radeonsi: use buffer_store_format_x & xy
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_tgsi_mem.c
1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_shader_internal.h"
26 #include "si_pipe.h"
27 #include "sid.h"
28 #include "tgsi/tgsi_build.h"
29 #include "tgsi/tgsi_util.h"
30 #include "ac_llvm_util.h"
31
32 static void tex_fetch_ptrs(struct lp_build_tgsi_context *bld_base,
33 struct lp_build_emit_data *emit_data,
34 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
35 LLVMValueRef *fmask_ptr);
36
37 /**
38 * Given a v8i32 resource descriptor for a buffer, extract the size of the
39 * buffer in number of elements and return it as an i32.
40 */
41 static LLVMValueRef get_buffer_size(
42 struct lp_build_tgsi_context *bld_base,
43 LLVMValueRef descriptor)
44 {
45 struct si_shader_context *ctx = si_shader_context(bld_base);
46 LLVMBuilderRef builder = ctx->ac.builder;
47 LLVMValueRef size =
48 LLVMBuildExtractElement(builder, descriptor,
49 LLVMConstInt(ctx->i32, 2, 0), "");
50
51 if (ctx->screen->info.chip_class == VI) {
52 /* On VI, the descriptor contains the size in bytes,
53 * but TXQ must return the size in elements.
54 * The stride is always non-zero for resources using TXQ.
55 */
56 LLVMValueRef stride =
57 LLVMBuildExtractElement(builder, descriptor,
58 ctx->i32_1, "");
59 stride = LLVMBuildLShr(builder, stride,
60 LLVMConstInt(ctx->i32, 16, 0), "");
61 stride = LLVMBuildAnd(builder, stride,
62 LLVMConstInt(ctx->i32, 0x3FFF, 0), "");
63
64 size = LLVMBuildUDiv(builder, size, stride, "");
65 }
66
67 return size;
68 }
69
70 static LLVMValueRef
71 shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
72 const struct tgsi_full_src_register *reg,
73 bool ubo)
74 {
75 LLVMValueRef index;
76
77 if (!reg->Register.Indirect) {
78 index = LLVMConstInt(ctx->i32, reg->Register.Index, false);
79 } else {
80 index = si_get_indirect_index(ctx, &reg->Indirect,
81 1, reg->Register.Index);
82 }
83
84 if (ubo)
85 return ctx->abi.load_ubo(&ctx->abi, index);
86 else
87 return ctx->abi.load_ssbo(&ctx->abi, index, false);
88 }
89
90 static enum ac_image_dim
91 ac_texture_dim_from_tgsi_target(struct si_screen *screen, enum tgsi_texture_type target)
92 {
93 switch (target) {
94 case TGSI_TEXTURE_1D:
95 case TGSI_TEXTURE_SHADOW1D:
96 if (screen->info.chip_class >= GFX9)
97 return ac_image_2d;
98 return ac_image_1d;
99 case TGSI_TEXTURE_2D:
100 case TGSI_TEXTURE_SHADOW2D:
101 case TGSI_TEXTURE_RECT:
102 case TGSI_TEXTURE_SHADOWRECT:
103 return ac_image_2d;
104 case TGSI_TEXTURE_3D:
105 return ac_image_3d;
106 case TGSI_TEXTURE_CUBE:
107 case TGSI_TEXTURE_SHADOWCUBE:
108 case TGSI_TEXTURE_CUBE_ARRAY:
109 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
110 return ac_image_cube;
111 case TGSI_TEXTURE_1D_ARRAY:
112 case TGSI_TEXTURE_SHADOW1D_ARRAY:
113 if (screen->info.chip_class >= GFX9)
114 return ac_image_2darray;
115 return ac_image_1darray;
116 case TGSI_TEXTURE_2D_ARRAY:
117 case TGSI_TEXTURE_SHADOW2D_ARRAY:
118 return ac_image_2darray;
119 case TGSI_TEXTURE_2D_MSAA:
120 return ac_image_2dmsaa;
121 case TGSI_TEXTURE_2D_ARRAY_MSAA:
122 return ac_image_2darraymsaa;
123 default:
124 unreachable("unhandled texture type");
125 }
126 }
127
128 static enum ac_image_dim
129 ac_image_dim_from_tgsi_target(struct si_screen *screen, enum tgsi_texture_type target)
130 {
131 enum ac_image_dim dim = ac_texture_dim_from_tgsi_target(screen, target);
132
133 /* Match the resource type set in the descriptor. */
134 if (dim == ac_image_cube ||
135 (screen->info.chip_class <= VI && dim == ac_image_3d))
136 dim = ac_image_2darray;
137 else if (target == TGSI_TEXTURE_2D && screen->info.chip_class >= GFX9) {
138 /* When a single layer of a 3D texture is bound, the shader
139 * will refer to a 2D target, but the descriptor has a 3D type.
140 * Since the HW ignores BASE_ARRAY in this case, we need to
141 * send 3 coordinates. This doesn't hurt when the underlying
142 * texture is non-3D.
143 */
144 dim = ac_image_3d;
145 }
146
147 return dim;
148 }
149
150 /**
151 * Given a 256-bit resource descriptor, force the DCC enable bit to off.
152 *
153 * At least on Tonga, executing image stores on images with DCC enabled and
154 * non-trivial can eventually lead to lockups. This can occur when an
155 * application binds an image as read-only but then uses a shader that writes
156 * to it. The OpenGL spec allows almost arbitrarily bad behavior (including
157 * program termination) in this case, but it doesn't cost much to be a bit
158 * nicer: disabling DCC in the shader still leads to undefined results but
159 * avoids the lockup.
160 */
161 static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
162 LLVMValueRef rsrc)
163 {
164 if (ctx->screen->info.chip_class <= CIK) {
165 return rsrc;
166 } else {
167 LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
168 LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
169 LLVMValueRef tmp;
170
171 tmp = LLVMBuildExtractElement(ctx->ac.builder, rsrc, i32_6, "");
172 tmp = LLVMBuildAnd(ctx->ac.builder, tmp, i32_C, "");
173 return LLVMBuildInsertElement(ctx->ac.builder, rsrc, tmp, i32_6, "");
174 }
175 }
176
177 LLVMValueRef si_load_image_desc(struct si_shader_context *ctx,
178 LLVMValueRef list, LLVMValueRef index,
179 enum ac_descriptor_type desc_type, bool dcc_off,
180 bool bindless)
181 {
182 LLVMBuilderRef builder = ctx->ac.builder;
183 LLVMValueRef rsrc;
184
185 if (desc_type == AC_DESC_BUFFER) {
186 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 2, 0),
187 ctx->i32_1);
188 list = LLVMBuildPointerCast(builder, list,
189 ac_array_in_const32_addr_space(ctx->v4i32), "");
190 } else {
191 assert(desc_type == AC_DESC_IMAGE);
192 }
193
194 if (bindless)
195 rsrc = ac_build_load_to_sgpr_uint_wraparound(&ctx->ac, list, index);
196 else
197 rsrc = ac_build_load_to_sgpr(&ctx->ac, list, index);
198
199 if (desc_type == AC_DESC_IMAGE && dcc_off)
200 rsrc = force_dcc_off(ctx, rsrc);
201 return rsrc;
202 }
203
204 /**
205 * Load the resource descriptor for \p image.
206 */
207 static void
208 image_fetch_rsrc(
209 struct lp_build_tgsi_context *bld_base,
210 const struct tgsi_full_src_register *image,
211 bool is_store, unsigned target,
212 LLVMValueRef *rsrc)
213 {
214 struct si_shader_context *ctx = si_shader_context(bld_base);
215 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
216 ctx->param_samplers_and_images);
217 LLVMValueRef index;
218 bool dcc_off = is_store;
219
220 if (!image->Register.Indirect) {
221 const struct tgsi_shader_info *info = bld_base->info;
222 unsigned images_writemask = info->images_store |
223 info->images_atomic;
224
225 index = LLVMConstInt(ctx->i32,
226 si_get_image_slot(image->Register.Index), 0);
227
228 if (images_writemask & (1 << image->Register.Index))
229 dcc_off = true;
230 } else {
231 /* From the GL_ARB_shader_image_load_store extension spec:
232 *
233 * If a shader performs an image load, store, or atomic
234 * operation using an image variable declared as an array,
235 * and if the index used to select an individual element is
236 * negative or greater than or equal to the size of the
237 * array, the results of the operation are undefined but may
238 * not lead to termination.
239 */
240 index = si_get_bounded_indirect_index(ctx, &image->Indirect,
241 image->Register.Index,
242 ctx->num_images);
243 index = LLVMBuildSub(ctx->ac.builder,
244 LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0),
245 index, "");
246 }
247
248 bool bindless = false;
249
250 if (image->Register.File != TGSI_FILE_IMAGE) {
251 /* Bindless descriptors are accessible from a different pair of
252 * user SGPR indices.
253 */
254 rsrc_ptr = LLVMGetParam(ctx->main_fn,
255 ctx->param_bindless_samplers_and_images);
256 index = lp_build_emit_fetch_src(bld_base, image,
257 TGSI_TYPE_UNSIGNED, 0);
258
259 /* For simplicity, bindless image descriptors use fixed
260 * 16-dword slots for now.
261 */
262 index = LLVMBuildMul(ctx->ac.builder, index,
263 LLVMConstInt(ctx->i32, 2, 0), "");
264 bindless = true;
265 }
266
267 *rsrc = si_load_image_desc(ctx, rsrc_ptr, index,
268 target == TGSI_TEXTURE_BUFFER ? AC_DESC_BUFFER : AC_DESC_IMAGE,
269 dcc_off, bindless);
270 }
271
272 static void image_fetch_coords(
273 struct lp_build_tgsi_context *bld_base,
274 const struct tgsi_full_instruction *inst,
275 unsigned src, LLVMValueRef desc,
276 LLVMValueRef *coords)
277 {
278 struct si_shader_context *ctx = si_shader_context(bld_base);
279 LLVMBuilderRef builder = ctx->ac.builder;
280 unsigned target = inst->Memory.Texture;
281 unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
282 LLVMValueRef tmp;
283 int chan;
284
285 if (target == TGSI_TEXTURE_2D_MSAA ||
286 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
287 /* Need the sample index as well. */
288 num_coords++;
289 }
290
291 for (chan = 0; chan < num_coords; ++chan) {
292 tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
293 tmp = ac_to_integer(&ctx->ac, tmp);
294 coords[chan] = tmp;
295 }
296
297 if (ctx->screen->info.chip_class >= GFX9) {
298 /* 1D textures are allocated and used as 2D on GFX9. */
299 if (target == TGSI_TEXTURE_1D) {
300 coords[1] = ctx->i32_0;
301 } else if (target == TGSI_TEXTURE_1D_ARRAY) {
302 coords[2] = coords[1];
303 coords[1] = ctx->i32_0;
304 } else if (target == TGSI_TEXTURE_2D) {
305 /* The hw can't bind a slice of a 3D image as a 2D
306 * image, because it ignores BASE_ARRAY if the target
307 * is 3D. The workaround is to read BASE_ARRAY and set
308 * it as the 3rd address operand for all 2D images.
309 */
310 LLVMValueRef first_layer, const5, mask;
311
312 const5 = LLVMConstInt(ctx->i32, 5, 0);
313 mask = LLVMConstInt(ctx->i32, S_008F24_BASE_ARRAY(~0), 0);
314 first_layer = LLVMBuildExtractElement(builder, desc, const5, "");
315 first_layer = LLVMBuildAnd(builder, first_layer, mask, "");
316
317 coords[2] = first_layer;
318 }
319 }
320 }
321
322 static unsigned get_cache_policy(struct si_shader_context *ctx,
323 const struct tgsi_full_instruction *inst,
324 bool atomic, bool may_store_unaligned,
325 bool writeonly_memory)
326 {
327 unsigned cache_policy = 0;
328
329 if (!atomic &&
330 /* SI has a TC L1 bug causing corruption of 8bit/16bit stores.
331 * All store opcodes not aligned to a dword are affected.
332 * The only way to get unaligned stores in radeonsi is through
333 * shader images. */
334 ((may_store_unaligned && ctx->screen->info.chip_class == SI) ||
335 /* If this is write-only, don't keep data in L1 to prevent
336 * evicting L1 cache lines that may be needed by other
337 * instructions. */
338 writeonly_memory ||
339 inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE)))
340 cache_policy |= ac_glc;
341
342 if (inst->Memory.Qualifier & TGSI_MEMORY_STREAM_CACHE_POLICY)
343 cache_policy |= ac_slc;
344
345 return cache_policy;
346 }
347
348 static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
349 const struct tgsi_full_instruction *inst,
350 LLVMTypeRef type, int arg)
351 {
352 LLVMBuilderRef builder = ctx->ac.builder;
353 LLVMValueRef offset, ptr;
354 int addr_space;
355
356 offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
357 offset = ac_to_integer(&ctx->ac, offset);
358
359 ptr = ctx->ac.lds;
360 ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
361 addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
362 ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
363
364 return ptr;
365 }
366
367 static void load_emit_memory(
368 struct si_shader_context *ctx,
369 struct lp_build_emit_data *emit_data)
370 {
371 const struct tgsi_full_instruction *inst = emit_data->inst;
372 unsigned writemask = inst->Dst[0].Register.WriteMask;
373 LLVMValueRef channels[4], ptr, derived_ptr, index;
374 int chan;
375
376 ptr = get_memory_ptr(ctx, inst, ctx->f32, 1);
377
378 for (chan = 0; chan < 4; ++chan) {
379 if (!(writemask & (1 << chan))) {
380 channels[chan] = LLVMGetUndef(ctx->f32);
381 continue;
382 }
383
384 index = LLVMConstInt(ctx->i32, chan, 0);
385 derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
386 channels[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, "");
387 }
388 emit_data->output[emit_data->chan] = ac_build_gather_values(&ctx->ac, channels, 4);
389 }
390
391 /**
392 * Return true if the memory accessed by a LOAD or STORE instruction is
393 * read-only or write-only, respectively.
394 *
395 * \param shader_buffers_reverse_access_mask
396 * For LOAD, set this to (store | atomic) slot usage in the shader.
397 * For STORE, set this to (load | atomic) slot usage in the shader.
398 * \param images_reverse_access_mask Same as above, but for images.
399 * \param bindless_buffer_reverse_access_mask Same as above, but for bindless image buffers.
400 * \param bindless_image_reverse_access_mask Same as above, but for bindless images.
401 */
402 static bool is_oneway_access_only(const struct tgsi_full_instruction *inst,
403 const struct tgsi_shader_info *info,
404 unsigned shader_buffers_reverse_access_mask,
405 unsigned images_reverse_access_mask,
406 bool bindless_buffer_reverse_access_mask,
407 bool bindless_image_reverse_access_mask)
408 {
409 enum tgsi_file_type resource_file;
410 unsigned resource_index;
411 bool resource_indirect;
412
413 if (inst->Instruction.Opcode == TGSI_OPCODE_STORE) {
414 resource_file = inst->Dst[0].Register.File;
415 resource_index = inst->Dst[0].Register.Index;
416 resource_indirect = inst->Dst[0].Register.Indirect;
417 } else {
418 resource_file = inst->Src[0].Register.File;
419 resource_index = inst->Src[0].Register.Index;
420 resource_indirect = inst->Src[0].Register.Indirect;
421 }
422
423 assert(resource_file == TGSI_FILE_BUFFER ||
424 resource_file == TGSI_FILE_IMAGE ||
425 /* bindless image */
426 resource_file == TGSI_FILE_INPUT ||
427 resource_file == TGSI_FILE_OUTPUT ||
428 resource_file == TGSI_FILE_CONSTANT ||
429 resource_file == TGSI_FILE_TEMPORARY ||
430 resource_file == TGSI_FILE_IMMEDIATE);
431
432 assert(resource_file != TGSI_FILE_BUFFER ||
433 inst->Memory.Texture == TGSI_TEXTURE_BUFFER);
434
435 bool bindless = resource_file != TGSI_FILE_BUFFER &&
436 resource_file != TGSI_FILE_IMAGE;
437
438 /* RESTRICT means NOALIAS.
439 * If there are no writes, we can assume the accessed memory is read-only.
440 * If there are no reads, we can assume the accessed memory is write-only.
441 */
442 if (inst->Memory.Qualifier & TGSI_MEMORY_RESTRICT && !bindless) {
443 unsigned reverse_access_mask;
444
445 if (resource_file == TGSI_FILE_BUFFER) {
446 reverse_access_mask = shader_buffers_reverse_access_mask;
447 } else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
448 reverse_access_mask = info->images_buffers &
449 images_reverse_access_mask;
450 } else {
451 reverse_access_mask = ~info->images_buffers &
452 images_reverse_access_mask;
453 }
454
455 if (resource_indirect) {
456 if (!reverse_access_mask)
457 return true;
458 } else {
459 if (!(reverse_access_mask &
460 (1u << resource_index)))
461 return true;
462 }
463 }
464
465 /* If there are no buffer writes (for both shader buffers & image
466 * buffers), it implies that buffer memory is read-only.
467 * If there are no buffer reads (for both shader buffers & image
468 * buffers), it implies that buffer memory is write-only.
469 *
470 * Same for the case when there are no writes/reads for non-buffer
471 * images.
472 */
473 if (resource_file == TGSI_FILE_BUFFER ||
474 inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
475 if (!shader_buffers_reverse_access_mask &&
476 !(info->images_buffers & images_reverse_access_mask) &&
477 !bindless_buffer_reverse_access_mask)
478 return true;
479 } else {
480 if (!(~info->images_buffers & images_reverse_access_mask) &&
481 !bindless_image_reverse_access_mask)
482 return true;
483 }
484 return false;
485 }
486
487 static void load_emit(
488 const struct lp_build_tgsi_action *action,
489 struct lp_build_tgsi_context *bld_base,
490 struct lp_build_emit_data *emit_data)
491 {
492 struct si_shader_context *ctx = si_shader_context(bld_base);
493 const struct tgsi_full_instruction * inst = emit_data->inst;
494 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
495 bool can_speculate = false;
496 LLVMValueRef vindex = ctx->i32_0;
497 LLVMValueRef voffset = ctx->i32_0;
498 struct ac_image_args args = {};
499
500 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
501 load_emit_memory(ctx, emit_data);
502 return;
503 }
504
505 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
506 inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
507 bool ubo = inst->Src[0].Register.File == TGSI_FILE_CONSTBUF;
508 args.resource = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], ubo);
509 voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 1, 0));
510 } else {
511 unsigned target = inst->Memory.Texture;
512
513 image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &args.resource);
514 image_fetch_coords(bld_base, inst, 1, args.resource, args.coords);
515 vindex = args.coords[0]; /* for buffers only */
516 }
517
518 if (inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
519 emit_data->output[emit_data->chan] =
520 ac_build_buffer_load(&ctx->ac, args.resource,
521 util_last_bit(inst->Dst[0].Register.WriteMask),
522 NULL, voffset, NULL, 0, 0, 0, true, true);
523 return;
524 }
525
526 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
527 ac_build_waitcnt(&ctx->ac, VM_CNT);
528
529 can_speculate = !(inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE) &&
530 is_oneway_access_only(inst, info,
531 info->shader_buffers_store |
532 info->shader_buffers_atomic,
533 info->images_store |
534 info->images_atomic,
535 info->uses_bindless_buffer_store |
536 info->uses_bindless_buffer_atomic,
537 info->uses_bindless_image_store |
538 info->uses_bindless_image_atomic);
539 args.cache_policy = get_cache_policy(ctx, inst, false, false, false);
540
541 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
542 /* Don't use SMEM for shader buffer loads, because LLVM doesn't
543 * select SMEM for SI.load.const with a non-constant offset, and
544 * constant offsets practically don't exist with shader buffers.
545 *
546 * Also, SI.load.const doesn't use inst_offset when it's lowered
547 * to VMEM, so we just end up with more VALU instructions in the end
548 * and no benefit.
549 *
550 * TODO: Remove this line once LLVM can select SMEM with a non-constant
551 * offset, and can derive inst_offset when VMEM is selected.
552 * After that, si_memory_barrier should invalidate sL1 for shader
553 * buffers.
554 */
555 emit_data->output[emit_data->chan] =
556 ac_build_buffer_load(&ctx->ac, args.resource,
557 util_last_bit(inst->Dst[0].Register.WriteMask),
558 NULL, voffset, NULL, 0,
559 !!(args.cache_policy & ac_glc),
560 !!(args.cache_policy & ac_slc),
561 can_speculate, false);
562 return;
563 }
564
565 if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
566 unsigned num_channels = util_last_bit(inst->Dst[0].Register.WriteMask);
567 LLVMValueRef result =
568 ac_build_buffer_load_format(&ctx->ac,
569 args.resource,
570 vindex,
571 ctx->i32_0,
572 num_channels,
573 !!(args.cache_policy & ac_glc),
574 can_speculate);
575 emit_data->output[emit_data->chan] =
576 ac_build_expand_to_vec4(&ctx->ac, result, num_channels);
577 } else {
578 args.opcode = ac_image_load;
579 args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
580 args.attributes = ac_get_load_intr_attribs(can_speculate);
581 args.dmask = 0xf;
582
583 emit_data->output[emit_data->chan] =
584 ac_build_image_opcode(&ctx->ac, &args);
585 }
586 }
587
588 static void store_emit_buffer(struct si_shader_context *ctx,
589 LLVMValueRef resource,
590 unsigned writemask,
591 LLVMValueRef value,
592 LLVMValueRef voffset,
593 unsigned cache_policy,
594 bool writeonly_memory)
595 {
596 LLVMBuilderRef builder = ctx->ac.builder;
597 LLVMValueRef base_data = value;
598 LLVMValueRef base_offset = voffset;
599
600 while (writemask) {
601 int start, count;
602 const char *intrinsic_name;
603 LLVMValueRef data, voff;
604
605 u_bit_scan_consecutive_range(&writemask, &start, &count);
606
607 /* Due to an LLVM limitation, split 3-element writes
608 * into a 2-element and a 1-element write. */
609 if (count == 3) {
610 writemask |= 1 << (start + 2);
611 count = 2;
612 }
613
614 if (count == 4) {
615 data = base_data;
616 intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
617 } else if (count == 2) {
618 LLVMValueRef values[2] = {
619 LLVMBuildExtractElement(builder, base_data,
620 LLVMConstInt(ctx->i32, start, 0), ""),
621 LLVMBuildExtractElement(builder, base_data,
622 LLVMConstInt(ctx->i32, start + 1, 0), ""),
623 };
624
625 data = ac_build_gather_values(&ctx->ac, values, 2);
626 intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
627 } else {
628 assert(count == 1);
629 data = LLVMBuildExtractElement(
630 builder, base_data,
631 LLVMConstInt(ctx->i32, start, 0), "");
632 intrinsic_name = "llvm.amdgcn.buffer.store.f32";
633 }
634
635 voff = base_offset;
636 if (start != 0) {
637 voff = LLVMBuildAdd(
638 builder, voff,
639 LLVMConstInt(ctx->i32, start * 4, 0), "");
640 }
641
642 LLVMValueRef args[] = {
643 data,
644 resource,
645 ctx->i32_0, /* vindex */
646 voff,
647 LLVMConstInt(ctx->i1, !!(cache_policy & ac_glc), 0),
648 LLVMConstInt(ctx->i1, !!(cache_policy & ac_slc), 0),
649 };
650 ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->voidt, args, 6,
651 ac_get_store_intr_attribs(writeonly_memory));
652 }
653 }
654
655 static void store_emit_memory(
656 struct si_shader_context *ctx,
657 struct lp_build_emit_data *emit_data)
658 {
659 const struct tgsi_full_instruction *inst = emit_data->inst;
660 LLVMBuilderRef builder = ctx->ac.builder;
661 unsigned writemask = inst->Dst[0].Register.WriteMask;
662 LLVMValueRef ptr, derived_ptr, data, index;
663 int chan;
664
665 ptr = get_memory_ptr(ctx, inst, ctx->f32, 0);
666
667 for (chan = 0; chan < 4; ++chan) {
668 if (!(writemask & (1 << chan))) {
669 continue;
670 }
671 data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
672 index = LLVMConstInt(ctx->i32, chan, 0);
673 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
674 LLVMBuildStore(builder, data, derived_ptr);
675 }
676 }
677
678 static void store_emit(
679 const struct lp_build_tgsi_action *action,
680 struct lp_build_tgsi_context *bld_base,
681 struct lp_build_emit_data *emit_data)
682 {
683 struct si_shader_context *ctx = si_shader_context(bld_base);
684 const struct tgsi_full_instruction * inst = emit_data->inst;
685 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
686 struct tgsi_full_src_register resource_reg =
687 tgsi_full_src_register_from_dst(&inst->Dst[0]);
688 unsigned target = inst->Memory.Texture;
689
690 if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
691 store_emit_memory(ctx, emit_data);
692 return;
693 }
694
695 bool writeonly_memory = is_oneway_access_only(inst, info,
696 info->shader_buffers_load |
697 info->shader_buffers_atomic,
698 info->images_load |
699 info->images_atomic,
700 info->uses_bindless_buffer_load |
701 info->uses_bindless_buffer_atomic,
702 info->uses_bindless_image_load |
703 info->uses_bindless_image_atomic);
704 LLVMValueRef chans[4];
705 LLVMValueRef vindex = ctx->i32_0;
706 LLVMValueRef voffset = ctx->i32_0;
707 struct ac_image_args args = {};
708
709 for (unsigned chan = 0; chan < 4; ++chan)
710 chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
711
712 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
713 args.resource = shader_buffer_fetch_rsrc(ctx, &resource_reg, false);
714 voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 0, 0));
715 } else {
716 image_fetch_rsrc(bld_base, &resource_reg, true, target, &args.resource);
717 image_fetch_coords(bld_base, inst, 0, args.resource, args.coords);
718 vindex = args.coords[0]; /* for buffers only */
719 }
720
721 if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
722 ac_build_waitcnt(&ctx->ac, VM_CNT);
723
724 bool is_image = inst->Dst[0].Register.File != TGSI_FILE_BUFFER;
725 args.cache_policy = get_cache_policy(ctx, inst,
726 false, /* atomic */
727 is_image, /* may_store_unaligned */
728 writeonly_memory);
729
730 if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
731 store_emit_buffer(ctx, args.resource, inst->Dst[0].Register.WriteMask,
732 ac_build_gather_values(&ctx->ac, chans, 4),
733 voffset, args.cache_policy, writeonly_memory);
734 return;
735 }
736
737 if (target == TGSI_TEXTURE_BUFFER) {
738 unsigned num_channels = util_last_bit(inst->Dst[0].Register.WriteMask);
739 num_channels = util_next_power_of_two(num_channels);
740
741 LLVMValueRef buf_args[6] = {
742 ac_build_gather_values(&ctx->ac, chans, 4),
743 args.resource,
744 vindex,
745 ctx->i32_0, /* voffset */
746 };
747
748 if (HAVE_LLVM >= 0x0800) {
749 buf_args[4] = ctx->i32_0; /* soffset */
750 buf_args[5] = LLVMConstInt(ctx->i1, args.cache_policy, 0);
751 } else {
752 buf_args[4] = LLVMConstInt(ctx->i1, !!(args.cache_policy & ac_glc), 0);
753 buf_args[5] = LLVMConstInt(ctx->i1, !!(args.cache_policy & ac_slc), 0);
754 }
755
756 const char *types[] = { "f32", "v2f32", "v4f32" };
757 char name[128];
758
759 snprintf(name, sizeof(name), "%s.%s",
760 HAVE_LLVM >= 0x0800 ? "llvm.amdgcn.struct.buffer.store.format" :
761 "llvm.amdgcn.buffer.store.format",
762 types[CLAMP(num_channels, 1, 3) - 1]);
763
764 emit_data->output[emit_data->chan] = ac_build_intrinsic(
765 &ctx->ac,
766 name,
767 ctx->voidt, buf_args, 6,
768 ac_get_store_intr_attribs(writeonly_memory));
769 } else {
770 args.opcode = ac_image_store;
771 args.data[0] = ac_build_gather_values(&ctx->ac, chans, 4);
772 args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
773 args.attributes = ac_get_store_intr_attribs(writeonly_memory);
774 args.dmask = 0xf;
775
776 emit_data->output[emit_data->chan] =
777 ac_build_image_opcode(&ctx->ac, &args);
778 }
779 }
780
781 static void atomic_emit_memory(struct si_shader_context *ctx,
782 struct lp_build_emit_data *emit_data) {
783 LLVMBuilderRef builder = ctx->ac.builder;
784 const struct tgsi_full_instruction * inst = emit_data->inst;
785 LLVMValueRef ptr, result, arg;
786
787 ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
788
789 arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
790 arg = ac_to_integer(&ctx->ac, arg);
791
792 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
793 LLVMValueRef new_data;
794 new_data = lp_build_emit_fetch(&ctx->bld_base,
795 inst, 3, 0);
796
797 new_data = ac_to_integer(&ctx->ac, new_data);
798
799 result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
800 LLVMAtomicOrderingSequentiallyConsistent,
801 LLVMAtomicOrderingSequentiallyConsistent,
802 false);
803
804 result = LLVMBuildExtractValue(builder, result, 0, "");
805 } else {
806 LLVMAtomicRMWBinOp op;
807
808 switch(inst->Instruction.Opcode) {
809 case TGSI_OPCODE_ATOMUADD:
810 op = LLVMAtomicRMWBinOpAdd;
811 break;
812 case TGSI_OPCODE_ATOMXCHG:
813 op = LLVMAtomicRMWBinOpXchg;
814 break;
815 case TGSI_OPCODE_ATOMAND:
816 op = LLVMAtomicRMWBinOpAnd;
817 break;
818 case TGSI_OPCODE_ATOMOR:
819 op = LLVMAtomicRMWBinOpOr;
820 break;
821 case TGSI_OPCODE_ATOMXOR:
822 op = LLVMAtomicRMWBinOpXor;
823 break;
824 case TGSI_OPCODE_ATOMUMIN:
825 op = LLVMAtomicRMWBinOpUMin;
826 break;
827 case TGSI_OPCODE_ATOMUMAX:
828 op = LLVMAtomicRMWBinOpUMax;
829 break;
830 case TGSI_OPCODE_ATOMIMIN:
831 op = LLVMAtomicRMWBinOpMin;
832 break;
833 case TGSI_OPCODE_ATOMIMAX:
834 op = LLVMAtomicRMWBinOpMax;
835 break;
836 default:
837 unreachable("unknown atomic opcode");
838 }
839
840 result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
841 LLVMAtomicOrderingSequentiallyConsistent,
842 false);
843 }
844 emit_data->output[emit_data->chan] =
845 LLVMBuildBitCast(builder, result, ctx->f32, "");
846 }
847
848 static void atomic_emit(
849 const struct lp_build_tgsi_action *action,
850 struct lp_build_tgsi_context *bld_base,
851 struct lp_build_emit_data *emit_data)
852 {
853 struct si_shader_context *ctx = si_shader_context(bld_base);
854 const struct tgsi_full_instruction * inst = emit_data->inst;
855 struct ac_image_args args = {};
856 unsigned num_data = 0;
857 LLVMValueRef vindex = ctx->i32_0;
858 LLVMValueRef voffset = ctx->i32_0;
859
860 if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
861 atomic_emit_memory(ctx, emit_data);
862 return;
863 }
864
865 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
866 /* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
867 * of arguments, which is reversed relative to TGSI (and GLSL)
868 */
869 args.data[num_data++] =
870 ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 3, 0));
871 }
872
873 args.data[num_data++] =
874 ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 2, 0));
875 args.cache_policy = get_cache_policy(ctx, inst, true, false, false);
876
877 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
878 args.resource = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], false);
879 voffset = ac_to_integer(&ctx->ac, lp_build_emit_fetch(bld_base, inst, 1, 0));
880 } else {
881 image_fetch_rsrc(bld_base, &inst->Src[0], true,
882 inst->Memory.Texture, &args.resource);
883 image_fetch_coords(bld_base, inst, 1, args.resource, args.coords);
884 vindex = args.coords[0]; /* for buffers only */
885 }
886
887 if (HAVE_LLVM >= 0x0800 &&
888 inst->Src[0].Register.File != TGSI_FILE_BUFFER &&
889 inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
890 LLVMValueRef buf_args[7];
891 unsigned num_args = 0;
892
893 buf_args[num_args++] = args.data[0];
894 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
895 buf_args[num_args++] = args.data[1];
896
897 buf_args[num_args++] = args.resource;
898 buf_args[num_args++] = vindex;
899 buf_args[num_args++] = voffset;
900 buf_args[num_args++] = ctx->i32_0; /* soffset */
901 buf_args[num_args++] = LLVMConstInt(ctx->i32, args.cache_policy & ac_slc, 0);
902
903 char intrinsic_name[64];
904 snprintf(intrinsic_name, sizeof(intrinsic_name),
905 "llvm.amdgcn.struct.buffer.atomic.%s", action->intr_name);
906 emit_data->output[emit_data->chan] =
907 ac_to_float(&ctx->ac,
908 ac_build_intrinsic(&ctx->ac, intrinsic_name,
909 ctx->i32, buf_args, num_args, 0));
910 return;
911 }
912
913 if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
914 (HAVE_LLVM < 0x0800 &&
915 inst->Memory.Texture == TGSI_TEXTURE_BUFFER)) {
916 LLVMValueRef buf_args[7];
917 unsigned num_args = 0;
918
919 buf_args[num_args++] = args.data[0];
920 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
921 buf_args[num_args++] = args.data[1];
922
923 buf_args[num_args++] = args.resource;
924 buf_args[num_args++] = vindex;
925 buf_args[num_args++] = voffset;
926 buf_args[num_args++] = args.cache_policy & ac_slc ? ctx->i1true : ctx->i1false;
927
928 char intrinsic_name[40];
929 snprintf(intrinsic_name, sizeof(intrinsic_name),
930 "llvm.amdgcn.buffer.atomic.%s", action->intr_name);
931 emit_data->output[emit_data->chan] =
932 ac_to_float(&ctx->ac,
933 ac_build_intrinsic(&ctx->ac, intrinsic_name,
934 ctx->i32, buf_args, num_args, 0));
935 } else {
936 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
937 args.opcode = ac_image_atomic_cmpswap;
938 } else {
939 args.opcode = ac_image_atomic;
940 switch (inst->Instruction.Opcode) {
941 case TGSI_OPCODE_ATOMXCHG: args.atomic = ac_atomic_swap; break;
942 case TGSI_OPCODE_ATOMUADD: args.atomic = ac_atomic_add; break;
943 case TGSI_OPCODE_ATOMAND: args.atomic = ac_atomic_and; break;
944 case TGSI_OPCODE_ATOMOR: args.atomic = ac_atomic_or; break;
945 case TGSI_OPCODE_ATOMXOR: args.atomic = ac_atomic_xor; break;
946 case TGSI_OPCODE_ATOMUMIN: args.atomic = ac_atomic_umin; break;
947 case TGSI_OPCODE_ATOMUMAX: args.atomic = ac_atomic_umax; break;
948 case TGSI_OPCODE_ATOMIMIN: args.atomic = ac_atomic_smin; break;
949 case TGSI_OPCODE_ATOMIMAX: args.atomic = ac_atomic_smax; break;
950 default: unreachable("unhandled image atomic");
951 }
952 }
953
954 args.dim = ac_image_dim_from_tgsi_target(ctx->screen, inst->Memory.Texture);
955 emit_data->output[emit_data->chan] =
956 ac_to_float(&ctx->ac, ac_build_image_opcode(&ctx->ac, &args));
957 }
958 }
959
960 static LLVMValueRef fix_resinfo(struct si_shader_context *ctx,
961 unsigned target, LLVMValueRef out)
962 {
963 LLVMBuilderRef builder = ctx->ac.builder;
964
965 /* 1D textures are allocated and used as 2D on GFX9. */
966 if (ctx->screen->info.chip_class >= GFX9 &&
967 (target == TGSI_TEXTURE_1D_ARRAY ||
968 target == TGSI_TEXTURE_SHADOW1D_ARRAY)) {
969 LLVMValueRef layers =
970 LLVMBuildExtractElement(builder, out,
971 LLVMConstInt(ctx->i32, 2, 0), "");
972 out = LLVMBuildInsertElement(builder, out, layers,
973 ctx->i32_1, "");
974 }
975
976 /* Divide the number of layers by 6 to get the number of cubes. */
977 if (target == TGSI_TEXTURE_CUBE_ARRAY ||
978 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
979 LLVMValueRef imm2 = LLVMConstInt(ctx->i32, 2, 0);
980
981 LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
982 z = LLVMBuildSDiv(builder, z, LLVMConstInt(ctx->i32, 6, 0), "");
983
984 out = LLVMBuildInsertElement(builder, out, z, imm2, "");
985 }
986 return out;
987 }
988
989 static void resq_emit(
990 const struct lp_build_tgsi_action *action,
991 struct lp_build_tgsi_context *bld_base,
992 struct lp_build_emit_data *emit_data)
993 {
994 struct si_shader_context *ctx = si_shader_context(bld_base);
995 LLVMBuilderRef builder = ctx->ac.builder;
996 const struct tgsi_full_instruction *inst = emit_data->inst;
997 const struct tgsi_full_src_register *reg =
998 &inst->Src[inst->Instruction.Opcode == TGSI_OPCODE_TXQ ? 1 : 0];
999
1000 if (reg->Register.File == TGSI_FILE_BUFFER) {
1001 LLVMValueRef rsrc = shader_buffer_fetch_rsrc(ctx, reg, false);
1002
1003 emit_data->output[emit_data->chan] =
1004 LLVMBuildExtractElement(builder, rsrc,
1005 LLVMConstInt(ctx->i32, 2, 0), "");
1006 return;
1007 }
1008
1009 if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ &&
1010 inst->Texture.Texture == TGSI_TEXTURE_BUFFER) {
1011 LLVMValueRef rsrc;
1012
1013 tex_fetch_ptrs(bld_base, emit_data, &rsrc, NULL, NULL);
1014 /* Read the size from the buffer descriptor directly. */
1015 emit_data->output[emit_data->chan] =
1016 get_buffer_size(bld_base, rsrc);
1017 return;
1018 }
1019
1020 if (inst->Instruction.Opcode == TGSI_OPCODE_RESQ &&
1021 inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
1022 LLVMValueRef rsrc;
1023
1024 image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture, &rsrc);
1025 emit_data->output[emit_data->chan] =
1026 get_buffer_size(bld_base, rsrc);
1027 return;
1028 }
1029
1030 unsigned target;
1031
1032 if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
1033 target = inst->Texture.Texture;
1034 } else {
1035 if (inst->Memory.Texture == TGSI_TEXTURE_3D)
1036 target = TGSI_TEXTURE_2D_ARRAY;
1037 else
1038 target = inst->Memory.Texture;
1039 }
1040
1041 struct ac_image_args args = {};
1042 args.opcode = ac_image_get_resinfo;
1043 args.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
1044 args.dmask = 0xf;
1045
1046 if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
1047 tex_fetch_ptrs(bld_base, emit_data, &args.resource, NULL, NULL);
1048 args.lod = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
1049 } else {
1050 image_fetch_rsrc(bld_base, reg, false, target, &args.resource);
1051 args.lod = ctx->i32_0;
1052 }
1053
1054 emit_data->output[emit_data->chan] =
1055 fix_resinfo(ctx, target, ac_build_image_opcode(&ctx->ac, &args));
1056 }
1057
1058 /**
1059 * Load an image view, fmask view. or sampler state descriptor.
1060 */
1061 LLVMValueRef si_load_sampler_desc(struct si_shader_context *ctx,
1062 LLVMValueRef list, LLVMValueRef index,
1063 enum ac_descriptor_type type)
1064 {
1065 LLVMBuilderRef builder = ctx->ac.builder;
1066
1067 switch (type) {
1068 case AC_DESC_IMAGE:
1069 /* The image is at [0:7]. */
1070 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
1071 break;
1072 case AC_DESC_BUFFER:
1073 /* The buffer is in [4:7]. */
1074 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 4, 0),
1075 ctx->i32_1);
1076 list = LLVMBuildPointerCast(builder, list,
1077 ac_array_in_const32_addr_space(ctx->v4i32), "");
1078 break;
1079 case AC_DESC_FMASK:
1080 /* The FMASK is at [8:15]. */
1081 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 2, 0),
1082 ctx->i32_1);
1083 break;
1084 case AC_DESC_SAMPLER:
1085 /* The sampler state is at [12:15]. */
1086 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->i32, 4, 0),
1087 LLVMConstInt(ctx->i32, 3, 0));
1088 list = LLVMBuildPointerCast(builder, list,
1089 ac_array_in_const32_addr_space(ctx->v4i32), "");
1090 break;
1091 }
1092
1093 return ac_build_load_to_sgpr(&ctx->ac, list, index);
1094 }
1095
1096 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
1097 *
1098 * SI-CI:
1099 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
1100 * filtering manually. The driver sets img7 to a mask clearing
1101 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
1102 * s_and_b32 samp0, samp0, img7
1103 *
1104 * VI:
1105 * The ANISO_OVERRIDE sampler field enables this fix in TA.
1106 */
1107 static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
1108 LLVMValueRef res, LLVMValueRef samp)
1109 {
1110 LLVMValueRef img7, samp0;
1111
1112 if (ctx->screen->info.chip_class >= VI)
1113 return samp;
1114
1115 img7 = LLVMBuildExtractElement(ctx->ac.builder, res,
1116 LLVMConstInt(ctx->i32, 7, 0), "");
1117 samp0 = LLVMBuildExtractElement(ctx->ac.builder, samp,
1118 ctx->i32_0, "");
1119 samp0 = LLVMBuildAnd(ctx->ac.builder, samp0, img7, "");
1120 return LLVMBuildInsertElement(ctx->ac.builder, samp, samp0,
1121 ctx->i32_0, "");
1122 }
1123
1124 static void tex_fetch_ptrs(struct lp_build_tgsi_context *bld_base,
1125 struct lp_build_emit_data *emit_data,
1126 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
1127 LLVMValueRef *fmask_ptr)
1128 {
1129 struct si_shader_context *ctx = si_shader_context(bld_base);
1130 LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images);
1131 const struct tgsi_full_instruction *inst = emit_data->inst;
1132 const struct tgsi_full_src_register *reg;
1133 unsigned target = inst->Texture.Texture;
1134 unsigned sampler_src;
1135 LLVMValueRef index;
1136
1137 sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
1138 reg = &emit_data->inst->Src[sampler_src];
1139
1140 if (reg->Register.Indirect) {
1141 index = si_get_bounded_indirect_index(ctx,
1142 &reg->Indirect,
1143 reg->Register.Index,
1144 ctx->num_samplers);
1145 index = LLVMBuildAdd(ctx->ac.builder, index,
1146 LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), "");
1147 } else {
1148 index = LLVMConstInt(ctx->i32,
1149 si_get_sampler_slot(reg->Register.Index), 0);
1150 }
1151
1152 if (reg->Register.File != TGSI_FILE_SAMPLER) {
1153 /* Bindless descriptors are accessible from a different pair of
1154 * user SGPR indices.
1155 */
1156 list = LLVMGetParam(ctx->main_fn,
1157 ctx->param_bindless_samplers_and_images);
1158 index = lp_build_emit_fetch_src(bld_base, reg,
1159 TGSI_TYPE_UNSIGNED, 0);
1160
1161 /* Since bindless handle arithmetic can contain an unsigned integer
1162 * wraparound and si_load_sampler_desc assumes there isn't any,
1163 * use GEP without "inbounds" (inside ac_build_pointer_add)
1164 * to prevent incorrect code generation and hangs.
1165 */
1166 index = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
1167 list = ac_build_pointer_add(&ctx->ac, list, index);
1168 index = ctx->i32_0;
1169 }
1170
1171 if (target == TGSI_TEXTURE_BUFFER)
1172 *res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_BUFFER);
1173 else
1174 *res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_IMAGE);
1175
1176 if (samp_ptr)
1177 *samp_ptr = NULL;
1178 if (fmask_ptr)
1179 *fmask_ptr = NULL;
1180
1181 if (target == TGSI_TEXTURE_2D_MSAA ||
1182 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
1183 if (fmask_ptr)
1184 *fmask_ptr = si_load_sampler_desc(ctx, list, index,
1185 AC_DESC_FMASK);
1186 } else if (target != TGSI_TEXTURE_BUFFER) {
1187 if (samp_ptr) {
1188 *samp_ptr = si_load_sampler_desc(ctx, list, index,
1189 AC_DESC_SAMPLER);
1190 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
1191 }
1192 }
1193 }
1194
1195 /* Gather4 should follow the same rules as bilinear filtering, but the hardware
1196 * incorrectly forces nearest filtering if the texture format is integer.
1197 * The only effect it has on Gather4, which always returns 4 texels for
1198 * bilinear filtering, is that the final coordinates are off by 0.5 of
1199 * the texel size.
1200 *
1201 * The workaround is to subtract 0.5 from the unnormalized coordinates,
1202 * or (0.5 / size) from the normalized coordinates.
1203 *
1204 * However, cube textures with 8_8_8_8 data formats require a different
1205 * workaround of overriding the num format to USCALED/SSCALED. This would lose
1206 * precision in 32-bit data formats, so it needs to be applied dynamically at
1207 * runtime. In this case, return an i1 value that indicates whether the
1208 * descriptor was overridden (and hence a fixup of the sampler result is needed).
1209 */
1210 static LLVMValueRef
1211 si_lower_gather4_integer(struct si_shader_context *ctx,
1212 struct ac_image_args *args,
1213 unsigned target,
1214 enum tgsi_return_type return_type)
1215 {
1216 LLVMBuilderRef builder = ctx->ac.builder;
1217 LLVMValueRef wa_8888 = NULL;
1218 LLVMValueRef half_texel[2];
1219
1220 assert(return_type == TGSI_RETURN_TYPE_SINT ||
1221 return_type == TGSI_RETURN_TYPE_UINT);
1222
1223 if (target == TGSI_TEXTURE_CUBE ||
1224 target == TGSI_TEXTURE_CUBE_ARRAY) {
1225 LLVMValueRef formats;
1226 LLVMValueRef data_format;
1227 LLVMValueRef wa_formats;
1228
1229 formats = LLVMBuildExtractElement(builder, args->resource, ctx->i32_1, "");
1230
1231 data_format = LLVMBuildLShr(builder, formats,
1232 LLVMConstInt(ctx->i32, 20, false), "");
1233 data_format = LLVMBuildAnd(builder, data_format,
1234 LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
1235 wa_8888 = LLVMBuildICmp(
1236 builder, LLVMIntEQ, data_format,
1237 LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false),
1238 "");
1239
1240 uint32_t wa_num_format =
1241 return_type == TGSI_RETURN_TYPE_UINT ?
1242 S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_USCALED) :
1243 S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_SSCALED);
1244 wa_formats = LLVMBuildAnd(builder, formats,
1245 LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false),
1246 "");
1247 wa_formats = LLVMBuildOr(builder, wa_formats,
1248 LLVMConstInt(ctx->i32, wa_num_format, false), "");
1249
1250 formats = LLVMBuildSelect(builder, wa_8888, wa_formats, formats, "");
1251 args->resource = LLVMBuildInsertElement(
1252 builder, args->resource, formats, ctx->i32_1, "");
1253 }
1254
1255 if (target == TGSI_TEXTURE_RECT ||
1256 target == TGSI_TEXTURE_SHADOWRECT) {
1257 assert(!wa_8888);
1258 half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
1259 } else {
1260 struct ac_image_args resinfo = {};
1261 struct lp_build_if_state if_ctx;
1262
1263 if (wa_8888) {
1264 /* Skip the texture size query entirely if we don't need it. */
1265 lp_build_if(&if_ctx, &ctx->gallivm, LLVMBuildNot(builder, wa_8888, ""));
1266 }
1267
1268 /* Query the texture size. */
1269 resinfo.opcode = ac_image_get_resinfo;
1270 resinfo.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
1271 resinfo.resource = args->resource;
1272 resinfo.sampler = args->sampler;
1273 resinfo.lod = ctx->ac.i32_0;
1274 resinfo.dmask = 0xf;
1275
1276 LLVMValueRef texsize =
1277 fix_resinfo(ctx, target,
1278 ac_build_image_opcode(&ctx->ac, &resinfo));
1279
1280 /* Compute -0.5 / size. */
1281 for (unsigned c = 0; c < 2; c++) {
1282 half_texel[c] =
1283 LLVMBuildExtractElement(builder, texsize,
1284 LLVMConstInt(ctx->i32, c, 0), "");
1285 half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
1286 half_texel[c] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, half_texel[c]);
1287 half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
1288 LLVMConstReal(ctx->f32, -0.5), "");
1289 }
1290
1291 if (wa_8888) {
1292 lp_build_endif(&if_ctx);
1293
1294 LLVMBasicBlockRef bb[2] = { if_ctx.true_block, if_ctx.entry_block };
1295
1296 for (unsigned c = 0; c < 2; c++) {
1297 LLVMValueRef values[2] = { half_texel[c], ctx->ac.f32_0 };
1298 half_texel[c] = ac_build_phi(&ctx->ac, ctx->f32, 2,
1299 values, bb);
1300 }
1301 }
1302 }
1303
1304 for (unsigned c = 0; c < 2; c++) {
1305 LLVMValueRef tmp;
1306 tmp = ac_to_float(&ctx->ac, args->coords[c]);
1307 tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
1308 args->coords[c] = ac_to_integer(&ctx->ac, tmp);
1309 }
1310
1311 return wa_8888;
1312 }
1313
1314 /* The second half of the cube texture 8_8_8_8 integer workaround: adjust the
1315 * result after the gather operation.
1316 */
1317 static LLVMValueRef
1318 si_fix_gather4_integer_result(struct si_shader_context *ctx,
1319 LLVMValueRef result,
1320 enum tgsi_return_type return_type,
1321 LLVMValueRef wa)
1322 {
1323 LLVMBuilderRef builder = ctx->ac.builder;
1324
1325 assert(return_type == TGSI_RETURN_TYPE_SINT ||
1326 return_type == TGSI_RETURN_TYPE_UINT);
1327
1328 for (unsigned chan = 0; chan < 4; ++chan) {
1329 LLVMValueRef chanv = LLVMConstInt(ctx->i32, chan, false);
1330 LLVMValueRef value;
1331 LLVMValueRef wa_value;
1332
1333 value = LLVMBuildExtractElement(builder, result, chanv, "");
1334
1335 if (return_type == TGSI_RETURN_TYPE_UINT)
1336 wa_value = LLVMBuildFPToUI(builder, value, ctx->i32, "");
1337 else
1338 wa_value = LLVMBuildFPToSI(builder, value, ctx->i32, "");
1339 wa_value = ac_to_float(&ctx->ac, wa_value);
1340 value = LLVMBuildSelect(builder, wa, wa_value, value, "");
1341
1342 result = LLVMBuildInsertElement(builder, result, value, chanv, "");
1343 }
1344
1345 return result;
1346 }
1347
1348 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
1349 struct lp_build_tgsi_context *bld_base,
1350 struct lp_build_emit_data *emit_data)
1351 {
1352 struct si_shader_context *ctx = si_shader_context(bld_base);
1353 const struct tgsi_full_instruction *inst = emit_data->inst;
1354 unsigned opcode = inst->Instruction.Opcode;
1355 unsigned target = inst->Texture.Texture;
1356 struct ac_image_args args = {};
1357 int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
1358 unsigned chan;
1359 bool has_offset = inst->Texture.NumOffsets > 0;
1360 LLVMValueRef fmask_ptr = NULL;
1361
1362 tex_fetch_ptrs(bld_base, emit_data, &args.resource, &args.sampler, &fmask_ptr);
1363
1364 if (target == TGSI_TEXTURE_BUFFER) {
1365 LLVMValueRef vindex = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
1366 unsigned num_channels =
1367 util_last_bit(inst->Dst[0].Register.WriteMask);
1368 LLVMValueRef result =
1369 ac_build_buffer_load_format(&ctx->ac,
1370 args.resource,
1371 vindex,
1372 ctx->i32_0,
1373 num_channels, false, true);
1374 emit_data->output[emit_data->chan] =
1375 ac_build_expand_to_vec4(&ctx->ac, result, num_channels);
1376 return;
1377 }
1378
1379 /* Fetch and project texture coordinates */
1380 args.coords[3] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_W);
1381 for (chan = 0; chan < 3; chan++) {
1382 args.coords[chan] = lp_build_emit_fetch(bld_base, inst, 0, chan);
1383 if (opcode == TGSI_OPCODE_TXP)
1384 args.coords[chan] = ac_build_fdiv(&ctx->ac,
1385 args.coords[chan], args.coords[3]);
1386 }
1387
1388 if (opcode == TGSI_OPCODE_TXP)
1389 args.coords[3] = ctx->ac.f32_1;
1390
1391 /* Pack offsets. */
1392 if (has_offset &&
1393 opcode != TGSI_OPCODE_TXF &&
1394 opcode != TGSI_OPCODE_TXF_LZ) {
1395 /* The offsets are six-bit signed integers packed like this:
1396 * X=[5:0], Y=[13:8], and Z=[21:16].
1397 */
1398 LLVMValueRef offset[3], pack;
1399
1400 assert(inst->Texture.NumOffsets == 1);
1401
1402 for (chan = 0; chan < 3; chan++) {
1403 offset[chan] = lp_build_emit_fetch_texoffset(bld_base, inst, 0, chan);
1404 offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
1405 LLVMConstInt(ctx->i32, 0x3f, 0), "");
1406 if (chan)
1407 offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
1408 LLVMConstInt(ctx->i32, chan*8, 0), "");
1409 }
1410
1411 pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
1412 pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
1413 args.offset = pack;
1414 }
1415
1416 /* Pack LOD bias value */
1417 if (opcode == TGSI_OPCODE_TXB)
1418 args.bias = args.coords[3];
1419 if (opcode == TGSI_OPCODE_TXB2)
1420 args.bias = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
1421
1422 /* Pack depth comparison value */
1423 if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
1424 LLVMValueRef z;
1425
1426 if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
1427 z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
1428 } else {
1429 assert(ref_pos >= 0);
1430 z = args.coords[ref_pos];
1431 }
1432
1433 /* Section 8.23.1 (Depth Texture Comparison Mode) of the
1434 * OpenGL 4.5 spec says:
1435 *
1436 * "If the texture’s internal format indicates a fixed-point
1437 * depth texture, then D_t and D_ref are clamped to the
1438 * range [0, 1]; otherwise no clamping is performed."
1439 *
1440 * TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
1441 * so the depth comparison value isn't clamped for Z16 and
1442 * Z24 anymore. Do it manually here.
1443 */
1444 if (ctx->screen->info.chip_class >= VI) {
1445 LLVMValueRef upgraded;
1446 LLVMValueRef clamped;
1447 upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler,
1448 LLVMConstInt(ctx->i32, 3, false), "");
1449 upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded,
1450 LLVMConstInt(ctx->i32, 29, false), "");
1451 upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->i1, "");
1452 clamped = ac_build_clamp(&ctx->ac, z);
1453 z = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped, z, "");
1454 }
1455
1456 args.compare = z;
1457 }
1458
1459 /* Pack user derivatives */
1460 if (opcode == TGSI_OPCODE_TXD) {
1461 int param, num_src_deriv_channels, num_dst_deriv_channels;
1462
1463 switch (target) {
1464 case TGSI_TEXTURE_3D:
1465 num_src_deriv_channels = 3;
1466 num_dst_deriv_channels = 3;
1467 break;
1468 case TGSI_TEXTURE_2D:
1469 case TGSI_TEXTURE_SHADOW2D:
1470 case TGSI_TEXTURE_RECT:
1471 case TGSI_TEXTURE_SHADOWRECT:
1472 case TGSI_TEXTURE_2D_ARRAY:
1473 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1474 num_src_deriv_channels = 2;
1475 num_dst_deriv_channels = 2;
1476 break;
1477 case TGSI_TEXTURE_CUBE:
1478 case TGSI_TEXTURE_SHADOWCUBE:
1479 case TGSI_TEXTURE_CUBE_ARRAY:
1480 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
1481 /* Cube derivatives will be converted to 2D. */
1482 num_src_deriv_channels = 3;
1483 num_dst_deriv_channels = 3;
1484 break;
1485 case TGSI_TEXTURE_1D:
1486 case TGSI_TEXTURE_SHADOW1D:
1487 case TGSI_TEXTURE_1D_ARRAY:
1488 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1489 num_src_deriv_channels = 1;
1490
1491 /* 1D textures are allocated and used as 2D on GFX9. */
1492 if (ctx->screen->info.chip_class >= GFX9) {
1493 num_dst_deriv_channels = 2;
1494 } else {
1495 num_dst_deriv_channels = 1;
1496 }
1497 break;
1498 default:
1499 unreachable("invalid target");
1500 }
1501
1502 for (param = 0; param < 2; param++) {
1503 for (chan = 0; chan < num_src_deriv_channels; chan++)
1504 args.derivs[param * num_dst_deriv_channels + chan] =
1505 lp_build_emit_fetch(bld_base, inst, param+1, chan);
1506
1507 /* Fill in the rest with zeros. */
1508 for (chan = num_src_deriv_channels;
1509 chan < num_dst_deriv_channels; chan++)
1510 args.derivs[param * num_dst_deriv_channels + chan] =
1511 ctx->ac.f32_0;
1512 }
1513 }
1514
1515 if (target == TGSI_TEXTURE_CUBE ||
1516 target == TGSI_TEXTURE_CUBE_ARRAY ||
1517 target == TGSI_TEXTURE_SHADOWCUBE ||
1518 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
1519 ac_prepare_cube_coords(&ctx->ac,
1520 opcode == TGSI_OPCODE_TXD,
1521 target == TGSI_TEXTURE_CUBE_ARRAY ||
1522 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
1523 opcode == TGSI_OPCODE_LODQ,
1524 args.coords, args.derivs);
1525 } else if (tgsi_is_array_sampler(target) &&
1526 opcode != TGSI_OPCODE_TXF &&
1527 opcode != TGSI_OPCODE_TXF_LZ &&
1528 ctx->screen->info.chip_class <= VI) {
1529 unsigned array_coord = target == TGSI_TEXTURE_1D_ARRAY ? 1 : 2;
1530 args.coords[array_coord] = ac_build_round(&ctx->ac, args.coords[array_coord]);
1531 }
1532
1533 /* 1D textures are allocated and used as 2D on GFX9. */
1534 if (ctx->screen->info.chip_class >= GFX9) {
1535 LLVMValueRef filler;
1536
1537 /* Use 0.5, so that we don't sample the border color. */
1538 if (opcode == TGSI_OPCODE_TXF ||
1539 opcode == TGSI_OPCODE_TXF_LZ)
1540 filler = ctx->i32_0;
1541 else
1542 filler = LLVMConstReal(ctx->f32, 0.5);
1543
1544 if (target == TGSI_TEXTURE_1D ||
1545 target == TGSI_TEXTURE_SHADOW1D) {
1546 args.coords[1] = filler;
1547 } else if (target == TGSI_TEXTURE_1D_ARRAY ||
1548 target == TGSI_TEXTURE_SHADOW1D_ARRAY) {
1549 args.coords[2] = args.coords[1];
1550 args.coords[1] = filler;
1551 }
1552 }
1553
1554 /* Pack LOD or sample index */
1555 if (opcode == TGSI_OPCODE_TXL)
1556 args.lod = args.coords[3];
1557 else if (opcode == TGSI_OPCODE_TXL2)
1558 args.lod = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
1559 else if (opcode == TGSI_OPCODE_TXF) {
1560 if (target == TGSI_TEXTURE_2D_MSAA) {
1561 /* No LOD, but move sample index into the right place. */
1562 args.coords[2] = args.coords[3];
1563 } else if (target != TGSI_TEXTURE_2D_ARRAY_MSAA) {
1564 args.lod = args.coords[3];
1565 }
1566 }
1567
1568 if (target == TGSI_TEXTURE_2D_MSAA ||
1569 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
1570 ac_apply_fmask_to_sample(&ctx->ac, fmask_ptr, args.coords,
1571 target == TGSI_TEXTURE_2D_ARRAY_MSAA);
1572 }
1573
1574 if (opcode == TGSI_OPCODE_TXF ||
1575 opcode == TGSI_OPCODE_TXF_LZ) {
1576 /* add tex offsets */
1577 if (inst->Texture.NumOffsets) {
1578 const struct tgsi_texture_offset *off = inst->TexOffsets;
1579
1580 assert(inst->Texture.NumOffsets == 1);
1581
1582 switch (target) {
1583 case TGSI_TEXTURE_3D:
1584 args.coords[2] =
1585 LLVMBuildAdd(ctx->ac.builder, args.coords[2],
1586 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ], "");
1587 /* fall through */
1588 case TGSI_TEXTURE_2D:
1589 case TGSI_TEXTURE_SHADOW2D:
1590 case TGSI_TEXTURE_RECT:
1591 case TGSI_TEXTURE_SHADOWRECT:
1592 case TGSI_TEXTURE_2D_ARRAY:
1593 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1594 args.coords[1] =
1595 LLVMBuildAdd(ctx->ac.builder, args.coords[1],
1596 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY], "");
1597 /* fall through */
1598 case TGSI_TEXTURE_1D:
1599 case TGSI_TEXTURE_SHADOW1D:
1600 case TGSI_TEXTURE_1D_ARRAY:
1601 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1602 args.coords[0] =
1603 LLVMBuildAdd(ctx->ac.builder, args.coords[0],
1604 ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX], "");
1605 break;
1606 /* texture offsets do not apply to other texture targets */
1607 }
1608 }
1609 }
1610
1611 if (opcode == TGSI_OPCODE_TG4) {
1612 unsigned gather_comp = 0;
1613
1614 /* DMASK was repurposed for GATHER4. 4 components are always
1615 * returned and DMASK works like a swizzle - it selects
1616 * the component to fetch. The only valid DMASK values are
1617 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
1618 * (red,red,red,red) etc.) The ISA document doesn't mention
1619 * this.
1620 */
1621
1622 /* Get the component index from src1.x for Gather4. */
1623 if (!tgsi_is_shadow_target(target)) {
1624 LLVMValueRef comp_imm;
1625 struct tgsi_src_register src1 = inst->Src[1].Register;
1626
1627 assert(src1.File == TGSI_FILE_IMMEDIATE);
1628
1629 comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
1630 gather_comp = LLVMConstIntGetZExtValue(comp_imm);
1631 gather_comp = CLAMP(gather_comp, 0, 3);
1632 }
1633
1634 args.dmask = 1 << gather_comp;
1635 } else {
1636 args.dmask = 0xf;
1637 }
1638
1639 args.dim = ac_texture_dim_from_tgsi_target(ctx->screen, target);
1640 args.unorm = target == TGSI_TEXTURE_RECT ||
1641 target == TGSI_TEXTURE_SHADOWRECT;
1642 args.opcode = ac_image_sample;
1643
1644 switch (opcode) {
1645 case TGSI_OPCODE_TXF:
1646 case TGSI_OPCODE_TXF_LZ:
1647 args.opcode = opcode == TGSI_OPCODE_TXF_LZ ||
1648 target == TGSI_TEXTURE_2D_MSAA ||
1649 target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
1650 ac_image_load : ac_image_load_mip;
1651 break;
1652 case TGSI_OPCODE_LODQ:
1653 args.opcode = ac_image_get_lod;
1654 break;
1655 case TGSI_OPCODE_TEX:
1656 case TGSI_OPCODE_TEX2:
1657 case TGSI_OPCODE_TXP:
1658 if (ctx->type != PIPE_SHADER_FRAGMENT)
1659 args.level_zero = true;
1660 break;
1661 case TGSI_OPCODE_TEX_LZ:
1662 args.level_zero = true;
1663 break;
1664 case TGSI_OPCODE_TXB:
1665 case TGSI_OPCODE_TXB2:
1666 assert(ctx->type == PIPE_SHADER_FRAGMENT);
1667 break;
1668 case TGSI_OPCODE_TXL:
1669 case TGSI_OPCODE_TXL2:
1670 break;
1671 case TGSI_OPCODE_TXD:
1672 break;
1673 case TGSI_OPCODE_TG4:
1674 args.opcode = ac_image_gather4;
1675 args.level_zero = true;
1676 break;
1677 default:
1678 assert(0);
1679 return;
1680 }
1681
1682 /* The hardware needs special lowering for Gather4 with integer formats. */
1683 LLVMValueRef gather4_int_result_workaround = NULL;
1684
1685 if (ctx->screen->info.chip_class <= VI &&
1686 opcode == TGSI_OPCODE_TG4) {
1687 assert(inst->Texture.ReturnType != TGSI_RETURN_TYPE_UNKNOWN);
1688
1689 if (inst->Texture.ReturnType == TGSI_RETURN_TYPE_SINT ||
1690 inst->Texture.ReturnType == TGSI_RETURN_TYPE_UINT) {
1691 gather4_int_result_workaround =
1692 si_lower_gather4_integer(ctx, &args, target,
1693 inst->Texture.ReturnType);
1694 }
1695 }
1696
1697 args.attributes = AC_FUNC_ATTR_READNONE;
1698 LLVMValueRef result = ac_build_image_opcode(&ctx->ac, &args);
1699
1700 if (gather4_int_result_workaround) {
1701 result = si_fix_gather4_integer_result(ctx, result,
1702 inst->Texture.ReturnType,
1703 gather4_int_result_workaround);
1704 }
1705
1706 emit_data->output[emit_data->chan] = result;
1707 }
1708
1709 static void si_llvm_emit_txqs(
1710 const struct lp_build_tgsi_action *action,
1711 struct lp_build_tgsi_context *bld_base,
1712 struct lp_build_emit_data *emit_data)
1713 {
1714 struct si_shader_context *ctx = si_shader_context(bld_base);
1715 LLVMValueRef res, samples;
1716 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
1717
1718 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
1719
1720 /* Read the samples from the descriptor directly. */
1721 res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->v8i32, "");
1722 samples = LLVMBuildExtractElement(ctx->ac.builder, res,
1723 LLVMConstInt(ctx->i32, 3, 0), "");
1724 samples = LLVMBuildLShr(ctx->ac.builder, samples,
1725 LLVMConstInt(ctx->i32, 16, 0), "");
1726 samples = LLVMBuildAnd(ctx->ac.builder, samples,
1727 LLVMConstInt(ctx->i32, 0xf, 0), "");
1728 samples = LLVMBuildShl(ctx->ac.builder, ctx->i32_1,
1729 samples, "");
1730
1731 emit_data->output[emit_data->chan] = samples;
1732 }
1733
1734 static void si_llvm_emit_fbfetch(const struct lp_build_tgsi_action *action,
1735 struct lp_build_tgsi_context *bld_base,
1736 struct lp_build_emit_data *emit_data)
1737 {
1738 struct si_shader_context *ctx = si_shader_context(bld_base);
1739 struct ac_image_args args = {};
1740 LLVMValueRef ptr, image, fmask;
1741
1742 /* Ignore src0, because KHR_blend_func_extended disallows multiple render
1743 * targets.
1744 */
1745
1746 /* Load the image descriptor. */
1747 STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
1748 ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1749 ptr = LLVMBuildPointerCast(ctx->ac.builder, ptr,
1750 ac_array_in_const32_addr_space(ctx->v8i32), "");
1751 image = ac_build_load_to_sgpr(&ctx->ac, ptr,
1752 LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
1753
1754 unsigned chan = 0;
1755
1756 args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_POS_FIXED_PT, 0, 16);
1757
1758 if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
1759 args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_POS_FIXED_PT, 16, 16);
1760
1761 /* Get the current render target layer index. */
1762 if (ctx->shader->key.mono.u.ps.fbfetch_layered)
1763 args.coords[chan++] = si_unpack_param(ctx, SI_PARAM_ANCILLARY, 16, 11);
1764
1765 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
1766 args.coords[chan++] = si_get_sample_id(ctx);
1767
1768 if (ctx->shader->key.mono.u.ps.fbfetch_msaa) {
1769 fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
1770 LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
1771
1772 ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
1773 ctx->shader->key.mono.u.ps.fbfetch_layered);
1774 }
1775
1776 args.opcode = ac_image_load;
1777 args.resource = image;
1778 args.dmask = 0xf;
1779 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
1780 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
1781 ac_image_2darraymsaa : ac_image_2dmsaa;
1782 else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
1783 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
1784 ac_image_1darray : ac_image_1d;
1785 else
1786 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
1787 ac_image_2darray : ac_image_2d;
1788
1789 emit_data->output[emit_data->chan] =
1790 ac_build_image_opcode(&ctx->ac, &args);
1791 }
1792
1793 /**
1794 * Setup actions for TGSI memory opcode, including texture opcodes.
1795 */
1796 void si_shader_context_init_mem(struct si_shader_context *ctx)
1797 {
1798 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1799
1800 bld_base->op_actions[TGSI_OPCODE_TEX].emit = build_tex_intrinsic;
1801 bld_base->op_actions[TGSI_OPCODE_TEX_LZ].emit = build_tex_intrinsic;
1802 bld_base->op_actions[TGSI_OPCODE_TEX2].emit = build_tex_intrinsic;
1803 bld_base->op_actions[TGSI_OPCODE_TXB].emit = build_tex_intrinsic;
1804 bld_base->op_actions[TGSI_OPCODE_TXB2].emit = build_tex_intrinsic;
1805 bld_base->op_actions[TGSI_OPCODE_TXD].emit = build_tex_intrinsic;
1806 bld_base->op_actions[TGSI_OPCODE_TXF].emit = build_tex_intrinsic;
1807 bld_base->op_actions[TGSI_OPCODE_TXF_LZ].emit = build_tex_intrinsic;
1808 bld_base->op_actions[TGSI_OPCODE_TXL].emit = build_tex_intrinsic;
1809 bld_base->op_actions[TGSI_OPCODE_TXL2].emit = build_tex_intrinsic;
1810 bld_base->op_actions[TGSI_OPCODE_TXP].emit = build_tex_intrinsic;
1811 bld_base->op_actions[TGSI_OPCODE_TXQ].emit = resq_emit;
1812 bld_base->op_actions[TGSI_OPCODE_TG4].emit = build_tex_intrinsic;
1813 bld_base->op_actions[TGSI_OPCODE_LODQ].emit = build_tex_intrinsic;
1814 bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
1815
1816 bld_base->op_actions[TGSI_OPCODE_FBFETCH].emit = si_llvm_emit_fbfetch;
1817
1818 bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
1819 bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
1820 bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
1821
1822 bld_base->op_actions[TGSI_OPCODE_ATOMUADD].emit = atomic_emit;
1823 bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
1824 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].emit = atomic_emit;
1825 bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
1826 bld_base->op_actions[TGSI_OPCODE_ATOMCAS].emit = atomic_emit;
1827 bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
1828 bld_base->op_actions[TGSI_OPCODE_ATOMAND].emit = atomic_emit;
1829 bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
1830 bld_base->op_actions[TGSI_OPCODE_ATOMOR].emit = atomic_emit;
1831 bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
1832 bld_base->op_actions[TGSI_OPCODE_ATOMXOR].emit = atomic_emit;
1833 bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
1834 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].emit = atomic_emit;
1835 bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
1836 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].emit = atomic_emit;
1837 bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
1838 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].emit = atomic_emit;
1839 bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
1840 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].emit = atomic_emit;
1841 bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
1842 }