radeonsi: replace si_shader_context::soa by bld_base
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_tgsi_setup.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_shader_internal.h"
25 #include "si_pipe.h"
26 #include "radeon/radeon_elf_util.h"
27
28 #include "gallivm/lp_bld_const.h"
29 #include "gallivm/lp_bld_gather.h"
30 #include "gallivm/lp_bld_flow.h"
31 #include "gallivm/lp_bld_init.h"
32 #include "gallivm/lp_bld_intr.h"
33 #include "gallivm/lp_bld_misc.h"
34 #include "gallivm/lp_bld_swizzle.h"
35 #include "tgsi/tgsi_info.h"
36 #include "tgsi/tgsi_parse.h"
37 #include "util/u_math.h"
38 #include "util/u_memory.h"
39 #include "util/u_debug.h"
40
41 #include <stdio.h>
42 #include <llvm-c/Transforms/IPO.h>
43 #include <llvm-c/Transforms/Scalar.h>
44
45 /* Data for if/else/endif and bgnloop/endloop control flow structures.
46 */
47 struct si_llvm_flow {
48 /* Loop exit or next part of if/else/endif. */
49 LLVMBasicBlockRef next_block;
50 LLVMBasicBlockRef loop_entry_block;
51 };
52
53 #define CPU_STRING_LEN 30
54 #define FS_STRING_LEN 30
55 #define TRIPLE_STRING_LEN 7
56
57 /**
58 * Shader types for the LLVM backend.
59 */
60 enum si_llvm_shader_type {
61 RADEON_LLVM_SHADER_PS = 0,
62 RADEON_LLVM_SHADER_VS = 1,
63 RADEON_LLVM_SHADER_GS = 2,
64 RADEON_LLVM_SHADER_CS = 3,
65 };
66
67 enum si_llvm_calling_convention {
68 RADEON_LLVM_AMDGPU_VS = 87,
69 RADEON_LLVM_AMDGPU_GS = 88,
70 RADEON_LLVM_AMDGPU_PS = 89,
71 RADEON_LLVM_AMDGPU_CS = 90,
72 };
73
74 void si_llvm_add_attribute(LLVMValueRef F, const char *name, int value)
75 {
76 char str[16];
77
78 snprintf(str, sizeof(str), "%i", value);
79 LLVMAddTargetDependentFunctionAttr(F, name, str);
80 }
81
82 /**
83 * Set the shader type we want to compile
84 *
85 * @param type shader type to set
86 */
87 void si_llvm_shader_type(LLVMValueRef F, unsigned type)
88 {
89 enum si_llvm_shader_type llvm_type;
90 enum si_llvm_calling_convention calling_conv;
91
92 switch (type) {
93 case PIPE_SHADER_VERTEX:
94 case PIPE_SHADER_TESS_CTRL:
95 case PIPE_SHADER_TESS_EVAL:
96 llvm_type = RADEON_LLVM_SHADER_VS;
97 calling_conv = RADEON_LLVM_AMDGPU_VS;
98 break;
99 case PIPE_SHADER_GEOMETRY:
100 llvm_type = RADEON_LLVM_SHADER_GS;
101 calling_conv = RADEON_LLVM_AMDGPU_GS;
102 break;
103 case PIPE_SHADER_FRAGMENT:
104 llvm_type = RADEON_LLVM_SHADER_PS;
105 calling_conv = RADEON_LLVM_AMDGPU_PS;
106 break;
107 case PIPE_SHADER_COMPUTE:
108 llvm_type = RADEON_LLVM_SHADER_CS;
109 calling_conv = RADEON_LLVM_AMDGPU_CS;
110 break;
111 default:
112 unreachable("Unhandle shader type");
113 }
114
115 if (HAVE_LLVM >= 0x309)
116 LLVMSetFunctionCallConv(F, calling_conv);
117 else
118 si_llvm_add_attribute(F, "ShaderType", llvm_type);
119 }
120
121 static void init_amdgpu_target()
122 {
123 gallivm_init_llvm_targets();
124 #if HAVE_LLVM < 0x0307
125 LLVMInitializeR600TargetInfo();
126 LLVMInitializeR600Target();
127 LLVMInitializeR600TargetMC();
128 LLVMInitializeR600AsmPrinter();
129 #else
130 LLVMInitializeAMDGPUTargetInfo();
131 LLVMInitializeAMDGPUTarget();
132 LLVMInitializeAMDGPUTargetMC();
133 LLVMInitializeAMDGPUAsmPrinter();
134
135 #endif
136 }
137
138 static once_flag init_amdgpu_target_once_flag = ONCE_FLAG_INIT;
139
140 LLVMTargetRef si_llvm_get_amdgpu_target(const char *triple)
141 {
142 LLVMTargetRef target = NULL;
143 char *err_message = NULL;
144
145 call_once(&init_amdgpu_target_once_flag, init_amdgpu_target);
146
147 if (LLVMGetTargetFromTriple(triple, &target, &err_message)) {
148 fprintf(stderr, "Cannot find target for triple %s ", triple);
149 if (err_message) {
150 fprintf(stderr, "%s\n", err_message);
151 }
152 LLVMDisposeMessage(err_message);
153 return NULL;
154 }
155 return target;
156 }
157
158 struct si_llvm_diagnostics {
159 struct pipe_debug_callback *debug;
160 unsigned retval;
161 };
162
163 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
164 {
165 struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
166 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
167 char *description = LLVMGetDiagInfoDescription(di);
168 const char *severity_str = NULL;
169
170 switch (severity) {
171 case LLVMDSError:
172 severity_str = "error";
173 break;
174 case LLVMDSWarning:
175 severity_str = "warning";
176 break;
177 case LLVMDSRemark:
178 severity_str = "remark";
179 break;
180 case LLVMDSNote:
181 severity_str = "note";
182 break;
183 default:
184 severity_str = "unknown";
185 }
186
187 pipe_debug_message(diag->debug, SHADER_INFO,
188 "LLVM diagnostic (%s): %s", severity_str, description);
189
190 if (severity == LLVMDSError) {
191 diag->retval = 1;
192 fprintf(stderr,"LLVM triggered Diagnostic Handler: %s\n", description);
193 }
194
195 LLVMDisposeMessage(description);
196 }
197
198 /**
199 * Compile an LLVM module to machine code.
200 *
201 * @returns 0 for success, 1 for failure
202 */
203 unsigned si_llvm_compile(LLVMModuleRef M, struct radeon_shader_binary *binary,
204 LLVMTargetMachineRef tm,
205 struct pipe_debug_callback *debug)
206 {
207 struct si_llvm_diagnostics diag;
208 char *err;
209 LLVMContextRef llvm_ctx;
210 LLVMMemoryBufferRef out_buffer;
211 unsigned buffer_size;
212 const char *buffer_data;
213 LLVMBool mem_err;
214
215 diag.debug = debug;
216 diag.retval = 0;
217
218 /* Setup Diagnostic Handler*/
219 llvm_ctx = LLVMGetModuleContext(M);
220
221 LLVMContextSetDiagnosticHandler(llvm_ctx, si_diagnostic_handler, &diag);
222
223 /* Compile IR*/
224 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile, &err,
225 &out_buffer);
226
227 /* Process Errors/Warnings */
228 if (mem_err) {
229 fprintf(stderr, "%s: %s", __FUNCTION__, err);
230 pipe_debug_message(debug, SHADER_INFO,
231 "LLVM emit error: %s", err);
232 FREE(err);
233 diag.retval = 1;
234 goto out;
235 }
236
237 /* Extract Shader Code*/
238 buffer_size = LLVMGetBufferSize(out_buffer);
239 buffer_data = LLVMGetBufferStart(out_buffer);
240
241 radeon_elf_read(buffer_data, buffer_size, binary);
242
243 /* Clean up */
244 LLVMDisposeMemoryBuffer(out_buffer);
245
246 out:
247 if (diag.retval != 0)
248 pipe_debug_message(debug, SHADER_INFO, "LLVM compile failed");
249 return diag.retval;
250 }
251
252 LLVMTypeRef tgsi2llvmtype(struct lp_build_tgsi_context *bld_base,
253 enum tgsi_opcode_type type)
254 {
255 LLVMContextRef ctx = bld_base->base.gallivm->context;
256
257 switch (type) {
258 case TGSI_TYPE_UNSIGNED:
259 case TGSI_TYPE_SIGNED:
260 return LLVMInt32TypeInContext(ctx);
261 case TGSI_TYPE_UNSIGNED64:
262 case TGSI_TYPE_SIGNED64:
263 return LLVMInt64TypeInContext(ctx);
264 case TGSI_TYPE_DOUBLE:
265 return LLVMDoubleTypeInContext(ctx);
266 case TGSI_TYPE_UNTYPED:
267 case TGSI_TYPE_FLOAT:
268 return LLVMFloatTypeInContext(ctx);
269 default: break;
270 }
271 return 0;
272 }
273
274 LLVMValueRef bitcast(struct lp_build_tgsi_context *bld_base,
275 enum tgsi_opcode_type type, LLVMValueRef value)
276 {
277 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
278 LLVMTypeRef dst_type = tgsi2llvmtype(bld_base, type);
279
280 if (dst_type)
281 return LLVMBuildBitCast(builder, value, dst_type, "");
282 else
283 return value;
284 }
285
286 /**
287 * Return a value that is equal to the given i32 \p index if it lies in [0,num)
288 * or an undefined value in the same interval otherwise.
289 */
290 LLVMValueRef si_llvm_bound_index(struct si_shader_context *ctx,
291 LLVMValueRef index,
292 unsigned num)
293 {
294 struct gallivm_state *gallivm = &ctx->gallivm;
295 LLVMBuilderRef builder = gallivm->builder;
296 LLVMValueRef c_max = lp_build_const_int32(gallivm, num - 1);
297 LLVMValueRef cc;
298
299 if (util_is_power_of_two(num)) {
300 index = LLVMBuildAnd(builder, index, c_max, "");
301 } else {
302 /* In theory, this MAX pattern should result in code that is
303 * as good as the bit-wise AND above.
304 *
305 * In practice, LLVM generates worse code (at the time of
306 * writing), because its value tracking is not strong enough.
307 */
308 cc = LLVMBuildICmp(builder, LLVMIntULE, index, c_max, "");
309 index = LLVMBuildSelect(builder, cc, index, c_max, "");
310 }
311
312 return index;
313 }
314
315 static struct si_llvm_flow *
316 get_current_flow(struct si_shader_context *ctx)
317 {
318 if (ctx->flow_depth > 0)
319 return &ctx->flow[ctx->flow_depth - 1];
320 return NULL;
321 }
322
323 static struct si_llvm_flow *
324 get_innermost_loop(struct si_shader_context *ctx)
325 {
326 for (unsigned i = ctx->flow_depth; i > 0; --i) {
327 if (ctx->flow[i - 1].loop_entry_block)
328 return &ctx->flow[i - 1];
329 }
330 return NULL;
331 }
332
333 static struct si_llvm_flow *
334 push_flow(struct si_shader_context *ctx)
335 {
336 struct si_llvm_flow *flow;
337
338 if (ctx->flow_depth >= ctx->flow_depth_max) {
339 unsigned new_max = MAX2(ctx->flow_depth << 1, RADEON_LLVM_INITIAL_CF_DEPTH);
340 ctx->flow = REALLOC(ctx->flow,
341 ctx->flow_depth_max * sizeof(*ctx->flow),
342 new_max * sizeof(*ctx->flow));
343 ctx->flow_depth_max = new_max;
344 }
345
346 flow = &ctx->flow[ctx->flow_depth];
347 ctx->flow_depth++;
348
349 flow->next_block = NULL;
350 flow->loop_entry_block = NULL;
351 return flow;
352 }
353
354 static LLVMValueRef emit_swizzle(struct lp_build_tgsi_context *bld_base,
355 LLVMValueRef value,
356 unsigned swizzle_x,
357 unsigned swizzle_y,
358 unsigned swizzle_z,
359 unsigned swizzle_w)
360 {
361 LLVMValueRef swizzles[4];
362 LLVMTypeRef i32t =
363 LLVMInt32TypeInContext(bld_base->base.gallivm->context);
364
365 swizzles[0] = LLVMConstInt(i32t, swizzle_x, 0);
366 swizzles[1] = LLVMConstInt(i32t, swizzle_y, 0);
367 swizzles[2] = LLVMConstInt(i32t, swizzle_z, 0);
368 swizzles[3] = LLVMConstInt(i32t, swizzle_w, 0);
369
370 return LLVMBuildShuffleVector(bld_base->base.gallivm->builder,
371 value,
372 LLVMGetUndef(LLVMTypeOf(value)),
373 LLVMConstVector(swizzles, 4), "");
374 }
375
376 /**
377 * Return the description of the array covering the given temporary register
378 * index.
379 */
380 static unsigned
381 get_temp_array_id(struct lp_build_tgsi_context *bld_base,
382 unsigned reg_index,
383 const struct tgsi_ind_register *reg)
384 {
385 struct si_shader_context *ctx = si_shader_context(bld_base);
386 unsigned num_arrays = ctx->bld_base.info->array_max[TGSI_FILE_TEMPORARY];
387 unsigned i;
388
389 if (reg && reg->ArrayID > 0 && reg->ArrayID <= num_arrays)
390 return reg->ArrayID;
391
392 for (i = 0; i < num_arrays; i++) {
393 const struct tgsi_array_info *array = &ctx->temp_arrays[i];
394
395 if (reg_index >= array->range.First && reg_index <= array->range.Last)
396 return i + 1;
397 }
398
399 return 0;
400 }
401
402 static struct tgsi_declaration_range
403 get_array_range(struct lp_build_tgsi_context *bld_base,
404 unsigned File, unsigned reg_index,
405 const struct tgsi_ind_register *reg)
406 {
407 struct si_shader_context *ctx = si_shader_context(bld_base);
408 struct tgsi_declaration_range range;
409
410 if (File == TGSI_FILE_TEMPORARY) {
411 unsigned array_id = get_temp_array_id(bld_base, reg_index, reg);
412 if (array_id)
413 return ctx->temp_arrays[array_id - 1].range;
414 }
415
416 range.First = 0;
417 range.Last = bld_base->info->file_max[File];
418 return range;
419 }
420
421 static LLVMValueRef
422 emit_array_index(struct si_shader_context *ctx,
423 const struct tgsi_ind_register *reg,
424 unsigned offset)
425 {
426 struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
427
428 if (!reg) {
429 return lp_build_const_int32(gallivm, offset);
430 }
431 LLVMValueRef addr = LLVMBuildLoad(gallivm->builder, ctx->addrs[reg->Index][reg->Swizzle], "");
432 return LLVMBuildAdd(gallivm->builder, addr, lp_build_const_int32(gallivm, offset), "");
433 }
434
435 /**
436 * For indirect registers, construct a pointer directly to the requested
437 * element using getelementptr if possible.
438 *
439 * Returns NULL if the insertelement/extractelement fallback for array access
440 * must be used.
441 */
442 static LLVMValueRef
443 get_pointer_into_array(struct si_shader_context *ctx,
444 unsigned file,
445 unsigned swizzle,
446 unsigned reg_index,
447 const struct tgsi_ind_register *reg_indirect)
448 {
449 unsigned array_id;
450 struct tgsi_array_info *array;
451 struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
452 LLVMBuilderRef builder = gallivm->builder;
453 LLVMValueRef idxs[2];
454 LLVMValueRef index;
455 LLVMValueRef alloca;
456
457 if (file != TGSI_FILE_TEMPORARY)
458 return NULL;
459
460 array_id = get_temp_array_id(&ctx->bld_base, reg_index, reg_indirect);
461 if (!array_id)
462 return NULL;
463
464 alloca = ctx->temp_array_allocas[array_id - 1];
465 if (!alloca)
466 return NULL;
467
468 array = &ctx->temp_arrays[array_id - 1];
469
470 if (!(array->writemask & (1 << swizzle)))
471 return ctx->undef_alloca;
472
473 index = emit_array_index(ctx, reg_indirect,
474 reg_index - ctx->temp_arrays[array_id - 1].range.First);
475
476 /* Ensure that the index is within a valid range, to guard against
477 * VM faults and overwriting critical data (e.g. spilled resource
478 * descriptors).
479 *
480 * TODO It should be possible to avoid the additional instructions
481 * if LLVM is changed so that it guarantuees:
482 * 1. the scratch space descriptor isolates the current wave (this
483 * could even save the scratch offset SGPR at the cost of an
484 * additional SALU instruction)
485 * 2. the memory for allocas must be allocated at the _end_ of the
486 * scratch space (after spilled registers)
487 */
488 index = si_llvm_bound_index(ctx, index, array->range.Last - array->range.First + 1);
489
490 index = LLVMBuildMul(
491 builder, index,
492 lp_build_const_int32(gallivm, util_bitcount(array->writemask)),
493 "");
494 index = LLVMBuildAdd(
495 builder, index,
496 lp_build_const_int32(
497 gallivm,
498 util_bitcount(array->writemask & ((1 << swizzle) - 1))),
499 "");
500 idxs[0] = ctx->bld_base.uint_bld.zero;
501 idxs[1] = index;
502 return LLVMBuildGEP(builder, alloca, idxs, 2, "");
503 }
504
505 LLVMValueRef
506 si_llvm_emit_fetch_64bit(struct lp_build_tgsi_context *bld_base,
507 enum tgsi_opcode_type type,
508 LLVMValueRef ptr,
509 LLVMValueRef ptr2)
510 {
511 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
512 LLVMValueRef result;
513
514 result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
515
516 result = LLVMBuildInsertElement(builder,
517 result,
518 bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr),
519 bld_base->int_bld.zero, "");
520 result = LLVMBuildInsertElement(builder,
521 result,
522 bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr2),
523 bld_base->int_bld.one, "");
524 return bitcast(bld_base, type, result);
525 }
526
527 static LLVMValueRef
528 emit_array_fetch(struct lp_build_tgsi_context *bld_base,
529 unsigned File, enum tgsi_opcode_type type,
530 struct tgsi_declaration_range range,
531 unsigned swizzle)
532 {
533 struct si_shader_context *ctx = si_shader_context(bld_base);
534 struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
535
536 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
537
538 unsigned i, size = range.Last - range.First + 1;
539 LLVMTypeRef vec = LLVMVectorType(tgsi2llvmtype(bld_base, type), size);
540 LLVMValueRef result = LLVMGetUndef(vec);
541
542 struct tgsi_full_src_register tmp_reg = {};
543 tmp_reg.Register.File = File;
544
545 for (i = 0; i < size; ++i) {
546 tmp_reg.Register.Index = i + range.First;
547 LLVMValueRef temp = si_llvm_emit_fetch(bld_base, &tmp_reg, type, swizzle);
548 result = LLVMBuildInsertElement(builder, result, temp,
549 lp_build_const_int32(gallivm, i), "array_vector");
550 }
551 return result;
552 }
553
554 static LLVMValueRef
555 load_value_from_array(struct lp_build_tgsi_context *bld_base,
556 unsigned file,
557 enum tgsi_opcode_type type,
558 unsigned swizzle,
559 unsigned reg_index,
560 const struct tgsi_ind_register *reg_indirect)
561 {
562 struct si_shader_context *ctx = si_shader_context(bld_base);
563 struct gallivm_state *gallivm = bld_base->base.gallivm;
564 LLVMBuilderRef builder = gallivm->builder;
565 LLVMValueRef ptr;
566
567 ptr = get_pointer_into_array(ctx, file, swizzle, reg_index, reg_indirect);
568 if (ptr) {
569 LLVMValueRef val = LLVMBuildLoad(builder, ptr, "");
570 if (tgsi_type_is_64bit(type)) {
571 LLVMValueRef ptr_hi, val_hi;
572 ptr_hi = LLVMBuildGEP(builder, ptr, &bld_base->uint_bld.one, 1, "");
573 val_hi = LLVMBuildLoad(builder, ptr_hi, "");
574 val = si_llvm_emit_fetch_64bit(bld_base, type, val, val_hi);
575 }
576
577 return val;
578 } else {
579 struct tgsi_declaration_range range =
580 get_array_range(bld_base, file, reg_index, reg_indirect);
581 LLVMValueRef index =
582 emit_array_index(ctx, reg_indirect, reg_index - range.First);
583 LLVMValueRef array =
584 emit_array_fetch(bld_base, file, type, range, swizzle);
585 return LLVMBuildExtractElement(builder, array, index, "");
586 }
587 }
588
589 static void
590 store_value_to_array(struct lp_build_tgsi_context *bld_base,
591 LLVMValueRef value,
592 unsigned file,
593 unsigned chan_index,
594 unsigned reg_index,
595 const struct tgsi_ind_register *reg_indirect)
596 {
597 struct si_shader_context *ctx = si_shader_context(bld_base);
598 struct gallivm_state *gallivm = bld_base->base.gallivm;
599 LLVMBuilderRef builder = gallivm->builder;
600 LLVMValueRef ptr;
601
602 ptr = get_pointer_into_array(ctx, file, chan_index, reg_index, reg_indirect);
603 if (ptr) {
604 LLVMBuildStore(builder, value, ptr);
605 } else {
606 unsigned i, size;
607 struct tgsi_declaration_range range = get_array_range(bld_base, file, reg_index, reg_indirect);
608 LLVMValueRef index = emit_array_index(ctx, reg_indirect, reg_index - range.First);
609 LLVMValueRef array =
610 emit_array_fetch(bld_base, file, TGSI_TYPE_FLOAT, range, chan_index);
611 LLVMValueRef temp_ptr;
612
613 array = LLVMBuildInsertElement(builder, array, value, index, "");
614
615 size = range.Last - range.First + 1;
616 for (i = 0; i < size; ++i) {
617 switch(file) {
618 case TGSI_FILE_OUTPUT:
619 temp_ptr = ctx->outputs[i + range.First][chan_index];
620 break;
621
622 case TGSI_FILE_TEMPORARY:
623 if (range.First + i >= ctx->temps_count)
624 continue;
625 temp_ptr = ctx->temps[(i + range.First) * TGSI_NUM_CHANNELS + chan_index];
626 break;
627
628 default:
629 continue;
630 }
631 value = LLVMBuildExtractElement(builder, array,
632 lp_build_const_int32(gallivm, i), "");
633 LLVMBuildStore(builder, value, temp_ptr);
634 }
635 }
636 }
637
638 /* If this is true, preload FS inputs at the beginning of shaders. Otherwise,
639 * reload them at each use. This must be true if the shader is using
640 * derivatives, because all inputs should be loaded in the WQM mode.
641 */
642 static bool si_preload_fs_inputs(struct si_shader_context *ctx)
643 {
644 return ctx->shader->selector->info.uses_derivatives;
645 }
646
647 static LLVMValueRef
648 get_output_ptr(struct lp_build_tgsi_context *bld_base, unsigned index,
649 unsigned chan)
650 {
651 struct si_shader_context *ctx = si_shader_context(bld_base);
652
653 assert(index <= ctx->bld_base.info->file_max[TGSI_FILE_OUTPUT]);
654 return ctx->outputs[index][chan];
655 }
656
657 LLVMValueRef si_llvm_emit_fetch(struct lp_build_tgsi_context *bld_base,
658 const struct tgsi_full_src_register *reg,
659 enum tgsi_opcode_type type,
660 unsigned swizzle)
661 {
662 struct si_shader_context *ctx = si_shader_context(bld_base);
663 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
664 LLVMValueRef result = NULL, ptr, ptr2;
665
666 if (swizzle == ~0) {
667 LLVMValueRef values[TGSI_NUM_CHANNELS];
668 unsigned chan;
669 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
670 values[chan] = si_llvm_emit_fetch(bld_base, reg, type, chan);
671 }
672 return lp_build_gather_values(bld_base->base.gallivm, values,
673 TGSI_NUM_CHANNELS);
674 }
675
676 if (reg->Register.Indirect) {
677 LLVMValueRef load = load_value_from_array(bld_base, reg->Register.File, type,
678 swizzle, reg->Register.Index, &reg->Indirect);
679 return bitcast(bld_base, type, load);
680 }
681
682 switch(reg->Register.File) {
683 case TGSI_FILE_IMMEDIATE: {
684 LLVMTypeRef ctype = tgsi2llvmtype(bld_base, type);
685 if (tgsi_type_is_64bit(type)) {
686 result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
687 result = LLVMConstInsertElement(result,
688 ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle],
689 bld_base->int_bld.zero);
690 result = LLVMConstInsertElement(result,
691 ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1],
692 bld_base->int_bld.one);
693 return LLVMConstBitCast(result, ctype);
694 } else {
695 return LLVMConstBitCast(ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle], ctype);
696 }
697 }
698
699 case TGSI_FILE_INPUT: {
700 unsigned index = reg->Register.Index;
701 LLVMValueRef input[4];
702
703 /* I don't think doing this for vertex shaders is beneficial.
704 * For those, we want to make sure the VMEM loads are executed
705 * only once. Fragment shaders don't care much, because
706 * v_interp instructions are much cheaper than VMEM loads.
707 */
708 if (!si_preload_fs_inputs(ctx) &&
709 ctx->bld_base.info->processor == PIPE_SHADER_FRAGMENT)
710 ctx->load_input(ctx, index, &ctx->input_decls[index], input);
711 else
712 memcpy(input, &ctx->inputs[index * 4], sizeof(input));
713
714 result = input[swizzle];
715
716 if (tgsi_type_is_64bit(type)) {
717 ptr = result;
718 ptr2 = input[swizzle + 1];
719 return si_llvm_emit_fetch_64bit(bld_base, type, ptr, ptr2);
720 }
721 break;
722 }
723
724 case TGSI_FILE_TEMPORARY:
725 if (reg->Register.Index >= ctx->temps_count)
726 return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
727 ptr = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle];
728 if (tgsi_type_is_64bit(type)) {
729 ptr2 = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1];
730 return si_llvm_emit_fetch_64bit(bld_base, type,
731 LLVMBuildLoad(builder, ptr, ""),
732 LLVMBuildLoad(builder, ptr2, ""));
733 }
734 result = LLVMBuildLoad(builder, ptr, "");
735 break;
736
737 case TGSI_FILE_OUTPUT:
738 ptr = get_output_ptr(bld_base, reg->Register.Index, swizzle);
739 if (tgsi_type_is_64bit(type)) {
740 ptr2 = get_output_ptr(bld_base, reg->Register.Index, swizzle + 1);
741 return si_llvm_emit_fetch_64bit(bld_base, type,
742 LLVMBuildLoad(builder, ptr, ""),
743 LLVMBuildLoad(builder, ptr2, ""));
744 }
745 result = LLVMBuildLoad(builder, ptr, "");
746 break;
747
748 default:
749 return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
750 }
751
752 return bitcast(bld_base, type, result);
753 }
754
755 static LLVMValueRef fetch_system_value(struct lp_build_tgsi_context *bld_base,
756 const struct tgsi_full_src_register *reg,
757 enum tgsi_opcode_type type,
758 unsigned swizzle)
759 {
760 struct si_shader_context *ctx = si_shader_context(bld_base);
761 struct gallivm_state *gallivm = bld_base->base.gallivm;
762
763 LLVMValueRef cval = ctx->system_values[reg->Register.Index];
764 if (LLVMGetTypeKind(LLVMTypeOf(cval)) == LLVMVectorTypeKind) {
765 cval = LLVMBuildExtractElement(gallivm->builder, cval,
766 lp_build_const_int32(gallivm, swizzle), "");
767 }
768 return bitcast(bld_base, type, cval);
769 }
770
771 static void emit_declaration(struct lp_build_tgsi_context *bld_base,
772 const struct tgsi_full_declaration *decl)
773 {
774 struct si_shader_context *ctx = si_shader_context(bld_base);
775 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
776 unsigned first, last, i;
777 switch(decl->Declaration.File) {
778 case TGSI_FILE_ADDRESS:
779 {
780 unsigned idx;
781 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
782 unsigned chan;
783 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
784 ctx->addrs[idx][chan] = lp_build_alloca_undef(
785 &ctx->gallivm,
786 ctx->bld_base.uint_bld.elem_type, "");
787 }
788 }
789 break;
790 }
791
792 case TGSI_FILE_TEMPORARY:
793 {
794 char name[16] = "";
795 LLVMValueRef array_alloca = NULL;
796 unsigned decl_size;
797 unsigned writemask = decl->Declaration.UsageMask;
798 first = decl->Range.First;
799 last = decl->Range.Last;
800 decl_size = 4 * ((last - first) + 1);
801
802 if (decl->Declaration.Array) {
803 unsigned id = decl->Array.ArrayID - 1;
804 unsigned array_size;
805
806 writemask &= ctx->temp_arrays[id].writemask;
807 ctx->temp_arrays[id].writemask = writemask;
808 array_size = ((last - first) + 1) * util_bitcount(writemask);
809
810 /* If the array has more than 16 elements, store it
811 * in memory using an alloca that spans the entire
812 * array.
813 *
814 * Otherwise, store each array element individually.
815 * We will then generate vectors (per-channel, up to
816 * <16 x float> if the usagemask is a single bit) for
817 * indirect addressing.
818 *
819 * Note that 16 is the number of vector elements that
820 * LLVM will store in a register, so theoretically an
821 * array with up to 4 * 16 = 64 elements could be
822 * handled this way, but whether that's a good idea
823 * depends on VGPR register pressure elsewhere.
824 *
825 * FIXME: We shouldn't need to have the non-alloca
826 * code path for arrays. LLVM should be smart enough to
827 * promote allocas into registers when profitable.
828 *
829 * LLVM 3.8 crashes with this.
830 */
831 if (HAVE_LLVM >= 0x0309 && array_size > 16) {
832 array_alloca = LLVMBuildAlloca(builder,
833 LLVMArrayType(bld_base->base.vec_type,
834 array_size), "array");
835 ctx->temp_array_allocas[id] = array_alloca;
836 }
837 }
838
839 if (!ctx->temps_count) {
840 ctx->temps_count = bld_base->info->file_max[TGSI_FILE_TEMPORARY] + 1;
841 ctx->temps = MALLOC(TGSI_NUM_CHANNELS * ctx->temps_count * sizeof(LLVMValueRef));
842 }
843 if (!array_alloca) {
844 for (i = 0; i < decl_size; ++i) {
845 #ifdef DEBUG
846 snprintf(name, sizeof(name), "TEMP%d.%c",
847 first + i / 4, "xyzw"[i % 4]);
848 #endif
849 ctx->temps[first * TGSI_NUM_CHANNELS + i] =
850 lp_build_alloca_undef(bld_base->base.gallivm,
851 bld_base->base.vec_type,
852 name);
853 }
854 } else {
855 LLVMValueRef idxs[2] = {
856 bld_base->uint_bld.zero,
857 NULL
858 };
859 unsigned j = 0;
860
861 if (writemask != TGSI_WRITEMASK_XYZW &&
862 !ctx->undef_alloca) {
863 /* Create a dummy alloca. We use it so that we
864 * have a pointer that is safe to load from if
865 * a shader ever reads from a channel that
866 * it never writes to.
867 */
868 ctx->undef_alloca = lp_build_alloca_undef(
869 bld_base->base.gallivm,
870 bld_base->base.vec_type, "undef");
871 }
872
873 for (i = 0; i < decl_size; ++i) {
874 LLVMValueRef ptr;
875 if (writemask & (1 << (i % 4))) {
876 #ifdef DEBUG
877 snprintf(name, sizeof(name), "TEMP%d.%c",
878 first + i / 4, "xyzw"[i % 4]);
879 #endif
880 idxs[1] = lp_build_const_int32(bld_base->base.gallivm, j);
881 ptr = LLVMBuildGEP(builder, array_alloca, idxs, 2, name);
882 j++;
883 } else {
884 ptr = ctx->undef_alloca;
885 }
886 ctx->temps[first * TGSI_NUM_CHANNELS + i] = ptr;
887 }
888 }
889 break;
890 }
891 case TGSI_FILE_INPUT:
892 {
893 unsigned idx;
894 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
895 if (ctx->load_input &&
896 ctx->input_decls[idx].Declaration.File != TGSI_FILE_INPUT) {
897 ctx->input_decls[idx] = *decl;
898 ctx->input_decls[idx].Range.First = idx;
899 ctx->input_decls[idx].Range.Last = idx;
900 ctx->input_decls[idx].Semantic.Index += idx - decl->Range.First;
901
902 if (si_preload_fs_inputs(ctx) ||
903 bld_base->info->processor != PIPE_SHADER_FRAGMENT)
904 ctx->load_input(ctx, idx, &ctx->input_decls[idx],
905 &ctx->inputs[idx * 4]);
906 }
907 }
908 }
909 break;
910
911 case TGSI_FILE_SYSTEM_VALUE:
912 {
913 unsigned idx;
914 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
915 ctx->load_system_value(ctx, idx, decl);
916 }
917 }
918 break;
919
920 case TGSI_FILE_OUTPUT:
921 {
922 char name[16] = "";
923 unsigned idx;
924 for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
925 unsigned chan;
926 assert(idx < RADEON_LLVM_MAX_OUTPUTS);
927 if (ctx->outputs[idx][0])
928 continue;
929 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
930 #ifdef DEBUG
931 snprintf(name, sizeof(name), "OUT%d.%c",
932 idx, "xyzw"[chan % 4]);
933 #endif
934 ctx->outputs[idx][chan] = lp_build_alloca_undef(
935 &ctx->gallivm,
936 ctx->bld_base.base.elem_type, name);
937 }
938 }
939 break;
940 }
941
942 case TGSI_FILE_MEMORY:
943 ctx->declare_memory_region(ctx, decl);
944 break;
945
946 default:
947 break;
948 }
949 }
950
951 LLVMValueRef si_llvm_saturate(struct lp_build_tgsi_context *bld_base,
952 LLVMValueRef value)
953 {
954 struct lp_build_emit_data clamp_emit_data;
955
956 memset(&clamp_emit_data, 0, sizeof(clamp_emit_data));
957 clamp_emit_data.arg_count = 3;
958 clamp_emit_data.args[0] = value;
959 clamp_emit_data.args[2] = bld_base->base.one;
960 clamp_emit_data.args[1] = bld_base->base.zero;
961
962 return lp_build_emit_llvm(bld_base, TGSI_OPCODE_CLAMP,
963 &clamp_emit_data);
964 }
965
966 void si_llvm_emit_store(struct lp_build_tgsi_context *bld_base,
967 const struct tgsi_full_instruction *inst,
968 const struct tgsi_opcode_info *info,
969 LLVMValueRef dst[4])
970 {
971 struct si_shader_context *ctx = si_shader_context(bld_base);
972 struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
973 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
974 LLVMBuilderRef builder = ctx->bld_base.base.gallivm->builder;
975 LLVMValueRef temp_ptr, temp_ptr2 = NULL;
976 unsigned chan, chan_index;
977 bool is_vec_store = false;
978 enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
979
980 if (dst[0]) {
981 LLVMTypeKind k = LLVMGetTypeKind(LLVMTypeOf(dst[0]));
982 is_vec_store = (k == LLVMVectorTypeKind);
983 }
984
985 if (is_vec_store) {
986 LLVMValueRef values[4] = {};
987 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
988 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
989 values[chan] = LLVMBuildExtractElement(gallivm->builder,
990 dst[0], index, "");
991 }
992 bld_base->emit_store(bld_base, inst, info, values);
993 return;
994 }
995
996 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
997 LLVMValueRef value = dst[chan_index];
998
999 if (tgsi_type_is_64bit(dtype) && (chan_index == 1 || chan_index == 3))
1000 continue;
1001 if (inst->Instruction.Saturate)
1002 value = si_llvm_saturate(bld_base, value);
1003
1004 if (reg->Register.File == TGSI_FILE_ADDRESS) {
1005 temp_ptr = ctx->addrs[reg->Register.Index][chan_index];
1006 LLVMBuildStore(builder, value, temp_ptr);
1007 continue;
1008 }
1009
1010 if (!tgsi_type_is_64bit(dtype))
1011 value = bitcast(bld_base, TGSI_TYPE_FLOAT, value);
1012
1013 if (reg->Register.Indirect) {
1014 unsigned file = reg->Register.File;
1015 unsigned reg_index = reg->Register.Index;
1016 store_value_to_array(bld_base, value, file, chan_index,
1017 reg_index, &reg->Indirect);
1018 } else {
1019 switch(reg->Register.File) {
1020 case TGSI_FILE_OUTPUT:
1021 temp_ptr = ctx->outputs[reg->Register.Index][chan_index];
1022 if (tgsi_type_is_64bit(dtype))
1023 temp_ptr2 = ctx->outputs[reg->Register.Index][chan_index + 1];
1024 break;
1025
1026 case TGSI_FILE_TEMPORARY:
1027 {
1028 if (reg->Register.Index >= ctx->temps_count)
1029 continue;
1030
1031 temp_ptr = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index];
1032 if (tgsi_type_is_64bit(dtype))
1033 temp_ptr2 = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index + 1];
1034
1035 break;
1036 }
1037 default:
1038 return;
1039 }
1040 if (!tgsi_type_is_64bit(dtype))
1041 LLVMBuildStore(builder, value, temp_ptr);
1042 else {
1043 LLVMValueRef ptr = LLVMBuildBitCast(builder, value,
1044 LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), 2), "");
1045 LLVMValueRef val2;
1046 value = LLVMBuildExtractElement(builder, ptr,
1047 bld_base->uint_bld.zero, "");
1048 val2 = LLVMBuildExtractElement(builder, ptr,
1049 bld_base->uint_bld.one, "");
1050
1051 LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, value), temp_ptr);
1052 LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, val2), temp_ptr2);
1053 }
1054 }
1055 }
1056 }
1057
1058 static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base, int pc)
1059 {
1060 char buf[32];
1061 /* Subtract 1 so that the number shown is that of the corresponding
1062 * opcode in the TGSI dump, e.g. an if block has the same suffix as
1063 * the instruction number of the corresponding TGSI IF.
1064 */
1065 snprintf(buf, sizeof(buf), "%s%d", base, pc - 1);
1066 LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
1067 }
1068
1069 /* Append a basic block at the level of the parent flow.
1070 */
1071 static LLVMBasicBlockRef append_basic_block(struct si_shader_context *ctx,
1072 const char *name)
1073 {
1074 struct gallivm_state *gallivm = &ctx->gallivm;
1075
1076 assert(ctx->flow_depth >= 1);
1077
1078 if (ctx->flow_depth >= 2) {
1079 struct si_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
1080
1081 return LLVMInsertBasicBlockInContext(gallivm->context,
1082 flow->next_block, name);
1083 }
1084
1085 return LLVMAppendBasicBlockInContext(gallivm->context, ctx->main_fn, name);
1086 }
1087
1088 /* Emit a branch to the given default target for the current block if
1089 * applicable -- that is, if the current block does not already contain a
1090 * branch from a break or continue.
1091 */
1092 static void emit_default_branch(LLVMBuilderRef builder, LLVMBasicBlockRef target)
1093 {
1094 if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
1095 LLVMBuildBr(builder, target);
1096 }
1097
1098 static void bgnloop_emit(const struct lp_build_tgsi_action *action,
1099 struct lp_build_tgsi_context *bld_base,
1100 struct lp_build_emit_data *emit_data)
1101 {
1102 struct si_shader_context *ctx = si_shader_context(bld_base);
1103 struct gallivm_state *gallivm = bld_base->base.gallivm;
1104 struct si_llvm_flow *flow = push_flow(ctx);
1105 flow->loop_entry_block = append_basic_block(ctx, "LOOP");
1106 flow->next_block = append_basic_block(ctx, "ENDLOOP");
1107 set_basicblock_name(flow->loop_entry_block, "loop", bld_base->pc);
1108 LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
1109 LLVMPositionBuilderAtEnd(gallivm->builder, flow->loop_entry_block);
1110 }
1111
1112 static void brk_emit(const struct lp_build_tgsi_action *action,
1113 struct lp_build_tgsi_context *bld_base,
1114 struct lp_build_emit_data *emit_data)
1115 {
1116 struct si_shader_context *ctx = si_shader_context(bld_base);
1117 struct gallivm_state *gallivm = bld_base->base.gallivm;
1118 struct si_llvm_flow *flow = get_innermost_loop(ctx);
1119
1120 LLVMBuildBr(gallivm->builder, flow->next_block);
1121 }
1122
1123 static void cont_emit(const struct lp_build_tgsi_action *action,
1124 struct lp_build_tgsi_context *bld_base,
1125 struct lp_build_emit_data *emit_data)
1126 {
1127 struct si_shader_context *ctx = si_shader_context(bld_base);
1128 struct gallivm_state *gallivm = bld_base->base.gallivm;
1129 struct si_llvm_flow *flow = get_innermost_loop(ctx);
1130
1131 LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
1132 }
1133
1134 static void else_emit(const struct lp_build_tgsi_action *action,
1135 struct lp_build_tgsi_context *bld_base,
1136 struct lp_build_emit_data *emit_data)
1137 {
1138 struct si_shader_context *ctx = si_shader_context(bld_base);
1139 struct gallivm_state *gallivm = bld_base->base.gallivm;
1140 struct si_llvm_flow *current_branch = get_current_flow(ctx);
1141 LLVMBasicBlockRef endif_block;
1142
1143 assert(!current_branch->loop_entry_block);
1144
1145 endif_block = append_basic_block(ctx, "ENDIF");
1146 emit_default_branch(gallivm->builder, endif_block);
1147
1148 LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
1149 set_basicblock_name(current_branch->next_block, "else", bld_base->pc);
1150
1151 current_branch->next_block = endif_block;
1152 }
1153
1154 static void endif_emit(const struct lp_build_tgsi_action *action,
1155 struct lp_build_tgsi_context *bld_base,
1156 struct lp_build_emit_data *emit_data)
1157 {
1158 struct si_shader_context *ctx = si_shader_context(bld_base);
1159 struct gallivm_state *gallivm = bld_base->base.gallivm;
1160 struct si_llvm_flow *current_branch = get_current_flow(ctx);
1161
1162 assert(!current_branch->loop_entry_block);
1163
1164 emit_default_branch(gallivm->builder, current_branch->next_block);
1165 LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
1166 set_basicblock_name(current_branch->next_block, "endif", bld_base->pc);
1167
1168 ctx->flow_depth--;
1169 }
1170
1171 static void endloop_emit(const struct lp_build_tgsi_action *action,
1172 struct lp_build_tgsi_context *bld_base,
1173 struct lp_build_emit_data *emit_data)
1174 {
1175 struct si_shader_context *ctx = si_shader_context(bld_base);
1176 struct gallivm_state *gallivm = bld_base->base.gallivm;
1177 struct si_llvm_flow *current_loop = get_current_flow(ctx);
1178
1179 assert(current_loop->loop_entry_block);
1180
1181 emit_default_branch(gallivm->builder, current_loop->loop_entry_block);
1182
1183 LLVMPositionBuilderAtEnd(gallivm->builder, current_loop->next_block);
1184 set_basicblock_name(current_loop->next_block, "endloop", bld_base->pc);
1185 ctx->flow_depth--;
1186 }
1187
1188 static void if_cond_emit(const struct lp_build_tgsi_action *action,
1189 struct lp_build_tgsi_context *bld_base,
1190 struct lp_build_emit_data *emit_data,
1191 LLVMValueRef cond)
1192 {
1193 struct si_shader_context *ctx = si_shader_context(bld_base);
1194 struct gallivm_state *gallivm = bld_base->base.gallivm;
1195 struct si_llvm_flow *flow = push_flow(ctx);
1196 LLVMBasicBlockRef if_block;
1197
1198 if_block = append_basic_block(ctx, "IF");
1199 flow->next_block = append_basic_block(ctx, "ELSE");
1200 set_basicblock_name(if_block, "if", bld_base->pc);
1201 LLVMBuildCondBr(gallivm->builder, cond, if_block, flow->next_block);
1202 LLVMPositionBuilderAtEnd(gallivm->builder, if_block);
1203 }
1204
1205 static void if_emit(const struct lp_build_tgsi_action *action,
1206 struct lp_build_tgsi_context *bld_base,
1207 struct lp_build_emit_data *emit_data)
1208 {
1209 struct gallivm_state *gallivm = bld_base->base.gallivm;
1210 LLVMValueRef cond;
1211
1212 cond = LLVMBuildFCmp(gallivm->builder, LLVMRealUNE,
1213 emit_data->args[0],
1214 bld_base->base.zero, "");
1215
1216 if_cond_emit(action, bld_base, emit_data, cond);
1217 }
1218
1219 static void uif_emit(const struct lp_build_tgsi_action *action,
1220 struct lp_build_tgsi_context *bld_base,
1221 struct lp_build_emit_data *emit_data)
1222 {
1223 struct gallivm_state *gallivm = bld_base->base.gallivm;
1224 LLVMValueRef cond;
1225
1226 cond = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
1227 bitcast(bld_base, TGSI_TYPE_UNSIGNED, emit_data->args[0]),
1228 bld_base->int_bld.zero, "");
1229
1230 if_cond_emit(action, bld_base, emit_data, cond);
1231 }
1232
1233 static void emit_immediate(struct lp_build_tgsi_context *bld_base,
1234 const struct tgsi_full_immediate *imm)
1235 {
1236 unsigned i;
1237 struct si_shader_context *ctx = si_shader_context(bld_base);
1238
1239 for (i = 0; i < 4; ++i) {
1240 ctx->imms[ctx->imms_num * TGSI_NUM_CHANNELS + i] =
1241 LLVMConstInt(bld_base->uint_bld.elem_type, imm->u[i].Uint, false );
1242 }
1243
1244 ctx->imms_num++;
1245 }
1246
1247 void si_llvm_context_init(struct si_shader_context *ctx,
1248 struct si_screen *sscreen,
1249 struct si_shader *shader,
1250 LLVMTargetMachineRef tm,
1251 const struct tgsi_shader_info *info,
1252 const struct tgsi_token *tokens)
1253 {
1254 struct lp_type type;
1255
1256 /* Initialize the gallivm object:
1257 * We are only using the module, context, and builder fields of this struct.
1258 * This should be enough for us to be able to pass our gallivm struct to the
1259 * helper functions in the gallivm module.
1260 */
1261 memset(ctx, 0, sizeof(*ctx));
1262 ctx->shader = shader;
1263 ctx->screen = sscreen;
1264 ctx->tm = tm;
1265 ctx->type = info ? info->processor : -1;
1266
1267 ctx->gallivm.context = LLVMContextCreate();
1268 ctx->gallivm.module = LLVMModuleCreateWithNameInContext("tgsi",
1269 ctx->gallivm.context);
1270 LLVMSetTarget(ctx->gallivm.module, "amdgcn--");
1271
1272 bool unsafe_fpmath = (sscreen->b.debug_flags & DBG_UNSAFE_MATH) != 0;
1273 ctx->gallivm.builder = lp_create_builder(ctx->gallivm.context,
1274 unsafe_fpmath);
1275
1276 ac_llvm_context_init(&ctx->ac, ctx->gallivm.context);
1277 ctx->ac.module = ctx->gallivm.module;
1278 ctx->ac.builder = ctx->gallivm.builder;
1279
1280 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1281
1282 bld_base->info = info;
1283
1284 if (info && info->array_max[TGSI_FILE_TEMPORARY] > 0) {
1285 int size = info->array_max[TGSI_FILE_TEMPORARY];
1286
1287 ctx->temp_arrays = CALLOC(size, sizeof(ctx->temp_arrays[0]));
1288 ctx->temp_array_allocas = CALLOC(size, sizeof(ctx->temp_array_allocas[0]));
1289
1290 if (tokens)
1291 tgsi_scan_arrays(tokens, TGSI_FILE_TEMPORARY, size,
1292 ctx->temp_arrays);
1293 }
1294
1295 if (info && info->file_max[TGSI_FILE_IMMEDIATE] >= 0) {
1296 int size = info->file_max[TGSI_FILE_IMMEDIATE] + 1;
1297 ctx->imms = MALLOC(size * TGSI_NUM_CHANNELS * sizeof(LLVMValueRef));
1298 }
1299
1300 type.floating = true;
1301 type.fixed = false;
1302 type.sign = true;
1303 type.norm = false;
1304 type.width = 32;
1305 type.length = 1;
1306
1307 lp_build_context_init(&bld_base->base, &ctx->gallivm, type);
1308 lp_build_context_init(&ctx->bld_base.uint_bld, &ctx->gallivm, lp_uint_type(type));
1309 lp_build_context_init(&ctx->bld_base.int_bld, &ctx->gallivm, lp_int_type(type));
1310 type.width *= 2;
1311 lp_build_context_init(&ctx->bld_base.dbl_bld, &ctx->gallivm, type);
1312 lp_build_context_init(&ctx->bld_base.uint64_bld, &ctx->gallivm, lp_uint_type(type));
1313 lp_build_context_init(&ctx->bld_base.int64_bld, &ctx->gallivm, lp_int_type(type));
1314
1315 bld_base->soa = 1;
1316 bld_base->emit_store = si_llvm_emit_store;
1317 bld_base->emit_swizzle = emit_swizzle;
1318 bld_base->emit_declaration = emit_declaration;
1319 bld_base->emit_immediate = emit_immediate;
1320
1321 bld_base->emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = si_llvm_emit_fetch;
1322 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = si_llvm_emit_fetch;
1323 bld_base->emit_fetch_funcs[TGSI_FILE_TEMPORARY] = si_llvm_emit_fetch;
1324 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = si_llvm_emit_fetch;
1325 bld_base->emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = fetch_system_value;
1326
1327 /* metadata allowing 2.5 ULP */
1328 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->gallivm.context,
1329 "fpmath", 6);
1330 LLVMValueRef arg = lp_build_const_float(&ctx->gallivm, 2.5);
1331 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->gallivm.context,
1332 &arg, 1);
1333
1334 bld_base->op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
1335 bld_base->op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
1336 bld_base->op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
1337 bld_base->op_actions[TGSI_OPCODE_IF].emit = if_emit;
1338 bld_base->op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
1339 bld_base->op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
1340 bld_base->op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
1341 bld_base->op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
1342
1343 si_shader_context_init_alu(&ctx->bld_base);
1344
1345 ctx->voidt = LLVMVoidTypeInContext(ctx->gallivm.context);
1346 ctx->i1 = LLVMInt1TypeInContext(ctx->gallivm.context);
1347 ctx->i8 = LLVMInt8TypeInContext(ctx->gallivm.context);
1348 ctx->i32 = LLVMInt32TypeInContext(ctx->gallivm.context);
1349 ctx->i64 = LLVMInt64TypeInContext(ctx->gallivm.context);
1350 ctx->i128 = LLVMIntTypeInContext(ctx->gallivm.context, 128);
1351 ctx->f32 = LLVMFloatTypeInContext(ctx->gallivm.context);
1352 ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
1353 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
1354 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
1355 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
1356 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
1357 }
1358
1359 void si_llvm_create_func(struct si_shader_context *ctx,
1360 const char *name,
1361 LLVMTypeRef *return_types, unsigned num_return_elems,
1362 LLVMTypeRef *ParamTypes, unsigned ParamCount)
1363 {
1364 LLVMTypeRef main_fn_type, ret_type;
1365 LLVMBasicBlockRef main_fn_body;
1366
1367 if (num_return_elems)
1368 ret_type = LLVMStructTypeInContext(ctx->gallivm.context,
1369 return_types,
1370 num_return_elems, true);
1371 else
1372 ret_type = LLVMVoidTypeInContext(ctx->gallivm.context);
1373
1374 /* Setup the function */
1375 ctx->return_type = ret_type;
1376 main_fn_type = LLVMFunctionType(ret_type, ParamTypes, ParamCount, 0);
1377 ctx->main_fn = LLVMAddFunction(ctx->gallivm.module, name, main_fn_type);
1378 main_fn_body = LLVMAppendBasicBlockInContext(ctx->gallivm.context,
1379 ctx->main_fn, "main_body");
1380 LLVMPositionBuilderAtEnd(ctx->gallivm.builder, main_fn_body);
1381 }
1382
1383 void si_llvm_finalize_module(struct si_shader_context *ctx,
1384 bool run_verifier)
1385 {
1386 struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
1387 const char *triple = LLVMGetTarget(gallivm->module);
1388 LLVMTargetLibraryInfoRef target_library_info;
1389
1390 /* Create the pass manager */
1391 gallivm->passmgr = LLVMCreatePassManager();
1392
1393 target_library_info = gallivm_create_target_library_info(triple);
1394 LLVMAddTargetLibraryInfo(target_library_info, gallivm->passmgr);
1395
1396 if (run_verifier)
1397 LLVMAddVerifierPass(gallivm->passmgr);
1398
1399 LLVMAddAlwaysInlinerPass(gallivm->passmgr);
1400
1401 /* This pass should eliminate all the load and store instructions */
1402 LLVMAddPromoteMemoryToRegisterPass(gallivm->passmgr);
1403
1404 /* Add some optimization passes */
1405 LLVMAddScalarReplAggregatesPass(gallivm->passmgr);
1406 LLVMAddLICMPass(gallivm->passmgr);
1407 LLVMAddAggressiveDCEPass(gallivm->passmgr);
1408 LLVMAddCFGSimplificationPass(gallivm->passmgr);
1409 LLVMAddInstructionCombiningPass(gallivm->passmgr);
1410
1411 /* Run the pass */
1412 LLVMRunPassManager(gallivm->passmgr, ctx->gallivm.module);
1413
1414 LLVMDisposeBuilder(gallivm->builder);
1415 LLVMDisposePassManager(gallivm->passmgr);
1416 gallivm_dispose_target_library_info(target_library_info);
1417 }
1418
1419 void si_llvm_dispose(struct si_shader_context *ctx)
1420 {
1421 LLVMDisposeModule(ctx->bld_base.base.gallivm->module);
1422 LLVMContextDispose(ctx->bld_base.base.gallivm->context);
1423 FREE(ctx->temp_arrays);
1424 ctx->temp_arrays = NULL;
1425 FREE(ctx->temp_array_allocas);
1426 ctx->temp_array_allocas = NULL;
1427 FREE(ctx->temps);
1428 ctx->temps = NULL;
1429 ctx->temps_count = 0;
1430 FREE(ctx->imms);
1431 ctx->imms = NULL;
1432 ctx->imms_num = 0;
1433 FREE(ctx->flow);
1434 ctx->flow = NULL;
1435 ctx->flow_depth_max = 0;
1436 }