radeonsi: set si_shader_context::input_decls for ranged decls correctly
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_tgsi_setup.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_shader_internal.h"
25 #include "si_pipe.h"
26 #include "radeon/radeon_elf_util.h"
27
28 #include "gallivm/lp_bld_const.h"
29 #include "gallivm/lp_bld_gather.h"
30 #include "gallivm/lp_bld_flow.h"
31 #include "gallivm/lp_bld_init.h"
32 #include "gallivm/lp_bld_intr.h"
33 #include "gallivm/lp_bld_misc.h"
34 #include "gallivm/lp_bld_swizzle.h"
35 #include "tgsi/tgsi_info.h"
36 #include "tgsi/tgsi_parse.h"
37 #include "util/u_math.h"
38 #include "util/u_memory.h"
39 #include "util/u_debug.h"
40
41 #include <stdio.h>
42 #include <llvm-c/Transforms/IPO.h>
43 #include <llvm-c/Transforms/Scalar.h>
44
45 /* Data for if/else/endif and bgnloop/endloop control flow structures.
46 */
47 struct si_llvm_flow {
48 /* Loop exit or next part of if/else/endif. */
49 LLVMBasicBlockRef next_block;
50 LLVMBasicBlockRef loop_entry_block;
51 };
52
53 #define CPU_STRING_LEN 30
54 #define FS_STRING_LEN 30
55 #define TRIPLE_STRING_LEN 7
56
57 /**
58 * Shader types for the LLVM backend.
59 */
60 enum si_llvm_shader_type {
61 RADEON_LLVM_SHADER_PS = 0,
62 RADEON_LLVM_SHADER_VS = 1,
63 RADEON_LLVM_SHADER_GS = 2,
64 RADEON_LLVM_SHADER_CS = 3,
65 };
66
67 enum si_llvm_calling_convention {
68 RADEON_LLVM_AMDGPU_VS = 87,
69 RADEON_LLVM_AMDGPU_GS = 88,
70 RADEON_LLVM_AMDGPU_PS = 89,
71 RADEON_LLVM_AMDGPU_CS = 90,
72 };
73
74 void si_llvm_add_attribute(LLVMValueRef F, const char *name, int value)
75 {
76 char str[16];
77
78 snprintf(str, sizeof(str), "%i", value);
79 LLVMAddTargetDependentFunctionAttr(F, name, str);
80 }
81
82 /**
83 * Set the shader type we want to compile
84 *
85 * @param type shader type to set
86 */
87 void si_llvm_shader_type(LLVMValueRef F, unsigned type)
88 {
89 enum si_llvm_shader_type llvm_type;
90 enum si_llvm_calling_convention calling_conv;
91
92 switch (type) {
93 case PIPE_SHADER_VERTEX:
94 case PIPE_SHADER_TESS_CTRL:
95 case PIPE_SHADER_TESS_EVAL:
96 llvm_type = RADEON_LLVM_SHADER_VS;
97 calling_conv = RADEON_LLVM_AMDGPU_VS;
98 break;
99 case PIPE_SHADER_GEOMETRY:
100 llvm_type = RADEON_LLVM_SHADER_GS;
101 calling_conv = RADEON_LLVM_AMDGPU_GS;
102 break;
103 case PIPE_SHADER_FRAGMENT:
104 llvm_type = RADEON_LLVM_SHADER_PS;
105 calling_conv = RADEON_LLVM_AMDGPU_PS;
106 break;
107 case PIPE_SHADER_COMPUTE:
108 llvm_type = RADEON_LLVM_SHADER_CS;
109 calling_conv = RADEON_LLVM_AMDGPU_CS;
110 break;
111 default:
112 unreachable("Unhandle shader type");
113 }
114
115 if (HAVE_LLVM >= 0x309)
116 LLVMSetFunctionCallConv(F, calling_conv);
117 else
118 si_llvm_add_attribute(F, "ShaderType", llvm_type);
119 }
120
121 static void init_amdgpu_target()
122 {
123 gallivm_init_llvm_targets();
124 #if HAVE_LLVM < 0x0307
125 LLVMInitializeR600TargetInfo();
126 LLVMInitializeR600Target();
127 LLVMInitializeR600TargetMC();
128 LLVMInitializeR600AsmPrinter();
129 #else
130 LLVMInitializeAMDGPUTargetInfo();
131 LLVMInitializeAMDGPUTarget();
132 LLVMInitializeAMDGPUTargetMC();
133 LLVMInitializeAMDGPUAsmPrinter();
134
135 #endif
136 }
137
138 static once_flag init_amdgpu_target_once_flag = ONCE_FLAG_INIT;
139
140 LLVMTargetRef si_llvm_get_amdgpu_target(const char *triple)
141 {
142 LLVMTargetRef target = NULL;
143 char *err_message = NULL;
144
145 call_once(&init_amdgpu_target_once_flag, init_amdgpu_target);
146
147 if (LLVMGetTargetFromTriple(triple, &target, &err_message)) {
148 fprintf(stderr, "Cannot find target for triple %s ", triple);
149 if (err_message) {
150 fprintf(stderr, "%s\n", err_message);
151 }
152 LLVMDisposeMessage(err_message);
153 return NULL;
154 }
155 return target;
156 }
157
158 struct si_llvm_diagnostics {
159 struct pipe_debug_callback *debug;
160 unsigned retval;
161 };
162
163 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
164 {
165 struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
166 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
167 char *description = LLVMGetDiagInfoDescription(di);
168 const char *severity_str = NULL;
169
170 switch (severity) {
171 case LLVMDSError:
172 severity_str = "error";
173 break;
174 case LLVMDSWarning:
175 severity_str = "warning";
176 break;
177 case LLVMDSRemark:
178 severity_str = "remark";
179 break;
180 case LLVMDSNote:
181 severity_str = "note";
182 break;
183 default:
184 severity_str = "unknown";
185 }
186
187 pipe_debug_message(diag->debug, SHADER_INFO,
188 "LLVM diagnostic (%s): %s", severity_str, description);
189
190 if (severity == LLVMDSError) {
191 diag->retval = 1;
192 fprintf(stderr,"LLVM triggered Diagnostic Handler: %s\n", description);
193 }
194
195 LLVMDisposeMessage(description);
196 }
197
198 /**
199 * Compile an LLVM module to machine code.
200 *
201 * @returns 0 for success, 1 for failure
202 */
203 unsigned si_llvm_compile(LLVMModuleRef M, struct radeon_shader_binary *binary,
204 LLVMTargetMachineRef tm,
205 struct pipe_debug_callback *debug)
206 {
207 struct si_llvm_diagnostics diag;
208 char *err;
209 LLVMContextRef llvm_ctx;
210 LLVMMemoryBufferRef out_buffer;
211 unsigned buffer_size;
212 const char *buffer_data;
213 LLVMBool mem_err;
214
215 diag.debug = debug;
216 diag.retval = 0;
217
218 /* Setup Diagnostic Handler*/
219 llvm_ctx = LLVMGetModuleContext(M);
220
221 LLVMContextSetDiagnosticHandler(llvm_ctx, si_diagnostic_handler, &diag);
222
223 /* Compile IR*/
224 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile, &err,
225 &out_buffer);
226
227 /* Process Errors/Warnings */
228 if (mem_err) {
229 fprintf(stderr, "%s: %s", __FUNCTION__, err);
230 pipe_debug_message(debug, SHADER_INFO,
231 "LLVM emit error: %s", err);
232 FREE(err);
233 diag.retval = 1;
234 goto out;
235 }
236
237 /* Extract Shader Code*/
238 buffer_size = LLVMGetBufferSize(out_buffer);
239 buffer_data = LLVMGetBufferStart(out_buffer);
240
241 radeon_elf_read(buffer_data, buffer_size, binary);
242
243 /* Clean up */
244 LLVMDisposeMemoryBuffer(out_buffer);
245
246 out:
247 if (diag.retval != 0)
248 pipe_debug_message(debug, SHADER_INFO, "LLVM compile failed");
249 return diag.retval;
250 }
251
252 LLVMTypeRef tgsi2llvmtype(struct lp_build_tgsi_context *bld_base,
253 enum tgsi_opcode_type type)
254 {
255 LLVMContextRef ctx = bld_base->base.gallivm->context;
256
257 switch (type) {
258 case TGSI_TYPE_UNSIGNED:
259 case TGSI_TYPE_SIGNED:
260 return LLVMInt32TypeInContext(ctx);
261 case TGSI_TYPE_UNSIGNED64:
262 case TGSI_TYPE_SIGNED64:
263 return LLVMInt64TypeInContext(ctx);
264 case TGSI_TYPE_DOUBLE:
265 return LLVMDoubleTypeInContext(ctx);
266 case TGSI_TYPE_UNTYPED:
267 case TGSI_TYPE_FLOAT:
268 return LLVMFloatTypeInContext(ctx);
269 default: break;
270 }
271 return 0;
272 }
273
274 LLVMValueRef bitcast(struct lp_build_tgsi_context *bld_base,
275 enum tgsi_opcode_type type, LLVMValueRef value)
276 {
277 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
278 LLVMTypeRef dst_type = tgsi2llvmtype(bld_base, type);
279
280 if (dst_type)
281 return LLVMBuildBitCast(builder, value, dst_type, "");
282 else
283 return value;
284 }
285
286 /**
287 * Return a value that is equal to the given i32 \p index if it lies in [0,num)
288 * or an undefined value in the same interval otherwise.
289 */
290 LLVMValueRef si_llvm_bound_index(struct si_shader_context *ctx,
291 LLVMValueRef index,
292 unsigned num)
293 {
294 struct gallivm_state *gallivm = &ctx->gallivm;
295 LLVMBuilderRef builder = gallivm->builder;
296 LLVMValueRef c_max = lp_build_const_int32(gallivm, num - 1);
297 LLVMValueRef cc;
298
299 if (util_is_power_of_two(num)) {
300 index = LLVMBuildAnd(builder, index, c_max, "");
301 } else {
302 /* In theory, this MAX pattern should result in code that is
303 * as good as the bit-wise AND above.
304 *
305 * In practice, LLVM generates worse code (at the time of
306 * writing), because its value tracking is not strong enough.
307 */
308 cc = LLVMBuildICmp(builder, LLVMIntULE, index, c_max, "");
309 index = LLVMBuildSelect(builder, cc, index, c_max, "");
310 }
311
312 return index;
313 }
314
315 static struct si_llvm_flow *
316 get_current_flow(struct si_shader_context *ctx)
317 {
318 if (ctx->flow_depth > 0)
319 return &ctx->flow[ctx->flow_depth - 1];
320 return NULL;
321 }
322
323 static struct si_llvm_flow *
324 get_innermost_loop(struct si_shader_context *ctx)
325 {
326 for (unsigned i = ctx->flow_depth; i > 0; --i) {
327 if (ctx->flow[i - 1].loop_entry_block)
328 return &ctx->flow[i - 1];
329 }
330 return NULL;
331 }
332
333 static struct si_llvm_flow *
334 push_flow(struct si_shader_context *ctx)
335 {
336 struct si_llvm_flow *flow;
337
338 if (ctx->flow_depth >= ctx->flow_depth_max) {
339 unsigned new_max = MAX2(ctx->flow_depth << 1, RADEON_LLVM_INITIAL_CF_DEPTH);
340 ctx->flow = REALLOC(ctx->flow,
341 ctx->flow_depth_max * sizeof(*ctx->flow),
342 new_max * sizeof(*ctx->flow));
343 ctx->flow_depth_max = new_max;
344 }
345
346 flow = &ctx->flow[ctx->flow_depth];
347 ctx->flow_depth++;
348
349 flow->next_block = NULL;
350 flow->loop_entry_block = NULL;
351 return flow;
352 }
353
354 static LLVMValueRef emit_swizzle(struct lp_build_tgsi_context *bld_base,
355 LLVMValueRef value,
356 unsigned swizzle_x,
357 unsigned swizzle_y,
358 unsigned swizzle_z,
359 unsigned swizzle_w)
360 {
361 LLVMValueRef swizzles[4];
362 LLVMTypeRef i32t =
363 LLVMInt32TypeInContext(bld_base->base.gallivm->context);
364
365 swizzles[0] = LLVMConstInt(i32t, swizzle_x, 0);
366 swizzles[1] = LLVMConstInt(i32t, swizzle_y, 0);
367 swizzles[2] = LLVMConstInt(i32t, swizzle_z, 0);
368 swizzles[3] = LLVMConstInt(i32t, swizzle_w, 0);
369
370 return LLVMBuildShuffleVector(bld_base->base.gallivm->builder,
371 value,
372 LLVMGetUndef(LLVMTypeOf(value)),
373 LLVMConstVector(swizzles, 4), "");
374 }
375
376 /**
377 * Return the description of the array covering the given temporary register
378 * index.
379 */
380 static unsigned
381 get_temp_array_id(struct lp_build_tgsi_context *bld_base,
382 unsigned reg_index,
383 const struct tgsi_ind_register *reg)
384 {
385 struct si_shader_context *ctx = si_shader_context(bld_base);
386 unsigned num_arrays = ctx->soa.bld_base.info->array_max[TGSI_FILE_TEMPORARY];
387 unsigned i;
388
389 if (reg && reg->ArrayID > 0 && reg->ArrayID <= num_arrays)
390 return reg->ArrayID;
391
392 for (i = 0; i < num_arrays; i++) {
393 const struct tgsi_array_info *array = &ctx->temp_arrays[i];
394
395 if (reg_index >= array->range.First && reg_index <= array->range.Last)
396 return i + 1;
397 }
398
399 return 0;
400 }
401
402 static struct tgsi_declaration_range
403 get_array_range(struct lp_build_tgsi_context *bld_base,
404 unsigned File, unsigned reg_index,
405 const struct tgsi_ind_register *reg)
406 {
407 struct si_shader_context *ctx = si_shader_context(bld_base);
408 struct tgsi_declaration_range range;
409
410 if (File == TGSI_FILE_TEMPORARY) {
411 unsigned array_id = get_temp_array_id(bld_base, reg_index, reg);
412 if (array_id)
413 return ctx->temp_arrays[array_id - 1].range;
414 }
415
416 range.First = 0;
417 range.Last = bld_base->info->file_max[File];
418 return range;
419 }
420
421 static LLVMValueRef
422 emit_array_index(struct lp_build_tgsi_soa_context *bld,
423 const struct tgsi_ind_register *reg,
424 unsigned offset)
425 {
426 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
427
428 if (!reg) {
429 return lp_build_const_int32(gallivm, offset);
430 }
431 LLVMValueRef addr = LLVMBuildLoad(gallivm->builder, bld->addr[reg->Index][reg->Swizzle], "");
432 return LLVMBuildAdd(gallivm->builder, addr, lp_build_const_int32(gallivm, offset), "");
433 }
434
435 /**
436 * For indirect registers, construct a pointer directly to the requested
437 * element using getelementptr if possible.
438 *
439 * Returns NULL if the insertelement/extractelement fallback for array access
440 * must be used.
441 */
442 static LLVMValueRef
443 get_pointer_into_array(struct si_shader_context *ctx,
444 unsigned file,
445 unsigned swizzle,
446 unsigned reg_index,
447 const struct tgsi_ind_register *reg_indirect)
448 {
449 unsigned array_id;
450 struct tgsi_array_info *array;
451 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
452 LLVMBuilderRef builder = gallivm->builder;
453 LLVMValueRef idxs[2];
454 LLVMValueRef index;
455 LLVMValueRef alloca;
456
457 if (file != TGSI_FILE_TEMPORARY)
458 return NULL;
459
460 array_id = get_temp_array_id(&ctx->soa.bld_base, reg_index, reg_indirect);
461 if (!array_id)
462 return NULL;
463
464 alloca = ctx->temp_array_allocas[array_id - 1];
465 if (!alloca)
466 return NULL;
467
468 array = &ctx->temp_arrays[array_id - 1];
469
470 if (!(array->writemask & (1 << swizzle)))
471 return ctx->undef_alloca;
472
473 index = emit_array_index(&ctx->soa, reg_indirect,
474 reg_index - ctx->temp_arrays[array_id - 1].range.First);
475
476 /* Ensure that the index is within a valid range, to guard against
477 * VM faults and overwriting critical data (e.g. spilled resource
478 * descriptors).
479 *
480 * TODO It should be possible to avoid the additional instructions
481 * if LLVM is changed so that it guarantuees:
482 * 1. the scratch space descriptor isolates the current wave (this
483 * could even save the scratch offset SGPR at the cost of an
484 * additional SALU instruction)
485 * 2. the memory for allocas must be allocated at the _end_ of the
486 * scratch space (after spilled registers)
487 */
488 index = si_llvm_bound_index(ctx, index, array->range.Last - array->range.First + 1);
489
490 index = LLVMBuildMul(
491 builder, index,
492 lp_build_const_int32(gallivm, util_bitcount(array->writemask)),
493 "");
494 index = LLVMBuildAdd(
495 builder, index,
496 lp_build_const_int32(
497 gallivm,
498 util_bitcount(array->writemask & ((1 << swizzle) - 1))),
499 "");
500 idxs[0] = ctx->soa.bld_base.uint_bld.zero;
501 idxs[1] = index;
502 return LLVMBuildGEP(builder, alloca, idxs, 2, "");
503 }
504
505 LLVMValueRef
506 si_llvm_emit_fetch_64bit(struct lp_build_tgsi_context *bld_base,
507 enum tgsi_opcode_type type,
508 LLVMValueRef ptr,
509 LLVMValueRef ptr2)
510 {
511 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
512 LLVMValueRef result;
513
514 result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
515
516 result = LLVMBuildInsertElement(builder,
517 result,
518 bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr),
519 bld_base->int_bld.zero, "");
520 result = LLVMBuildInsertElement(builder,
521 result,
522 bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr2),
523 bld_base->int_bld.one, "");
524 return bitcast(bld_base, type, result);
525 }
526
527 static LLVMValueRef
528 emit_array_fetch(struct lp_build_tgsi_context *bld_base,
529 unsigned File, enum tgsi_opcode_type type,
530 struct tgsi_declaration_range range,
531 unsigned swizzle)
532 {
533 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
534 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
535 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
536
537 unsigned i, size = range.Last - range.First + 1;
538 LLVMTypeRef vec = LLVMVectorType(tgsi2llvmtype(bld_base, type), size);
539 LLVMValueRef result = LLVMGetUndef(vec);
540
541 struct tgsi_full_src_register tmp_reg = {};
542 tmp_reg.Register.File = File;
543
544 for (i = 0; i < size; ++i) {
545 tmp_reg.Register.Index = i + range.First;
546 LLVMValueRef temp = si_llvm_emit_fetch(bld_base, &tmp_reg, type, swizzle);
547 result = LLVMBuildInsertElement(builder, result, temp,
548 lp_build_const_int32(gallivm, i), "array_vector");
549 }
550 return result;
551 }
552
553 static LLVMValueRef
554 load_value_from_array(struct lp_build_tgsi_context *bld_base,
555 unsigned file,
556 enum tgsi_opcode_type type,
557 unsigned swizzle,
558 unsigned reg_index,
559 const struct tgsi_ind_register *reg_indirect)
560 {
561 struct si_shader_context *ctx = si_shader_context(bld_base);
562 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
563 struct gallivm_state *gallivm = bld_base->base.gallivm;
564 LLVMBuilderRef builder = gallivm->builder;
565 LLVMValueRef ptr;
566
567 ptr = get_pointer_into_array(ctx, file, swizzle, reg_index, reg_indirect);
568 if (ptr) {
569 LLVMValueRef val = LLVMBuildLoad(builder, ptr, "");
570 if (tgsi_type_is_64bit(type)) {
571 LLVMValueRef ptr_hi, val_hi;
572 ptr_hi = LLVMBuildGEP(builder, ptr, &bld_base->uint_bld.one, 1, "");
573 val_hi = LLVMBuildLoad(builder, ptr_hi, "");
574 val = si_llvm_emit_fetch_64bit(bld_base, type, val, val_hi);
575 }
576
577 return val;
578 } else {
579 struct tgsi_declaration_range range =
580 get_array_range(bld_base, file, reg_index, reg_indirect);
581 LLVMValueRef index =
582 emit_array_index(bld, reg_indirect, reg_index - range.First);
583 LLVMValueRef array =
584 emit_array_fetch(bld_base, file, type, range, swizzle);
585 return LLVMBuildExtractElement(builder, array, index, "");
586 }
587 }
588
589 static void
590 store_value_to_array(struct lp_build_tgsi_context *bld_base,
591 LLVMValueRef value,
592 unsigned file,
593 unsigned chan_index,
594 unsigned reg_index,
595 const struct tgsi_ind_register *reg_indirect)
596 {
597 struct si_shader_context *ctx = si_shader_context(bld_base);
598 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
599 struct gallivm_state *gallivm = bld_base->base.gallivm;
600 LLVMBuilderRef builder = gallivm->builder;
601 LLVMValueRef ptr;
602
603 ptr = get_pointer_into_array(ctx, file, chan_index, reg_index, reg_indirect);
604 if (ptr) {
605 LLVMBuildStore(builder, value, ptr);
606 } else {
607 unsigned i, size;
608 struct tgsi_declaration_range range = get_array_range(bld_base, file, reg_index, reg_indirect);
609 LLVMValueRef index = emit_array_index(bld, reg_indirect, reg_index - range.First);
610 LLVMValueRef array =
611 emit_array_fetch(bld_base, file, TGSI_TYPE_FLOAT, range, chan_index);
612 LLVMValueRef temp_ptr;
613
614 array = LLVMBuildInsertElement(builder, array, value, index, "");
615
616 size = range.Last - range.First + 1;
617 for (i = 0; i < size; ++i) {
618 switch(file) {
619 case TGSI_FILE_OUTPUT:
620 temp_ptr = bld->outputs[i + range.First][chan_index];
621 break;
622
623 case TGSI_FILE_TEMPORARY:
624 if (range.First + i >= ctx->temps_count)
625 continue;
626 temp_ptr = ctx->temps[(i + range.First) * TGSI_NUM_CHANNELS + chan_index];
627 break;
628
629 default:
630 continue;
631 }
632 value = LLVMBuildExtractElement(builder, array,
633 lp_build_const_int32(gallivm, i), "");
634 LLVMBuildStore(builder, value, temp_ptr);
635 }
636 }
637 }
638
639 LLVMValueRef si_llvm_emit_fetch(struct lp_build_tgsi_context *bld_base,
640 const struct tgsi_full_src_register *reg,
641 enum tgsi_opcode_type type,
642 unsigned swizzle)
643 {
644 struct si_shader_context *ctx = si_shader_context(bld_base);
645 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
646 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
647 LLVMValueRef result = NULL, ptr, ptr2;
648
649 if (swizzle == ~0) {
650 LLVMValueRef values[TGSI_NUM_CHANNELS];
651 unsigned chan;
652 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
653 values[chan] = si_llvm_emit_fetch(bld_base, reg, type, chan);
654 }
655 return lp_build_gather_values(bld_base->base.gallivm, values,
656 TGSI_NUM_CHANNELS);
657 }
658
659 if (reg->Register.Indirect) {
660 LLVMValueRef load = load_value_from_array(bld_base, reg->Register.File, type,
661 swizzle, reg->Register.Index, &reg->Indirect);
662 return bitcast(bld_base, type, load);
663 }
664
665 switch(reg->Register.File) {
666 case TGSI_FILE_IMMEDIATE: {
667 LLVMTypeRef ctype = tgsi2llvmtype(bld_base, type);
668 if (tgsi_type_is_64bit(type)) {
669 result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
670 result = LLVMConstInsertElement(result,
671 bld->immediates[reg->Register.Index][swizzle],
672 bld_base->int_bld.zero);
673 result = LLVMConstInsertElement(result,
674 bld->immediates[reg->Register.Index][swizzle + 1],
675 bld_base->int_bld.one);
676 return LLVMConstBitCast(result, ctype);
677 } else {
678 return LLVMConstBitCast(bld->immediates[reg->Register.Index][swizzle], ctype);
679 }
680 }
681
682 case TGSI_FILE_INPUT: {
683 unsigned index = reg->Register.Index;
684 LLVMValueRef input[4];
685
686 /* I don't think doing this for vertex shaders is beneficial.
687 * For those, we want to make sure the VMEM loads are executed
688 * only once. Fragment shaders don't care much, because
689 * v_interp instructions are much cheaper than VMEM loads.
690 */
691 if (ctx->soa.bld_base.info->processor == PIPE_SHADER_FRAGMENT)
692 ctx->load_input(ctx, index, &ctx->input_decls[index], input);
693 else
694 memcpy(input, &ctx->inputs[index * 4], sizeof(input));
695
696 result = input[swizzle];
697
698 if (tgsi_type_is_64bit(type)) {
699 ptr = result;
700 ptr2 = input[swizzle + 1];
701 return si_llvm_emit_fetch_64bit(bld_base, type, ptr, ptr2);
702 }
703 break;
704 }
705
706 case TGSI_FILE_TEMPORARY:
707 if (reg->Register.Index >= ctx->temps_count)
708 return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
709 ptr = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle];
710 if (tgsi_type_is_64bit(type)) {
711 ptr2 = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1];
712 return si_llvm_emit_fetch_64bit(bld_base, type,
713 LLVMBuildLoad(builder, ptr, ""),
714 LLVMBuildLoad(builder, ptr2, ""));
715 }
716 result = LLVMBuildLoad(builder, ptr, "");
717 break;
718
719 case TGSI_FILE_OUTPUT:
720 ptr = lp_get_output_ptr(bld, reg->Register.Index, swizzle);
721 if (tgsi_type_is_64bit(type)) {
722 ptr2 = lp_get_output_ptr(bld, reg->Register.Index, swizzle + 1);
723 return si_llvm_emit_fetch_64bit(bld_base, type,
724 LLVMBuildLoad(builder, ptr, ""),
725 LLVMBuildLoad(builder, ptr2, ""));
726 }
727 result = LLVMBuildLoad(builder, ptr, "");
728 break;
729
730 default:
731 return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
732 }
733
734 return bitcast(bld_base, type, result);
735 }
736
737 static LLVMValueRef fetch_system_value(struct lp_build_tgsi_context *bld_base,
738 const struct tgsi_full_src_register *reg,
739 enum tgsi_opcode_type type,
740 unsigned swizzle)
741 {
742 struct si_shader_context *ctx = si_shader_context(bld_base);
743 struct gallivm_state *gallivm = bld_base->base.gallivm;
744
745 LLVMValueRef cval = ctx->system_values[reg->Register.Index];
746 if (LLVMGetTypeKind(LLVMTypeOf(cval)) == LLVMVectorTypeKind) {
747 cval = LLVMBuildExtractElement(gallivm->builder, cval,
748 lp_build_const_int32(gallivm, swizzle), "");
749 }
750 return bitcast(bld_base, type, cval);
751 }
752
753 static void emit_declaration(struct lp_build_tgsi_context *bld_base,
754 const struct tgsi_full_declaration *decl)
755 {
756 struct si_shader_context *ctx = si_shader_context(bld_base);
757 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
758 unsigned first, last, i;
759 switch(decl->Declaration.File) {
760 case TGSI_FILE_ADDRESS:
761 {
762 unsigned idx;
763 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
764 unsigned chan;
765 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
766 ctx->soa.addr[idx][chan] = lp_build_alloca_undef(
767 &ctx->gallivm,
768 ctx->soa.bld_base.uint_bld.elem_type, "");
769 }
770 }
771 break;
772 }
773
774 case TGSI_FILE_TEMPORARY:
775 {
776 char name[16] = "";
777 LLVMValueRef array_alloca = NULL;
778 unsigned decl_size;
779 unsigned writemask = decl->Declaration.UsageMask;
780 first = decl->Range.First;
781 last = decl->Range.Last;
782 decl_size = 4 * ((last - first) + 1);
783
784 if (decl->Declaration.Array) {
785 unsigned id = decl->Array.ArrayID - 1;
786 unsigned array_size;
787
788 writemask &= ctx->temp_arrays[id].writemask;
789 ctx->temp_arrays[id].writemask = writemask;
790 array_size = ((last - first) + 1) * util_bitcount(writemask);
791
792 /* If the array has more than 16 elements, store it
793 * in memory using an alloca that spans the entire
794 * array.
795 *
796 * Otherwise, store each array element individually.
797 * We will then generate vectors (per-channel, up to
798 * <16 x float> if the usagemask is a single bit) for
799 * indirect addressing.
800 *
801 * Note that 16 is the number of vector elements that
802 * LLVM will store in a register, so theoretically an
803 * array with up to 4 * 16 = 64 elements could be
804 * handled this way, but whether that's a good idea
805 * depends on VGPR register pressure elsewhere.
806 *
807 * FIXME: We shouldn't need to have the non-alloca
808 * code path for arrays. LLVM should be smart enough to
809 * promote allocas into registers when profitable.
810 *
811 * LLVM 3.8 crashes with this.
812 */
813 if (HAVE_LLVM >= 0x0309 && array_size > 16) {
814 array_alloca = LLVMBuildAlloca(builder,
815 LLVMArrayType(bld_base->base.vec_type,
816 array_size), "array");
817 ctx->temp_array_allocas[id] = array_alloca;
818 }
819 }
820
821 if (!ctx->temps_count) {
822 ctx->temps_count = bld_base->info->file_max[TGSI_FILE_TEMPORARY] + 1;
823 ctx->temps = MALLOC(TGSI_NUM_CHANNELS * ctx->temps_count * sizeof(LLVMValueRef));
824 }
825 if (!array_alloca) {
826 for (i = 0; i < decl_size; ++i) {
827 #ifdef DEBUG
828 snprintf(name, sizeof(name), "TEMP%d.%c",
829 first + i / 4, "xyzw"[i % 4]);
830 #endif
831 ctx->temps[first * TGSI_NUM_CHANNELS + i] =
832 lp_build_alloca_undef(bld_base->base.gallivm,
833 bld_base->base.vec_type,
834 name);
835 }
836 } else {
837 LLVMValueRef idxs[2] = {
838 bld_base->uint_bld.zero,
839 NULL
840 };
841 unsigned j = 0;
842
843 if (writemask != TGSI_WRITEMASK_XYZW &&
844 !ctx->undef_alloca) {
845 /* Create a dummy alloca. We use it so that we
846 * have a pointer that is safe to load from if
847 * a shader ever reads from a channel that
848 * it never writes to.
849 */
850 ctx->undef_alloca = lp_build_alloca_undef(
851 bld_base->base.gallivm,
852 bld_base->base.vec_type, "undef");
853 }
854
855 for (i = 0; i < decl_size; ++i) {
856 LLVMValueRef ptr;
857 if (writemask & (1 << (i % 4))) {
858 #ifdef DEBUG
859 snprintf(name, sizeof(name), "TEMP%d.%c",
860 first + i / 4, "xyzw"[i % 4]);
861 #endif
862 idxs[1] = lp_build_const_int32(bld_base->base.gallivm, j);
863 ptr = LLVMBuildGEP(builder, array_alloca, idxs, 2, name);
864 j++;
865 } else {
866 ptr = ctx->undef_alloca;
867 }
868 ctx->temps[first * TGSI_NUM_CHANNELS + i] = ptr;
869 }
870 }
871 break;
872 }
873 case TGSI_FILE_INPUT:
874 {
875 unsigned idx;
876 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
877 if (ctx->load_input &&
878 ctx->input_decls[idx].Declaration.File != TGSI_FILE_INPUT) {
879 ctx->input_decls[idx] = *decl;
880 ctx->input_decls[idx].Range.First = idx;
881 ctx->input_decls[idx].Range.Last = idx;
882 ctx->input_decls[idx].Semantic.Index += idx - decl->Range.First;
883
884 if (bld_base->info->processor != PIPE_SHADER_FRAGMENT)
885 ctx->load_input(ctx, idx, &ctx->input_decls[idx],
886 &ctx->inputs[idx * 4]);
887 }
888 }
889 }
890 break;
891
892 case TGSI_FILE_SYSTEM_VALUE:
893 {
894 unsigned idx;
895 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
896 ctx->load_system_value(ctx, idx, decl);
897 }
898 }
899 break;
900
901 case TGSI_FILE_OUTPUT:
902 {
903 char name[16] = "";
904 unsigned idx;
905 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
906 unsigned chan;
907 assert(idx < RADEON_LLVM_MAX_OUTPUTS);
908 if (ctx->soa.outputs[idx][0])
909 continue;
910 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
911 #ifdef DEBUG
912 snprintf(name, sizeof(name), "OUT%d.%c",
913 idx, "xyzw"[chan % 4]);
914 #endif
915 ctx->soa.outputs[idx][chan] = lp_build_alloca_undef(
916 &ctx->gallivm,
917 ctx->soa.bld_base.base.elem_type, name);
918 }
919 }
920 break;
921 }
922
923 case TGSI_FILE_MEMORY:
924 ctx->declare_memory_region(ctx, decl);
925 break;
926
927 default:
928 break;
929 }
930 }
931
932 LLVMValueRef si_llvm_saturate(struct lp_build_tgsi_context *bld_base,
933 LLVMValueRef value)
934 {
935 struct lp_build_emit_data clamp_emit_data;
936
937 memset(&clamp_emit_data, 0, sizeof(clamp_emit_data));
938 clamp_emit_data.arg_count = 3;
939 clamp_emit_data.args[0] = value;
940 clamp_emit_data.args[2] = bld_base->base.one;
941 clamp_emit_data.args[1] = bld_base->base.zero;
942
943 return lp_build_emit_llvm(bld_base, TGSI_OPCODE_CLAMP,
944 &clamp_emit_data);
945 }
946
947 void si_llvm_emit_store(struct lp_build_tgsi_context *bld_base,
948 const struct tgsi_full_instruction *inst,
949 const struct tgsi_opcode_info *info,
950 LLVMValueRef dst[4])
951 {
952 struct si_shader_context *ctx = si_shader_context(bld_base);
953 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
954 struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
955 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
956 LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
957 LLVMValueRef temp_ptr, temp_ptr2 = NULL;
958 unsigned chan, chan_index;
959 bool is_vec_store = false;
960 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
961
962 if (dst[0]) {
963 LLVMTypeKind k = LLVMGetTypeKind(LLVMTypeOf(dst[0]));
964 is_vec_store = (k == LLVMVectorTypeKind);
965 }
966
967 if (is_vec_store) {
968 LLVMValueRef values[4] = {};
969 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
970 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
971 values[chan] = LLVMBuildExtractElement(gallivm->builder,
972 dst[0], index, "");
973 }
974 bld_base->emit_store(bld_base, inst, info, values);
975 return;
976 }
977
978 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
979 LLVMValueRef value = dst[chan_index];
980
981 if (tgsi_type_is_64bit(dtype) && (chan_index == 1 || chan_index == 3))
982 continue;
983 if (inst->Instruction.Saturate)
984 value = si_llvm_saturate(bld_base, value);
985
986 if (reg->Register.File == TGSI_FILE_ADDRESS) {
987 temp_ptr = bld->addr[reg->Register.Index][chan_index];
988 LLVMBuildStore(builder, value, temp_ptr);
989 continue;
990 }
991
992 if (!tgsi_type_is_64bit(dtype))
993 value = bitcast(bld_base, TGSI_TYPE_FLOAT, value);
994
995 if (reg->Register.Indirect) {
996 unsigned file = reg->Register.File;
997 unsigned reg_index = reg->Register.Index;
998 store_value_to_array(bld_base, value, file, chan_index,
999 reg_index, &reg->Indirect);
1000 } else {
1001 switch(reg->Register.File) {
1002 case TGSI_FILE_OUTPUT:
1003 temp_ptr = bld->outputs[reg->Register.Index][chan_index];
1004 if (tgsi_type_is_64bit(dtype))
1005 temp_ptr2 = bld->outputs[reg->Register.Index][chan_index + 1];
1006 break;
1007
1008 case TGSI_FILE_TEMPORARY:
1009 {
1010 if (reg->Register.Index >= ctx->temps_count)
1011 continue;
1012
1013 temp_ptr = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index];
1014 if (tgsi_type_is_64bit(dtype))
1015 temp_ptr2 = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index + 1];
1016
1017 break;
1018 }
1019 default:
1020 return;
1021 }
1022 if (!tgsi_type_is_64bit(dtype))
1023 LLVMBuildStore(builder, value, temp_ptr);
1024 else {
1025 LLVMValueRef ptr = LLVMBuildBitCast(builder, value,
1026 LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), 2), "");
1027 LLVMValueRef val2;
1028 value = LLVMBuildExtractElement(builder, ptr,
1029 bld_base->uint_bld.zero, "");
1030 val2 = LLVMBuildExtractElement(builder, ptr,
1031 bld_base->uint_bld.one, "");
1032
1033 LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, value), temp_ptr);
1034 LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, val2), temp_ptr2);
1035 }
1036 }
1037 }
1038 }
1039
1040 static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base, int pc)
1041 {
1042 char buf[32];
1043 /* Subtract 1 so that the number shown is that of the corresponding
1044 * opcode in the TGSI dump, e.g. an if block has the same suffix as
1045 * the instruction number of the corresponding TGSI IF.
1046 */
1047 snprintf(buf, sizeof(buf), "%s%d", base, pc - 1);
1048 LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
1049 }
1050
1051 /* Append a basic block at the level of the parent flow.
1052 */
1053 static LLVMBasicBlockRef append_basic_block(struct si_shader_context *ctx,
1054 const char *name)
1055 {
1056 struct gallivm_state *gallivm = &ctx->gallivm;
1057
1058 assert(ctx->flow_depth >= 1);
1059
1060 if (ctx->flow_depth >= 2) {
1061 struct si_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
1062
1063 return LLVMInsertBasicBlockInContext(gallivm->context,
1064 flow->next_block, name);
1065 }
1066
1067 return LLVMAppendBasicBlockInContext(gallivm->context, ctx->main_fn, name);
1068 }
1069
1070 /* Emit a branch to the given default target for the current block if
1071 * applicable -- that is, if the current block does not already contain a
1072 * branch from a break or continue.
1073 */
1074 static void emit_default_branch(LLVMBuilderRef builder, LLVMBasicBlockRef target)
1075 {
1076 if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
1077 LLVMBuildBr(builder, target);
1078 }
1079
1080 static void bgnloop_emit(const struct lp_build_tgsi_action *action,
1081 struct lp_build_tgsi_context *bld_base,
1082 struct lp_build_emit_data *emit_data)
1083 {
1084 struct si_shader_context *ctx = si_shader_context(bld_base);
1085 struct gallivm_state *gallivm = bld_base->base.gallivm;
1086 struct si_llvm_flow *flow = push_flow(ctx);
1087 flow->loop_entry_block = append_basic_block(ctx, "LOOP");
1088 flow->next_block = append_basic_block(ctx, "ENDLOOP");
1089 set_basicblock_name(flow->loop_entry_block, "loop", bld_base->pc);
1090 LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
1091 LLVMPositionBuilderAtEnd(gallivm->builder, flow->loop_entry_block);
1092 }
1093
1094 static void brk_emit(const struct lp_build_tgsi_action *action,
1095 struct lp_build_tgsi_context *bld_base,
1096 struct lp_build_emit_data *emit_data)
1097 {
1098 struct si_shader_context *ctx = si_shader_context(bld_base);
1099 struct gallivm_state *gallivm = bld_base->base.gallivm;
1100 struct si_llvm_flow *flow = get_innermost_loop(ctx);
1101
1102 LLVMBuildBr(gallivm->builder, flow->next_block);
1103 }
1104
1105 static void cont_emit(const struct lp_build_tgsi_action *action,
1106 struct lp_build_tgsi_context *bld_base,
1107 struct lp_build_emit_data *emit_data)
1108 {
1109 struct si_shader_context *ctx = si_shader_context(bld_base);
1110 struct gallivm_state *gallivm = bld_base->base.gallivm;
1111 struct si_llvm_flow *flow = get_innermost_loop(ctx);
1112
1113 LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
1114 }
1115
1116 static void else_emit(const struct lp_build_tgsi_action *action,
1117 struct lp_build_tgsi_context *bld_base,
1118 struct lp_build_emit_data *emit_data)
1119 {
1120 struct si_shader_context *ctx = si_shader_context(bld_base);
1121 struct gallivm_state *gallivm = bld_base->base.gallivm;
1122 struct si_llvm_flow *current_branch = get_current_flow(ctx);
1123 LLVMBasicBlockRef endif_block;
1124
1125 assert(!current_branch->loop_entry_block);
1126
1127 endif_block = append_basic_block(ctx, "ENDIF");
1128 emit_default_branch(gallivm->builder, endif_block);
1129
1130 LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
1131 set_basicblock_name(current_branch->next_block, "else", bld_base->pc);
1132
1133 current_branch->next_block = endif_block;
1134 }
1135
1136 static void endif_emit(const struct lp_build_tgsi_action *action,
1137 struct lp_build_tgsi_context *bld_base,
1138 struct lp_build_emit_data *emit_data)
1139 {
1140 struct si_shader_context *ctx = si_shader_context(bld_base);
1141 struct gallivm_state *gallivm = bld_base->base.gallivm;
1142 struct si_llvm_flow *current_branch = get_current_flow(ctx);
1143
1144 assert(!current_branch->loop_entry_block);
1145
1146 emit_default_branch(gallivm->builder, current_branch->next_block);
1147 LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
1148 set_basicblock_name(current_branch->next_block, "endif", bld_base->pc);
1149
1150 ctx->flow_depth--;
1151 }
1152
1153 static void endloop_emit(const struct lp_build_tgsi_action *action,
1154 struct lp_build_tgsi_context *bld_base,
1155 struct lp_build_emit_data *emit_data)
1156 {
1157 struct si_shader_context *ctx = si_shader_context(bld_base);
1158 struct gallivm_state *gallivm = bld_base->base.gallivm;
1159 struct si_llvm_flow *current_loop = get_current_flow(ctx);
1160
1161 assert(current_loop->loop_entry_block);
1162
1163 emit_default_branch(gallivm->builder, current_loop->loop_entry_block);
1164
1165 LLVMPositionBuilderAtEnd(gallivm->builder, current_loop->next_block);
1166 set_basicblock_name(current_loop->next_block, "endloop", bld_base->pc);
1167 ctx->flow_depth--;
1168 }
1169
1170 static void if_cond_emit(const struct lp_build_tgsi_action *action,
1171 struct lp_build_tgsi_context *bld_base,
1172 struct lp_build_emit_data *emit_data,
1173 LLVMValueRef cond)
1174 {
1175 struct si_shader_context *ctx = si_shader_context(bld_base);
1176 struct gallivm_state *gallivm = bld_base->base.gallivm;
1177 struct si_llvm_flow *flow = push_flow(ctx);
1178 LLVMBasicBlockRef if_block;
1179
1180 if_block = append_basic_block(ctx, "IF");
1181 flow->next_block = append_basic_block(ctx, "ELSE");
1182 set_basicblock_name(if_block, "if", bld_base->pc);
1183 LLVMBuildCondBr(gallivm->builder, cond, if_block, flow->next_block);
1184 LLVMPositionBuilderAtEnd(gallivm->builder, if_block);
1185 }
1186
1187 static void if_emit(const struct lp_build_tgsi_action *action,
1188 struct lp_build_tgsi_context *bld_base,
1189 struct lp_build_emit_data *emit_data)
1190 {
1191 struct gallivm_state *gallivm = bld_base->base.gallivm;
1192 LLVMValueRef cond;
1193
1194 cond = LLVMBuildFCmp(gallivm->builder, LLVMRealUNE,
1195 emit_data->args[0],
1196 bld_base->base.zero, "");
1197
1198 if_cond_emit(action, bld_base, emit_data, cond);
1199 }
1200
1201 static void uif_emit(const struct lp_build_tgsi_action *action,
1202 struct lp_build_tgsi_context *bld_base,
1203 struct lp_build_emit_data *emit_data)
1204 {
1205 struct gallivm_state *gallivm = bld_base->base.gallivm;
1206 LLVMValueRef cond;
1207
1208 cond = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
1209 bitcast(bld_base, TGSI_TYPE_UNSIGNED, emit_data->args[0]),
1210 bld_base->int_bld.zero, "");
1211
1212 if_cond_emit(action, bld_base, emit_data, cond);
1213 }
1214
1215 static void emit_immediate(struct lp_build_tgsi_context *bld_base,
1216 const struct tgsi_full_immediate *imm)
1217 {
1218 unsigned i;
1219 struct si_shader_context *ctx = si_shader_context(bld_base);
1220
1221 for (i = 0; i < 4; ++i) {
1222 ctx->soa.immediates[ctx->soa.num_immediates][i] =
1223 LLVMConstInt(bld_base->uint_bld.elem_type, imm->u[i].Uint, false );
1224 }
1225
1226 ctx->soa.num_immediates++;
1227 }
1228
1229 void si_llvm_context_init(struct si_shader_context *ctx,
1230 struct si_screen *sscreen,
1231 struct si_shader *shader,
1232 LLVMTargetMachineRef tm,
1233 const struct tgsi_shader_info *info,
1234 const struct tgsi_token *tokens)
1235 {
1236 struct lp_type type;
1237
1238 /* Initialize the gallivm object:
1239 * We are only using the module, context, and builder fields of this struct.
1240 * This should be enough for us to be able to pass our gallivm struct to the
1241 * helper functions in the gallivm module.
1242 */
1243 memset(ctx, 0, sizeof(*ctx));
1244 ctx->shader = shader;
1245 ctx->screen = sscreen;
1246 ctx->tm = tm;
1247 ctx->type = info ? info->processor : -1;
1248
1249 ctx->gallivm.context = LLVMContextCreate();
1250 ctx->gallivm.module = LLVMModuleCreateWithNameInContext("tgsi",
1251 ctx->gallivm.context);
1252 LLVMSetTarget(ctx->gallivm.module, "amdgcn--");
1253
1254 bool unsafe_fpmath = (sscreen->b.debug_flags & DBG_UNSAFE_MATH) != 0;
1255 ctx->gallivm.builder = lp_create_builder(ctx->gallivm.context,
1256 unsafe_fpmath);
1257
1258 struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
1259
1260 bld_base->info = info;
1261
1262 if (info && info->array_max[TGSI_FILE_TEMPORARY] > 0) {
1263 int size = info->array_max[TGSI_FILE_TEMPORARY];
1264
1265 ctx->temp_arrays = CALLOC(size, sizeof(ctx->temp_arrays[0]));
1266 ctx->temp_array_allocas = CALLOC(size, sizeof(ctx->temp_array_allocas[0]));
1267
1268 if (tokens)
1269 tgsi_scan_arrays(tokens, TGSI_FILE_TEMPORARY, size,
1270 ctx->temp_arrays);
1271 }
1272
1273 type.floating = true;
1274 type.fixed = false;
1275 type.sign = true;
1276 type.norm = false;
1277 type.width = 32;
1278 type.length = 1;
1279
1280 lp_build_context_init(&bld_base->base, &ctx->gallivm, type);
1281 lp_build_context_init(&ctx->soa.bld_base.uint_bld, &ctx->gallivm, lp_uint_type(type));
1282 lp_build_context_init(&ctx->soa.bld_base.int_bld, &ctx->gallivm, lp_int_type(type));
1283 type.width *= 2;
1284 lp_build_context_init(&ctx->soa.bld_base.dbl_bld, &ctx->gallivm, type);
1285 lp_build_context_init(&ctx->soa.bld_base.uint64_bld, &ctx->gallivm, lp_uint_type(type));
1286 lp_build_context_init(&ctx->soa.bld_base.int64_bld, &ctx->gallivm, lp_int_type(type));
1287
1288 bld_base->soa = 1;
1289 bld_base->emit_store = si_llvm_emit_store;
1290 bld_base->emit_swizzle = emit_swizzle;
1291 bld_base->emit_declaration = emit_declaration;
1292 bld_base->emit_immediate = emit_immediate;
1293
1294 bld_base->emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = si_llvm_emit_fetch;
1295 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = si_llvm_emit_fetch;
1296 bld_base->emit_fetch_funcs[TGSI_FILE_TEMPORARY] = si_llvm_emit_fetch;
1297 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = si_llvm_emit_fetch;
1298 bld_base->emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = fetch_system_value;
1299
1300 /* metadata allowing 2.5 ULP */
1301 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->gallivm.context,
1302 "fpmath", 6);
1303 LLVMValueRef arg = lp_build_const_float(&ctx->gallivm, 2.5);
1304 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->gallivm.context,
1305 &arg, 1);
1306
1307 /* Allocate outputs */
1308 ctx->soa.outputs = ctx->outputs;
1309
1310 bld_base->op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
1311 bld_base->op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
1312 bld_base->op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
1313 bld_base->op_actions[TGSI_OPCODE_IF].emit = if_emit;
1314 bld_base->op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
1315 bld_base->op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
1316 bld_base->op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
1317 bld_base->op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
1318
1319 si_shader_context_init_alu(&ctx->soa.bld_base);
1320
1321 ctx->voidt = LLVMVoidTypeInContext(ctx->gallivm.context);
1322 ctx->i1 = LLVMInt1TypeInContext(ctx->gallivm.context);
1323 ctx->i8 = LLVMInt8TypeInContext(ctx->gallivm.context);
1324 ctx->i32 = LLVMInt32TypeInContext(ctx->gallivm.context);
1325 ctx->i64 = LLVMInt64TypeInContext(ctx->gallivm.context);
1326 ctx->i128 = LLVMIntTypeInContext(ctx->gallivm.context, 128);
1327 ctx->f32 = LLVMFloatTypeInContext(ctx->gallivm.context);
1328 ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
1329 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
1330 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
1331 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
1332 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
1333 }
1334
1335 void si_llvm_create_func(struct si_shader_context *ctx,
1336 const char *name,
1337 LLVMTypeRef *return_types, unsigned num_return_elems,
1338 LLVMTypeRef *ParamTypes, unsigned ParamCount)
1339 {
1340 LLVMTypeRef main_fn_type, ret_type;
1341 LLVMBasicBlockRef main_fn_body;
1342
1343 if (num_return_elems)
1344 ret_type = LLVMStructTypeInContext(ctx->gallivm.context,
1345 return_types,
1346 num_return_elems, true);
1347 else
1348 ret_type = LLVMVoidTypeInContext(ctx->gallivm.context);
1349
1350 /* Setup the function */
1351 ctx->return_type = ret_type;
1352 main_fn_type = LLVMFunctionType(ret_type, ParamTypes, ParamCount, 0);
1353 ctx->main_fn = LLVMAddFunction(ctx->gallivm.module, name, main_fn_type);
1354 main_fn_body = LLVMAppendBasicBlockInContext(ctx->gallivm.context,
1355 ctx->main_fn, "main_body");
1356 LLVMPositionBuilderAtEnd(ctx->gallivm.builder, main_fn_body);
1357 }
1358
1359 void si_llvm_finalize_module(struct si_shader_context *ctx,
1360 bool run_verifier)
1361 {
1362 struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
1363 const char *triple = LLVMGetTarget(gallivm->module);
1364 LLVMTargetLibraryInfoRef target_library_info;
1365
1366 /* Create the pass manager */
1367 gallivm->passmgr = LLVMCreatePassManager();
1368
1369 target_library_info = gallivm_create_target_library_info(triple);
1370 LLVMAddTargetLibraryInfo(target_library_info, gallivm->passmgr);
1371
1372 if (run_verifier)
1373 LLVMAddVerifierPass(gallivm->passmgr);
1374
1375 LLVMAddAlwaysInlinerPass(gallivm->passmgr);
1376
1377 /* This pass should eliminate all the load and store instructions */
1378 LLVMAddPromoteMemoryToRegisterPass(gallivm->passmgr);
1379
1380 /* Add some optimization passes */
1381 LLVMAddScalarReplAggregatesPass(gallivm->passmgr);
1382 LLVMAddLICMPass(gallivm->passmgr);
1383 LLVMAddAggressiveDCEPass(gallivm->passmgr);
1384 LLVMAddCFGSimplificationPass(gallivm->passmgr);
1385 LLVMAddInstructionCombiningPass(gallivm->passmgr);
1386
1387 /* Run the pass */
1388 LLVMRunPassManager(gallivm->passmgr, ctx->gallivm.module);
1389
1390 LLVMDisposeBuilder(gallivm->builder);
1391 LLVMDisposePassManager(gallivm->passmgr);
1392 gallivm_dispose_target_library_info(target_library_info);
1393 }
1394
1395 void si_llvm_dispose(struct si_shader_context *ctx)
1396 {
1397 LLVMDisposeModule(ctx->soa.bld_base.base.gallivm->module);
1398 LLVMContextDispose(ctx->soa.bld_base.base.gallivm->context);
1399 FREE(ctx->temp_arrays);
1400 ctx->temp_arrays = NULL;
1401 FREE(ctx->temp_array_allocas);
1402 ctx->temp_array_allocas = NULL;
1403 FREE(ctx->temps);
1404 ctx->temps = NULL;
1405 ctx->temps_count = 0;
1406 FREE(ctx->flow);
1407 ctx->flow = NULL;
1408 ctx->flow_depth_max = 0;
1409 }