return SI_PARAM_PERSP_CENTER;
1217 break;
1218 default:
1219 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1220 return -1;
1221 }
1222 }
1223
1224 static LLVMValueRef build_fs_interp(
1225 struct lp_build_tgsi_context *bld_base,
1226 LLVMValueRef llvm_chan,
1227 LLVMValueRef attr_number,
1228 LLVMValueRef params,
1229 LLVMValueRef i,
1230 LLVMValueRef j) {
1231
1232 struct si_shader_context *ctx = si_shader_context(bld_base);
1233 struct gallivm_state *gallivm = bld_base->base.gallivm;
1234 LLVMValueRef args[5];
1235 LLVMValueRef p1;
1236 if (HAVE_LLVM < 0x0400) {
1237 LLVMValueRef ij[2];
1238 ij[0] = LLVMBuildBitCast(gallivm->builder, i, ctx->i32, "");
1239 ij[1] = LLVMBuildBitCast(gallivm->builder, j, ctx->i32, "");
1240
1241 args[0] = llvm_chan;
1242 args[1] = attr_number;
1243 args[2] = params;
1244 args[3] = lp_build_gather_values(gallivm, ij, 2);
1245 return lp_build_intrinsic(gallivm->builder, "llvm.SI.fs.interp",
1246 ctx->f32, args, 4,
1247 LP_FUNC_ATTR_READNONE);
1248 }
1249
1250 args[0] = i;
1251 args[1] = llvm_chan;
1252 args[2] = attr_number;
1253 args[3] = params;
1254
1255 p1 = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p1",
1256 ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
1257
1258 args[0] = p1;
1259 args[1] = j;
1260 args[2] = llvm_chan;
1261 args[3] = attr_number;
1262 args[4] = params;
1263
1264 return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p2",
1265 ctx->f32, args, 5, LP_FUNC_ATTR_READNONE);
1266 }
1267
1268 static LLVMValueRef build_fs_interp_mov(
1269 struct lp_build_tgsi_context *bld_base,
1270 LLVMValueRef parameter,
1271 LLVMValueRef llvm_chan,
1272 LLVMValueRef attr_number,
1273 LLVMValueRef params) {
1274
1275 struct si_shader_context *ctx = si_shader_context(bld_base);
1276 struct gallivm_state *gallivm = bld_base->base.gallivm;
1277 LLVMValueRef args[4];
1278 if (HAVE_LLVM < 0x0400) {
1279 args[0] = llvm_chan;
1280 args[1] = attr_number;
1281 args[2] = params;
1282
1283 return lp_build_intrinsic(gallivm->builder,
1284 "llvm.SI.fs.constant",
1285 ctx->f32, args, 3,
1286 LP_FUNC_ATTR_READNONE);
1287 }
1288
1289 args[0] = parameter;
1290 args[1] = llvm_chan;
1291 args[2] = attr_number;
1292 args[3] = params;
1293
1294 return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.mov",
1295 ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
1296 }
1297
1298 /**
1299 * Interpolate a fragment shader input.
1300 *
1301 * @param ctx context
1302 * @param input_index index of the input in hardware
1303 * @param semantic_name TGSI_SEMANTIC_*
1304 * @param semantic_index semantic index
1305 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1306 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1307 * @param interp_param interpolation weights (i,j)
1308 * @param prim_mask SI_PARAM_PRIM_MASK
1309 * @param face SI_PARAM_FRONT_FACE
1310 * @param result the return value (4 components)
1311 */
1312 static void interp_fs_input(struct si_shader_context *ctx,
1313 unsigned input_index,
1314 unsigned semantic_name,
1315 unsigned semantic_index,
1316 unsigned num_interp_inputs,
1317 unsigned colors_read_mask,
1318 LLVMValueRef interp_param,
1319 LLVMValueRef prim_mask,
1320 LLVMValueRef face,
1321 LLVMValueRef result[4])
1322 {
1323 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
1324 struct lp_build_context *base = &bld_base->base;
1325 struct lp_build_context *uint = &bld_base->uint_bld;
1326 struct gallivm_state *gallivm = base->gallivm;
1327 LLVMValueRef attr_number;
1328 LLVMValueRef i, j;
1329
1330 unsigned chan;
1331
1332 /* fs.constant returns the param from the middle vertex, so it's not
1333 * really useful for flat shading. It's meant to be used for custom
1334 * interpolation (but the intrinsic can't fetch from the other two
1335 * vertices).
1336 *
1337 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1338 * to do the right thing. The only reason we use fs.constant is that
1339 * fs.interp cannot be used on integers, because they can be equal
1340 * to NaN.
1341 *
1342 * When interp is false we will use fs.constant or for newer llvm,
1343 * amdgcn.interp.mov.
1344 */
1345 bool interp = interp_param != NULL;
1346
1347 attr_number = lp_build_const_int32(gallivm, input_index);
1348
1349 if (interp) {
1350 interp_param = LLVMBuildBitCast(gallivm->builder, interp_param,
1351 LLVMVectorType(ctx->f32, 2), "");
1352
1353 i = LLVMBuildExtractElement(gallivm->builder, interp_param,
1354 uint->zero, "");
1355 j = LLVMBuildExtractElement(gallivm->builder, interp_param,
1356 uint->one, "");
1357 }
1358
1359 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1360 ctx->shader->key.part.ps.prolog.color_two_side) {
1361 LLVMValueRef is_face_positive;
1362 LLVMValueRef back_attr_number;
1363
1364 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1365 * otherwise it's at offset "num_inputs".
1366 */
1367 unsigned back_attr_offset = num_interp_inputs;
1368 if (semantic_index == 1 && colors_read_mask & 0xf)
1369 back_attr_offset += 1;
1370
1371 back_attr_number = lp_build_const_int32(gallivm, back_attr_offset);
1372
1373 is_face_positive = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
1374 face, uint->zero, "");
1375
1376 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1377 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
1378 LLVMValueRef front, back;
1379
1380 if (interp) {
1381 front = build_fs_interp(bld_base, llvm_chan,
1382 attr_number, prim_mask,
1383 i, j);
1384 back = build_fs_interp(bld_base, llvm_chan,
1385 back_attr_number, prim_mask,
1386 i, j);
1387 } else {
1388 front = build_fs_interp_mov(bld_base,
1389 lp_build_const_int32(gallivm, 2), /* P0 */
1390 llvm_chan, attr_number, prim_mask);
1391 back = build_fs_interp_mov(bld_base,
1392 lp_build_const_int32(gallivm, 2), /* P0 */
1393 llvm_chan, back_attr_number, prim_mask);
1394 }
1395
1396 result[chan] = LLVMBuildSelect(gallivm->builder,
1397 is_face_positive,
1398 front,
1399 back,
1400 "");
1401 }
1402 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1403 if (interp) {
1404 result[0] = build_fs_interp(bld_base, uint->zero,
1405 attr_number, prim_mask, i, j);
1406 } else {
1407 result[0] = build_fs_interp_mov(bld_base, uint->zero,
1408 lp_build_const_int32(gallivm, 2), /* P0 */
1409 attr_number, prim_mask);
1410 }
1411 result[1] =
1412 result[2] = lp_build_const_float(gallivm, 0.0f);
1413 result[3] = lp_build_const_float(gallivm, 1.0f);
1414 } else {
1415 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1416 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
1417
1418 if (interp) {
1419 result[chan] = build_fs_interp(bld_base,
1420 llvm_chan, attr_number, prim_mask, i, j);
1421 } else {
1422 result[chan] = build_fs_interp_mov(bld_base,
1423 lp_build_const_int32(gallivm, 2), /* P0 */
1424 llvm_chan, attr_number, prim_mask);
1425 }
1426 }
1427 }
1428 }
1429
1430 static void declare_input_fs(
1431 struct si_shader_context *radeon_bld,
1432 unsigned input_index,
1433 const struct tgsi_full_declaration *decl,
1434 LLVMValueRef out[4])
1435 {
1436 struct lp_build_context *base = &radeon_bld->soa.bld_base.base;
1437 struct si_shader_context *ctx =
1438 si_shader_context(&radeon_bld->soa.bld_base);
1439 struct si_shader *shader = ctx->shader;
1440 LLVMValueRef main_fn = radeon_bld->main_fn;
1441 LLVMValueRef interp_param = NULL;
1442 int interp_param_idx;
1443
1444 /* Get colors from input VGPRs (set by the prolog). */
1445 if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR) {
1446 unsigned i = decl->Semantic.Index;
1447 unsigned colors_read = shader->selector->info.colors_read;
1448 unsigned mask = colors_read >> (i * 4);
1449 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1450 (i ? util_bitcount(colors_read & 0xf) : 0);
1451
1452 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
1453 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
1454 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
1455 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
1456 return;
1457 }
1458
1459 interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate,
1460 decl->Interp.Location);
1461 if (interp_param_idx == -1)
1462 return;
1463 else if (interp_param_idx) {
1464 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1465 }
1466
1467 if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
1468 decl->Interp.Interpolate == TGSI_INTERPOLATE_COLOR &&
1469 ctx->shader->key.part.ps.prolog.flatshade_colors)
1470 interp_param = NULL; /* load the constant color */
1471
1472 interp_fs_input(ctx, input_index, decl->Semantic.Name,
1473 decl->Semantic.Index, shader->selector->info.num_inputs,
1474 shader->selector->info.colors_read, interp_param,
1475 LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1476 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1477 &out[0]);
1478 }
1479
1480 static LLVMValueRef get_sample_id(struct si_shader_context *radeon_bld)
1481 {
1482 return unpack_param(si_shader_context(&radeon_bld->soa.bld_base),
1483 SI_PARAM_ANCILLARY, 8, 4);
1484 }
1485
1486 /**
1487 * Set range metadata on an instruction. This can only be used on load and
1488 * call instructions. If you know an instruction can only produce the values
1489 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1490 * \p lo is the minimum value inclusive.
1491 * \p hi is the maximum value exclusive.
1492 */
1493 static void set_range_metadata(struct si_shader_context *ctx,
1494 LLVMValueRef value, unsigned lo, unsigned hi)
1495 {
1496 LLVMValueRef range_md, md_args[2];
1497 LLVMTypeRef type = LLVMTypeOf(value);
1498 LLVMContextRef context = LLVMGetTypeContext(type);
1499
1500 md_args[0] = LLVMConstInt(type, lo, false);
1501 md_args[1] = LLVMConstInt(type, hi, false);
1502 range_md = LLVMMDNodeInContext(context, md_args, 2);
1503 LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1504 }
1505
1506 static LLVMValueRef get_thread_id(struct si_shader_context *ctx)
1507 {
1508 struct gallivm_state *gallivm = &ctx->gallivm;
1509 LLVMValueRef tid;
1510
1511 if (HAVE_LLVM < 0x0308) {
1512 tid = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid",
1513 ctx->i32, NULL, 0, LP_FUNC_ATTR_READNONE);
1514 } else {
1515 LLVMValueRef tid_args[2];
1516 tid_args[0] = lp_build_const_int32(gallivm, 0xffffffff);
1517 tid_args[1] = lp_build_const_int32(gallivm, 0);
1518 tid_args[1] = lp_build_intrinsic(gallivm->builder,
1519 "llvm.amdgcn.mbcnt.lo", ctx->i32,
1520 tid_args, 2, LP_FUNC_ATTR_READNONE);
1521
1522 tid = lp_build_intrinsic(gallivm->builder,
1523 "llvm.amdgcn.mbcnt.hi", ctx->i32,
1524 tid_args, 2, LP_FUNC_ATTR_READNONE);
1525 }
1526 set_range_metadata(ctx, tid, 0, 64);
1527 return tid;
1528 }
1529
1530 /**
1531 * Load a dword from a constant buffer.
1532 */
1533 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1534 LLVMValueRef resource,
1535 LLVMValueRef offset)
1536 {
1537 LLVMBuilderRef builder = ctx->gallivm.builder;
1538 LLVMValueRef args[2] = {resource, offset};
1539
1540 return lp_build_intrinsic(builder, "llvm.SI.load.const", ctx->f32, args, 2,
1541 LP_FUNC_ATTR_READNONE);
1542 }
1543
1544 static LLVMValueRef load_sample_position(struct si_shader_context *radeon_bld, LLVMValueRef sample_id)
1545 {
1546 struct si_shader_context *ctx =
1547 si_shader_context(&radeon_bld->soa.bld_base);
1548 struct lp_build_context *uint_bld = &radeon_bld->soa.bld_base.uint_bld;
1549 struct gallivm_state *gallivm = &radeon_bld->gallivm;
1550 LLVMBuilderRef builder = gallivm->builder;
1551 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1552 LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_PS_CONST_SAMPLE_POSITIONS);
1553 LLVMValueRef resource = build_indexed_load_const(ctx, desc, buf_index);
1554
1555 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1556 LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1557 LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), "");
1558
1559 LLVMValueRef pos[4] = {
1560 buffer_load_const(ctx, resource, offset0),
1561 buffer_load_const(ctx, resource, offset1),
1562 lp_build_const_float(gallivm, 0),
1563 lp_build_const_float(gallivm, 0)
1564 };
1565
1566 return lp_build_gather_values(gallivm, pos, 4);
1567 }
1568
1569 static void declare_system_value(
1570 struct si_shader_context *radeon_bld,
1571 unsigned index,
1572 const struct tgsi_full_declaration *decl)
1573 {
1574 struct si_shader_context *ctx =
1575 si_shader_context(&radeon_bld->soa.bld_base);
1576 struct lp_build_context *bld = &radeon_bld->soa.bld_base.base;
1577 struct gallivm_state *gallivm = &radeon_bld->gallivm;
1578 LLVMValueRef value = 0;
1579
1580 switch (decl->Semantic.Name) {
1581 case TGSI_SEMANTIC_INSTANCEID:
1582 value = LLVMGetParam(radeon_bld->main_fn,
1583 ctx->param_instance_id);
1584 break;
1585
1586 case TGSI_SEMANTIC_VERTEXID:
1587 value = LLVMBuildAdd(gallivm->builder,
1588 LLVMGetParam(radeon_bld->main_fn,
1589 ctx->param_vertex_id),
1590 LLVMGetParam(radeon_bld->main_fn,
1591 SI_PARAM_BASE_VERTEX), "");
1592 break;
1593
1594 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1595 value = LLVMGetParam(radeon_bld->main_fn,
1596 ctx->param_vertex_id);
1597 break;
1598
1599 case TGSI_SEMANTIC_BASEVERTEX:
1600 value = LLVMGetParam(radeon_bld->main_fn,
1601 SI_PARAM_BASE_VERTEX);
1602 break;
1603
1604 case TGSI_SEMANTIC_BASEINSTANCE:
1605 value = LLVMGetParam(radeon_bld->main_fn,
1606 SI_PARAM_START_INSTANCE);
1607 break;
1608
1609 case TGSI_SEMANTIC_DRAWID:
1610 value = LLVMGetParam(radeon_bld->main_fn,
1611 SI_PARAM_DRAWID);
1612 break;
1613
1614 case TGSI_SEMANTIC_INVOCATIONID:
1615 if (ctx->type == PIPE_SHADER_TESS_CTRL)
1616 value = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
1617 else if (ctx->type == PIPE_SHADER_GEOMETRY)
1618 value = LLVMGetParam(radeon_bld->main_fn,
1619 SI_PARAM_GS_INSTANCE_ID);
1620 else
1621 assert(!"INVOCATIONID not implemented");
1622 break;
1623
1624 case TGSI_SEMANTIC_POSITION:
1625 {
1626 LLVMValueRef pos[4] = {
1627 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1628 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1629 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Z_FLOAT),
1630 lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base, TGSI_OPCODE_RCP,
1631 LLVMGetParam(radeon_bld->main_fn,
1632 SI_PARAM_POS_W_FLOAT)),
1633 };
1634 value = lp_build_gather_values(gallivm, pos, 4);
1635 break;
1636 }
1637
1638 case TGSI_SEMANTIC_FACE:
1639 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_FRONT_FACE);
1640 break;
1641
1642 case TGSI_SEMANTIC_SAMPLEID:
1643 value = get_sample_id(radeon_bld);
1644 break;
1645
1646 case TGSI_SEMANTIC_SAMPLEPOS: {
1647 LLVMValueRef pos[4] = {
1648 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1649 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1650 lp_build_const_float(gallivm, 0),
1651 lp_build_const_float(gallivm, 0)
1652 };
1653 pos[0] = lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base,
1654 TGSI_OPCODE_FRC, pos[0]);
1655 pos[1] = lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base,
1656 TGSI_OPCODE_FRC, pos[1]);
1657 value = lp_build_gather_values(gallivm, pos, 4);
1658 break;
1659 }
1660
1661 case TGSI_SEMANTIC_SAMPLEMASK:
1662 /* This can only occur with the OpenGL Core profile, which
1663 * doesn't support smoothing.
1664 */
1665 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE);
1666 break;
1667
1668 case TGSI_SEMANTIC_TESSCOORD:
1669 {
1670 LLVMValueRef coord[4] = {
1671 LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_u),
1672 LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_v),
1673 bld->zero,
1674 bld->zero
1675 };
1676
1677 /* For triangles, the vector should be (u, v, 1-u-v). */
1678 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1679 PIPE_PRIM_TRIANGLES)
1680 coord[2] = lp_build_sub(bld, bld->one,
1681 lp_build_add(bld, coord[0], coord[1]));
1682
1683 value = lp_build_gather_values(gallivm, coord, 4);
1684 break;
1685 }
1686
1687 case TGSI_SEMANTIC_VERTICESIN:
1688 if (ctx->type == PIPE_SHADER_TESS_CTRL)
1689 value = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6);
1690 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
1691 value = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 7);
1692 else
1693 assert(!"invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
1694 break;
1695
1696 case TGSI_SEMANTIC_TESSINNER:
1697 case TGSI_SEMANTIC_TESSOUTER:
1698 {
1699 LLVMValueRef rw_buffers, buffer, base, addr;
1700 int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0);
1701
1702 rw_buffers = LLVMGetParam(ctx->main_fn,
1703 SI_PARAM_RW_BUFFERS);
1704 buffer = build_indexed_load_const(ctx, rw_buffers,
1705 lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1706
1707 base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1708 addr = get_tcs_tes_buffer_address(ctx, NULL,
1709 lp_build_const_int32(gallivm, param));
1710
1711 value = buffer_load(&radeon_bld->soa.bld_base, TGSI_TYPE_FLOAT,
1712 ~0, buffer, base, addr);
1713
1714 break;
1715 }
1716
1717 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
1718 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
1719 {
1720 LLVMValueRef buf, slot, val[4];
1721 int i, offset;
1722
1723 slot = lp_build_const_int32(gallivm, SI_HS_CONST_DEFAULT_TESS_LEVELS);
1724 buf = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1725 buf = build_indexed_load_const(ctx, buf, slot);
1726 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
1727
1728 for (i = 0; i < 4; i++)
1729 val[i] = buffer_load_const(ctx, buf,
1730 lp_build_const_int32(gallivm, (offset + i) * 4));
1731 value = lp_build_gather_values(gallivm, val, 4);
1732 break;
1733 }
1734
1735 case TGSI_SEMANTIC_PRIMID:
1736 value = get_primitive_id(&radeon_bld->soa.bld_base, 0);
1737 break;
1738
1739 case TGSI_SEMANTIC_GRID_SIZE:
1740 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_GRID_SIZE);
1741 break;
1742
1743 case TGSI_SEMANTIC_BLOCK_SIZE:
1744 {
1745 LLVMValueRef values[3];
1746 unsigned i;
1747 unsigned *properties = ctx->shader->selector->info.properties;
1748
1749 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1750 unsigned sizes[3] = {
1751 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1752 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1753 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1754 };
1755
1756 for (i = 0; i < 3; ++i)
1757 values[i] = lp_build_const_int32(gallivm, sizes[i]);
1758
1759 value = lp_build_gather_values(gallivm, values, 3);
1760 } else {
1761 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_SIZE);
1762 }
1763 break;
1764 }
1765
1766 case TGSI_SEMANTIC_BLOCK_ID:
1767 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_ID);
1768 break;
1769
1770 case TGSI_SEMANTIC_THREAD_ID:
1771 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_THREAD_ID);
1772 break;
1773
1774 #if HAVE_LLVM >= 0x0309
1775 case TGSI_SEMANTIC_HELPER_INVOCATION:
1776 value = lp_build_intrinsic(gallivm->builder,
1777 "llvm.amdgcn.ps.live",
1778 ctx->i1, NULL, 0,
1779 LP_FUNC_ATTR_READNONE);
1780 value = LLVMBuildNot(gallivm->builder, value, "");
1781 value = LLVMBuildSExt(gallivm->builder, value, ctx->i32, "");
1782 break;
1783 #endif
1784
1785 default:
1786 assert(!"unknown system value");
1787 return;
1788 }
1789
1790 radeon_bld->system_values[index] = value;
1791 }
1792
1793 static void declare_compute_memory(struct si_shader_context *radeon_bld,
1794 const struct tgsi_full_declaration *decl)
1795 {
1796 struct si_shader_context *ctx =
1797 si_shader_context(&radeon_bld->soa.bld_base);
1798 struct si_shader_selector *sel = ctx->shader->selector;
1799 struct gallivm_state *gallivm = &radeon_bld->gallivm;
1800
1801 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
1802 LLVMValueRef var;
1803
1804 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
1805 assert(decl->Range.First == decl->Range.Last);
1806 assert(!ctx->shared_memory);
1807
1808 var = LLVMAddGlobalInAddressSpace(gallivm->module,
1809 LLVMArrayType(ctx->i8, sel->local_size),
1810 "compute_lds",
1811 LOCAL_ADDR_SPACE);
1812 LLVMSetAlignment(var, 4);
1813
1814 ctx->shared_memory = LLVMBuildBitCast(gallivm->builder, var, i8p, "");
1815 }
1816
1817 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
1818 {
1819 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
1820 SI_PARAM_CONST_BUFFERS);
1821
1822 return build_indexed_load_const(ctx, list_ptr,
1823 LLVMConstInt(ctx->i32, i, 0));
1824 }
1825
1826 static LLVMValueRef fetch_constant(
1827 struct lp_build_tgsi_context *bld_base,
1828 const struct tgsi_full_src_register *reg,
1829 enum tgsi_opcode_type type,
1830 unsigned swizzle)
1831 {
1832 struct si_shader_context *ctx = si_shader_context(bld_base);
1833 struct lp_build_context *base = &bld_base->base;
1834 const struct tgsi_ind_register *ireg = &reg->Indirect;
1835 unsigned buf, idx;
1836
1837 LLVMValueRef addr, bufp;
1838 LLVMValueRef result;
1839
1840 if (swizzle == LP_CHAN_ALL) {
1841 unsigned chan;
1842 LLVMValueRef values[4];
1843 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
1844 values[chan] = fetch_constant(bld_base, reg, type, chan);
1845
1846 return lp_build_gather_values(bld_base->base.gallivm, values, 4);
1847 }
1848
1849 buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
1850 idx = reg->Register.Index * 4 + swizzle;
1851
1852 if (reg->Register.Dimension && reg->Dimension.Indirect) {
1853 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_CONST_BUFFERS);
1854 LLVMValueRef index;
1855 index = get_bounded_indirect_index(ctx, &reg->DimIndirect,
1856 reg->Dimension.Index,
1857 SI_NUM_CONST_BUFFERS);
1858 bufp = build_indexed_load_const(ctx, ptr, index);
1859 } else
1860 bufp = load_const_buffer_desc(ctx, buf);
1861
1862 if (reg->Register.Indirect) {
1863 addr = ctx->soa.addr[ireg->Index][ireg->Swizzle];
1864 addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
1865 addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
1866 addr = lp_build_add(&bld_base->uint_bld, addr,
1867 lp_build_const_int32(base->gallivm, idx * 4));
1868 } else {
1869 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
1870 }
1871
1872 result = buffer_load_const(ctx, bufp, addr);
1873
1874 if (!tgsi_type_is_64bit(type))
1875 result = bitcast(bld_base, type, result);
1876 else {
1877 LLVMValueRef addr2, result2;
1878
1879 addr2 = lp_build_add(&bld_base->uint_bld, addr,
1880 LLVMConstInt(ctx->i32, 4, 0));
1881 result2 = buffer_load_const(ctx, bufp, addr2);
1882
1883 result = si_llvm_emit_fetch_64bit(bld_base, type,
1884 result, result2);
1885 }
1886 return result;
1887 }
1888
1889 /* Upper 16 bits must be zero. */
1890 static LLVMValueRef si_llvm_pack_two_int16(struct gallivm_state *gallivm,
1891 LLVMValueRef val[2])
1892 {
1893 return LLVMBuildOr(gallivm->builder, val[0],
1894 LLVMBuildShl(gallivm->builder, val[1],
1895 lp_build_const_int32(gallivm, 16),
1896 ""), "");
1897 }
1898
1899 /* Upper 16 bits are ignored and will be dropped. */
1900 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct gallivm_state *gallivm,
1901 LLVMValueRef val[2])
1902 {
1903 LLVMValueRef v[2] = {
1904 LLVMBuildAnd(gallivm->builder, val[0],
1905 lp_build_const_int32(gallivm, 0xffff), ""),
1906 val[1],
1907 };
1908 return si_llvm_pack_two_int16(gallivm, v);
1909 }
1910
1911 /* Initialize arguments for the shader export intrinsic */
1912 static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
1913 LLVMValueRef *values,
1914 unsigned target,
1915 LLVMValueRef *args)
1916 {
1917 struct si_shader_context *ctx = si_shader_context(bld_base);
1918 struct lp_build_context *uint =
1919 &ctx->soa.bld_base.uint_bld;
1920 struct lp_build_context *base = &bld_base->base;
1921 struct gallivm_state *gallivm = base->gallivm;
1922 LLVMBuilderRef builder = base->gallivm->builder;
1923 LLVMValueRef val[4];
1924 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
1925 unsigned chan;
1926 bool is_int8;
1927
1928 /* Default is 0xf. Adjusted below depending on the format. */
1929 args[0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
1930
1931 /* Specify whether the EXEC mask represents the valid mask */
1932 args[1] = uint->zero;
1933
1934 /* Specify whether this is the last export */
1935 args[2] = uint->zero;
1936
1937 /* Specify the target we are exporting */
1938 args[3] = lp_build_const_int32(base->gallivm, target);
1939
1940 if (ctx->type == PIPE_SHADER_FRAGMENT) {
1941 const struct si_shader_key *key = &ctx->shader->key;
1942 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
1943 int cbuf = target - V_008DFC_SQ_EXP_MRT;
1944
1945 assert(cbuf >= 0 && cbuf < 8);
1946 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
1947 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
1948 }
1949
1950 args[4] = uint->zero; /* COMPR flag */
1951 args[5] = base->undef;
1952 args[6] = base->undef;
1953 args[7] = base->undef;
1954 args[8] = base->undef;
1955
1956 switch (spi_shader_col_format) {
1957 case V_028714_SPI_SHADER_ZERO:
1958 args[0] = uint->zero; /* writemask */
1959 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
1960 break;
1961
1962 case V_028714_SPI_SHADER_32_R:
1963 args[0] = uint->one; /* writemask */
1964 args[5] = values[0];
1965 break;
1966
1967 case V_028714_SPI_SHADER_32_GR:
1968 args[0] = lp_build_const_int32(base->gallivm, 0x3); /* writemask */
1969 args[5] = values[0];
1970 args[6] = values[1];
1971 break;
1972
1973 case V_028714_SPI_SHADER_32_AR:
1974 args[0] = lp_build_const_int32(base->gallivm, 0x9); /* writemask */
1975 args[5] = values[0];
1976 args[8] = values[3];
1977 break;
1978
1979 case V_028714_SPI_SHADER_FP16_ABGR:
1980 args[4] = uint->one; /* COMPR flag */
1981
1982 for (chan = 0; chan < 2; chan++) {
1983 LLVMValueRef pack_args[2] = {
1984 values[2 * chan],
1985 values[2 * chan + 1]
1986 };
1987 LLVMValueRef packed;
1988
1989 packed = lp_build_intrinsic(base->gallivm->builder,
1990 "llvm.SI.packf16",
1991 ctx->i32, pack_args, 2,
1992 LP_FUNC_ATTR_READNONE);
1993 args[chan + 5] =
1994 LLVMBuildBitCast(base->gallivm->builder,
1995 packed, ctx->f32, "");
1996 }
1997 break;
1998
1999 case V_028714_SPI_SHADER_UNORM16_ABGR:
2000 for (chan = 0; chan < 4; chan++) {
2001 val[chan] = si_llvm_saturate(bld_base, values[chan]);
2002 val[chan] = LLVMBuildFMul(builder, val[chan],
2003 lp_build_const_float(gallivm, 65535), "");
2004 val[chan] = LLVMBuildFAdd(builder, val[chan],
2005 lp_build_const_float(gallivm, 0.5), "");
2006 val[chan] = LLVMBuildFPToUI(builder, val[chan],
2007 ctx->i32, "");
2008 }
2009
2010 args[4] = uint->one; /* COMPR flag */
2011 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2012 si_llvm_pack_two_int16(gallivm, val));
2013 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2014 si_llvm_pack_two_int16(gallivm, val+2));
2015 break;
2016
2017 case V_028714_SPI_SHADER_SNORM16_ABGR:
2018 for (chan = 0; chan < 4; chan++) {
2019 /* Clamp between [-1, 1]. */
2020 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MIN,
2021 values[chan],
2022 lp_build_const_float(gallivm, 1));
2023 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MAX,
2024 val[chan],
2025 lp_build_const_float(gallivm, -1));
2026 /* Convert to a signed integer in [-32767, 32767]. */
2027 val[chan] = LLVMBuildFMul(builder, val[chan],
2028 lp_build_const_float(gallivm, 32767), "");
2029 /* If positive, add 0.5, else add -0.5. */
2030 val[chan] = LLVMBuildFAdd(builder, val[chan],
2031 LLVMBuildSelect(builder,
2032 LLVMBuildFCmp(builder, LLVMRealOGE,
2033 val[chan], base->zero, ""),
2034 lp_build_const_float(gallivm, 0.5),
2035 lp_build_const_float(gallivm, -0.5), ""), "");
2036 val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
2037 }
2038
2039 args[4] = uint->one; /* COMPR flag */
2040 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2041 si_llvm_pack_two_int32_as_int16(gallivm, val));
2042 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2043 si_llvm_pack_two_int32_as_int16(gallivm, val+2));
2044 break;
2045
2046 case V_028714_SPI_SHADER_UINT16_ABGR: {
2047 LLVMValueRef max = lp_build_const_int32(gallivm, is_int8 ?
2048 255 : 65535);
2049 /* Clamp. */
2050 for (chan = 0; chan < 4; chan++) {
2051 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
2052 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_UMIN,
2053 val[chan], max);
2054 }
2055
2056 args[4] = uint->one; /* COMPR flag */
2057 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2058 si_llvm_pack_two_int16(gallivm, val));
2059 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2060 si_llvm_pack_two_int16(gallivm, val+2));
2061 break;
2062 }
2063
2064 case V_028714_SPI_SHADER_SINT16_ABGR: {
2065 LLVMValueRef max = lp_build_const_int32(gallivm, is_int8 ?
2066 127 : 32767);
2067 LLVMValueRef min = lp_build_const_int32(gallivm, is_int8 ?
2068 -128 : -32768);
2069 /* Clamp. */
2070 for (chan = 0; chan < 4; chan++) {
2071 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
2072 val[chan] = lp_build_emit_llvm_binary(bld_base,
2073 TGSI_OPCODE_IMIN,
2074 val[chan], max);
2075 val[chan] = lp_build_emit_llvm_binary(bld_base,
2076 TGSI_OPCODE_IMAX,
2077 val[chan], min);
2078 }
2079
2080 args[4] = uint->one; /* COMPR flag */
2081 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2082 si_llvm_pack_two_int32_as_int16(gallivm, val));
2083 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2084 si_llvm_pack_two_int32_as_int16(gallivm, val+2));
2085 break;
2086 }
2087
2088 case V_028714_SPI_SHADER_32_ABGR:
2089 memcpy(&args[5], values, sizeof(values[0]) * 4);
2090 break;
2091 }
2092 }
2093
2094 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2095 LLVMValueRef alpha)
2096 {
2097 struct si_shader_context *ctx = si_shader_context(bld_base);
2098 struct gallivm_state *gallivm = bld_base->base.gallivm;
2099
2100 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2101 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2102 SI_PARAM_ALPHA_REF);
2103
2104 LLVMValueRef alpha_pass =
2105 lp_build_cmp(&bld_base->base,
2106 ctx->shader->key.part.ps.epilog.alpha_func,
2107 alpha, alpha_ref);
2108 LLVMValueRef arg =
2109 lp_build_select(&bld_base->base,
2110 alpha_pass,
2111 lp_build_const_float(gallivm, 1.0f),
2112 lp_build_const_float(gallivm, -1.0f));
2113
2114 lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
2115 ctx->voidt, &arg, 1, 0);
2116 } else {
2117 lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kilp",
2118 ctx->voidt, NULL, 0, 0);
2119 }
2120 }
2121
2122 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2123 LLVMValueRef alpha,
2124 unsigned samplemask_param)
2125 {
2126 struct si_shader_context *ctx = si_shader_context(bld_base);
2127 struct gallivm_state *gallivm = bld_base->base.gallivm;
2128 LLVMValueRef coverage;
2129
2130 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2131 coverage = LLVMGetParam(ctx->main_fn,
2132 samplemask_param);
2133 coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage);
2134
2135 coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32",
2136 ctx->i32,
2137 &coverage, 1, LP_FUNC_ATTR_READNONE);
2138
2139 coverage = LLVMBuildUIToFP(gallivm->builder, coverage,
2140 ctx->f32, "");
2141
2142 coverage = LLVMBuildFMul(gallivm->builder, coverage,
2143 lp_build_const_float(gallivm,
2144 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2145
2146 return LLVMBuildFMul(gallivm->builder, alpha, coverage, "");
2147 }
2148
2149 static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context *bld_base,
2150 LLVMValueRef (*pos)[9], LLVMValueRef *out_elts)
2151 {
2152 struct si_shader_context *ctx = si_shader_context(bld_base);
2153 struct lp_build_context *base = &bld_base->base;
2154 struct lp_build_context *uint = &ctx->soa.bld_base.uint_bld;
2155 unsigned reg_index;
2156 unsigned chan;
2157 unsigned const_chan;
2158 LLVMValueRef base_elt;
2159 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2160 LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm,
2161 SI_VS_CONST_CLIP_PLANES);
2162 LLVMValueRef const_resource = build_indexed_load_const(ctx, ptr, constbuf_index);
2163
2164 for (reg_index = 0; reg_index < 2; reg_index ++) {
2165 LLVMValueRef *args = pos[2 + reg_index];
2166
2167 args[5] =
2168 args[6] =
2169 args[7] =
2170 args[8] = lp_build_const_float(base->gallivm, 0.0f);
2171
2172 /* Compute dot products of position and user clip plane vectors */
2173 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2174 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2175 args[1] = lp_build_const_int32(base->gallivm,
2176 ((reg_index * 4 + chan) * 4 +
2177 const_chan) * 4);
2178 base_elt = buffer_load_const(ctx, const_resource,
2179 args[1]);
2180 args[5 + chan] =
2181 lp_build_add(base, args[5 + chan],
2182 lp_build_mul(base, base_elt,
2183 out_elts[const_chan]));
2184 }
2185 }
2186
2187 args[0] = lp_build_const_int32(base->gallivm, 0xf);
2188 args[1] = uint->zero;
2189 args[2] = uint->zero;
2190 args[3] = lp_build_const_int32(base->gallivm,
2191 V_008DFC_SQ_EXP_POS + 2 + reg_index);
2192 args[4] = uint->zero;
2193 }
2194 }
2195
2196 static void si_dump_streamout(struct pipe_stream_output_info *so)
2197 {
2198 unsigned i;
2199
2200 if (so->num_outputs)
2201 fprintf(stderr, "STREAMOUT\n");
2202
2203 for (i = 0; i < so->num_outputs; i++) {
2204 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2205 so->output[i].start_component;
2206 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2207 i, so->output[i].output_buffer,
2208 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2209 so->output[i].register_index,
2210 mask & 1 ? "x" : "",
2211 mask & 2 ? "y" : "",
2212 mask & 4 ? "z" : "",
2213 mask & 8 ? "w" : "");
2214 }
2215 }
2216
2217 /* On SI, the vertex shader is responsible for writing streamout data
2218 * to buffers. */
2219 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2220 struct si_shader_output_values *outputs,
2221 unsigned noutput)
2222 {
2223 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
2224 struct gallivm_state *gallivm = &ctx->gallivm;
2225 LLVMBuilderRef builder = gallivm->builder;
2226 int i, j;
2227 struct lp_build_if_state if_ctx;
2228 LLVMValueRef so_buffers[4];
2229 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2230 SI_PARAM_RW_BUFFERS);
2231
2232 /* Load the descriptors. */
2233 for (i = 0; i < 4; ++i) {
2234 if (ctx->shader->selector->so.stride[i]) {
2235 LLVMValueRef offset = lp_build_const_int32(gallivm,
2236 SI_VS_STREAMOUT_BUF0 + i);
2237
2238 so_buffers[i] = build_indexed_load_const(ctx, buf_ptr, offset);
2239 }
2240 }
2241
2242 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2243 LLVMValueRef so_vtx_count =
2244 unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2245
2246 LLVMValueRef tid = get_thread_id(ctx);
2247
2248 /* can_emit = tid < so_vtx_count; */
2249 LLVMValueRef can_emit =
2250 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2251
2252 LLVMValueRef stream_id =
2253 unpack_param(ctx, ctx->param_streamout_config, 24, 2);
2254
2255 /* Emit the streamout code conditionally. This actually avoids
2256 * out-of-bounds buffer access. The hw tells us via the SGPR
2257 * (so_vtx_count) which threads are allowed to emit streamout data. */
2258 lp_build_if(&if_ctx, gallivm, can_emit);
2259 {
2260 /* The buffer offset is computed as follows:
2261 * ByteOffset = streamout_offset[buffer_id]*4 +
2262 * (streamout_write_index + thread_id)*stride[buffer_id] +
2263 * attrib_offset
2264 */
2265
2266 LLVMValueRef so_write_index =
2267 LLVMGetParam(ctx->main_fn,
2268 ctx->param_streamout_write_index);
2269
2270 /* Compute (streamout_write_index + thread_id). */
2271 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2272
2273 /* Compute the write offset for each enabled buffer. */
2274 LLVMValueRef so_write_offset[4] = {};
2275 for (i = 0; i < 4; i++) {
2276 if (!so->stride[i])
2277 continue;
2278
2279 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2280 ctx->param_streamout_offset[i]);
2281 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2282
2283 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2284 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2285 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2286 }
2287
2288 /* Write streamout data. */
2289 for (i = 0; i < so->num_outputs; i++) {
2290 unsigned buf_idx = so->output[i].output_buffer;
2291 unsigned reg = so->output[i].register_index;
2292 unsigned start = so->output[i].start_component;
2293 unsigned num_comps = so->output[i].num_components;
2294 unsigned stream = so->output[i].stream;
2295 LLVMValueRef out[4];
2296 struct lp_build_if_state if_ctx_stream;
2297
2298 assert(num_comps && num_comps <= 4);
2299 if (!num_comps || num_comps > 4)
2300 continue;
2301
2302 if (reg >= noutput)
2303 continue;
2304
2305 /* Load the output as int. */
2306 for (j = 0; j < num_comps; j++) {
2307 out[j] = LLVMBuildBitCast(builder,
2308 outputs[reg].values[start+j],
2309 ctx->i32, "");
2310 }
2311
2312 /* Pack the output. */
2313 LLVMValueRef vdata = NULL;
2314
2315 switch (num_comps) {
2316 case 1: /* as i32 */
2317 vdata = out[0];
2318 break;
2319 case 2: /* as v2i32 */
2320 case 3: /* as v4i32 (aligned to 4) */
2321 case 4: /* as v4i32 */
2322 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2323 for (j = 0; j < num_comps; j++) {
2324 vdata = LLVMBuildInsertElement(builder, vdata, out[j],
2325 LLVMConstInt(ctx->i32, j, 0), "");
2326 }
2327 break;
2328 }
2329
2330 LLVMValueRef can_emit_stream =
2331 LLVMBuildICmp(builder, LLVMIntEQ,
2332 stream_id,
2333 lp_build_const_int32(gallivm, stream), "");
2334
2335 lp_build_if(&if_ctx_stream, gallivm, can_emit_stream);
2336 build_tbuffer_store_dwords(ctx, so_buffers[buf_idx],
2337 vdata, num_comps,
2338 so_write_offset[buf_idx],
2339 LLVMConstInt(ctx->i32, 0, 0),
2340 so->output[i].dst_offset*4);
2341 lp_build_endif(&if_ctx_stream);
2342 }
2343 }
2344 lp_build_endif(&if_ctx);
2345 }
2346
2347
2348 /* Generate export instructions for hardware VS shader stage */
2349 static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
2350 struct si_shader_output_values *outputs,
2351 unsigned noutput)
2352 {
2353 struct si_shader_context *ctx = si_shader_context(bld_base);
2354 struct si_shader *shader = ctx->shader;
2355 struct lp_build_context *base = &bld_base->base;
2356 struct lp_build_context *uint =
2357 &ctx->soa.bld_base.uint_bld;
2358 LLVMValueRef args[9];
2359 LLVMValueRef pos_args[4][9] = { { 0 } };
2360 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2361 unsigned semantic_name, semantic_index;
2362 unsigned target;
2363 unsigned param_count = 0;
2364 unsigned pos_idx;
2365 int i;
2366
2367 for (i = 0; i < noutput; i++) {
2368 semantic_name = outputs[i].semantic_name;
2369 semantic_index = outputs[i].semantic_index;
2370 bool export_param = true;
2371
2372 switch (semantic_name) {
2373 case TGSI_SEMANTIC_POSITION: /* ignore these */
2374 case TGSI_SEMANTIC_PSIZE:
2375 case TGSI_SEMANTIC_CLIPVERTEX:
2376 case TGSI_SEMANTIC_EDGEFLAG:
2377 break;
2378 case TGSI_SEMANTIC_GENERIC:
2379 case TGSI_SEMANTIC_CLIPDIST:
2380 if (shader->key.opt.hw_vs.kill_outputs &
2381 (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
2382 export_param = false;
2383 break;
2384 default:
2385 if (shader->key.opt.hw_vs.kill_outputs2 &
2386 (1u << si_shader_io_get_unique_index2(semantic_name, semantic_index)))
2387 export_param = false;
2388 break;
2389 }
2390
2391 handle_semantic:
2392 /* Select the correct target */
2393 switch(semantic_name) {
2394 case TGSI_SEMANTIC_PSIZE:
2395 psize_value = outputs[i].values[0];
2396 continue;
2397 case TGSI_SEMANTIC_EDGEFLAG:
2398 edgeflag_value = outputs[i].values[0];
2399 continue;
2400 case TGSI_SEMANTIC_LAYER:
2401 layer_value = outputs[i].values[0];
2402 semantic_name = TGSI_SEMANTIC_GENERIC;
2403 goto handle_semantic;
2404 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2405 viewport_index_value = outputs[i].values[0];
2406 semantic_name = TGSI_SEMANTIC_GENERIC;
2407 goto handle_semantic;
2408 case TGSI_SEMANTIC_POSITION:
2409 target = V_008DFC_SQ_EXP_POS;
2410 break;
2411 case TGSI_SEMANTIC_COLOR:
2412 case TGSI_SEMANTIC_BCOLOR:
2413 if (!export_param)
2414 continue;
2415 target = V_008DFC_SQ_EXP_PARAM + param_count;
2416 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2417 shader->info.vs_output_param_offset[i] = param_count;
2418 param_count++;
2419 break;
2420 case TGSI_SEMANTIC_CLIPDIST:
2421 if (shader->key.opt.hw_vs.clip_disable) {
2422 semantic_name = TGSI_SEMANTIC_GENERIC;
2423 goto handle_semantic;
2424 }
2425 target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
2426 break;
2427 case TGSI_SEMANTIC_CLIPVERTEX:
2428 if (shader->key.opt.hw_vs.clip_disable)
2429 continue;
2430 si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
2431 continue;
2432 case TGSI_SEMANTIC_PRIMID:
2433 case TGSI_SEMANTIC_FOG:
2434 case TGSI_SEMANTIC_TEXCOORD:
2435 case TGSI_SEMANTIC_GENERIC:
2436 if (!export_param)
2437 continue;
2438 target = V_008DFC_SQ_EXP_PARAM + param_count;
2439 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2440 shader->info.vs_output_param_offset[i] = param_count;
2441 param_count++;
2442 break;
2443 default:
2444 target = 0;
2445 fprintf(stderr,
2446 "Warning: SI unhandled vs output type:%d\n",
2447 semantic_name);
2448 }
2449
2450 si_llvm_init_export_args(bld_base, outputs[i].values, target, args);
2451
2452 if (target >= V_008DFC_SQ_EXP_POS &&
2453 target <= (V_008DFC_SQ_EXP_POS + 3)) {
2454 memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
2455 args, sizeof(args));
2456 } else {
2457 lp_build_intrinsic(base->gallivm->builder,
2458 "llvm.SI.export", ctx->voidt,
2459 args, 9, 0);
2460 }
2461
2462 if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
2463 semantic_name = TGSI_SEMANTIC_GENERIC;
2464 goto handle_semantic;
2465 }
2466 }
2467
2468 shader->info.nr_param_exports = param_count;
2469
2470 /* We need to add the position output manually if it's missing. */
2471 if (!pos_args[0][0]) {
2472 pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
2473 pos_args[0][1] = uint->zero; /* EXEC mask */
2474 pos_args[0][2] = uint->zero; /* last export? */
2475 pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS);
2476 pos_args[0][4] = uint->zero; /* COMPR flag */
2477 pos_args[0][5] = base->zero; /* X */
2478 pos_args[0][6] = base->zero; /* Y */
2479 pos_args[0][7] = base->zero; /* Z */
2480 pos_args[0][8] = base->one; /* W */
2481 }
2482
2483 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2484 if (shader->selector->info.writes_psize ||
2485 shader->selector->info.writes_edgeflag ||
2486 shader->selector->info.writes_viewport_index ||
2487 shader->selector->info.writes_layer) {
2488 pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */
2489 shader->selector->info.writes_psize |
2490 (shader->selector->info.writes_edgeflag << 1) |
2491 (shader->selector->info.writes_layer << 2) |
2492 (shader->selector->info.writes_viewport_index << 3));
2493 pos_args[1][1] = uint->zero; /* EXEC mask */
2494 pos_args[1][2] = uint->zero; /* last export? */
2495 pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1);
2496 pos_args[1][4] = uint->zero; /* COMPR flag */
2497 pos_args[1][5] = base->zero; /* X */
2498 pos_args[1][6] = base->zero; /* Y */
2499 pos_args[1][7] = base->zero; /* Z */
2500 pos_args[1][8] = base->zero; /* W */
2501
2502 if (shader->selector->info.writes_psize)
2503 pos_args[1][5] = psize_value;
2504
2505 if (shader->selector->info.writes_edgeflag) {
2506 /* The output is a float, but the hw expects an integer
2507 * with the first bit containing the edge flag. */
2508 edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder,
2509 edgeflag_value,
2510 ctx->i32, "");
2511 edgeflag_value = lp_build_min(&bld_base->int_bld,
2512 edgeflag_value,
2513 bld_base->int_bld.one);
2514
2515 /* The LLVM intrinsic expects a float. */
2516 pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder,
2517 edgeflag_value,
2518 ctx->f32, "");
2519 }
2520
2521 if (shader->selector->info.writes_layer)
2522 pos_args[1][7] = layer_value;
2523
2524 if (shader->selector->info.writes_viewport_index)
2525 pos_args[1][8] = viewport_index_value;
2526 }
2527
2528 for (i = 0; i < 4; i++)
2529 if (pos_args[i][0])
2530 shader->info.nr_pos_exports++;
2531
2532 pos_idx = 0;
2533 for (i = 0; i < 4; i++) {
2534 if (!pos_args[i][0])
2535 continue;
2536
2537 /* Specify the target we are exporting */
2538 pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++);
2539
2540 if (pos_idx == shader->info.nr_pos_exports)
2541 /* Specify that this is the last export */
2542 pos_args[i][2] = uint->one;
2543
2544 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2545 ctx->voidt, pos_args[i], 9, 0);
2546 }
2547 }
2548
2549 /**
2550 * Forward all outputs from the vertex shader to the TES. This is only used
2551 * for the fixed function TCS.
2552 */
2553 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
2554 {
2555 struct si_shader_context *ctx = si_shader_context(bld_base);
2556 struct gallivm_state *gallivm = bld_base->base.gallivm;
2557 LLVMValueRef invocation_id, rw_buffers, buffer, buffer_offset;
2558 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
2559 uint64_t inputs;
2560
2561 invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2562
2563 rw_buffers = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2564 buffer = build_indexed_load_const(ctx, rw_buffers,
2565 lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
2566
2567 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
2568
2569 lds_vertex_stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
2570 lds_vertex_offset = LLVMBuildMul(gallivm->builder, invocation_id,
2571 lds_vertex_stride, "");
2572 lds_base = get_tcs_in_current_patch_offset(ctx);
2573 lds_base = LLVMBuildAdd(gallivm->builder, lds_base, lds_vertex_offset, "");
2574
2575 inputs = ctx->shader->key.mono.tcs.inputs_to_copy;
2576 while (inputs) {
2577 unsigned i = u_bit_scan64(&inputs);
2578
2579 LLVMValueRef lds_ptr = LLVMBuildAdd(gallivm->builder, lds_base,
2580 lp_build_const_int32(gallivm, 4 * i),
2581 "");
2582
2583 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
2584 invocation_id,
2585 lp_build_const_int32(gallivm, i));
2586
2587 LLVMValueRef value = lds_load(bld_base, TGSI_TYPE_SIGNED, ~0,
2588 lds_ptr);
2589
2590 build_tbuffer_store_dwords(ctx, buffer, value, 4, buffer_addr,
2591 buffer_offset, 0);
2592 }
2593 }
2594
2595 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
2596 LLVMValueRef rel_patch_id,
2597 LLVMValueRef invocation_id,
2598 LLVMValueRef tcs_out_current_patch_data_offset)
2599 {
2600 struct si_shader_context *ctx = si_shader_context(bld_base);
2601 struct gallivm_state *gallivm = bld_base->base.gallivm;
2602 struct si_shader *shader = ctx->shader;
2603 unsigned tess_inner_index, tess_outer_index;
2604 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
2605 LLVMValueRef out[6], vec0, vec1, rw_buffers, tf_base;
2606 unsigned stride, outer_comps, inner_comps, i;
2607 struct lp_build_if_state if_ctx, inner_if_ctx;
2608
2609 si_llvm_emit_barrier(NULL, bld_base, NULL);
2610
2611 /* Do this only for invocation 0, because the tess levels are per-patch,
2612 * not per-vertex.
2613 *
2614 * This can't jump, because invocation 0 executes this. It should
2615 * at least mask out the loads and stores for other invocations.
2616 */
2617 lp_build_if(&if_ctx, gallivm,
2618 LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2619 invocation_id, bld_base->uint_bld.zero, ""));
2620
2621 /* Determine the layout of one tess factor element in the buffer. */
2622 switch (shader->key.part.tcs.epilog.prim_mode) {
2623 case PIPE_PRIM_LINES:
2624 stride = 2; /* 2 dwords, 1 vec2 store */
2625 outer_comps = 2;
2626 inner_comps = 0;
2627 break;
2628 case PIPE_PRIM_TRIANGLES:
2629 stride = 4; /* 4 dwords, 1 vec4 store */
2630 outer_comps = 3;
2631 inner_comps = 1;
2632 break;
2633 case PIPE_PRIM_QUADS:
2634 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
2635 outer_comps = 4;
2636 inner_comps = 2;
2637 break;
2638 default:
2639 assert(0);
2640 return;
2641 }
2642
2643 /* Load tess_inner and tess_outer from LDS.
2644 * Any invocation can write them, so we can't get them from a temporary.
2645 */
2646 tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0);
2647 tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0);
2648
2649 lds_base = tcs_out_current_patch_data_offset;
2650 lds_inner = LLVMBuildAdd(gallivm->builder, lds_base,
2651 lp_build_const_int32(gallivm,
2652 tess_inner_index * 4), "");
2653 lds_outer = LLVMBuildAdd(gallivm->builder, lds_base,
2654 lp_build_const_int32(gallivm,
2655 tess_outer_index * 4), "");
2656
2657 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
2658 /* For isolines, the hardware expects tess factors in the
2659 * reverse order from what GLSL / TGSI specify.
2660 */
2661 out[0] = lds_load(bld_base, TGSI_TYPE_SIGNED, 1, lds_outer);
2662 out[1] = lds_load(bld_base, TGSI_TYPE_SIGNED, 0, lds_outer);
2663 } else {
2664 for (i = 0; i < outer_comps; i++)
2665 out[i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer);
2666 for (i = 0; i < inner_comps; i++)
2667 out[outer_comps+i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner);
2668 }
2669
2670 /* Convert the outputs to vectors for stores. */
2671 vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4));
2672 vec1 = NULL;
2673
2674 if (stride > 4)
2675 vec1 = lp_build_gather_values(gallivm, out+4, stride - 4);
2676
2677 /* Get the buffer. */
2678 rw_buffers = LLVMGetParam(ctx->main_fn,
2679 SI_PARAM_RW_BUFFERS);
2680 buffer = build_indexed_load_const(ctx, rw_buffers,
2681 lp_build_const_int32(gallivm, SI_HS_RING_TESS_FACTOR));
2682
2683 /* Get the offset. */
2684 tf_base = LLVMGetParam(ctx->main_fn,
2685 SI_PARAM_TESS_FACTOR_OFFSET);
2686 byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id,
2687 lp_build_const_int32(gallivm, 4 * stride), "");
2688
2689 lp_build_if(&inner_if_ctx, gallivm,
2690 LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2691 rel_patch_id, bld_base->uint_bld.zero, ""));
2692
2693 /* Store the dynamic HS control word. */
2694 build_tbuffer_store_dwords(ctx, buffer,
2695 lp_build_const_int32(gallivm, 0x80000000),
2696 1, lp_build_const_int32(gallivm, 0), tf_base, 0);
2697
2698 lp_build_endif(&inner_if_ctx);
2699
2700 /* Store the tessellation factors. */
2701 build_tbuffer_store_dwords(ctx, buffer, vec0,
2702 MIN2(stride, 4), byteoffset, tf_base, 4);
2703 if (vec1)
2704 build_tbuffer_store_dwords(ctx, buffer, vec1,
2705 stride - 4, byteoffset, tf_base, 20);
2706 lp_build_endif(&if_ctx);
2707 }
2708
2709 /* This only writes the tessellation factor levels. */
2710 static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base)
2711 {
2712 struct si_shader_context *ctx = si_shader_context(bld_base);
2713 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
2714
2715 si_copy_tcs_inputs(bld_base);
2716
2717 rel_patch_id = get_rel_patch_id(ctx);
2718 invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2719 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
2720
2721 /* Return epilog parameters from this function. */
2722 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
2723 LLVMValueRef ret = ctx->return_value;
2724 LLVMValueRef rw_buffers, rw0, rw1, tf_soffset;
2725 unsigned vgpr;
2726
2727 /* RW_BUFFERS pointer */
2728 rw_buffers = LLVMGetParam(ctx->main_fn,
2729 SI_PARAM_RW_BUFFERS);
2730 rw_buffers = LLVMBuildPtrToInt(builder, rw_buffers, ctx->i64, "");
2731 rw_buffers = LLVMBuildBitCast(builder, rw_buffers, ctx->v2i32, "");
2732 rw0 = LLVMBuildExtractElement(builder, rw_buffers,
2733 bld_base->uint_bld.zero, "");
2734 rw1 = LLVMBuildExtractElement(builder, rw_buffers,
2735 bld_base->uint_bld.one, "");
2736 ret = LLVMBuildInsertValue(builder, ret, rw0, 0, "");
2737 ret = LLVMBuildInsertValue(builder, ret, rw1, 1, "");
2738
2739 /* Tess factor buffer soffset is after user SGPRs. */
2740 tf_soffset = LLVMGetParam(ctx->main_fn,
2741 SI_PARAM_TESS_FACTOR_OFFSET);
2742 ret = LLVMBuildInsertValue(builder, ret, tf_soffset,
2743 SI_TCS_NUM_USER_SGPR + 1, "");
2744
2745 /* VGPRs */
2746 rel_patch_id = bitcast(bld_base, TGSI_TYPE_FLOAT, rel_patch_id);
2747 invocation_id = bitcast(bld_base, TGSI_TYPE_FLOAT, invocation_id);
2748 tf_lds_offset = bitcast(bld_base, TGSI_TYPE_FLOAT, tf_lds_offset);
2749
2750 vgpr = SI_TCS_NUM_USER_SGPR + 2;
2751 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
2752 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
2753 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
2754 ctx->return_value = ret;
2755 }
2756
2757 static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context *bld_base)
2758 {
2759 struct si_shader_context *ctx = si_shader_context(bld_base);
2760 struct si_shader *shader = ctx->shader;
2761 struct tgsi_shader_info *info = &shader->selector->info;
2762 struct gallivm_state *gallivm = bld_base->base.gallivm;
2763 unsigned i, chan;
2764 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
2765 ctx->param_rel_auto_id);
2766 LLVMValueRef vertex_dw_stride =
2767 unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 13, 8);
2768 LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id,
2769 vertex_dw_stride, "");
2770
2771 /* Write outputs to LDS. The next shader (TCS aka HS) will read
2772 * its inputs from it. */
2773 for (i = 0; i < info->num_outputs; i++) {
2774 LLVMValueRef *out_ptr = ctx->soa.outputs[i];
2775 unsigned name = info->output_semantic_name[i];
2776 unsigned index = info->output_semantic_index[i];
2777 int param = si_shader_io_get_unique_index(name, index);
2778 LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr,
2779 lp_build_const_int32(gallivm, param * 4), "");
2780
2781 for (chan = 0; chan < 4; chan++) {
2782 lds_store(bld_base, chan, dw_addr,
2783 LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""));
2784 }
2785 }
2786 }
2787
2788 static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context *bld_base)
2789 {
2790 struct si_shader_context *ctx = si_shader_context(bld_base);
2791 struct gallivm_state *gallivm = bld_base->base.gallivm;
2792 struct si_shader *es = ctx->shader;
2793 struct tgsi_shader_info *info = &es->selector->info;
2794 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
2795 ctx->param_es2gs_offset);
2796 unsigned chan;
2797 int i;
2798
2799 for (i = 0; i < info->num_outputs; i++) {
2800 LLVMValueRef *out_ptr =
2801 ctx->soa.outputs[i];
2802 int param_index;
2803
2804 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
2805 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
2806 continue;
2807
2808 param_index = si_shader_io_get_unique_index(info->output_semantic_name[i],
2809 info->output_semantic_index[i]);
2810
2811 for (chan = 0; chan < 4; chan++) {
2812 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
2813 out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
2814
2815 build_tbuffer_store(ctx,
2816 ctx->esgs_ring,
2817 out_val, 1,
2818 LLVMGetUndef(ctx->i32), soffset,
2819 (4 * param_index + chan) * 4,
2820 V_008F0C_BUF_DATA_FORMAT_32,
2821 V_008F0C_BUF_NUM_FORMAT_UINT,
2822 0, 0, 1, 1, 0);
2823 }
2824 }
2825 }
2826
2827 static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
2828 {
2829 struct si_shader_context *ctx = si_shader_context(bld_base);
2830 struct gallivm_state *gallivm = bld_base->base.gallivm;
2831 LLVMValueRef args[2];
2832
2833 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE);
2834 args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
2835 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
2836 ctx->voidt, args, 2, 0);
2837 }
2838
2839 static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context *bld_base)
2840 {
2841 struct si_shader_context *ctx = si_shader_context(bld_base);
2842 struct gallivm_state *gallivm = bld_base->base.gallivm;
2843 struct tgsi_shader_info *info = &ctx->shader->selector->info;
2844 struct si_shader_output_values *outputs = NULL;
2845 int i,j;
2846
2847 assert(!ctx->shader->is_gs_copy_shader);
2848
2849 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
2850
2851 /* Vertex color clamping.
2852 *
2853 * This uses a state constant loaded in a user data SGPR and
2854 * an IF statement is added that clamps all colors if the constant
2855 * is true.
2856 */
2857 if (ctx->type == PIPE_SHADER_VERTEX) {
2858 struct lp_build_if_state if_ctx;
2859 LLVMValueRef cond = NULL;
2860 LLVMValueRef addr, val;
2861
2862 for (i = 0; i < info->num_outputs; i++) {
2863 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
2864 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
2865 continue;
2866
2867 /* We've found a color. */
2868 if (!cond) {
2869 /* The state is in the first bit of the user SGPR. */
2870 cond = LLVMGetParam(ctx->main_fn,
2871 SI_PARAM_VS_STATE_BITS);
2872 cond = LLVMBuildTrunc(gallivm->builder, cond,
2873 ctx->i1, "");
2874 lp_build_if(&if_ctx, gallivm, cond);
2875 }
2876
2877 for (j = 0; j < 4; j++) {
2878 addr = ctx->soa.outputs[i][j];
2879 val = LLVMBuildLoad(gallivm->builder, addr, "");
2880 val = si_llvm_saturate(bld_base, val);
2881 LLVMBuildStore(gallivm->builder, val, addr);
2882 }
2883 }
2884
2885 if (cond)
2886 lp_build_endif(&if_ctx);
2887 }
2888
2889 for (i = 0; i < info->num_outputs; i++) {
2890 outputs[i].semantic_name = info->output_semantic_name[i];
2891 outputs[i].semantic_index = info->output_semantic_index[i];
2892
2893 for (j = 0; j < 4; j++) {
2894 outputs[i].values[j] =
2895 LLVMBuildLoad(gallivm->builder,
2896 ctx->soa.outputs[i][j],
2897 "");
2898 outputs[i].vertex_stream[j] =
2899 (info->output_streams[i] >> (2 * j)) & 3;
2900 }
2901
2902 }
2903
2904 /* Return the primitive ID from the LLVM function. */
2905 ctx->return_value =
2906 LLVMBuildInsertValue(gallivm->builder,
2907 ctx->return_value,
2908 bitcast(bld_base, TGSI_TYPE_FLOAT,
2909 get_primitive_id(bld_base, 0)),
2910 VS_EPILOG_PRIMID_LOC, "");
2911
2912 if (ctx->shader->selector->so.num_outputs)
2913 si_llvm_emit_streamout(ctx, outputs, i);
2914 si_llvm_export_vs(bld_base, outputs, i);
2915 FREE(outputs);
2916 }
2917
2918 struct si_ps_exports {
2919 unsigned num;
2920 LLVMValueRef args[10][9];
2921 };
2922
2923 unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
2924 bool writes_samplemask)
2925 {
2926 if (writes_z) {
2927 /* Z needs 32 bits. */
2928 if (writes_samplemask)
2929 return V_028710_SPI_SHADER_32_ABGR;
2930 else if (writes_stencil)
2931 return V_028710_SPI_SHADER_32_GR;
2932 else
2933 return V_028710_SPI_SHADER_32_R;
2934 } else if (writes_stencil || writes_samplemask) {
2935 /* Both stencil and sample mask need only 16 bits. */
2936 return V_028710_SPI_SHADER_UINT16_ABGR;
2937 } else {
2938 return V_028710_SPI_SHADER_ZERO;
2939 }
2940 }
2941
2942 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
2943 LLVMValueRef depth, LLVMValueRef stencil,
2944 LLVMValueRef samplemask, struct si_ps_exports *exp)
2945 {
2946 struct si_shader_context *ctx = si_shader_context(bld_base);
2947 struct lp_build_context *base = &bld_base->base;
2948 struct lp_build_context *uint = &bld_base->uint_bld;
2949 LLVMValueRef args[9];
2950 unsigned mask = 0;
2951 unsigned format = si_get_spi_shader_z_format(depth != NULL,
2952 stencil != NULL,
2953 samplemask != NULL);
2954
2955 assert(depth || stencil || samplemask);
2956
2957 args[1] = uint->one; /* whether the EXEC mask is valid */
2958 args[2] = uint->one; /* DONE bit */
2959
2960 /* Specify the target we are exporting */
2961 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ);
2962
2963 args[4] = uint->zero; /* COMP flag */
2964 args[5] = base->undef; /* R, depth */
2965 args[6] = base->undef; /* G, stencil test value[0:7], stencil op value[8:15] */
2966 args[7] = base->undef; /* B, sample mask */
2967 args[8] = base->undef; /* A, alpha to mask */
2968
2969 if (format == V_028710_SPI_SHADER_UINT16_ABGR) {
2970 assert(!depth);
2971 args[4] = uint->one; /* COMPR flag */
2972
2973 if (stencil) {
2974 /* Stencil should be in X[23:16]. */
2975 stencil = bitcast(bld_base, TGSI_TYPE_UNSIGNED, stencil);
2976 stencil = LLVMBuildShl(base->gallivm->builder, stencil,
2977 LLVMConstInt(ctx->i32, 16, 0), "");
2978 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT, stencil);
2979 mask |= 0x3;
2980 }
2981 if (samplemask) {
2982 /* SampleMask should be in Y[15:0]. */
2983 args[6] = samplemask;
2984 mask |= 0xc;
2985 }
2986 } else {
2987 if (depth) {
2988 args[5] = depth;
2989 mask |= 0x1;
2990 }
2991 if (stencil) {
2992 args[6] = stencil;
2993 mask |= 0x2;
2994 }
2995 if (samplemask) {
2996 args[7] = samplemask;
2997 mask |= 0x4;
2998 }
2999 }
3000
3001 /* SI (except OLAND and HAINAN) has a bug that it only looks
3002 * at the X writemask component. */
3003 if (ctx->screen->b.chip_class == SI &&
3004 ctx->screen->b.family != CHIP_OLAND &&
3005 ctx->screen->b.family != CHIP_HAINAN)
3006 mask |= 0x1;
3007
3008 /* Specify which components to enable */
3009 args[0] = lp_build_const_int32(base->gallivm, mask);
3010
3011 memcpy(exp->args[exp->num++], args, sizeof(args));
3012 }
3013
3014 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3015 LLVMValueRef *color, unsigned index,
3016 unsigned samplemask_param,
3017 bool is_last, struct si_ps_exports *exp)
3018 {
3019 struct si_shader_context *ctx = si_shader_context(bld_base);
3020 struct lp_build_context *base = &bld_base->base;
3021 int i;
3022
3023 /* Clamp color */
3024 if (ctx->shader->key.part.ps.epilog.clamp_color)
3025 for (i = 0; i < 4; i++)
3026 color[i] = si_llvm_saturate(bld_base, color[i]);
3027
3028 /* Alpha to one */
3029 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3030 color[3] = base->one;
3031
3032 /* Alpha test */
3033 if (index == 0 &&
3034 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3035 si_alpha_test(bld_base, color[3]);
3036
3037 /* Line & polygon smoothing */
3038 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3039 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3040 samplemask_param);
3041
3042 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3043 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3044 LLVMValueRef args[8][9];
3045 int c, last = -1;
3046
3047 /* Get the export arguments, also find out what the last one is. */
3048 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3049 si_llvm_init_export_args(bld_base, color,
3050 V_008DFC_SQ_EXP_MRT + c, args[c]);
3051 if (args[c][0] != bld_base->uint_bld.zero)
3052 last = c;
3053 }
3054
3055 /* Emit all exports. */
3056 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3057 if (is_last && last == c) {
3058 args[c][1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
3059 args[c][2] = bld_base->uint_bld.one; /* DONE bit */
3060 } else if (args[c][0] == bld_base->uint_bld.zero)
3061 continue; /* unnecessary NULL export */
3062
3063 memcpy(exp->args[exp->num++], args[c], sizeof(args[c]));
3064 }
3065 } else {
3066 LLVMValueRef args[9];
3067
3068 /* Export */
3069 si_llvm_init_export_args(bld_base, color, V_008DFC_SQ_EXP_MRT + index,
3070 args);
3071 if (is_last) {
3072 args[1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
3073 args[2] = bld_base->uint_bld.one; /* DONE bit */
3074 } else if (args[0] == bld_base->uint_bld.zero)
3075 return; /* unnecessary NULL export */
3076
3077 memcpy(exp->args[exp->num++], args, sizeof(args));
3078 }
3079 }
3080
3081 static void si_emit_ps_exports(struct si_shader_context *ctx,
3082 struct si_ps_exports *exp)
3083 {
3084 for (unsigned i = 0; i < exp->num; i++)
3085 lp_build_intrinsic(ctx->gallivm.builder,
3086 "llvm.SI.export", ctx->voidt,
3087 exp->args[i], 9, 0);
3088 }
3089
3090 static void si_export_null(struct lp_build_tgsi_context *bld_base)
3091 {
3092 struct si_shader_context *ctx = si_shader_context(bld_base);
3093 struct lp_build_context *base = &bld_base->base;
3094 struct lp_build_context *uint = &bld_base->uint_bld;
3095 LLVMValueRef args[9];
3096
3097 args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
3098 args[1] = uint->one; /* whether the EXEC mask is valid */
3099 args[2] = uint->one; /* DONE bit */
3100 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
3101 args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
3102 args[5] = base->undef; /* R */
3103 args[6] = base->undef; /* G */
3104 args[7] = base->undef; /* B */
3105 args[8] = base->undef; /* A */
3106
3107 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
3108 ctx->voidt, args, 9, 0);
3109 }
3110
3111 /**
3112 * Return PS outputs in this order:
3113 *
3114 * v[0:3] = color0.xyzw
3115 * v[4:7] = color1.xyzw
3116 * ...
3117 * vN+0 = Depth
3118 * vN+1 = Stencil
3119 * vN+2 = SampleMask
3120 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3121 *
3122 * The alpha-ref SGPR is returned via its original location.
3123 */
3124 static void si_llvm_return_fs_outputs(struct lp_build_tgsi_context *bld_base)
3125 {
3126 struct si_shader_context *ctx = si_shader_context(bld_base);
3127 struct si_shader *shader = ctx->shader;
3128 struct lp_build_context *base = &bld_base->base;
3129 struct tgsi_shader_info *info = &shader->selector->info;
3130 LLVMBuilderRef builder = base->gallivm->builder;
3131 unsigned i, j, first_vgpr, vgpr;
3132
3133 LLVMValueRef color[8][4] = {};
3134 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3135 LLVMValueRef ret;
3136
3137 /* Read the output values. */
3138 for (i = 0; i < info->num_outputs; i++) {
3139 unsigned semantic_name = info->output_semantic_name[i];
3140 unsigned semantic_index = info->output_semantic_index[i];
3141
3142 switch (semantic_name) {
3143 case TGSI_SEMANTIC_COLOR:
3144 assert(semantic_index < 8);
3145 for (j = 0; j < 4; j++) {
3146 LLVMValueRef ptr = ctx->soa.outputs[i][j];
3147 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3148 color[semantic_index][j] = result;
3149 }
3150 break;
3151 case TGSI_SEMANTIC_POSITION:
3152 depth = LLVMBuildLoad(builder,
3153 ctx->soa.outputs[i][2], "");
3154 break;
3155 case TGSI_SEMANTIC_STENCIL:
3156 stencil = LLVMBuildLoad(builder,
3157 ctx->soa.outputs[i][1], "");
3158 break;
3159 case TGSI_SEMANTIC_SAMPLEMASK:
3160 samplemask = LLVMBuildLoad(builder,
3161 ctx->soa.outputs[i][0], "");
3162 break;
3163 default:
3164 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3165 semantic_name);
3166 }
3167 }
3168
3169 /* Fill the return structure. */
3170 ret = ctx->return_value;
3171
3172 /* Set SGPRs. */
3173 ret = LLVMBuildInsertValue(builder, ret,
3174 bitcast(bld_base, TGSI_TYPE_SIGNED,
3175 LLVMGetParam(ctx->main_fn,
3176 SI_PARAM_ALPHA_REF)),
3177 SI_SGPR_ALPHA_REF, "");
3178
3179 /* Set VGPRs */
3180 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3181 for (i = 0; i < ARRAY_SIZE(color); i++) {
3182 if (!color[i][0])
3183 continue;
3184
3185 for (j = 0; j < 4; j++)
3186 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3187 }
3188 if (depth)
3189 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3190 if (stencil)
3191 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3192 if (samplemask)
3193 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3194
3195 /* Add the input sample mask for smoothing at the end. */
3196 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3197 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3198 ret = LLVMBuildInsertValue(builder, ret,
3199 LLVMGetParam(ctx->main_fn,
3200 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3201
3202 ctx->return_value = ret;
3203 }
3204
3205 /**
3206 * Given a v8i32 resource descriptor for a buffer, extract the size of the
3207 * buffer in number of elements and return it as an i32.
3208 */
3209 static LLVMValueRef get_buffer_size(
3210 struct lp_build_tgsi_context *bld_base,
3211 LLVMValueRef descriptor)
3212 {
3213 struct si_shader_context *ctx = si_shader_context(bld_base);
3214 struct gallivm_state *gallivm = bld_base->base.gallivm;
3215 LLVMBuilderRef builder = gallivm->builder;
3216 LLVMValueRef size =
3217 LLVMBuildExtractElement(builder, descriptor,
3218 lp_build_const_int32(gallivm, 2), "");
3219
3220 if (ctx->screen->b.chip_class >= VI) {
3221 /* On VI, the descriptor contains the size in bytes,
3222 * but TXQ must return the size in elements.
3223 * The stride is always non-zero for resources using TXQ.
3224 */
3225 LLVMValueRef stride =
3226 LLVMBuildExtractElement(builder, descriptor,
3227 lp_build_const_int32(gallivm, 1), "");
3228 stride = LLVMBuildLShr(builder, stride,
3229 lp_build_const_int32(gallivm, 16), "");
3230 stride = LLVMBuildAnd(builder, stride,
3231 lp_build_const_int32(gallivm, 0x3FFF), "");
3232
3233 size = LLVMBuildUDiv(builder, size, stride, "");
3234 }
3235
3236 return size;
3237 }
3238
3239 /**
3240 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
3241 * intrinsic names).
3242 */
3243 static void build_type_name_for_intr(
3244 LLVMTypeRef type,
3245 char *buf, unsigned bufsize)
3246 {
3247 LLVMTypeRef elem_type = type;
3248
3249 assert(bufsize >= 8);
3250
3251 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
3252 int ret = snprintf(buf, bufsize, "v%u",
3253 LLVMGetVectorSize(type));
3254 if (ret < 0) {
3255 char *type_name = LLVMPrintTypeToString(type);
3256 fprintf(stderr, "Error building type name for: %s\n",
3257 type_name);
3258 return;
3259 }
3260 elem_type = LLVMGetElementType(type);
3261 buf += ret;
3262 bufsize -= ret;
3263 }
3264 switch (LLVMGetTypeKind(elem_type)) {
3265 default: break;
3266 case LLVMIntegerTypeKind:
3267 snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
3268 break;
3269 case LLVMFloatTypeKind:
3270 snprintf(buf, bufsize, "f32");
3271 break;
3272 case LLVMDoubleTypeKind:
3273 snprintf(buf, bufsize, "f64");
3274 break;
3275 }
3276 }
3277
3278 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
3279 struct lp_build_tgsi_context *bld_base,
3280 struct lp_build_emit_data *emit_data);
3281
3282 /* Prevent optimizations (at least of memory accesses) across the current
3283 * point in the program by emitting empty inline assembly that is marked as
3284 * having side effects.
3285 */
3286 #if 0 /* unused currently */
3287 static void emit_optimization_barrier(struct si_shader_context *ctx)
3288 {
3289 LLVMBuilderRef builder = ctx->gallivm.builder;
3290 LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
3291 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, "", "", true, false);
3292 LLVMBuildCall(builder, inlineasm, NULL, 0, "");
3293 }
3294 #endif
3295
3296 /* Combine these with & instead of |. */
3297 #define NOOP_WAITCNT 0xf7f
3298 #define LGKM_CNT 0x07f
3299 #define VM_CNT 0xf70
3300
3301 static void emit_waitcnt(struct si_shader_context *ctx, unsigned simm16)
3302 {
3303 struct gallivm_state *gallivm = &ctx->gallivm;
3304 LLVMBuilderRef builder = gallivm->builder;
3305 LLVMValueRef args[1] = {
3306 lp_build_const_int32(gallivm, simm16)
3307 };
3308 lp_build_intrinsic(builder, "llvm.amdgcn.s.waitcnt",
3309 ctx->voidt, args, 1, 0);
3310 }
3311
3312 static void membar_emit(
3313 const struct lp_build_tgsi_action *action,
3314 struct lp_build_tgsi_context *bld_base,
3315 struct lp_build_emit_data *emit_data)
3316 {
3317 struct si_shader_context *ctx = si_shader_context(bld_base);
3318 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3319 unsigned flags = LLVMConstIntGetZExtValue(src0);
3320 unsigned waitcnt = NOOP_WAITCNT;
3321
3322 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3323 waitcnt &= VM_CNT & LGKM_CNT;
3324
3325 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3326 TGSI_MEMBAR_SHADER_BUFFER |
3327 TGSI_MEMBAR_SHADER_IMAGE))
3328 waitcnt &= VM_CNT;
3329
3330 if (flags & TGSI_MEMBAR_SHARED)
3331 waitcnt &= LGKM_CNT;
3332
3333 if (waitcnt != NOOP_WAITCNT)
3334 emit_waitcnt(ctx, waitcnt);
3335 }
3336
3337 static LLVMValueRef
3338 shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
3339 const struct tgsi_full_src_register *reg)
3340 {
3341 LLVMValueRef index;
3342 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3343 SI_PARAM_SHADER_BUFFERS);
3344
3345 if (!reg->Register.Indirect)
3346 index = LLVMConstInt(ctx->i32, reg->Register.Index, 0);
3347 else
3348 index = get_bounded_indirect_index(ctx, &reg->Indirect,
3349 reg->Register.Index,
3350 SI_NUM_SHADER_BUFFERS);
3351
3352 return build_indexed_load_const(ctx, rsrc_ptr, index);
3353 }
3354
3355 static bool tgsi_is_array_sampler(unsigned target)
3356 {
3357 return target == TGSI_TEXTURE_1D_ARRAY ||
3358 target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
3359 target == TGSI_TEXTURE_2D_ARRAY ||
3360 target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
3361 target == TGSI_TEXTURE_CUBE_ARRAY ||
3362 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
3363 target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3364 }
3365
3366 static bool tgsi_is_array_image(unsigned target)
3367 {
3368 return target == TGSI_TEXTURE_3D ||
3369 target == TGSI_TEXTURE_CUBE ||
3370 target == TGSI_TEXTURE_1D_ARRAY ||
3371 target == TGSI_TEXTURE_2D_ARRAY ||
3372 target == TGSI_TEXTURE_CUBE_ARRAY ||
3373 target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3374 }
3375
3376 /**
3377 * Given a 256-bit resource descriptor, force the DCC enable bit to off.
3378 *
3379 * At least on Tonga, executing image stores on images with DCC enabled and
3380 * non-trivial can eventually lead to lockups. This can occur when an
3381 * application binds an image as read-only but then uses a shader that writes
3382 * to it. The OpenGL spec allows almost arbitrarily bad behavior (including
3383 * program termination) in this case, but it doesn't cost much to be a bit
3384 * nicer: disabling DCC in the shader still leads to undefined results but
3385 * avoids the lockup.
3386 */
3387 static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
3388 LLVMValueRef rsrc)
3389 {
3390 if (ctx->screen->b.chip_class <= CIK) {
3391 return rsrc;
3392 } else {
3393 LLVMBuilderRef builder = ctx->gallivm.builder;
3394 LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
3395 LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
3396 LLVMValueRef tmp;
3397
3398 tmp = LLVMBuildExtractElement(builder, rsrc, i32_6, "");
3399 tmp = LLVMBuildAnd(builder, tmp, i32_C, "");
3400 return LLVMBuildInsertElement(builder, rsrc, tmp, i32_6, "");
3401 }
3402 }
3403
3404 static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
3405 {
3406 return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3407 CONST_ADDR_SPACE);
3408 }
3409
3410 /**
3411 * Load the resource descriptor for \p image.
3412 */
3413 static void
3414 image_fetch_rsrc(
3415 struct lp_build_tgsi_context *bld_base,
3416 const struct tgsi_full_src_register *image,
3417 bool is_store, unsigned target,
3418 LLVMValueRef *rsrc)
3419 {
3420 struct si_shader_context *ctx = si_shader_context(bld_base);
3421 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3422 SI_PARAM_IMAGES);
3423 LLVMValueRef index, tmp;
3424 bool dcc_off = target != TGSI_TEXTURE_BUFFER && is_store;
3425
3426 assert(image->Register.File == TGSI_FILE_IMAGE);
3427
3428 if (!image->Register.Indirect) {
3429 const struct tgsi_shader_info *info = bld_base->info;
3430
3431 index = LLVMConstInt(ctx->i32, image->Register.Index, 0);
3432
3433 if (info->images_writemask & (1 << image->Register.Index) &&
3434 target != TGSI_TEXTURE_BUFFER)
3435 dcc_off = true;
3436 } else {
3437 /* From the GL_ARB_shader_image_load_store extension spec:
3438 *
3439 * If a shader performs an image load, store, or atomic
3440 * operation using an image variable declared as an array,
3441 * and if the index used to select an individual element is
3442 * negative or greater than or equal to the size of the
3443 * array, the results of the operation are undefined but may
3444 * not lead to termination.
3445 */
3446 index = get_bounded_indirect_index(ctx, &image->Indirect,
3447 image->Register.Index,
3448 SI_NUM_IMAGES);
3449 }
3450
3451 if (target == TGSI_TEXTURE_BUFFER) {
3452 LLVMBuilderRef builder = ctx->gallivm.builder;
3453
3454 rsrc_ptr = LLVMBuildPointerCast(builder, rsrc_ptr,
3455 const_array(ctx->v4i32, 0), "");
3456 index = LLVMBuildMul(builder, index,
3457 LLVMConstInt(ctx->i32, 2, 0), "");
3458 index = LLVMBuildAdd(builder, index,
3459 LLVMConstInt(ctx->i32, 1, 0), "");
3460 *rsrc = build_indexed_load_const(ctx, rsrc_ptr, index);
3461 return;
3462 }
3463
3464 tmp = build_indexed_load_const(ctx, rsrc_ptr, index);
3465 if (dcc_off)
3466 tmp = force_dcc_off(ctx, tmp);
3467 *rsrc = tmp;
3468 }
3469
3470 static LLVMValueRef image_fetch_coords(
3471 struct lp_build_tgsi_context *bld_base,
3472 const struct tgsi_full_instruction *inst,
3473 unsigned src)
3474 {
3475 struct gallivm_state *gallivm = bld_base->base.gallivm;
3476 LLVMBuilderRef builder = gallivm->builder;
3477 unsigned target = inst->Memory.Texture;
3478 unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
3479 LLVMValueRef coords[4];
3480 LLVMValueRef tmp;
3481 int chan;
3482
3483 for (chan = 0; chan < num_coords; ++chan) {
3484 tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
3485 tmp = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3486 coords[chan] = tmp;
3487 }
3488
3489 if (num_coords == 1)
3490 return coords[0];
3491
3492 if (num_coords == 3) {
3493 /* LLVM has difficulties lowering 3-element vectors. */
3494 coords[3] = bld_base->uint_bld.undef;
3495 num_coords = 4;
3496 }
3497
3498 return lp_build_gather_values(gallivm, coords, num_coords);
3499 }
3500
3501 /**
3502 * Append the extra mode bits that are used by image load and store.
3503 */
3504 static void image_append_args(
3505 struct si_shader_context *ctx,
3506 struct lp_build_emit_data * emit_data,
3507 unsigned target,
3508 bool atomic,
3509 bool force_glc)
3510 {
3511 const struct tgsi_full_instruction *inst = emit_data->inst;
3512 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3513 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3514 LLVMValueRef r128 = i1false;
3515 LLVMValueRef da = tgsi_is_array_image(target) ? i1true : i1false;
3516 LLVMValueRef glc =
3517 force_glc ||
3518 inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3519 i1true : i1false;
3520 LLVMValueRef slc = i1false;
3521 LLVMValueRef lwe = i1false;
3522
3523 if (atomic || (HAVE_LLVM <= 0x0309)) {
3524 emit_data->args[emit_data->arg_count++] = r128;
3525 emit_data->args[emit_data->arg_count++] = da;
3526 if (!atomic) {
3527 emit_data->args[emit_data->arg_count++] = glc;
3528 }
3529 emit_data->args[emit_data->arg_count++] = slc;
3530 return;
3531 }
3532
3533 /* HAVE_LLVM >= 0x0400 */
3534 emit_data->args[emit_data->arg_count++] = glc;
3535 emit_data->args[emit_data->arg_count++] = slc;
3536 emit_data->args[emit_data->arg_count++] = lwe;
3537 emit_data->args[emit_data->arg_count++] = da;
3538 }
3539
3540 /**
3541 * Append the resource and indexing arguments for buffer intrinsics.
3542 *
3543 * \param rsrc the v4i32 buffer resource
3544 * \param index index into the buffer (stride-based)
3545 * \param offset byte offset into the buffer
3546 */
3547 static void buffer_append_args(
3548 struct si_shader_context *ctx,
3549 struct lp_build_emit_data *emit_data,
3550 LLVMValueRef rsrc,
3551 LLVMValueRef index,
3552 LLVMValueRef offset,
3553 bool atomic,
3554 bool force_glc)
3555 {
3556 const struct tgsi_full_instruction *inst = emit_data->inst;
3557 LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3558 LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3559
3560 emit_data->args[emit_data->arg_count++] = rsrc;
3561 emit_data->args[emit_data->arg_count++] = index; /* vindex */
3562 emit_data->args[emit_data->arg_count++] = offset; /* voffset */
3563 if (!atomic) {
3564 emit_data->args[emit_data->arg_count++] =
3565 force_glc ||
3566 inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3567 i1true : i1false; /* glc */
3568 }
3569 emit_data->args[emit_data->arg_count++] = i1false; /* slc */
3570 }
3571
3572 static void load_fetch_args(
3573 struct lp_build_tgsi_context * bld_base,
3574 struct lp_build_emit_data * emit_data)
3575 {
3576 struct si_shader_context *ctx = si_shader_context(bld_base);
3577 struct gallivm_state *gallivm = bld_base->base.gallivm;
3578 const struct tgsi_full_instruction * inst = emit_data->inst;
3579 unsigned target = inst->Memory.Texture;
3580 LLVMValueRef rsrc;
3581
3582 emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
3583
3584 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3585 LLVMBuilderRef builder = gallivm->builder;
3586 LLVMValueRef offset;
3587 LLVMValueRef tmp;
3588
3589 rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
3590
3591 tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
3592 offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3593
3594 buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
3595 offset, false, false);
3596 } else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
3597 LLVMValueRef coords;
3598
3599 image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &rsrc);
3600 coords = image_fetch_coords(bld_base, inst, 1);
3601
3602 if (target == TGSI_TEXTURE_BUFFER) {
3603 buffer_append_args(ctx, emit_data, rsrc, coords,
3604 bld_base->uint_bld.zero, false, false);
3605 } else {
3606 emit_data->args[0] = coords;
3607 emit_data->args[1] = rsrc;
3608 emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
3609 emit_data->arg_count = 3;
3610
3611 image_append_args(ctx, emit_data, target, false, false);
3612 }
3613 }
3614 }
3615
3616 static void load_emit_buffer(struct si_shader_context *ctx,
3617 struct lp_build_emit_data *emit_data)
3618 {
3619 const struct tgsi_full_instruction *inst = emit_data->inst;
3620 struct gallivm_state *gallivm = &ctx->gallivm;
3621 LLVMBuilderRef builder = gallivm->builder;
3622 uint writemask = inst->Dst[0].Register.WriteMask;
3623 uint count = util_last_bit(writemask);
3624 const char *intrinsic_name;
3625 LLVMTypeRef dst_type;
3626
3627 switch (count) {
3628 case 1:
3629 intrinsic_name = "llvm.amdgcn.buffer.load.f32";
3630 dst_type = ctx->f32;
3631 break;
3632 case 2:
3633 intrinsic_name = "llvm.amdgcn.buffer.load.v2f32";
3634 dst_type = LLVMVectorType(ctx->f32, 2);
3635 break;
3636 default: // 3 & 4
3637 intrinsic_name = "llvm.amdgcn.buffer.load.v4f32";
3638 dst_type = ctx->v4f32;
3639 count = 4;
3640 }
3641
3642 emit_data->output[emit_data->chan] = lp_build_intrinsic(
3643 builder, intrinsic_name, dst_type,
3644 emit_data->args, emit_data->arg_count,
3645 LP_FUNC_ATTR_READONLY);
3646 }
3647
3648 static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
3649 const struct tgsi_full_instruction *inst,
3650 LLVMTypeRef type, int arg)
3651 {
3652 struct gallivm_state *gallivm = &ctx->gallivm;
3653 LLVMBuilderRef builder = gallivm->builder;
3654 LLVMValueRef offset, ptr;
3655 int addr_space;
3656
3657 offset = lp_build_emit_fetch(&ctx->soa.bld_base, inst, arg, 0);
3658 offset = LLVMBuildBitCast(builder, offset, ctx->i32, "");
3659
3660 ptr = ctx->shared_memory;
3661 ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
3662 addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3663 ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
3664
3665 return ptr;
3666 }
3667
3668 static void load_emit_memory(
3669 struct si_shader_context *ctx,
3670 struct lp_build_emit_data *emit_data)
3671 {
3672 const struct tgsi_full_instruction *inst = emit_data->inst;
3673 struct lp_build_context *base = &ctx->soa.bld_base.base;
3674 struct gallivm_state *gallivm = &ctx->gallivm;
3675 LLVMBuilderRef builder = gallivm->builder;
3676 unsigned writemask = inst->Dst[0].Register.WriteMask;
3677 LLVMValueRef channels[4], ptr, derived_ptr, index;
3678 int chan;
3679
3680 ptr = get_memory_ptr(ctx, inst, base->elem_type, 1);
3681
3682 for (chan = 0; chan < 4; ++chan) {
3683 if (!(writemask & (1 << chan))) {
3684 channels[chan] = LLVMGetUndef(base->elem_type);
3685 continue;
3686 }
3687
3688 index = lp_build_const_int32(gallivm, chan);
3689 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3690 channels[chan] = LLVMBuildLoad(builder, derived_ptr, "");
3691 }
3692 emit_data->output[emit_data->chan] = lp_build_gather_values(gallivm, channels, 4);
3693 }
3694
3695 static void get_image_intr_name(const char *base_name,
3696 LLVMTypeRef data_type,
3697 LLVMTypeRef coords_type,
3698 LLVMTypeRef rsrc_type,
3699 char *out_name, unsigned out_len)
3700 {
3701 char coords_type_name[8];
3702
3703 build_type_name_for_intr(coords_type, coords_type_name,
3704 sizeof(coords_type_name));
3705
3706 if (HAVE_LLVM <= 0x0309) {
3707 snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
3708 } else {
3709 char data_type_name[8];
3710 char rsrc_type_name[8];
3711
3712 build_type_name_for_intr(data_type, data_type_name,
3713 sizeof(data_type_name));
3714 build_type_name_for_intr(rsrc_type, rsrc_type_name,
3715 sizeof(rsrc_type_name));
3716 snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
3717 data_type_name, coords_type_name, rsrc_type_name);
3718 }
3719 }
3720
3721 static void load_emit(
3722 const struct lp_build_tgsi_action *action,
3723 struct lp_build_tgsi_context *bld_base,
3724 struct lp_build_emit_data *emit_data)
3725 {
3726 struct si_shader_context *ctx = si_shader_context(bld_base);
3727 struct gallivm_state *gallivm = bld_base->base.gallivm;
3728 LLVMBuilderRef builder = gallivm->builder;
3729 const struct tgsi_full_instruction * inst = emit_data->inst;
3730 char intrinsic_name[64];
3731
3732 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
3733 load_emit_memory(ctx, emit_data);
3734 return;
3735 }
3736
3737 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
3738 emit_waitcnt(ctx, VM_CNT);
3739
3740 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3741 load_emit_buffer(ctx, emit_data);
3742 return;
3743 }
3744
3745 if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
3746 emit_data->output[emit_data->chan] =
3747 lp_build_intrinsic(
3748 builder, "llvm.amdgcn.buffer.load.format.v4f32", emit_data->dst_type,
3749 emit_data->args, emit_data->arg_count,
3750 LP_FUNC_ATTR_READONLY);
3751 } else {
3752 get_image_intr_name("llvm.amdgcn.image.load",
3753 emit_data->dst_type, /* vdata */
3754 LLVMTypeOf(emit_data->args[0]), /* coords */
3755 LLVMTypeOf(emit_data->args[1]), /* rsrc */
3756 intrinsic_name, sizeof(intrinsic_name));
3757
3758 emit_data->output[emit_data->chan] =
3759 lp_build_intrinsic(
3760 builder, intrinsic_name, emit_data->dst_type,
3761 emit_data->args, emit_data->arg_count,
3762 LP_FUNC_ATTR_READONLY);
3763 }
3764 }
3765
3766 static void store_fetch_args(
3767 struct lp_build_tgsi_context * bld_base,
3768 struct lp_build_emit_data * emit_data)
3769 {
3770 struct si_shader_context *ctx = si_shader_context(bld_base);
3771 struct gallivm_state *gallivm = bld_base->base.gallivm;
3772 LLVMBuilderRef builder = gallivm->builder;
3773 const struct tgsi_full_instruction * inst = emit_data->inst;
3774 struct tgsi_full_src_register memory;
3775 LLVMValueRef chans[4];
3776 LLVMValueRef data;
3777 LLVMValueRef rsrc;
3778 unsigned chan;
3779
3780 emit_data->dst_type = LLVMVoidTypeInContext(gallivm->context);
3781
3782 for (chan = 0; chan < 4; ++chan) {
3783 chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
3784 }
3785 data = lp_build_gather_values(gallivm, chans, 4);
3786
3787 emit_data->args[emit_data->arg_count++] = data;
3788
3789 memory = tgsi_full_src_register_from_dst(&inst->Dst[0]);
3790
3791 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
3792 LLVMValueRef offset;
3793 LLVMValueRef tmp;
3794
3795 rsrc = shader_buffer_fetch_rsrc(ctx, &memory);
3796
3797 tmp = lp_build_emit_fetch(bld_base, inst, 0, 0);
3798 offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3799
3800 buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
3801 offset, false, false);
3802 } else if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE) {
3803 unsigned target = inst->Memory.Texture;
3804 LLVMValueRef coords;
3805
3806 /* 8bit/16bit TC L1 write corruption bug on SI.
3807 * All store opcodes not aligned to a dword are affected.
3808 *
3809 * The only way to get unaligned stores in radeonsi is through
3810 * shader images.
3811 */
3812 bool force_glc = ctx->screen->b.chip_class == SI;
3813
3814 coords = image_fetch_coords(bld_base, inst, 0);
3815
3816 if (target == TGSI_TEXTURE_BUFFER) {
3817 image_fetch_rsrc(bld_base, &memory, true, target, &rsrc);
3818 buffer_append_args(ctx, emit_data, rsrc, coords,
3819 bld_base->uint_bld.zero, false, force_glc);
3820 } else {
3821 emit_data->args[1] = coords;
3822 image_fetch_rsrc(bld_base, &memory, true, target,
3823 &emit_data->args[2]);
3824 emit_data->args[3] = lp_build_const_int32(gallivm, 15); /* dmask */
3825 emit_data->arg_count = 4;
3826
3827 image_append_args(ctx, emit_data, target, false, force_glc);
3828 }
3829 }
3830 }
3831
3832 static void store_emit_buffer(
3833 struct si_shader_context *ctx,
3834 struct lp_build_emit_data *emit_data)
3835 {
3836 const struct tgsi_full_instruction *inst = emit_data->inst;
3837 struct gallivm_state *gallivm = &ctx->gallivm;
3838 LLVMBuilderRef builder = gallivm->builder;
3839 struct lp_build_context *uint_bld = &ctx->soa.bld_base.uint_bld;
3840 LLVMValueRef base_data = emit_data->args[0];
3841 LLVMValueRef base_offset = emit_data->args[3];
3842 unsigned writemask = inst->Dst[0].Register.WriteMask;
3843
3844 while (writemask) {
3845 int start, count;
3846 const char *intrinsic_name;
3847 LLVMValueRef data;
3848 LLVMValueRef offset;
3849 LLVMValueRef tmp;
3850
3851 u_bit_scan_consecutive_range(&writemask, &start, &count);
3852
3853 /* Due to an LLVM limitation, split 3-element writes
3854 * into a 2-element and a 1-element write. */
3855 if (count == 3) {
3856 writemask |= 1 << (start + 2);
3857 count = 2;
3858 }
3859
3860 if (count == 4) {
3861 data = base_data;
3862 intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
3863 } else if (count == 2) {
3864 LLVMTypeRef v2f32 = LLVMVectorType(ctx->f32, 2);
3865
3866 tmp = LLVMBuildExtractElement(
3867 builder, base_data,
3868 lp_build_const_int32(gallivm, start), "");
3869 data = LLVMBuildInsertElement(
3870 builder, LLVMGetUndef(v2f32), tmp,
3871 uint_bld->zero, "");
3872
3873 tmp = LLVMBuildExtractElement(
3874 builder, base_data,
3875 lp_build_const_int32(gallivm, start + 1), "");
3876 data = LLVMBuildInsertElement(
3877 builder, data, tmp, uint_bld->one, "");
3878
3879 intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
3880 } else {
3881 assert(count == 1);
3882 data = LLVMBuildExtractElement(
3883 builder, base_data,
3884 lp_build_const_int32(gallivm, start), "");
3885 intrinsic_name = "llvm.amdgcn.buffer.store.f32";
3886 }
3887
3888 offset = base_offset;
3889 if (start != 0) {
3890 offset = LLVMBuildAdd(
3891 builder, offset,
3892 lp_build_const_int32(gallivm, start * 4), "");
3893 }
3894
3895 emit_data->args[0] = data;
3896 emit_data->args[3] = offset;
3897
3898 lp_build_intrinsic(
3899 builder, intrinsic_name, emit_data->dst_type,
3900 emit_data->args, emit_data->arg_count, 0);
3901 }
3902 }
3903
3904 static void store_emit_memory(
3905 struct si_shader_context *ctx,
3906 struct lp_build_emit_data *emit_data)
3907 {
3908 const struct tgsi_full_instruction *inst = emit_data->inst;
3909 struct gallivm_state *gallivm = &ctx->gallivm;
3910 struct lp_build_context *base = &ctx->soa.bld_base.base;
3911 LLVMBuilderRef builder = gallivm->builder;
3912 unsigned writemask = inst->Dst[0].Register.WriteMask;
3913 LLVMValueRef ptr, derived_ptr, data, index;
3914 int chan;
3915
3916 ptr = get_memory_ptr(ctx, inst, base->elem_type, 0);
3917
3918 for (chan = 0; chan < 4; ++chan) {
3919 if (!(writemask & (1 << chan))) {
3920 continue;
3921 }
3922 data = lp_build_emit_fetch(&ctx->soa.bld_base, inst, 1, chan);
3923 index = lp_build_const_int32(gallivm, chan);
3924 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3925 LLVMBuildStore(builder, data, derived_ptr);
3926 }
3927 }
3928
3929 static void store_emit(
3930 const struct lp_build_tgsi_action *action,
3931 struct lp_build_tgsi_context *bld_base,
3932 struct lp_build_emit_data *emit_data)
3933 {
3934 struct si_shader_context *ctx = si_shader_context(bld_base);
3935 struct gallivm_state *gallivm = bld_base->base.gallivm;
3936 LLVMBuilderRef builder = gallivm->builder;
3937 const struct tgsi_full_instruction * inst = emit_data->inst;
3938 unsigned target = inst->Memory.Texture;
3939 char intrinsic_name[64];
3940
3941 if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
3942 store_emit_memory(ctx, emit_data);
3943 return;
3944 }
3945
3946 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
3947 emit_waitcnt(ctx, VM_CNT);
3948
3949 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
3950 store_emit_buffer(ctx, emit_data);
3951 return;
3952 }
3953
3954 if (target == TGSI_TEXTURE_BUFFER) {
3955 emit_data->output[emit_data->chan] = lp_build_intrinsic(
3956 builder, "llvm.amdgcn.buffer.store.format.v4f32",
3957 emit_data->dst_type, emit_data->args,
3958 emit_data->arg_count, 0);
3959 } else {
3960 get_image_intr_name("llvm.amdgcn.image.store",
3961 LLVMTypeOf(emit_data->args[0]), /* vdata */
3962 LLVMTypeOf(emit_data->args[1]), /* coords */
3963 LLVMTypeOf(emit_data->args[2]), /* rsrc */
3964 intrinsic_name, sizeof(intrinsic_name));
3965
3966 emit_data->output[emit_data->chan] =
3967 lp_build_intrinsic(
3968 builder, intrinsic_name, emit_data->dst_type,
3969 emit_data->args, emit_data->arg_count, 0);
3970 }
3971 }
3972
3973 static void atomic_fetch_args(
3974 struct lp_build_tgsi_context * bld_base,
3975 struct lp_build_emit_data * emit_data)
3976 {
3977 struct si_shader_context *ctx = si_shader_context(bld_base);
3978 struct gallivm_state *gallivm = bld_base->base.gallivm;
3979 LLVMBuilderRef builder = gallivm->builder;
3980 const struct tgsi_full_instruction * inst = emit_data->inst;
3981 LLVMValueRef data1, data2;
3982 LLVMValueRef rsrc;
3983 LLVMValueRef tmp;
3984
3985 emit_data->dst_type = bld_base->base.elem_type;
3986
3987 tmp = lp_build_emit_fetch(bld_base, inst, 2, 0);
3988 data1 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3989
3990 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
3991 tmp = lp_build_emit_fetch(bld_base, inst, 3, 0);
3992 data2 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3993 }
3994
3995 /* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
3996 * of arguments, which is reversed relative to TGSI (and GLSL)
3997 */
3998 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
3999 emit_data->args[emit_data->arg_count++] = data2;
4000 emit_data->args[emit_data->arg_count++] = data1;
4001
4002 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4003 LLVMValueRef offset;
4004
4005 rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
4006
4007 tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
4008 offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
4009
4010 buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
4011 offset, true, false);
4012 } else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
4013 unsigned target = inst->Memory.Texture;
4014 LLVMValueRef coords;
4015
4016 image_fetch_rsrc(bld_base, &inst->Src[0], true, target, &rsrc);
4017 coords = image_fetch_coords(bld_base, inst, 1);
4018
4019 if (target == TGSI_TEXTURE_BUFFER) {
4020 buffer_append_args(ctx, emit_data, rsrc, coords,
4021 bld_base->uint_bld.zero, true, false);
4022 } else {
4023 emit_data->args[emit_data->arg_count++] = coords;
4024 emit_data->args[emit_data->arg_count++] = rsrc;
4025
4026 image_append_args(ctx, emit_data, target, true, false);
4027 }
4028 }
4029 }
4030
4031 static void atomic_emit_memory(struct si_shader_context *ctx,
4032 struct lp_build_emit_data *emit_data) {
4033 struct gallivm_state *gallivm = &ctx->gallivm;
4034 LLVMBuilderRef builder = gallivm->builder;
4035 const struct tgsi_full_instruction * inst = emit_data->inst;
4036 LLVMValueRef ptr, result, arg;
4037
4038 ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
4039
4040 arg = lp_build_emit_fetch(&ctx->soa.bld_base, inst, 2, 0);
4041 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
4042
4043 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4044 LLVMValueRef new_data;
4045 new_data = lp_build_emit_fetch(&ctx->soa.bld_base,
4046 inst, 3, 0);
4047
4048 new_data = LLVMBuildBitCast(builder, new_data, ctx->i32, "");
4049
4050 #if HAVE_LLVM >= 0x309
4051 result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
4052 LLVMAtomicOrderingSequentiallyConsistent,
4053 LLVMAtomicOrderingSequentiallyConsistent,
4054 false);
4055 #endif
4056
4057 result = LLVMBuildExtractValue(builder, result, 0, "");
4058 } else {
4059 LLVMAtomicRMWBinOp op;
4060
4061 switch(inst->Instruction.Opcode) {
4062 case TGSI_OPCODE_ATOMUADD:
4063 op = LLVMAtomicRMWBinOpAdd;
4064 break;
4065 case TGSI_OPCODE_ATOMXCHG:
4066 op = LLVMAtomicRMWBinOpXchg;
4067 break;
4068 case TGSI_OPCODE_ATOMAND:
4069 op = LLVMAtomicRMWBinOpAnd;
4070 break;
4071 case TGSI_OPCODE_ATOMOR:
4072 op = LLVMAtomicRMWBinOpOr;
4073 break;
4074 case TGSI_OPCODE_ATOMXOR:
4075 op = LLVMAtomicRMWBinOpXor;
4076 break;
4077 case TGSI_OPCODE_ATOMUMIN:
4078 op = LLVMAtomicRMWBinOpUMin;
4079 break;
4080 case TGSI_OPCODE_ATOMUMAX:
4081 op = LLVMAtomicRMWBinOpUMax;
4082 break;
4083 case TGSI_OPCODE_ATOMIMIN:
4084 op = LLVMAtomicRMWBinOpMin;
4085 break;
4086 case TGSI_OPCODE_ATOMIMAX:
4087 op = LLVMAtomicRMWBinOpMax;
4088 break;
4089 default:
4090 unreachable("unknown atomic opcode");
4091 }
4092
4093 result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
4094 LLVMAtomicOrderingSequentiallyConsistent,
4095 false);
4096 }
4097 emit_data->output[emit_data->chan] = LLVMBuildBitCast(builder, result, emit_data->dst_type, "");
4098 }
4099
4100 static void atomic_emit(
4101 const struct lp_build_tgsi_action *action,
4102 struct lp_build_tgsi_context *bld_base,
4103 struct lp_build_emit_data *emit_data)
4104 {
4105 struct si_shader_context *ctx = si_shader_context(bld_base);
4106 struct gallivm_state *gallivm = bld_base->base.gallivm;
4107 LLVMBuilderRef builder = gallivm->builder;
4108 const struct tgsi_full_instruction * inst = emit_data->inst;
4109 char intrinsic_name[40];
4110 LLVMValueRef tmp;
4111
4112 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
4113 atomic_emit_memory(ctx, emit_data);
4114 return;
4115 }
4116
4117 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
4118 inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4119 snprintf(intrinsic_name, sizeof(intrinsic_name),
4120 "llvm.amdgcn.buffer.atomic.%s", action->intr_name);
4121 } else {
4122 LLVMValueRef coords;
4123 char coords_type[8];
4124
4125 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4126 coords = emit_data->args[2];
4127 else
4128 coords = emit_data->args[1];
4129
4130 build_type_name_for_intr(LLVMTypeOf(coords), coords_type, sizeof(coords_type));
4131 snprintf(intrinsic_name, sizeof(intrinsic_name),
4132 "llvm.amdgcn.image.atomic.%s.%s",
4133 action->intr_name, coords_type);
4134 }
4135
4136 tmp = lp_build_intrinsic(
4137 builder, intrinsic_name, bld_base->uint_bld.elem_type,
4138 emit_data->args, emit_data->arg_count, 0);
4139 emit_data->output[emit_data->chan] =
4140 LLVMBuildBitCast(builder, tmp, bld_base->base.elem_type, "");
4141 }
4142
4143 static void resq_fetch_args(
4144 struct lp_build_tgsi_context * bld_base,
4145 struct lp_build_emit_data * emit_data)
4146 {
4147 struct si_shader_context *ctx = si_shader_context(bld_base);
4148 struct gallivm_state *gallivm = bld_base->base.gallivm;
4149 const struct tgsi_full_instruction *inst = emit_data->inst;
4150 const struct tgsi_full_src_register *reg = &inst->Src[0];
4151
4152 emit_data->dst_type = ctx->v4i32;
4153
4154 if (reg->Register.File == TGSI_FILE_BUFFER) {
4155 emit_data->args[0] = shader_buffer_fetch_rsrc(ctx, reg);
4156 emit_data->arg_count = 1;
4157 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4158 image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4159 &emit_data->args[0]);
4160 emit_data->arg_count = 1;
4161 } else {
4162 emit_data->args[0] = bld_base->uint_bld.zero; /* mip level */
4163 image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4164 &emit_data->args[1]);
4165 emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
4166 emit_data->args[3] = bld_base->uint_bld.zero; /* unorm */
4167 emit_data->args[4] = bld_base->uint_bld.zero; /* r128 */
4168 emit_data->args[5] = tgsi_is_array_image(inst->Memory.Texture) ?
4169 bld_base->uint_bld.one : bld_base->uint_bld.zero; /* da */
4170 emit_data->args[6] = bld_base->uint_bld.zero; /* glc */
4171 emit_data->args[7] = bld_base->uint_bld.zero; /* slc */
4172 emit_data->args[8] = bld_base->uint_bld.zero; /* tfe */
4173 emit_data->args[9] = bld_base->uint_bld.zero; /* lwe */
4174 emit_data->arg_count = 10;
4175 }
4176 }
4177
4178 static void resq_emit(
4179 const struct lp_build_tgsi_action *action,
4180 struct lp_build_tgsi_context *bld_base,
4181 struct lp_build_emit_data *emit_data)
4182 {
4183 struct gallivm_state *gallivm = bld_base->base.gallivm;
4184 LLVMBuilderRef builder = gallivm->builder;
4185 const struct tgsi_full_instruction *inst = emit_data->inst;
4186 LLVMValueRef out;
4187
4188 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4189 out = LLVMBuildExtractElement(builder, emit_data->args[0],
4190 lp_build_const_int32(gallivm, 2), "");
4191 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4192 out = get_buffer_size(bld_base, emit_data->args[0]);
4193 } else {
4194 out = lp_build_intrinsic(
4195 builder, "llvm.SI.getresinfo.i32", emit_data->dst_type,
4196 emit_data->args, emit_data->arg_count,
4197 LP_FUNC_ATTR_READNONE);
4198
4199 /* Divide the number of layers by 6 to get the number of cubes. */
4200 if (inst->Memory.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
4201 LLVMValueRef imm2 = lp_build_const_int32(gallivm, 2);
4202 LLVMValueRef imm6 = lp_build_const_int32(gallivm, 6);
4203
4204 LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
4205 z = LLVMBuildSDiv(builder, z, imm6, "");
4206 out = LLVMBuildInsertElement(builder, out, z, imm2, "");
4207 }
4208 }
4209
4210 emit_data->output[emit_data->chan] = out;
4211 }
4212
4213 static void set_tex_fetch_args(struct si_shader_context *ctx,
4214 struct lp_build_emit_data *emit_data,
4215 unsigned opcode, unsigned target,
4216 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
4217 LLVMValueRef *param, unsigned count,
4218 unsigned dmask)
4219 {
4220 struct gallivm_state *gallivm = &ctx->gallivm;
4221 unsigned num_args;
4222 unsigned is_rect = target == TGSI_TEXTURE_RECT;
4223
4224 /* Pad to power of two vector */
4225 while (count < util_next_power_of_two(count))
4226 param[count++] = LLVMGetUndef(ctx->i32);
4227
4228 /* Texture coordinates. */
4229 if (count > 1)
4230 emit_data->args[0] = lp_build_gather_values(gallivm, param, count);
4231 else
4232 emit_data->args[0] = param[0];
4233
4234 /* Resource. */
4235 emit_data->args[1] = res_ptr;
4236 num_args = 2;
4237
4238 if (opcode == TGSI_OPCODE_TXF || opcode == TGSI_OPCODE_TXQ)
4239 emit_data->dst_type = ctx->v4i32;
4240 else {
4241 emit_data->dst_type = ctx->v4f32;
4242
4243 emit_data->args[num_args++] = samp_ptr;
4244 }
4245
4246 emit_data->args[num_args++] = lp_build_const_int32(gallivm, dmask);
4247 emit_data->args[num_args++] = lp_build_const_int32(gallivm, is_rect); /* unorm */
4248 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* r128 */
4249 emit_data->args[num_args++] = lp_build_const_int32(gallivm,
4250 tgsi_is_array_sampler(target)); /* da */
4251 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* glc */
4252 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* slc */
4253 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* tfe */
4254 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* lwe */
4255
4256 emit_data->arg_count = num_args;
4257 }
4258
4259 static const struct lp_build_tgsi_action tex_action;
4260
4261 enum desc_type {
4262 DESC_IMAGE,
4263 DESC_BUFFER,
4264 DESC_FMASK,
4265 DESC_SAMPLER,
4266 };
4267
4268 /**
4269 * Load an image view, fmask view. or sampler state descriptor.
4270 */
4271 static LLVMValueRef load_sampler_desc_custom(struct si_shader_context *ctx,
4272 LLVMValueRef list, LLVMValueRef index,
4273 enum desc_type type)
4274 {
4275 struct gallivm_state *gallivm = &ctx->gallivm;
4276 LLVMBuilderRef builder = gallivm->builder;
4277
4278 switch (type) {
4279 case DESC_IMAGE:
4280 /* The image is at [0:7]. */
4281 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4282 break;
4283 case DESC_BUFFER:
4284 /* The buffer is in [4:7]. */
4285 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4286 index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
4287 list = LLVMBuildPointerCast(builder, list,
4288 const_array(ctx->v4i32, 0), "");
4289 break;
4290 case DESC_FMASK:
4291 /* The FMASK is at [8:15]. */
4292 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4293 index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
4294 break;
4295 case DESC_SAMPLER:
4296 /* The sampler state is at [12:15]. */
4297 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4298 index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 3, 0), "");
4299 list = LLVMBuildPointerCast(builder, list,
4300 const_array(ctx->v4i32, 0), "");
4301 break;
4302 }
4303
4304 return build_indexed_load_const(ctx, list, index);
4305 }
4306
4307 static LLVMValueRef load_sampler_desc(struct si_shader_context *ctx,
4308 LLVMValueRef index, enum desc_type type)
4309 {
4310 LLVMValueRef list = LLVMGetParam(ctx->main_fn,
4311 SI_PARAM_SAMPLERS);
4312
4313 return load_sampler_desc_custom(ctx, list, index, type);
4314 }
4315
4316 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
4317 *
4318 * SI-CI:
4319 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
4320 * filtering manually. The driver sets img7 to a mask clearing
4321 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
4322 * s_and_b32 samp0, samp0, img7
4323 *
4324 * VI:
4325 * The ANISO_OVERRIDE sampler field enables this fix in TA.
4326 */
4327 static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
4328 LLVMValueRef res, LLVMValueRef samp)
4329 {
4330 LLVMBuilderRef builder = ctx->gallivm.builder;
4331 LLVMValueRef img7, samp0;
4332
4333 if (ctx->screen->b.chip_class >= VI)
4334 return samp;
4335
4336 img7 = LLVMBuildExtractElement(builder, res,
4337 LLVMConstInt(ctx->i32, 7, 0), "");
4338 samp0 = LLVMBuildExtractElement(builder, samp,
4339 LLVMConstInt(ctx->i32, 0, 0), "");
4340 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
4341 return LLVMBuildInsertElement(builder, samp, samp0,
4342 LLVMConstInt(ctx->i32, 0, 0), "");
4343 }
4344
4345 static void tex_fetch_ptrs(
4346 struct lp_build_tgsi_context *bld_base,
4347 struct lp_build_emit_data *emit_data,
4348 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
4349 {
4350 struct si_shader_context *ctx = si_shader_context(bld_base);
4351 const struct tgsi_full_instruction *inst = emit_data->inst;
4352 unsigned target = inst->Texture.Texture;
4353 unsigned sampler_src;
4354 unsigned sampler_index;
4355 LLVMValueRef index;
4356
4357 sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
4358 sampler_index = emit_data->inst->Src[sampler_src].Register.Index;
4359
4360 if (emit_data->inst->Src[sampler_src].Register.Indirect) {
4361 const struct tgsi_full_src_register *reg = &emit_data->inst->Src[sampler_src];
4362
4363 index = get_bounded_indirect_index(ctx,
4364 &reg->Indirect,
4365 reg->Register.Index,
4366 SI_NUM_SAMPLERS);
4367 } else {
4368 index = LLVMConstInt(ctx->i32, sampler_index, 0);
4369 }
4370
4371 if (target == TGSI_TEXTURE_BUFFER)
4372 *res_ptr = load_sampler_desc(ctx, index, DESC_BUFFER);
4373 else
4374 *res_ptr = load_sampler_desc(ctx, index, DESC_IMAGE);
4375
4376 if (samp_ptr)
4377 *samp_ptr = NULL;
4378 if (fmask_ptr)
4379 *fmask_ptr = NULL;
4380
4381 if (target == TGSI_TEXTURE_2D_MSAA ||
4382 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4383 if (fmask_ptr)
4384 *fmask_ptr = load_sampler_desc(ctx, index, DESC_FMASK);
4385 } else if (target != TGSI_TEXTURE_BUFFER) {
4386 if (samp_ptr) {
4387 *samp_ptr = load_sampler_desc(ctx, index, DESC_SAMPLER);
4388 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
4389 }
4390 }
4391 }
4392
4393 static void txq_fetch_args(
4394 struct lp_build_tgsi_context *bld_base,
4395 struct lp_build_emit_data *emit_data)
4396 {
4397 struct si_shader_context *ctx = si_shader_context(bld_base);
4398 const struct tgsi_full_instruction *inst = emit_data->inst;
4399 unsigned target = inst->Texture.Texture;
4400 LLVMValueRef res_ptr;
4401 LLVMValueRef address;
4402
4403 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, NULL, NULL);
4404
4405 if (target == TGSI_TEXTURE_BUFFER) {
4406 /* Read the size from the buffer descriptor directly. */
4407 emit_data->args[0] = get_buffer_size(bld_base, res_ptr);
4408 return;
4409 }
4410
4411 /* Textures - set the mip level. */
4412 address = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
4413
4414 set_tex_fetch_args(ctx, emit_data, TGSI_OPCODE_TXQ, target, res_ptr,
4415 NULL, &address, 1, 0xf);
4416 }
4417
4418 static void txq_emit(const struct lp_build_tgsi_action *action,
4419 struct lp_build_tgsi_context *bld_base,
4420 struct lp_build_emit_data *emit_data)
4421 {
4422 struct lp_build_context *base = &bld_base->base;
4423 unsigned target = emit_data->inst->Texture.Texture;
4424
4425 if (target == TGSI_TEXTURE_BUFFER) {
4426 /* Just return the buffer size. */
4427 emit_data->output[emit_data->chan] = emit_data->args[0];
4428 return;
4429 }
4430
4431 emit_data->output[emit_data->chan] = lp_build_intrinsic(
4432 base->gallivm->builder, "llvm.SI.getresinfo.i32",
4433 emit_data->dst_type, emit_data->args, emit_data->arg_count,
4434 LP_FUNC_ATTR_READNONE);
4435
4436 /* Divide the number of layers by 6 to get the number of cubes. */
4437 if (target == TGSI_TEXTURE_CUBE_ARRAY ||
4438 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4439 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
4440 LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2);
4441 LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6);
4442
4443 LLVMValueRef v4 = emit_data->output[emit_data->chan];
4444 LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, "");
4445 z = LLVMBuildSDiv(builder, z, six, "");
4446
4447 emit_data->output[emit_data->chan] =
4448 LLVMBuildInsertElement(builder, v4, z, two, "");
4449 }
4450 }
4451
4452 static void tex_fetch_args(
4453 struct lp_build_tgsi_context *bld_base,
4454 struct lp_build_emit_data *emit_data)
4455 {
4456 struct si_shader_context *ctx = si_shader_context(bld_base);
4457 struct gallivm_state *gallivm = bld_base->base.gallivm;
4458 const struct tgsi_full_instruction *inst = emit_data->inst;
4459 unsigned opcode = inst->Instruction.Opcode;
4460 unsigned target = inst->Texture.Texture;
4461 LLVMValueRef coords[5], derivs[6];
4462 LLVMValueRef address[16];
4463 unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
4464 int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
4465 unsigned count = 0;
4466 unsigned chan;
4467 unsigned num_deriv_channels = 0;
4468 bool has_offset = inst->Texture.NumOffsets > 0;
4469 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
4470 unsigned dmask = 0xf;
4471
4472 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
4473
4474 if (target == TGSI_TEXTURE_BUFFER) {
4475 emit_data->dst_type = ctx->v4f32;
4476 emit_data->args[0] = LLVMBuildBitCast(gallivm->builder, res_ptr,
4477 ctx->v16i8, "");
4478 emit_data->args[1] = bld_base->uint_bld.zero;
4479 emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4480 emit_data->arg_count = 3;
4481 return;
4482 }
4483
4484 /* Fetch and project texture coordinates */
4485 coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
4486 for (chan = 0; chan < 3; chan++ ) {
4487 coords[chan] = lp_build_emit_fetch(bld_base,
4488 emit_data->inst, 0,
4489 chan);
4490 if (opcode == TGSI_OPCODE_TXP)
4491 coords[chan] = lp_build_emit_llvm_binary(bld_base,
4492 TGSI_OPCODE_DIV,
4493 coords[chan],
4494 coords[3]);
4495 }
4496
4497 if (opcode == TGSI_OPCODE_TXP)
4498 coords[3] = bld_base->base.one;
4499
4500 /* Pack offsets. */
4501 if (has_offset && opcode != TGSI_OPCODE_TXF) {
4502 /* The offsets are six-bit signed integers packed like this:
4503 * X=[5:0], Y=[13:8], and Z=[21:16].
4504 */
4505 LLVMValueRef offset[3], pack;
4506
4507 assert(inst->Texture.NumOffsets == 1);
4508
4509 for (chan = 0; chan < 3; chan++) {
4510 offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
4511 emit_data->inst, 0, chan);
4512 offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
4513 lp_build_const_int32(gallivm, 0x3f), "");
4514 if (chan)
4515 offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
4516 lp_build_const_int32(gallivm, chan*8), "");
4517 }
4518
4519 pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
4520 pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
4521 address[count++] = pack;
4522 }
4523
4524 /* Pack LOD bias value */
4525 if (opcode == TGSI_OPCODE_TXB)
4526 address[count++] = coords[3];
4527 if (opcode == TGSI_OPCODE_TXB2)
4528 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4529
4530 /* Pack depth comparison value */
4531 if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
4532 LLVMValueRef z;
4533
4534 if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4535 z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4536 } else {
4537 assert(ref_pos >= 0);
4538 z = coords[ref_pos];
4539 }
4540
4541 /* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
4542 * so the depth comparison value isn't clamped for Z16 and
4543 * Z24 anymore. Do it manually here.
4544 *
4545 * It's unnecessary if the original texture format was
4546 * Z32_FLOAT, but we don't know that here.
4547 */
4548 if (ctx->screen->b.chip_class == VI)
4549 z = si_llvm_saturate(bld_base, z);
4550
4551 address[count++] = z;
4552 }
4553
4554 /* Pack user derivatives */
4555 if (opcode == TGSI_OPCODE_TXD) {
4556 int param, num_src_deriv_channels;
4557
4558 switch (target) {
4559 case TGSI_TEXTURE_3D:
4560 num_src_deriv_channels = 3;
4561 num_deriv_channels = 3;
4562 break;
4563 case TGSI_TEXTURE_2D:
4564 case TGSI_TEXTURE_SHADOW2D:
4565 case TGSI_TEXTURE_RECT:
4566 case TGSI_TEXTURE_SHADOWRECT:
4567 case TGSI_TEXTURE_2D_ARRAY:
4568 case TGSI_TEXTURE_SHADOW2D_ARRAY:
4569 num_src_deriv_channels = 2;
4570 num_deriv_channels = 2;
4571 break;
4572 case TGSI_TEXTURE_CUBE:
4573 case TGSI_TEXTURE_SHADOWCUBE:
4574 case TGSI_TEXTURE_CUBE_ARRAY:
4575 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
4576 /* Cube derivatives will be converted to 2D. */
4577 num_src_deriv_channels = 3;
4578 num_deriv_channels = 2;
4579 break;
4580 case TGSI_TEXTURE_1D:
4581 case TGSI_TEXTURE_SHADOW1D:
4582 case TGSI_TEXTURE_1D_ARRAY:
4583 case TGSI_TEXTURE_SHADOW1D_ARRAY:
4584 num_src_deriv_channels = 1;
4585 num_deriv_channels = 1;
4586 break;
4587 default:
4588 unreachable("invalid target");
4589 }
4590
4591 for (param = 0; param < 2; param++)
4592 for (chan = 0; chan < num_src_deriv_channels; chan++)
4593 derivs[param * num_src_deriv_channels + chan] =
4594 lp_build_emit_fetch(bld_base, inst, param+1, chan);
4595 }
4596
4597 if (target == TGSI_TEXTURE_CUBE ||
4598 target == TGSI_TEXTURE_CUBE_ARRAY ||
4599 target == TGSI_TEXTURE_SHADOWCUBE ||
4600 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
4601 si_prepare_cube_coords(bld_base, emit_data, coords, derivs);
4602
4603 if (opcode == TGSI_OPCODE_TXD)
4604 for (int i = 0; i < num_deriv_channels * 2; i++)
4605 address[count++] = derivs[i];
4606
4607 /* Pack texture coordinates */
4608 address[count++] = coords[0];
4609 if (num_coords > 1)
4610 address[count++] = coords[1];
4611 if (num_coords > 2)
4612 address[count++] = coords[2];
4613
4614 /* Pack LOD or sample index */
4615 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
4616 address[count++] = coords[3];
4617 else if (opcode == TGSI_OPCODE_TXL2)
4618 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4619
4620 if (count > 16) {
4621 assert(!"Cannot handle more than 16 texture address parameters");
4622 count = 16;
4623 }
4624
4625 for (chan = 0; chan < count; chan++ ) {
4626 address[chan] = LLVMBuildBitCast(gallivm->builder,
4627 address[chan], ctx->i32, "");
4628 }
4629
4630 /* Adjust the sample index according to FMASK.
4631 *
4632 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4633 * which is the identity mapping. Each nibble says which physical sample
4634 * should be fetched to get that sample.
4635 *
4636 * For example, 0x11111100 means there are only 2 samples stored and
4637 * the second sample covers 3/4 of the pixel. When reading samples 0
4638 * and 1, return physical sample 0 (determined by the first two 0s
4639 * in FMASK), otherwise return physical sample 1.
4640 *
4641 * The sample index should be adjusted as follows:
4642 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4643 */
4644 if (target == TGSI_TEXTURE_2D_MSAA ||
4645 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4646 struct lp_build_context *uint_bld = &bld_base->uint_bld;
4647 struct lp_build_emit_data txf_emit_data = *emit_data;
4648 LLVMValueRef txf_address[4];
4649 unsigned txf_count = count;
4650 struct tgsi_full_instruction inst = {};
4651
4652 memcpy(txf_address, address, sizeof(txf_address));
4653
4654 if (target == TGSI_TEXTURE_2D_MSAA) {
4655 txf_address[2] = bld_base->uint_bld.zero;
4656 }
4657 txf_address[3] = bld_base->uint_bld.zero;
4658
4659 /* Read FMASK using TXF. */
4660 inst.Instruction.Opcode = TGSI_OPCODE_TXF;
4661 inst.Texture.Texture = target;
4662 txf_emit_data.inst = &inst;
4663 txf_emit_data.chan = 0;
4664 set_tex_fetch_args(ctx, &txf_emit_data, TGSI_OPCODE_TXF,
4665 target, fmask_ptr, NULL,
4666 txf_address, txf_count, 0xf);
4667 build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
4668
4669 /* Initialize some constants. */
4670 LLVMValueRef four = LLVMConstInt(ctx->i32, 4, 0);
4671 LLVMValueRef F = LLVMConstInt(ctx->i32, 0xF, 0);
4672
4673 /* Apply the formula. */
4674 LLVMValueRef fmask =
4675 LLVMBuildExtractElement(gallivm->builder,
4676 txf_emit_data.output[0],
4677 uint_bld->zero, "");
4678
4679 unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
4680
4681 LLVMValueRef sample_index4 =
4682 LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
4683
4684 LLVMValueRef shifted_fmask =
4685 LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
4686
4687 LLVMValueRef final_sample =
4688 LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
4689
4690 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4691 * resource descriptor is 0 (invalid),
4692 */
4693 LLVMValueRef fmask_desc =
4694 LLVMBuildBitCast(gallivm->builder, fmask_ptr,
4695 ctx->v8i32, "");
4696
4697 LLVMValueRef fmask_word1 =
4698 LLVMBuildExtractElement(gallivm->builder, fmask_desc,
4699 uint_bld->one, "");
4700
4701 LLVMValueRef word1_is_nonzero =
4702 LLVMBuildICmp(gallivm->builder, LLVMIntNE,
4703 fmask_word1, uint_bld->zero, "");
4704
4705 /* Replace the MSAA sample index. */
4706 address[sample_chan] =
4707 LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
4708 final_sample, address[sample_chan], "");
4709 }
4710
4711 if (opcode == TGSI_OPCODE_TXF) {
4712 /* add tex offsets */
4713 if (inst->Texture.NumOffsets) {
4714 struct lp_build_context *uint_bld = &bld_base->uint_bld;
4715 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
4716 const struct tgsi_texture_offset *off = inst->TexOffsets;
4717
4718 assert(inst->Texture.NumOffsets == 1);
4719
4720 switch (target) {
4721 case TGSI_TEXTURE_3D:
4722 address[2] = lp_build_add(uint_bld, address[2],
4723 bld->immediates[off->Index][off->SwizzleZ]);
4724 /* fall through */
4725 case TGSI_TEXTURE_2D:
4726 case TGSI_TEXTURE_SHADOW2D:
4727 case TGSI_TEXTURE_RECT:
4728 case TGSI_TEXTURE_SHADOWRECT:
4729 case TGSI_TEXTURE_2D_ARRAY:
4730 case TGSI_TEXTURE_SHADOW2D_ARRAY:
4731 address[1] =
4732 lp_build_add(uint_bld, address[1],
4733 bld->immediates[off->Index][off->SwizzleY]);
4734 /* fall through */
4735 case TGSI_TEXTURE_1D:
4736 case TGSI_TEXTURE_SHADOW1D:
4737 case TGSI_TEXTURE_1D_ARRAY:
4738 case TGSI_TEXTURE_SHADOW1D_ARRAY:
4739 address[0] =
4740 lp_build_add(uint_bld, address[0],
4741 bld->immediates[off->Index][off->SwizzleX]);
4742 break;
4743 /* texture offsets do not apply to other texture targets */
4744 }
4745 }
4746 }
4747
4748 if (opcode == TGSI_OPCODE_TG4) {
4749 unsigned gather_comp = 0;
4750
4751 /* DMASK was repurposed for GATHER4. 4 components are always
4752 * returned and DMASK works like a swizzle - it selects
4753 * the component to fetch. The only valid DMASK values are
4754 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
4755 * (red,red,red,red) etc.) The ISA document doesn't mention
4756 * this.
4757 */
4758
4759 /* Get the component index from src1.x for Gather4. */
4760 if (!tgsi_is_shadow_target(target)) {
4761 LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates;
4762 LLVMValueRef comp_imm;
4763 struct tgsi_src_register src1 = inst->Src[1].Register;
4764
4765 assert(src1.File == TGSI_FILE_IMMEDIATE);
4766
4767 comp_imm = imms[src1.Index][src1.SwizzleX];
4768 gather_comp = LLVMConstIntGetZExtValue(comp_imm);
4769 gather_comp = CLAMP(gather_comp, 0, 3);
4770 }
4771
4772 dmask = 1 << gather_comp;
4773 }
4774
4775 set_tex_fetch_args(ctx, emit_data, opcode, target, res_ptr,
4776 samp_ptr, address, count, dmask);
4777 }
4778
4779 /* Gather4 should follow the same rules as bilinear filtering, but the hardware
4780 * incorrectly forces nearest filtering if the texture format is integer.
4781 * The only effect it has on Gather4, which always returns 4 texels for
4782 * bilinear filtering, is that the final coordinates are off by 0.5 of
4783 * the texel size.
4784 *
4785 * The workaround is to subtract 0.5 from the unnormalized coordinates,
4786 * or (0.5 / size) from the normalized coordinates.
4787 */
4788 static void si_lower_gather4_integer(struct si_shader_context *ctx,
4789 struct lp_build_emit_data *emit_data,
4790 const char *intr_name,
4791 unsigned coord_vgpr_index)
4792 {
4793 LLVMBuilderRef builder = ctx->gallivm.builder;
4794 LLVMValueRef coord = emit_data->args[0];
4795 LLVMValueRef half_texel[2];
4796 int c;
4797
4798 if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_RECT ||
4799 emit_data->inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
4800 half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
4801 } else {
4802 struct tgsi_full_instruction txq_inst = {};
4803 struct lp_build_emit_data txq_emit_data = {};
4804
4805 /* Query the texture size. */
4806 txq_inst.Texture.Texture = emit_data->inst->Texture.Texture;
4807 txq_emit_data.inst = &txq_inst;
4808 txq_emit_data.dst_type = ctx->v4i32;
4809 set_tex_fetch_args(ctx, &txq_emit_data, TGSI_OPCODE_TXQ,
4810 txq_inst.Texture.Texture,
4811 emit_data->args[1], NULL,
4812 &ctx->soa.bld_base.uint_bld.zero,
4813 1, 0xf);
4814 txq_emit(NULL, &ctx->soa.bld_base, &txq_emit_data);
4815
4816 /* Compute -0.5 / size. */
4817 for (c = 0; c < 2; c++) {
4818 half_texel[c] =
4819 LLVMBuildExtractElement(builder, txq_emit_data.output[0],
4820 LLVMConstInt(ctx->i32, c, 0), "");
4821 half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
4822 half_texel[c] =
4823 lp_build_emit_llvm_unary(&ctx->soa.bld_base,
4824 TGSI_OPCODE_RCP, half_texel[c]);
4825 half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
4826 LLVMConstReal(ctx->f32, -0.5), "");
4827 }
4828 }
4829
4830 for (c = 0; c < 2; c++) {
4831 LLVMValueRef tmp;
4832 LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
4833
4834 tmp = LLVMBuildExtractElement(builder, coord, index, "");
4835 tmp = LLVMBuildBitCast(builder, tmp, ctx->f32, "");
4836 tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
4837 tmp = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4838 coord = LLVMBuildInsertElement(builder, coord, tmp, index, "");
4839 }
4840
4841 emit_data->args[0] = coord;
4842 emit_data->output[emit_data->chan] =
4843 lp_build_intrinsic(builder, intr_name, emit_data->dst_type,
4844 emit_data->args, emit_data->arg_count,
4845 LP_FUNC_ATTR_READNONE);
4846 }
4847
4848 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
4849 struct lp_build_tgsi_context *bld_base,
4850 struct lp_build_emit_data *emit_data)
4851 {
4852 struct si_shader_context *ctx = si_shader_context(bld_base);
4853 struct lp_build_context *base = &bld_base->base;
4854 const struct tgsi_full_instruction *inst = emit_data->inst;
4855 unsigned opcode = inst->Instruction.Opcode;
4856 unsigned target = inst->Texture.Texture;
4857 char intr_name[127];
4858 bool has_offset = inst->Texture.NumOffsets > 0;
4859 bool is_shadow = tgsi_is_shadow_target(target);
4860 char type[64];
4861 const char *name = "llvm.SI.image.sample";
4862 const char *infix = "";
4863
4864 if (target == TGSI_TEXTURE_BUFFER) {
4865 emit_data->output[emit_data->chan] = lp_build_intrinsic(
4866 base->gallivm->builder,
4867 "llvm.SI.vs.load.input", emit_data->dst_type,
4868 emit_data->args, emit_data->arg_count,
4869 LP_FUNC_ATTR_READNONE);
4870 return;
4871 }
4872
4873 switch (opcode) {
4874 case TGSI_OPCODE_TXF:
4875 name = target == TGSI_TEXTURE_2D_MSAA ||
4876 target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
4877 "llvm.SI.image.load" :
4878 "llvm.SI.image.load.mip";
4879 is_shadow = false;
4880 has_offset = false;
4881 break;
4882 case TGSI_OPCODE_LODQ:
4883 name = "llvm.SI.getlod";
4884 is_shadow = false;
4885 has_offset = false;
4886 break;
4887 case TGSI_OPCODE_TEX:
4888 case TGSI_OPCODE_TEX2:
4889 case TGSI_OPCODE_TXP:
4890 if (ctx->type != PIPE_SHADER_FRAGMENT)
4891 infix = ".lz";
4892 break;
4893 case TGSI_OPCODE_TXB:
4894 case TGSI_OPCODE_TXB2:
4895 assert(ctx->type == PIPE_SHADER_FRAGMENT);
4896 infix = ".b";
4897 break;
4898 case TGSI_OPCODE_TXL:
4899 case TGSI_OPCODE_TXL2:
4900 infix = ".l";
4901 break;
4902 case TGSI_OPCODE_TXD:
4903 infix = ".d";
4904 break;
4905 case TGSI_OPCODE_TG4:
4906 name = "llvm.SI.gather4";
4907 infix = ".lz";
4908 break;
4909 default:
4910 assert(0);
4911 return;
4912 }
4913
4914 /* Add the type and suffixes .c, .o if needed. */
4915 build_type_name_for_intr(LLVMTypeOf(emit_data->args[0]), type, sizeof(type));
4916 sprintf(intr_name, "%s%s%s%s.%s",
4917 name, is_shadow ? ".c" : "", infix,
4918 has_offset ? ".o" : "", type);
4919
4920 /* The hardware needs special lowering for Gather4 with integer formats. */
4921 if (opcode == TGSI_OPCODE_TG4) {
4922 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4923 /* This will also work with non-constant indexing because of how
4924 * glsl_to_tgsi works and we intent to preserve that behavior.
4925 */
4926 const unsigned src_idx = 2;
4927 unsigned sampler = inst->Src[src_idx].Register.Index;
4928
4929 assert(inst->Src[src_idx].Register.File == TGSI_FILE_SAMPLER);
4930
4931 if (info->sampler_type[sampler] == TGSI_RETURN_TYPE_SINT ||
4932 info->sampler_type[sampler] == TGSI_RETURN_TYPE_UINT) {
4933 /* Texture coordinates start after:
4934 * {offset, bias, z-compare, derivatives}
4935 * Only the offset and z-compare can occur here.
4936 */
4937 si_lower_gather4_integer(ctx, emit_data, intr_name,
4938 (int)has_offset + (int)is_shadow);
4939 return;
4940 }
4941 }
4942
4943 emit_data->output[emit_data->chan] = lp_build_intrinsic(
4944 base->gallivm->builder, intr_name, emit_data->dst_type,
4945 emit_data->args, emit_data->arg_count,
4946 LP_FUNC_ATTR_READNONE);
4947 }
4948
4949 static void si_llvm_emit_txqs(
4950 const struct lp_build_tgsi_action *action,
4951 struct lp_build_tgsi_context *bld_base,
4952 struct lp_build_emit_data *emit_data)
4953 {
4954 struct si_shader_context *ctx = si_shader_context(bld_base);
4955 struct gallivm_state *gallivm = bld_base->base.gallivm;
4956 LLVMBuilderRef builder = gallivm->builder;
4957 LLVMValueRef res, samples;
4958 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
4959
4960 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
4961
4962
4963 /* Read the samples from the descriptor directly. */
4964 res = LLVMBuildBitCast(builder, res_ptr, ctx->v8i32, "");
4965 samples = LLVMBuildExtractElement(
4966 builder, res,
4967 lp_build_const_int32(gallivm, 3), "");
4968 samples = LLVMBuildLShr(builder, samples,
4969 lp_build_const_int32(gallivm, 16), "");
4970 samples = LLVMBuildAnd(builder, samples,
4971 lp_build_const_int32(gallivm, 0xf), "");
4972 samples = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1),
4973 samples, "");
4974
4975 emit_data->output[emit_data->chan] = samples;
4976 }
4977
4978 /*
4979 * SI implements derivatives using the local data store (LDS)
4980 * All writes to the LDS happen in all executing threads at
4981 * the same time. TID is the Thread ID for the current
4982 * thread and is a value between 0 and 63, representing
4983 * the thread's position in the wavefront.
4984 *
4985 * For the pixel shader threads are grouped into quads of four pixels.
4986 * The TIDs of the pixels of a quad are:
4987 *
4988 * +------+------+
4989 * |4n + 0|4n + 1|
4990 * +------+------+
4991 * |4n + 2|4n + 3|
4992 * +------+------+
4993 *
4994 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
4995 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
4996 * the current pixel's column, and masking with 0xfffffffe yields the TID
4997 * of the left pixel of the current pixel's row.
4998 *
4999 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
5000 * adding 2 yields the TID of the pixel below the top pixel.
5001 */
5002 /* masks for thread ID. */
5003 #define TID_MASK_TOP_LEFT 0xfffffffc
5004 #define TID_MASK_TOP 0xfffffffd
5005 #define TID_MASK_LEFT 0xfffffffe
5006
5007 static void si_llvm_emit_ddxy(
5008 const struct lp_build_tgsi_action *action,
5009 struct lp_build_tgsi_context *bld_base,
5010 struct lp_build_emit_data *emit_data)
5011 {
5012 struct si_shader_context *ctx = si_shader_context(bld_base);
5013 struct gallivm_state *gallivm = bld_base->base.gallivm;
5014 unsigned opcode = emit_data->info->opcode;
5015 LLVMValueRef thread_id, tl, trbl, tl_tid, trbl_tid, val, args[2];
5016 int idx;
5017 unsigned mask;
5018
5019 thread_id = get_thread_id(ctx);
5020
5021 if (opcode == TGSI_OPCODE_DDX_FINE)
5022 mask = TID_MASK_LEFT;
5023 else if (opcode == TGSI_OPCODE_DDY_FINE)
5024 mask = TID_MASK_TOP;
5025 else
5026 mask = TID_MASK_TOP_LEFT;
5027
5028 tl_tid = LLVMBuildAnd(gallivm->builder, thread_id,
5029 lp_build_const_int32(gallivm, mask), "");
5030
5031 /* for DDX we want to next X pixel, DDY next Y pixel. */
5032 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
5033 trbl_tid = LLVMBuildAdd(gallivm->builder, tl_tid,
5034 lp_build_const_int32(gallivm, idx), "");
5035
5036 val = LLVMBuildBitCast(gallivm->builder, emit_data->args[0], ctx->i32, "");
5037
5038 if (ctx->screen->has_ds_bpermute) {
5039 args[0] = LLVMBuildMul(gallivm->builder, tl_tid,
5040 lp_build_const_int32(gallivm, 4), "");
5041 args[1] = val;
5042 tl = lp_build_intrinsic(gallivm->builder,
5043 "llvm.amdgcn.ds.bpermute", ctx->i32,
5044 args, 2, LP_FUNC_ATTR_READNONE);
5045
5046 args[0] = LLVMBuildMul(gallivm->builder, trbl_tid,
5047 lp_build_const_int32(gallivm, 4), "");
5048 trbl = lp_build_intrinsic(gallivm->builder,
5049 "llvm.amdgcn.ds.bpermute", ctx->i32,
5050 args, 2, LP_FUNC_ATTR_READNONE);
5051 } else {
5052 LLVMValueRef store_ptr, load_ptr0, load_ptr1;
5053
5054 store_ptr = build_gep0(ctx, ctx->lds, thread_id);
5055 load_ptr0 = build_gep0(ctx, ctx->lds, tl_tid);
5056 load_ptr1 = build_gep0(ctx, ctx->lds, trbl_tid);
5057
5058 LLVMBuildStore(gallivm->builder, val, store_ptr);
5059 tl = LLVMBuildLoad(gallivm->builder, load_ptr0, "");
5060 trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, "");
5061 }
5062
5063 tl = LLVMBuildBitCast(gallivm->builder, tl, ctx->f32, "");
5064 trbl = LLVMBuildBitCast(gallivm->builder, trbl, ctx->f32, "");
5065
5066 emit_data->output[emit_data->chan] =
5067 LLVMBuildFSub(gallivm->builder, trbl, tl, "");
5068 }
5069
5070 /*
5071 * this takes an I,J coordinate pair,
5072 * and works out the X and Y derivatives.
5073 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
5074 */
5075 static LLVMValueRef si_llvm_emit_ddxy_interp(
5076 struct lp_build_tgsi_context *bld_base,
5077 LLVMValueRef interp_ij)
5078 {
5079 struct si_shader_context *ctx = si_shader_context(bld_base);
5080 struct gallivm_state *gallivm = bld_base->base.gallivm;
5081 LLVMValueRef result[4], a;
5082 unsigned i;
5083
5084 for (i = 0; i < 2; i++) {
5085 a = LLVMBuildExtractElement(gallivm->builder, interp_ij,
5086 LLVMConstInt(ctx->i32, i, 0), "");
5087 result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
5088 result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
5089 }
5090
5091 return lp_build_gather_values(gallivm, result, 4);
5092 }
5093
5094 static void interp_fetch_args(
5095 struct lp_build_tgsi_context *bld_base,
5096 struct lp_build_emit_data *emit_data)
5097 {
5098 struct si_shader_context *ctx = si_shader_context(bld_base);
5099 struct gallivm_state *gallivm = bld_base->base.gallivm;
5100 const struct tgsi_full_instruction *inst = emit_data->inst;
5101
5102 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
5103 /* offset is in second src, first two channels */
5104 emit_data->args[0] = lp_build_emit_fetch(bld_base,
5105 emit_data->inst, 1,
5106 TGSI_CHAN_X);
5107 emit_data->args[1] = lp_build_emit_fetch(bld_base,
5108 emit_data->inst, 1,
5109 TGSI_CHAN_Y);
5110 emit_data->arg_count = 2;
5111 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5112 LLVMValueRef sample_position;
5113 LLVMValueRef sample_id;
5114 LLVMValueRef halfval = lp_build_const_float(gallivm, 0.5f);
5115
5116 /* fetch sample ID, then fetch its sample position,
5117 * and place into first two channels.
5118 */
5119 sample_id = lp_build_emit_fetch(bld_base,
5120 emit_data->inst, 1, TGSI_CHAN_X);
5121 sample_id = LLVMBuildBitCast(gallivm->builder, sample_id,
5122 ctx->i32, "");
5123 sample_position = load_sample_position(ctx, sample_id);
5124
5125 emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder,
5126 sample_position,
5127 lp_build_const_int32(gallivm, 0), "");
5128
5129 emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, "");
5130 emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder,
5131 sample_position,
5132 lp_build_const_int32(gallivm, 1), "");
5133 emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, "");
5134 emit_data->arg_count = 2;
5135 }
5136 }
5137
5138 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
5139 struct lp_build_tgsi_context *bld_base,
5140 struct lp_build_emit_data *emit_data)
5141 {
5142 struct si_shader_context *ctx = si_shader_context(bld_base);
5143 struct si_shader *shader = ctx->shader;
5144 struct gallivm_state *gallivm = bld_base->base.gallivm;
5145 struct lp_build_context *uint = &bld_base->uint_bld;
5146 LLVMValueRef interp_param;
5147 const struct tgsi_full_instruction *inst = emit_data->inst;
5148 int input_index = inst->Src[0].Register.Index;
5149 int chan;
5150 int i;
5151 LLVMValueRef attr_number;
5152 LLVMValueRef params = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
5153 int interp_param_idx;
5154 unsigned interp = shader->selector->info.input_interpolate[input_index];
5155 unsigned location;
5156
5157 assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
5158
5159 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5160 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
5161 location = TGSI_INTERPOLATE_LOC_CENTER;
5162 else
5163 location = TGSI_INTERPOLATE_LOC_CENTROID;
5164
5165 interp_param_idx = lookup_interp_param_index(interp, location);
5166 if (interp_param_idx == -1)
5167 return;
5168 else if (interp_param_idx)
5169 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
5170 else
5171 interp_param = NULL;
5172
5173 attr_number = lp_build_const_int32(gallivm, input_index);
5174
5175 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5176 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5177 LLVMValueRef ij_out[2];
5178 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
5179
5180 /*
5181 * take the I then J parameters, and the DDX/Y for it, and
5182 * calculate the IJ inputs for the interpolator.
5183 * temp1 = ddx * offset/sample.x + I;
5184 * interp_param.I = ddy * offset/sample.y + temp1;
5185 * temp1 = ddx * offset/sample.x + J;
5186 * interp_param.J = ddy * offset/sample.y + temp1;
5187 */
5188 for (i = 0; i < 2; i++) {
5189 LLVMValueRef ix_ll = lp_build_const_int32(gallivm, i);
5190 LLVMValueRef iy_ll = lp_build_const_int32(gallivm, i + 2);
5191 LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder,
5192 ddxy_out, ix_ll, "");
5193 LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder,
5194 ddxy_out, iy_ll, "");
5195 LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder,
5196 interp_param, ix_ll, "");
5197 LLVMValueRef temp1, temp2;
5198
5199 interp_el = LLVMBuildBitCast(gallivm->builder, interp_el,
5200 ctx->f32, "");
5201
5202 temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], "");
5203
5204 temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, "");
5205
5206 temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], "");
5207
5208 ij_out[i] = LLVMBuildFAdd(gallivm->builder, temp2, temp1, "");
5209 }
5210 interp_param = lp_build_gather_values(bld_base->base.gallivm, ij_out, 2);
5211 }
5212
5213 for (chan = 0; chan < 4; chan++) {
5214 LLVMValueRef llvm_chan;
5215 unsigned schan;
5216
5217 schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
5218 llvm_chan = lp_build_const_int32(gallivm, schan);
5219
5220 if (interp_param) {
5221 interp_param = LLVMBuildBitCast(gallivm->builder,
5222 interp_param, LLVMVectorType(ctx->f32, 2), "");
5223 LLVMValueRef i = LLVMBuildExtractElement(
5224 gallivm->builder, interp_param, uint->zero, "");
5225 LLVMValueRef j = LLVMBuildExtractElement(
5226 gallivm->builder, interp_param, uint->one, "");
5227 emit_data->output[chan] = build_fs_interp(bld_base,
5228 llvm_chan, attr_number, params,
5229 i, j);
5230 } else {
5231 emit_data->output[chan] = build_fs_interp_mov(bld_base,
5232 lp_build_const_int32(gallivm, 2), /* P0 */
5233 llvm_chan, attr_number, params);
5234 }
5235 }
5236 }
5237
5238 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
5239 struct lp_build_emit_data *emit_data)
5240 {
5241 LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates;
5242 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
5243 unsigned stream;
5244
5245 assert(src0.File == TGSI_FILE_IMMEDIATE);
5246
5247 stream = LLVMConstIntGetZExtValue(imms[src0.Index][src0.SwizzleX]) & 0x3;
5248 return stream;
5249 }
5250
5251 /* Emit one vertex from the geometry shader */
5252 static void si_llvm_emit_vertex(
5253 const struct lp_build_tgsi_action *action,
5254 struct lp_build_tgsi_context *bld_base,
5255 struct lp_build_emit_data *emit_data)
5256 {
5257 struct si_shader_context *ctx = si_shader_context(bld_base);
5258 struct lp_build_context *uint = &bld_base->uint_bld;
5259 struct si_shader *shader = ctx->shader;
5260 struct tgsi_shader_info *info = &shader->selector->info;
5261 struct gallivm_state *gallivm = bld_base->base.gallivm;
5262 struct lp_build_if_state if_state;
5263 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
5264 SI_PARAM_GS2VS_OFFSET);
5265 LLVMValueRef gs_next_vertex;
5266 LLVMValueRef can_emit, kill;
5267 LLVMValueRef args[2];
5268 unsigned chan;
5269 int i;
5270 unsigned stream;
5271
5272 stream = si_llvm_get_stream(bld_base, emit_data);
5273
5274 /* Write vertex attribute values to GSVS ring */
5275 gs_next_vertex = LLVMBuildLoad(gallivm->builder,
5276 ctx->gs_next_vertex[stream],
5277 "");
5278
5279 /* If this thread has already emitted the declared maximum number of
5280 * vertices, skip the write: excessive vertex emissions are not
5281 * supposed to have any effect.
5282 *
5283 * If the shader has no writes to memory, kill it instead. This skips
5284 * further memory loads and may allow LLVM to skip to the end
5285 * altogether.
5286 */
5287 can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULT, gs_next_vertex,
5288 lp_build_const_int32(gallivm,
5289 shader->selector->gs_max_out_vertices), "");
5290
5291 bool use_kill = !info->writes_memory;
5292 if (use_kill) {
5293 kill = lp_build_select(&bld_base->base, can_emit,
5294 lp_build_const_float(gallivm, 1.0f),
5295 lp_build_const_float(gallivm, -1.0f));
5296
5297 lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
5298 ctx->voidt, &kill, 1, 0);
5299 } else {
5300 lp_build_if(&if_state, gallivm, can_emit);
5301 }
5302
5303 for (i = 0; i < info->num_outputs; i++) {
5304 LLVMValueRef *out_ptr =
5305 ctx->soa.outputs[i];
5306
5307 for (chan = 0; chan < 4; chan++) {
5308 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
5309 LLVMValueRef voffset =
5310 lp_build_const_int32(gallivm, (i * 4 + chan) *
5311 shader->selector->gs_max_out_vertices);
5312
5313 voffset = lp_build_add(uint, voffset, gs_next_vertex);
5314 voffset = lp_build_mul_imm(uint, voffset, 4);
5315
5316 out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
5317
5318 build_tbuffer_store(ctx,
5319 ctx->gsvs_ring[stream],
5320 out_val, 1,
5321 voffset, soffset, 0,
5322 V_008F0C_BUF_DATA_FORMAT_32,
5323 V_008F0C_BUF_NUM_FORMAT_UINT,
5324 1, 0, 1, 1, 0);
5325 }
5326 }
5327
5328 gs_next_vertex = lp_build_add(uint, gs_next_vertex,
5329 lp_build_const_int32(gallivm, 1));
5330
5331 LLVMBuildStore(gallivm->builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
5332
5333 /* Signal vertex emission */
5334 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS | (stream << 8));
5335 args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
5336 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
5337 ctx->voidt, args, 2, 0);
5338
5339 if (!use_kill)
5340 lp_build_endif(&if_state);
5341 }
5342
5343 /* Cut one primitive from the geometry shader */
5344 static void si_llvm_emit_primitive(
5345 const struct lp_build_tgsi_action *action,
5346 struct lp_build_tgsi_context *bld_base,
5347 struct lp_build_emit_data *emit_data)
5348 {
5349 struct si_shader_context *ctx = si_shader_context(bld_base);
5350 struct gallivm_state *gallivm = bld_base->base.gallivm;
5351 LLVMValueRef args[2];
5352 unsigned stream;
5353
5354 /* Signal primitive cut */
5355 stream = si_llvm_get_stream(bld_base, emit_data);
5356 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_CUT | SENDMSG_GS | (stream << 8));
5357 args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
5358 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
5359 ctx->voidt, args, 2, 0);
5360 }
5361
5362 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
5363 struct lp_build_tgsi_context *bld_base,
5364 struct lp_build_emit_data *emit_data)
5365 {
5366 struct si_shader_context *ctx = si_shader_context(bld_base);
5367 struct gallivm_state *gallivm = bld_base->base.gallivm;
5368
5369 /* The real barrier instruction isn’t needed, because an entire patch
5370 * always fits into a single wave.
5371 */
5372 if (ctx->type == PIPE_SHADER_TESS_CTRL) {
5373 emit_waitcnt(ctx, LGKM_CNT & VM_CNT);
5374 return;
5375 }
5376
5377 lp_build_intrinsic(gallivm->builder,
5378 HAVE_LLVM >= 0x0309 ? "llvm.amdgcn.s.barrier"
5379 : "llvm.AMDGPU.barrier.local",
5380 ctx->voidt, NULL, 0, 0);
5381 }
5382
5383 static const struct lp_build_tgsi_action tex_action = {
5384 .fetch_args = tex_fetch_args,
5385 .emit = build_tex_intrinsic,
5386 };
5387
5388 static const struct lp_build_tgsi_action interp_action = {
5389 .fetch_args = interp_fetch_args,
5390 .emit = build_interp_intrinsic,
5391 };
5392
5393 static void si_create_function(struct si_shader_context *ctx,
5394 const char *name,
5395 LLVMTypeRef *returns, unsigned num_returns,
5396 LLVMTypeRef *params, unsigned num_params,
5397 int last_sgpr)
5398 {
5399 int i;
5400
5401 si_llvm_create_func(ctx, name, returns, num_returns,
5402 params, num_params);
5403 si_llvm_shader_type(ctx->main_fn, ctx->type);
5404 ctx->return_value = LLVMGetUndef(ctx->return_type);
5405
5406 for (i = 0; i <= last_sgpr; ++i) {
5407 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
5408
5409 /* The combination of:
5410 * - ByVal
5411 * - dereferenceable
5412 * - invariant.load
5413 * allows the optimization passes to move loads and reduces
5414 * SGPR spilling significantly.
5415 */
5416 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
5417 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
5418 lp_add_attr_dereferenceable(P, UINT64_MAX);
5419 } else
5420 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
5421 }
5422
5423 if (ctx->screen->b.debug_flags & DBG_UNSAFE_MATH) {
5424 /* These were copied from some LLVM test. */
5425 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5426 "less-precise-fpmad",
5427 "true");
5428 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5429 "no-infs-fp-math",
5430 "true");
5431 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5432 "no-nans-fp-math",
5433 "true");
5434 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5435 "unsafe-fp-math",
5436 "true");
5437 }
5438 }
5439
5440 static void create_meta_data(struct si_shader_context *ctx)
5441 {
5442 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
5443
5444 ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5445 "invariant.load", 14);
5446 ctx->range_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5447 "range", 5);
5448 ctx->uniform_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5449 "amdgpu.uniform", 14);
5450
5451 ctx->empty_md = LLVMMDNodeInContext(gallivm->context, NULL, 0);
5452 }
5453
5454 static void declare_streamout_params(struct si_shader_context *ctx,
5455 struct pipe_stream_output_info *so,
5456 LLVMTypeRef *params, LLVMTypeRef i32,
5457 unsigned *num_params)
5458 {
5459 int i;
5460
5461 /* Streamout SGPRs. */
5462 if (so->num_outputs) {
5463 if (ctx->type != PIPE_SHADER_TESS_EVAL)
5464 params[ctx->param_streamout_config = (*num_params)++] = i32;
5465 else
5466 ctx->param_streamout_config = ctx->param_tess_offchip;
5467
5468 params[ctx->param_streamout_write_index = (*num_params)++] = i32;
5469 }
5470 /* A streamout buffer offset is loaded if the stride is non-zero. */
5471 for (i = 0; i < 4; i++) {
5472 if (!so->stride[i])
5473 continue;
5474
5475 params[ctx->param_streamout_offset[i] = (*num_params)++] = i32;
5476 }
5477 }
5478
5479 static unsigned llvm_get_type_size(LLVMTypeRef type)
5480 {
5481 LLVMTypeKind kind = LLVMGetTypeKind(type);
5482
5483 switch (kind) {
5484 case LLVMIntegerTypeKind:
5485 return LLVMGetIntTypeWidth(type) / 8;
5486 case LLVMFloatTypeKind:
5487 return 4;
5488 case LLVMPointerTypeKind:
5489 return 8;
5490 case LLVMVectorTypeKind:
5491 return LLVMGetVectorSize(type) *
5492 llvm_get_type_size(LLVMGetElementType(type));
5493 case LLVMArrayTypeKind:
5494 return LLVMGetArrayLength(type) *
5495 llvm_get_type_size(LLVMGetElementType(type));
5496 default:
5497 assert(0);
5498 return 0;
5499 }
5500 }
5501
5502 static void declare_tess_lds(struct si_shader_context *ctx)
5503 {
5504 struct gallivm_state *gallivm = &ctx->gallivm;
5505 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
5506 struct lp_build_context *uint = &bld_base->uint_bld;
5507
5508 unsigned lds_size = ctx->screen->b.chip_class >= CIK ? 65536 : 32768;
5509 ctx->lds = LLVMBuildIntToPtr(gallivm->builder, uint->zero,
5510 LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), LOCAL_ADDR_SPACE),
5511 "tess_lds");
5512 }
5513
5514 static unsigned si_get_max_workgroup_size(struct si_shader *shader)
5515 {
5516 const unsigned *properties = shader->selector->info.properties;
5517 unsigned max_work_group_size =
5518 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
5519 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
5520 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
5521
5522 if (!max_work_group_size) {
5523 /* This is a variable group size compute shader,
5524 * compile it for the maximum possible group size.
5525 */
5526 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
5527 }
5528 return max_work_group_size;
5529 }
5530
5531 static void create_function(struct si_shader_context *ctx)
5532 {
5533 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
5534 struct gallivm_state *gallivm = bld_base->base.gallivm;
5535 struct si_shader *shader = ctx->shader;
5536 LLVMTypeRef params[SI_NUM_PARAMS + SI_NUM_VERTEX_BUFFERS], v3i32;
5537 LLVMTypeRef returns[16+32*4];
5538 unsigned i, last_sgpr, num_params, num_return_sgprs;
5539 unsigned num_returns = 0;
5540 unsigned num_prolog_vgprs = 0;
5541
5542 v3i32 = LLVMVectorType(ctx->i32, 3);
5543
5544 params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
5545 params[SI_PARAM_CONST_BUFFERS] = const_array(ctx->v16i8, SI_NUM_CONST_BUFFERS);
5546 params[SI_PARAM_SAMPLERS] = const_array(ctx->v8i32, SI_NUM_SAMPLERS);
5547 params[SI_PARAM_IMAGES] = const_array(ctx->v8i32, SI_NUM_IMAGES);
5548 params[SI_PARAM_SHADER_BUFFERS] = const_array(ctx->v4i32, SI_NUM_SHADER_BUFFERS);
5549
5550 switch (ctx->type) {
5551 case PIPE_SHADER_VERTEX:
5552 params[SI_PARAM_VERTEX_BUFFERS] = const_array(ctx->v16i8, SI_NUM_VERTEX_BUFFERS);
5553 params[SI_PARAM_BASE_VERTEX] = ctx->i32;
5554 params[SI_PARAM_START_INSTANCE] = ctx->i32;
5555 params[SI_PARAM_DRAWID] = ctx->i32;
5556 num_params = SI_PARAM_DRAWID+1;
5557
5558 if (shader->key.as_es) {
5559 params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5560 } else if (shader->key.as_ls) {
5561 params[SI_PARAM_LS_OUT_LAYOUT] = ctx->i32;
5562 num_params = SI_PARAM_LS_OUT_LAYOUT+1;
5563 } else {
5564 if (shader->is_gs_copy_shader) {
5565 num_params = SI_PARAM_RW_BUFFERS+1;
5566 } else {
5567 params[SI_PARAM_VS_STATE_BITS] = ctx->i32;
5568 num_params = SI_PARAM_VS_STATE_BITS+1;
5569 }
5570
5571 /* The locations of the other parameters are assigned dynamically. */
5572 declare_streamout_params(ctx, &shader->selector->so,
5573 params, ctx->i32, &num_params);
5574 }
5575
5576 last_sgpr = num_params-1;
5577
5578 /* VGPRs */
5579 params[ctx->param_vertex_id = num_params++] = ctx->i32;
5580 params[ctx->param_rel_auto_id = num_params++] = ctx->i32;
5581 params[ctx->param_vs_prim_id = num_params++] = ctx->i32;
5582 params[ctx->param_instance_id = num_params++] = ctx->i32;
5583
5584 if (!shader->is_gs_copy_shader) {
5585 /* Vertex load indices. */
5586 ctx->param_vertex_index0 = num_params;
5587
5588 for (i = 0; i < shader->selector->info.num_inputs; i++)
5589 params[num_params++] = ctx->i32;
5590
5591 num_prolog_vgprs += shader->selector->info.num_inputs;
5592
5593 /* PrimitiveID output. */
5594 if (!shader->key.as_es && !shader->key.as_ls)
5595 for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5596 returns[num_returns++] = ctx->f32;
5597 }
5598 break;
5599
5600 case PIPE_SHADER_TESS_CTRL:
5601 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5602 params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
5603 params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
5604 params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
5605 params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
5606 params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
5607 last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
5608
5609 /* VGPRs */
5610 params[SI_PARAM_PATCH_ID] = ctx->i32;
5611 params[SI_PARAM_REL_IDS] = ctx->i32;
5612 num_params = SI_PARAM_REL_IDS+1;
5613
5614 /* SI_PARAM_TCS_OC_LDS and PARAM_TESS_FACTOR_OFFSET are
5615 * placed after the user SGPRs.
5616 */
5617 for (i = 0; i < SI_TCS_NUM_USER_SGPR + 2; i++)
5618 returns[num_returns++] = ctx->i32; /* SGPRs */
5619
5620 for (i = 0; i < 3; i++)
5621 returns[num_returns++] = ctx->f32; /* VGPRs */
5622 break;
5623
5624 case PIPE_SHADER_TESS_EVAL:
5625 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5626 num_params = SI_PARAM_TCS_OFFCHIP_LAYOUT+1;
5627
5628 if (shader->key.as_es) {
5629 params[ctx->param_oc_lds = num_params++] = ctx->i32;
5630 params[ctx->param_tess_offchip = num_params++] = ctx->i32;
5631 params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5632 } else {
5633 params[ctx->param_tess_offchip = num_params++] = ctx->i32;
5634 declare_streamout_params(ctx, &shader->selector->so,
5635 params, ctx->i32, &num_params);
5636 params[ctx->param_oc_lds = num_params++] = ctx->i32;
5637 }
5638 last_sgpr = num_params - 1;
5639
5640 /* VGPRs */
5641 params[ctx->param_tes_u = num_params++] = ctx->f32;
5642 params[ctx->param_tes_v = num_params++] = ctx->f32;
5643 params[ctx->param_tes_rel_patch_id = num_params++] = ctx->i32;
5644 params[ctx->param_tes_patch_id = num_params++] = ctx->i32;
5645
5646 /* PrimitiveID output. */
5647 if (!shader->key.as_es)
5648 for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5649 returns[num_returns++] = ctx->f32;
5650 break;
5651
5652 case PIPE_SHADER_GEOMETRY:
5653 params[SI_PARAM_GS2VS_OFFSET] = ctx->i32;
5654 params[SI_PARAM_GS_WAVE_ID] = ctx->i32;
5655 last_sgpr = SI_PARAM_GS_WAVE_ID;
5656
5657 /* VGPRs */
5658 params[SI_PARAM_VTX0_OFFSET] = ctx->i32;
5659 params[SI_PARAM_VTX1_OFFSET] = ctx->i32;
5660 params[SI_PARAM_PRIMITIVE_ID] = ctx->i32;
5661 params[SI_PARAM_VTX2_OFFSET] = ctx->i32;
5662 params[SI_PARAM_VTX3_OFFSET] = ctx->i32;
5663 params[SI_PARAM_VTX4_OFFSET] = ctx->i32;
5664 params[SI_PARAM_VTX5_OFFSET] = ctx->i32;
5665 params[SI_PARAM_GS_INSTANCE_ID] = ctx->i32;
5666 num_params = SI_PARAM_GS_INSTANCE_ID+1;
5667 break;
5668
5669 case PIPE_SHADER_FRAGMENT:
5670 params[SI_PARAM_ALPHA_REF] = ctx->f32;
5671 params[SI_PARAM_PRIM_MASK] = ctx->i32;
5672 last_sgpr = SI_PARAM_PRIM_MASK;
5673 params[SI_PARAM_PERSP_SAMPLE] = ctx->v2i32;
5674 params[SI_PARAM_PERSP_CENTER] = ctx->v2i32;
5675 params[SI_PARAM_PERSP_CENTROID] = ctx->v2i32;
5676 params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
5677 params[SI_PARAM_LINEAR_SAMPLE] = ctx->v2i32;
5678 params[SI_PARAM_LINEAR_CENTER] = ctx->v2i32;
5679 params[SI_PARAM_LINEAR_CENTROID] = ctx->v2i32;
5680 params[SI_PARAM_LINE_STIPPLE_TEX] = ctx->f32;
5681 params[SI_PARAM_POS_X_FLOAT] = ctx->f32;
5682 params[SI_PARAM_POS_Y_FLOAT] = ctx->f32;
5683 params[SI_PARAM_POS_Z_FLOAT] = ctx->f32;
5684 params[SI_PARAM_POS_W_FLOAT] = ctx->f32;
5685 params[SI_PARAM_FRONT_FACE] = ctx->i32;
5686 shader->info.face_vgpr_index = 20;
5687 params[SI_PARAM_ANCILLARY] = ctx->i32;
5688 params[SI_PARAM_SAMPLE_COVERAGE] = ctx->f32;
5689 params[SI_PARAM_POS_FIXED_PT] = ctx->i32;
5690 num_params = SI_PARAM_POS_FIXED_PT+1;
5691
5692 /* Color inputs from the prolog. */
5693 if (shader->selector->info.colors_read) {
5694 unsigned num_color_elements =
5695 util_bitcount(shader->selector->info.colors_read);
5696
5697 assert(num_params + num_color_elements <= ARRAY_SIZE(params));
5698 for (i = 0; i < num_color_elements; i++)
5699 params[num_params++] = ctx->f32;
5700
5701 num_prolog_vgprs += num_color_elements;
5702 }
5703
5704 /* Outputs for the epilog. */
5705 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
5706 num_returns =
5707 num_return_sgprs +
5708 util_bitcount(shader->selector->info.colors_written) * 4 +
5709 shader->selector->info.writes_z +
5710 shader->selector->info.writes_stencil +
5711 shader->selector->info.writes_samplemask +
5712 1 /* SampleMaskIn */;
5713
5714 num_returns = MAX2(num_returns,
5715 num_return_sgprs +
5716 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
5717
5718 for (i = 0; i < num_return_sgprs; i++)
5719 returns[i] = ctx->i32;
5720 for (; i < num_returns; i++)
5721 returns[i] = ctx->f32;
5722 break;
5723
5724 case PIPE_SHADER_COMPUTE:
5725 params[SI_PARAM_GRID_SIZE] = v3i32;
5726 params[SI_PARAM_BLOCK_SIZE] = v3i32;
5727 params[SI_PARAM_BLOCK_ID] = v3i32;
5728 last_sgpr = SI_PARAM_BLOCK_ID;
5729
5730 params[SI_PARAM_THREAD_ID] = v3i32;
5731 num_params = SI_PARAM_THREAD_ID + 1;
5732 break;
5733 default:
5734 assert(0 && "unimplemented shader");
5735 return;
5736 }
5737
5738 assert(num_params <= ARRAY_SIZE(params));
5739
5740 si_create_function(ctx, "main", returns, num_returns, params,
5741 num_params, last_sgpr);
5742
5743 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5744 if (ctx->type == PIPE_SHADER_FRAGMENT &&
5745 ctx->separate_prolog) {
5746 si_llvm_add_attribute(ctx->main_fn,
5747 "InitialPSInputAddr",
5748 S_0286D0_PERSP_SAMPLE_ENA(1) |
5749 S_0286D0_PERSP_CENTER_ENA(1) |
5750 S_0286D0_PERSP_CENTROID_ENA(1) |
5751 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5752 S_0286D0_LINEAR_CENTER_ENA(1) |
5753 S_0286D0_LINEAR_CENTROID_ENA(1) |
5754 S_0286D0_FRONT_FACE_ENA(1) |
5755 S_0286D0_POS_FIXED_PT_ENA(1));
5756 } else if (ctx->type == PIPE_SHADER_COMPUTE) {
5757 si_llvm_add_attribute(ctx->main_fn,
5758 "amdgpu-max-work-group-size",
5759 si_get_max_workgroup_size(shader));
5760 }
5761
5762 shader->info.num_input_sgprs = 0;
5763 shader->info.num_input_vgprs = 0;
5764
5765 for (i = 0; i <= last_sgpr; ++i)
5766 shader->info.num_input_sgprs += llvm_get_type_size(params[i]) / 4;
5767
5768 for (; i < num_params; ++i)
5769 shader->info.num_input_vgprs += llvm_get_type_size(params[i]) / 4;
5770
5771 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5772 shader->info.num_input_vgprs -= num_prolog_vgprs;
5773
5774 if (!ctx->screen->has_ds_bpermute &&
5775 bld_base->info &&
5776 (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
5777 bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 ||
5778 bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 ||
5779 bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 ||
5780 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 ||
5781 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0))
5782 ctx->lds =
5783 LLVMAddGlobalInAddressSpace(gallivm->module,
5784 LLVMArrayType(ctx->i32, 64),
5785 "ddxy_lds",
5786 LOCAL_ADDR_SPACE);
5787
5788 if ((ctx->type == PIPE_SHADER_VERTEX && shader->key.as_ls) ||
5789 ctx->type == PIPE_SHADER_TESS_CTRL ||
5790 ctx->type == PIPE_SHADER_TESS_EVAL)
5791 declare_tess_lds(ctx);
5792 }
5793
5794 /**
5795 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5796 * for later use.
5797 */
5798 static void preload_ring_buffers(struct si_shader_context *ctx)
5799 {
5800 struct gallivm_state *gallivm =
5801 ctx->soa.bld_base.base.gallivm;
5802
5803 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5804 SI_PARAM_RW_BUFFERS);
5805
5806 if ((ctx->type == PIPE_SHADER_VERTEX &&
5807 ctx->shader->key.as_es) ||
5808 (ctx->type == PIPE_SHADER_TESS_EVAL &&
5809 ctx->shader->key.as_es) ||
5810 ctx->type == PIPE_SHADER_GEOMETRY) {
5811 unsigned ring =
5812 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5813 : SI_ES_RING_ESGS;
5814 LLVMValueRef offset = lp_build_const_int32(gallivm, ring);
5815
5816 ctx->esgs_ring =
5817 build_indexed_load_const(ctx, buf_ptr, offset);
5818 }
5819
5820 if (ctx->shader->is_gs_copy_shader) {
5821 LLVMValueRef offset = lp_build_const_int32(gallivm, SI_VS_RING_GSVS);
5822
5823 ctx->gsvs_ring[0] =
5824 build_indexed_load_const(ctx, buf_ptr, offset);
5825 }
5826 if (ctx->type == PIPE_SHADER_GEOMETRY) {
5827 int i;
5828 for (i = 0; i < 4; i++) {
5829 LLVMValueRef offset = lp_build_const_int32(gallivm, SI_GS_RING_GSVS0 + i);
5830
5831 ctx->gsvs_ring[i] =
5832 build_indexed_load_const(ctx, buf_ptr, offset);
5833 }
5834 }
5835 }
5836
5837 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5838 LLVMValueRef param_rw_buffers,
5839 unsigned param_pos_fixed_pt)
5840 {
5841 struct lp_build_tgsi_context *bld_base =
5842 &ctx->soa.bld_base;
5843 struct gallivm_state *gallivm = bld_base->base.gallivm;
5844 LLVMBuilderRef builder = gallivm->builder;
5845 LLVMValueRef slot, desc, offset, row, bit, address[2];
5846
5847 /* Use the fixed-point gl_FragCoord input.
5848 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5849 * per coordinate to get the repeating effect.
5850 */
5851 address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5852 address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5853
5854 /* Load the buffer descriptor. */
5855 slot = lp_build_const_int32(gallivm, SI_PS_CONST_POLY_STIPPLE);
5856 desc = build_indexed_load_const(ctx, param_rw_buffers, slot);
5857
5858 /* The stipple pattern is 32x32, each row has 32 bits. */
5859 offset = LLVMBuildMul(builder, address[1],
5860 LLVMConstInt(ctx->i32, 4, 0), "");
5861 row = buffer_load_const(ctx, desc, offset);
5862 row = LLVMBuildBitCast(builder, row, ctx->i32, "");
5863 bit = LLVMBuildLShr(builder, row, address[0], "");
5864 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5865
5866 /* The intrinsic kills the thread if arg < 0. */
5867 bit = LLVMBuildSelect(builder, bit, LLVMConstReal(ctx->f32, 0),
5868 LLVMConstReal(ctx->f32, -1), "");
5869 lp_build_intrinsic(builder, "llvm.AMDGPU.kill", ctx->voidt, &bit, 1, 0);
5870 }
5871
5872 void si_shader_binary_read_config(struct radeon_shader_binary *binary,
5873 struct si_shader_config *conf,
5874 unsigned symbol_offset)
5875 {
5876 unsigned i;
5877 const unsigned char *config =
5878 radeon_shader_binary_config_start(binary, symbol_offset);
5879 bool really_needs_scratch = false;
5880
5881 /* LLVM adds SGPR spills to the scratch size.
5882 * Find out if we really need the scratch buffer.
5883 */
5884 for (i = 0; i < binary->reloc_count; i++) {
5885 const struct radeon_shader_reloc *reloc = &binary->relocs[i];
5886
5887 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5888 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5889 really_needs_scratch = true;
5890 break;
5891 }
5892 }
5893
5894 /* XXX: We may be able to emit some of these values directly rather than
5895 * extracting fields to be emitted later.
5896 */
5897
5898 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5899 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5900 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5901 switch (reg) {
5902 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5903 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5904 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5905 case R_00B848_COMPUTE_PGM_RSRC1:
5906 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5907 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5908 conf->float_mode = G_00B028_FLOAT_MODE(value);
5909 conf->rsrc1 = value;
5910 break;
5911 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5912 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5913 break;
5914 case R_00B84C_COMPUTE_PGM_RSRC2:
5915 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5916 conf->rsrc2 = value;
5917 break;
5918 case R_0286CC_SPI_PS_INPUT_ENA:
5919 conf->spi_ps_input_ena = value;
5920 break;
5921 case R_0286D0_SPI_PS_INPUT_ADDR:
5922 conf->spi_ps_input_addr = value;
5923 break;
5924 case R_0286E8_SPI_TMPRING_SIZE:
5925 case R_00B860_COMPUTE_TMPRING_SIZE:
5926 /* WAVESIZE is in units of 256 dwords. */
5927 if (really_needs_scratch)
5928 conf->scratch_bytes_per_wave =
5929 G_00B860_WAVESIZE(value) * 256 * 4;
5930 break;
5931 case 0x4: /* SPILLED_SGPRS */
5932 conf->spilled_sgprs = value;
5933 break;
5934 case 0x8: /* SPILLED_VGPRS */
5935 conf->spilled_vgprs = value;
5936 break;
5937 default:
5938 {
5939 static bool printed;
5940
5941 if (!printed) {
5942 fprintf(stderr, "Warning: LLVM emitted unknown "
5943 "config register: 0x%x\n", reg);
5944 printed = true;
5945 }
5946 }
5947 break;
5948 }
5949 }
5950
5951 if (!conf->spi_ps_input_addr)
5952 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5953 }
5954
5955 void si_shader_apply_scratch_relocs(struct si_context *sctx,
5956 struct si_shader *shader,
5957 struct si_shader_config *config,
5958 uint64_t scratch_va)
5959 {
5960 unsigned i;
5961 uint32_t scratch_rsrc_dword0 = scratch_va;
5962 uint32_t scratch_rsrc_dword1 =
5963 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5964
5965 /* Enable scratch coalescing if LLVM sets ELEMENT_SIZE & INDEX_STRIDE
5966 * correctly.
5967 */
5968 if (HAVE_LLVM >= 0x0309)
5969 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5970 else
5971 scratch_rsrc_dword1 |=
5972 S_008F04_STRIDE(config->scratch_bytes_per_wave / 64);
5973
5974 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5975 const struct radeon_shader_reloc *reloc =
5976 &shader->binary.relocs[i];
5977 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5978 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5979 &scratch_rsrc_dword0, 4);
5980 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5981 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5982 &scratch_rsrc_dword1, 4);
5983 }
5984 }
5985 }
5986
5987 static unsigned si_get_shader_binary_size(struct si_shader *shader)
5988 {
5989 unsigned size = shader->binary.code_size;
5990
5991 if (shader->prolog)
5992 size += shader->prolog->binary.code_size;
5993 if (shader->epilog)
5994 size += shader->epilog->binary.code_size;
5995 return size;
5996 }
5997
5998 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5999 {
6000 const struct radeon_shader_binary *prolog =
6001 shader->prolog ? &shader->prolog->binary : NULL;
6002 const struct radeon_shader_binary *epilog =
6003 shader->epilog ? &shader->epilog->binary : NULL;
6004 const struct radeon_shader_binary *mainb = &shader->binary;
6005 unsigned bo_size = si_get_shader_binary_size(shader) +
6006 (!epilog ? mainb->rodata_size : 0);
6007 unsigned char *ptr;
6008
6009 assert(!prolog || !prolog->rodata_size);
6010 assert((!prolog && !epilog) || !mainb->rodata_size);
6011 assert(!epilog || !epilog->rodata_size);
6012
6013 r600_resource_reference(&shader->bo, NULL);
6014 shader->bo = (struct r600_resource*)
6015 pipe_buffer_create(&sscreen->b.b, 0,
6016 PIPE_USAGE_IMMUTABLE, bo_size);
6017 if (!shader->bo)
6018 return -ENOMEM;
6019
6020 /* Upload. */
6021 ptr = sscreen->b.ws->buffer_map(shader->bo->buf, NULL,
6022 PIPE_TRANSFER_READ_WRITE);
6023
6024 if (prolog) {
6025 util_memcpy_cpu_to_le32(ptr, prolog->code, prolog->code_size);
6026 ptr += prolog->code_size;
6027 }
6028
6029 util_memcpy_cpu_to_le32(ptr, mainb->code, mainb->code_size);
6030 ptr += mainb->code_size;
6031
6032 if (epilog)
6033 util_memcpy_cpu_to_le32(ptr, epilog->code, epilog->code_size);
6034 else if (mainb->rodata_size > 0)
6035 util_memcpy_cpu_to_le32(ptr, mainb->rodata, mainb->rodata_size);
6036
6037 sscreen->b.ws->buffer_unmap(shader->bo->buf);
6038 return 0;
6039 }
6040
6041 static void si_shader_dump_disassembly(const struct radeon_shader_binary *binary,
6042 struct pipe_debug_callback *debug,
6043 const char *name, FILE *file)
6044 {
6045 char *line, *p;
6046 unsigned i, count;
6047
6048 if (binary->disasm_string) {
6049 fprintf(file, "Shader %s disassembly:\n", name);
6050 fprintf(file, "%s", binary->disasm_string);
6051
6052 if (debug && debug->debug_message) {
6053 /* Very long debug messages are cut off, so send the
6054 * disassembly one line at a time. This causes more
6055 * overhead, but on the plus side it simplifies
6056 * parsing of resulting logs.
6057 */
6058 pipe_debug_message(debug, SHADER_INFO,
6059 "Shader Disassembly Begin");
6060
6061 line = binary->disasm_string;
6062 while (*line) {
6063 p = util_strchrnul(line, '\n');
6064 count = p - line;
6065
6066 if (count) {
6067 pipe_debug_message(debug, SHADER_INFO,
6068 "%.*s", count, line);
6069 }
6070
6071 if (!*p)
6072 break;
6073 line = p + 1;
6074 }
6075
6076 pipe_debug_message(debug, SHADER_INFO,
6077 "Shader Disassembly End");
6078 }
6079 } else {
6080 fprintf(file, "Shader %s binary:\n", name);
6081 for (i = 0; i < binary->code_size; i += 4) {
6082 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
6083 binary->code[i + 3], binary->code[i + 2],
6084 binary->code[i + 1], binary->code[i]);
6085 }
6086 }
6087 }
6088
6089 static void si_shader_dump_stats(struct si_screen *sscreen,
6090 struct si_shader *shader,
6091 struct pipe_debug_callback *debug,
6092 unsigned processor,
6093 FILE *file)
6094 {
6095 struct si_shader_config *conf = &shader->config;
6096 unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
6097 unsigned code_size = si_get_shader_binary_size(shader);
6098 unsigned lds_increment = sscreen->b.chip_class >= CIK ? 512 : 256;
6099 unsigned lds_per_wave = 0;
6100 unsigned max_simd_waves = 10;
6101
6102 /* Compute LDS usage for PS. */
6103 switch (processor) {
6104 case PIPE_SHADER_FRAGMENT:
6105 /* The minimum usage per wave is (num_inputs * 48). The maximum
6106 * usage is (num_inputs * 48 * 16).
6107 * We can get anything in between and it varies between waves.
6108 *
6109 * The 48 bytes per input for a single primitive is equal to
6110 * 4 bytes/component * 4 components/input * 3 points.
6111 *
6112 * Other stages don't know the size at compile time or don't
6113 * allocate LDS per wave, but instead they do it per thread group.
6114 */
6115 lds_per_wave = conf->lds_size * lds_increment +
6116 align(num_inputs * 48, lds_increment);
6117 break;
6118 case PIPE_SHADER_COMPUTE:
6119 if (shader->selector) {
6120 unsigned max_workgroup_size =
6121 si_get_max_workgroup_size(shader);
6122 lds_per_wave = (conf->lds_size * lds_increment) /
6123 DIV_ROUND_UP(max_workgroup_size, 64);
6124 }
6125 break;
6126 }
6127
6128 /* Compute the per-SIMD wave counts. */
6129 if (conf->num_sgprs) {
6130 if (sscreen->b.chip_class >= VI)
6131 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
6132 else
6133 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
6134 }
6135
6136 if (conf->num_vgprs)
6137 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
6138
6139 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
6140 * 16KB makes some SIMDs unoccupied). */
6141 if (lds_per_wave)
6142 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
6143
6144 if (file != stderr ||
6145 r600_can_dump_shader(&sscreen->b, processor)) {
6146 if (processor == PIPE_SHADER_FRAGMENT) {
6147 fprintf(file, "*** SHADER CONFIG ***\n"
6148 "SPI_PS_INPUT_ADDR = 0x%04x\n"
6149 "SPI_PS_INPUT_ENA = 0x%04x\n",
6150 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
6151 }
6152
6153 fprintf(file, "*** SHADER STATS ***\n"
6154 "SGPRS: %d\n"
6155 "VGPRS: %d\n"
6156 "Spilled SGPRs: %d\n"
6157 "Spilled VGPRs: %d\n"
6158 "Private memory VGPRs: %d\n"
6159 "Code Size: %d bytes\n"
6160 "LDS: %d blocks\n"
6161 "Scratch: %d bytes per wave\n"
6162 "Max Waves: %d\n"
6163 "********************\n\n\n",
6164 conf->num_sgprs, conf->num_vgprs,
6165 conf->spilled_sgprs, conf->spilled_vgprs,
6166 conf->private_mem_vgprs, code_size,
6167 conf->lds_size, conf->scratch_bytes_per_wave,
6168 max_simd_waves);
6169 }
6170
6171 pipe_debug_message(debug, SHADER_INFO,
6172 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
6173 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
6174 "Spilled VGPRs: %d PrivMem VGPRs: %d",
6175 conf->num_sgprs, conf->num_vgprs, code_size,
6176 conf->lds_size, conf->scratch_bytes_per_wave,
6177 max_simd_waves, conf->spilled_sgprs,
6178 conf->spilled_vgprs, conf->private_mem_vgprs);
6179 }
6180
6181 static const char *si_get_shader_name(struct si_shader *shader,
6182 unsigned processor)
6183 {
6184 switch (processor) {
6185 case PIPE_SHADER_VERTEX:
6186 if (shader->key.as_es)
6187 return "Vertex Shader as ES";
6188 else if (shader->key.as_ls)
6189 return "Vertex Shader as LS";
6190 else
6191 return "Vertex Shader as VS";
6192 case PIPE_SHADER_TESS_CTRL:
6193 return "Tessellation Control Shader";
6194 case PIPE_SHADER_TESS_EVAL:
6195 if (shader->key.as_es)
6196 return "Tessellation Evaluation Shader as ES";
6197 else
6198 return "Tessellation Evaluation Shader as VS";
6199 case PIPE_SHADER_GEOMETRY:
6200 if (shader->is_gs_copy_shader)
6201 return "GS Copy Shader as VS";
6202 else
6203 return "Geometry Shader";
6204 case PIPE_SHADER_FRAGMENT:
6205 return "Pixel Shader";
6206 case PIPE_SHADER_COMPUTE:
6207 return "Compute Shader";
6208 default:
6209 return "Unknown Shader";
6210 }
6211 }
6212
6213 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
6214 struct pipe_debug_callback *debug, unsigned processor,
6215 FILE *file)
6216 {
6217 if (file != stderr ||
6218 r600_can_dump_shader(&sscreen->b, processor))
6219 si_dump_shader_key(processor, &shader->key, file);
6220
6221 if (file != stderr && shader->binary.llvm_ir_string) {
6222 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
6223 si_get_shader_name(shader, processor));
6224 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
6225 }
6226
6227 if (file != stderr ||
6228 (r600_can_dump_shader(&sscreen->b, processor) &&
6229 !(sscreen->b.debug_flags & DBG_NO_ASM))) {
6230 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
6231
6232 if (shader->prolog)
6233 si_shader_dump_disassembly(&shader->prolog->binary,
6234 debug, "prolog", file);
6235
6236 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
6237
6238 if (shader->epilog)
6239 si_shader_dump_disassembly(&shader->epilog->binary,
6240 debug, "epilog", file);
6241 fprintf(file, "\n");
6242 }
6243
6244 si_shader_dump_stats(sscreen, shader, debug, processor, file);
6245 }
6246
6247 int si_compile_llvm(struct si_screen *sscreen,
6248 struct radeon_shader_binary *binary,
6249 struct si_shader_config *conf,
6250 LLVMTargetMachineRef tm,
6251 LLVMModuleRef mod,
6252 struct pipe_debug_callback *debug,
6253 unsigned processor,
6254 const char *name)
6255 {
6256 int r = 0;
6257 unsigned count = p_atomic_inc_return(&sscreen->b.num_compilations);
6258
6259 if (r600_can_dump_shader(&sscreen->b, processor)) {
6260 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
6261
6262 if (!(sscreen->b.debug_flags & (DBG_NO_IR | DBG_PREOPT_IR))) {
6263 fprintf(stderr, "%s LLVM IR:\n\n", name);
6264 LLVMDumpModule(mod);
6265 fprintf(stderr, "\n");
6266 }
6267 }
6268
6269 if (sscreen->record_llvm_ir) {
6270 char *ir = LLVMPrintModuleToString(mod);
6271 binary->llvm_ir_string = strdup(ir);
6272 LLVMDisposeMessage(ir);
6273 }
6274
6275 if (!si_replace_shader(count, binary)) {
6276 r = si_llvm_compile(mod, binary, tm, debug);
6277 if (r)
6278 return r;
6279 }
6280
6281 si_shader_binary_read_config(binary, conf, 0);
6282
6283 /* Enable 64-bit and 16-bit denormals, because there is no performance
6284 * cost.
6285 *
6286 * If denormals are enabled, all floating-point output modifiers are
6287 * ignored.
6288 *
6289 * Don't enable denormals for 32-bit floats, because:
6290 * - Floating-point output modifiers would be ignored by the hw.
6291 * - Some opcodes don't support denormals, such as v_mad_f32. We would
6292 * have to stop using those.
6293 * - SI & CI would be very slow.
6294 */
6295 conf->float_mode |= V_00B028_FP_64_DENORMS;
6296
6297 FREE(binary->config);
6298 FREE(binary->global_symbol_offsets);
6299 binary->config = NULL;
6300 binary->global_symbol_offsets = NULL;
6301
6302 /* Some shaders can't have rodata because their binaries can be
6303 * concatenated.
6304 */
6305 if (binary->rodata_size &&
6306 (processor == PIPE_SHADER_VERTEX ||
6307 processor == PIPE_SHADER_TESS_CTRL ||
6308 processor == PIPE_SHADER_TESS_EVAL ||
6309 processor == PIPE_SHADER_FRAGMENT)) {
6310 fprintf(stderr, "radeonsi: The shader can't have rodata.");
6311 return -EINVAL;
6312 }
6313
6314 return r;
6315 }
6316
6317 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
6318 {
6319 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6320 LLVMBuildRetVoid(ctx->gallivm.builder);
6321 else
6322 LLVMBuildRet(ctx->gallivm.builder, ret);
6323 }
6324
6325 /* Generate code for the hardware VS shader stage to go with a geometry shader */
6326 struct si_shader *
6327 si_generate_gs_copy_shader(struct si_screen *sscreen,
6328 LLVMTargetMachineRef tm,
6329 struct si_shader_selector *gs_selector,
6330 struct pipe_debug_callback *debug)
6331 {
6332 struct si_shader_context ctx;
6333 struct si_shader *shader;
6334 struct gallivm_state *gallivm = &ctx.gallivm;
6335 struct lp_build_tgsi_context *bld_base = &ctx.soa.bld_base;
6336 struct lp_build_context *uint = &bld_base->uint_bld;
6337 struct si_shader_output_values *outputs;
6338 struct tgsi_shader_info *gsinfo = &gs_selector->info;
6339 LLVMValueRef args[9];
6340 int i, r;
6341
6342 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
6343
6344 if (!outputs)
6345 return NULL;
6346
6347 shader = CALLOC_STRUCT(si_shader);
6348 if (!shader) {
6349 FREE(outputs);
6350 return NULL;
6351 }
6352
6353
6354 shader->selector = gs_selector;
6355 shader->is_gs_copy_shader = true;
6356
6357 si_init_shader_ctx(&ctx, sscreen, shader, tm);
6358 ctx.type = PIPE_SHADER_VERTEX;
6359
6360 create_meta_data(&ctx);
6361 create_function(&ctx);
6362 preload_ring_buffers(&ctx);
6363
6364 args[0] = ctx.gsvs_ring[0];
6365 args[1] = lp_build_mul_imm(uint,
6366 LLVMGetParam(ctx.main_fn,
6367 ctx.param_vertex_id),
6368 4);
6369 args[3] = uint->zero;
6370 args[4] = uint->one; /* OFFEN */
6371 args[5] = uint->zero; /* IDXEN */
6372 args[6] = uint->one; /* GLC */
6373 args[7] = uint->one; /* SLC */
6374 args[8] = uint->zero; /* TFE */
6375
6376 /* Fetch vertex data from GSVS ring */
6377 for (i = 0; i < gsinfo->num_outputs; ++i) {
6378 unsigned chan;
6379
6380 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
6381 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
6382
6383 for (chan = 0; chan < 4; chan++) {
6384 outputs[i].vertex_stream[chan] =
6385 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
6386
6387 args[2] = lp_build_const_int32(gallivm,
6388 (i * 4 + chan) *
6389 gs_selector->gs_max_out_vertices * 16 * 4);
6390
6391 outputs[i].values[chan] =
6392 LLVMBuildBitCast(gallivm->builder,
6393 lp_build_intrinsic(gallivm->builder,
6394 "llvm.SI.buffer.load.dword.i32.i32",
6395 ctx.i32, args, 9,
6396 LP_FUNC_ATTR_READONLY),
6397 ctx.f32, "");
6398 }
6399 }
6400
6401 if (gs_selector->so.num_outputs)
6402 si_llvm_emit_streamout(&ctx, outputs, gsinfo->num_outputs);
6403 si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
6404
6405 LLVMBuildRetVoid(gallivm->builder);
6406
6407 /* Dump LLVM IR before any optimization passes */
6408 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
6409 r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6410 LLVMDumpModule(bld_base->base.gallivm->module);
6411
6412 si_llvm_finalize_module(&ctx,
6413 r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_GEOMETRY));
6414
6415 r = si_compile_llvm(sscreen, &ctx.shader->binary,
6416 &ctx.shader->config, ctx.tm,
6417 bld_base->base.gallivm->module,
6418 debug, PIPE_SHADER_GEOMETRY,
6419 "GS Copy Shader");
6420 if (!r) {
6421 if (r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6422 fprintf(stderr, "GS Copy Shader:\n");
6423 si_shader_dump(sscreen, ctx.shader, debug,
6424 PIPE_SHADER_GEOMETRY, stderr);
6425 r = si_shader_binary_upload(sscreen, ctx.shader);
6426 }
6427
6428 si_llvm_dispose(&ctx);
6429
6430 FREE(outputs);
6431
6432 if (r != 0) {
6433 FREE(shader);
6434 shader = NULL;
6435 }
6436 return shader;
6437 }
6438
6439 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
6440 FILE *f)
6441 {
6442 int i;
6443
6444 fprintf(f, "SHADER KEY\n");
6445
6446 switch (shader) {
6447 case PIPE_SHADER_VERTEX:
6448 fprintf(f, " part.vs.prolog.instance_divisors = {");
6449 for (i = 0; i < ARRAY_SIZE(key->part.vs.prolog.instance_divisors); i++)
6450 fprintf(f, !i ? "%u" : ", %u",
6451 key->part.vs.prolog.instance_divisors[i]);
6452 fprintf(f, "}\n");
6453 fprintf(f, " part.vs.epilog.export_prim_id = %u\n", key->part.vs.epilog.export_prim_id);
6454 fprintf(f, " as_es = %u\n", key->as_es);
6455 fprintf(f, " as_ls = %u\n", key->as_ls);
6456 fprintf(f, " mono.vs.fix_fetch = 0x%x\n", key->mono.vs.fix_fetch);
6457 break;
6458
6459 case PIPE_SHADER_TESS_CTRL:
6460 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
6461 fprintf(f, " mono.tcs.inputs_to_copy = 0x%"PRIx64"\n", key->mono.tcs.inputs_to_copy);
6462 break;
6463
6464 case PIPE_SHADER_TESS_EVAL:
6465 fprintf(f, " part.tes.epilog.export_prim_id = %u\n", key->part.tes.epilog.export_prim_id);
6466 fprintf(f, " as_es = %u\n", key->as_es);
6467 break;
6468
6469 case PIPE_SHADER_GEOMETRY:
6470 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
6471 break;
6472
6473 case PIPE_SHADER_COMPUTE:
6474 break;
6475
6476 case PIPE_SHADER_FRAGMENT:
6477 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
6478 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
6479 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
6480 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
6481 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
6482 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
6483 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
6484 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
6485 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
6486 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
6487 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
6488 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
6489 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
6490 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
6491 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
6492 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
6493 break;
6494
6495 default:
6496 assert(0);
6497 }
6498
6499 if ((shader == PIPE_SHADER_GEOMETRY ||
6500 shader == PIPE_SHADER_TESS_EVAL ||
6501 shader == PIPE_SHADER_VERTEX) &&
6502 !key->as_es && !key->as_ls) {
6503 fprintf(f, " opt.hw_vs.kill_outputs = 0x%"PRIx64"\n", key->opt.hw_vs.kill_outputs);
6504 fprintf(f, " opt.hw_vs.kill_outputs2 = 0x%x\n", key->opt.hw_vs.kill_outputs2);
6505 fprintf(f, " opt.hw_vs.clip_disable = %u\n", key->opt.hw_vs.clip_disable);
6506 }
6507 }
6508
6509 static void si_init_shader_ctx(struct si_shader_context *ctx,
6510 struct si_screen *sscreen,
6511 struct si_shader *shader,
6512 LLVMTargetMachineRef tm)
6513 {
6514 struct lp_build_tgsi_context *bld_base;
6515 struct lp_build_tgsi_action tmpl = {};
6516
6517 si_llvm_context_init(ctx, sscreen, shader, tm,
6518 (shader && shader->selector) ? &shader->selector->info : NULL,
6519 (shader && shader->selector) ? shader->selector->tokens : NULL);
6520
6521 bld_base = &ctx->soa.bld_base;
6522 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
6523
6524 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
6525 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
6526 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
6527
6528 bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
6529 bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
6530 bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
6531 bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
6532 bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
6533 bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
6534 bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
6535 bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
6536 bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
6537 bld_base->op_actions[TGSI_OPCODE_TXQ].fetch_args = txq_fetch_args;
6538 bld_base->op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
6539 bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
6540 bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
6541 bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
6542
6543 bld_base->op_actions[TGSI_OPCODE_LOAD].fetch_args = load_fetch_args;
6544 bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
6545 bld_base->op_actions[TGSI_OPCODE_STORE].fetch_args = store_fetch_args;
6546 bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
6547 bld_base->op_actions[TGSI_OPCODE_RESQ].fetch_args = resq_fetch_args;
6548 bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
6549
6550 tmpl.fetch_args = atomic_fetch_args;
6551 tmpl.emit = atomic_emit;
6552 bld_base->op_actions[TGSI_OPCODE_ATOMUADD] = tmpl;
6553 bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
6554 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG] = tmpl;
6555 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
6556 bld_base->op_actions[TGSI_OPCODE_ATOMCAS] = tmpl;
6557 bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
6558 bld_base->op_actions[TGSI_OPCODE_ATOMAND] = tmpl;
6559 bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
6560 bld_base->op_actions[TGSI_OPCODE_ATOMOR] = tmpl;
6561 bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
6562 bld_base->op_actions[TGSI_OPCODE_ATOMXOR] = tmpl;
6563 bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
6564 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN] = tmpl;
6565 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
6566 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX] = tmpl;
6567 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
6568 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN] = tmpl;
6569 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
6570 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX] = tmpl;
6571 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
6572
6573 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
6574
6575 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
6576 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
6577 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
6578 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
6579
6580 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
6581 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
6582 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6583 }
6584
6585 /* Return true if the PARAM export has been eliminated. */
6586 static bool si_eliminate_const_output(struct si_shader_context *ctx,
6587 LLVMValueRef inst, unsigned offset)
6588 {
6589 struct si_shader *shader = ctx->shader;
6590 unsigned num_outputs = shader->selector->info.num_outputs;
6591 unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
6592 bool is_zero[4] = {}, is_one[4] = {};
6593
6594 for (i = 0; i < 4; i++) {
6595 LLVMBool loses_info;
6596 LLVMValueRef p = LLVMGetOperand(inst, 5 + i);
6597
6598 /* It's a constant expression. Undef outputs are eliminated too. */
6599 if (LLVMIsUndef(p)) {
6600 is_zero[i] = true;
6601 is_one[i] = true;
6602 } else if (LLVMIsAConstantFP(p)) {
6603 double a = LLVMConstRealGetDouble(p, &loses_info);
6604
6605 if (a == 0)
6606 is_zero[i] = true;
6607 else if (a == 1)
6608 is_one[i] = true;
6609 else
6610 return false; /* other constant */
6611 } else
6612 return false;
6613 }
6614
6615 /* Only certain combinations of 0 and 1 can be eliminated. */
6616 if (is_zero[0] && is_zero[1] && is_zero[2])
6617 default_val = is_zero[3] ? 0 : 1;
6618 else if (is_one[0] && is_one[1] && is_one[2])
6619 default_val = is_zero[3] ? 2 : 3;
6620 else
6621 return false;
6622
6623 /* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
6624 LLVMInstructionEraseFromParent(inst);
6625
6626 /* Change OFFSET to DEFAULT_VAL. */
6627 for (i = 0; i < num_outputs; i++) {
6628 if (shader->info.vs_output_param_offset[i] == offset) {
6629 shader->info.vs_output_param_offset[i] =
6630 EXP_PARAM_DEFAULT_VAL_0000 + default_val;
6631 break;
6632 }
6633 }
6634 return true;
6635 }
6636
6637 struct si_vs_exports {
6638 unsigned num;
6639 unsigned offset[SI_MAX_VS_OUTPUTS];
6640 LLVMValueRef inst[SI_MAX_VS_OUTPUTS];
6641 };
6642
6643 static void si_eliminate_const_vs_outputs(struct si_shader_context *ctx)
6644 {
6645 struct si_shader *shader = ctx->shader;
6646 struct tgsi_shader_info *info = &shader->selector->info;
6647 LLVMBasicBlockRef bb;
6648 struct si_vs_exports exports;
6649 bool removed_any = false;
6650
6651 exports.num = 0;
6652
6653 if (ctx->type == PIPE_SHADER_FRAGMENT ||
6654 ctx->type == PIPE_SHADER_COMPUTE ||
6655 shader->key.as_es ||
6656 shader->key.as_ls)
6657 return;
6658
6659 /* Process all LLVM instructions. */
6660 bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6661 while (bb) {
6662 LLVMValueRef inst = LLVMGetFirstInstruction(bb);
6663
6664 while (inst) {
6665 LLVMValueRef cur = inst;
6666 inst = LLVMGetNextInstruction(inst);
6667
6668 if (LLVMGetInstructionOpcode(cur) != LLVMCall)
6669 continue;
6670
6671 LLVMValueRef callee = lp_get_called_value(cur);
6672
6673 if (!lp_is_function(callee))
6674 continue;
6675
6676 const char *name = LLVMGetValueName(callee);
6677 unsigned num_args = LLVMCountParams(callee);
6678
6679 /* Check if this is an export instruction. */
6680 if (num_args != 9 || strcmp(name, "llvm.SI.export"))
6681 continue;
6682
6683 LLVMValueRef arg = LLVMGetOperand(cur, 3);
6684 unsigned target = LLVMConstIntGetZExtValue(arg);
6685
6686 if (target < V_008DFC_SQ_EXP_PARAM)
6687 continue;
6688
6689 target -= V_008DFC_SQ_EXP_PARAM;
6690
6691 /* Eliminate constant value PARAM exports. */
6692 if (si_eliminate_const_output(ctx, cur, target)) {
6693 removed_any = true;
6694 } else {
6695 exports.offset[exports.num] = target;
6696 exports.inst[exports.num] = cur;
6697 exports.num++;
6698 }
6699 }
6700 bb = LLVMGetNextBasicBlock(bb);
6701 }
6702
6703 /* Remove holes in export memory due to removed PARAM exports.
6704 * This is done by renumbering all PARAM exports.
6705 */
6706 if (removed_any) {
6707 ubyte current_offset[SI_MAX_VS_OUTPUTS];
6708 unsigned new_count = 0;
6709 unsigned out, i;
6710
6711 /* Make a copy of the offsets. We need the old version while
6712 * we are modifying some of them. */
6713 assert(sizeof(current_offset) ==
6714 sizeof(shader->info.vs_output_param_offset));
6715 memcpy(current_offset, shader->info.vs_output_param_offset,
6716 sizeof(current_offset));
6717
6718 for (i = 0; i < exports.num; i++) {
6719 unsigned offset = exports.offset[i];
6720
6721 for (out = 0; out < info->num_outputs; out++) {
6722 if (current_offset[out] != offset)
6723 continue;
6724
6725 LLVMSetOperand(exports.inst[i], 3,
6726 LLVMConstInt(ctx->i32,
6727 V_008DFC_SQ_EXP_PARAM + new_count, 0));
6728 shader->info.vs_output_param_offset[out] = new_count;
6729 new_count++;
6730 break;
6731 }
6732 }
6733 shader->info.nr_param_exports = new_count;
6734 }
6735 }
6736
6737 static void si_count_scratch_private_memory(struct si_shader_context *ctx)
6738 {
6739 ctx->shader->config.private_mem_vgprs = 0;
6740
6741 /* Process all LLVM instructions. */
6742 LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6743 while (bb) {
6744 LLVMValueRef next = LLVMGetFirstInstruction(bb);
6745
6746 while (next) {
6747 LLVMValueRef inst = next;
6748 next = LLVMGetNextInstruction(next);
6749
6750 if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
6751 continue;
6752
6753 LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
6754 /* No idea why LLVM aligns allocas to 4 elements. */
6755 unsigned alignment = LLVMGetAlignment(inst);
6756 unsigned dw_size = align(llvm_get_type_size(type) / 4, alignment);
6757 ctx->shader->config.private_mem_vgprs += dw_size;
6758 }
6759 bb = LLVMGetNextBasicBlock(bb);
6760 }
6761 }
6762
6763 static bool si_compile_tgsi_main(struct si_shader_context *ctx,
6764 struct si_shader *shader)
6765 {
6766 struct si_shader_selector *sel = shader->selector;
6767 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
6768
6769 switch (ctx->type) {
6770 case PIPE_SHADER_VERTEX:
6771 ctx->load_input = declare_input_vs;
6772 if (shader->key.as_ls)
6773 bld_base->emit_epilogue = si_llvm_emit_ls_epilogue;
6774 else if (shader->key.as_es)
6775 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
6776 else
6777 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
6778 break;
6779 case PIPE_SHADER_TESS_CTRL:
6780 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6781 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6782 bld_base->emit_store = store_output_tcs;
6783 bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue;
6784 break;
6785 case PIPE_SHADER_TESS_EVAL:
6786 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6787 if (shader->key.as_es)
6788 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
6789 else
6790 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
6791 break;
6792 case PIPE_SHADER_GEOMETRY:
6793 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6794 bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
6795 break;
6796 case PIPE_SHADER_FRAGMENT:
6797 ctx->load_input = declare_input_fs;
6798 bld_base->emit_epilogue = si_llvm_return_fs_outputs;
6799 break;
6800 case PIPE_SHADER_COMPUTE:
6801 ctx->declare_memory_region = declare_compute_memory;
6802 break;
6803 default:
6804 assert(!"Unsupported shader type");
6805 return false;
6806 }
6807
6808 create_meta_data(ctx);
6809 create_function(ctx);
6810 preload_ring_buffers(ctx);
6811
6812 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6813 int i;
6814 for (i = 0; i < 4; i++) {
6815 ctx->gs_next_vertex[i] =
6816 lp_build_alloca(bld_base->base.gallivm,
6817 ctx->i32, "");
6818 }
6819 }
6820
6821 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6822 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6823 return false;
6824 }
6825
6826 si_llvm_build_ret(ctx, ctx->return_value);
6827 return true;
6828 }
6829
6830 /**
6831 * Compute the VS prolog key, which contains all the information needed to
6832 * build the VS prolog function, and set shader->info bits where needed.
6833 */
6834 static void si_get_vs_prolog_key(struct si_shader *shader,
6835 union si_shader_part_key *key)
6836 {
6837 struct tgsi_shader_info *info = &shader->selector->info;
6838
6839 memset(key, 0, sizeof(*key));
6840 key->vs_prolog.states = shader->key.part.vs.prolog;
6841 key->vs_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6842 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6843
6844 /* Set the instanceID flag. */
6845 for (unsigned i = 0; i < info->num_inputs; i++)
6846 if (key->vs_prolog.states.instance_divisors[i])
6847 shader->info.uses_instanceid = true;
6848 }
6849
6850 /**
6851 * Compute the VS epilog key, which contains all the information needed to
6852 * build the VS epilog function, and set the PrimitiveID output offset.
6853 */
6854 static void si_get_vs_epilog_key(struct si_shader *shader,
6855 struct si_vs_epilog_bits *states,
6856 union si_shader_part_key *key)
6857 {
6858 memset(key, 0, sizeof(*key));
6859 key->vs_epilog.states = *states;
6860
6861 /* Set up the PrimitiveID output. */
6862 if (shader->key.part.vs.epilog.export_prim_id) {
6863 unsigned index = shader->selector->info.num_outputs;
6864 unsigned offset = shader->info.nr_param_exports++;
6865
6866 key->vs_epilog.prim_id_param_offset = offset;
6867 assert(index < ARRAY_SIZE(shader->info.vs_output_param_offset));
6868 shader->info.vs_output_param_offset[index] = offset;
6869 }
6870 }
6871
6872 /**
6873 * Compute the PS prolog key, which contains all the information needed to
6874 * build the PS prolog function, and set related bits in shader->config.
6875 */
6876 static void si_get_ps_prolog_key(struct si_shader *shader,
6877 union si_shader_part_key *key,
6878 bool separate_prolog)
6879 {
6880 struct tgsi_shader_info *info = &shader->selector->info;
6881
6882 memset(key, 0, sizeof(*key));
6883 key->ps_prolog.states = shader->key.part.ps.prolog;
6884 key->ps_prolog.colors_read = info->colors_read;
6885 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6886 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6887 key->ps_prolog.wqm = info->uses_derivatives &&
6888 (key->ps_prolog.colors_read ||
6889 key->ps_prolog.states.force_persp_sample_interp ||
6890 key->ps_prolog.states.force_linear_sample_interp ||
6891 key->ps_prolog.states.force_persp_center_interp ||
6892 key->ps_prolog.states.force_linear_center_interp ||
6893 key->ps_prolog.states.bc_optimize_for_persp ||
6894 key->ps_prolog.states.bc_optimize_for_linear);
6895
6896 if (info->colors_read) {
6897 unsigned *color = shader->selector->color_attr_index;
6898
6899 if (shader->key.part.ps.prolog.color_two_side) {
6900 /* BCOLORs are stored after the last input. */
6901 key->ps_prolog.num_interp_inputs = info->num_inputs;
6902 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6903 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6904 }
6905
6906 for (unsigned i = 0; i < 2; i++) {
6907 unsigned interp = info->input_interpolate[color[i]];
6908 unsigned location = info->input_interpolate_loc[color[i]];
6909
6910 if (!(info->colors_read & (0xf << i*4)))
6911 continue;
6912
6913 key->ps_prolog.color_attr_index[i] = color[i];
6914
6915 if (shader->key.part.ps.prolog.flatshade_colors &&
6916 interp == TGSI_INTERPOLATE_COLOR)
6917 interp = TGSI_INTERPOLATE_CONSTANT;
6918
6919 switch (interp) {
6920 case TGSI_INTERPOLATE_CONSTANT:
6921 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6922 break;
6923 case TGSI_INTERPOLATE_PERSPECTIVE:
6924 case TGSI_INTERPOLATE_COLOR:
6925 /* Force the interpolation location for colors here. */
6926 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6927 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6928 if (shader->key.part.ps.prolog.force_persp_center_interp)
6929 location = TGSI_INTERPOLATE_LOC_CENTER;
6930
6931 switch (location) {
6932 case TGSI_INTERPOLATE_LOC_SAMPLE:
6933 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6934 shader->config.spi_ps_input_ena |=
6935 S_0286CC_PERSP_SAMPLE_ENA(1);
6936 break;
6937 case TGSI_INTERPOLATE_LOC_CENTER:
6938 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6939 shader->config.spi_ps_input_ena |=
6940 S_0286CC_PERSP_CENTER_ENA(1);
6941 break;
6942 case TGSI_INTERPOLATE_LOC_CENTROID:
6943 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6944 shader->config.spi_ps_input_ena |=
6945 S_0286CC_PERSP_CENTROID_ENA(1);
6946 break;
6947 default:
6948 assert(0);
6949 }
6950 break;
6951 case TGSI_INTERPOLATE_LINEAR:
6952 /* Force the interpolation location for colors here. */
6953 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6954 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6955 if (shader->key.part.ps.prolog.force_linear_center_interp)
6956 location = TGSI_INTERPOLATE_LOC_CENTER;
6957
6958 /* The VGPR assignment for non-monolithic shaders
6959 * works because InitialPSInputAddr is set on the
6960 * main shader and PERSP_PULL_MODEL is never used.
6961 */
6962 switch (location) {
6963 case TGSI_INTERPOLATE_LOC_SAMPLE:
6964 key->ps_prolog.color_interp_vgpr_index[i] =
6965 separate_prolog ? 6 : 9;
6966 shader->config.spi_ps_input_ena |=
6967 S_0286CC_LINEAR_SAMPLE_ENA(1);
6968 break;
6969 case TGSI_INTERPOLATE_LOC_CENTER:
6970 key->ps_prolog.color_interp_vgpr_index[i] =
6971 separate_prolog ? 8 : 11;
6972 shader->config.spi_ps_input_ena |=
6973 S_0286CC_LINEAR_CENTER_ENA(1);
6974 break;
6975 case TGSI_INTERPOLATE_LOC_CENTROID:
6976 key->ps_prolog.color_interp_vgpr_index[i] =
6977 separate_prolog ? 10 : 13;
6978 shader->config.spi_ps_input_ena |=
6979 S_0286CC_LINEAR_CENTROID_ENA(1);
6980 break;
6981 default:
6982 assert(0);
6983 }
6984 break;
6985 default:
6986 assert(0);
6987 }
6988 }
6989 }
6990 }
6991
6992 /**
6993 * Check whether a PS prolog is required based on the key.
6994 */
6995 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6996 {
6997 return key->ps_prolog.colors_read ||
6998 key->ps_prolog.states.force_persp_sample_interp ||
6999 key->ps_prolog.states.force_linear_sample_interp ||
7000 key->ps_prolog.states.force_persp_center_interp ||
7001 key->ps_prolog.states.force_linear_center_interp ||
7002 key->ps_prolog.states.bc_optimize_for_persp ||
7003 key->ps_prolog.states.bc_optimize_for_linear ||
7004 key->ps_prolog.states.poly_stipple;
7005 }
7006
7007 /**
7008 * Compute the PS epilog key, which contains all the information needed to
7009 * build the PS epilog function.
7010 */
7011 static void si_get_ps_epilog_key(struct si_shader *shader,
7012 union si_shader_part_key *key)
7013 {
7014 struct tgsi_shader_info *info = &shader->selector->info;
7015 memset(key, 0, sizeof(*key));
7016 key->ps_epilog.colors_written = info->colors_written;
7017 key->ps_epilog.writes_z = info->writes_z;
7018 key->ps_epilog.writes_stencil = info->writes_stencil;
7019 key->ps_epilog.writes_samplemask = info->writes_samplemask;
7020 key->ps_epilog.states = shader->key.part.ps.epilog;
7021 }
7022
7023 /**
7024 * Build the GS prolog function. Rotate the input vertices for triangle strips
7025 * with adjacency.
7026 */
7027 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
7028 union si_shader_part_key *key)
7029 {
7030 const unsigned num_sgprs = SI_GS_NUM_USER_SGPR + 2;
7031 const unsigned num_vgprs = 8;
7032 struct gallivm_state *gallivm = &ctx->gallivm;
7033 LLVMBuilderRef builder = gallivm->builder;
7034 LLVMTypeRef params[32];
7035 LLVMTypeRef returns[32];
7036 LLVMValueRef func, ret;
7037
7038 for (unsigned i = 0; i < num_sgprs; ++i) {
7039 params[i] = ctx->i32;
7040 returns[i] = ctx->i32;
7041 }
7042
7043 for (unsigned i = 0; i < num_vgprs; ++i) {
7044 params[num_sgprs + i] = ctx->i32;
7045 returns[num_sgprs + i] = ctx->f32;
7046 }
7047
7048 /* Create the function. */
7049 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
7050 params, num_sgprs + num_vgprs, num_sgprs - 1);
7051 func = ctx->main_fn;
7052
7053 /* Copy inputs to outputs. This should be no-op, as the registers match,
7054 * but it will prevent the compiler from overwriting them unintentionally.
7055 */
7056 ret = ctx->return_value;
7057 for (unsigned i = 0; i < num_sgprs; i++) {
7058 LLVMValueRef p = LLVMGetParam(func, i);
7059 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
7060 }
7061 for (unsigned i = 0; i < num_vgprs; i++) {
7062 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
7063 p = LLVMBuildBitCast(builder, p, ctx->f32, "");
7064 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
7065 }
7066
7067 if (key->gs_prolog.states.tri_strip_adj_fix) {
7068 /* Remap the input vertices for every other primitive. */
7069 const unsigned vtx_params[6] = {
7070 num_sgprs,
7071 num_sgprs + 1,
7072 num_sgprs + 3,
7073 num_sgprs + 4,
7074 num_sgprs + 5,
7075 num_sgprs + 6
7076 };
7077 LLVMValueRef prim_id, rotate;
7078
7079 prim_id = LLVMGetParam(func, num_sgprs + 2);
7080 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
7081
7082 for (unsigned i = 0; i < 6; ++i) {
7083 LLVMValueRef base, rotated, actual;
7084 base = LLVMGetParam(func, vtx_params[i]);
7085 rotated = LLVMGetParam(func, vtx_params[(i + 4) % 6]);
7086 actual = LLVMBuildSelect(builder, rotate, rotated, base, "");
7087 actual = LLVMBuildBitCast(builder, actual, ctx->f32, "");
7088 ret = LLVMBuildInsertValue(builder, ret, actual, vtx_params[i], "");
7089 }
7090 }
7091
7092 LLVMBuildRet(builder, ret);
7093 }
7094
7095 /**
7096 * Given a list of shader part functions, build a wrapper function that
7097 * runs them in sequence to form a monolithic shader.
7098 */
7099 static void si_build_wrapper_function(struct si_shader_context *ctx,
7100 LLVMValueRef *parts,
7101 unsigned num_parts,
7102 unsigned main_part)
7103 {
7104 struct gallivm_state *gallivm = &ctx->gallivm;
7105 LLVMBuilderRef builder = ctx->gallivm.builder;
7106 /* PS epilog has one arg per color component */
7107 LLVMTypeRef param_types[48];
7108 LLVMValueRef out[48];
7109 LLVMTypeRef function_type;
7110 unsigned num_params;
7111 unsigned num_out;
7112 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
7113 unsigned num_sgprs, num_vgprs;
7114 unsigned last_sgpr_param;
7115 unsigned gprs;
7116
7117 for (unsigned i = 0; i < num_parts; ++i) {
7118 lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
7119 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
7120 }
7121
7122 /* The parameters of the wrapper function correspond to those of the
7123 * first part in terms of SGPRs and VGPRs, but we use the types of the
7124 * main part to get the right types. This is relevant for the
7125 * dereferenceable attribute on descriptor table pointers.
7126 */
7127 num_sgprs = 0;
7128 num_vgprs = 0;
7129
7130 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
7131 num_params = LLVMCountParamTypes(function_type);
7132
7133 for (unsigned i = 0; i < num_params; ++i) {
7134 LLVMValueRef param = LLVMGetParam(parts[0], i);
7135
7136 if (ac_is_sgpr_param(param)) {
7137 assert(num_vgprs == 0);
7138 num_sgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7139 } else {
7140 num_vgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7141 }
7142 }
7143 assert(num_vgprs + num_sgprs <= ARRAY_SIZE(param_types));
7144
7145 num_params = 0;
7146 last_sgpr_param = 0;
7147 gprs = 0;
7148 while (gprs < num_sgprs + num_vgprs) {
7149 LLVMValueRef param = LLVMGetParam(parts[main_part], num_params);
7150 unsigned size;
7151
7152 param_types[num_params] = LLVMTypeOf(param);
7153 if (gprs < num_sgprs)
7154 last_sgpr_param = num_params;
7155 size = llvm_get_type_size(param_types[num_params]) / 4;
7156 num_params++;
7157
7158 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
7159 assert(gprs + size <= num_sgprs + num_vgprs &&
7160 (gprs >= num_sgprs || gprs + size <= num_sgprs));
7161
7162 gprs += size;
7163 }
7164
7165 si_create_function(ctx, "wrapper", NULL, 0, param_types, num_params, last_sgpr_param);
7166
7167 /* Record the arguments of the function as if they were an output of
7168 * a previous part.
7169 */
7170 num_out = 0;
7171 num_out_sgpr = 0;
7172
7173 for (unsigned i = 0; i < num_params; ++i) {
7174 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
7175 LLVMTypeRef param_type = LLVMTypeOf(param);
7176 LLVMTypeRef out_type = i <= last_sgpr_param ? ctx->i32 : ctx->f32;
7177 unsigned size = llvm_get_type_size(param_type) / 4;
7178
7179 if (size == 1) {
7180 if (param_type != out_type)
7181 param = LLVMBuildBitCast(builder, param, out_type, "");
7182 out[num_out++] = param;
7183 } else {
7184 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
7185
7186 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7187 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
7188 param_type = ctx->i64;
7189 }
7190
7191 if (param_type != vector_type)
7192 param = LLVMBuildBitCast(builder, param, vector_type, "");
7193
7194 for (unsigned j = 0; j < size; ++j)
7195 out[num_out++] = LLVMBuildExtractElement(
7196 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
7197 }
7198
7199 if (i <= last_sgpr_param)
7200 num_out_sgpr = num_out;
7201 }
7202
7203 /* Now chain the parts. */
7204 for (unsigned part = 0; part < num_parts; ++part) {
7205 LLVMValueRef in[48];
7206 LLVMValueRef ret;
7207 LLVMTypeRef ret_type;
7208 unsigned out_idx = 0;
7209
7210 num_params = LLVMCountParams(parts[part]);
7211 assert(num_params <= ARRAY_SIZE(param_types));
7212
7213 /* Derive arguments for the next part from outputs of the
7214 * previous one.
7215 */
7216 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
7217 LLVMValueRef param;
7218 LLVMTypeRef param_type;
7219 bool is_sgpr;
7220 unsigned param_size;
7221 LLVMValueRef arg = NULL;
7222
7223 param = LLVMGetParam(parts[part], param_idx);
7224 param_type = LLVMTypeOf(param);
7225 param_size = llvm_get_type_size(param_type) / 4;
7226 is_sgpr = ac_is_sgpr_param(param);
7227
7228 if (is_sgpr) {
7229 #if HAVE_LLVM < 0x0400
7230 LLVMRemoveAttribute(param, LLVMByValAttribute);
7231 #else
7232 unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
7233 LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
7234 #endif
7235 lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
7236 }
7237
7238 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
7239 assert(is_sgpr || out_idx >= num_out_sgpr);
7240
7241 if (param_size == 1)
7242 arg = out[out_idx];
7243 else
7244 arg = lp_build_gather_values(gallivm, &out[out_idx], param_size);
7245
7246 if (LLVMTypeOf(arg) != param_type) {
7247 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7248 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
7249 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
7250 } else {
7251 arg = LLVMBuildBitCast(builder, arg, param_type, "");
7252 }
7253 }
7254
7255 in[param_idx] = arg;
7256 out_idx += param_size;
7257 }
7258
7259 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
7260 ret_type = LLVMTypeOf(ret);
7261
7262 /* Extract the returned GPRs. */
7263 num_out = 0;
7264 num_out_sgpr = 0;
7265
7266 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
7267 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
7268
7269 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
7270
7271 for (unsigned i = 0; i < ret_size; ++i) {
7272 LLVMValueRef val =
7273 LLVMBuildExtractValue(builder, ret, i, "");
7274
7275 out[num_out++] = val;
7276
7277 if (LLVMTypeOf(val) == ctx->i32) {
7278 assert(num_out_sgpr + 1 == num_out);
7279 num_out_sgpr = num_out;
7280 }
7281 }
7282 }
7283 }
7284
7285 LLVMBuildRetVoid(builder);
7286 }
7287
7288 int si_compile_tgsi_shader(struct si_screen *sscreen,
7289 LLVMTargetMachineRef tm,
7290 struct si_shader *shader,
7291 bool is_monolithic,
7292 struct pipe_debug_callback *debug)
7293 {
7294 struct si_shader_selector *sel = shader->selector;
7295 struct si_shader_context ctx;
7296 struct lp_build_tgsi_context *bld_base;
7297 LLVMModuleRef mod;
7298 int r = -1;
7299
7300 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
7301 * conversion fails. */
7302 if (r600_can_dump_shader(&sscreen->b, sel->info.processor) &&
7303 !(sscreen->b.debug_flags & DBG_NO_TGSI)) {
7304 tgsi_dump(sel->tokens, 0);
7305 si_dump_streamout(&sel->so);
7306 }
7307
7308 si_init_shader_ctx(&ctx, sscreen, shader, tm);
7309 ctx.separate_prolog = !is_monolithic;
7310
7311 memset(shader->info.vs_output_param_offset, EXP_PARAM_UNDEFINED,
7312 sizeof(shader->info.vs_output_param_offset));
7313
7314 shader->info.uses_instanceid = sel->info.uses_instanceid;
7315
7316 bld_base = &ctx.soa.bld_base;
7317 ctx.load_system_value = declare_system_value;
7318
7319 if (!si_compile_tgsi_main(&ctx, shader)) {
7320 si_llvm_dispose(&ctx);
7321 return -1;
7322 }
7323
7324 if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
7325 LLVMValueRef parts[3];
7326 bool need_prolog;
7327 bool need_epilog;
7328
7329 need_prolog = sel->info.num_inputs;
7330 need_epilog = !shader->key.as_es && !shader->key.as_ls;
7331
7332 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7333
7334 if (need_prolog) {
7335 union si_shader_part_key prolog_key;
7336 si_get_vs_prolog_key(shader, &prolog_key);
7337 si_build_vs_prolog_function(&ctx, &prolog_key);
7338 parts[0] = ctx.main_fn;
7339 }
7340
7341 if (need_epilog) {
7342 union si_shader_part_key epilog_key;
7343 si_get_vs_epilog_key(shader, &shader->key.part.vs.epilog, &epilog_key);
7344 si_build_vs_epilog_function(&ctx, &epilog_key);
7345 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7346 }
7347
7348 si_build_wrapper_function(&ctx, parts, 1 + need_prolog + need_epilog,
7349 need_prolog ? 1 : 0);
7350 } else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
7351 LLVMValueRef parts[2];
7352 union si_shader_part_key epilog_key;
7353
7354 parts[0] = ctx.main_fn;
7355
7356 memset(&epilog_key, 0, sizeof(epilog_key));
7357 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7358 si_build_tcs_epilog_function(&ctx, &epilog_key);
7359 parts[1] = ctx.main_fn;
7360
7361 si_build_wrapper_function(&ctx, parts, 2, 0);
7362 } else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_EVAL &&
7363 !shader->key.as_es) {
7364 LLVMValueRef parts[2];
7365 union si_shader_part_key epilog_key;
7366
7367 parts[0] = ctx.main_fn;
7368
7369 si_get_vs_epilog_key(shader, &shader->key.part.tes.epilog, &epilog_key);
7370 si_build_vs_epilog_function(&ctx, &epilog_key);
7371 parts[1] = ctx.main_fn;
7372
7373 si_build_wrapper_function(&ctx, parts, 2, 0);
7374 } else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7375 LLVMValueRef parts[2];
7376 union si_shader_part_key prolog_key;
7377
7378 parts[1] = ctx.main_fn;
7379
7380 memset(&prolog_key, 0, sizeof(prolog_key));
7381 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7382 si_build_gs_prolog_function(&ctx, &prolog_key);
7383 parts[0] = ctx.main_fn;
7384
7385 si_build_wrapper_function(&ctx, parts, 2, 1);
7386 } else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7387 LLVMValueRef parts[3];
7388 union si_shader_part_key prolog_key;
7389 union si_shader_part_key epilog_key;
7390 bool need_prolog;
7391
7392 si_get_ps_prolog_key(shader, &prolog_key, false);
7393 need_prolog = si_need_ps_prolog(&prolog_key);
7394
7395 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7396
7397 if (need_prolog) {
7398 si_build_ps_prolog_function(&ctx, &prolog_key);
7399 parts[0] = ctx.main_fn;
7400 }
7401
7402 si_get_ps_epilog_key(shader, &epilog_key);
7403 si_build_ps_epilog_function(&ctx, &epilog_key);
7404 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7405
7406 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2, need_prolog ? 1 : 0);
7407 }
7408
7409 mod = bld_base->base.gallivm->module;
7410
7411 /* Dump LLVM IR before any optimization passes */
7412 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
7413 r600_can_dump_shader(&sscreen->b, ctx.type))
7414 LLVMDumpModule(mod);
7415
7416 si_llvm_finalize_module(&ctx,
7417 r600_extra_shader_checks(&sscreen->b, ctx.type));
7418
7419 /* Post-optimization transformations and analysis. */
7420 si_eliminate_const_vs_outputs(&ctx);
7421
7422 if ((debug && debug->debug_message) ||
7423 r600_can_dump_shader(&sscreen->b, ctx.type))
7424 si_count_scratch_private_memory(&ctx);
7425
7426 /* Compile to bytecode. */
7427 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
7428 mod, debug, ctx.type, "TGSI shader");
7429 si_llvm_dispose(&ctx);
7430 if (r) {
7431 fprintf(stderr, "LLVM failed to compile shader\n");
7432 return r;
7433 }
7434
7435 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7436 * LLVM 3.9svn has this bug.
7437 */
7438 if (sel->type == PIPE_SHADER_COMPUTE) {
7439 unsigned wave_size = 64;
7440 unsigned max_vgprs = 256;
7441 unsigned max_sgprs = sscreen->b.chip_class >= VI ? 800 : 512;
7442 unsigned max_sgprs_per_wave = 128;
7443 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7444 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7445 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7446
7447 max_vgprs = max_vgprs / min_waves_per_simd;
7448 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7449
7450 if (shader->config.num_sgprs > max_sgprs ||
7451 shader->config.num_vgprs > max_vgprs) {
7452 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7453 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7454 shader->config.num_sgprs, shader->config.num_vgprs,
7455 max_sgprs, max_vgprs);
7456
7457 /* Just terminate the process, because dependent
7458 * shaders can hang due to bad input data, but use
7459 * the env var to allow shader-db to work.
7460 */
7461 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7462 abort();
7463 }
7464 }
7465
7466 /* Add the scratch offset to input SGPRs. */
7467 if (shader->config.scratch_bytes_per_wave)
7468 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7469
7470 /* Calculate the number of fragment input VGPRs. */
7471 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7472 shader->info.num_input_vgprs = 0;
7473 shader->info.face_vgpr_index = -1;
7474
7475 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7476 shader->info.num_input_vgprs += 2;
7477 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7478 shader->info.num_input_vgprs += 2;
7479 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7480 shader->info.num_input_vgprs += 2;
7481 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7482 shader->info.num_input_vgprs += 3;
7483 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7484 shader->info.num_input_vgprs += 2;
7485 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7486 shader->info.num_input_vgprs += 2;
7487 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7488 shader->info.num_input_vgprs += 2;
7489 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7490 shader->info.num_input_vgprs += 1;
7491 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7492 shader->info.num_input_vgprs += 1;
7493 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7494 shader->info.num_input_vgprs += 1;
7495 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7496 shader->info.num_input_vgprs += 1;
7497 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7498 shader->info.num_input_vgprs += 1;
7499 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7500 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7501 shader->info.num_input_vgprs += 1;
7502 }
7503 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr))
7504 shader->info.num_input_vgprs += 1;
7505 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7506 shader->info.num_input_vgprs += 1;
7507 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7508 shader->info.num_input_vgprs += 1;
7509 }
7510
7511 return 0;
7512 }
7513
7514 /**
7515 * Create, compile and return a shader part (prolog or epilog).
7516 *
7517 * \param sscreen screen
7518 * \param list list of shader parts of the same category
7519 * \param type shader type
7520 * \param key shader part key
7521 * \param prolog whether the part being requested is a prolog
7522 * \param tm LLVM target machine
7523 * \param debug debug callback
7524 * \param build the callback responsible for building the main function
7525 * \return non-NULL on success
7526 */
7527 static struct si_shader_part *
7528 si_get_shader_part(struct si_screen *sscreen,
7529 struct si_shader_part **list,
7530 enum pipe_shader_type type,
7531 bool prolog,
7532 union si_shader_part_key *key,
7533 LLVMTargetMachineRef tm,
7534 struct pipe_debug_callback *debug,
7535 void (*build)(struct si_shader_context *,
7536 union si_shader_part_key *),
7537 const char *name)
7538 {
7539 struct si_shader_part *result;
7540
7541 pipe_mutex_lock(sscreen->shader_parts_mutex);
7542
7543 /* Find existing. */
7544 for (result = *list; result; result = result->next) {
7545 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7546 pipe_mutex_unlock(sscreen->shader_parts_mutex);
7547 return result;
7548 }
7549 }
7550
7551 /* Compile a new one. */
7552 result = CALLOC_STRUCT(si_shader_part);
7553 result->key = *key;
7554
7555 struct si_shader shader = {};
7556 struct si_shader_context ctx;
7557 struct gallivm_state *gallivm = &ctx.gallivm;
7558
7559 si_init_shader_ctx(&ctx, sscreen, &shader, tm);
7560 ctx.type = type;
7561
7562 switch (type) {
7563 case PIPE_SHADER_VERTEX:
7564 break;
7565 case PIPE_SHADER_TESS_CTRL:
7566 assert(!prolog);
7567 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7568 break;
7569 case PIPE_SHADER_GEOMETRY:
7570 assert(prolog);
7571 break;
7572 case PIPE_SHADER_FRAGMENT:
7573 if (prolog)
7574 shader.key.part.ps.prolog = key->ps_prolog.states;
7575 else
7576 shader.key.part.ps.epilog = key->ps_epilog.states;
7577 break;
7578 default:
7579 unreachable("bad shader part");
7580 }
7581
7582 build(&ctx, key);
7583
7584 /* Compile. */
7585 si_llvm_finalize_module(&ctx,
7586 r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_FRAGMENT));
7587
7588 if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
7589 gallivm->module, debug, ctx.type, name)) {
7590 FREE(result);
7591 result = NULL;
7592 goto out;
7593 }
7594
7595 result->next = *list;
7596 *list = result;
7597
7598 out:
7599 si_llvm_dispose(&ctx);
7600 pipe_mutex_unlock(sscreen->shader_parts_mutex);
7601 return result;
7602 }
7603
7604 /**
7605 * Build the vertex shader prolog function.
7606 *
7607 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7608 * All inputs are returned unmodified. The vertex load indices are
7609 * stored after them, which will be used by the API VS for fetching inputs.
7610 *
7611 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7612 * input_v0,
7613 * input_v1,
7614 * input_v2,
7615 * input_v3,
7616 * (VertexID + BaseVertex),
7617 * (InstanceID + StartInstance),
7618 * (InstanceID / 2 + StartInstance)
7619 */
7620 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7621 union si_shader_part_key *key)
7622 {
7623 struct gallivm_state *gallivm = &ctx->gallivm;
7624 LLVMTypeRef *params, *returns;
7625 LLVMValueRef ret, func;
7626 int last_sgpr, num_params, num_returns, i;
7627
7628 ctx->param_vertex_id = key->vs_prolog.num_input_sgprs;
7629 ctx->param_instance_id = key->vs_prolog.num_input_sgprs + 3;
7630
7631 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7632 params = alloca((key->vs_prolog.num_input_sgprs + 4) *
7633 sizeof(LLVMTypeRef));
7634 returns = alloca((key->vs_prolog.num_input_sgprs + 4 +
7635 key->vs_prolog.last_input + 1) *
7636 sizeof(LLVMTypeRef));
7637 num_params = 0;
7638 num_returns = 0;
7639
7640 /* Declare input and output SGPRs. */
7641 num_params = 0;
7642 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7643 params[num_params++] = ctx->i32;
7644 returns[num_returns++] = ctx->i32;
7645 }
7646 last_sgpr = num_params - 1;
7647
7648 /* 4 preloaded VGPRs (outputs must be floats) */
7649 for (i = 0; i < 4; i++) {
7650 params[num_params++] = ctx->i32;
7651 returns[num_returns++] = ctx->f32;
7652 }
7653
7654 /* Vertex load indices. */
7655 for (i = 0; i <= key->vs_prolog.last_input; i++)
7656 returns[num_returns++] = ctx->f32;
7657
7658 /* Create the function. */
7659 si_create_function(ctx, "vs_prolog", returns, num_returns, params,
7660 num_params, last_sgpr);
7661 func = ctx->main_fn;
7662
7663 /* Copy inputs to outputs. This should be no-op, as the registers match,
7664 * but it will prevent the compiler from overwriting them unintentionally.
7665 */
7666 ret = ctx->return_value;
7667 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7668 LLVMValueRef p = LLVMGetParam(func, i);
7669 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7670 }
7671 for (i = num_params - 4; i < num_params; i++) {
7672 LLVMValueRef p = LLVMGetParam(func, i);
7673 p = LLVMBuildBitCast(gallivm->builder, p, ctx->f32, "");
7674 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7675 }
7676
7677 /* Compute vertex load indices from instance divisors. */
7678 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7679 unsigned divisor = key->vs_prolog.states.instance_divisors[i];
7680 LLVMValueRef index;
7681
7682 if (divisor) {
7683 /* InstanceID / Divisor + StartInstance */
7684 index = get_instance_index_for_fetch(ctx,
7685 SI_SGPR_START_INSTANCE,
7686 divisor);
7687 } else {
7688 /* VertexID + BaseVertex */
7689 index = LLVMBuildAdd(gallivm->builder,
7690 LLVMGetParam(func, ctx->param_vertex_id),
7691 LLVMGetParam(func, SI_SGPR_BASE_VERTEX), "");
7692 }
7693
7694 index = LLVMBuildBitCast(gallivm->builder, index, ctx->f32, "");
7695 ret = LLVMBuildInsertValue(gallivm->builder, ret, index,
7696 num_params++, "");
7697 }
7698
7699 si_llvm_build_ret(ctx, ret);
7700 }
7701
7702 /**
7703 * Build the vertex shader epilog function. This is also used by the tessellation
7704 * evaluation shader compiled as VS.
7705 *
7706 * The input is PrimitiveID.
7707 *
7708 * If PrimitiveID is required by the pixel shader, export it.
7709 * Otherwise, do nothing.
7710 */
7711 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
7712 union si_shader_part_key *key)
7713 {
7714 struct gallivm_state *gallivm = &ctx->gallivm;
7715 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
7716 LLVMTypeRef params[5];
7717 int num_params, i;
7718
7719 /* Declare input VGPRs. */
7720 num_params = key->vs_epilog.states.export_prim_id ?
7721 (VS_EPILOG_PRIMID_LOC + 1) : 0;
7722 assert(num_params <= ARRAY_SIZE(params));
7723
7724 for (i = 0; i < num_params; i++)
7725 params[i] = ctx->f32;
7726
7727 /* Create the function. */
7728 si_create_function(ctx, "vs_epilog", NULL, 0, params, num_params, -1);
7729
7730 /* Emit exports. */
7731 if (key->vs_epilog.states.export_prim_id) {
7732 struct lp_build_context *base = &bld_base->base;
7733 struct lp_build_context *uint = &bld_base->uint_bld;
7734 LLVMValueRef args[9];
7735
7736 args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
7737 args[1] = uint->zero; /* whether the EXEC mask is valid */
7738 args[2] = uint->zero; /* DONE bit */
7739 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_PARAM +
7740 key->vs_epilog.prim_id_param_offset);
7741 args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
7742 args[5] = LLVMGetParam(ctx->main_fn,
7743 VS_EPILOG_PRIMID_LOC); /* X */
7744 args[6] = base->undef; /* Y */
7745 args[7] = base->undef; /* Z */
7746 args[8] = base->undef; /* W */
7747
7748 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
7749 LLVMVoidTypeInContext(base->gallivm->context),
7750 args, 9, 0);
7751 }
7752
7753 LLVMBuildRetVoid(gallivm->builder);
7754 }
7755
7756 /**
7757 * Create & compile a vertex shader epilog. This a helper used by VS and TES.
7758 */
7759 static bool si_get_vs_epilog(struct si_screen *sscreen,
7760 LLVMTargetMachineRef tm,
7761 struct si_shader *shader,
7762 struct pipe_debug_callback *debug,
7763 struct si_vs_epilog_bits *states)
7764 {
7765 union si_shader_part_key epilog_key;
7766
7767 si_get_vs_epilog_key(shader, states, &epilog_key);
7768
7769 shader->epilog = si_get_shader_part(sscreen, &sscreen->vs_epilogs,
7770 PIPE_SHADER_VERTEX, true,
7771 &epilog_key, tm, debug,
7772 si_build_vs_epilog_function,
7773 "Vertex Shader Epilog");
7774 return shader->epilog != NULL;
7775 }
7776
7777 /**
7778 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7779 */
7780 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7781 LLVMTargetMachineRef tm,
7782 struct si_shader *shader,
7783 struct pipe_debug_callback *debug)
7784 {
7785 struct tgsi_shader_info *info = &shader->selector->info;
7786 union si_shader_part_key prolog_key;
7787
7788 /* Get the prolog. */
7789 si_get_vs_prolog_key(shader, &prolog_key);
7790
7791 /* The prolog is a no-op if there are no inputs. */
7792 if (info->num_inputs) {
7793 shader->prolog =
7794 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7795 PIPE_SHADER_VERTEX, true,
7796 &prolog_key, tm, debug,
7797 si_build_vs_prolog_function,
7798 "Vertex Shader Prolog");
7799 if (!shader->prolog)
7800 return false;
7801 }
7802
7803 /* Get the epilog. */
7804 if (!shader->key.as_es && !shader->key.as_ls &&
7805 !si_get_vs_epilog(sscreen, tm, shader, debug,
7806 &shader->key.part.vs.epilog))
7807 return false;
7808
7809 return true;
7810 }
7811
7812 /**
7813 * Select and compile (or reuse) TES parts (epilog).
7814 */
7815 static bool si_shader_select_tes_parts(struct si_screen *sscreen,
7816 LLVMTargetMachineRef tm,
7817 struct si_shader *shader,
7818 struct pipe_debug_callback *debug)
7819 {
7820 if (shader->key.as_es)
7821 return true;
7822
7823 /* TES compiled as VS. */
7824 return si_get_vs_epilog(sscreen, tm, shader, debug,
7825 &shader->key.part.tes.epilog);
7826 }
7827
7828 /**
7829 * Compile the TCS epilog function. This writes tesselation factors to memory
7830 * based on the output primitive type of the tesselator (determined by TES).
7831 */
7832 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7833 union si_shader_part_key *key)
7834 {
7835 struct gallivm_state *gallivm = &ctx->gallivm;
7836 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
7837 LLVMTypeRef params[16];
7838 LLVMValueRef func;
7839 int last_sgpr, num_params;
7840
7841 /* Declare inputs. Only RW_BUFFERS and TESS_FACTOR_OFFSET are used. */
7842 params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
7843 params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
7844 params[SI_PARAM_SAMPLERS] = ctx->i64;
7845 params[SI_PARAM_IMAGES] = ctx->i64;
7846 params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
7847 params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
7848 params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
7849 params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
7850 params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
7851 params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
7852 params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
7853 last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
7854 num_params = last_sgpr + 1;
7855
7856 params[num_params++] = ctx->i32; /* patch index within the wave (REL_PATCH_ID) */
7857 params[num_params++] = ctx->i32; /* invocation ID within the patch */
7858 params[num_params++] = ctx->i32; /* LDS offset where tess factors should be loaded from */
7859
7860 /* Create the function. */
7861 si_create_function(ctx, "tcs_epilog", NULL, 0, params, num_params, last_sgpr);
7862 declare_tess_lds(ctx);
7863 func = ctx->main_fn;
7864
7865 si_write_tess_factors(bld_base,
7866 LLVMGetParam(func, last_sgpr + 1),
7867 LLVMGetParam(func, last_sgpr + 2),
7868 LLVMGetParam(func, last_sgpr + 3));
7869
7870 LLVMBuildRetVoid(gallivm->builder);
7871 }
7872
7873 /**
7874 * Select and compile (or reuse) TCS parts (epilog).
7875 */
7876 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7877 LLVMTargetMachineRef tm,
7878 struct si_shader *shader,
7879 struct pipe_debug_callback *debug)
7880 {
7881 union si_shader_part_key epilog_key;
7882
7883 /* Get the epilog. */
7884 memset(&epilog_key, 0, sizeof(epilog_key));
7885 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7886
7887 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7888 PIPE_SHADER_TESS_CTRL, false,
7889 &epilog_key, tm, debug,
7890 si_build_tcs_epilog_function,
7891 "Tessellation Control Shader Epilog");
7892 return shader->epilog != NULL;
7893 }
7894
7895 /**
7896 * Select and compile (or reuse) GS parts (prolog).
7897 */
7898 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7899 LLVMTargetMachineRef tm,
7900 struct si_shader *shader,
7901 struct pipe_debug_callback *debug)
7902 {
7903 union si_shader_part_key prolog_key;
7904
7905 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7906 return true;
7907
7908 memset(&prolog_key, 0, sizeof(prolog_key));
7909 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7910
7911 shader->prolog = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7912 PIPE_SHADER_GEOMETRY, true,
7913 &prolog_key, tm, debug,
7914 si_build_gs_prolog_function,
7915 "Geometry Shader Prolog");
7916 return shader->prolog != NULL;
7917 }
7918
7919 /**
7920 * Build the pixel shader prolog function. This handles:
7921 * - two-side color selection and interpolation
7922 * - overriding interpolation parameters for the API PS
7923 * - polygon stippling
7924 *
7925 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7926 * overriden by other states. (e.g. per-sample interpolation)
7927 * Interpolated colors are stored after the preloaded VGPRs.
7928 */
7929 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7930 union si_shader_part_key *key)
7931 {
7932 struct gallivm_state *gallivm = &ctx->gallivm;
7933 LLVMTypeRef *params;
7934 LLVMValueRef ret, func;
7935 int last_sgpr, num_params, num_returns, i, num_color_channels;
7936
7937 assert(si_need_ps_prolog(key));
7938
7939 /* Number of inputs + 8 color elements. */
7940 params = alloca((key->ps_prolog.num_input_sgprs +
7941 key->ps_prolog.num_input_vgprs + 8) *
7942 sizeof(LLVMTypeRef));
7943
7944 /* Declare inputs. */
7945 num_params = 0;
7946 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7947 params[num_params++] = ctx->i32;
7948 last_sgpr = num_params - 1;
7949
7950 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7951 params[num_params++] = ctx->f32;
7952
7953 /* Declare outputs (same as inputs + add colors if needed) */
7954 num_returns = num_params;
7955 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7956 for (i = 0; i < num_color_channels; i++)
7957 params[num_returns++] = ctx->f32;
7958
7959 /* Create the function. */
7960 si_create_function(ctx, "ps_prolog", params, num_returns, params,
7961 num_params, last_sgpr);
7962 func = ctx->main_fn;
7963
7964 /* Copy inputs to outputs. This should be no-op, as the registers match,
7965 * but it will prevent the compiler from overwriting them unintentionally.
7966 */
7967 ret = ctx->return_value;
7968 for (i = 0; i < num_params; i++) {
7969 LLVMValueRef p = LLVMGetParam(func, i);
7970 ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7971 }
7972
7973 /* Polygon stippling. */
7974 if (key->ps_prolog.states.poly_stipple) {
7975 /* POS_FIXED_PT is always last. */
7976 unsigned pos = key->ps_prolog.num_input_sgprs +
7977 key->ps_prolog.num_input_vgprs - 1;
7978 LLVMValueRef ptr[2], list;
7979
7980 /* Get the pointer to rw buffers. */
7981 ptr[0] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS);
7982 ptr[1] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS_HI);
7983 list = lp_build_gather_values(gallivm, ptr, 2);
7984 list = LLVMBuildBitCast(gallivm->builder, list, ctx->i64, "");
7985 list = LLVMBuildIntToPtr(gallivm->builder, list,
7986 const_array(ctx->v16i8, SI_NUM_RW_BUFFERS), "");
7987
7988 si_llvm_emit_polygon_stipple(ctx, list, pos);
7989 }
7990
7991 if (key->ps_prolog.states.bc_optimize_for_persp ||
7992 key->ps_prolog.states.bc_optimize_for_linear) {
7993 unsigned i, base = key->ps_prolog.num_input_sgprs;
7994 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7995
7996 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7997 * The hw doesn't compute CENTROID if the whole wave only
7998 * contains fully-covered quads.
7999 *
8000 * PRIM_MASK is after user SGPRs.
8001 */
8002 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8003 bc_optimize = LLVMBuildLShr(gallivm->builder, bc_optimize,
8004 LLVMConstInt(ctx->i32, 31, 0), "");
8005 bc_optimize = LLVMBuildTrunc(gallivm->builder, bc_optimize,
8006 ctx->i1, "");
8007
8008 if (key->ps_prolog.states.bc_optimize_for_persp) {
8009 /* Read PERSP_CENTER. */
8010 for (i = 0; i < 2; i++)
8011 center[i] = LLVMGetParam(func, base + 2 + i);
8012 /* Read PERSP_CENTROID. */
8013 for (i = 0; i < 2; i++)
8014 centroid[i] = LLVMGetParam(func, base + 4 + i);
8015 /* Select PERSP_CENTROID. */
8016 for (i = 0; i < 2; i++) {
8017 tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8018 center[i], centroid[i], "");
8019 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8020 tmp, base + 4 + i, "");
8021 }
8022 }
8023 if (key->ps_prolog.states.bc_optimize_for_linear) {
8024 /* Read LINEAR_CENTER. */
8025 for (i = 0; i < 2; i++)
8026 center[i] = LLVMGetParam(func, base + 8 + i);
8027 /* Read LINEAR_CENTROID. */
8028 for (i = 0; i < 2; i++)
8029 centroid[i] = LLVMGetParam(func, base + 10 + i);
8030 /* Select LINEAR_CENTROID. */
8031 for (i = 0; i < 2; i++) {
8032 tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8033 center[i], centroid[i], "");
8034 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8035 tmp, base + 10 + i, "");
8036 }
8037 }
8038 }
8039
8040 /* Force per-sample interpolation. */
8041 if (key->ps_prolog.states.force_persp_sample_interp) {
8042 unsigned i, base = key->ps_prolog.num_input_sgprs;
8043 LLVMValueRef persp_sample[2];
8044
8045 /* Read PERSP_SAMPLE. */
8046 for (i = 0; i < 2; i++)
8047 persp_sample[i] = LLVMGetParam(func, base + i);
8048 /* Overwrite PERSP_CENTER. */
8049 for (i = 0; i < 2; i++)
8050 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8051 persp_sample[i], base + 2 + i, "");
8052 /* Overwrite PERSP_CENTROID. */
8053 for (i = 0; i < 2; i++)
8054 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8055 persp_sample[i], base + 4 + i, "");
8056 }
8057 if (key->ps_prolog.states.force_linear_sample_interp) {
8058 unsigned i, base = key->ps_prolog.num_input_sgprs;
8059 LLVMValueRef linear_sample[2];
8060
8061 /* Read LINEAR_SAMPLE. */
8062 for (i = 0; i < 2; i++)
8063 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
8064 /* Overwrite LINEAR_CENTER. */
8065 for (i = 0; i < 2; i++)
8066 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8067 linear_sample[i], base + 8 + i, "");
8068 /* Overwrite LINEAR_CENTROID. */
8069 for (i = 0; i < 2; i++)
8070 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8071 linear_sample[i], base + 10 + i, "");
8072 }
8073
8074 /* Force center interpolation. */
8075 if (key->ps_prolog.states.force_persp_center_interp) {
8076 unsigned i, base = key->ps_prolog.num_input_sgprs;
8077 LLVMValueRef persp_center[2];
8078
8079 /* Read PERSP_CENTER. */
8080 for (i = 0; i < 2; i++)
8081 persp_center[i] = LLVMGetParam(func, base + 2 + i);
8082 /* Overwrite PERSP_SAMPLE. */
8083 for (i = 0; i < 2; i++)
8084 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8085 persp_center[i], base + i, "");
8086 /* Overwrite PERSP_CENTROID. */
8087 for (i = 0; i < 2; i++)
8088 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8089 persp_center[i], base + 4 + i, "");
8090 }
8091 if (key->ps_prolog.states.force_linear_center_interp) {
8092 unsigned i, base = key->ps_prolog.num_input_sgprs;
8093 LLVMValueRef linear_center[2];
8094
8095 /* Read LINEAR_CENTER. */
8096 for (i = 0; i < 2; i++)
8097 linear_center[i] = LLVMGetParam(func, base + 8 + i);
8098 /* Overwrite LINEAR_SAMPLE. */
8099 for (i = 0; i < 2; i++)
8100 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8101 linear_center[i], base + 6 + i, "");
8102 /* Overwrite LINEAR_CENTROID. */
8103 for (i = 0; i < 2; i++)
8104 ret = LLVMBuildInsertValue(gallivm->builder, ret,
8105 linear_center[i], base + 10 + i, "");
8106 }
8107
8108 /* Interpolate colors. */
8109 for (i = 0; i < 2; i++) {
8110 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
8111 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
8112 key->ps_prolog.face_vgpr_index;
8113 LLVMValueRef interp[2], color[4];
8114 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
8115
8116 if (!writemask)
8117 continue;
8118
8119 /* If the interpolation qualifier is not CONSTANT (-1). */
8120 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
8121 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
8122 key->ps_prolog.color_interp_vgpr_index[i];
8123
8124 /* Get the (i,j) updated by bc_optimize handling. */
8125 interp[0] = LLVMBuildExtractValue(gallivm->builder, ret,
8126 interp_vgpr, "");
8127 interp[1] = LLVMBuildExtractValue(gallivm->builder, ret,
8128 interp_vgpr + 1, "");
8129 interp_ij = lp_build_gather_values(gallivm, interp, 2);
8130 }
8131
8132 /* Use the absolute location of the input. */
8133 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8134
8135 if (key->ps_prolog.states.color_two_side) {
8136 face = LLVMGetParam(func, face_vgpr);
8137 face = LLVMBuildBitCast(gallivm->builder, face, ctx->i32, "");
8138 }
8139
8140 interp_fs_input(ctx,
8141 key->ps_prolog.color_attr_index[i],
8142 TGSI_SEMANTIC_COLOR, i,
8143 key->ps_prolog.num_interp_inputs,
8144 key->ps_prolog.colors_read, interp_ij,
8145 prim_mask, face, color);
8146
8147 while (writemask) {
8148 unsigned chan = u_bit_scan(&writemask);
8149 ret = LLVMBuildInsertValue(gallivm->builder, ret, color[chan],
8150 num_params++, "");
8151 }
8152 }
8153
8154 /* Tell LLVM to insert WQM instruction sequence when needed. */
8155 if (key->ps_prolog.wqm) {
8156 LLVMAddTargetDependentFunctionAttr(func,
8157 "amdgpu-ps-wqm-outputs", "");
8158 }
8159
8160 si_llvm_build_ret(ctx, ret);
8161 }
8162
8163 /**
8164 * Build the pixel shader epilog function. This handles everything that must be
8165 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
8166 */
8167 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8168 union si_shader_part_key *key)
8169 {
8170 struct gallivm_state *gallivm = &ctx->gallivm;
8171 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
8172 LLVMTypeRef params[16+8*4+3];
8173 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8174 int last_sgpr, num_params, i;
8175 struct si_ps_exports exp = {};
8176
8177 /* Declare input SGPRs. */
8178 params[SI_PARAM_RW_BUFFERS] = ctx->i64;
8179 params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
8180 params[SI_PARAM_SAMPLERS] = ctx->i64;
8181 params[SI_PARAM_IMAGES] = ctx->i64;
8182 params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
8183 params[SI_PARAM_ALPHA_REF] = ctx->f32;
8184 last_sgpr = SI_PARAM_ALPHA_REF;
8185
8186 /* Declare input VGPRs. */
8187 num_params = (last_sgpr + 1) +
8188 util_bitcount(key->ps_epilog.colors_written) * 4 +
8189 key->ps_epilog.writes_z +
8190 key->ps_epilog.writes_stencil +
8191 key->ps_epilog.writes_samplemask;
8192
8193 num_params = MAX2(num_params,
8194 last_sgpr + 1 + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8195
8196 assert(num_params <= ARRAY_SIZE(params));
8197
8198 for (i = last_sgpr + 1; i < num_params; i++)
8199 params[i] = ctx->f32;
8200
8201 /* Create the function. */
8202 si_create_function(ctx, "ps_epilog", NULL, 0, params, num_params, last_sgpr);
8203 /* Disable elimination of unused inputs. */
8204 si_llvm_add_attribute(ctx->main_fn,
8205 "InitialPSInputAddr", 0xffffff);
8206
8207 /* Process colors. */
8208 unsigned vgpr = last_sgpr + 1;
8209 unsigned colors_written = key->ps_epilog.colors_written;
8210 int last_color_export = -1;
8211
8212 /* Find the last color export. */
8213 if (!key->ps_epilog.writes_z &&
8214 !key->ps_epilog.writes_stencil &&
8215 !key->ps_epilog.writes_samplemask) {
8216 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8217
8218 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8219 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8220 /* Just set this if any of the colorbuffers are enabled. */
8221 if (spi_format &
8222 ((1llu << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8223 last_color_export = 0;
8224 } else {
8225 for (i = 0; i < 8; i++)
8226 if (colors_written & (1 << i) &&
8227 (spi_format >> (i * 4)) & 0xf)
8228 last_color_export = i;
8229 }
8230 }
8231
8232 while (colors_written) {
8233 LLVMValueRef color[4];
8234 int mrt = u_bit_scan(&colors_written);
8235
8236 for (i = 0; i < 4; i++)
8237 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8238
8239 si_export_mrt_color(bld_base, color, mrt,
8240 num_params - 1,
8241 mrt == last_color_export, &exp);
8242 }
8243
8244 /* Process depth, stencil, samplemask. */
8245 if (key->ps_epilog.writes_z)
8246 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8247 if (key->ps_epilog.writes_stencil)
8248 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8249 if (key->ps_epilog.writes_samplemask)
8250 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8251
8252 if (depth || stencil || samplemask)
8253 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8254 else if (last_color_export == -1)
8255 si_export_null(bld_base);
8256
8257 if (exp.num)
8258 si_emit_ps_exports(ctx, &exp);
8259
8260 /* Compile. */
8261 LLVMBuildRetVoid(gallivm->builder);
8262 }
8263
8264 /**
8265 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8266 */
8267 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8268 LLVMTargetMachineRef tm,
8269 struct si_shader *shader,
8270 struct pipe_debug_callback *debug)
8271 {
8272 union si_shader_part_key prolog_key;
8273 union si_shader_part_key epilog_key;
8274
8275 /* Get the prolog. */
8276 si_get_ps_prolog_key(shader, &prolog_key, true);
8277
8278 /* The prolog is a no-op if these aren't set. */
8279 if (si_need_ps_prolog(&prolog_key)) {
8280 shader->prolog =
8281 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8282 PIPE_SHADER_FRAGMENT, true,
8283 &prolog_key, tm, debug,
8284 si_build_ps_prolog_function,
8285 "Fragment Shader Prolog");
8286 if (!shader->prolog)
8287 return false;
8288 }
8289
8290 /* Get the epilog. */
8291 si_get_ps_epilog_key(shader, &epilog_key);
8292
8293 shader->epilog =
8294 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8295 PIPE_SHADER_FRAGMENT, false,
8296 &epilog_key, tm, debug,
8297 si_build_ps_epilog_function,
8298 "Fragment Shader Epilog");
8299 if (!shader->epilog)
8300 return false;
8301
8302 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8303 if (shader->key.part.ps.prolog.poly_stipple) {
8304 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8305 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8306 }
8307
8308 /* Set up the enable bits for per-sample shading if needed. */
8309 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8310 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8311 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8312 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8313 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8314 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8315 }
8316 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8317 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8318 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8319 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8320 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8321 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8322 }
8323 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8324 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8325 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8326 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8327 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8328 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8329 }
8330 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8331 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8332 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8333 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8334 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8335 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8336 }
8337
8338 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8339 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8340 !(shader->config.spi_ps_input_ena & 0xf)) {
8341 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8342 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8343 }
8344
8345 /* At least one pair of interpolation weights must be enabled. */
8346 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8347 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8348 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8349 }
8350
8351 /* The sample mask input is always enabled, because the API shader always
8352 * passes it through to the epilog. Disable it here if it's unused.
8353 */
8354 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8355 !shader->selector->info.reads_samplemask)
8356 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8357
8358 return true;
8359 }
8360
8361 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8362 unsigned *lds_size)
8363 {
8364 /* SPI barrier management bug:
8365 * Make sure we have at least 4k of LDS in use to avoid the bug.
8366 * It applies to workgroup sizes of more than one wavefront.
8367 */
8368 if (sscreen->b.family == CHIP_BONAIRE ||
8369 sscreen->b.family == CHIP_KABINI ||
8370 sscreen->b.family == CHIP_MULLINS)
8371 *lds_size = MAX2(*lds_size, 8);
8372 }
8373
8374 static void si_fix_resource_usage(struct si_screen *sscreen,
8375 struct si_shader *shader)
8376 {
8377 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8378
8379 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8380
8381 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8382 si_get_max_workgroup_size(shader) > 64) {
8383 si_multiwave_lds_size_workaround(sscreen,
8384 &shader->config.lds_size);
8385 }
8386 }
8387
8388 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
8389 struct si_shader *shader,
8390 struct pipe_debug_callback *debug)
8391 {
8392 struct si_shader_selector *sel = shader->selector;
8393 struct si_shader *mainp = sel->main_shader_part;
8394 int r;
8395
8396 /* LS, ES, VS are compiled on demand if the main part hasn't been
8397 * compiled for that stage.
8398 *
8399 * Vertex shaders are compiled on demand when a vertex fetch
8400 * workaround must be applied.
8401 */
8402 if (shader->is_monolithic) {
8403 /* Monolithic shader (compiled as a whole, has many variants,
8404 * may take a long time to compile).
8405 */
8406 r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
8407 if (r)
8408 return r;
8409 } else {
8410 /* The shader consists of 2-3 parts:
8411 *
8412 * - the middle part is the user shader, it has 1 variant only
8413 * and it was compiled during the creation of the shader
8414 * selector
8415 * - the prolog part is inserted at the beginning
8416 * - the epilog part is inserted at the end
8417 *
8418 * The prolog and epilog have many (but simple) variants.
8419 */
8420
8421 /* Copy the compiled TGSI shader data over. */
8422 shader->is_binary_shared = true;
8423 shader->binary = mainp->binary;
8424 shader->config = mainp->config;
8425 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8426 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8427 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8428 memcpy(shader->info.vs_output_param_offset,
8429 mainp->info.vs_output_param_offset,
8430 sizeof(mainp->info.vs_output_param_offset));
8431 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8432 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8433 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8434
8435 /* Select prologs and/or epilogs. */
8436 switch (sel->type) {
8437 case PIPE_SHADER_VERTEX:
8438 if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
8439 return -1;
8440 break;
8441 case PIPE_SHADER_TESS_CTRL:
8442 if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
8443 return -1;
8444 break;
8445 case PIPE_SHADER_TESS_EVAL:
8446 if (!si_shader_select_tes_parts(sscreen, tm, shader, debug))
8447 return -1;
8448 break;
8449 case PIPE_SHADER_GEOMETRY:
8450 if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
8451 return -1;
8452 break;
8453 case PIPE_SHADER_FRAGMENT:
8454 if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
8455 return -1;
8456
8457 /* Make sure we have at least as many VGPRs as there
8458 * are allocated inputs.
8459 */
8460 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8461 shader->info.num_input_vgprs);
8462 break;
8463 }
8464
8465 /* Update SGPR and VGPR counts. */
8466 if (shader->prolog) {
8467 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8468 shader->prolog->config.num_sgprs);
8469 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8470 shader->prolog->config.num_vgprs);
8471 }
8472 if (shader->epilog) {
8473 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8474 shader->epilog->config.num_sgprs);
8475 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8476 shader->epilog->config.num_vgprs);
8477 }
8478 }
8479
8480 si_fix_resource_usage(sscreen, shader);
8481 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8482 stderr);
8483
8484 /* Upload. */
8485 r = si_shader_binary_upload(sscreen, shader);
8486 if (r) {
8487 fprintf(stderr, "LLVM failed to upload shader\n");
8488 return r;
8489 }
8490
8491 return 0;
8492 }
8493
8494 void si_shader_destroy(struct si_shader *shader)
8495 {
8496 if (shader->scratch_bo)
8497 r600_resource_reference(&shader->scratch_bo, NULL);
8498
8499 r600_resource_reference(&shader->bo, NULL);
8500
8501 if (!shader->is_binary_shared)
8502 radeon_shader_binary_clean(&shader->binary);
8503
8504 free(shader->shader_log);
8505 }