radeonsi: use pipe_draw_info::instance_count indirectly
[mesa.git] / src / gallium / drivers / radeonsi / si_state_draw.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "util/u_index_modify.h"
29 #include "util/u_log.h"
30 #include "util/u_upload_mgr.h"
31 #include "util/u_prim.h"
32
33 #include "ac_debug.h"
34
35 /* special primitive types */
36 #define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
37
38 static unsigned si_conv_pipe_prim(unsigned mode)
39 {
40 static const unsigned prim_conv[] = {
41 [PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
42 [PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
43 [PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
44 [PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
45 [PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
46 [PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
47 [PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
48 [PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
49 [PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
50 [PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
51 [PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
52 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
53 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
54 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
55 [PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
56 [SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST
57 };
58 assert(mode < ARRAY_SIZE(prim_conv));
59 return prim_conv[mode];
60 }
61
62 /**
63 * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
64 * LS.LDS_SIZE is shared by all 3 shader stages.
65 *
66 * The information about LDS and other non-compile-time parameters is then
67 * written to userdata SGPRs.
68 */
69 static void si_emit_derived_tess_state(struct si_context *sctx,
70 const struct pipe_draw_info *info,
71 unsigned *num_patches)
72 {
73 struct radeon_cmdbuf *cs = sctx->gfx_cs;
74 struct si_shader *ls_current;
75 struct si_shader_selector *ls;
76 /* The TES pointer will only be used for sctx->last_tcs.
77 * It would be wrong to think that TCS = TES. */
78 struct si_shader_selector *tcs =
79 sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
80 unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
81 bool has_primid_instancing_bug = sctx->chip_class == GFX6 &&
82 sctx->screen->info.max_se == 1;
83 unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
84 unsigned num_tcs_input_cp = info->vertices_per_patch;
85 unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
86 unsigned num_tcs_patch_outputs;
87 unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
88 unsigned input_patch_size, output_patch_size, output_patch0_offset;
89 unsigned perpatch_output_offset, lds_size;
90 unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
91 unsigned offchip_layout, hardware_lds_size, ls_hs_config;
92
93 /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
94 if (sctx->chip_class >= GFX9) {
95 if (sctx->tcs_shader.cso)
96 ls_current = sctx->tcs_shader.current;
97 else
98 ls_current = sctx->fixed_func_tcs_shader.current;
99
100 ls = ls_current->key.part.tcs.ls;
101 } else {
102 ls_current = sctx->vs_shader.current;
103 ls = sctx->vs_shader.cso;
104 }
105
106 if (sctx->last_ls == ls_current &&
107 sctx->last_tcs == tcs &&
108 sctx->last_tes_sh_base == tes_sh_base &&
109 sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
110 (!has_primid_instancing_bug ||
111 (sctx->last_tess_uses_primid == tess_uses_primid))) {
112 *num_patches = sctx->last_num_patches;
113 return;
114 }
115
116 sctx->last_ls = ls_current;
117 sctx->last_tcs = tcs;
118 sctx->last_tes_sh_base = tes_sh_base;
119 sctx->last_num_tcs_input_cp = num_tcs_input_cp;
120 sctx->last_tess_uses_primid = tess_uses_primid;
121
122 /* This calculates how shader inputs and outputs among VS, TCS, and TES
123 * are laid out in LDS. */
124 num_tcs_inputs = util_last_bit64(ls->outputs_written);
125
126 if (sctx->tcs_shader.cso) {
127 num_tcs_outputs = util_last_bit64(tcs->outputs_written);
128 num_tcs_output_cp = tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
129 num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
130 } else {
131 /* No TCS. Route varyings from LS to TES. */
132 num_tcs_outputs = num_tcs_inputs;
133 num_tcs_output_cp = num_tcs_input_cp;
134 num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
135 }
136
137 input_vertex_size = ls->lshs_vertex_stride;
138 output_vertex_size = num_tcs_outputs * 16;
139
140 input_patch_size = num_tcs_input_cp * input_vertex_size;
141
142 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
143 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
144
145 /* Ensure that we only need one wave per SIMD so we don't need to check
146 * resource usage. Also ensures that the number of tcs in and out
147 * vertices per threadgroup are at most 256.
148 */
149 unsigned max_verts_per_patch = MAX2(num_tcs_input_cp, num_tcs_output_cp);
150 *num_patches = 256 / max_verts_per_patch;
151
152 /* Make sure that the data fits in LDS. This assumes the shaders only
153 * use LDS for the inputs and outputs.
154 *
155 * While GFX7 can use 64K per threadgroup, there is a hang on Stoney
156 * with 2 CUs if we use more than 32K. The closed Vulkan driver also
157 * uses 32K at most on all GCN chips.
158 */
159 hardware_lds_size = 32768;
160 *num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size +
161 output_patch_size));
162
163 /* Make sure the output data fits in the offchip buffer */
164 *num_patches = MIN2(*num_patches,
165 (sctx->screen->tess_offchip_block_dw_size * 4) /
166 output_patch_size);
167
168 /* Not necessary for correctness, but improves performance.
169 * The hardware can do more, but the radeonsi shader constant is
170 * limited to 6 bits.
171 */
172 *num_patches = MIN2(*num_patches, 63); /* triangles: 3 full waves except 3 lanes */
173
174 /* When distributed tessellation is unsupported, switch between SEs
175 * at a higher frequency to compensate for it.
176 */
177 if (!sctx->screen->has_distributed_tess && sctx->screen->info.max_se > 1)
178 *num_patches = MIN2(*num_patches, 16); /* recommended */
179
180 /* Make sure that vector lanes are reasonably occupied. It probably
181 * doesn't matter much because this is LS-HS, and TES is likely to
182 * occupy significantly more CUs.
183 */
184 unsigned temp_verts_per_tg = *num_patches * max_verts_per_patch;
185 if (temp_verts_per_tg > 64 && temp_verts_per_tg % 64 < 48)
186 *num_patches = (temp_verts_per_tg & ~63) / max_verts_per_patch;
187
188 if (sctx->chip_class == GFX6) {
189 /* GFX6 bug workaround, related to power management. Limit LS-HS
190 * threadgroups to only one wave.
191 */
192 unsigned one_wave = 64 / max_verts_per_patch;
193 *num_patches = MIN2(*num_patches, one_wave);
194 }
195
196 /* The VGT HS block increments the patch ID unconditionally
197 * within a single threadgroup. This results in incorrect
198 * patch IDs when instanced draws are used.
199 *
200 * The intended solution is to restrict threadgroups to
201 * a single instance by setting SWITCH_ON_EOI, which
202 * should cause IA to split instances up. However, this
203 * doesn't work correctly on GFX6 when there is no other
204 * SE to switch to.
205 */
206 if (has_primid_instancing_bug && tess_uses_primid)
207 *num_patches = 1;
208
209 sctx->last_num_patches = *num_patches;
210
211 output_patch0_offset = input_patch_size * *num_patches;
212 perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
213
214 /* Compute userdata SGPRs. */
215 assert(((input_vertex_size / 4) & ~0xff) == 0);
216 assert(((output_vertex_size / 4) & ~0xff) == 0);
217 assert(((input_patch_size / 4) & ~0x1fff) == 0);
218 assert(((output_patch_size / 4) & ~0x1fff) == 0);
219 assert(((output_patch0_offset / 16) & ~0xffff) == 0);
220 assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
221 assert(num_tcs_input_cp <= 32);
222 assert(num_tcs_output_cp <= 32);
223
224 uint64_t ring_va = si_resource(sctx->tess_rings)->gpu_address;
225 assert((ring_va & u_bit_consecutive(0, 19)) == 0);
226
227 tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
228 S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
229 tcs_out_layout = (output_patch_size / 4) |
230 (num_tcs_input_cp << 13) |
231 ring_va;
232 tcs_out_offsets = (output_patch0_offset / 16) |
233 ((perpatch_output_offset / 16) << 16);
234 offchip_layout = *num_patches |
235 (num_tcs_output_cp << 6) |
236 (pervertex_output_patch_size * *num_patches << 12);
237
238 /* Compute the LDS size. */
239 lds_size = output_patch0_offset + output_patch_size * *num_patches;
240
241 if (sctx->chip_class >= GFX7) {
242 assert(lds_size <= 65536);
243 lds_size = align(lds_size, 512) / 512;
244 } else {
245 assert(lds_size <= 32768);
246 lds_size = align(lds_size, 256) / 256;
247 }
248
249 /* Set SI_SGPR_VS_STATE_BITS. */
250 sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE &
251 C_VS_STATE_LS_OUT_VERTEX_SIZE;
252 sctx->current_vs_state |= tcs_in_layout;
253
254 if (sctx->chip_class >= GFX9) {
255 unsigned hs_rsrc2 = ls_current->config.rsrc2 |
256 S_00B42C_LDS_SIZE(lds_size);
257
258 radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
259
260 /* Set userdata SGPRs for merged LS-HS. */
261 radeon_set_sh_reg_seq(cs,
262 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
263 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
264 radeon_emit(cs, offchip_layout);
265 radeon_emit(cs, tcs_out_offsets);
266 radeon_emit(cs, tcs_out_layout);
267 } else {
268 unsigned ls_rsrc2 = ls_current->config.rsrc2;
269
270 si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
271 ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
272
273 /* Due to a hw bug, RSRC2_LS must be written twice with another
274 * LS register written in between. */
275 if (sctx->chip_class == GFX7 && sctx->family != CHIP_HAWAII)
276 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
277 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
278 radeon_emit(cs, ls_current->config.rsrc1);
279 radeon_emit(cs, ls_rsrc2);
280
281 /* Set userdata SGPRs for TCS. */
282 radeon_set_sh_reg_seq(cs,
283 R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
284 radeon_emit(cs, offchip_layout);
285 radeon_emit(cs, tcs_out_offsets);
286 radeon_emit(cs, tcs_out_layout);
287 radeon_emit(cs, tcs_in_layout);
288 }
289
290 /* Set userdata SGPRs for TES. */
291 radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
292 radeon_emit(cs, offchip_layout);
293 radeon_emit(cs, ring_va);
294
295 ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) |
296 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
297 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
298
299 if (sctx->last_ls_hs_config != ls_hs_config) {
300 if (sctx->chip_class >= GFX7) {
301 radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2,
302 ls_hs_config);
303 } else {
304 radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG,
305 ls_hs_config);
306 }
307 sctx->last_ls_hs_config = ls_hs_config;
308 sctx->context_roll = true;
309 }
310 }
311
312 static unsigned si_num_prims_for_vertices(const struct pipe_draw_info *info,
313 enum pipe_prim_type prim)
314 {
315 switch (prim) {
316 case PIPE_PRIM_PATCHES:
317 return info->count / info->vertices_per_patch;
318 case PIPE_PRIM_POLYGON:
319 return info->count >= 3;
320 case SI_PRIM_RECTANGLE_LIST:
321 return info->count / 3;
322 default:
323 return u_decomposed_prims_for_vertices(prim, info->count);
324 }
325 }
326
327 static unsigned
328 si_get_init_multi_vgt_param(struct si_screen *sscreen,
329 union si_vgt_param_key *key)
330 {
331 STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
332 unsigned max_primgroup_in_wave = 2;
333
334 /* SWITCH_ON_EOP(0) is always preferable. */
335 bool wd_switch_on_eop = false;
336 bool ia_switch_on_eop = false;
337 bool ia_switch_on_eoi = false;
338 bool partial_vs_wave = false;
339 bool partial_es_wave = false;
340
341 if (key->u.uses_tess) {
342 /* SWITCH_ON_EOI must be set if PrimID is used. */
343 if (key->u.tess_uses_prim_id)
344 ia_switch_on_eoi = true;
345
346 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
347 if ((sscreen->info.family == CHIP_TAHITI ||
348 sscreen->info.family == CHIP_PITCAIRN ||
349 sscreen->info.family == CHIP_BONAIRE) &&
350 key->u.uses_gs)
351 partial_vs_wave = true;
352
353 /* Needed for 028B6C_DISTRIBUTION_MODE != 0. (implies >= GFX8) */
354 if (sscreen->has_distributed_tess) {
355 if (key->u.uses_gs) {
356 if (sscreen->info.chip_class == GFX8)
357 partial_es_wave = true;
358 } else {
359 partial_vs_wave = true;
360 }
361 }
362 }
363
364 /* This is a hardware requirement. */
365 if (key->u.line_stipple_enabled ||
366 (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
367 ia_switch_on_eop = true;
368 wd_switch_on_eop = true;
369 }
370
371 if (sscreen->info.chip_class >= GFX7) {
372 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
373 * 4 shader engines. Set 1 to pass the assertion below.
374 * The other cases are hardware requirements.
375 *
376 * Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
377 * for points, line strips, and tri strips.
378 */
379 if (sscreen->info.max_se <= 2 ||
380 key->u.prim == PIPE_PRIM_POLYGON ||
381 key->u.prim == PIPE_PRIM_LINE_LOOP ||
382 key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
383 key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
384 (key->u.primitive_restart &&
385 (sscreen->info.family < CHIP_POLARIS10 ||
386 (key->u.prim != PIPE_PRIM_POINTS &&
387 key->u.prim != PIPE_PRIM_LINE_STRIP &&
388 key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
389 key->u.count_from_stream_output)
390 wd_switch_on_eop = true;
391
392 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
393 * We don't know that for indirect drawing, so treat it as
394 * always problematic. */
395 if (sscreen->info.family == CHIP_HAWAII &&
396 key->u.uses_instancing)
397 wd_switch_on_eop = true;
398
399 /* Performance recommendation for 4 SE Gfx7-8 parts if
400 * instances are smaller than a primgroup.
401 * Assume indirect draws always use small instances.
402 * This is needed for good VS wave utilization.
403 */
404 if (sscreen->info.chip_class <= GFX8 &&
405 sscreen->info.max_se == 4 &&
406 key->u.multi_instances_smaller_than_primgroup)
407 wd_switch_on_eop = true;
408
409 /* Required on GFX7 and later. */
410 if (sscreen->info.max_se == 4 && !wd_switch_on_eop)
411 ia_switch_on_eoi = true;
412
413 /* HW engineers suggested that PARTIAL_VS_WAVE_ON should be set
414 * to work around a GS hang.
415 */
416 if (key->u.uses_gs &&
417 (sscreen->info.family == CHIP_TONGA ||
418 sscreen->info.family == CHIP_FIJI ||
419 sscreen->info.family == CHIP_POLARIS10 ||
420 sscreen->info.family == CHIP_POLARIS11 ||
421 sscreen->info.family == CHIP_POLARIS12 ||
422 sscreen->info.family == CHIP_VEGAM))
423 partial_vs_wave = true;
424
425 /* Required by Hawaii and, for some special cases, by GFX8. */
426 if (ia_switch_on_eoi &&
427 (sscreen->info.family == CHIP_HAWAII ||
428 (sscreen->info.chip_class == GFX8 &&
429 (key->u.uses_gs || max_primgroup_in_wave != 2))))
430 partial_vs_wave = true;
431
432 /* Instancing bug on Bonaire. */
433 if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi &&
434 key->u.uses_instancing)
435 partial_vs_wave = true;
436
437 /* This only applies to Polaris10 and later 4 SE chips.
438 * wd_switch_on_eop is already true on all other chips.
439 */
440 if (!wd_switch_on_eop && key->u.primitive_restart)
441 partial_vs_wave = true;
442
443 /* If the WD switch is false, the IA switch must be false too. */
444 assert(wd_switch_on_eop || !ia_switch_on_eop);
445 }
446
447 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
448 if (sscreen->info.chip_class <= GFX8 && ia_switch_on_eoi)
449 partial_es_wave = true;
450
451 return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
452 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
453 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
454 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
455 S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= GFX7 ? wd_switch_on_eop : 0) |
456 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
457 S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == GFX8 ?
458 max_primgroup_in_wave : 0) |
459 S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) |
460 S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9);
461 }
462
463 static void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
464 {
465 for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
466 for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
467 for (int multi_instances = 0; multi_instances < 2; multi_instances++)
468 for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
469 for (int count_from_so = 0; count_from_so < 2; count_from_so++)
470 for (int line_stipple = 0; line_stipple < 2; line_stipple++)
471 for (int uses_tess = 0; uses_tess < 2; uses_tess++)
472 for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
473 for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
474 union si_vgt_param_key key;
475
476 key.index = 0;
477 key.u.prim = prim;
478 key.u.uses_instancing = uses_instancing;
479 key.u.multi_instances_smaller_than_primgroup = multi_instances;
480 key.u.primitive_restart = primitive_restart;
481 key.u.count_from_stream_output = count_from_so;
482 key.u.line_stipple_enabled = line_stipple;
483 key.u.uses_tess = uses_tess;
484 key.u.tess_uses_prim_id = tess_uses_primid;
485 key.u.uses_gs = uses_gs;
486
487 sctx->ia_multi_vgt_param[key.index] =
488 si_get_init_multi_vgt_param(sctx->screen, &key);
489 }
490 }
491
492 static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
493 const struct pipe_draw_info *info,
494 enum pipe_prim_type prim,
495 unsigned num_patches,
496 unsigned instance_count,
497 bool primitive_restart)
498 {
499 union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
500 unsigned primgroup_size;
501 unsigned ia_multi_vgt_param;
502
503 if (sctx->tes_shader.cso) {
504 primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
505 } else if (sctx->gs_shader.cso) {
506 primgroup_size = 64; /* recommended with a GS */
507 } else {
508 primgroup_size = 128; /* recommended without a GS and tess */
509 }
510
511 key.u.prim = prim;
512 key.u.uses_instancing = info->indirect || instance_count > 1;
513 key.u.multi_instances_smaller_than_primgroup =
514 info->indirect ||
515 (instance_count > 1 &&
516 (info->count_from_stream_output ||
517 si_num_prims_for_vertices(info, prim) < primgroup_size));
518 key.u.primitive_restart = primitive_restart;
519 key.u.count_from_stream_output = info->count_from_stream_output != NULL;
520
521 ia_multi_vgt_param = sctx->ia_multi_vgt_param[key.index] |
522 S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
523
524 if (sctx->gs_shader.cso) {
525 /* GS requirement. */
526 if (sctx->chip_class <= GFX8 &&
527 SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
528 ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
529
530 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
531 * The hw doc says all multi-SE chips are affected, but Vulkan
532 * only applies it to Hawaii. Do what Vulkan does.
533 */
534 if (sctx->family == CHIP_HAWAII &&
535 G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
536 (info->indirect ||
537 (instance_count > 1 &&
538 (info->count_from_stream_output ||
539 si_num_prims_for_vertices(info, prim) <= 1))))
540 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
541 }
542
543 return ia_multi_vgt_param;
544 }
545
546 /* rast_prim is the primitive type after GS. */
547 static void si_emit_rasterizer_prim_state(struct si_context *sctx)
548 {
549 struct radeon_cmdbuf *cs = sctx->gfx_cs;
550 enum pipe_prim_type rast_prim = sctx->current_rast_prim;
551 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
552
553 /* Skip this if not rendering lines. */
554 if (!util_prim_is_lines(rast_prim))
555 return;
556
557 if (rast_prim == sctx->last_rast_prim &&
558 rs->pa_sc_line_stipple == sctx->last_sc_line_stipple)
559 return;
560
561 /* For lines, reset the stipple pattern at each primitive. Otherwise,
562 * reset the stipple pattern at each packet (line strips, line loops).
563 */
564 radeon_set_context_reg(cs, R_028A0C_PA_SC_LINE_STIPPLE,
565 rs->pa_sc_line_stipple |
566 S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2));
567
568 sctx->last_rast_prim = rast_prim;
569 sctx->last_sc_line_stipple = rs->pa_sc_line_stipple;
570 sctx->context_roll = true;
571 }
572
573 static void si_emit_vs_state(struct si_context *sctx,
574 const struct pipe_draw_info *info)
575 {
576 sctx->current_vs_state &= C_VS_STATE_INDEXED;
577 sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
578
579 if (sctx->num_vs_blit_sgprs) {
580 /* Re-emit the state after we leave u_blitter. */
581 sctx->last_vs_state = ~0;
582 return;
583 }
584
585 if (sctx->current_vs_state != sctx->last_vs_state) {
586 struct radeon_cmdbuf *cs = sctx->gfx_cs;
587
588 /* For the API vertex shader (VS_STATE_INDEXED). */
589 radeon_set_sh_reg(cs,
590 sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] +
591 SI_SGPR_VS_STATE_BITS * 4,
592 sctx->current_vs_state);
593
594 /* For vertex color clamping, which is done in the last stage
595 * before the rasterizer. */
596 if (sctx->gs_shader.cso || sctx->tes_shader.cso) {
597 /* GS copy shader or TES if GS is missing. */
598 radeon_set_sh_reg(cs,
599 R_00B130_SPI_SHADER_USER_DATA_VS_0 +
600 SI_SGPR_VS_STATE_BITS * 4,
601 sctx->current_vs_state);
602 }
603
604 sctx->last_vs_state = sctx->current_vs_state;
605 }
606 }
607
608 static inline bool si_prim_restart_index_changed(struct si_context *sctx,
609 bool primitive_restart,
610 unsigned restart_index)
611 {
612 return primitive_restart &&
613 (restart_index != sctx->last_restart_index ||
614 sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN);
615 }
616
617 static void si_emit_draw_registers(struct si_context *sctx,
618 const struct pipe_draw_info *info,
619 enum pipe_prim_type prim,
620 unsigned num_patches,
621 unsigned instance_count,
622 bool primitive_restart)
623 {
624 struct radeon_cmdbuf *cs = sctx->gfx_cs;
625 unsigned vgt_prim = si_conv_pipe_prim(prim);
626 unsigned ia_multi_vgt_param;
627
628 ia_multi_vgt_param = si_get_ia_multi_vgt_param(sctx, info, prim, num_patches,
629 instance_count, primitive_restart);
630
631 /* Draw state. */
632 if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
633 if (sctx->chip_class >= GFX9)
634 radeon_set_uconfig_reg_idx(cs, sctx->screen,
635 R_030960_IA_MULTI_VGT_PARAM, 4,
636 ia_multi_vgt_param);
637 else if (sctx->chip_class >= GFX7)
638 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
639 else
640 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
641
642 sctx->last_multi_vgt_param = ia_multi_vgt_param;
643 }
644 if (vgt_prim != sctx->last_prim) {
645 if (sctx->chip_class >= GFX7)
646 radeon_set_uconfig_reg_idx(cs, sctx->screen,
647 R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
648 else
649 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, vgt_prim);
650
651 sctx->last_prim = vgt_prim;
652 }
653
654 /* Primitive restart. */
655 if (primitive_restart != sctx->last_primitive_restart_en) {
656 if (sctx->chip_class >= GFX9)
657 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
658 primitive_restart);
659 else
660 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
661 primitive_restart);
662
663 sctx->last_primitive_restart_en = primitive_restart;
664
665 }
666 if (si_prim_restart_index_changed(sctx, primitive_restart, info->restart_index)) {
667 radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
668 info->restart_index);
669 sctx->last_restart_index = info->restart_index;
670 sctx->context_roll = true;
671 }
672 }
673
674 static void si_emit_draw_packets(struct si_context *sctx,
675 const struct pipe_draw_info *info,
676 struct pipe_resource *indexbuf,
677 unsigned index_size,
678 unsigned index_offset,
679 unsigned instance_count)
680 {
681 struct pipe_draw_indirect_info *indirect = info->indirect;
682 struct radeon_cmdbuf *cs = sctx->gfx_cs;
683 unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
684 bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
685 uint32_t index_max_size = 0;
686 uint64_t index_va = 0;
687
688 if (info->count_from_stream_output) {
689 struct si_streamout_target *t =
690 (struct si_streamout_target*)info->count_from_stream_output;
691
692 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE,
693 t->stride_in_dw);
694 si_cp_copy_data(sctx, sctx->gfx_cs,
695 COPY_DATA_REG, NULL,
696 R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2,
697 COPY_DATA_SRC_MEM, t->buf_filled_size,
698 t->buf_filled_size_offset);
699 }
700
701 /* draw packet */
702 if (index_size) {
703 if (index_size != sctx->last_index_size) {
704 unsigned index_type;
705
706 /* index type */
707 switch (index_size) {
708 case 1:
709 index_type = V_028A7C_VGT_INDEX_8;
710 break;
711 case 2:
712 index_type = V_028A7C_VGT_INDEX_16 |
713 (SI_BIG_ENDIAN && sctx->chip_class <= GFX7 ?
714 V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
715 break;
716 case 4:
717 index_type = V_028A7C_VGT_INDEX_32 |
718 (SI_BIG_ENDIAN && sctx->chip_class <= GFX7 ?
719 V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
720 break;
721 default:
722 assert(!"unreachable");
723 return;
724 }
725
726 if (sctx->chip_class >= GFX9) {
727 radeon_set_uconfig_reg_idx(cs, sctx->screen,
728 R_03090C_VGT_INDEX_TYPE, 2,
729 index_type);
730 } else {
731 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
732 radeon_emit(cs, index_type);
733 }
734
735 sctx->last_index_size = index_size;
736 }
737
738 index_max_size = (indexbuf->width0 - index_offset) /
739 index_size;
740 index_va = si_resource(indexbuf)->gpu_address + index_offset;
741
742 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
743 si_resource(indexbuf),
744 RADEON_USAGE_READ, RADEON_PRIO_INDEX_BUFFER);
745 } else {
746 /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
747 * so the state must be re-emitted before the next indexed draw.
748 */
749 if (sctx->chip_class >= GFX7)
750 sctx->last_index_size = -1;
751 }
752
753 if (indirect) {
754 uint64_t indirect_va = si_resource(indirect->buffer)->gpu_address;
755
756 assert(indirect_va % 8 == 0);
757
758 si_invalidate_draw_sh_constants(sctx);
759
760 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
761 radeon_emit(cs, 1);
762 radeon_emit(cs, indirect_va);
763 radeon_emit(cs, indirect_va >> 32);
764
765 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
766 si_resource(indirect->buffer),
767 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
768
769 unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA
770 : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
771
772 assert(indirect->offset % 4 == 0);
773
774 if (index_size) {
775 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
776 radeon_emit(cs, index_va);
777 radeon_emit(cs, index_va >> 32);
778
779 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
780 radeon_emit(cs, index_max_size);
781 }
782
783 if (!sctx->screen->has_draw_indirect_multi) {
784 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT
785 : PKT3_DRAW_INDIRECT,
786 3, render_cond_bit));
787 radeon_emit(cs, indirect->offset);
788 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
789 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
790 radeon_emit(cs, di_src_sel);
791 } else {
792 uint64_t count_va = 0;
793
794 if (indirect->indirect_draw_count) {
795 struct si_resource *params_buf =
796 si_resource(indirect->indirect_draw_count);
797
798 radeon_add_to_buffer_list(
799 sctx, sctx->gfx_cs, params_buf,
800 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
801
802 count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
803 }
804
805 radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI :
806 PKT3_DRAW_INDIRECT_MULTI,
807 8, render_cond_bit));
808 radeon_emit(cs, indirect->offset);
809 radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
810 radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
811 radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
812 S_2C3_DRAW_INDEX_ENABLE(1) |
813 S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
814 radeon_emit(cs, indirect->draw_count);
815 radeon_emit(cs, count_va);
816 radeon_emit(cs, count_va >> 32);
817 radeon_emit(cs, indirect->stride);
818 radeon_emit(cs, di_src_sel);
819 }
820 } else {
821 int base_vertex;
822
823 if (sctx->last_instance_count == SI_INSTANCE_COUNT_UNKNOWN ||
824 sctx->last_instance_count != instance_count) {
825 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
826 radeon_emit(cs, instance_count);
827 sctx->last_instance_count = instance_count;
828 }
829
830 /* Base vertex and start instance. */
831 base_vertex = index_size ? info->index_bias : info->start;
832
833 if (sctx->num_vs_blit_sgprs) {
834 /* Re-emit draw constants after we leave u_blitter. */
835 si_invalidate_draw_sh_constants(sctx);
836
837 /* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
838 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4,
839 sctx->num_vs_blit_sgprs);
840 radeon_emit_array(cs, sctx->vs_blit_sh_data,
841 sctx->num_vs_blit_sgprs);
842 } else if (base_vertex != sctx->last_base_vertex ||
843 sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
844 info->start_instance != sctx->last_start_instance ||
845 info->drawid != sctx->last_drawid ||
846 sh_base_reg != sctx->last_sh_base_reg) {
847 radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
848 radeon_emit(cs, base_vertex);
849 radeon_emit(cs, info->start_instance);
850 radeon_emit(cs, info->drawid);
851
852 sctx->last_base_vertex = base_vertex;
853 sctx->last_start_instance = info->start_instance;
854 sctx->last_drawid = info->drawid;
855 sctx->last_sh_base_reg = sh_base_reg;
856 }
857
858 if (index_size) {
859 index_va += info->start * index_size;
860
861 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
862 radeon_emit(cs, index_max_size);
863 radeon_emit(cs, index_va);
864 radeon_emit(cs, index_va >> 32);
865 radeon_emit(cs, info->count);
866 radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
867 } else {
868 radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
869 radeon_emit(cs, info->count);
870 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
871 S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
872 }
873 }
874 }
875
876 static void si_emit_surface_sync(struct si_context *sctx,
877 unsigned cp_coher_cntl)
878 {
879 struct radeon_cmdbuf *cs = sctx->gfx_cs;
880
881 if (sctx->chip_class >= GFX9 || !sctx->has_graphics) {
882 /* Flush caches and wait for the caches to assert idle. */
883 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
884 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
885 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
886 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
887 radeon_emit(cs, 0); /* CP_COHER_BASE */
888 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
889 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
890 } else {
891 /* ACQUIRE_MEM is only required on a compute ring. */
892 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
893 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
894 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
895 radeon_emit(cs, 0); /* CP_COHER_BASE */
896 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
897 }
898
899 /* ACQUIRE_MEM has an implicit context roll if the current context
900 * is busy. */
901 if (sctx->has_graphics)
902 sctx->context_roll = true;
903 }
904
905 void si_emit_cache_flush(struct si_context *sctx)
906 {
907 struct radeon_cmdbuf *cs = sctx->gfx_cs;
908 uint32_t flags = sctx->flags;
909
910 if (!sctx->has_graphics) {
911 /* Only process compute flags. */
912 flags &= SI_CONTEXT_INV_ICACHE |
913 SI_CONTEXT_INV_SMEM_L1 |
914 SI_CONTEXT_INV_VMEM_L1 |
915 SI_CONTEXT_INV_GLOBAL_L2 |
916 SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
917 SI_CONTEXT_INV_L2_METADATA |
918 SI_CONTEXT_CS_PARTIAL_FLUSH;
919 }
920
921 uint32_t cp_coher_cntl = 0;
922 uint32_t flush_cb_db = flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
923 SI_CONTEXT_FLUSH_AND_INV_DB);
924
925 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
926 sctx->num_cb_cache_flushes++;
927 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
928 sctx->num_db_cache_flushes++;
929
930 /* GFX6 has a bug that it always flushes ICACHE and KCACHE if either
931 * bit is set. An alternative way is to write SQC_CACHES, but that
932 * doesn't seem to work reliably. Since the bug doesn't affect
933 * correctness (it only does more work than necessary) and
934 * the performance impact is likely negligible, there is no plan
935 * to add a workaround for it.
936 */
937
938 if (flags & SI_CONTEXT_INV_ICACHE)
939 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
940 if (flags & SI_CONTEXT_INV_SMEM_L1)
941 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
942
943 if (sctx->chip_class <= GFX8) {
944 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
945 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
946 S_0085F0_CB0_DEST_BASE_ENA(1) |
947 S_0085F0_CB1_DEST_BASE_ENA(1) |
948 S_0085F0_CB2_DEST_BASE_ENA(1) |
949 S_0085F0_CB3_DEST_BASE_ENA(1) |
950 S_0085F0_CB4_DEST_BASE_ENA(1) |
951 S_0085F0_CB5_DEST_BASE_ENA(1) |
952 S_0085F0_CB6_DEST_BASE_ENA(1) |
953 S_0085F0_CB7_DEST_BASE_ENA(1);
954
955 /* Necessary for DCC */
956 if (sctx->chip_class == GFX8)
957 si_cp_release_mem(sctx, cs,
958 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
959 0, EOP_DST_SEL_MEM, EOP_INT_SEL_NONE,
960 EOP_DATA_SEL_DISCARD, NULL,
961 0, 0, SI_NOT_QUERY);
962 }
963 if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
964 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
965 S_0085F0_DB_DEST_BASE_ENA(1);
966 }
967
968 if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
969 /* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
970 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
971 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
972 }
973 if (flags & (SI_CONTEXT_FLUSH_AND_INV_DB |
974 SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
975 /* Flush HTILE. SURFACE_SYNC will wait for idle. */
976 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
977 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
978 }
979
980 /* Wait for shader engines to go idle.
981 * VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
982 * for everything including CB/DB cache flushes.
983 */
984 if (!flush_cb_db) {
985 if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
986 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
987 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
988 /* Only count explicit shader flushes, not implicit ones
989 * done by SURFACE_SYNC.
990 */
991 sctx->num_vs_flushes++;
992 sctx->num_ps_flushes++;
993 } else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
994 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
995 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
996 sctx->num_vs_flushes++;
997 }
998 }
999
1000 if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH &&
1001 sctx->compute_is_busy) {
1002 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1003 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1004 sctx->num_cs_flushes++;
1005 sctx->compute_is_busy = false;
1006 }
1007
1008 /* VGT state synchronization. */
1009 if (flags & SI_CONTEXT_VGT_FLUSH) {
1010 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1011 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1012 }
1013 if (flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
1014 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1015 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1016 }
1017
1018 /* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
1019 * wait for idle on GFX9. We have to use a TS event.
1020 */
1021 if (sctx->chip_class >= GFX9 && flush_cb_db) {
1022 uint64_t va;
1023 unsigned tc_flags, cb_db_event;
1024
1025 /* Set the CB/DB flush event. */
1026 switch (flush_cb_db) {
1027 case SI_CONTEXT_FLUSH_AND_INV_CB:
1028 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
1029 break;
1030 case SI_CONTEXT_FLUSH_AND_INV_DB:
1031 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
1032 break;
1033 default:
1034 /* both CB & DB */
1035 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1036 }
1037
1038 /* These are the only allowed combinations. If you need to
1039 * do multiple operations at once, do them separately.
1040 * All operations that invalidate L2 also seem to invalidate
1041 * metadata. Volatile (VOL) and WC flushes are not listed here.
1042 *
1043 * TC | TC_WB = writeback & invalidate L2 & L1
1044 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1045 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1046 * TC | TC_NC = invalidate L2 for MTYPE == NC
1047 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1048 * TCL1 = invalidate L1
1049 */
1050 tc_flags = 0;
1051
1052 if (flags & SI_CONTEXT_INV_L2_METADATA) {
1053 tc_flags = EVENT_TC_ACTION_ENA |
1054 EVENT_TC_MD_ACTION_ENA;
1055 }
1056
1057 /* Ideally flush TC together with CB/DB. */
1058 if (flags & SI_CONTEXT_INV_GLOBAL_L2) {
1059 /* Writeback and invalidate everything in L2 & L1. */
1060 tc_flags = EVENT_TC_ACTION_ENA |
1061 EVENT_TC_WB_ACTION_ENA;
1062
1063 /* Clear the flags. */
1064 flags &= ~(SI_CONTEXT_INV_GLOBAL_L2 |
1065 SI_CONTEXT_WRITEBACK_GLOBAL_L2 |
1066 SI_CONTEXT_INV_VMEM_L1);
1067 sctx->num_L2_invalidates++;
1068 }
1069
1070 /* Do the flush (enqueue the event and wait for it). */
1071 va = sctx->wait_mem_scratch->gpu_address;
1072 sctx->wait_mem_number++;
1073
1074 si_cp_release_mem(sctx, cs, cb_db_event, tc_flags,
1075 EOP_DST_SEL_MEM,
1076 EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM,
1077 EOP_DATA_SEL_VALUE_32BIT,
1078 sctx->wait_mem_scratch, va,
1079 sctx->wait_mem_number, SI_NOT_QUERY);
1080 si_cp_wait_mem(sctx, cs, va, sctx->wait_mem_number, 0xffffffff,
1081 WAIT_REG_MEM_EQUAL);
1082 }
1083
1084 /* Make sure ME is idle (it executes most packets) before continuing.
1085 * This prevents read-after-write hazards between PFP and ME.
1086 */
1087 if (sctx->has_graphics &&
1088 (cp_coher_cntl ||
1089 (flags & (SI_CONTEXT_CS_PARTIAL_FLUSH |
1090 SI_CONTEXT_INV_VMEM_L1 |
1091 SI_CONTEXT_INV_GLOBAL_L2 |
1092 SI_CONTEXT_WRITEBACK_GLOBAL_L2)))) {
1093 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1094 radeon_emit(cs, 0);
1095 }
1096
1097 /* GFX6-GFX8 only:
1098 * When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
1099 * waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
1100 *
1101 * cp_coher_cntl should contain all necessary flags except TC flags
1102 * at this point.
1103 *
1104 * GFX6-GFX7 don't support L2 write-back.
1105 */
1106 if (flags & SI_CONTEXT_INV_GLOBAL_L2 ||
1107 (sctx->chip_class <= GFX7 &&
1108 (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2))) {
1109 /* Invalidate L1 & L2. (L1 is always invalidated on GFX6)
1110 * WB must be set on GFX8+ when TC_ACTION is set.
1111 */
1112 si_emit_surface_sync(sctx, cp_coher_cntl |
1113 S_0085F0_TC_ACTION_ENA(1) |
1114 S_0085F0_TCL1_ACTION_ENA(1) |
1115 S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8));
1116 cp_coher_cntl = 0;
1117 sctx->num_L2_invalidates++;
1118 } else {
1119 /* L1 invalidation and L2 writeback must be done separately,
1120 * because both operations can't be done together.
1121 */
1122 if (flags & SI_CONTEXT_WRITEBACK_GLOBAL_L2) {
1123 /* WB = write-back
1124 * NC = apply to non-coherent MTYPEs
1125 * (i.e. MTYPE <= 1, which is what we use everywhere)
1126 *
1127 * WB doesn't work without NC.
1128 */
1129 si_emit_surface_sync(sctx, cp_coher_cntl |
1130 S_0301F0_TC_WB_ACTION_ENA(1) |
1131 S_0301F0_TC_NC_ACTION_ENA(1));
1132 cp_coher_cntl = 0;
1133 sctx->num_L2_writebacks++;
1134 }
1135 if (flags & SI_CONTEXT_INV_VMEM_L1) {
1136 /* Invalidate per-CU VMEM L1. */
1137 si_emit_surface_sync(sctx, cp_coher_cntl |
1138 S_0085F0_TCL1_ACTION_ENA(1));
1139 cp_coher_cntl = 0;
1140 }
1141 }
1142
1143 /* If TC flushes haven't cleared this... */
1144 if (cp_coher_cntl)
1145 si_emit_surface_sync(sctx, cp_coher_cntl);
1146
1147 if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
1148 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1149 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1150 EVENT_INDEX(0));
1151 } else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
1152 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1153 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1154 EVENT_INDEX(0));
1155 }
1156
1157 sctx->flags = 0;
1158 }
1159
1160 static void si_get_draw_start_count(struct si_context *sctx,
1161 const struct pipe_draw_info *info,
1162 unsigned *start, unsigned *count)
1163 {
1164 struct pipe_draw_indirect_info *indirect = info->indirect;
1165
1166 if (indirect) {
1167 unsigned indirect_count;
1168 struct pipe_transfer *transfer;
1169 unsigned begin, end;
1170 unsigned map_size;
1171 unsigned *data;
1172
1173 if (indirect->indirect_draw_count) {
1174 data = pipe_buffer_map_range(&sctx->b,
1175 indirect->indirect_draw_count,
1176 indirect->indirect_draw_count_offset,
1177 sizeof(unsigned),
1178 PIPE_TRANSFER_READ, &transfer);
1179
1180 indirect_count = *data;
1181
1182 pipe_buffer_unmap(&sctx->b, transfer);
1183 } else {
1184 indirect_count = indirect->draw_count;
1185 }
1186
1187 if (!indirect_count) {
1188 *start = *count = 0;
1189 return;
1190 }
1191
1192 map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
1193 data = pipe_buffer_map_range(&sctx->b, indirect->buffer,
1194 indirect->offset, map_size,
1195 PIPE_TRANSFER_READ, &transfer);
1196
1197 begin = UINT_MAX;
1198 end = 0;
1199
1200 for (unsigned i = 0; i < indirect_count; ++i) {
1201 unsigned count = data[0];
1202 unsigned start = data[2];
1203
1204 if (count > 0) {
1205 begin = MIN2(begin, start);
1206 end = MAX2(end, start + count);
1207 }
1208
1209 data += indirect->stride / sizeof(unsigned);
1210 }
1211
1212 pipe_buffer_unmap(&sctx->b, transfer);
1213
1214 if (begin < end) {
1215 *start = begin;
1216 *count = end - begin;
1217 } else {
1218 *start = *count = 0;
1219 }
1220 } else {
1221 *start = info->start;
1222 *count = info->count;
1223 }
1224 }
1225
1226 static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
1227 enum pipe_prim_type prim, unsigned instance_count,
1228 bool primitive_restart, unsigned skip_atom_mask)
1229 {
1230 unsigned num_patches = 0;
1231
1232 si_emit_rasterizer_prim_state(sctx);
1233 if (sctx->tes_shader.cso)
1234 si_emit_derived_tess_state(sctx, info, &num_patches);
1235
1236 /* Emit state atoms. */
1237 unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
1238 while (mask)
1239 sctx->atoms.array[u_bit_scan(&mask)].emit(sctx);
1240
1241 sctx->dirty_atoms &= skip_atom_mask;
1242
1243 /* Emit states. */
1244 mask = sctx->dirty_states;
1245 while (mask) {
1246 unsigned i = u_bit_scan(&mask);
1247 struct si_pm4_state *state = sctx->queued.array[i];
1248
1249 if (!state || sctx->emitted.array[i] == state)
1250 continue;
1251
1252 si_pm4_emit(sctx, state);
1253 sctx->emitted.array[i] = state;
1254 }
1255 sctx->dirty_states = 0;
1256
1257 /* Emit draw states. */
1258 si_emit_vs_state(sctx, info);
1259 si_emit_draw_registers(sctx, info, prim, num_patches, instance_count,
1260 primitive_restart);
1261 }
1262
1263 static void si_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info)
1264 {
1265 struct si_context *sctx = (struct si_context *)ctx;
1266 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1267 struct pipe_resource *indexbuf = info->index.resource;
1268 unsigned dirty_tex_counter;
1269 enum pipe_prim_type rast_prim, prim = info->mode;
1270 unsigned index_size = info->index_size;
1271 unsigned index_offset = info->indirect ? info->start * index_size : 0;
1272 unsigned instance_count = info->instance_count;
1273 bool primitive_restart = info->primitive_restart;
1274
1275 if (likely(!info->indirect)) {
1276 /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
1277 * no workaround for indirect draws, but we can at least skip
1278 * direct draws.
1279 */
1280 if (unlikely(!instance_count))
1281 return;
1282
1283 /* Handle count == 0. */
1284 if (unlikely(!info->count &&
1285 (index_size || !info->count_from_stream_output)))
1286 return;
1287 }
1288
1289 if (unlikely(!sctx->vs_shader.cso ||
1290 !rs ||
1291 (!sctx->ps_shader.cso && !rs->rasterizer_discard) ||
1292 (!!sctx->tes_shader.cso != (prim == PIPE_PRIM_PATCHES)))) {
1293 assert(0);
1294 return;
1295 }
1296
1297 /* Recompute and re-emit the texture resource states if needed. */
1298 dirty_tex_counter = p_atomic_read(&sctx->screen->dirty_tex_counter);
1299 if (unlikely(dirty_tex_counter != sctx->last_dirty_tex_counter)) {
1300 sctx->last_dirty_tex_counter = dirty_tex_counter;
1301 sctx->framebuffer.dirty_cbufs |=
1302 ((1 << sctx->framebuffer.state.nr_cbufs) - 1);
1303 sctx->framebuffer.dirty_zsbuf = true;
1304 si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
1305 si_update_all_texture_descriptors(sctx);
1306 }
1307
1308 si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
1309
1310 /* Set the rasterization primitive type.
1311 *
1312 * This must be done after si_decompress_textures, which can call
1313 * draw_vbo recursively, and before si_update_shaders, which uses
1314 * current_rast_prim for this draw_vbo call. */
1315 if (sctx->gs_shader.cso)
1316 rast_prim = sctx->gs_shader.cso->gs_output_prim;
1317 else if (sctx->tes_shader.cso) {
1318 if (sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1319 rast_prim = PIPE_PRIM_POINTS;
1320 else
1321 rast_prim = sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1322 } else
1323 rast_prim = prim;
1324
1325 if (rast_prim != sctx->current_rast_prim) {
1326 if (util_prim_is_points_or_lines(sctx->current_rast_prim) !=
1327 util_prim_is_points_or_lines(rast_prim))
1328 si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
1329
1330 sctx->current_rast_prim = rast_prim;
1331 sctx->do_update_shaders = true;
1332 }
1333
1334 if (sctx->tes_shader.cso &&
1335 sctx->screen->has_ls_vgpr_init_bug) {
1336 /* Determine whether the LS VGPR fix should be applied.
1337 *
1338 * It is only required when num input CPs > num output CPs,
1339 * which cannot happen with the fixed function TCS. We should
1340 * also update this bit when switching from TCS to fixed
1341 * function TCS.
1342 */
1343 struct si_shader_selector *tcs = sctx->tcs_shader.cso;
1344 bool ls_vgpr_fix =
1345 tcs &&
1346 info->vertices_per_patch >
1347 tcs->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
1348
1349 if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
1350 sctx->ls_vgpr_fix = ls_vgpr_fix;
1351 sctx->do_update_shaders = true;
1352 }
1353 }
1354
1355 if (sctx->gs_shader.cso) {
1356 /* Determine whether the GS triangle strip adjacency fix should
1357 * be applied. Rotate every other triangle if
1358 * - triangle strips with adjacency are fed to the GS and
1359 * - primitive restart is disabled (the rotation doesn't help
1360 * when the restart occurs after an odd number of triangles).
1361 */
1362 bool gs_tri_strip_adj_fix =
1363 !sctx->tes_shader.cso &&
1364 prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY &&
1365 !info->primitive_restart;
1366
1367 if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
1368 sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
1369 sctx->do_update_shaders = true;
1370 }
1371 }
1372
1373 if (sctx->do_update_shaders && !si_update_shaders(sctx))
1374 goto return_cleanup;
1375
1376 if (index_size) {
1377 /* Translate or upload, if needed. */
1378 /* 8-bit indices are supported on GFX8. */
1379 if (sctx->chip_class <= GFX7 && index_size == 1) {
1380 unsigned start, count, start_offset, size, offset;
1381 void *ptr;
1382
1383 si_get_draw_start_count(sctx, info, &start, &count);
1384 start_offset = start * 2;
1385 size = count * 2;
1386
1387 indexbuf = NULL;
1388 u_upload_alloc(ctx->stream_uploader, start_offset,
1389 size,
1390 si_optimal_tcc_alignment(sctx, size),
1391 &offset, &indexbuf, &ptr);
1392 if (!indexbuf)
1393 return;
1394
1395 util_shorten_ubyte_elts_to_userptr(&sctx->b, info, 0, 0,
1396 index_offset + start,
1397 count, ptr);
1398
1399 /* info->start will be added by the drawing code */
1400 index_offset = offset - start_offset;
1401 index_size = 2;
1402 } else if (info->has_user_indices) {
1403 unsigned start_offset;
1404
1405 assert(!info->indirect);
1406 start_offset = info->start * index_size;
1407
1408 indexbuf = NULL;
1409 u_upload_data(ctx->stream_uploader, start_offset,
1410 info->count * index_size,
1411 sctx->screen->info.tcc_cache_line_size,
1412 (char*)info->index.user + start_offset,
1413 &index_offset, &indexbuf);
1414 if (!indexbuf)
1415 return;
1416
1417 /* info->start will be added by the drawing code */
1418 index_offset -= start_offset;
1419 } else if (sctx->chip_class <= GFX7 &&
1420 si_resource(indexbuf)->TC_L2_dirty) {
1421 /* GFX8 reads index buffers through TC L2, so it doesn't
1422 * need this. */
1423 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1424 si_resource(indexbuf)->TC_L2_dirty = false;
1425 }
1426 }
1427
1428 if (info->indirect) {
1429 struct pipe_draw_indirect_info *indirect = info->indirect;
1430
1431 /* Add the buffer size for memory checking in need_cs_space. */
1432 si_context_add_resource_size(sctx, indirect->buffer);
1433
1434 /* Indirect buffers use TC L2 on GFX9, but not older hw. */
1435 if (sctx->chip_class <= GFX8) {
1436 if (si_resource(indirect->buffer)->TC_L2_dirty) {
1437 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1438 si_resource(indirect->buffer)->TC_L2_dirty = false;
1439 }
1440
1441 if (indirect->indirect_draw_count &&
1442 si_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
1443 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
1444 si_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
1445 }
1446 }
1447 }
1448
1449 si_need_gfx_cs_space(sctx);
1450
1451 if (sctx->bo_list_add_all_gfx_resources)
1452 si_gfx_resources_add_all_to_bo_list(sctx);
1453
1454 /* Since we've called si_context_add_resource_size for vertex buffers,
1455 * this must be called after si_need_cs_space, because we must let
1456 * need_cs_space flush before we add buffers to the buffer list.
1457 */
1458 if (!si_upload_vertex_buffer_descriptors(sctx))
1459 goto return_cleanup;
1460
1461 /* Vega10/Raven scissor bug workaround. When any context register is
1462 * written (i.e. the GPU rolls the context), PA_SC_VPORT_SCISSOR
1463 * registers must be written too.
1464 */
1465 bool has_gfx9_scissor_bug = sctx->screen->has_gfx9_scissor_bug;
1466 unsigned masked_atoms = 0;
1467
1468 if (has_gfx9_scissor_bug) {
1469 masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
1470
1471 if (info->count_from_stream_output ||
1472 sctx->dirty_atoms & si_atoms_that_always_roll_context() ||
1473 sctx->dirty_states & si_states_that_always_roll_context())
1474 sctx->context_roll = true;
1475 }
1476
1477 /* Use optimal packet order based on whether we need to sync the pipeline. */
1478 if (unlikely(sctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB |
1479 SI_CONTEXT_FLUSH_AND_INV_DB |
1480 SI_CONTEXT_PS_PARTIAL_FLUSH |
1481 SI_CONTEXT_CS_PARTIAL_FLUSH))) {
1482 /* If we have to wait for idle, set all states first, so that all
1483 * SET packets are processed in parallel with previous draw calls.
1484 * Then draw and prefetch at the end. This ensures that the time
1485 * the CUs are idle is very short.
1486 */
1487 if (unlikely(sctx->flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
1488 masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
1489
1490 if (!si_upload_graphics_shader_descriptors(sctx))
1491 goto return_cleanup;
1492
1493 /* Emit all states except possibly render condition. */
1494 si_emit_all_states(sctx, info, prim, instance_count,
1495 primitive_restart, masked_atoms);
1496 si_emit_cache_flush(sctx);
1497 /* <-- CUs are idle here. */
1498
1499 if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond))
1500 sctx->atoms.s.render_cond.emit(sctx);
1501
1502 if (has_gfx9_scissor_bug &&
1503 (sctx->context_roll ||
1504 si_is_atom_dirty(sctx, &sctx->atoms.s.scissors)))
1505 sctx->atoms.s.scissors.emit(sctx);
1506
1507 sctx->dirty_atoms = 0;
1508
1509 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset,
1510 instance_count);
1511 /* <-- CUs are busy here. */
1512
1513 /* Start prefetches after the draw has been started. Both will run
1514 * in parallel, but starting the draw first is more important.
1515 */
1516 if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
1517 cik_emit_prefetch_L2(sctx, false);
1518 } else {
1519 /* If we don't wait for idle, start prefetches first, then set
1520 * states, and draw at the end.
1521 */
1522 if (sctx->flags)
1523 si_emit_cache_flush(sctx);
1524
1525 /* Only prefetch the API VS and VBO descriptors. */
1526 if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
1527 cik_emit_prefetch_L2(sctx, true);
1528
1529 if (!si_upload_graphics_shader_descriptors(sctx))
1530 return;
1531
1532 si_emit_all_states(sctx, info, prim, instance_count,
1533 primitive_restart, masked_atoms);
1534
1535 if (has_gfx9_scissor_bug &&
1536 (sctx->context_roll ||
1537 si_is_atom_dirty(sctx, &sctx->atoms.s.scissors)))
1538 sctx->atoms.s.scissors.emit(sctx);
1539
1540 sctx->dirty_atoms = 0;
1541
1542 si_emit_draw_packets(sctx, info, indexbuf, index_size, index_offset,
1543 instance_count);
1544
1545 /* Prefetch the remaining shaders after the draw has been
1546 * started. */
1547 if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
1548 cik_emit_prefetch_L2(sctx, false);
1549 }
1550
1551 /* Clear the context roll flag after the draw call. */
1552 sctx->context_roll = false;
1553
1554 if (unlikely(sctx->current_saved_cs)) {
1555 si_trace_emit(sctx);
1556 si_log_draw_state(sctx, sctx->log);
1557 }
1558
1559 /* Workaround for a VGT hang when streamout is enabled.
1560 * It must be done after drawing. */
1561 if ((sctx->family == CHIP_HAWAII ||
1562 sctx->family == CHIP_TONGA ||
1563 sctx->family == CHIP_FIJI) &&
1564 si_get_strmout_en(sctx)) {
1565 sctx->flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
1566 }
1567
1568 if (unlikely(sctx->decompression_enabled)) {
1569 sctx->num_decompress_calls++;
1570 } else {
1571 sctx->num_draw_calls++;
1572 if (sctx->framebuffer.state.nr_cbufs > 1)
1573 sctx->num_mrt_draw_calls++;
1574 if (primitive_restart)
1575 sctx->num_prim_restart_calls++;
1576 if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
1577 sctx->num_spill_draw_calls++;
1578 }
1579
1580 return_cleanup:
1581 if (index_size && indexbuf != info->index.resource)
1582 pipe_resource_reference(&indexbuf, NULL);
1583 }
1584
1585 static void
1586 si_draw_rectangle(struct blitter_context *blitter,
1587 void *vertex_elements_cso,
1588 blitter_get_vs_func get_vs,
1589 int x1, int y1, int x2, int y2,
1590 float depth, unsigned num_instances,
1591 enum blitter_attrib_type type,
1592 const union blitter_attrib *attrib)
1593 {
1594 struct pipe_context *pipe = util_blitter_get_pipe(blitter);
1595 struct si_context *sctx = (struct si_context*)pipe;
1596
1597 /* Pack position coordinates as signed int16. */
1598 sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) |
1599 ((uint32_t)(y1 & 0xffff) << 16);
1600 sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) |
1601 ((uint32_t)(y2 & 0xffff) << 16);
1602 sctx->vs_blit_sh_data[2] = fui(depth);
1603
1604 switch (type) {
1605 case UTIL_BLITTER_ATTRIB_COLOR:
1606 memcpy(&sctx->vs_blit_sh_data[3], attrib->color,
1607 sizeof(float)*4);
1608 break;
1609 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
1610 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
1611 memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord,
1612 sizeof(attrib->texcoord));
1613 break;
1614 case UTIL_BLITTER_ATTRIB_NONE:;
1615 }
1616
1617 pipe->bind_vs_state(pipe, si_get_blitter_vs(sctx, type, num_instances));
1618
1619 struct pipe_draw_info info = {};
1620 info.mode = SI_PRIM_RECTANGLE_LIST;
1621 info.count = 3;
1622 info.instance_count = num_instances;
1623
1624 /* Don't set per-stage shader pointers for VS. */
1625 sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
1626 sctx->vertex_buffer_pointer_dirty = false;
1627
1628 si_draw_vbo(pipe, &info);
1629 }
1630
1631 void si_trace_emit(struct si_context *sctx)
1632 {
1633 struct radeon_cmdbuf *cs = sctx->gfx_cs;
1634 uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
1635
1636 si_cp_write_data(sctx, sctx->current_saved_cs->trace_buf,
1637 0, 4, V_370_MEM, V_370_ME, &trace_id);
1638
1639 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
1640 radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
1641
1642 if (sctx->log)
1643 u_log_flush(sctx->log);
1644 }
1645
1646 void si_init_draw_functions(struct si_context *sctx)
1647 {
1648 sctx->b.draw_vbo = si_draw_vbo;
1649
1650 sctx->blitter->draw_rectangle = si_draw_rectangle;
1651
1652 si_init_ia_multi_vgt_param_table(sctx);
1653 }