radeonsi: generalize the SI_VS_SHADER_POINTER_MASK macro
[mesa.git] / src / gallium / drivers / radeonsi / si_state_draw.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 */
26
27 #include "si_pipe.h"
28 #include "radeon/r600_cs.h"
29 #include "sid.h"
30 #include "gfx9d.h"
31
32 #include "util/u_index_modify.h"
33 #include "util/u_log.h"
34 #include "util/u_upload_mgr.h"
35 #include "util/u_prim.h"
36
37 #include "ac_debug.h"
38
39 static unsigned si_conv_pipe_prim(unsigned mode)
40 {
41 static const unsigned prim_conv[] = {
42 [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
43 [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
44 [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
45 [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
46 [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
47 [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
48 [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
49 [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
50 [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
51 [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
52 [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
53 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
54 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
55 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
56 [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
57 [R600_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST
58 };
59 assert(mode < ARRAY_SIZE(prim_conv));
60 return prim_conv[mode];
61 }
62
63 static unsigned si_conv_prim_to_gs_out(unsigned mode)
64 {
65 static const int prim_conv[] = {
66 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
67 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
68 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
69 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
70 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
71 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
72 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
73 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
74 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
75 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
76 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
77 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
78 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
79 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
80 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
81 [R600_PRIM_RECTANGLE_LIST] = V_028A6C_OUTPRIM_TYPE_TRISTRIP
82 };
83 assert(mode < ARRAY_SIZE(prim_conv));
84
85 return prim_conv[mode];
86 }
87
88 /**
89 * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
90 * LS.LDS_SIZE is shared by all 3 shader stages.
91 *
92 * The information about LDS and other non-compile-time parameters is then
93 * written to userdata SGPRs.
94 */
95 static void si_emit_derived_tess_state(struct si_context *sctx,
96 const struct pipe_draw_info *info,
97 unsigned *num_patches)
98 {
99 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
100 struct si_shader *ls_current;
101 struct si_shader_selector *ls;
102 /* The TES pointer will only be used for sctx->last_tcs.
103 * It would be wrong to think that TCS = TES. */
104 struct si_shader_selector *tcs =
105 sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
106 unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
107 bool has_primid_instancing_bug = sctx->b.chip_class == SI &&
108 sctx->b.screen->info.max_se == 1;
109 unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
110 unsigned num_tcs_input_cp = info->vertices_per_patch;
111 unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
112 unsigned num_tcs_patch_outputs;
113 unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
114 unsigned input_patch_size, output_patch_size, output_patch0_offset;
115 unsigned perpatch_output_offset, lds_size;
116 unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
117 unsigned offchip_layout, hardware_lds_size, ls_hs_config;
118
119 /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
120 if (sctx->b.chip_class >= GFX9) {
121 if (sctx->tcs_shader.cso)
122 ls_current = sctx->tcs_shader.current;
123 else
124 ls_current = sctx->fixed_func_tcs_shader.current;
125
126 ls = ls_current->key.part.tcs.ls;
127 } else {
128 ls_current = sctx->vs_shader.current;
129 ls = sctx->vs_shader.cso;
130 }
131
132 if (sctx->last_ls == ls_current &&
133 sctx->last_tcs == tcs &&
134 sctx->last_tes_sh_base == tes_sh_base &&
135 sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
136 (!has_primid_instancing_bug ||
137 (sctx->last_tess_uses_primid == tess_uses_primid))) {
138 *num_patches = sctx->last_num_patches;
139 return;
140 }
141
142 sctx->last_ls = ls_current;
143 sctx->last_tcs = tcs;
144 sctx->last_tes_sh_base = tes_sh_base;
145 sctx->last_num_tcs_input_cp = num_tcs_input_cp;
146 sctx->last_tess_uses_primid = tess_uses_primid;
147
148 /* This calculates how shader inputs and outputs among VS, TCS, and TES
149 * are laid out in LDS. */
150 num_tcs_inputs = util_last_bit64(ls->outputs_written);
151
152 if (sctx->tcs_shader.cso) {
153 num_tcs_outputs = util_last_bit64(tcs->outputs_written);
154 num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
155 num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
156 } else {
157 /* No TCS. Route varyings from LS to TES. */
158 num_tcs_outputs = num_tcs_inputs;
159 num_tcs_output_cp = num_tcs_input_cp;
160 num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
161 }
162
163 input_vertex_size = num_tcs_inputs * 16;
164 output_vertex_size = num_tcs_outputs * 16;
165
166 input_patch_size = num_tcs_input_cp * input_vertex_size;
167
168 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
169 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
170
171 /* Ensure that we only need one wave per SIMD so we don't need to check
172 * resource usage. Also ensures that the number of tcs in and out
173 * vertices per threadgroup are at most 256.
174 */
175 *num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
176
177 /* Make sure that the data fits in LDS. This assumes the shaders only
178 * use LDS for the inputs and outputs.
179 *
180 * While CIK can use 64K per threadgroup, there is a hang on Stoney
181 * with 2 CUs if we use more than 32K. The closed Vulkan driver also
182 * uses 32K at most on all GCN chips.
183 */
184 hardware_lds_size = 32768;
185 *num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size +
186 output_patch_size));
187
188 /* Make sure the output data fits in the offchip buffer */
189 *num_patches = MIN2(*num_patches,
190 (sctx->screen->tess_offchip_block_dw_size * 4) /
191 output_patch_size);
192
193 /* Not necessary for correctness, but improves performance. The
194 * specific value is taken from the proprietary driver.
195 */
196 *num_patches = MIN2(*num_patches, 40);
197
198 if (sctx->b.chip_class == SI) {
199 /* SI bug workaround, related to power management. Limit LS-HS
200 * threadgroups to only one wave.
201 */
202 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
203 *num_patches = MIN2(*num_patches, one_wave);
204 }
205
206 /* The VGT HS block increments the patch ID unconditionally
207 * within a single threadgroup. This results in incorrect
208 * patch IDs when instanced draws are used.
209 *
210 * The intended solution is to restrict threadgroups to
211 * a single instance by setting SWITCH_ON_EOI, which
212 * should cause IA to split instances up. However, this
213 * doesn't work correctly on SI when there is no other
214 * SE to switch to.
215 */
216 if (has_primid_instancing_bug && tess_uses_primid)
217 *num_patches = 1;
218
219 sctx->last_num_patches = *num_patches;
220
221 output_patch0_offset = input_patch_size * *num_patches;
222 perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
223
224 /* Compute userdata SGPRs. */
225 assert(((input_vertex_size / 4) & ~0xff) == 0);
226 assert(((output_vertex_size / 4) & ~0xff) == 0);
227 assert(((input_patch_size / 4) & ~0x1fff) == 0);
228 assert(((output_patch_size / 4) & ~0x1fff) == 0);
229 assert(((output_patch0_offset / 16) & ~0xffff) == 0);
230 assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
231 assert(num_tcs_input_cp <= 32);
232 assert(num_tcs_output_cp <= 32);
233
234 tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
235 S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
236 tcs_out_layout = output_patch_size / 4;
237 tcs_out_offsets = (output_patch0_offset / 16) |
238 ((perpatch_output_offset / 16) << 16);
239 offchip_layout = *num_patches |
240 (num_tcs_output_cp << 6) |
241 (pervertex_output_patch_size * *num_patches << 12);
242
243 /* Compute the LDS size. */
244 lds_size = output_patch0_offset + output_patch_size * *num_patches;
245
246 if (sctx->b.chip_class >= CIK) {
247 assert(lds_size <= 65536);
248 lds_size = align(lds_size, 512) / 512;
249 } else {
250 assert(lds_size <= 32768);
251 lds_size = align(lds_size, 256) / 256;
252 }
253
254 /* Set SI_SGPR_VS_STATE_BITS. */
255 sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE &
256 C_VS_STATE_LS_OUT_VERTEX_SIZE;
257 sctx->current_vs_state |= tcs_in_layout;
258
259 if (sctx->b.chip_class >= GFX9) {
260 unsigned hs_rsrc2 = ls_current->config.rsrc2 |
261 S_00B42C_LDS_SIZE(lds_size);
262
263 radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
264
265 /* Set userdata SGPRs for merged LS-HS. */
266 radeon_set_sh_reg_seq(cs,
267 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
268 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
269 radeon_emit(cs, offchip_layout);
270 radeon_emit(cs, tcs_out_offsets);
271 radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26));
272 } else {
273 unsigned ls_rsrc2 = ls_current->config.rsrc2;
274
275 si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
276 ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
277
278 /* Due to a hw bug, RSRC2_LS must be written twice with another
279 * LS register written in between. */
280 if (sctx->b.chip_class == CIK && sctx->b.family != CHIP_HAWAII)
281 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
282 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
283 radeon_emit(cs, ls_current->config.rsrc1);
284 radeon_emit(cs, ls_rsrc2);
285
286 /* Set userdata SGPRs for TCS. */
287 radeon_set_sh_reg_seq(cs,
288 R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
289 radeon_emit(cs, offchip_layout);
290 radeon_emit(cs, tcs_out_offsets);
291 radeon_emit(cs, tcs_out_layout | (num_tcs_input_cp << 26));
292 radeon_emit(cs, tcs_in_layout);
293 }
294
295 /* Set userdata SGPRs for TES. */
296 radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
297 radeon_emit(cs, offchip_layout);
298 radeon_emit(cs, r600_resource(sctx->tess_offchip_ring)->gpu_address >> 16);
299
300 ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) |
301 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
302 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
303
304 if (sctx->b.chip_class >= CIK)
305 radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2,
306 ls_hs_config);
307 else
308 radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG,
309 ls_hs_config);
310 }
311
312 static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info)
313 {
314 switch (info->mode) {
315 case PIPE_PRIM_PATCHES:
316 return info->count / info->vertices_per_patch;
317 case R600_PRIM_RECTANGLE_LIST:
318 return info->count / 3;
319 default:
320 return u_prims_for_vertices(info->mode, info->count);
321 }
322 }
323
324 static unsigned
325 si_get_init_multi_vgt_param(struct si_screen *sscreen,
326 union si_vgt_param_key *key)
327 {
328 STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
329 unsigned max_primgroup_in_wave = 2;
330
331 /* SWITCH_ON_EOP(0) is always preferable. */
332 bool wd_switch_on_eop = false;
333 bool ia_switch_on_eop = false;
334 bool ia_switch_on_eoi = false;
335 bool partial_vs_wave = false;
336 bool partial_es_wave = false;
337
338 if (key->u.uses_tess) {
339 /* SWITCH_ON_EOI must be set if PrimID is used. */
340 if (key->u.tess_uses_prim_id)
341 ia_switch_on_eoi = true;
342
343 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
344 if ((sscreen->b.family == CHIP_TAHITI ||
345 sscreen->b.family == CHIP_PITCAIRN ||
346 sscreen->b.family == CHIP_BONAIRE) &&
347 key->u.uses_gs)
348 partial_vs_wave = true;
349
350 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
351 if (sscreen->has_distributed_tess) {
352 if (key->u.uses_gs) {
353 if (sscreen->b.chip_class <= VI)
354 partial_es_wave = true;
355
356 /* GPU hang workaround. */
357 if (sscreen->b.family == CHIP_TONGA ||
358 sscreen->b.family == CHIP_FIJI ||
359 sscreen->b.family == CHIP_POLARIS10 ||
360 sscreen->b.family == CHIP_POLARIS11 ||
361 sscreen->b.family == CHIP_POLARIS12)
362 partial_vs_wave = true;
363 } else {
364 partial_vs_wave = true;
365 }
366 }
367 }
368
369 /* This is a hardware requirement. */
370 if (key->u.line_stipple_enabled ||
371 (sscreen->b.debug_flags & DBG(SWITCH_ON_EOP))) {
372 ia_switch_on_eop = true;
373 wd_switch_on_eop = true;
374 }
375
376 if (sscreen->b.chip_class >= CIK) {
377 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
378 * 4 shader engines. Set 1 to pass the assertion below.
379 * The other cases are hardware requirements.
380 *
381 * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
382 * for points, line strips, and tri strips.
383 */
384 if (sscreen->b.info.max_se < 4 ||
385 key->u.prim == PIPE_PRIM_POLYGON ||
386 key->u.prim == PIPE_PRIM_LINE_LOOP ||
387 key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
388 key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
389 (key->u.primitive_restart &&
390 (sscreen->b.family < CHIP_POLARIS10 ||
391 (key->u.prim != PIPE_PRIM_POINTS &&
392 key->u.prim != PIPE_PRIM_LINE_STRIP &&
393 key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
394 key->u.count_from_stream_output)
395 wd_switch_on_eop = true;
396
397 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
398 * We don't know that for indirect drawing, so treat it as
399 * always problematic. */
400 if (sscreen->b.family == CHIP_HAWAII &&
401 key->u.uses_instancing)
402 wd_switch_on_eop = true;
403
404 /* Performance recommendation for 4 SE Gfx7-8 parts if
405 * instances are smaller than a primgroup.
406 * Assume indirect draws always use small instances.
407 * This is needed for good VS wave utilization.
408 */
409 if (sscreen->b.chip_class <= VI &&
410 sscreen->b.info.max_se == 4 &&
411 key->u.multi_instances_smaller_than_primgroup)
412 wd_switch_on_eop = true;
413
414 /* Required on CIK and later. */
415 if (sscreen->b.info.max_se > 2 && !wd_switch_on_eop)
416 ia_switch_on_eoi = true;
417
418 /* Required by Hawaii and, for some special cases, by VI. */
419 if (ia_switch_on_eoi &&
420 (sscreen->b.family == CHIP_HAWAII ||
421 (sscreen->b.chip_class == VI &&
422 (key->u.uses_gs || max_primgroup_in_wave != 2))))
423 partial_vs_wave = true;
424
425 /* Instancing bug on Bonaire. */
426 if (sscreen->b.family == CHIP_BONAIRE && ia_switch_on_eoi &&
427 key->u.uses_instancing)
428 partial_vs_wave = true;
429
430 /* If the WD switch is false, the IA switch must be false too. */
431 assert(wd_switch_on_eop || !ia_switch_on_eop);
432 }
433
434 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
435 if (sscreen->b.chip_class <= VI && ia_switch_on_eoi)
436 partial_es_wave = true;
437
438 return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
439 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
440 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
441 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
442 S_028AA8_WD_SWITCH_ON_EOP(sscreen->b.chip_class >= CIK ? wd_switch_on_eop : 0) |
443 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
444 S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->b.chip_class == VI ?
445 max_primgroup_in_wave : 0) |
446 S_030960_EN_INST_OPT_BASIC(sscreen->b.chip_class >= GFX9) |
447 S_030960_EN_INST_OPT_ADV(sscreen->b.chip_class >= GFX9);
448 }
449
450 void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
451 {
452 for (int prim = 0; prim <= R600_PRIM_RECTANGLE_LIST; prim++)
453 for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
454 for (int multi_instances = 0; multi_instances < 2; multi_instances++)
455 for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
456 for (int count_from_so = 0; count_from_so < 2; count_from_so++)
457 for (int line_stipple = 0; line_stipple < 2; line_stipple++)
458 for (int uses_tess = 0; uses_tess < 2; uses_tess++)
459 for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
460 for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
461 union si_vgt_param_key key;
462
463 key.index = 0;
464 key.u.prim = prim;
465 key.u.uses_instancing = uses_instancing;
466 key.u.multi_instances_smaller_than_primgroup = multi_instances;
467 key.u.primitive_restart = primitive_restart;
468 key.u.count_from_stream_output = count_from_so;
469 key.u.line_stipple_enabled = line_stipple;
470 key.u.uses_tess = uses_tess;
471 key.u.tess_uses_prim_id = tess_uses_primid;
472 key.u.uses_gs = uses_gs;
473
474 sctx->ia_multi_vgt_param[key.index] =
475 si_get_init_multi_vgt_param(sctx->screen, &key);
476 }
477 }
478
479 static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
480 const struct pipe_draw_info *info,
481 unsigned num_patches)
482 {
483 union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
484 unsigned primgroup_size;
485 unsigned ia_multi_vgt_param;
486
487 if (sctx->tes_shader.cso) {
488 primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
489 } else if (sctx->gs_shader.cso) {
490 primgroup_size = 64; /* recommended with a GS */
491 } else {
492 primgroup_size = 128; /* recommended without a GS and tess */
493 }
494
495 key.u.prim = info->mode;
496 key.u.uses_instancing = info->indirect || info->instance_count > 1;
497 key.u.multi_instances_smaller_than_primgroup =
498 info->indirect ||
499 (info->instance_count > 1 &&
500 (info->count_from_stream_output ||
501 si_num_prims_for_vertices(info) < primgroup_size));
502 key.u.primitive_restart = info->primitive_restart;
503 key.u.count_from_stream_output = info->count_from_stream_output != NULL;
504
505 ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] |
506 S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
507
508 if (sctx->gs_shader.cso) {
509 /* GS requirement. */
510 if (sctx->b.chip_class <= VI &&
511 SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
512 ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
513
514 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
515 * The hw doc says all multi-SE chips are affected, but Vulkan
516 * only applies it to Hawaii. Do what Vulkan does.
517 */
518 if (sctx->b.family == CHIP_HAWAII &&
519 G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
520 (info->indirect ||
521 (info->instance_count > 1 &&
522 (info->count_from_stream_output ||
523 si_num_prims_for_vertices(info) <= 1))))
524 sctx->b.flags |= SI_CONTEXT_VGT_FLUSH;
525 }
526
527 return ia_multi_vgt_param;
528 }
529
530 /* rast_prim is the primitive type after GS. */
531 static void si_emit_rasterizer_prim_state(struct si_context *sctx)
532 {
533 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
534 enum pipe_prim_type rast_prim = sctx->current_rast_prim;
535 struct si_state_rasterizer *rs = sctx->emitted.named.rasterizer;
536
537 /* Skip this if not rendering lines. */
538 if (rast_prim != PIPE_PRIM_LINES &&
539 rast_prim != PIPE_PRIM_LINE_LOOP &&
540 rast_prim != PIPE_PRIM_LINE_STRIP &&
541 rast_prim != PIPE_PRIM_LINES_ADJACENCY &&
542 rast_prim != PIPE_PRIM_LINE_STRIP_ADJACENCY)
543 return;
544
545 if (rast_prim == sctx->last_rast_prim &&
546 rs->pa_sc_line_stipple == sctx->last_sc_line_stipple)
547 return;
548
549 /* For lines, reset the stipple pattern at each primitive. Otherwise,
550 * reset the stipple pattern at each packet (line strips, line loops).
551 */
552 radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE,
553 rs->pa_sc_line_stipple |
554 S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2));
555
556 sctx->last_rast_prim = rast_prim;
557 sctx->last_sc_line_stipple = rs->pa_sc_line_stipple;
558 }
559
560 static void si_emit_vs_state(struct si_context *sctx,
561 const struct pipe_draw_info *info)
562 {
563 sctx->current_vs_state &= C_VS_STATE_INDEXED;
564 sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
565
566 if (sctx->num_vs_blit_sgprs) {
567 /* Re-emit the state after we leave u_blitter. */
568 sctx->last_vs_state = ~0;
569 return;
570 }
571
572 if (sctx->current_vs_state != sctx->last_vs_state) {
573 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
574
575 radeon_set_sh_reg(cs,
576 sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] +
577 SI_SGPR_VS_STATE_BITS * 4,
578 sctx->current_vs_state);
579
580 sctx->last_vs_state = sctx->current_vs_state;
581 }
582 }
583
584 static void si_emit_draw_registers(struct si_context *sctx,
585 const struct pipe_draw_info *info,
586 unsigned num_patches)
587 {
588 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
589 unsigned prim = si_conv_pipe_prim(info->mode);
590 unsigned gs_out_prim = si_conv_prim_to_gs_out(sctx->current_rast_prim);
591 unsigned ia_multi_vgt_param;
592
593 ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, num_patches);
594
595 /* Draw state. */
596 if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
597 if (sctx->b.chip_class >= GFX9)
598 radeon_set_uconfig_reg_idx(cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
599 else if (sctx->b.chip_class >= CIK)
600 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
601 else
602 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
603
604 sctx->last_multi_vgt_param = ia_multi_vgt_param;
605 }
606 if (prim != sctx->last_prim) {
607 if (sctx->b.chip_class >= CIK)
608 radeon_set_uconfig_reg_idx(cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
609 else
610 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
611
612 sctx->last_prim = prim;
613 }
614
615 if (gs_out_prim != sctx->last_gs_out_prim) {
616 radeon_set_context_reg(cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
617 sctx->last_gs_out_prim = gs_out_prim;
618 }
619
620 /* Primitive restart. */
621 if (info->primitive_restart != sctx->last_primitive_restart_en) {
622 if (sctx->b.chip_class >= GFX9)
623 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
624 info->primitive_restart);
625 else
626 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
627 info->primitive_restart);
628
629 sctx->last_primitive_restart_en = info->primitive_restart;
630
631 }
632 if (info->primitive_restart &&
633 (info->restart_index != sctx->last_restart_index ||
634 sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN)) {
635 radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
636 info->restart_index);
637 sctx->last_restart_index = info->restart_index;
638 }
639 }
640
641 static void si_emit_draw_packets(struct si_context *sctx,
642 const struct pipe_draw_info *info,
643 struct pipe_resource *indexbuf,
644 unsigned index_size,
645 unsigned index_offset)
646 {
647 struct pipe_draw_indirect_info *indirect = info->indirect;
648 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
649 unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
650 bool render_cond_bit = sctx->b.render_cond && !sctx->b.render_cond_force_off;
651 uint32_t index_max_size = 0;
652 uint64_t index_va = 0;
653
654 if (info->count_from_stream_output) {
655 struct si_streamout_target *t =
656 (struct si_streamout_target*)info->count_from_stream_output;
657 uint64_t va = t->buf_filled_size->gpu_address +
658 t->buf_filled_size_offset;
659
660 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE,
661 t->stride_in_dw);
662
663 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
664 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
665 COPY_DATA_DST_SEL(COPY_DATA_REG) |
666 COPY_DATA_WR_CONFIRM);
667 radeon_emit(cs, va); /* src address lo */
668 radeon_emit(cs, va >> 32); /* src address hi */
669 radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
670 radeon_emit(cs, 0); /* unused */
671
672 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
673 t->buf_filled_size, RADEON_USAGE_READ,
674 RADEON_PRIO_SO_FILLED_SIZE);
675 }
676
677 /* draw packet */
678 if (index_size) {
679 if (index_size != sctx->last_index_size) {
680 unsigned index_type;
681
682 /* index type */
683 switch (index_size) {
684 case 1:
685 index_type = V_028A7C_VGT_INDEX_8;
686 break;
687 case 2:
688 index_type = V_028A7C_VGT_INDEX_16 |
689 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
690 V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
691 break;
692 case 4:
693 index_type = V_028A7C_VGT_INDEX_32 |
694 (SI_BIG_ENDIAN && sctx->b.chip_class <= CIK ?
695 V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
696 break;
697 default:
698 assert(!"unreachable");
699 return;
700 }
701
702 if (sctx->b.chip_class >= GFX9) {
703 radeon_set_uconfig_reg_idx(cs, R_03090C_VGT_INDEX_TYPE,
704 2, index_type);
705 } else {
706 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
707 radeon_emit(cs, index_type);
708 }
709
710 sctx->last_index_size = index_size;
711 }
712
713 index_max_size = (indexbuf->width0 - index_offset) /
714 index_size;
715 index_va = r600_resource(indexbuf)->gpu_address + index_offset;
716
717 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
718 (struct r600_resource *)indexbuf,
719 RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER);
720 } else {
721 /* On CI and later, non-indexed draws overwrite VGT_INDEX_TYPE,
722 * so the state must be re-emitted before the next indexed draw.
723 */
724 if (sctx->b.chip_class >= CIK)
725 sctx->last_index_size = -1;
726 }
727
728 if (indirect) {
729 uint64_t indirect_va = r600_resource(indirect->buffer)->gpu_address;
730
731 assert(indirect_va % 8 == 0);
732
733 si_invalidate_draw_sh_constants(sctx);
734
735 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
736 radeon_emit(cs, 1);
737 radeon_emit(cs, indirect_va);
738 radeon_emit(cs, indirect_va >> 32);
739
740 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
741 (struct r600_resource *)indirect->buffer,
742 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
743
744 unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA
745 : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
746
747 assert(indirect->offset % 4 == 0);
748
749 if (index_size) {
750 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
751 radeon_emit(cs, index_va);
752 radeon_emit(cs, index_va >> 32);
753
754 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
755 radeon_emit(cs, index_max_size);
756 }
757
758 if (!sctx->screen->has_draw_indirect_multi) {
759 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT
760 : PKT3_DRAW_INDIRECT,
761 3, render_cond_bit));
762 radeon_emit(cs, indirect->offset);
763 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
764 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
765 radeon_emit(cs, di_src_sel);
766 } else {
767 uint64_t count_va = 0;
768
769 if (indirect->indirect_draw_count) {
770 struct r600_resource *params_buf =
771 (struct r600_resource *)indirect->indirect_draw_count;
772
773 radeon_add_to_buffer_list(
774 &sctx->b, &sctx->b.gfx, params_buf,
775 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
776
777 count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
778 }
779
780 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
781 PKT3_DRAW_INDIRECT_MULTI,
782 8, render_cond_bit));
783 radeon_emit(cs, indirect->offset);
784 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
785 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
786 radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
787 S_2C3_DRAW_INDEX_ENABLE(1) |
788 S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
789 radeon_emit(cs, indirect->draw_count);
790 radeon_emit(cs, count_va);
791 radeon_emit(cs, count_va >> 32);
792 radeon_emit(cs, indirect->stride);
793 radeon_emit(cs, di_src_sel);
794 }
795 } else {
796 int base_vertex;
797
798 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
799 radeon_emit(cs, info->instance_count);
800
801 /* Base vertex and start instance. */
802 base_vertex = index_size ? info->index_bias : info->start;
803
804 if (sctx->num_vs_blit_sgprs) {
805 /* Re-emit draw constants after we leave u_blitter. */
806 si_invalidate_draw_sh_constants(sctx);
807
808 /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
809 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4,
810 sctx->num_vs_blit_sgprs);
811 radeon_emit_array(cs, sctx->vs_blit_sh_data,
812 sctx->num_vs_blit_sgprs);
813 } else if (base_vertex != sctx->last_base_vertex ||
814 sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
815 info->start_instance != sctx->last_start_instance ||
816 info->drawid != sctx->last_drawid ||
817 sh_base_reg != sctx->last_sh_base_reg) {
818 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
819 radeon_emit(cs, base_vertex);
820 radeon_emit(cs, info->start_instance);
821 radeon_emit(cs, info->drawid);
822
823 sctx->last_base_vertex = base_vertex;
824 sctx->last_start_instance = info->start_instance;
825 sctx->last_drawid = info->drawid;
826 sctx->last_sh_base_reg = sh_base_reg;
827 }
828
829 if (index_size) {
830 index_va += info->start * index_size;
831
832 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
833 radeon_emit(cs, index_max_size);
834 radeon_emit(cs, index_va);
835 radeon_emit(cs, index_va >> 32);
836 radeon_emit(cs, info->count);
837 radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
838 } else {
839 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
840 radeon_emit(cs, info->count);
841 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
842 S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
843 }
844 }
845 }
846
847 static void si_emit_surface_sync(struct r600_common_context *rctx,
848 unsigned cp_coher_cntl)
849 {
850 struct radeon_winsys_cs *cs = rctx->gfx.cs;
851
852 if (rctx->chip_class >= GFX9) {
853 /* Flush caches and wait for the caches to assert idle. */
854 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
855 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
856 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
857 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
858 radeon_emit(cs, 0); /* CP_COHER_BASE */
859 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
860 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
861 } else {
862 /* ACQUIRE_MEM is only required on a compute ring. */
863 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
864 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
865 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
866 radeon_emit(cs, 0); /* CP_COHER_BASE */
867 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
868 }
869 }
870
871 void si_emit_cache_flush(struct si_context *sctx)
872 {
873 struct r600_common_context *rctx = &sctx->b;
874 struct radeon_winsys_cs *cs = rctx->gfx.cs;
875 uint32_t cp_coher_cntl = 0;
876 uint32_t flush_cb_db = rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
877 SI_CONTEXT_FLUSH_AND_INV_DB);
878
879 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB)
880 sctx->b.num_cb_cache_flushes++;
881 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB)
882 sctx->b.num_db_cache_flushes++;
883
884 /* SI has a bug that it always flushes ICACHE and KCACHE if either
885 * bit is set. An alternative way is to write SQC_CACHES, but that
886 * doesn't seem to work reliably. Since the bug doesn't affect
887 * correctness (it only does more work than necessary) and
888 * the performance impact is likely negligible, there is no plan
889 * to add a workaround for it.
890 */
891
892 if (rctx->flags & SI_CONTEXT_INV_ICACHE)
893 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
894 if (rctx->flags & SI_CONTEXT_INV_SMEM_L1)
895 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
896
897 if (rctx->chip_class <= VI) {
898 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
899 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
900 S_0085F0_CB0_DEST_BASE_ENA(1) |
901 S_0085F0_CB1_DEST_BASE_ENA(1) |
902 S_0085F0_CB2_DEST_BASE_ENA(1) |
903 S_0085F0_CB3_DEST_BASE_ENA(1) |
904 S_0085F0_CB4_DEST_BASE_ENA(1) |
905 S_0085F0_CB5_DEST_BASE_ENA(1) |
906 S_0085F0_CB6_DEST_BASE_ENA(1) |
907 S_0085F0_CB7_DEST_BASE_ENA(1);
908
909 /* Necessary for DCC */
910 if (rctx->chip_class == VI)
911 si_gfx_write_event_eop(rctx, V_028A90_FLUSH_AND_INV_CB_DATA_TS,
912 0, EOP_DATA_SEL_DISCARD, NULL,
913 0, 0, R600_NOT_QUERY);
914 }
915 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_DB)
916 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
917 S_0085F0_DB_DEST_BASE_ENA(1);
918 }
919
920 if (rctx->flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
921 /* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
922 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
923 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
924 }
925 if (rctx->flags & (SI_CONTEXT_FLUSH_AND_INV_DB |
926 SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
927 /* Flush HTILE. SURFACE_SYNC will wait for idle. */
928 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
929 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
930 }
931
932 /* Wait for shader engines to go idle.
933 * VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
934 * for everything including CB/DB cache flushes.
935 */
936 if (!flush_cb_db) {
937 if (rctx->flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
938 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
939 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
940 /* Only count explicit shader flushes, not implicit ones
941 * done by SURFACE_SYNC.
942 */
943 rctx->num_vs_flushes++;
944 rctx->num_ps_flushes++;
945 } else if (rctx->flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
946 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
947 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
948 rctx->num_vs_flushes++;
949 }
950 }
951
952 if (rctx->flags & SI_CONTEXT_CS_PARTIAL_FLUSH &&
953 sctx->compute_is_busy) {
954 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
955 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
956 rctx->num_cs_flushes++;
957 sctx->compute_is_busy = false;
958 }
959
960 /* VGT state synchronization. */
961 if (rctx->flags & SI_CONTEXT_VGT_FLUSH) {
962 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
963 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
964 }
965 if (rctx->flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
966 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
967 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
968 }
969
970 /* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
971 * wait for idle on GFX9. We have to use a TS event.
972 */
973 if (sctx->b.chip_class >= GFX9 && flush_cb_db) {
974 uint64_t va;
975 unsigned tc_flags, cb_db_event;
976
977 /* Set the CB/DB flush event. */
978 switch (flush_cb_db) {
979 case SI_CONTEXT_FLUSH_AND_INV_CB:
980 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
981 break;
982 case SI_CONTEXT_FLUSH_AND_INV_DB:
983 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
984 break;
985 default:
986 /* both CB & DB */
987 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
988 }
989
990 /* These are the only allowed combinations. If you need to
991 * do multiple operations at once, do them separately.
992 * All operations that invalidate L2 also seem to invalidate
993 * metadata. Volatile (VOL) and WC flushes are not listed here.
994 *
995 * TC | TC_WB = writeback & invalidate L2 & L1
996 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
997 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
998 * TC | TC_NC = invalidate L2 for MTYPE == NC
999 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1000 * TCL1 = invalidate L1
1001 */
1002 tc_flags = 0;
1003
1004 if (rctx->flags & SI_CONTEXT_INV_L2_METADATA) {
1005 tc_flags = EVENT_TC_ACTION_ENA |
1006 EVENT_TC_MD_ACTION_ENA;
1007 }
1008
1009 /* Ideally flush TC together with CB/DB. */
1010 if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2) {
1011 /* Writeback and invalidate everything in L2 & L1. */
1012 tc_flags = EVENT_TC_ACTION_ENA |
1013 EVENT_TC_WB_ACTION_ENA;
1014
1015 /* Clear the flags. */
1016 rctx->flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 |
1017 SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
1018 SI_CONTEXT_INV_VMEM_L1);
1019 sctx->b.num_L2_invalidates++;
1020 }
1021
1022 /* Do the flush (enqueue the event and wait for it). */
1023 va = sctx->wait_mem_scratch->gpu_address;
1024 sctx->wait_mem_number++;
1025
1026 si_gfx_write_event_eop(rctx, cb_db_event, tc_flags,
1027 EOP_DATA_SEL_VALUE_32BIT,
1028 sctx->wait_mem_scratch, va,
1029 sctx->wait_mem_number, R600_NOT_QUERY);
1030 si_gfx_wait_fence(rctx, va, sctx->wait_mem_number, 0xffffffff);
1031 }
1032
1033 /* Make sure ME is idle (it executes most packets) before continuing.
1034 * This prevents read-after-write hazards between PFP and ME.
1035 */
1036 if (cp_coher_cntl ||
1037 (rctx->flags & (SI_CONTEXT_CS_PARTIAL_FLUSH |
1038 SI_CONTEXT_INV_VMEM_L1 |
1039 SI_CONTEXT_INV_GLOBAL_L2 |
1040 SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1041 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1042 radeon_emit(cs, 0);
1043 }
1044
1045 /* SI-CI-VI only:
1046 * When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
1047 * waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
1048 *
1049 * cp_coher_cntl should contain all necessary flags except TC flags
1050 * at this point.
1051 *
1052 * SI-CIK don't support L2 write-back.
1053 */
1054 if (rctx->flags & SI_CONTEXT_INV_GLOBAL_L2 ||
1055 (rctx->chip_class <= CIK &&
1056 (rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1057 /* Invalidate L1 & L2. (L1 is always invalidated on SI)
1058 * WB must be set on VI+ when TC_ACTION is set.
1059 */
1060 si_emit_surface_sync(rctx, cp_coher_cntl |
1061 S_0085F0_TC_ACTION_ENA(1) |
1062 S_0085F0_TCL1_ACTION_ENA(1) |
1063 S_0301F0_TC_WB_ACTION_ENA(rctx->chip_class >= VI));
1064 cp_coher_cntl = 0;
1065 sctx->b.num_L2_invalidates++;
1066 } else {
1067 /* L1 invalidation and L2 writeback must be done separately,
1068 * because both operations can't be done together.
1069 */
1070 if (rctx->flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) {
1071 /* WB = write-back
1072 * NC = apply to non-coherent MTYPEs
1073 * (i.e. MTYPE <= 1, which is what we use everywhere)
1074 *
1075 * WB doesn't work without NC.
1076 */
1077 si_emit_surface_sync(rctx, cp_coher_cntl |
1078 S_0301F0_TC_WB_ACTION_ENA(1) |
1079 S_0301F0_TC_NC_ACTION_ENA(1));
1080 cp_coher_cntl = 0;
1081 sctx->b.num_L2_writebacks++;
1082 }
1083 if (rctx->flags & SI_CONTEXT_INV_VMEM_L1) {
1084 /* Invalidate per-CU VMEM L1. */
1085 si_emit_surface_sync(rctx, cp_coher_cntl |
1086 S_0085F0_TCL1_ACTION_ENA(1));
1087 cp_coher_cntl = 0;
1088 }
1089 }
1090
1091 /* If TC flushes haven't cleared this... */
1092 if (cp_coher_cntl)
1093 si_emit_surface_sync(rctx, cp_coher_cntl);
1094
1095 if (rctx->flags & R600_CONTEXT_START_PIPELINE_STATS) {
1096 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1097 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1098 EVENT_INDEX(0));
1099 } else if (rctx->flags & R600_CONTEXT_STOP_PIPELINE_STATS) {
1100 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1101 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1102 EVENT_INDEX(0));
1103 }
1104
1105 rctx->flags = 0;
1106 }
1107
1108 static void si_get_draw_start_count(struct si_context *sctx,
1109 const struct pipe_draw_info *info,
1110 unsigned *start, unsigned *count)
1111 {
1112 struct pipe_draw_indirect_info *indirect = info->indirect;
1113
1114 if (indirect) {
1115 unsigned indirect_count;
1116 struct pipe_transfer *transfer;
1117 unsigned begin, end;
1118 unsigned map_size;
1119 unsigned *data;
1120
1121 if (indirect->indirect_draw_count) {
1122 data = pipe_buffer_map_range(&sctx->b.b,
1123 indirect->indirect_draw_count,
1124 indirect->indirect_draw_count_offset,
1125 sizeof(unsigned),
1126 PIPE_TRANSFER_READ, &transfer);
1127
1128 indirect_count = *data;
1129
1130 pipe_buffer_unmap(&sctx->b.b, transfer);
1131 } else {
1132 indirect_count = indirect->draw_count;
1133 }
1134
1135 if (!indirect_count) {
1136 *start = *count = 0;
1137 return;
1138 }
1139
1140 map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
1141 data = pipe_buffer_map_range(&sctx->b.b, indirect->buffer,
1142 indirect->offset, map_size,
1143 PIPE_TRANSFER_READ, &transfer);
1144
1145 begin = UINT_MAX;
1146 end = 0;
1147
1148 for (unsigned i = 0; i < indirect_count; ++i) {
1149 unsigned count = data[0];
1150 unsigned start = data[2];
1151
1152 if (count > 0) {
1153 begin = MIN2(begin, start);
1154 end = MAX2(end, start + count);
1155 }
1156
1157 data += indirect->stride / sizeof(unsigned);
1158 }
1159
1160 pipe_buffer_unmap(&sctx->b.b, transfer);
1161
1162 if (begin < end) {
1163 *start = begin;
1164 *count = end - begin;
1165 } else {
1166 *start = *count = 0;
1167 }
1168 } else {
1169 *start = info->start;
1170 *count = info->count;
1171 }
1172 }
1173
1174 static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
1175 unsigned skip_atom_mask)
1176 {
1177 /* Emit state atoms. */
1178 unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
1179 while (mask) {
1180 struct r600_atom *atom = sctx->atoms.array[u_bit_scan(&mask)];
1181
1182 atom->emit(&sctx->b, atom);
1183 }
1184 sctx->dirty_atoms &= skip_atom_mask;
1185
1186 /* Emit states. */
1187 mask = sctx->dirty_states;
1188 while (mask) {
1189 unsigned i = u_bit_scan(&mask);
1190 struct si_pm4_state *state = sctx->queued.array[i];
1191
1192 if (!state || sctx->emitted.array[i] == state)
1193 continue;
1194
1195 si_pm4_emit(sctx, state);
1196 sctx->emitted.array[i] = state;
1197 }
1198 sctx->dirty_states = 0;
1199
1200 /* Emit draw states. */
1201 unsigned num_patches = 0;
1202
1203 si_emit_rasterizer_prim_state(sctx);
1204 if (sctx->tes_shader.cso)
1205 si_emit_derived_tess_state(sctx, info, &num_patches);
1206 si_emit_vs_state(sctx, info);
1207 si_emit_draw_registers(sctx, info, num_patches);
1208 }
1209
1210 void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
1211 {
1212 struct si_context *sctx = (struct si_context *)ctx;
1213 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1214 struct pipe_resource *indexbuf = info->index.resource;
1215 unsigned dirty_tex_counter;
1216 enum pipe_prim_type rast_prim;
1217 unsigned index_size = info->index_size;
1218 unsigned index_offset = info->indirect ? info->start * index_size : 0;
1219
1220 if (likely(!info->indirect)) {
1221 /* SI-CI treat instance_count==0 as instance_count==1. There is
1222 * no workaround for indirect draws, but we can at least skip
1223 * direct draws.
1224 */
1225 if (unlikely(!info->instance_count))
1226 return;
1227
1228 /* Handle count == 0. */
1229 if (unlikely(!info->count &&
1230 (index_size || !info->count_from_stream_output)))
1231 return;
1232 }
1233
1234 if (unlikely(!sctx->vs_shader.cso)) {
1235 assert(0);
1236 return;
1237 }
1238 if (unlikely(!sctx->ps_shader.cso && (!rs || !rs->rasterizer_discard))) {
1239 assert(0);
1240 return;
1241 }
1242 if (unlikely(!!sctx->tes_shader.cso != (info->mode == PIPE_PRIM_PATCHES))) {
1243 assert(0);
1244 return;
1245 }
1246
1247 /* Recompute and re-emit the texture resource states if needed. */
1248 dirty_tex_counter = p_atomic_read(&sctx->b.screen->dirty_tex_counter);
1249 if (unlikely(dirty_tex_counter != sctx->b.last_dirty_tex_counter)) {
1250 sctx->b.last_dirty_tex_counter = dirty_tex_counter;
1251 sctx->framebuffer.dirty_cbufs |=
1252 ((1 << sctx->framebuffer.state.nr_cbufs) - 1);
1253 sctx->framebuffer.dirty_zsbuf = true;
1254 si_mark_atom_dirty(sctx, &sctx->framebuffer.atom);
1255 si_update_all_texture_descriptors(sctx);
1256 }
1257
1258 si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
1259
1260 /* Set the rasterization primitive type.
1261 *
1262 * This must be done after si_decompress_textures, which can call
1263 * draw_vbo recursively, and before si_update_shaders, which uses
1264 * current_rast_prim for this draw_vbo call. */
1265 if (sctx->gs_shader.cso)
1266 rast_prim = sctx->gs_shader.cso->gs_output_prim;
1267 else if (sctx->tes_shader.cso) {
1268 if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1269 rast_prim = PIPE_PRIM_POINTS;
1270 else
1271 rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1272 } else
1273 rast_prim = info->mode;
1274
1275 if (rast_prim != sctx->current_rast_prim) {
1276 bool old_is_poly = sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES;
1277 bool new_is_poly = rast_prim >= PIPE_PRIM_TRIANGLES;
1278 if (old_is_poly != new_is_poly) {
1279 sctx->scissors.dirty_mask = (1 << SI_MAX_VIEWPORTS) - 1;
1280 si_mark_atom_dirty(sctx, &sctx->scissors.atom);
1281 }
1282
1283 sctx->current_rast_prim = rast_prim;
1284 sctx->do_update_shaders = true;
1285 }
1286
1287 if (sctx->tes_shader.cso &&
1288 (sctx->b.family == CHIP_VEGA10 || sctx->b.family == CHIP_RAVEN)) {
1289 /* Determine whether the LS VGPR fix should be applied.
1290 *
1291 * It is only required when num input CPs > num output CPs,
1292 * which cannot happen with the fixed function TCS. We should
1293 * also update this bit when switching from TCS to fixed
1294 * function TCS.
1295 */
1296 struct si_shader_selector *tcs = sctx->tcs_shader.cso;
1297 bool ls_vgpr_fix =
1298 tcs &&
1299 info->vertices_per_patch >
1300 tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
1301
1302 if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
1303 sctx->ls_vgpr_fix = ls_vgpr_fix;
1304 sctx->do_update_shaders = true;
1305 }
1306 }
1307
1308 if (sctx->gs_shader.cso) {
1309 /* Determine whether the GS triangle strip adjacency fix should
1310 * be applied. Rotate every other triangle if
1311 * - triangle strips with adjacency are fed to the GS and
1312 * - primitive restart is disabled (the rotation doesn't help
1313 * when the restart occurs after an odd number of triangles).
1314 */
1315 bool gs_tri_strip_adj_fix =
1316 !sctx->tes_shader.cso &&
1317 info->mode == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY &&
1318 !info->primitive_restart;
1319
1320 if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
1321 sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
1322 sctx->do_update_shaders = true;
1323 }
1324 }
1325
1326 if (sctx->do_update_shaders && !si_update_shaders(sctx))
1327 return;
1328
1329 if (index_size) {
1330 /* Translate or upload, if needed. */
1331 /* 8-bit indices are supported on VI. */
1332 if (sctx->b.chip_class <= CIK && index_size == 1) {
1333 unsigned start, count, start_offset, size, offset;
1334 void *ptr;
1335
1336 si_get_draw_start_count(sctx, info, &start, &count);
1337 start_offset = start * 2;
1338 size = count * 2;
1339
1340 indexbuf = NULL;
1341 u_upload_alloc(ctx->stream_uploader, start_offset,
1342 size,
1343 si_optimal_tcc_alignment(sctx, size),
1344 &offset, &indexbuf, &ptr);
1345 if (!indexbuf)
1346 return;
1347
1348 util_shorten_ubyte_elts_to_userptr(&sctx->b.b, info, 0, 0,
1349 index_offset + start,
1350 count, ptr);
1351
1352 /* info->start will be added by the drawing code */
1353 index_offset = offset - start_offset;
1354 index_size = 2;
1355 } else if (info->has_user_indices) {
1356 unsigned start_offset;
1357
1358 assert(!info->indirect);
1359 start_offset = info->start * index_size;
1360
1361 indexbuf = NULL;
1362 u_upload_data(ctx->stream_uploader, start_offset,
1363 info->count * index_size,
1364 sctx->screen->b.info.tcc_cache_line_size,
1365 (char*)info->index.user + start_offset,
1366 &index_offset, &indexbuf);
1367 if (!indexbuf)
1368 return;
1369
1370 /* info->start will be added by the drawing code */
1371 index_offset -= start_offset;
1372 } else if (sctx->b.chip_class <= CIK &&
1373 r600_resource(indexbuf)->TC_L2_dirty) {
1374 /* VI reads index buffers through TC L2, so it doesn't
1375 * need this. */
1376 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1377 r600_resource(indexbuf)->TC_L2_dirty = false;
1378 }
1379 }
1380
1381 if (info->indirect) {
1382 struct pipe_draw_indirect_info *indirect = info->indirect;
1383
1384 /* Add the buffer size for memory checking in need_cs_space. */
1385 r600_context_add_resource_size(ctx, indirect->buffer);
1386
1387 /* Indirect buffers use TC L2 on GFX9, but not older hw. */
1388 if (sctx->b.chip_class <= VI) {
1389 if (r600_resource(indirect->buffer)->TC_L2_dirty) {
1390 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1391 r600_resource(indirect->buffer)->TC_L2_dirty = false;
1392 }
1393
1394 if (indirect->indirect_draw_count &&
1395 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
1396 sctx->b.flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1397 r600_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
1398 }
1399 }
1400 }
1401
1402 si_need_cs_space(sctx);
1403
1404 /* Since we've called r600_context_add_resource_size for vertex buffers,
1405 * this must be called after si_need_cs_space, because we must let
1406 * need_cs_space flush before we add buffers to the buffer list.
1407 */
1408 if (!si_upload_vertex_buffer_descriptors(sctx))
1409 return;
1410
1411 /* GFX9 scissor bug workaround. This must be done before VPORT scissor
1412 * registers are changed. There is also a more efficient but more
1413 * involved alternative workaround.
1414 */
1415 if (sctx->b.chip_class == GFX9 &&
1416 si_is_atom_dirty(sctx, &sctx->scissors.atom)) {
1417 sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH;
1418 si_emit_cache_flush(sctx);
1419 }
1420
1421 /* Use optimal packet order based on whether we need to sync the pipeline. */
1422 if (unlikely(sctx->b.flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
1423 SI_CONTEXT_FLUSH_AND_INV_DB |
1424 SI_CONTEXT_PS_PARTIAL_FLUSH |
1425 SI_CONTEXT_CS_PARTIAL_FLUSH))) {
1426 /* If we have to wait for idle, set all states first, so that all
1427 * SET packets are processed in parallel with previous draw calls.
1428 * Then upload descriptors, set shader pointers, and draw, and
1429 * prefetch at the end. This ensures that the time the CUs
1430 * are idle is very short. (there are only SET_SH packets between
1431 * the wait and the draw)
1432 */
1433 struct r600_atom *shader_pointers = &sctx->shader_pointers.atom;
1434 unsigned masked_atoms = 1u << shader_pointers->id;
1435
1436 if (unlikely(sctx->b.flags & R600_CONTEXT_FLUSH_FOR_RENDER_COND))
1437 masked_atoms |= 1u << sctx->b.render_cond_atom.id;
1438
1439 /* Emit all states except shader pointers and render condition. */
1440 si_emit_all_states(sctx, info, masked_atoms);
1441 si_emit_cache_flush(sctx);
1442
1443 /* <-- CUs are idle here. */
1444 if (!si_upload_graphics_shader_descriptors(sctx))
1445 return;
1446
1447 /* Set shader pointers after descriptors are uploaded. */
1448 if (si_is_atom_dirty(sctx, shader_pointers))
1449 shader_pointers->emit(&sctx->b, NULL);
1450 if (si_is_atom_dirty(sctx, &sctx->b.render_cond_atom))
1451 sctx->b.render_cond_atom.emit(&sctx->b, NULL);
1452 sctx->dirty_atoms = 0;
1453
1454 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1455 /* <-- CUs are busy here. */
1456
1457 /* Start prefetches after the draw has been started. Both will run
1458 * in parallel, but starting the draw first is more important.
1459 */
1460 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
1461 cik_emit_prefetch_L2(sctx);
1462 } else {
1463 /* If we don't wait for idle, start prefetches first, then set
1464 * states, and draw at the end.
1465 */
1466 if (sctx->b.flags)
1467 si_emit_cache_flush(sctx);
1468
1469 if (sctx->b.chip_class >= CIK && sctx->prefetch_L2_mask)
1470 cik_emit_prefetch_L2(sctx);
1471
1472 if (!si_upload_graphics_shader_descriptors(sctx))
1473 return;
1474
1475 si_emit_all_states(sctx, info, 0);
1476 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset);
1477 }
1478
1479 if (unlikely(sctx->current_saved_cs)) {
1480 si_trace_emit(sctx);
1481 si_log_draw_state(sctx, sctx->b.log);
1482 }
1483
1484 /* Workaround for a VGT hang when streamout is enabled.
1485 * It must be done after drawing. */
1486 if ((sctx->b.family == CHIP_HAWAII ||
1487 sctx->b.family == CHIP_TONGA ||
1488 sctx->b.family == CHIP_FIJI) &&
1489 si_get_strmout_en(sctx)) {
1490 sctx->b.flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
1491 }
1492
1493 if (unlikely(sctx->decompression_enabled)) {
1494 sctx->b.num_decompress_calls++;
1495 } else {
1496 sctx->b.num_draw_calls++;
1497 if (sctx->framebuffer.state.nr_cbufs > 1)
1498 sctx->b.num_mrt_draw_calls++;
1499 if (info->primitive_restart)
1500 sctx->b.num_prim_restart_calls++;
1501 if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
1502 sctx->b.num_spill_draw_calls++;
1503 }
1504 if (index_size && indexbuf != info->index.resource)
1505 pipe_resource_reference(&indexbuf, NULL);
1506 }
1507
1508 void si_draw_rectangle(struct blitter_context *blitter,
1509 void *vertex_elements_cso,
1510 blitter_get_vs_func get_vs,
1511 int x1, int y1, int x2, int y2,
1512 float depth, unsigned num_instances,
1513 enum blitter_attrib_type type,
1514 const union blitter_attrib *attrib)
1515 {
1516 struct pipe_context *pipe = util_blitter_get_pipe(blitter);
1517 struct si_context *sctx = (struct si_context*)pipe;
1518
1519 /* Pack position coordinates as signed int16. */
1520 sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) |
1521 ((uint32_t)(y1 & 0xffff) << 16);
1522 sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) |
1523 ((uint32_t)(y2 & 0xffff) << 16);
1524 sctx->vs_blit_sh_data[2] = fui(depth);
1525
1526 switch (type) {
1527 case UTIL_BLITTER_ATTRIB_COLOR:
1528 memcpy(&sctx->vs_blit_sh_data[3], attrib->color,
1529 sizeof(float)*4);
1530 break;
1531 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
1532 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
1533 memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord,
1534 sizeof(attrib->texcoord));
1535 break;
1536 case UTIL_BLITTER_ATTRIB_NONE:;
1537 }
1538
1539 pipe->bind_vs_state(pipe, si_get_blit_vs(sctx, type, num_instances));
1540
1541 struct pipe_draw_info info = {};
1542 info.mode = R600_PRIM_RECTANGLE_LIST;
1543 info.count = 3;
1544 info.instance_count = num_instances;
1545
1546 /* Don't set per-stage shader pointers for VS. */
1547 sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
1548 sctx->vertex_buffer_pointer_dirty = false;
1549
1550 si_draw_vbo(pipe, &info);
1551 }
1552
1553 void si_trace_emit(struct si_context *sctx)
1554 {
1555 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1556 uint64_t va = sctx->current_saved_cs->trace_buf->gpu_address;
1557 uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
1558
1559 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
1560 radeon_emit(cs, S_370_DST_SEL(V_370_MEMORY_SYNC) |
1561 S_370_WR_CONFIRM(1) |
1562 S_370_ENGINE_SEL(V_370_ME));
1563 radeon_emit(cs, va);
1564 radeon_emit(cs, va >> 32);
1565 radeon_emit(cs, trace_id);
1566 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
1567 radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
1568
1569 if (sctx->b.log)
1570 u_log_flush(sctx->b.log);
1571 }