radeonsi: assume that rasterizer state is non-NULL in draw_vbo
[mesa.git] / src / gallium / drivers / radeonsi / si_state_draw.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "util/u_index_modify.h"
29 #include "util/u_log.h"
30 #include "util/u_upload_mgr.h"
31 #include "util/u_prim.h"
32
33 #include "ac_debug.h"
34
35 /* special primitive types */
36 #define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
37
38 static unsigned si_conv_pipe_prim(unsigned mode)
39 {
40 static const unsigned prim_conv[] = {
41 [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
42 [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
43 [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
44 [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
45 [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
46 [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
47 [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
48 [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
49 [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
50 [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
51 [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
52 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
53 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
54 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
55 [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
56 [SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST
57 };
58 assert(mode < ARRAY_SIZE(prim_conv));
59 return prim_conv[mode];
60 }
61
62 /**
63 * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
64 * LS.LDS_SIZE is shared by all 3 shader stages.
65 *
66 * The information about LDS and other non-compile-time parameters is then
67 * written to userdata SGPRs.
68 */
69 static bool si_emit_derived_tess_state(struct si_context *sctx,
70 const struct pipe_draw_info *info,
71 unsigned *num_patches)
72 {
73 struct radeon_winsys_cs *cs = sctx->gfx_cs;
74 struct si_shader *ls_current;
75 struct si_shader_selector *ls;
76 /* The TES pointer will only be used for sctx->last_tcs.
77 * It would be wrong to think that TCS = TES. */
78 struct si_shader_selector *tcs =
79 sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
80 unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
81 bool has_primid_instancing_bug = sctx->chip_class == SI &&
82 sctx->screen->info.max_se == 1;
83 unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
84 unsigned num_tcs_input_cp = info->vertices_per_patch;
85 unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
86 unsigned num_tcs_patch_outputs;
87 unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
88 unsigned input_patch_size, output_patch_size, output_patch0_offset;
89 unsigned perpatch_output_offset, lds_size;
90 unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
91 unsigned offchip_layout, hardware_lds_size, ls_hs_config;
92
93 /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
94 if (sctx->chip_class >= GFX9) {
95 if (sctx->tcs_shader.cso)
96 ls_current = sctx->tcs_shader.current;
97 else
98 ls_current = sctx->fixed_func_tcs_shader.current;
99
100 ls = ls_current->key.part.tcs.ls;
101 } else {
102 ls_current = sctx->vs_shader.current;
103 ls = sctx->vs_shader.cso;
104 }
105
106 if (sctx->last_ls == ls_current &&
107 sctx->last_tcs == tcs &&
108 sctx->last_tes_sh_base == tes_sh_base &&
109 sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
110 (!has_primid_instancing_bug ||
111 (sctx->last_tess_uses_primid == tess_uses_primid))) {
112 *num_patches = sctx->last_num_patches;
113 return false;
114 }
115
116 sctx->last_ls = ls_current;
117 sctx->last_tcs = tcs;
118 sctx->last_tes_sh_base = tes_sh_base;
119 sctx->last_num_tcs_input_cp = num_tcs_input_cp;
120 sctx->last_tess_uses_primid = tess_uses_primid;
121
122 /* This calculates how shader inputs and outputs among VS, TCS, and TES
123 * are laid out in LDS. */
124 num_tcs_inputs = util_last_bit64(ls->outputs_written);
125
126 if (sctx->tcs_shader.cso) {
127 num_tcs_outputs = util_last_bit64(tcs->outputs_written);
128 num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
129 num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
130 } else {
131 /* No TCS. Route varyings from LS to TES. */
132 num_tcs_outputs = num_tcs_inputs;
133 num_tcs_output_cp = num_tcs_input_cp;
134 num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
135 }
136
137 input_vertex_size = num_tcs_inputs * 16;
138 output_vertex_size = num_tcs_outputs * 16;
139
140 input_patch_size = num_tcs_input_cp * input_vertex_size;
141
142 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
143 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
144
145 /* Ensure that we only need one wave per SIMD so we don't need to check
146 * resource usage. Also ensures that the number of tcs in and out
147 * vertices per threadgroup are at most 256.
148 */
149 *num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
150
151 /* Make sure that the data fits in LDS. This assumes the shaders only
152 * use LDS for the inputs and outputs.
153 *
154 * While CIK can use 64K per threadgroup, there is a hang on Stoney
155 * with 2 CUs if we use more than 32K. The closed Vulkan driver also
156 * uses 32K at most on all GCN chips.
157 */
158 hardware_lds_size = 32768;
159 *num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size +
160 output_patch_size));
161
162 /* Make sure the output data fits in the offchip buffer */
163 *num_patches = MIN2(*num_patches,
164 (sctx->screen->tess_offchip_block_dw_size * 4) /
165 output_patch_size);
166
167 /* Not necessary for correctness, but improves performance. The
168 * specific value is taken from the proprietary driver.
169 */
170 *num_patches = MIN2(*num_patches, 40);
171
172 if (sctx->chip_class == SI) {
173 /* SI bug workaround, related to power management. Limit LS-HS
174 * threadgroups to only one wave.
175 */
176 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
177 *num_patches = MIN2(*num_patches, one_wave);
178 }
179
180 /* The VGT HS block increments the patch ID unconditionally
181 * within a single threadgroup. This results in incorrect
182 * patch IDs when instanced draws are used.
183 *
184 * The intended solution is to restrict threadgroups to
185 * a single instance by setting SWITCH_ON_EOI, which
186 * should cause IA to split instances up. However, this
187 * doesn't work correctly on SI when there is no other
188 * SE to switch to.
189 */
190 if (has_primid_instancing_bug && tess_uses_primid)
191 *num_patches = 1;
192
193 sctx->last_num_patches = *num_patches;
194
195 output_patch0_offset = input_patch_size * *num_patches;
196 perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
197
198 /* Compute userdata SGPRs. */
199 assert(((input_vertex_size / 4) & ~0xff) == 0);
200 assert(((output_vertex_size / 4) & ~0xff) == 0);
201 assert(((input_patch_size / 4) & ~0x1fff) == 0);
202 assert(((output_patch_size / 4) & ~0x1fff) == 0);
203 assert(((output_patch0_offset / 16) & ~0xffff) == 0);
204 assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
205 assert(num_tcs_input_cp <= 32);
206 assert(num_tcs_output_cp <= 32);
207
208 uint64_t ring_va = r600_resource(sctx->tess_rings)->gpu_address;
209 assert((ring_va & u_bit_consecutive(0, 19)) == 0);
210
211 tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
212 S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
213 tcs_out_layout = (output_patch_size / 4) |
214 (num_tcs_input_cp << 13) |
215 ring_va;
216 tcs_out_offsets = (output_patch0_offset / 16) |
217 ((perpatch_output_offset / 16) << 16);
218 offchip_layout = *num_patches |
219 (num_tcs_output_cp << 6) |
220 (pervertex_output_patch_size * *num_patches << 12);
221
222 /* Compute the LDS size. */
223 lds_size = output_patch0_offset + output_patch_size * *num_patches;
224
225 if (sctx->chip_class >= CIK) {
226 assert(lds_size <= 65536);
227 lds_size = align(lds_size, 512) / 512;
228 } else {
229 assert(lds_size <= 32768);
230 lds_size = align(lds_size, 256) / 256;
231 }
232
233 /* Set SI_SGPR_VS_STATE_BITS. */
234 sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE &
235 C_VS_STATE_LS_OUT_VERTEX_SIZE;
236 sctx->current_vs_state |= tcs_in_layout;
237
238 if (sctx->chip_class >= GFX9) {
239 unsigned hs_rsrc2 = ls_current->config.rsrc2 |
240 S_00B42C_LDS_SIZE(lds_size);
241
242 radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
243
244 /* Set userdata SGPRs for merged LS-HS. */
245 radeon_set_sh_reg_seq(cs,
246 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
247 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
248 radeon_emit(cs, offchip_layout);
249 radeon_emit(cs, tcs_out_offsets);
250 radeon_emit(cs, tcs_out_layout);
251 } else {
252 unsigned ls_rsrc2 = ls_current->config.rsrc2;
253
254 si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
255 ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
256
257 /* Due to a hw bug, RSRC2_LS must be written twice with another
258 * LS register written in between. */
259 if (sctx->chip_class == CIK && sctx->family != CHIP_HAWAII)
260 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
261 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
262 radeon_emit(cs, ls_current->config.rsrc1);
263 radeon_emit(cs, ls_rsrc2);
264
265 /* Set userdata SGPRs for TCS. */
266 radeon_set_sh_reg_seq(cs,
267 R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
268 radeon_emit(cs, offchip_layout);
269 radeon_emit(cs, tcs_out_offsets);
270 radeon_emit(cs, tcs_out_layout);
271 radeon_emit(cs, tcs_in_layout);
272 }
273
274 /* Set userdata SGPRs for TES. */
275 radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
276 radeon_emit(cs, offchip_layout);
277 radeon_emit(cs, ring_va);
278
279 ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) |
280 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
281 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
282
283 if (sctx->last_ls_hs_config != ls_hs_config) {
284 if (sctx->chip_class >= CIK) {
285 radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2,
286 ls_hs_config);
287 } else {
288 radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG,
289 ls_hs_config);
290 }
291 sctx->last_ls_hs_config = ls_hs_config;
292 return true; /* true if the context rolls */
293 }
294 return false;
295 }
296
297 static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info)
298 {
299 switch (info->mode) {
300 case PIPE_PRIM_PATCHES:
301 return info->count / info->vertices_per_patch;
302 case SI_PRIM_RECTANGLE_LIST:
303 return info->count / 3;
304 default:
305 return u_prims_for_vertices(info->mode, info->count);
306 }
307 }
308
309 static unsigned
310 si_get_init_multi_vgt_param(struct si_screen *sscreen,
311 union si_vgt_param_key *key)
312 {
313 STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
314 unsigned max_primgroup_in_wave = 2;
315
316 /* SWITCH_ON_EOP(0) is always preferable. */
317 bool wd_switch_on_eop = false;
318 bool ia_switch_on_eop = false;
319 bool ia_switch_on_eoi = false;
320 bool partial_vs_wave = false;
321 bool partial_es_wave = false;
322
323 if (key->u.uses_tess) {
324 /* SWITCH_ON_EOI must be set if PrimID is used. */
325 if (key->u.tess_uses_prim_id)
326 ia_switch_on_eoi = true;
327
328 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
329 if ((sscreen->info.family == CHIP_TAHITI ||
330 sscreen->info.family == CHIP_PITCAIRN ||
331 sscreen->info.family == CHIP_BONAIRE) &&
332 key->u.uses_gs)
333 partial_vs_wave = true;
334
335 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
336 if (sscreen->has_distributed_tess) {
337 if (key->u.uses_gs) {
338 if (sscreen->info.chip_class <= VI)
339 partial_es_wave = true;
340
341 /* GPU hang workaround. */
342 if (sscreen->info.family == CHIP_TONGA ||
343 sscreen->info.family == CHIP_FIJI ||
344 sscreen->info.family == CHIP_POLARIS10 ||
345 sscreen->info.family == CHIP_POLARIS11 ||
346 sscreen->info.family == CHIP_POLARIS12 ||
347 sscreen->info.family == CHIP_VEGAM)
348 partial_vs_wave = true;
349 } else {
350 partial_vs_wave = true;
351 }
352 }
353 }
354
355 /* This is a hardware requirement. */
356 if (key->u.line_stipple_enabled ||
357 (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
358 ia_switch_on_eop = true;
359 wd_switch_on_eop = true;
360 }
361
362 if (sscreen->info.chip_class >= CIK) {
363 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
364 * 4 shader engines. Set 1 to pass the assertion below.
365 * The other cases are hardware requirements.
366 *
367 * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
368 * for points, line strips, and tri strips.
369 */
370 if (sscreen->info.max_se < 4 ||
371 key->u.prim == PIPE_PRIM_POLYGON ||
372 key->u.prim == PIPE_PRIM_LINE_LOOP ||
373 key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
374 key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
375 (key->u.primitive_restart &&
376 (sscreen->info.family < CHIP_POLARIS10 ||
377 (key->u.prim != PIPE_PRIM_POINTS &&
378 key->u.prim != PIPE_PRIM_LINE_STRIP &&
379 key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
380 key->u.count_from_stream_output)
381 wd_switch_on_eop = true;
382
383 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
384 * We don't know that for indirect drawing, so treat it as
385 * always problematic. */
386 if (sscreen->info.family == CHIP_HAWAII &&
387 key->u.uses_instancing)
388 wd_switch_on_eop = true;
389
390 /* Performance recommendation for 4 SE Gfx7-8 parts if
391 * instances are smaller than a primgroup.
392 * Assume indirect draws always use small instances.
393 * This is needed for good VS wave utilization.
394 */
395 if (sscreen->info.chip_class <= VI &&
396 sscreen->info.max_se == 4 &&
397 key->u.multi_instances_smaller_than_primgroup)
398 wd_switch_on_eop = true;
399
400 /* Required on CIK and later. */
401 if (sscreen->info.max_se > 2 && !wd_switch_on_eop)
402 ia_switch_on_eoi = true;
403
404 /* Required by Hawaii and, for some special cases, by VI. */
405 if (ia_switch_on_eoi &&
406 (sscreen->info.family == CHIP_HAWAII ||
407 (sscreen->info.chip_class == VI &&
408 (key->u.uses_gs || max_primgroup_in_wave != 2))))
409 partial_vs_wave = true;
410
411 /* Instancing bug on Bonaire. */
412 if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi &&
413 key->u.uses_instancing)
414 partial_vs_wave = true;
415
416 /* If the WD switch is false, the IA switch must be false too. */
417 assert(wd_switch_on_eop || !ia_switch_on_eop);
418 }
419
420 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
421 if (sscreen->info.chip_class <= VI && ia_switch_on_eoi)
422 partial_es_wave = true;
423
424 return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
425 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
426 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
427 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
428 S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= CIK ? wd_switch_on_eop : 0) |
429 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
430 S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == VI ?
431 max_primgroup_in_wave : 0) |
432 S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) |
433 S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9);
434 }
435
436 void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
437 {
438 for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
439 for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
440 for (int multi_instances = 0; multi_instances < 2; multi_instances++)
441 for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
442 for (int count_from_so = 0; count_from_so < 2; count_from_so++)
443 for (int line_stipple = 0; line_stipple < 2; line_stipple++)
444 for (int uses_tess = 0; uses_tess < 2; uses_tess++)
445 for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
446 for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
447 union si_vgt_param_key key;
448
449 key.index = 0;
450 key.u.prim = prim;
451 key.u.uses_instancing = uses_instancing;
452 key.u.multi_instances_smaller_than_primgroup = multi_instances;
453 key.u.primitive_restart = primitive_restart;
454 key.u.count_from_stream_output = count_from_so;
455 key.u.line_stipple_enabled = line_stipple;
456 key.u.uses_tess = uses_tess;
457 key.u.tess_uses_prim_id = tess_uses_primid;
458 key.u.uses_gs = uses_gs;
459
460 sctx->ia_multi_vgt_param[key.index] =
461 si_get_init_multi_vgt_param(sctx->screen, &key);
462 }
463 }
464
465 static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
466 const struct pipe_draw_info *info,
467 unsigned num_patches)
468 {
469 union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
470 unsigned primgroup_size;
471 unsigned ia_multi_vgt_param;
472
473 if (sctx->tes_shader.cso) {
474 primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
475 } else if (sctx->gs_shader.cso) {
476 primgroup_size = 64; /* recommended with a GS */
477 } else {
478 primgroup_size = 128; /* recommended without a GS and tess */
479 }
480
481 key.u.prim = info->mode;
482 key.u.uses_instancing = info->indirect || info->instance_count > 1;
483 key.u.multi_instances_smaller_than_primgroup =
484 info->indirect ||
485 (info->instance_count > 1 &&
486 (info->count_from_stream_output ||
487 si_num_prims_for_vertices(info) < primgroup_size));
488 key.u.primitive_restart = info->primitive_restart;
489 key.u.count_from_stream_output = info->count_from_stream_output != NULL;
490
491 ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] |
492 S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
493
494 if (sctx->gs_shader.cso) {
495 /* GS requirement. */
496 if (sctx->chip_class <= VI &&
497 SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
498 ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
499
500 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
501 * The hw doc says all multi-SE chips are affected, but Vulkan
502 * only applies it to Hawaii. Do what Vulkan does.
503 */
504 if (sctx->family == CHIP_HAWAII &&
505 G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
506 (info->indirect ||
507 (info->instance_count > 1 &&
508 (info->count_from_stream_output ||
509 si_num_prims_for_vertices(info) <= 1))))
510 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
511 }
512
513 return ia_multi_vgt_param;
514 }
515
516 /* rast_prim is the primitive type after GS. */
517 static bool si_emit_rasterizer_prim_state(struct si_context *sctx)
518 {
519 struct radeon_winsys_cs *cs = sctx->gfx_cs;
520 enum pipe_prim_type rast_prim = sctx->current_rast_prim;
521 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
522
523 /* Skip this if not rendering lines. */
524 if (!util_prim_is_lines(rast_prim))
525 return false;
526
527 if (rast_prim == sctx->last_rast_prim &&
528 rs->pa_sc_line_stipple == sctx->last_sc_line_stipple)
529 return false;
530
531 /* For lines, reset the stipple pattern at each primitive. Otherwise,
532 * reset the stipple pattern at each packet (line strips, line loops).
533 */
534 radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE,
535 rs->pa_sc_line_stipple |
536 S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2));
537
538 sctx->last_rast_prim = rast_prim;
539 sctx->last_sc_line_stipple = rs->pa_sc_line_stipple;
540 return true; /* true if the context rolls */
541 }
542
543 static void si_emit_vs_state(struct si_context *sctx,
544 const struct pipe_draw_info *info)
545 {
546 sctx->current_vs_state &= C_VS_STATE_INDEXED;
547 sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
548
549 if (sctx->num_vs_blit_sgprs) {
550 /* Re-emit the state after we leave u_blitter. */
551 sctx->last_vs_state = ~0;
552 return;
553 }
554
555 if (sctx->current_vs_state != sctx->last_vs_state) {
556 struct radeon_winsys_cs *cs = sctx->gfx_cs;
557
558 radeon_set_sh_reg(cs,
559 sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] +
560 SI_SGPR_VS_STATE_BITS * 4,
561 sctx->current_vs_state);
562
563 sctx->last_vs_state = sctx->current_vs_state;
564 }
565 }
566
567 static inline bool si_prim_restart_index_changed(struct si_context *sctx,
568 const struct pipe_draw_info *info)
569 {
570 return info->primitive_restart &&
571 (info->restart_index != sctx->last_restart_index ||
572 sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN);
573 }
574
575 static void si_emit_draw_registers(struct si_context *sctx,
576 const struct pipe_draw_info *info,
577 unsigned num_patches)
578 {
579 struct radeon_winsys_cs *cs = sctx->gfx_cs;
580 unsigned prim = si_conv_pipe_prim(info->mode);
581 unsigned ia_multi_vgt_param;
582
583 ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, num_patches);
584
585 /* Draw state. */
586 if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
587 if (sctx->chip_class >= GFX9)
588 radeon_set_uconfig_reg_idx(cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
589 else if (sctx->chip_class >= CIK)
590 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
591 else
592 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
593
594 sctx->last_multi_vgt_param = ia_multi_vgt_param;
595 }
596 if (prim != sctx->last_prim) {
597 if (sctx->chip_class >= CIK)
598 radeon_set_uconfig_reg_idx(cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
599 else
600 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
601
602 sctx->last_prim = prim;
603 }
604
605 /* Primitive restart. */
606 if (info->primitive_restart != sctx->last_primitive_restart_en) {
607 if (sctx->chip_class >= GFX9)
608 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
609 info->primitive_restart);
610 else
611 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
612 info->primitive_restart);
613
614 sctx->last_primitive_restart_en = info->primitive_restart;
615
616 }
617 if (si_prim_restart_index_changed(sctx, info)) {
618 radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
619 info->restart_index);
620 sctx->last_restart_index = info->restart_index;
621 }
622 }
623
624 static void si_emit_draw_packets(struct si_context *sctx,
625 const struct pipe_draw_info *info,
626 struct pipe_resource *indexbuf,
627 unsigned index_size,
628 unsigned index_offset)
629 {
630 struct pipe_draw_indirect_info *indirect = info->indirect;
631 struct radeon_winsys_cs *cs = sctx->gfx_cs;
632 unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
633 bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
634 uint32_t index_max_size = 0;
635 uint64_t index_va = 0;
636
637 if (info->count_from_stream_output) {
638 struct si_streamout_target *t =
639 (struct si_streamout_target*)info->count_from_stream_output;
640 uint64_t va = t->buf_filled_size->gpu_address +
641 t->buf_filled_size_offset;
642
643 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE,
644 t->stride_in_dw);
645
646 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
647 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
648 COPY_DATA_DST_SEL(COPY_DATA_REG) |
649 COPY_DATA_WR_CONFIRM);
650 radeon_emit(cs, va); /* src address lo */
651 radeon_emit(cs, va >> 32); /* src address hi */
652 radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
653 radeon_emit(cs, 0); /* unused */
654
655 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
656 t->buf_filled_size, RADEON_USAGE_READ,
657 RADEON_PRIO_SO_FILLED_SIZE);
658 }
659
660 /* draw packet */
661 if (index_size) {
662 if (index_size != sctx->last_index_size) {
663 unsigned index_type;
664
665 /* index type */
666 switch (index_size) {
667 case 1:
668 index_type = V_028A7C_VGT_INDEX_8;
669 break;
670 case 2:
671 index_type = V_028A7C_VGT_INDEX_16 |
672 (SI_BIG_ENDIAN && sctx->chip_class <= CIK ?
673 V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
674 break;
675 case 4:
676 index_type = V_028A7C_VGT_INDEX_32 |
677 (SI_BIG_ENDIAN && sctx->chip_class <= CIK ?
678 V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
679 break;
680 default:
681 assert(!"unreachable");
682 return;
683 }
684
685 if (sctx->chip_class >= GFX9) {
686 radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE,
687 2, index_type);
688 } else {
689 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
690 radeon_emit(cs, index_type);
691 }
692
693 sctx->last_index_size = index_size;
694 }
695
696 index_max_size = (indexbuf->width0 - index_offset) /
697 index_size;
698 index_va = r600_resource(indexbuf)->gpu_address + index_offset;
699
700 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
701 r600_resource(indexbuf),
702 RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER);
703 } else {
704 /* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE,
705 * so the state must be re-emitted before the next indexed draw.
706 */
707 if (sctx->chip_class >= CIK)
708 sctx->last_index_size = -1;
709 }
710
711 if (indirect) {
712 uint64_t indirect_va = r600_resource(indirect->buffer)->gpu_address;
713
714 assert(indirect_va % 8 == 0);
715
716 si_invalidate_draw_sh_constants(sctx);
717
718 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
719 radeon_emit(cs, 1);
720 radeon_emit(cs, indirect_va);
721 radeon_emit(cs, indirect_va >> 32);
722
723 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
724 r600_resource(indirect->buffer),
725 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
726
727 unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA
728 : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
729
730 assert(indirect->offset % 4 == 0);
731
732 if (index_size) {
733 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
734 radeon_emit(cs, index_va);
735 radeon_emit(cs, index_va >> 32);
736
737 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
738 radeon_emit(cs, index_max_size);
739 }
740
741 if (!sctx->screen->has_draw_indirect_multi) {
742 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT
743 : PKT3_DRAW_INDIRECT,
744 3, render_cond_bit));
745 radeon_emit(cs, indirect->offset);
746 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
747 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
748 radeon_emit(cs, di_src_sel);
749 } else {
750 uint64_t count_va = 0;
751
752 if (indirect->indirect_draw_count) {
753 struct r600_resource *params_buf =
754 r600_resource(indirect->indirect_draw_count);
755
756 radeon_add_to_buffer_list(
757 sctx, sctx->gfx_cs, params_buf,
758 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
759
760 count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
761 }
762
763 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
764 PKT3_DRAW_INDIRECT_MULTI,
765 8, render_cond_bit));
766 radeon_emit(cs, indirect->offset);
767 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
768 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
769 radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
770 S_2C3_DRAW_INDEX_ENABLE(1) |
771 S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
772 radeon_emit(cs, indirect->draw_count);
773 radeon_emit(cs, count_va);
774 radeon_emit(cs, count_va >> 32);
775 radeon_emit(cs, indirect->stride);
776 radeon_emit(cs, di_src_sel);
777 }
778 } else {
779 int base_vertex;
780
781 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
782 radeon_emit(cs, info->instance_count);
783
784 /* Base vertex and start instance. */
785 base_vertex = index_size ? info->index_bias : info->start;
786
787 if (sctx->num_vs_blit_sgprs) {
788 /* Re-emit draw constants after we leave u_blitter. */
789 si_invalidate_draw_sh_constants(sctx);
790
791 /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
792 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4,
793 sctx->num_vs_blit_sgprs);
794 radeon_emit_array(cs, sctx->vs_blit_sh_data,
795 sctx->num_vs_blit_sgprs);
796 } else if (base_vertex != sctx->last_base_vertex ||
797 sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
798 info->start_instance != sctx->last_start_instance ||
799 info->drawid != sctx->last_drawid ||
800 sh_base_reg != sctx->last_sh_base_reg) {
801 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
802 radeon_emit(cs, base_vertex);
803 radeon_emit(cs, info->start_instance);
804 radeon_emit(cs, info->drawid);
805
806 sctx->last_base_vertex = base_vertex;
807 sctx->last_start_instance = info->start_instance;
808 sctx->last_drawid = info->drawid;
809 sctx->last_sh_base_reg = sh_base_reg;
810 }
811
812 if (index_size) {
813 index_va += info->start * index_size;
814
815 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
816 radeon_emit(cs, index_max_size);
817 radeon_emit(cs, index_va);
818 radeon_emit(cs, index_va >> 32);
819 radeon_emit(cs, info->count);
820 radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
821 } else {
822 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
823 radeon_emit(cs, info->count);
824 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
825 S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
826 }
827 }
828 }
829
830 static void si_emit_surface_sync(struct si_context *sctx,
831 unsigned cp_coher_cntl)
832 {
833 struct radeon_winsys_cs *cs = sctx->gfx_cs;
834
835 if (sctx->chip_class >= GFX9) {
836 /* Flush caches and wait for the caches to assert idle. */
837 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
838 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
839 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
840 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
841 radeon_emit(cs, 0); /* CP_COHER_BASE */
842 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
843 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
844 } else {
845 /* ACQUIRE_MEM is only required on a compute ring. */
846 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
847 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
848 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
849 radeon_emit(cs, 0); /* CP_COHER_BASE */
850 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
851 }
852 }
853
854 void si_emit_cache_flush(struct si_context *sctx)
855 {
856 struct radeon_winsys_cs *cs = sctx->gfx_cs;
857 uint32_t flags = sctx->flags;
858 uint32_t cp_coher_cntl = 0;
859 uint32_t flush_cb_db = flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
860 SI_CONTEXT_FLUSH_AND_INV_DB);
861
862 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
863 sctx->num_cb_cache_flushes++;
864 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
865 sctx->num_db_cache_flushes++;
866
867 /* SI has a bug that it always flushes ICACHE and KCACHE if either
868 * bit is set. An alternative way is to write SQC_CACHES, but that
869 * doesn't seem to work reliably. Since the bug doesn't affect
870 * correctness (it only does more work than necessary) and
871 * the performance impact is likely negligible, there is no plan
872 * to add a workaround for it.
873 */
874
875 if (flags & SI_CONTEXT_INV_ICACHE)
876 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
877 if (flags & SI_CONTEXT_INV_SMEM_L1)
878 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
879
880 if (sctx->chip_class <= VI) {
881 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
882 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
883 S_0085F0_CB0_DEST_BASE_ENA(1) |
884 S_0085F0_CB1_DEST_BASE_ENA(1) |
885 S_0085F0_CB2_DEST_BASE_ENA(1) |
886 S_0085F0_CB3_DEST_BASE_ENA(1) |
887 S_0085F0_CB4_DEST_BASE_ENA(1) |
888 S_0085F0_CB5_DEST_BASE_ENA(1) |
889 S_0085F0_CB6_DEST_BASE_ENA(1) |
890 S_0085F0_CB7_DEST_BASE_ENA(1);
891
892 /* Necessary for DCC */
893 if (sctx->chip_class == VI)
894 si_gfx_write_event_eop(sctx, V_028A90_FLUSH_AND_INV_CB_DATA_TS,
895 0, EOP_DATA_SEL_DISCARD, NULL,
896 0, 0, SI_NOT_QUERY);
897 }
898 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
899 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
900 S_0085F0_DB_DEST_BASE_ENA(1);
901 }
902
903 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
904 /* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
905 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
906 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
907 }
908 if (flags & (SI_CONTEXT_FLUSH_AND_INV_DB |
909 SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
910 /* Flush HTILE. SURFACE_SYNC will wait for idle. */
911 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
912 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
913 }
914
915 /* Wait for shader engines to go idle.
916 * VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
917 * for everything including CB/DB cache flushes.
918 */
919 if (!flush_cb_db) {
920 if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
921 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
922 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
923 /* Only count explicit shader flushes, not implicit ones
924 * done by SURFACE_SYNC.
925 */
926 sctx->num_vs_flushes++;
927 sctx->num_ps_flushes++;
928 } else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
929 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
930 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
931 sctx->num_vs_flushes++;
932 }
933 }
934
935 if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH &&
936 sctx->compute_is_busy) {
937 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
938 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
939 sctx->num_cs_flushes++;
940 sctx->compute_is_busy = false;
941 }
942
943 /* VGT state synchronization. */
944 if (flags & SI_CONTEXT_VGT_FLUSH) {
945 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
946 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
947 }
948 if (flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
949 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
950 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
951 }
952
953 /* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
954 * wait for idle on GFX9. We have to use a TS event.
955 */
956 if (sctx->chip_class >= GFX9 && flush_cb_db) {
957 uint64_t va;
958 unsigned tc_flags, cb_db_event;
959
960 /* Set the CB/DB flush event. */
961 switch (flush_cb_db) {
962 case SI_CONTEXT_FLUSH_AND_INV_CB:
963 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
964 break;
965 case SI_CONTEXT_FLUSH_AND_INV_DB:
966 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
967 break;
968 default:
969 /* both CB & DB */
970 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
971 }
972
973 /* These are the only allowed combinations. If you need to
974 * do multiple operations at once, do them separately.
975 * All operations that invalidate L2 also seem to invalidate
976 * metadata. Volatile (VOL) and WC flushes are not listed here.
977 *
978 * TC | TC_WB = writeback & invalidate L2 & L1
979 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
980 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
981 * TC | TC_NC = invalidate L2 for MTYPE == NC
982 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
983 * TCL1 = invalidate L1
984 */
985 tc_flags = 0;
986
987 if (flags & SI_CONTEXT_INV_L2_METADATA) {
988 tc_flags = EVENT_TC_ACTION_ENA |
989 EVENT_TC_MD_ACTION_ENA;
990 }
991
992 /* Ideally flush TC together with CB/DB. */
993 if (flags & SI_CONTEXT_INV_GLOBAL_L2) {
994 /* Writeback and invalidate everything in L2 & L1. */
995 tc_flags = EVENT_TC_ACTION_ENA |
996 EVENT_TC_WB_ACTION_ENA;
997
998 /* Clear the flags. */
999 flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 |
1000 SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
1001 SI_CONTEXT_INV_VMEM_L1);
1002 sctx->num_L2_invalidates++;
1003 }
1004
1005 /* Do the flush (enqueue the event and wait for it). */
1006 va = sctx->wait_mem_scratch->gpu_address;
1007 sctx->wait_mem_number++;
1008
1009 si_gfx_write_event_eop(sctx, cb_db_event, tc_flags,
1010 EOP_DATA_SEL_VALUE_32BIT,
1011 sctx->wait_mem_scratch, va,
1012 sctx->wait_mem_number, SI_NOT_QUERY);
1013 si_gfx_wait_fence(sctx, va, sctx->wait_mem_number, 0xffffffff);
1014 }
1015
1016 /* Make sure ME is idle (it executes most packets) before continuing.
1017 * This prevents read-after-write hazards between PFP and ME.
1018 */
1019 if (cp_coher_cntl ||
1020 (flags & (SI_CONTEXT_CS_PARTIAL_FLUSH |
1021 SI_CONTEXT_INV_VMEM_L1 |
1022 SI_CONTEXT_INV_GLOBAL_L2 |
1023 SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1024 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1025 radeon_emit(cs, 0);
1026 }
1027
1028 /* SI-CI-VI only:
1029 * When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
1030 * waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
1031 *
1032 * cp_coher_cntl should contain all necessary flags except TC flags
1033 * at this point.
1034 *
1035 * SI-CIK don't support L2 write-back.
1036 */
1037 if (flags & SI_CONTEXT_INV_GLOBAL_L2 ||
1038 (sctx->chip_class <= CIK &&
1039 (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1040 /* Invalidate L1 & L2. (L1 is always invalidated on SI)
1041 * WB must be set on VI+ when TC_ACTION is set.
1042 */
1043 si_emit_surface_sync(sctx, cp_coher_cntl |
1044 S_0085F0_TC_ACTION_ENA(1) |
1045 S_0085F0_TCL1_ACTION_ENA(1) |
1046 S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= VI));
1047 cp_coher_cntl = 0;
1048 sctx->num_L2_invalidates++;
1049 } else {
1050 /* L1 invalidation and L2 writeback must be done separately,
1051 * because both operations can't be done together.
1052 */
1053 if (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) {
1054 /* WB = write-back
1055 * NC = apply to non-coherent MTYPEs
1056 * (i.e. MTYPE <= 1, which is what we use everywhere)
1057 *
1058 * WB doesn't work without NC.
1059 */
1060 si_emit_surface_sync(sctx, cp_coher_cntl |
1061 S_0301F0_TC_WB_ACTION_ENA(1) |
1062 S_0301F0_TC_NC_ACTION_ENA(1));
1063 cp_coher_cntl = 0;
1064 sctx->num_L2_writebacks++;
1065 }
1066 if (flags & SI_CONTEXT_INV_VMEM_L1) {
1067 /* Invalidate per-CU VMEM L1. */
1068 si_emit_surface_sync(sctx, cp_coher_cntl |
1069 S_0085F0_TCL1_ACTION_ENA(1));
1070 cp_coher_cntl = 0;
1071 }
1072 }
1073
1074 /* If TC flushes haven't cleared this... */
1075 if (cp_coher_cntl)
1076 si_emit_surface_sync(sctx, cp_coher_cntl);
1077
1078 if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
1079 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1080 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1081 EVENT_INDEX(0));
1082 } else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
1083 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1084 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1085 EVENT_INDEX(0));
1086 }
1087
1088 sctx->flags = 0;
1089 }
1090
1091 static void si_get_draw_start_count(struct si_context *sctx,
1092 const struct pipe_draw_info *info,
1093 unsigned *start, unsigned *count)
1094 {
1095 struct pipe_draw_indirect_info *indirect = info->indirect;
1096
1097 if (indirect) {
1098 unsigned indirect_count;
1099 struct pipe_transfer *transfer;
1100 unsigned begin, end;
1101 unsigned map_size;
1102 unsigned *data;
1103
1104 if (indirect->indirect_draw_count) {
1105 data = pipe_buffer_map_range(&sctx->b,
1106 indirect->indirect_draw_count,
1107 indirect->indirect_draw_count_offset,
1108 sizeof(unsigned),
1109 PIPE_TRANSFER_READ, &transfer);
1110
1111 indirect_count = *data;
1112
1113 pipe_buffer_unmap(&sctx->b, transfer);
1114 } else {
1115 indirect_count = indirect->draw_count;
1116 }
1117
1118 if (!indirect_count) {
1119 *start = *count = 0;
1120 return;
1121 }
1122
1123 map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
1124 data = pipe_buffer_map_range(&sctx->b, indirect->buffer,
1125 indirect->offset, map_size,
1126 PIPE_TRANSFER_READ, &transfer);
1127
1128 begin = UINT_MAX;
1129 end = 0;
1130
1131 for (unsigned i = 0; i < indirect_count; ++i) {
1132 unsigned count = data[0];
1133 unsigned start = data[2];
1134
1135 if (count > 0) {
1136 begin = MIN2(begin, start);
1137 end = MAX2(end, start + count);
1138 }
1139
1140 data += indirect->stride / sizeof(unsigned);
1141 }
1142
1143 pipe_buffer_unmap(&sctx->b, transfer);
1144
1145 if (begin < end) {
1146 *start = begin;
1147 *count = end - begin;
1148 } else {
1149 *start = *count = 0;
1150 }
1151 } else {
1152 *start = info->start;
1153 *count = info->count;
1154 }
1155 }
1156
1157 static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
1158 unsigned skip_atom_mask)
1159 {
1160 unsigned num_patches = 0;
1161 bool context_roll = false; /* set correctly for GFX9 only */
1162
1163 context_roll |= si_emit_rasterizer_prim_state(sctx);
1164 if (sctx->tes_shader.cso)
1165 context_roll |= si_emit_derived_tess_state(sctx, info, &num_patches);
1166 if (info->count_from_stream_output)
1167 context_roll = true;
1168
1169 /* Vega10/Raven scissor bug workaround. When any context register is
1170 * written (i.e. the GPU rolls the context), PA_SC_VPORT_SCISSOR
1171 * registers must be written too.
1172 */
1173 if ((sctx->family == CHIP_VEGA10 || sctx->family == CHIP_RAVEN) &&
1174 (context_roll ||
1175 sctx->dirty_atoms & si_atoms_that_roll_context() ||
1176 sctx->dirty_states & si_states_that_roll_context() ||
1177 si_prim_restart_index_changed(sctx, info))) {
1178 sctx->scissors.dirty_mask = (1 << SI_MAX_VIEWPORTS) - 1;
1179 si_mark_atom_dirty(sctx, &sctx->atoms.s.scissors);
1180 }
1181
1182 /* Emit state atoms. */
1183 unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
1184 while (mask)
1185 sctx->atoms.array[u_bit_scan(&mask)].emit(sctx);
1186
1187 sctx->dirty_atoms &= skip_atom_mask;
1188
1189 /* Emit states. */
1190 mask = sctx->dirty_states;
1191 while (mask) {
1192 unsigned i = u_bit_scan(&mask);
1193 struct si_pm4_state *state = sctx->queued.array[i];
1194
1195 if (!state || sctx->emitted.array[i] == state)
1196 continue;
1197
1198 si_pm4_emit(sctx, state);
1199 sctx->emitted.array[i] = state;
1200 }
1201 sctx->dirty_states = 0;
1202
1203 /* Emit draw states. */
1204 si_emit_vs_state(sctx, info);
1205 si_emit_draw_registers(sctx, info, num_patches);
1206 }
1207
1208 void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
1209 {
1210 struct si_context *sctx = (struct si_context *)ctx;
1211 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1212 struct pipe_resource *indexbuf = info->index.resource;
1213 unsigned dirty_tex_counter;
1214 enum pipe_prim_type rast_prim;
1215 unsigned index_size = info->index_size;
1216 unsigned index_offset = info->indirect ? info->start * index_size : 0;
1217
1218 if (likely(!info->indirect)) {
1219 /* SI-CI treat instance_count==0 as instance_count==1. There is
1220 * no workaround for indirect draws, but we can at least skip
1221 * direct draws.
1222 */
1223 if (unlikely(!info->instance_count))
1224 return;
1225
1226 /* Handle count == 0. */
1227 if (unlikely(!info->count &&
1228 (index_size || !info->count_from_stream_output)))
1229 return;
1230 }
1231
1232 if (unlikely(!sctx->vs_shader.cso ||
1233 !rs ||
1234 (!sctx->ps_shader.cso && !rs->rasterizer_discard) ||
1235 (!!sctx->tes_shader.cso != (info->mode == PIPE_PRIM_PATCHES)))) {
1236 assert(0);
1237 return;
1238 }
1239
1240 /* Recompute and re-emit the texture resource states if needed. */
1241 dirty_tex_counter = p_atomic_read(&sctx->screen->dirty_tex_counter);
1242 if (unlikely(dirty_tex_counter != sctx->last_dirty_tex_counter)) {
1243 sctx->last_dirty_tex_counter = dirty_tex_counter;
1244 sctx->framebuffer.dirty_cbufs |=
1245 ((1 << sctx->framebuffer.state.nr_cbufs) - 1);
1246 sctx->framebuffer.dirty_zsbuf = true;
1247 si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
1248 si_update_all_texture_descriptors(sctx);
1249 }
1250
1251 si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
1252
1253 /* Set the rasterization primitive type.
1254 *
1255 * This must be done after si_decompress_textures, which can call
1256 * draw_vbo recursively, and before si_update_shaders, which uses
1257 * current_rast_prim for this draw_vbo call. */
1258 if (sctx->gs_shader.cso)
1259 rast_prim = sctx->gs_shader.cso->gs_output_prim;
1260 else if (sctx->tes_shader.cso) {
1261 if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1262 rast_prim = PIPE_PRIM_POINTS;
1263 else
1264 rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1265 } else
1266 rast_prim = info->mode;
1267
1268 if (rast_prim != sctx->current_rast_prim) {
1269 if (util_prim_is_points_or_lines(sctx->current_rast_prim) !=
1270 util_prim_is_points_or_lines(rast_prim))
1271 si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
1272
1273 sctx->current_rast_prim = rast_prim;
1274 sctx->do_update_shaders = true;
1275 }
1276
1277 if (sctx->tes_shader.cso &&
1278 sctx->screen->has_ls_vgpr_init_bug) {
1279 /* Determine whether the LS VGPR fix should be applied.
1280 *
1281 * It is only required when num input CPs > num output CPs,
1282 * which cannot happen with the fixed function TCS. We should
1283 * also update this bit when switching from TCS to fixed
1284 * function TCS.
1285 */
1286 struct si_shader_selector *tcs = sctx->tcs_shader.cso;
1287 bool ls_vgpr_fix =
1288 tcs &&
1289 info->vertices_per_patch >
1290 tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
1291
1292 if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
1293 sctx->ls_vgpr_fix = ls_vgpr_fix;
1294 sctx->do_update_shaders = true;
1295 }
1296 }
1297
1298 if (sctx->gs_shader.cso) {
1299 /* Determine whether the GS triangle strip adjacency fix should
1300 * be applied. Rotate every other triangle if
1301 * - triangle strips with adjacency are fed to the GS and
1302 * - primitive restart is disabled (the rotation doesn't help
1303 * when the restart occurs after an odd number of triangles).
1304 */
1305 bool gs_tri_strip_adj_fix =
1306 !sctx->tes_shader.cso &&
1307 info->mode == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY &&
1308 !info->primitive_restart;
1309
1310 if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
1311 sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
1312 sctx->do_update_shaders = true;
1313 }
1314 }
1315
1316 if (sctx->do_update_shaders && !si_update_shaders(sctx))
1317 return;
1318
1319 if (index_size) {
1320 /* Translate or upload, if needed. */
1321 /* 8-bit indices are supported on VI. */
1322 if (sctx->chip_class <= CIK && index_size == 1) {
1323 unsigned start, count, start_offset, size, offset;
1324 void *ptr;
1325
1326 si_get_draw_start_count(sctx, info, &start, &count);
1327 start_offset = start * 2;
1328 size = count * 2;
1329
1330 indexbuf = NULL;
1331 u_upload_alloc(ctx->stream_uploader, start_offset,
1332 size,
1333 si_optimal_tcc_alignment(sctx, size),
1334 &offset, &indexbuf, &ptr);
1335 if (!indexbuf)
1336 return;
1337
1338 util_shorten_ubyte_elts_to_userptr(&sctx->b, info, 0, 0,
1339 index_offset + start,
1340 count, ptr);
1341
1342 /* info->start will be added by the drawing code */
1343 index_offset = offset - start_offset;
1344 index_size = 2;
1345 } else if (info->has_user_indices) {
1346 unsigned start_offset;
1347
1348 assert(!info->indirect);
1349 start_offset = info->start * index_size;
1350
1351 indexbuf = NULL;
1352 u_upload_data(ctx->stream_uploader, start_offset,
1353 info->count * index_size,
1354 sctx->screen->info.tcc_cache_line_size,
1355 (char*)info->index.user + start_offset,
1356 &index_offset, &indexbuf);
1357 if (!indexbuf)
1358 return;
1359
1360 /* info->start will be added by the drawing code */
1361 index_offset -= start_offset;
1362 } else if (sctx->chip_class <= CIK &&
1363 r600_resource(indexbuf)->TC_L2_dirty) {
1364 /* VI reads index buffers through TC L2, so it doesn't
1365 * need this. */
1366 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1367 r600_resource(indexbuf)->TC_L2_dirty = false;
1368 }
1369 }
1370
1371 if (info->indirect) {
1372 struct pipe_draw_indirect_info *indirect = info->indirect;
1373
1374 /* Add the buffer size for memory checking in need_cs_space. */
1375 si_context_add_resource_size(sctx, indirect->buffer);
1376
1377 /* Indirect buffers use TC L2 on GFX9, but not older hw. */
1378 if (sctx->chip_class <= VI) {
1379 if (r600_resource(indirect->buffer)->TC_L2_dirty) {
1380 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1381 r600_resource(indirect->buffer)->TC_L2_dirty = false;
1382 }
1383
1384 if (indirect->indirect_draw_count &&
1385 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
1386 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1387 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
1388 }
1389 }
1390 }
1391
1392 si_need_gfx_cs_space(sctx);
1393
1394 /* Since we've called si_context_add_resource_size for vertex buffers,
1395 * this must be called after si_need_cs_space, because we must let
1396 * need_cs_space flush before we add buffers to the buffer list.
1397 */
1398 if (!si_upload_vertex_buffer_descriptors(sctx))
1399 return;
1400
1401 /* Use optimal packet order based on whether we need to sync the pipeline. */
1402 if (unlikely(sctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
1403 SI_CONTEXT_FLUSH_AND_INV_DB |
1404 SI_CONTEXT_PS_PARTIAL_FLUSH |
1405 SI_CONTEXT_CS_PARTIAL_FLUSH))) {
1406 /* If we have to wait for idle, set all states first, so that all
1407 * SET packets are processed in parallel with previous draw calls.
1408 * Then draw and prefetch at the end. This ensures that the time
1409 * the CUs are idle is very short.
1410 */
1411 unsigned masked_atoms = 0;
1412
1413 if (unlikely(sctx->flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
1414 masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
1415
1416 if (!si_upload_graphics_shader_descriptors(sctx))
1417 return;
1418
1419 /* Emit all states except possibly render condition. */
1420 si_emit_all_states(sctx, info, masked_atoms);
1421 si_emit_cache_flush(sctx);
1422 /* <-- CUs are idle here. */
1423
1424 if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond))
1425 sctx->atoms.s.render_cond.emit(sctx);
1426 sctx->dirty_atoms = 0;
1427
1428 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1429 /* <-- CUs are busy here. */
1430
1431 /* Start prefetches after the draw has been started. Both will run
1432 * in parallel, but starting the draw first is more important.
1433 */
1434 if (sctx->chip_class >= CIK && sctx->prefetch_L2_mask)
1435 cik_emit_prefetch_L2(sctx, false);
1436 } else {
1437 /* If we don't wait for idle, start prefetches first, then set
1438 * states, and draw at the end.
1439 */
1440 if (sctx->flags)
1441 si_emit_cache_flush(sctx);
1442
1443 /* Only prefetch the API VS and VBO descriptors. */
1444 if (sctx->chip_class >= CIK && sctx->prefetch_L2_mask)
1445 cik_emit_prefetch_L2(sctx, true);
1446
1447 if (!si_upload_graphics_shader_descriptors(sctx))
1448 return;
1449
1450 si_emit_all_states(sctx, info, 0);
1451 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1452
1453 /* Prefetch the remaining shaders after the draw has been
1454 * started. */
1455 if (sctx->chip_class >= CIK && sctx->prefetch_L2_mask)
1456 cik_emit_prefetch_L2(sctx, false);
1457 }
1458
1459 if (unlikely(sctx->current_saved_cs)) {
1460 si_trace_emit(sctx);
1461 si_log_draw_state(sctx, sctx->log);
1462 }
1463
1464 /* Workaround for a VGT hang when streamout is enabled.
1465 * It must be done after drawing. */
1466 if ((sctx->family == CHIP_HAWAII ||
1467 sctx->family == CHIP_TONGA ||
1468 sctx->family == CHIP_FIJI) &&
1469 si_get_strmout_en(sctx)) {
1470 sctx->flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
1471 }
1472
1473 if (unlikely(sctx->decompression_enabled)) {
1474 sctx->num_decompress_calls++;
1475 } else {
1476 sctx->num_draw_calls++;
1477 if (sctx->framebuffer.state.nr_cbufs > 1)
1478 sctx->num_mrt_draw_calls++;
1479 if (info->primitive_restart)
1480 sctx->num_prim_restart_calls++;
1481 if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
1482 sctx->num_spill_draw_calls++;
1483 }
1484 if (index_size && indexbuf != info->index.resource)
1485 pipe_resource_reference(&indexbuf, NULL);
1486 }
1487
1488 void si_draw_rectangle(struct blitter_context *blitter,
1489 void *vertex_elements_cso,
1490 blitter_get_vs_func get_vs,
1491 int x1, int y1, int x2, int y2,
1492 float depth, unsigned num_instances,
1493 enum blitter_attrib_type type,
1494 const union blitter_attrib *attrib)
1495 {
1496 struct pipe_context *pipe = util_blitter_get_pipe(blitter);
1497 struct si_context *sctx = (struct si_context*)pipe;
1498
1499 /* Pack position coordinates as signed int16. */
1500 sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) |
1501 ((uint32_t)(y1 & 0xffff) << 16);
1502 sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) |
1503 ((uint32_t)(y2 & 0xffff) << 16);
1504 sctx->vs_blit_sh_data[2] = fui(depth);
1505
1506 switch (type) {
1507 case UTIL_BLITTER_ATTRIB_COLOR:
1508 memcpy(&sctx->vs_blit_sh_data[3], attrib->color,
1509 sizeof(float)*4);
1510 break;
1511 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
1512 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
1513 memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord,
1514 sizeof(attrib->texcoord));
1515 break;
1516 case UTIL_BLITTER_ATTRIB_NONE:;
1517 }
1518
1519 pipe->bind_vs_state(pipe, si_get_blit_vs(sctx, type, num_instances));
1520
1521 struct pipe_draw_info info = {};
1522 info.mode = SI_PRIM_RECTANGLE_LIST;
1523 info.count = 3;
1524 info.instance_count = num_instances;
1525
1526 /* Don't set per-stage shader pointers for VS. */
1527 sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
1528 sctx->vertex_buffer_pointer_dirty = false;
1529
1530 si_draw_vbo(pipe, &info);
1531 }
1532
1533 void si_trace_emit(struct si_context *sctx)
1534 {
1535 struct radeon_winsys_cs *cs = sctx->gfx_cs;
1536 uint64_t va = sctx->current_saved_cs->trace_buf->gpu_address;
1537 uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
1538
1539 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
1540 radeon_emit(cs, S_370_DST_SEL(V_370_MEMORY_SYNC) |
1541 S_370_WR_CONFIRM(1) |
1542 S_370_ENGINE_SEL(V_370_ME));
1543 radeon_emit(cs, va);
1544 radeon_emit(cs, va >> 32);
1545 radeon_emit(cs, trace_id);
1546 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
1547 radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
1548
1549 if (sctx->log)
1550 u_log_flush(sctx->log);
1551 }