radeonsi: update copyrights
[mesa.git] / src / gallium / drivers / radeonsi / si_state_draw.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "radeon/r600_cs.h"
27 #include "sid.h"
28 #include "gfx9d.h"
29
30 #include "util/u_index_modify.h"
31 #include "util/u_log.h"
32 #include "util/u_upload_mgr.h"
33 #include "util/u_prim.h"
34
35 #include "ac_debug.h"
36
37 /* special primitive types */
38 #define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
39
40 static unsigned si_conv_pipe_prim(unsigned mode)
41 {
42 static const unsigned prim_conv[] = {
43 [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
44 [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
45 [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
46 [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
47 [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
48 [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
49 [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
50 [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
51 [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
52 [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
53 [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
54 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
55 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
56 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
57 [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
58 [SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST
59 };
60 assert(mode < ARRAY_SIZE(prim_conv));
61 return prim_conv[mode];
62 }
63
64 static unsigned si_conv_prim_to_gs_out(unsigned mode)
65 {
66 static const int prim_conv[] = {
67 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
68 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
69 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
70 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
71 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
72 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
73 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
74 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
75 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
76 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
77 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
78 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
79 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
80 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
81 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
82 [SI_PRIM_RECTANGLE_LIST] = V_028A6C_OUTPRIM_TYPE_TRISTRIP
83 };
84 assert(mode < ARRAY_SIZE(prim_conv));
85
86 return prim_conv[mode];
87 }
88
89 /**
90 * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
91 * LS.LDS_SIZE is shared by all 3 shader stages.
92 *
93 * The information about LDS and other non-compile-time parameters is then
94 * written to userdata SGPRs.
95 */
96 static void si_emit_derived_tess_state(struct si_context *sctx,
97 const struct pipe_draw_info *info,
98 unsigned *num_patches)
99 {
100 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
101 struct si_shader *ls_current;
102 struct si_shader_selector *ls;
103 /* The TES pointer will only be used for sctx->last_tcs.
104 * It would be wrong to think that TCS = TES. */
105 struct si_shader_selector *tcs =
106 sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
107 unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
108 bool has_primid_instancing_bug = sctx->b.chip_class == SI &&
109 sctx->b.screen->info.max_se == 1;
110 unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
111 unsigned num_tcs_input_cp = info->vertices_per_patch;
112 unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
113 unsigned num_tcs_patch_outputs;
114 unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
115 unsigned input_patch_size, output_patch_size, output_patch0_offset;
116 unsigned perpatch_output_offset, lds_size;
117 unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
118 unsigned offchip_layout, hardware_lds_size, ls_hs_config;
119
120 /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
121 if (sctx->b.chip_class >= GFX9) {
122 if (sctx->tcs_shader.cso)
123 ls_current = sctx->tcs_shader.current;
124 else
125 ls_current = sctx->fixed_func_tcs_shader.current;
126
127 ls = ls_current->key.part.tcs.ls;
128 } else {
129 ls_current = sctx->vs_shader.current;
130 ls = sctx->vs_shader.cso;
131 }
132
133 if (sctx->last_ls == ls_current &&
134 sctx->last_tcs == tcs &&
135 sctx->last_tes_sh_base == tes_sh_base &&
136 sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
137 (!has_primid_instancing_bug ||
138 (sctx->last_tess_uses_primid == tess_uses_primid))) {
139 *num_patches = sctx->last_num_patches;
140 return;
141 }
142
143 sctx->last_ls = ls_current;
144 sctx->last_tcs = tcs;
145 sctx->last_tes_sh_base = tes_sh_base;
146 sctx->last_num_tcs_input_cp = num_tcs_input_cp;
147 sctx->last_tess_uses_primid = tess_uses_primid;
148
149 /* This calculates how shader inputs and outputs among VS, TCS, and TES
150 * are laid out in LDS. */
151 num_tcs_inputs = util_last_bit64(ls->outputs_written);
152
153 if (sctx->tcs_shader.cso) {
154 num_tcs_outputs = util_last_bit64(tcs->outputs_written);
155 num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
156 num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
157 } else {
158 /* No TCS. Route varyings from LS to TES. */
159 num_tcs_outputs = num_tcs_inputs;
160 num_tcs_output_cp = num_tcs_input_cp;
161 num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
162 }
163
164 input_vertex_size = num_tcs_inputs * 16;
165 output_vertex_size = num_tcs_outputs * 16;
166
167 input_patch_size = num_tcs_input_cp * input_vertex_size;
168
169 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
170 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
171
172 /* Ensure that we only need one wave per SIMD so we don't need to check
173 * resource usage. Also ensures that the number of tcs in and out
174 * vertices per threadgroup are at most 256.
175 */
176 *num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
177
178 /* Make sure that the data fits in LDS. This assumes the shaders only
179 * use LDS for the inputs and outputs.
180 *
181 * While CIK can use 64K per threadgroup, there is a hang on Stoney
182 * with 2 CUs if we use more than 32K. The closed Vulkan driver also
183 * uses 32K at most on all GCN chips.
184 */
185 hardware_lds_size = 32768;
186 *num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size +
187 output_patch_size));
188
189 /* Make sure the output data fits in the offchip buffer */
190 *num_patches = MIN2(*num_patches,
191 (sctx->screen->tess_offchip_block_dw_size * 4) /
192 output_patch_size);
193
194 /* Not necessary for correctness, but improves performance. The
195 * specific value is taken from the proprietary driver.
196 */
197 *num_patches = MIN2(*num_patches, 40);
198
199 if (sctx->b.chip_class == SI) {
200 /* SI bug workaround, related to power management. Limit LS-HS
201 * threadgroups to only one wave.
202 */
203 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
204 *num_patches = MIN2(*num_patches, one_wave);
205 }
206
207 /* The VGT HS block increments the patch ID unconditionally
208 * within a single threadgroup. This results in incorrect
209 * patch IDs when instanced draws are used.
210 *
211 * The intended solution is to restrict threadgroups to
212 * a single instance by setting SWITCH_ON_EOI, which
213 * should cause IA to split instances up. However, this
214 * doesn't work correctly on SI when there is no other
215 * SE to switch to.
216 */
217 if (has_primid_instancing_bug && tess_uses_primid)
218 *num_patches = 1;
219
220 sctx->last_num_patches = *num_patches;
221
222 output_patch0_offset = input_patch_size * *num_patches;
223 perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
224
225 /* Compute userdata SGPRs. */
226 assert(((input_vertex_size / 4) & ~0xff) == 0);
227 assert(((output_vertex_size / 4) & ~0xff) == 0);
228 assert(((input_patch_size / 4) & ~0x1fff) == 0);
229 assert(((output_patch_size / 4) & ~0x1fff) == 0);
230 assert(((output_patch0_offset / 16) & ~0xffff) == 0);
231 assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
232 assert(num_tcs_input_cp <= 32);
233 assert(num_tcs_output_cp <= 32);
234
235 uint64_t ring_va = r600_resource(sctx->tess_rings)->gpu_address;
236 assert((ring_va & u_bit_consecutive(0, 19)) == 0);
237
238 tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
239 S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
240 tcs_out_layout = (output_patch_size / 4) |
241 (num_tcs_input_cp << 13) |
242 ring_va;
243 tcs_out_offsets = (output_patch0_offset / 16) |
244 ((perpatch_output_offset / 16) << 16);
245 offchip_layout = *num_patches |
246 (num_tcs_output_cp << 6) |
247 (pervertex_output_patch_size * *num_patches << 12);
248
249 /* Compute the LDS size. */
250 lds_size = output_patch0_offset + output_patch_size * *num_patches;
251
252 if (sctx->b.chip_class >= CIK) {
253 assert(lds_size <= 65536);
254 lds_size = align(lds_size, 512) / 512;
255 } else {
256 assert(lds_size <= 32768);
257 lds_size = align(lds_size, 256) / 256;
258 }
259
260 /* Set SI_SGPR_VS_STATE_BITS. */
261 sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE &
262 C_VS_STATE_LS_OUT_VERTEX_SIZE;
263 sctx->current_vs_state |= tcs_in_layout;
264
265 if (sctx->b.chip_class >= GFX9) {
266 unsigned hs_rsrc2 = ls_current->config.rsrc2 |
267 S_00B42C_LDS_SIZE(lds_size);
268
269 radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
270
271 /* Set userdata SGPRs for merged LS-HS. */
272 radeon_set_sh_reg_seq(cs,
273 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
274 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
275 radeon_emit(cs, offchip_layout);
276 radeon_emit(cs, tcs_out_offsets);
277 radeon_emit(cs, tcs_out_layout);
278 } else {
279 unsigned ls_rsrc2 = ls_current->config.rsrc2;
280
281 si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
282 ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
283
284 /* Due to a hw bug, RSRC2_LS must be written twice with another
285 * LS register written in between. */
286 if (sctx->b.chip_class == CIK && sctx->b.family != CHIP_HAWAII)
287 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
288 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
289 radeon_emit(cs, ls_current->config.rsrc1);
290 radeon_emit(cs, ls_rsrc2);
291
292 /* Set userdata SGPRs for TCS. */
293 radeon_set_sh_reg_seq(cs,
294 R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
295 radeon_emit(cs, offchip_layout);
296 radeon_emit(cs, tcs_out_offsets);
297 radeon_emit(cs, tcs_out_layout);
298 radeon_emit(cs, tcs_in_layout);
299 }
300
301 /* Set userdata SGPRs for TES. */
302 radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
303 radeon_emit(cs, offchip_layout);
304 radeon_emit(cs, ring_va);
305
306 ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) |
307 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
308 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
309
310 if (sctx->b.chip_class >= CIK)
311 radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2,
312 ls_hs_config);
313 else
314 radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG,
315 ls_hs_config);
316 }
317
318 static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info)
319 {
320 switch (info->mode) {
321 case PIPE_PRIM_PATCHES:
322 return info->count / info->vertices_per_patch;
323 case SI_PRIM_RECTANGLE_LIST:
324 return info->count / 3;
325 default:
326 return u_prims_for_vertices(info->mode, info->count);
327 }
328 }
329
330 static unsigned
331 si_get_init_multi_vgt_param(struct si_screen *sscreen,
332 union si_vgt_param_key *key)
333 {
334 STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
335 unsigned max_primgroup_in_wave = 2;
336
337 /* SWITCH_ON_EOP(0) is always preferable. */
338 bool wd_switch_on_eop = false;
339 bool ia_switch_on_eop = false;
340 bool ia_switch_on_eoi = false;
341 bool partial_vs_wave = false;
342 bool partial_es_wave = false;
343
344 if (key->u.uses_tess) {
345 /* SWITCH_ON_EOI must be set if PrimID is used. */
346 if (key->u.tess_uses_prim_id)
347 ia_switch_on_eoi = true;
348
349 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
350 if ((sscreen->info.family == CHIP_TAHITI ||
351 sscreen->info.family == CHIP_PITCAIRN ||
352 sscreen->info.family == CHIP_BONAIRE) &&
353 key->u.uses_gs)
354 partial_vs_wave = true;
355
356 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
357 if (sscreen->has_distributed_tess) {
358 if (key->u.uses_gs) {
359 if (sscreen->info.chip_class <= VI)
360 partial_es_wave = true;
361
362 /* GPU hang workaround. */
363 if (sscreen->info.family == CHIP_TONGA ||
364 sscreen->info.family == CHIP_FIJI ||
365 sscreen->info.family == CHIP_POLARIS10 ||
366 sscreen->info.family == CHIP_POLARIS11 ||
367 sscreen->info.family == CHIP_POLARIS12)
368 partial_vs_wave = true;
369 } else {
370 partial_vs_wave = true;
371 }
372 }
373 }
374
375 /* This is a hardware requirement. */
376 if (key->u.line_stipple_enabled ||
377 (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
378 ia_switch_on_eop = true;
379 wd_switch_on_eop = true;
380 }
381
382 if (sscreen->info.chip_class >= CIK) {
383 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
384 * 4 shader engines. Set 1 to pass the assertion below.
385 * The other cases are hardware requirements.
386 *
387 * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
388 * for points, line strips, and tri strips.
389 */
390 if (sscreen->info.max_se < 4 ||
391 key->u.prim == PIPE_PRIM_POLYGON ||
392 key->u.prim == PIPE_PRIM_LINE_LOOP ||
393 key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
394 key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
395 (key->u.primitive_restart &&
396 (sscreen->info.family < CHIP_POLARIS10 ||
397 (key->u.prim != PIPE_PRIM_POINTS &&
398 key->u.prim != PIPE_PRIM_LINE_STRIP &&
399 key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
400 key->u.count_from_stream_output)
401 wd_switch_on_eop = true;
402
403 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
404 * We don't know that for indirect drawing, so treat it as
405 * always problematic. */
406 if (sscreen->info.family == CHIP_HAWAII &&
407 key->u.uses_instancing)
408 wd_switch_on_eop = true;
409
410 /* Performance recommendation for 4 SE Gfx7-8 parts if
411 * instances are smaller than a primgroup.
412 * Assume indirect draws always use small instances.
413 * This is needed for good VS wave utilization.
414 */
415 if (sscreen->info.chip_class <= VI &&
416 sscreen->info.max_se == 4 &&
417 key->u.multi_instances_smaller_than_primgroup)
418 wd_switch_on_eop = true;
419
420 /* Required on CIK and later. */
421 if (sscreen->info.max_se > 2 && !wd_switch_on_eop)
422 ia_switch_on_eoi = true;
423
424 /* Required by Hawaii and, for some special cases, by VI. */
425 if (ia_switch_on_eoi &&
426 (sscreen->info.family == CHIP_HAWAII ||
427 (sscreen->info.chip_class == VI &&
428 (key->u.uses_gs || max_primgroup_in_wave != 2))))
429 partial_vs_wave = true;
430
431 /* Instancing bug on Bonaire. */
432 if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi &&
433 key->u.uses_instancing)
434 partial_vs_wave = true;
435
436 /* If the WD switch is false, the IA switch must be false too. */
437 assert(wd_switch_on_eop || !ia_switch_on_eop);
438 }
439
440 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
441 if (sscreen->info.chip_class <= VI && ia_switch_on_eoi)
442 partial_es_wave = true;
443
444 return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
445 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
446 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
447 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
448 S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= CIK ? wd_switch_on_eop : 0) |
449 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
450 S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == VI ?
451 max_primgroup_in_wave : 0) |
452 S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) |
453 S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9);
454 }
455
456 void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
457 {
458 for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
459 for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
460 for (int multi_instances = 0; multi_instances < 2; multi_instances++)
461 for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
462 for (int count_from_so = 0; count_from_so < 2; count_from_so++)
463 for (int line_stipple = 0; line_stipple < 2; line_stipple++)
464 for (int uses_tess = 0; uses_tess < 2; uses_tess++)
465 for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
466 for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
467 union si_vgt_param_key key;
468
469 key.index = 0;
470 key.u.prim = prim;
471 key.u.uses_instancing = uses_instancing;
472 key.u.multi_instances_smaller_than_primgroup = multi_instances;
473 key.u.primitive_restart = primitive_restart;
474 key.u.count_from_stream_output = count_from_so;
475 key.u.line_stipple_enabled = line_stipple;
476 key.u.uses_tess = uses_tess;
477 key.u.tess_uses_prim_id = tess_uses_primid;
478 key.u.uses_gs = uses_gs;
479
480 sctx->ia_multi_vgt_param[key.index] =
481 si_get_init_multi_vgt_param(sctx->screen, &key);
482 }
483 }
484
485 static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
486 const struct pipe_draw_info *info,
487 unsigned num_patches)
488 {
489 union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
490 unsigned primgroup_size;
491 unsigned ia_multi_vgt_param;
492
493 if (sctx->tes_shader.cso) {
494 primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
495 } else if (sctx->gs_shader.cso) {
496 primgroup_size = 64; /* recommended with a GS */
497 } else {
498 primgroup_size = 128; /* recommended without a GS and tess */
499 }
500
501 key.u.prim = info->mode;
502 key.u.uses_instancing = info->indirect || info->instance_count > 1;
503 key.u.multi_instances_smaller_than_primgroup =
504 info->indirect ||
505 (info->instance_count > 1 &&
506 (info->count_from_stream_output ||
507 si_num_prims_for_vertices(info) < primgroup_size));
508 key.u.primitive_restart = info->primitive_restart;
509 key.u.count_from_stream_output = info->count_from_stream_output != NULL;
510
511 ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] |
512 S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
513
514 if (sctx->gs_shader.cso) {
515 /* GS requirement. */
516 if (sctx->b.chip_class <= VI &&
517 SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
518 ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
519
520 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
521 * The hw doc says all multi-SE chips are affected, but Vulkan
522 * only applies it to Hawaii. Do what Vulkan does.
523 */
524 if (sctx->b.family == CHIP_HAWAII &&
525 G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
526 (info->indirect ||
527 (info->instance_count > 1 &&
528 (info->count_from_stream_output ||
529 si_num_prims_for_vertices(info) <= 1))))
530 sctx->b.flags |= SI_CONTEXT_VGT_FLUSH;
531 }
532
533 return ia_multi_vgt_param;
534 }
535
536 /* rast_prim is the primitive type after GS. */
537 static void si_emit_rasterizer_prim_state(struct si_context *sctx)
538 {
539 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
540 enum pipe_prim_type rast_prim = sctx->current_rast_prim;
541 struct si_state_rasterizer *rs = sctx->emitted.named.rasterizer;
542
543 /* Skip this if not rendering lines. */
544 if (rast_prim != PIPE_PRIM_LINES &&
545 rast_prim != PIPE_PRIM_LINE_LOOP &&
546 rast_prim != PIPE_PRIM_LINE_STRIP &&
547 rast_prim != PIPE_PRIM_LINES_ADJACENCY &&
548 rast_prim != PIPE_PRIM_LINE_STRIP_ADJACENCY)
549 return;
550
551 if (rast_prim == sctx->last_rast_prim &&
552 rs->pa_sc_line_stipple == sctx->last_sc_line_stipple)
553 return;
554
555 /* For lines, reset the stipple pattern at each primitive. Otherwise,
556 * reset the stipple pattern at each packet (line strips, line loops).
557 */
558 radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE,
559 rs->pa_sc_line_stipple |
560 S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2));
561
562 sctx->last_rast_prim = rast_prim;
563 sctx->last_sc_line_stipple = rs->pa_sc_line_stipple;
564 }
565
566 static void si_emit_vs_state(struct si_context *sctx,
567 const struct pipe_draw_info *info)
568 {
569 sctx->current_vs_state &= C_VS_STATE_INDEXED;
570 sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
571
572 if (sctx->num_vs_blit_sgprs) {
573 /* Re-emit the state after we leave u_blitter. */
574 sctx->last_vs_state = ~0;
575 return;
576 }
577
578 if (sctx->current_vs_state != sctx->last_vs_state) {
579 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
580
581 radeon_set_sh_reg(cs,
582 sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] +
583 SI_SGPR_VS_STATE_BITS * 4,
584 sctx->current_vs_state);
585
586 sctx->last_vs_state = sctx->current_vs_state;
587 }
588 }
589
590 static void si_emit_draw_registers(struct si_context *sctx,
591 const struct pipe_draw_info *info,
592 unsigned num_patches)
593 {
594 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
595 unsigned prim = si_conv_pipe_prim(info->mode);
596 unsigned gs_out_prim = si_conv_prim_to_gs_out(sctx->current_rast_prim);
597 unsigned ia_multi_vgt_param;
598
599 ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, num_patches);
600
601 /* Draw state. */
602 if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
603 if (sctx->b.chip_class >= GFX9)
604 radeon_set_uconfig_reg_idx(cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
605 else if (sctx->b.chip_class >= CIK)
606 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
607 else
608 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
609
610 sctx->last_multi_vgt_param = ia_multi_vgt_param;
611 }
612 if (prim != sctx->last_prim) {
613 if (sctx->b.chip_class >= CIK)
614 radeon_set_uconfig_reg_idx(cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
615 else
616 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
617
618 sctx->last_prim = prim;
619 }
620
621 if (gs_out_prim != sctx->last_gs_out_prim) {
622 radeon_set_context_reg(cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
623 sctx->last_gs_out_prim = gs_out_prim;
624 }
625
626 /* Primitive restart. */
627 if (info->primitive_restart != sctx->last_primitive_restart_en) {
628 if (sctx->b.chip_class >= GFX9)
629 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
630 info->primitive_restart);
631 else
632 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
633 info->primitive_restart);
634
635 sctx->last_primitive_restart_en = info->primitive_restart;
636
637 }
638 if (info->primitive_restart &&
639 (info->restart_index != sctx->last_restart_index ||
640 sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN)) {
641 radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
642 info->restart_index);
643 sctx->last_restart_index = info->restart_index;
644 }
645 }
646
647 static void si_emit_draw_packets(struct si_context *sctx,
648 const struct pipe_draw_info *info,
649 struct pipe_resource *indexbuf,
650 unsigned index_size,
651 unsigned index_offset)
652 {
653 struct pipe_draw_indirect_info *indirect = info->indirect;
654 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
655 unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
656 bool render_cond_bit = sctx->b.render_cond && !sctx->b.render_cond_force_off;
657 uint32_t index_max_size = 0;
658 uint64_t index_va = 0;
659
660 if (info->count_from_stream_output) {
661 struct si_streamout_target *t =
662 (struct si_streamout_target*)info->count_from_stream_output;
663 uint64_t va = t->buf_filled_size->gpu_address +
664 t->buf_filled_size_offset;
665
666 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE,
667 t->stride_in_dw);
668
669 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
670 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
671 COPY_DATA_DST_SEL(COPY_DATA_REG) |
672 COPY_DATA_WR_CONFIRM);
673 radeon_emit(cs, va); /* src address lo */
674 radeon_emit(cs, va >> 32); /* src address hi */
675 radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
676 radeon_emit(cs, 0); /* unused */
677
678 radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
679 t->buf_filled_size, RADEON_USAGE_READ,
680 RADEON_PRIO_SO_FILLED_SIZE);
681 }
682
683 /* draw packet */
684 if (index_size) {
685 if (index_size != sctx->last_index_size) {
686 unsigned index_type;
687
688 /* index type */
689 switch (index_size) {
690 case 1:
691 index_type = V_028A7C_VGT_INDEX_8;
692 break;
693 case 2:
694 index_type = V_028A7C_VGT_INDEX_16 |
695 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
696 V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
697 break;
698 case 4:
699 index_type = V_028A7C_VGT_INDEX_32 |
700 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
701 V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
702 break;
703 default:
704 assert(!"unreachable");
705 return;
706 }
707
708 if (sctx->b.chip_class >= GFX9) {
709 radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE,
710 2, index_type);
711 } else {
712 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
713 radeon_emit(cs, index_type);
714 }
715
716 sctx->last_index_size = index_size;
717 }
718
719 index_max_size = (indexbuf->width0 - index_offset) /
720 index_size;
721 index_va = r600_resource(indexbuf)->gpu_address + index_offset;
722
723 radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
724 (struct r600_resource *)indexbuf,
725 RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER);
726 } else {
727 /* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE,
728 * so the state must be re-emitted before the next indexed draw.
729 */
730 if (sctx->b.chip_class >= CIK)
731 sctx->last_index_size = -1;
732 }
733
734 if (indirect) {
735 uint64_t indirect_va = r600_resource(indirect->buffer)->gpu_address;
736
737 assert(indirect_va % 8 == 0);
738
739 si_invalidate_draw_sh_constants(sctx);
740
741 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
742 radeon_emit(cs, 1);
743 radeon_emit(cs, indirect_va);
744 radeon_emit(cs, indirect_va >> 32);
745
746 radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
747 (struct r600_resource *)indirect->buffer,
748 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
749
750 unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA
751 : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
752
753 assert(indirect->offset % 4 == 0);
754
755 if (index_size) {
756 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
757 radeon_emit(cs, index_va);
758 radeon_emit(cs, index_va >> 32);
759
760 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
761 radeon_emit(cs, index_max_size);
762 }
763
764 if (!sctx->screen->has_draw_indirect_multi) {
765 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT
766 : PKT3_DRAW_INDIRECT,
767 3, render_cond_bit));
768 radeon_emit(cs, indirect->offset);
769 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
770 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
771 radeon_emit(cs, di_src_sel);
772 } else {
773 uint64_t count_va = 0;
774
775 if (indirect->indirect_draw_count) {
776 struct r600_resource *params_buf =
777 (struct r600_resource *)indirect->indirect_draw_count;
778
779 radeon_add_to_buffer_list(
780 sctx, sctx->b.gfx_cs, params_buf,
781 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
782
783 count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
784 }
785
786 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
787 PKT3_DRAW_INDIRECT_MULTI,
788 8, render_cond_bit));
789 radeon_emit(cs, indirect->offset);
790 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
791 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
792 radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
793 S_2C3_DRAW_INDEX_ENABLE(1) |
794 S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
795 radeon_emit(cs, indirect->draw_count);
796 radeon_emit(cs, count_va);
797 radeon_emit(cs, count_va >> 32);
798 radeon_emit(cs, indirect->stride);
799 radeon_emit(cs, di_src_sel);
800 }
801 } else {
802 int base_vertex;
803
804 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
805 radeon_emit(cs, info->instance_count);
806
807 /* Base vertex and start instance. */
808 base_vertex = index_size ? info->index_bias : info->start;
809
810 if (sctx->num_vs_blit_sgprs) {
811 /* Re-emit draw constants after we leave u_blitter. */
812 si_invalidate_draw_sh_constants(sctx);
813
814 /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
815 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4,
816 sctx->num_vs_blit_sgprs);
817 radeon_emit_array(cs, sctx->vs_blit_sh_data,
818 sctx->num_vs_blit_sgprs);
819 } else if (base_vertex != sctx->last_base_vertex ||
820 sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
821 info->start_instance != sctx->last_start_instance ||
822 info->drawid != sctx->last_drawid ||
823 sh_base_reg != sctx->last_sh_base_reg) {
824 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
825 radeon_emit(cs, base_vertex);
826 radeon_emit(cs, info->start_instance);
827 radeon_emit(cs, info->drawid);
828
829 sctx->last_base_vertex = base_vertex;
830 sctx->last_start_instance = info->start_instance;
831 sctx->last_drawid = info->drawid;
832 sctx->last_sh_base_reg = sh_base_reg;
833 }
834
835 if (index_size) {
836 index_va += info->start * index_size;
837
838 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
839 radeon_emit(cs, index_max_size);
840 radeon_emit(cs, index_va);
841 radeon_emit(cs, index_va >> 32);
842 radeon_emit(cs, info->count);
843 radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
844 } else {
845 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
846 radeon_emit(cs, info->count);
847 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
848 S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
849 }
850 }
851 }
852
853 static void si_emit_surface_sync(struct si_context *sctx,
854 unsigned cp_coher_cntl)
855 {
856 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
857
858 if (sctx->b.chip_class >= GFX9) {
859 /* Flush caches and wait for the caches to assert idle. */
860 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
861 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
862 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
863 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
864 radeon_emit(cs, 0); /* CP_COHER_BASE */
865 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
866 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
867 } else {
868 /* ACQUIRE_MEM is only required on a compute ring. */
869 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
870 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
871 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
872 radeon_emit(cs, 0); /* CP_COHER_BASE */
873 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
874 }
875 }
876
877 void si_emit_cache_flush(struct si_context *sctx)
878 {
879 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
880 uint32_t flags = sctx->b.flags;
881 uint32_t cp_coher_cntl = 0;
882 uint32_t flush_cb_db = flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
883 SI_CONTEXT_FLUSH_AND_INV_DB);
884
885 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
886 sctx->b.num_cb_cache_flushes++;
887 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
888 sctx->b.num_db_cache_flushes++;
889
890 /* SI has a bug that it always flushes ICACHE and KCACHE if either
891 * bit is set. An alternative way is to write SQC_CACHES, but that
892 * doesn't seem to work reliably. Since the bug doesn't affect
893 * correctness (it only does more work than necessary) and
894 * the performance impact is likely negligible, there is no plan
895 * to add a workaround for it.
896 */
897
898 if (flags & SI_CONTEXT_INV_ICACHE)
899 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
900 if (flags & SI_CONTEXT_INV_SMEM_L1)
901 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
902
903 if (sctx->b.chip_class <= VI) {
904 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
905 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
906 S_0085F0_CB0_DEST_BASE_ENA(1) |
907 S_0085F0_CB1_DEST_BASE_ENA(1) |
908 S_0085F0_CB2_DEST_BASE_ENA(1) |
909 S_0085F0_CB3_DEST_BASE_ENA(1) |
910 S_0085F0_CB4_DEST_BASE_ENA(1) |
911 S_0085F0_CB5_DEST_BASE_ENA(1) |
912 S_0085F0_CB6_DEST_BASE_ENA(1) |
913 S_0085F0_CB7_DEST_BASE_ENA(1);
914
915 /* Necessary for DCC */
916 if (sctx->b.chip_class == VI)
917 si_gfx_write_event_eop(sctx, V_028A90_FLUSH_AND_INV_CB_DATA_TS,
918 0, EOP_DATA_SEL_DISCARD, NULL,
919 0, 0, SI_NOT_QUERY);
920 }
921 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
922 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
923 S_0085F0_DB_DEST_BASE_ENA(1);
924 }
925
926 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
927 /* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
928 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
929 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
930 }
931 if (flags & (SI_CONTEXT_FLUSH_AND_INV_DB |
932 SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
933 /* Flush HTILE. SURFACE_SYNC will wait for idle. */
934 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
935 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
936 }
937
938 /* Wait for shader engines to go idle.
939 * VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
940 * for everything including CB/DB cache flushes.
941 */
942 if (!flush_cb_db) {
943 if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
944 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
945 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
946 /* Only count explicit shader flushes, not implicit ones
947 * done by SURFACE_SYNC.
948 */
949 sctx->b.num_vs_flushes++;
950 sctx->b.num_ps_flushes++;
951 } else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
952 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
953 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
954 sctx->b.num_vs_flushes++;
955 }
956 }
957
958 if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH &&
959 sctx->compute_is_busy) {
960 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
961 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
962 sctx->b.num_cs_flushes++;
963 sctx->compute_is_busy = false;
964 }
965
966 /* VGT state synchronization. */
967 if (flags & SI_CONTEXT_VGT_FLUSH) {
968 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
969 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
970 }
971 if (flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
972 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
973 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
974 }
975
976 /* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
977 * wait for idle on GFX9. We have to use a TS event.
978 */
979 if (sctx->b.chip_class >= GFX9 && flush_cb_db) {
980 uint64_t va;
981 unsigned tc_flags, cb_db_event;
982
983 /* Set the CB/DB flush event. */
984 switch (flush_cb_db) {
985 case SI_CONTEXT_FLUSH_AND_INV_CB:
986 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
987 break;
988 case SI_CONTEXT_FLUSH_AND_INV_DB:
989 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
990 break;
991 default:
992 /* both CB & DB */
993 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
994 }
995
996 /* These are the only allowed combinations. If you need to
997 * do multiple operations at once, do them separately.
998 * All operations that invalidate L2 also seem to invalidate
999 * metadata. Volatile (VOL) and WC flushes are not listed here.
1000 *
1001 * TC | TC_WB = writeback & invalidate L2 & L1
1002 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1003 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1004 * TC | TC_NC = invalidate L2 for MTYPE == NC
1005 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1006 * TCL1 = invalidate L1
1007 */
1008 tc_flags = 0;
1009
1010 if (flags & SI_CONTEXT_INV_L2_METADATA) {
1011 tc_flags = EVENT_TC_ACTION_ENA |
1012 EVENT_TC_MD_ACTION_ENA;
1013 }
1014
1015 /* Ideally flush TC together with CB/DB. */
1016 if (flags & SI_CONTEXT_INV_GLOBAL_L2) {
1017 /* Writeback and invalidate everything in L2 & L1. */
1018 tc_flags = EVENT_TC_ACTION_ENA |
1019 EVENT_TC_WB_ACTION_ENA;
1020
1021 /* Clear the flags. */
1022 flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 |
1023 SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
1024 SI_CONTEXT_INV_VMEM_L1);
1025 sctx->b.num_L2_invalidates++;
1026 }
1027
1028 /* Do the flush (enqueue the event and wait for it). */
1029 va = sctx->wait_mem_scratch->gpu_address;
1030 sctx->wait_mem_number++;
1031
1032 si_gfx_write_event_eop(sctx, cb_db_event, tc_flags,
1033 EOP_DATA_SEL_VALUE_32BIT,
1034 sctx->wait_mem_scratch, va,
1035 sctx->wait_mem_number, SI_NOT_QUERY);
1036 si_gfx_wait_fence(sctx, va, sctx->wait_mem_number, 0xffffffff);
1037 }
1038
1039 /* Make sure ME is idle (it executes most packets) before continuing.
1040 * This prevents read-after-write hazards between PFP and ME.
1041 */
1042 if (cp_coher_cntl ||
1043 (flags & (SI_CONTEXT_CS_PARTIAL_FLUSH |
1044 SI_CONTEXT_INV_VMEM_L1 |
1045 SI_CONTEXT_INV_GLOBAL_L2 |
1046 SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1047 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1048 radeon_emit(cs, 0);
1049 }
1050
1051 /* SI-CI-VI only:
1052 * When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
1053 * waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
1054 *
1055 * cp_coher_cntl should contain all necessary flags except TC flags
1056 * at this point.
1057 *
1058 * SI-CIK don't support L2 write-back.
1059 */
1060 if (flags & SI_CONTEXT_INV_GLOBAL_L2 ||
1061 (sctx->b.chip_class <= CIK &&
1062 (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1063 /* Invalidate L1 & L2. (L1 is always invalidated on SI)
1064 * WB must be set on VI+ when TC_ACTION is set.
1065 */
1066 si_emit_surface_sync(sctx, cp_coher_cntl |
1067 S_0085F0_TC_ACTION_ENA(1) |
1068 S_0085F0_TCL1_ACTION_ENA(1) |
1069 S_0301F0_TC_WB_ACTION_ENA(sctx->b.chip_class >= VI));
1070 cp_coher_cntl = 0;
1071 sctx->b.num_L2_invalidates++;
1072 } else {
1073 /* L1 invalidation and L2 writeback must be done separately,
1074 * because both operations can't be done together.
1075 */
1076 if (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) {
1077 /* WB = write-back
1078 * NC = apply to non-coherent MTYPEs
1079 * (i.e. MTYPE <= 1, which is what we use everywhere)
1080 *
1081 * WB doesn't work without NC.
1082 */
1083 si_emit_surface_sync(sctx, cp_coher_cntl |
1084 S_0301F0_TC_WB_ACTION_ENA(1) |
1085 S_0301F0_TC_NC_ACTION_ENA(1));
1086 cp_coher_cntl = 0;
1087 sctx->b.num_L2_writebacks++;
1088 }
1089 if (flags & SI_CONTEXT_INV_VMEM_L1) {
1090 /* Invalidate per-CU VMEM L1. */
1091 si_emit_surface_sync(sctx, cp_coher_cntl |
1092 S_0085F0_TCL1_ACTION_ENA(1));
1093 cp_coher_cntl = 0;
1094 }
1095 }
1096
1097 /* If TC flushes haven't cleared this... */
1098 if (cp_coher_cntl)
1099 si_emit_surface_sync(sctx, cp_coher_cntl);
1100
1101 if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
1102 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1103 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1104 EVENT_INDEX(0));
1105 } else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
1106 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1107 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1108 EVENT_INDEX(0));
1109 }
1110
1111 sctx->b.flags = 0;
1112 }
1113
1114 static void si_get_draw_start_count(struct si_context *sctx,
1115 const struct pipe_draw_info *info,
1116 unsigned *start, unsigned *count)
1117 {
1118 struct pipe_draw_indirect_info *indirect = info->indirect;
1119
1120 if (indirect) {
1121 unsigned indirect_count;
1122 struct pipe_transfer *transfer;
1123 unsigned begin, end;
1124 unsigned map_size;
1125 unsigned *data;
1126
1127 if (indirect->indirect_draw_count) {
1128 data = pipe_buffer_map_range(&sctx->b.b,
1129 indirect->indirect_draw_count,
1130 indirect->indirect_draw_count_offset,
1131 sizeof(unsigned),
1132 PIPE_TRANSFER_READ, &transfer);
1133
1134 indirect_count = *data;
1135
1136 pipe_buffer_unmap(&sctx->b.b, transfer);
1137 } else {
1138 indirect_count = indirect->draw_count;
1139 }
1140
1141 if (!indirect_count) {
1142 *start = *count = 0;
1143 return;
1144 }
1145
1146 map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
1147 data = pipe_buffer_map_range(&sctx->b.b, indirect->buffer,
1148 indirect->offset, map_size,
1149 PIPE_TRANSFER_READ, &transfer);
1150
1151 begin = UINT_MAX;
1152 end = 0;
1153
1154 for (unsigned i = 0; i < indirect_count; ++i) {
1155 unsigned count = data[0];
1156 unsigned start = data[2];
1157
1158 if (count > 0) {
1159 begin = MIN2(begin, start);
1160 end = MAX2(end, start + count);
1161 }
1162
1163 data += indirect->stride / sizeof(unsigned);
1164 }
1165
1166 pipe_buffer_unmap(&sctx->b.b, transfer);
1167
1168 if (begin < end) {
1169 *start = begin;
1170 *count = end - begin;
1171 } else {
1172 *start = *count = 0;
1173 }
1174 } else {
1175 *start = info->start;
1176 *count = info->count;
1177 }
1178 }
1179
1180 static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
1181 unsigned skip_atom_mask)
1182 {
1183 /* Emit state atoms. */
1184 unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
1185 while (mask) {
1186 struct r600_atom *atom = sctx->atoms.array[u_bit_scan(&mask)];
1187
1188 atom->emit(sctx, atom);
1189 }
1190 sctx->dirty_atoms &= skip_atom_mask;
1191
1192 /* Emit states. */
1193 mask = sctx->dirty_states;
1194 while (mask) {
1195 unsigned i = u_bit_scan(&mask);
1196 struct si_pm4_state *state = sctx->queued.array[i];
1197
1198 if (!state || sctx->emitted.array[i] == state)
1199 continue;
1200
1201 si_pm4_emit(sctx, state);
1202 sctx->emitted.array[i] = state;
1203 }
1204 sctx->dirty_states = 0;
1205
1206 /* Emit draw states. */
1207 unsigned num_patches = 0;
1208
1209 si_emit_rasterizer_prim_state(sctx);
1210 if (sctx->tes_shader.cso)
1211 si_emit_derived_tess_state(sctx, info, &num_patches);
1212 si_emit_vs_state(sctx, info);
1213 si_emit_draw_registers(sctx, info, num_patches);
1214 }
1215
1216 void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
1217 {
1218 struct si_context *sctx = (struct si_context *)ctx;
1219 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1220 struct pipe_resource *indexbuf = info->index.resource;
1221 unsigned dirty_tex_counter;
1222 enum pipe_prim_type rast_prim;
1223 unsigned index_size = info->index_size;
1224 unsigned index_offset = info->indirect ? info->start * index_size : 0;
1225
1226 if (likely(!info->indirect)) {
1227 /* SI-CI treat instance_count==0 as instance_count==1. There is
1228 * no workaround for indirect draws, but we can at least skip
1229 * direct draws.
1230 */
1231 if (unlikely(!info->instance_count))
1232 return;
1233
1234 /* Handle count == 0. */
1235 if (unlikely(!info->count &&
1236 (index_size || !info->count_from_stream_output)))
1237 return;
1238 }
1239
1240 if (unlikely(!sctx->vs_shader.cso)) {
1241 assert(0);
1242 return;
1243 }
1244 if (unlikely(!sctx->ps_shader.cso && (!rs || !rs->rasterizer_discard))) {
1245 assert(0);
1246 return;
1247 }
1248 if (unlikely(!!sctx->tes_shader.cso != (info->mode == PIPE_PRIM_PATCHES))) {
1249 assert(0);
1250 return;
1251 }
1252
1253 /* Recompute and re-emit the texture resource states if needed. */
1254 dirty_tex_counter = p_atomic_read(&sctx->b.screen->dirty_tex_counter);
1255 if (unlikely(dirty_tex_counter != sctx->b.last_dirty_tex_counter)) {
1256 sctx->b.last_dirty_tex_counter = dirty_tex_counter;
1257 sctx->framebuffer.dirty_cbufs |=
1258 ((1 << sctx->framebuffer.state.nr_cbufs) - 1);
1259 sctx->framebuffer.dirty_zsbuf = true;
1260 si_mark_atom_dirty(sctx, &sctx->framebuffer.atom);
1261 si_update_all_texture_descriptors(sctx);
1262 }
1263
1264 si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
1265
1266 /* Set the rasterization primitive type.
1267 *
1268 * This must be done after si_decompress_textures, which can call
1269 * draw_vbo recursively, and before si_update_shaders, which uses
1270 * current_rast_prim for this draw_vbo call. */
1271 if (sctx->gs_shader.cso)
1272 rast_prim = sctx->gs_shader.cso->gs_output_prim;
1273 else if (sctx->tes_shader.cso) {
1274 if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1275 rast_prim = PIPE_PRIM_POINTS;
1276 else
1277 rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1278 } else
1279 rast_prim = info->mode;
1280
1281 if (rast_prim != sctx->current_rast_prim) {
1282 bool old_is_poly = sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES;
1283 bool new_is_poly = rast_prim >= PIPE_PRIM_TRIANGLES;
1284 if (old_is_poly != new_is_poly) {
1285 sctx->scissors.dirty_mask = (1 << SI_MAX_VIEWPORTS) - 1;
1286 si_mark_atom_dirty(sctx, &sctx->scissors.atom);
1287 }
1288
1289 sctx->current_rast_prim = rast_prim;
1290 sctx->do_update_shaders = true;
1291 }
1292
1293 if (sctx->tes_shader.cso &&
1294 sctx->screen->has_ls_vgpr_init_bug) {
1295 /* Determine whether the LS VGPR fix should be applied.
1296 *
1297 * It is only required when num input CPs > num output CPs,
1298 * which cannot happen with the fixed function TCS. We should
1299 * also update this bit when switching from TCS to fixed
1300 * function TCS.
1301 */
1302 struct si_shader_selector *tcs = sctx->tcs_shader.cso;
1303 bool ls_vgpr_fix =
1304 tcs &&
1305 info->vertices_per_patch >
1306 tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
1307
1308 if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
1309 sctx->ls_vgpr_fix = ls_vgpr_fix;
1310 sctx->do_update_shaders = true;
1311 }
1312 }
1313
1314 if (sctx->gs_shader.cso) {
1315 /* Determine whether the GS triangle strip adjacency fix should
1316 * be applied. Rotate every other triangle if
1317 * - triangle strips with adjacency are fed to the GS and
1318 * - primitive restart is disabled (the rotation doesn't help
1319 * when the restart occurs after an odd number of triangles).
1320 */
1321 bool gs_tri_strip_adj_fix =
1322 !sctx->tes_shader.cso &&
1323 info->mode == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY &&
1324 !info->primitive_restart;
1325
1326 if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
1327 sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
1328 sctx->do_update_shaders = true;
1329 }
1330 }
1331
1332 if (sctx->do_update_shaders && !si_update_shaders(sctx))
1333 return;
1334
1335 if (index_size) {
1336 /* Translate or upload, if needed. */
1337 /* 8-bit indices are supported on VI. */
1338 if (sctx->b.chip_class <= CIK && index_size == 1) {
1339 unsigned start, count, start_offset, size, offset;
1340 void *ptr;
1341
1342 si_get_draw_start_count(sctx, info, &start, &count);
1343 start_offset = start * 2;
1344 size = count * 2;
1345
1346 indexbuf = NULL;
1347 u_upload_alloc(ctx->stream_uploader, start_offset,
1348 size,
1349 si_optimal_tcc_alignment(sctx, size),
1350 &offset, &indexbuf, &ptr);
1351 if (!indexbuf)
1352 return;
1353
1354 util_shorten_ubyte_elts_to_userptr(&sctx->b.b, info, 0, 0,
1355 index_offset + start,
1356 count, ptr);
1357
1358 /* info->start will be added by the drawing code */
1359 index_offset = offset - start_offset;
1360 index_size = 2;
1361 } else if (info->has_user_indices) {
1362 unsigned start_offset;
1363
1364 assert(!info->indirect);
1365 start_offset = info->start * index_size;
1366
1367 indexbuf = NULL;
1368 u_upload_data(ctx->stream_uploader, start_offset,
1369 info->count * index_size,
1370 sctx->screen->info.tcc_cache_line_size,
1371 (char*)info->index.user + start_offset,
1372 &index_offset, &indexbuf);
1373 if (!indexbuf)
1374 return;
1375
1376 /* info->start will be added by the drawing code */
1377 index_offset -= start_offset;
1378 } else if (sctx->b.chip_class <= CIK &&
1379 r600_resource(indexbuf)->TC_L2_dirty) {
1380 /* VI reads index buffers through TC L2, so it doesn't
1381 * need this. */
1382 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1383 r600_resource(indexbuf)->TC_L2_dirty = false;
1384 }
1385 }
1386
1387 if (info->indirect) {
1388 struct pipe_draw_indirect_info *indirect = info->indirect;
1389
1390 /* Add the buffer size for memory checking in need_cs_space. */
1391 si_context_add_resource_size(ctx, indirect->buffer);
1392
1393 /* Indirect buffers use TC L2 on GFX9, but not older hw. */
1394 if (sctx->b.chip_class <= VI) {
1395 if (r600_resource(indirect->buffer)->TC_L2_dirty) {
1396 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1397 r600_resource(indirect->buffer)->TC_L2_dirty = false;
1398 }
1399
1400 if (indirect->indirect_draw_count &&
1401 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
1402 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1403 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
1404 }
1405 }
1406 }
1407
1408 si_need_gfx_cs_space(sctx);
1409
1410 /* Since we've called r600_context_add_resource_size for vertex buffers,
1411 * this must be called after si_need_cs_space, because we must let
1412 * need_cs_space flush before we add buffers to the buffer list.
1413 */
1414 if (!si_upload_vertex_buffer_descriptors(sctx))
1415 return;
1416
1417 /* Vega10/Raven scissor bug workaround. This must be done before VPORT
1418 * scissor registers are changed. There is also a more efficient but
1419 * more involved alternative workaround.
1420 */
1421 if ((sctx->b.family == CHIP_VEGA10 || sctx->b.family == CHIP_RAVEN) &&
1422 si_is_atom_dirty(sctx, &sctx->scissors.atom)) {
1423 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH;
1424 si_emit_cache_flush(sctx);
1425 }
1426
1427 /* Use optimal packet order based on whether we need to sync the pipeline. */
1428 if (unlikely(sctx->b.flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
1429 SI_CONTEXT_FLUSH_AND_INV_DB |
1430 SI_CONTEXT_PS_PARTIAL_FLUSH |
1431 SI_CONTEXT_CS_PARTIAL_FLUSH))) {
1432 /* If we have to wait for idle, set all states first, so that all
1433 * SET packets are processed in parallel with previous draw calls.
1434 * Then upload descriptors, set shader pointers, and draw, and
1435 * prefetch at the end. This ensures that the time the CUs
1436 * are idle is very short. (there are only SET_SH packets between
1437 * the wait and the draw)
1438 */
1439 struct r600_atom *shader_pointers = &sctx->shader_pointers.atom;
1440 unsigned masked_atoms = 1u << shader_pointers->id;
1441
1442 if (unlikely(sctx->b.flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
1443 masked_atoms |= 1u << sctx->b.render_cond_atom.id;
1444
1445 /* Emit all states except shader pointers and render condition. */
1446 si_emit_all_states(sctx, info, masked_atoms);
1447 si_emit_cache_flush(sctx);
1448
1449 /* <-- CUs are idle here. */
1450 if (!si_upload_graphics_shader_descriptors(sctx))
1451 return;
1452
1453 /* Set shader pointers after descriptors are uploaded. */
1454 if (si_is_atom_dirty(sctx, shader_pointers))
1455 shader_pointers->emit(sctx, NULL);
1456 if (si_is_atom_dirty(sctx, &sctx->b.render_cond_atom))
1457 sctx->b.render_cond_atom.emit(sctx, NULL);
1458 sctx->dirty_atoms = 0;
1459
1460 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1461 /* <-- CUs are busy here. */
1462
1463 /* Start prefetches after the draw has been started. Both will run
1464 * in parallel, but starting the draw first is more important.
1465 */
1466 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
1467 cik_emit_prefetch_L2(sctx);
1468 } else {
1469 /* If we don't wait for idle, start prefetches first, then set
1470 * states, and draw at the end.
1471 */
1472 if (sctx->b.flags)
1473 si_emit_cache_flush(sctx);
1474
1475 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
1476 cik_emit_prefetch_L2(sctx);
1477
1478 if (!si_upload_graphics_shader_descriptors(sctx))
1479 return;
1480
1481 si_emit_all_states(sctx, info, 0);
1482 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1483 }
1484
1485 if (unlikely(sctx->current_saved_cs)) {
1486 si_trace_emit(sctx);
1487 si_log_draw_state(sctx, sctx->b.log);
1488 }
1489
1490 /* Workaround for a VGT hang when streamout is enabled.
1491 * It must be done after drawing. */
1492 if ((sctx->b.family == CHIP_HAWAII ||
1493 sctx->b.family == CHIP_TONGA ||
1494 sctx->b.family == CHIP_FIJI) &&
1495 si_get_strmout_en(sctx)) {
1496 sctx->b.flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
1497 }
1498
1499 if (unlikely(sctx->decompression_enabled)) {
1500 sctx->b.num_decompress_calls++;
1501 } else {
1502 sctx->b.num_draw_calls++;
1503 if (sctx->framebuffer.state.nr_cbufs > 1)
1504 sctx->b.num_mrt_draw_calls++;
1505 if (info->primitive_restart)
1506 sctx->b.num_prim_restart_calls++;
1507 if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
1508 sctx->b.num_spill_draw_calls++;
1509 }
1510 if (index_size && indexbuf != info->index.resource)
1511 pipe_resource_reference(&indexbuf, NULL);
1512 }
1513
1514 void si_draw_rectangle(struct blitter_context *blitter,
1515 void *vertex_elements_cso,
1516 blitter_get_vs_func get_vs,
1517 int x1, int y1, int x2, int y2,
1518 float depth, unsigned num_instances,
1519 enum blitter_attrib_type type,
1520 const union blitter_attrib *attrib)
1521 {
1522 struct pipe_context *pipe = util_blitter_get_pipe(blitter);
1523 struct si_context *sctx = (struct si_context*)pipe;
1524
1525 /* Pack position coordinates as signed int16. */
1526 sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) |
1527 ((uint32_t)(y1 & 0xffff) << 16);
1528 sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) |
1529 ((uint32_t)(y2 & 0xffff) << 16);
1530 sctx->vs_blit_sh_data[2] = fui(depth);
1531
1532 switch (type) {
1533 case UTIL_BLITTER_ATTRIB_COLOR:
1534 memcpy(&sctx->vs_blit_sh_data[3], attrib->color,
1535 sizeof(float)*4);
1536 break;
1537 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
1538 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
1539 memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord,
1540 sizeof(attrib->texcoord));
1541 break;
1542 case UTIL_BLITTER_ATTRIB_NONE:;
1543 }
1544
1545 pipe->bind_vs_state(pipe, si_get_blit_vs(sctx, type, num_instances));
1546
1547 struct pipe_draw_info info = {};
1548 info.mode = SI_PRIM_RECTANGLE_LIST;
1549 info.count = 3;
1550 info.instance_count = num_instances;
1551
1552 /* Don't set per-stage shader pointers for VS. */
1553 sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
1554 sctx->vertex_buffer_pointer_dirty = false;
1555
1556 si_draw_vbo(pipe, &info);
1557 }
1558
1559 void si_trace_emit(struct si_context *sctx)
1560 {
1561 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
1562 uint64_t va = sctx->current_saved_cs->trace_buf->gpu_address;
1563 uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
1564
1565 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
1566 radeon_emit(cs, S_370_DST_SEL(V_370_MEMORY_SYNC) |
1567 S_370_WR_CONFIRM(1) |
1568 S_370_ENGINE_SEL(V_370_ME));
1569 radeon_emit(cs, va);
1570 radeon_emit(cs, va >> 32);
1571 radeon_emit(cs, trace_id);
1572 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
1573 radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
1574
1575 if (sctx->b.log)
1576 u_log_flush(sctx->b.log);
1577 }