radeonsi: Set PIPE_SHADER_CAP_MAX_SHADER_IMAGES
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "si_shader.h"
30 #include "sid.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/u_hash.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39 #include "util/u_simple_shaders.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
45 * integer.
46 */
47 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
48 {
49 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
50 sizeof(struct tgsi_token);
51 unsigned size = 4 + tgsi_size + sizeof(sel->so);
52 char *result = (char*)MALLOC(size);
53
54 if (!result)
55 return NULL;
56
57 *((uint32_t*)result) = size;
58 memcpy(result + 4, sel->tokens, tgsi_size);
59 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
60 return result;
61 }
62
63 /** Copy "data" to "ptr" and return the next dword following copied data. */
64 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
65 {
66 memcpy(ptr, data, size);
67 ptr += DIV_ROUND_UP(size, 4);
68 return ptr;
69 }
70
71 /** Read data from "ptr". Return the next dword following the data. */
72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74 memcpy(data, ptr, size);
75 ptr += DIV_ROUND_UP(size, 4);
76 return ptr;
77 }
78
79 /**
80 * Write the size as uint followed by the data. Return the next dword
81 * following the copied data.
82 */
83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85 *ptr++ = size;
86 return write_data(ptr, data, size);
87 }
88
89 /**
90 * Read the size as uint followed by the data. Return both via parameters.
91 * Return the next dword following the data.
92 */
93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95 *size = *ptr++;
96 assert(*data == NULL);
97 *data = malloc(*size);
98 return read_data(ptr, *data, *size);
99 }
100
101 /**
102 * Return the shader binary in a buffer. The first 4 bytes contain its size
103 * as integer.
104 */
105 static void *si_get_shader_binary(struct si_shader *shader)
106 {
107 /* There is always a size of data followed by the data itself. */
108 unsigned relocs_size = shader->binary.reloc_count *
109 sizeof(shader->binary.relocs[0]);
110 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
111 unsigned size =
112 4 + /* total size */
113 4 + /* CRC32 of the data below */
114 align(sizeof(shader->config), 4) +
115 align(sizeof(shader->info), 4) +
116 4 + align(shader->binary.code_size, 4) +
117 4 + align(shader->binary.rodata_size, 4) +
118 4 + align(relocs_size, 4) +
119 4 + align(disasm_size, 4);
120 void *buffer = CALLOC(1, size);
121 uint32_t *ptr = (uint32_t*)buffer;
122
123 if (!buffer)
124 return NULL;
125
126 *ptr++ = size;
127 ptr++; /* CRC32 is calculated at the end. */
128
129 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
130 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
131 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
132 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
133 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
134 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
135 assert((char *)ptr - (char *)buffer == size);
136
137 /* Compute CRC32. */
138 ptr = (uint32_t*)buffer;
139 ptr++;
140 *ptr = util_hash_crc32(ptr + 1, size - 8);
141
142 return buffer;
143 }
144
145 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
146 {
147 uint32_t *ptr = (uint32_t*)binary;
148 uint32_t size = *ptr++;
149 uint32_t crc32 = *ptr++;
150 unsigned chunk_size;
151
152 if (util_hash_crc32(ptr, size - 8) != crc32) {
153 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
154 return false;
155 }
156
157 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
158 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
159 ptr = read_chunk(ptr, (void**)&shader->binary.code,
160 &shader->binary.code_size);
161 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
162 &shader->binary.rodata_size);
163 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
164 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
165 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
166
167 return true;
168 }
169
170 /**
171 * Insert a shader into the cache. It's assumed the shader is not in the cache.
172 * Use si_shader_cache_load_shader before calling this.
173 *
174 * Returns false on failure, in which case the tgsi_binary should be freed.
175 */
176 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
177 void *tgsi_binary,
178 struct si_shader *shader)
179 {
180 void *hw_binary = si_get_shader_binary(shader);
181
182 if (!hw_binary)
183 return false;
184
185 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
186 hw_binary) == NULL) {
187 FREE(hw_binary);
188 return false;
189 }
190
191 return true;
192 }
193
194 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
195 void *tgsi_binary,
196 struct si_shader *shader)
197 {
198 struct hash_entry *entry =
199 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
200 if (!entry)
201 return false;
202
203 return si_load_shader_binary(shader, entry->data);
204 }
205
206 static uint32_t si_shader_cache_key_hash(const void *key)
207 {
208 /* The first dword is the key size. */
209 return util_hash_crc32(key, *(uint32_t*)key);
210 }
211
212 static bool si_shader_cache_key_equals(const void *a, const void *b)
213 {
214 uint32_t *keya = (uint32_t*)a;
215 uint32_t *keyb = (uint32_t*)b;
216
217 /* The first dword is the key size. */
218 if (*keya != *keyb)
219 return false;
220
221 return memcmp(keya, keyb, *keya) == 0;
222 }
223
224 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
225 {
226 FREE((void*)entry->key);
227 FREE(entry->data);
228 }
229
230 bool si_init_shader_cache(struct si_screen *sscreen)
231 {
232 pipe_mutex_init(sscreen->shader_cache_mutex);
233 sscreen->shader_cache =
234 _mesa_hash_table_create(NULL,
235 si_shader_cache_key_hash,
236 si_shader_cache_key_equals);
237 return sscreen->shader_cache != NULL;
238 }
239
240 void si_destroy_shader_cache(struct si_screen *sscreen)
241 {
242 if (sscreen->shader_cache)
243 _mesa_hash_table_destroy(sscreen->shader_cache,
244 si_destroy_shader_cache_entry);
245 pipe_mutex_destroy(sscreen->shader_cache_mutex);
246 }
247
248 /* SHADER STATES */
249
250 static void si_set_tesseval_regs(struct si_shader *shader,
251 struct si_pm4_state *pm4)
252 {
253 struct tgsi_shader_info *info = &shader->selector->info;
254 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
255 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
256 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
257 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
258 unsigned type, partitioning, topology;
259
260 switch (tes_prim_mode) {
261 case PIPE_PRIM_LINES:
262 type = V_028B6C_TESS_ISOLINE;
263 break;
264 case PIPE_PRIM_TRIANGLES:
265 type = V_028B6C_TESS_TRIANGLE;
266 break;
267 case PIPE_PRIM_QUADS:
268 type = V_028B6C_TESS_QUAD;
269 break;
270 default:
271 assert(0);
272 return;
273 }
274
275 switch (tes_spacing) {
276 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
277 partitioning = V_028B6C_PART_FRAC_ODD;
278 break;
279 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
280 partitioning = V_028B6C_PART_FRAC_EVEN;
281 break;
282 case PIPE_TESS_SPACING_EQUAL:
283 partitioning = V_028B6C_PART_INTEGER;
284 break;
285 default:
286 assert(0);
287 return;
288 }
289
290 if (tes_point_mode)
291 topology = V_028B6C_OUTPUT_POINT;
292 else if (tes_prim_mode == PIPE_PRIM_LINES)
293 topology = V_028B6C_OUTPUT_LINE;
294 else if (tes_vertex_order_cw)
295 /* for some reason, this must be the other way around */
296 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
297 else
298 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
299
300 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
301 S_028B6C_TYPE(type) |
302 S_028B6C_PARTITIONING(partitioning) |
303 S_028B6C_TOPOLOGY(topology));
304 }
305
306 static void si_shader_ls(struct si_shader *shader)
307 {
308 struct si_pm4_state *pm4;
309 unsigned num_sgprs, num_user_sgprs;
310 unsigned vgpr_comp_cnt;
311 uint64_t va;
312
313 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
314 if (!pm4)
315 return;
316
317 va = shader->bo->gpu_address;
318 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
319
320 /* We need at least 2 components for LS.
321 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
322 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
323
324 num_user_sgprs = SI_LS_NUM_USER_SGPR;
325 num_sgprs = shader->config.num_sgprs;
326 if (num_user_sgprs > num_sgprs) {
327 /* Last 2 reserved SGPRs are used for VCC */
328 num_sgprs = num_user_sgprs + 2;
329 }
330 assert(num_sgprs <= 104);
331
332 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
333 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
334
335 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
336 S_00B528_SGPRS((num_sgprs - 1) / 8) |
337 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
338 S_00B528_DX10_CLAMP(1) |
339 S_00B528_FLOAT_MODE(shader->config.float_mode);
340 shader->config.rsrc2 = S_00B52C_USER_SGPR(num_user_sgprs) |
341 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
342 }
343
344 static void si_shader_hs(struct si_shader *shader)
345 {
346 struct si_pm4_state *pm4;
347 unsigned num_sgprs, num_user_sgprs;
348 uint64_t va;
349
350 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
351 if (!pm4)
352 return;
353
354 va = shader->bo->gpu_address;
355 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
356
357 num_user_sgprs = SI_TCS_NUM_USER_SGPR;
358 num_sgprs = shader->config.num_sgprs;
359 /* One SGPR after user SGPRs is pre-loaded with tessellation factor
360 * buffer offset. */
361 if ((num_user_sgprs + 1) > num_sgprs) {
362 /* Last 2 reserved SGPRs are used for VCC */
363 num_sgprs = num_user_sgprs + 1 + 2;
364 }
365 assert(num_sgprs <= 104);
366
367 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
368 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
369 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
370 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
371 S_00B428_SGPRS((num_sgprs - 1) / 8) |
372 S_00B428_DX10_CLAMP(1) |
373 S_00B428_FLOAT_MODE(shader->config.float_mode));
374 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
375 S_00B42C_USER_SGPR(num_user_sgprs) |
376 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
377 }
378
379 static void si_shader_es(struct si_shader *shader)
380 {
381 struct si_pm4_state *pm4;
382 unsigned num_sgprs, num_user_sgprs;
383 unsigned vgpr_comp_cnt;
384 uint64_t va;
385
386 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
387
388 if (!pm4)
389 return;
390
391 va = shader->bo->gpu_address;
392 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
393
394 if (shader->selector->type == PIPE_SHADER_VERTEX) {
395 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
396 num_user_sgprs = SI_ES_NUM_USER_SGPR;
397 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
398 vgpr_comp_cnt = 3; /* all components are needed for TES */
399 num_user_sgprs = SI_TES_NUM_USER_SGPR;
400 } else
401 unreachable("invalid shader selector type");
402
403 num_sgprs = shader->config.num_sgprs;
404 /* One SGPR after user SGPRs is pre-loaded with es2gs_offset */
405 if ((num_user_sgprs + 1) > num_sgprs) {
406 /* Last 2 reserved SGPRs are used for VCC */
407 num_sgprs = num_user_sgprs + 1 + 2;
408 }
409 assert(num_sgprs <= 104);
410
411 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
412 shader->selector->esgs_itemsize / 4);
413 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
414 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
415 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
416 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
417 S_00B328_SGPRS((num_sgprs - 1) / 8) |
418 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
419 S_00B328_DX10_CLAMP(1) |
420 S_00B328_FLOAT_MODE(shader->config.float_mode));
421 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
422 S_00B32C_USER_SGPR(num_user_sgprs) |
423 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
424
425 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
426 si_set_tesseval_regs(shader, pm4);
427 }
428
429 /**
430 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
431 * geometry shader.
432 */
433 static uint32_t si_vgt_gs_mode(struct si_shader *shader)
434 {
435 unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
436 unsigned cut_mode;
437
438 if (gs_max_vert_out <= 128) {
439 cut_mode = V_028A40_GS_CUT_128;
440 } else if (gs_max_vert_out <= 256) {
441 cut_mode = V_028A40_GS_CUT_256;
442 } else if (gs_max_vert_out <= 512) {
443 cut_mode = V_028A40_GS_CUT_512;
444 } else {
445 assert(gs_max_vert_out <= 1024);
446 cut_mode = V_028A40_GS_CUT_1024;
447 }
448
449 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
450 S_028A40_CUT_MODE(cut_mode)|
451 S_028A40_ES_WRITE_OPTIMIZE(1) |
452 S_028A40_GS_WRITE_OPTIMIZE(1);
453 }
454
455 static void si_shader_gs(struct si_shader *shader)
456 {
457 unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
458 unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
459 unsigned gs_num_invocations = shader->selector->gs_num_invocations;
460 struct si_pm4_state *pm4;
461 unsigned num_sgprs, num_user_sgprs;
462 uint64_t va;
463 unsigned max_stream = shader->selector->max_gs_stream;
464
465 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
466 assert(gsvs_itemsize < (1 << 15));
467
468 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
469
470 if (!pm4)
471 return;
472
473 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader));
474
475 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
476 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
477 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
478
479 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
480
481 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
482
483 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
484 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
485 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
486 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
487
488 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
489 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
490 S_028B90_ENABLE(gs_num_invocations > 0));
491
492 va = shader->bo->gpu_address;
493 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
494 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
495 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
496
497 num_user_sgprs = SI_GS_NUM_USER_SGPR;
498 num_sgprs = shader->config.num_sgprs;
499 /* Two SGPRs after user SGPRs are pre-loaded with gs2vs_offset, gs_wave_id */
500 if ((num_user_sgprs + 2) > num_sgprs) {
501 /* Last 2 reserved SGPRs are used for VCC */
502 num_sgprs = num_user_sgprs + 2 + 2;
503 }
504 assert(num_sgprs <= 104);
505
506 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
507 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
508 S_00B228_SGPRS((num_sgprs - 1) / 8) |
509 S_00B228_DX10_CLAMP(1) |
510 S_00B228_FLOAT_MODE(shader->config.float_mode));
511 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
512 S_00B22C_USER_SGPR(num_user_sgprs) |
513 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
514 }
515
516 /**
517 * Compute the state for \p shader, which will run as a vertex shader on the
518 * hardware.
519 *
520 * If \p gs is non-NULL, it points to the geometry shader for which this shader
521 * is the copy shader.
522 */
523 static void si_shader_vs(struct si_shader *shader, struct si_shader *gs)
524 {
525 struct si_pm4_state *pm4;
526 unsigned num_sgprs, num_user_sgprs;
527 unsigned nparams, vgpr_comp_cnt;
528 uint64_t va;
529 unsigned window_space =
530 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
531 bool enable_prim_id = si_vs_exports_prim_id(shader);
532
533 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
534
535 if (!pm4)
536 return;
537
538 /* We always write VGT_GS_MODE in the VS state, because every switch
539 * between different shader pipelines involving a different GS or no
540 * GS at all involves a switch of the VS (different GS use different
541 * copy shaders). On the other hand, when the API switches from a GS to
542 * no GS and then back to the same GS used originally, the GS state is
543 * not sent again.
544 */
545 if (!gs) {
546 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
547 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
548 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
549 } else {
550 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
551 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
552 }
553
554 va = shader->bo->gpu_address;
555 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
556
557 if (gs) {
558 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
559 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
560 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
561 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
562 num_user_sgprs = SI_VS_NUM_USER_SGPR;
563 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
564 vgpr_comp_cnt = 3; /* all components are needed for TES */
565 num_user_sgprs = SI_TES_NUM_USER_SGPR;
566 } else
567 unreachable("invalid shader selector type");
568
569 num_sgprs = shader->config.num_sgprs;
570 if (num_user_sgprs > num_sgprs) {
571 /* Last 2 reserved SGPRs are used for VCC */
572 num_sgprs = num_user_sgprs + 2;
573 }
574 assert(num_sgprs <= 104);
575
576 /* VS is required to export at least one param. */
577 nparams = MAX2(shader->info.nr_param_exports, 1);
578 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
579 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
580
581 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
582 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
583 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
584 V_02870C_SPI_SHADER_4COMP :
585 V_02870C_SPI_SHADER_NONE) |
586 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
587 V_02870C_SPI_SHADER_4COMP :
588 V_02870C_SPI_SHADER_NONE) |
589 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
590 V_02870C_SPI_SHADER_4COMP :
591 V_02870C_SPI_SHADER_NONE));
592
593 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
594 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
595 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
596 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
597 S_00B128_SGPRS((num_sgprs - 1) / 8) |
598 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
599 S_00B128_DX10_CLAMP(1) |
600 S_00B128_FLOAT_MODE(shader->config.float_mode));
601 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
602 S_00B12C_USER_SGPR(num_user_sgprs) |
603 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
604 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
605 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
606 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
607 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
608 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
609 if (window_space)
610 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
611 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
612 else
613 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
614 S_028818_VTX_W0_FMT(1) |
615 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
616 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
617 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
618
619 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
620 si_set_tesseval_regs(shader, pm4);
621 }
622
623 static unsigned si_get_ps_num_interp(struct si_shader *ps)
624 {
625 struct tgsi_shader_info *info = &ps->selector->info;
626 unsigned num_colors = !!(info->colors_read & 0x0f) +
627 !!(info->colors_read & 0xf0);
628 unsigned num_interp = ps->selector->info.num_inputs +
629 (ps->key.ps.prolog.color_two_side ? num_colors : 0);
630
631 assert(num_interp <= 32);
632 return MIN2(num_interp, 32);
633 }
634
635 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
636 {
637 unsigned value = shader->key.ps.epilog.spi_shader_col_format;
638 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
639
640 /* If the i-th target format is set, all previous target formats must
641 * be non-zero to avoid hangs.
642 */
643 for (i = 0; i < num_targets; i++)
644 if (!(value & (0xf << (i * 4))))
645 value |= V_028714_SPI_SHADER_32_R << (i * 4);
646
647 return value;
648 }
649
650 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
651 {
652 unsigned i, cb_shader_mask = 0;
653
654 for (i = 0; i < 8; i++) {
655 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
656 case V_028714_SPI_SHADER_ZERO:
657 break;
658 case V_028714_SPI_SHADER_32_R:
659 cb_shader_mask |= 0x1 << (i * 4);
660 break;
661 case V_028714_SPI_SHADER_32_GR:
662 cb_shader_mask |= 0x3 << (i * 4);
663 break;
664 case V_028714_SPI_SHADER_32_AR:
665 cb_shader_mask |= 0x9 << (i * 4);
666 break;
667 case V_028714_SPI_SHADER_FP16_ABGR:
668 case V_028714_SPI_SHADER_UNORM16_ABGR:
669 case V_028714_SPI_SHADER_SNORM16_ABGR:
670 case V_028714_SPI_SHADER_UINT16_ABGR:
671 case V_028714_SPI_SHADER_SINT16_ABGR:
672 case V_028714_SPI_SHADER_32_ABGR:
673 cb_shader_mask |= 0xf << (i * 4);
674 break;
675 default:
676 assert(0);
677 }
678 }
679 return cb_shader_mask;
680 }
681
682 static void si_shader_ps(struct si_shader *shader)
683 {
684 struct tgsi_shader_info *info = &shader->selector->info;
685 struct si_pm4_state *pm4;
686 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
687 unsigned num_sgprs, num_user_sgprs;
688 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
689 uint64_t va;
690 bool has_centroid;
691 unsigned input_ena = shader->config.spi_ps_input_ena;
692
693 /* we need to enable at least one of them, otherwise we hang the GPU */
694 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
695 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
696 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
697 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
698 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
699 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
700 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
701 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
702
703 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
704
705 if (!pm4)
706 return;
707
708 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
709 * Possible vaules:
710 * 0 -> Position = pixel center
711 * 1 -> Position = pixel centroid
712 * 2 -> Position = at sample position
713 *
714 * From GLSL 4.5 specification, section 7.1:
715 * "The variable gl_FragCoord is available as an input variable from
716 * within fragment shaders and it holds the window relative coordinates
717 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
718 * value can be for any location within the pixel, or one of the
719 * fragment samples. The use of centroid does not further restrict
720 * this value to be inside the current primitive."
721 *
722 * Meaning that centroid has no effect and we can return anything within
723 * the pixel. Thus, return the value at sample position, because that's
724 * the most accurate one shaders can get.
725 */
726 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
727
728 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
729 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
730 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
731
732 spi_shader_col_format = si_get_spi_shader_col_format(shader);
733 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
734
735 /* This must be non-zero for alpha-test/kill to work.
736 * The hardware ignores the EXEC mask if no export memory is allocated.
737 * Don't add this to CB_SHADER_MASK.
738 */
739 if (!spi_shader_col_format &&
740 !info->writes_z && !info->writes_stencil && !info->writes_samplemask &&
741 (shader->selector->info.uses_kill ||
742 shader->key.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS))
743 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
744
745 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
746 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
747 shader->config.spi_ps_input_addr);
748
749 /* Set interpolation controls. */
750 has_centroid = G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena) ||
751 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena);
752
753 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
754 S_0286D8_BC_OPTIMIZE_DISABLE(has_centroid);
755
756 /* Set registers. */
757 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
758 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
759
760 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
761 info->writes_samplemask ? V_028710_SPI_SHADER_32_ABGR :
762 info->writes_stencil ? V_028710_SPI_SHADER_32_GR :
763 info->writes_z ? V_028710_SPI_SHADER_32_R :
764 V_028710_SPI_SHADER_ZERO);
765
766 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
767 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
768
769 va = shader->bo->gpu_address;
770 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
771 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
772 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
773
774 num_user_sgprs = SI_PS_NUM_USER_SGPR;
775 num_sgprs = shader->config.num_sgprs;
776 /* One SGPR after user SGPRs is pre-loaded with {prim_mask, lds_offset} */
777 if ((num_user_sgprs + 1) > num_sgprs) {
778 /* Last 2 reserved SGPRs are used for VCC */
779 num_sgprs = num_user_sgprs + 1 + 2;
780 }
781 assert(num_sgprs <= 104);
782
783 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
784 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
785 S_00B028_SGPRS((num_sgprs - 1) / 8) |
786 S_00B028_DX10_CLAMP(1) |
787 S_00B028_FLOAT_MODE(shader->config.float_mode));
788 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
789 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
790 S_00B02C_USER_SGPR(num_user_sgprs) |
791 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
792
793 /* Prefer RE_Z if the shader is complex enough. The requirement is either:
794 * - the shader uses at least 2 VMEM instructions, or
795 * - the code size is at least 50 2-dword instructions or 100 1-dword
796 * instructions.
797 *
798 * Shaders with side effects that must execute independently of the
799 * depth test require LATE_Z.
800 */
801 if (info->writes_memory &&
802 !info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
803 shader->z_order = V_02880C_LATE_Z;
804 else if (info->num_memory_instructions >= 2 ||
805 shader->binary.code_size > 100*4)
806 shader->z_order = V_02880C_EARLY_Z_THEN_RE_Z;
807 else
808 shader->z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
809 }
810
811 static void si_shader_init_pm4_state(struct si_shader *shader)
812 {
813
814 if (shader->pm4)
815 si_pm4_free_state_simple(shader->pm4);
816
817 switch (shader->selector->type) {
818 case PIPE_SHADER_VERTEX:
819 if (shader->key.vs.as_ls)
820 si_shader_ls(shader);
821 else if (shader->key.vs.as_es)
822 si_shader_es(shader);
823 else
824 si_shader_vs(shader, NULL);
825 break;
826 case PIPE_SHADER_TESS_CTRL:
827 si_shader_hs(shader);
828 break;
829 case PIPE_SHADER_TESS_EVAL:
830 if (shader->key.tes.as_es)
831 si_shader_es(shader);
832 else
833 si_shader_vs(shader, NULL);
834 break;
835 case PIPE_SHADER_GEOMETRY:
836 si_shader_gs(shader);
837 si_shader_vs(shader->gs_copy_shader, shader);
838 break;
839 case PIPE_SHADER_FRAGMENT:
840 si_shader_ps(shader);
841 break;
842 default:
843 assert(0);
844 }
845 }
846
847 static unsigned si_get_alpha_test_func(struct si_context *sctx)
848 {
849 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
850 if (sctx->queued.named.dsa &&
851 !sctx->framebuffer.cb0_is_integer)
852 return sctx->queued.named.dsa->alpha_func;
853
854 return PIPE_FUNC_ALWAYS;
855 }
856
857 /* Compute the key for the hw shader variant */
858 static inline void si_shader_selector_key(struct pipe_context *ctx,
859 struct si_shader_selector *sel,
860 union si_shader_key *key)
861 {
862 struct si_context *sctx = (struct si_context *)ctx;
863 unsigned i;
864
865 memset(key, 0, sizeof(*key));
866
867 switch (sel->type) {
868 case PIPE_SHADER_VERTEX:
869 if (sctx->vertex_elements) {
870 unsigned count = MIN2(sel->info.num_inputs,
871 sctx->vertex_elements->count);
872 for (i = 0; i < count; ++i)
873 key->vs.prolog.instance_divisors[i] =
874 sctx->vertex_elements->elements[i].instance_divisor;
875 }
876 if (sctx->tes_shader.cso)
877 key->vs.as_ls = 1;
878 else if (sctx->gs_shader.cso)
879 key->vs.as_es = 1;
880
881 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
882 sctx->ps_shader.cso->info.uses_primid)
883 key->vs.epilog.export_prim_id = 1;
884 break;
885 case PIPE_SHADER_TESS_CTRL:
886 key->tcs.epilog.prim_mode =
887 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
888 break;
889 case PIPE_SHADER_TESS_EVAL:
890 if (sctx->gs_shader.cso)
891 key->tes.as_es = 1;
892 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
893 key->tes.epilog.export_prim_id = 1;
894 break;
895 case PIPE_SHADER_GEOMETRY:
896 break;
897 case PIPE_SHADER_FRAGMENT: {
898 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
899 struct si_state_blend *blend = sctx->queued.named.blend;
900
901 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
902 sel->info.colors_written == 0x1)
903 key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
904
905 if (blend) {
906 /* Select the shader color format based on whether
907 * blending or alpha are needed.
908 */
909 key->ps.epilog.spi_shader_col_format =
910 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
911 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
912 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
913 sctx->framebuffer.spi_shader_col_format_blend) |
914 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
915 sctx->framebuffer.spi_shader_col_format_alpha) |
916 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
917 sctx->framebuffer.spi_shader_col_format);
918 } else
919 key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
920
921 /* If alpha-to-coverage is enabled, we have to export alpha
922 * even if there is no color buffer.
923 */
924 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
925 blend && blend->alpha_to_coverage)
926 key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
927
928 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
929 * to the range supported by the type if a channel has less
930 * than 16 bits and the export format is 16_ABGR.
931 */
932 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
933 key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
934
935 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
936 if (!key->ps.epilog.last_cbuf) {
937 key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
938 key->ps.epilog.color_is_int8 &= sel->info.colors_written;
939 }
940
941 if (rs) {
942 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
943 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
944 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
945 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
946
947 key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
948
949 if (sctx->queued.named.blend) {
950 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
951 rs->multisample_enable &&
952 !sctx->framebuffer.cb0_is_integer;
953 }
954
955 key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
956 key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
957 (is_line && rs->line_smooth)) &&
958 sctx->framebuffer.nr_samples <= 1;
959 key->ps.epilog.clamp_color = rs->clamp_fragment_color;
960
961 key->ps.prolog.force_persample_interp =
962 rs->force_persample_interp &&
963 rs->multisample_enable &&
964 sctx->framebuffer.nr_samples > 1 &&
965 sctx->ps_iter_samples > 1 &&
966 (sel->info.uses_persp_center ||
967 sel->info.uses_persp_centroid ||
968 sel->info.uses_linear_center ||
969 sel->info.uses_linear_centroid);
970 }
971
972 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
973 break;
974 }
975 default:
976 assert(0);
977 }
978 }
979
980 /* Select the hw shader variant depending on the current state. */
981 static int si_shader_select_with_key(struct pipe_context *ctx,
982 struct si_shader_ctx_state *state,
983 union si_shader_key *key)
984 {
985 struct si_context *sctx = (struct si_context *)ctx;
986 struct si_shader_selector *sel = state->cso;
987 struct si_shader *current = state->current;
988 struct si_shader *iter, *shader = NULL;
989 int r;
990
991 /* Check if we don't need to change anything.
992 * This path is also used for most shaders that don't need multiple
993 * variants, it will cost just a computation of the key and this
994 * test. */
995 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
996 return 0;
997
998 pipe_mutex_lock(sel->mutex);
999
1000 /* Find the shader variant. */
1001 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1002 /* Don't check the "current" shader. We checked it above. */
1003 if (current != iter &&
1004 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1005 state->current = iter;
1006 pipe_mutex_unlock(sel->mutex);
1007 return 0;
1008 }
1009 }
1010
1011 /* Build a new shader. */
1012 shader = CALLOC_STRUCT(si_shader);
1013 if (!shader) {
1014 pipe_mutex_unlock(sel->mutex);
1015 return -ENOMEM;
1016 }
1017 shader->selector = sel;
1018 shader->key = *key;
1019
1020 r = si_shader_create(sctx->screen, sctx->tm, shader, &sctx->b.debug);
1021 if (unlikely(r)) {
1022 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1023 sel->type, r);
1024 FREE(shader);
1025 pipe_mutex_unlock(sel->mutex);
1026 return r;
1027 }
1028 si_shader_init_pm4_state(shader);
1029
1030 if (!sel->last_variant) {
1031 sel->first_variant = shader;
1032 sel->last_variant = shader;
1033 } else {
1034 sel->last_variant->next_variant = shader;
1035 sel->last_variant = shader;
1036 }
1037 state->current = shader;
1038 pipe_mutex_unlock(sel->mutex);
1039 return 0;
1040 }
1041
1042 static int si_shader_select(struct pipe_context *ctx,
1043 struct si_shader_ctx_state *state)
1044 {
1045 union si_shader_key key;
1046
1047 si_shader_selector_key(ctx, state->cso, &key);
1048 return si_shader_select_with_key(ctx, state, &key);
1049 }
1050
1051 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1052 union si_shader_key *key)
1053 {
1054 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1055
1056 switch (info->processor) {
1057 case TGSI_PROCESSOR_VERTEX:
1058 switch (next_shader) {
1059 case TGSI_PROCESSOR_GEOMETRY:
1060 key->vs.as_es = 1;
1061 break;
1062 case TGSI_PROCESSOR_TESS_CTRL:
1063 case TGSI_PROCESSOR_TESS_EVAL:
1064 key->vs.as_ls = 1;
1065 break;
1066 }
1067 break;
1068
1069 case TGSI_PROCESSOR_TESS_EVAL:
1070 if (next_shader == TGSI_PROCESSOR_GEOMETRY)
1071 key->tes.as_es = 1;
1072 break;
1073 }
1074 }
1075
1076 static void *si_create_shader_selector(struct pipe_context *ctx,
1077 const struct pipe_shader_state *state)
1078 {
1079 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1080 struct si_context *sctx = (struct si_context*)ctx;
1081 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1082 int i;
1083
1084 if (!sel)
1085 return NULL;
1086
1087 sel->tokens = tgsi_dup_tokens(state->tokens);
1088 if (!sel->tokens) {
1089 FREE(sel);
1090 return NULL;
1091 }
1092
1093 sel->so = state->stream_output;
1094 tgsi_scan_shader(state->tokens, &sel->info);
1095 sel->type = util_pipe_shader_from_tgsi_processor(sel->info.processor);
1096 p_atomic_inc(&sscreen->b.num_shaders_created);
1097
1098 /* Set which opcode uses which (i,j) pair. */
1099 if (sel->info.uses_persp_opcode_interp_centroid)
1100 sel->info.uses_persp_centroid = true;
1101
1102 if (sel->info.uses_linear_opcode_interp_centroid)
1103 sel->info.uses_linear_centroid = true;
1104
1105 if (sel->info.uses_persp_opcode_interp_offset ||
1106 sel->info.uses_persp_opcode_interp_sample)
1107 sel->info.uses_persp_center = true;
1108
1109 if (sel->info.uses_linear_opcode_interp_offset ||
1110 sel->info.uses_linear_opcode_interp_sample)
1111 sel->info.uses_linear_center = true;
1112
1113 switch (sel->type) {
1114 case PIPE_SHADER_GEOMETRY:
1115 sel->gs_output_prim =
1116 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1117 sel->gs_max_out_vertices =
1118 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1119 sel->gs_num_invocations =
1120 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1121 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1122 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1123 sel->gs_max_out_vertices;
1124
1125 sel->max_gs_stream = 0;
1126 for (i = 0; i < sel->so.num_outputs; i++)
1127 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1128 sel->so.output[i].stream);
1129
1130 sel->gs_input_verts_per_prim =
1131 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1132 break;
1133
1134 case PIPE_SHADER_VERTEX:
1135 case PIPE_SHADER_TESS_CTRL:
1136 case PIPE_SHADER_TESS_EVAL:
1137 for (i = 0; i < sel->info.num_outputs; i++) {
1138 unsigned name = sel->info.output_semantic_name[i];
1139 unsigned index = sel->info.output_semantic_index[i];
1140
1141 switch (name) {
1142 case TGSI_SEMANTIC_TESSINNER:
1143 case TGSI_SEMANTIC_TESSOUTER:
1144 case TGSI_SEMANTIC_PATCH:
1145 sel->patch_outputs_written |=
1146 1llu << si_shader_io_get_unique_index(name, index);
1147 break;
1148 default:
1149 sel->outputs_written |=
1150 1llu << si_shader_io_get_unique_index(name, index);
1151 }
1152 }
1153 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1154 break;
1155
1156 case PIPE_SHADER_FRAGMENT:
1157 for (i = 0; i < 8; i++)
1158 if (sel->info.colors_written & (1 << i))
1159 sel->colors_written_4bit |= 0xf << (4 * i);
1160
1161 for (i = 0; i < sel->info.num_inputs; i++) {
1162 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1163 int index = sel->info.input_semantic_index[i];
1164 sel->color_attr_index[index] = i;
1165 }
1166 }
1167 break;
1168 }
1169
1170 /* DB_SHADER_CONTROL */
1171 sel->db_shader_control =
1172 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1173 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1174 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1175 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1176
1177 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1178 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1179 sel->db_shader_control |=
1180 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1181 break;
1182 case TGSI_FS_DEPTH_LAYOUT_LESS:
1183 sel->db_shader_control |=
1184 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1185 break;
1186 }
1187
1188 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
1189 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1);
1190
1191 if (sel->info.writes_memory)
1192 sel->db_shader_control |= S_02880C_EXEC_ON_HIER_FAIL(1) |
1193 S_02880C_EXEC_ON_NOOP(1);
1194
1195 /* Compile the main shader part for use with a prolog and/or epilog. */
1196 if (sel->type != PIPE_SHADER_GEOMETRY &&
1197 !sscreen->use_monolithic_shaders) {
1198 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1199 void *tgsi_binary;
1200
1201 if (!shader)
1202 goto error;
1203
1204 shader->selector = sel;
1205 si_parse_next_shader_property(&sel->info, &shader->key);
1206
1207 tgsi_binary = si_get_tgsi_binary(sel);
1208
1209 /* Try to load the shader from the shader cache. */
1210 pipe_mutex_lock(sscreen->shader_cache_mutex);
1211
1212 if (tgsi_binary &&
1213 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1214 FREE(tgsi_binary);
1215 } else {
1216 /* Compile the shader if it hasn't been loaded from the cache. */
1217 if (si_compile_tgsi_shader(sscreen, sctx->tm, shader, false,
1218 &sctx->b.debug) != 0) {
1219 FREE(shader);
1220 FREE(tgsi_binary);
1221 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1222 goto error;
1223 }
1224
1225 if (tgsi_binary &&
1226 !si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1227 FREE(tgsi_binary);
1228 }
1229 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1230
1231 sel->main_shader_part = shader;
1232 }
1233
1234 /* Pre-compilation. */
1235 if (sel->type == PIPE_SHADER_GEOMETRY ||
1236 sscreen->b.debug_flags & DBG_PRECOMPILE) {
1237 struct si_shader_ctx_state state = {sel};
1238 union si_shader_key key;
1239
1240 memset(&key, 0, sizeof(key));
1241 si_parse_next_shader_property(&sel->info, &key);
1242
1243 /* Set reasonable defaults, so that the shader key doesn't
1244 * cause any code to be eliminated.
1245 */
1246 switch (sel->type) {
1247 case PIPE_SHADER_TESS_CTRL:
1248 key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1249 break;
1250 case PIPE_SHADER_FRAGMENT:
1251 key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1252 for (i = 0; i < 8; i++)
1253 if (sel->info.colors_written & (1 << i))
1254 key.ps.epilog.spi_shader_col_format |=
1255 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1256 break;
1257 }
1258
1259 if (si_shader_select_with_key(ctx, &state, &key))
1260 goto error;
1261 }
1262
1263 pipe_mutex_init(sel->mutex);
1264 return sel;
1265
1266 error:
1267 fprintf(stderr, "radeonsi: can't create a shader\n");
1268 tgsi_free_tokens(sel->tokens);
1269 FREE(sel);
1270 return NULL;
1271 }
1272
1273 /**
1274 * Normally, we only emit 1 viewport and 1 scissor if no shader is using
1275 * the VIEWPORT_INDEX output, and emitting the other viewports and scissors
1276 * is delayed. When a shader with VIEWPORT_INDEX appears, this should be
1277 * called to emit the rest.
1278 */
1279 static void si_update_viewports_and_scissors(struct si_context *sctx)
1280 {
1281 struct tgsi_shader_info *info = si_get_vs_info(sctx);
1282
1283 if (!info || !info->writes_viewport_index)
1284 return;
1285
1286 if (sctx->scissors.dirty_mask)
1287 si_mark_atom_dirty(sctx, &sctx->scissors.atom);
1288 if (sctx->viewports.dirty_mask)
1289 si_mark_atom_dirty(sctx, &sctx->viewports.atom);
1290 }
1291
1292 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1293 {
1294 struct si_context *sctx = (struct si_context *)ctx;
1295 struct si_shader_selector *sel = state;
1296
1297 if (sctx->vs_shader.cso == sel)
1298 return;
1299
1300 sctx->vs_shader.cso = sel;
1301 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1302 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1303 si_update_viewports_and_scissors(sctx);
1304 }
1305
1306 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1307 {
1308 struct si_context *sctx = (struct si_context *)ctx;
1309 struct si_shader_selector *sel = state;
1310 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1311
1312 if (sctx->gs_shader.cso == sel)
1313 return;
1314
1315 sctx->gs_shader.cso = sel;
1316 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1317 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1318 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1319
1320 if (enable_changed)
1321 si_shader_change_notify(sctx);
1322 si_update_viewports_and_scissors(sctx);
1323 }
1324
1325 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1326 {
1327 struct si_context *sctx = (struct si_context *)ctx;
1328 struct si_shader_selector *sel = state;
1329 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1330
1331 if (sctx->tcs_shader.cso == sel)
1332 return;
1333
1334 sctx->tcs_shader.cso = sel;
1335 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1336
1337 if (enable_changed)
1338 sctx->last_tcs = NULL; /* invalidate derived tess state */
1339 }
1340
1341 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1342 {
1343 struct si_context *sctx = (struct si_context *)ctx;
1344 struct si_shader_selector *sel = state;
1345 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1346
1347 if (sctx->tes_shader.cso == sel)
1348 return;
1349
1350 sctx->tes_shader.cso = sel;
1351 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1352 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1353 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1354
1355 if (enable_changed) {
1356 si_shader_change_notify(sctx);
1357 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1358 }
1359 si_update_viewports_and_scissors(sctx);
1360 }
1361
1362 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1363 {
1364 struct si_context *sctx = (struct si_context *)ctx;
1365 struct si_shader_selector *sel = state;
1366
1367 /* skip if supplied shader is one already in use */
1368 if (sctx->ps_shader.cso == sel)
1369 return;
1370
1371 sctx->ps_shader.cso = sel;
1372 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1373 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1374 }
1375
1376 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1377 {
1378 if (shader->pm4) {
1379 switch (shader->selector->type) {
1380 case PIPE_SHADER_VERTEX:
1381 if (shader->key.vs.as_ls)
1382 si_pm4_delete_state(sctx, ls, shader->pm4);
1383 else if (shader->key.vs.as_es)
1384 si_pm4_delete_state(sctx, es, shader->pm4);
1385 else
1386 si_pm4_delete_state(sctx, vs, shader->pm4);
1387 break;
1388 case PIPE_SHADER_TESS_CTRL:
1389 si_pm4_delete_state(sctx, hs, shader->pm4);
1390 break;
1391 case PIPE_SHADER_TESS_EVAL:
1392 if (shader->key.tes.as_es)
1393 si_pm4_delete_state(sctx, es, shader->pm4);
1394 else
1395 si_pm4_delete_state(sctx, vs, shader->pm4);
1396 break;
1397 case PIPE_SHADER_GEOMETRY:
1398 si_pm4_delete_state(sctx, gs, shader->pm4);
1399 si_pm4_delete_state(sctx, vs, shader->gs_copy_shader->pm4);
1400 break;
1401 case PIPE_SHADER_FRAGMENT:
1402 si_pm4_delete_state(sctx, ps, shader->pm4);
1403 break;
1404 }
1405 }
1406
1407 si_shader_destroy(shader);
1408 free(shader);
1409 }
1410
1411 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1412 {
1413 struct si_context *sctx = (struct si_context *)ctx;
1414 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1415 struct si_shader *p = sel->first_variant, *c;
1416 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1417 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1418 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1419 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1420 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1421 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1422 };
1423
1424 if (current_shader[sel->type]->cso == sel) {
1425 current_shader[sel->type]->cso = NULL;
1426 current_shader[sel->type]->current = NULL;
1427 }
1428
1429 while (p) {
1430 c = p->next_variant;
1431 si_delete_shader(sctx, p);
1432 p = c;
1433 }
1434
1435 if (sel->main_shader_part)
1436 si_delete_shader(sctx, sel->main_shader_part);
1437
1438 pipe_mutex_destroy(sel->mutex);
1439 free(sel->tokens);
1440 free(sel);
1441 }
1442
1443 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1444 struct si_shader *vs, unsigned name,
1445 unsigned index, unsigned interpolate)
1446 {
1447 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1448 unsigned j, ps_input_cntl = 0;
1449
1450 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1451 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1452 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1453
1454 if (name == TGSI_SEMANTIC_PCOORD ||
1455 (name == TGSI_SEMANTIC_TEXCOORD &&
1456 sctx->sprite_coord_enable & (1 << index))) {
1457 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1458 }
1459
1460 for (j = 0; j < vsinfo->num_outputs; j++) {
1461 if (name == vsinfo->output_semantic_name[j] &&
1462 index == vsinfo->output_semantic_index[j]) {
1463 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[j]);
1464 break;
1465 }
1466 }
1467
1468 if (name == TGSI_SEMANTIC_PRIMID)
1469 /* PrimID is written after the last output. */
1470 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1471 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1472 /* No corresponding output found, load defaults into input.
1473 * Don't set any other bits.
1474 * (FLAT_SHADE=1 completely changes behavior) */
1475 ps_input_cntl = S_028644_OFFSET(0x20);
1476 }
1477 return ps_input_cntl;
1478 }
1479
1480 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1481 {
1482 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1483 struct si_shader *ps = sctx->ps_shader.current;
1484 struct si_shader *vs = si_get_vs_state(sctx);
1485 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1486 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1487
1488 if (!ps || !ps->selector->info.num_inputs)
1489 return;
1490
1491 num_interp = si_get_ps_num_interp(ps);
1492 assert(num_interp > 0);
1493 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1494
1495 for (i = 0; i < psinfo->num_inputs; i++) {
1496 unsigned name = psinfo->input_semantic_name[i];
1497 unsigned index = psinfo->input_semantic_index[i];
1498 unsigned interpolate = psinfo->input_interpolate[i];
1499
1500 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1501 interpolate));
1502 num_written++;
1503
1504 if (name == TGSI_SEMANTIC_COLOR) {
1505 assert(index < ARRAY_SIZE(bcol_interp));
1506 bcol_interp[index] = interpolate;
1507 }
1508 }
1509
1510 if (ps->key.ps.prolog.color_two_side) {
1511 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1512
1513 for (i = 0; i < 2; i++) {
1514 if (!(psinfo->colors_read & (0xf << (i * 4))))
1515 continue;
1516
1517 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1518 i, bcol_interp[i]));
1519 num_written++;
1520 }
1521 }
1522 assert(num_interp == num_written);
1523 }
1524
1525 /**
1526 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1527 */
1528 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1529 {
1530 if (sctx->init_config_has_vgt_flush)
1531 return;
1532
1533 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1534 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1535 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1536 si_pm4_cmd_end(sctx->init_config, false);
1537 sctx->init_config_has_vgt_flush = true;
1538 }
1539
1540 /* Initialize state related to ESGS / GSVS ring buffers */
1541 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1542 {
1543 struct si_shader_selector *es =
1544 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1545 struct si_shader_selector *gs = sctx->gs_shader.cso;
1546 struct si_pm4_state *pm4;
1547
1548 /* Chip constants. */
1549 unsigned num_se = sctx->screen->b.info.max_se;
1550 unsigned wave_size = 64;
1551 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1552 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1553 unsigned alignment = 256 * num_se;
1554 /* The maximum size is 63.999 MB per SE. */
1555 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1556
1557 /* Calculate the minimum size. */
1558 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1559 wave_size, alignment);
1560
1561 /* These are recommended sizes, not minimum sizes. */
1562 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1563 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1564 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1565 gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1566
1567 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1568 esgs_ring_size = align(esgs_ring_size, alignment);
1569 gsvs_ring_size = align(gsvs_ring_size, alignment);
1570
1571 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1572 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1573
1574 /* Some rings don't have to be allocated if shaders don't use them.
1575 * (e.g. no varyings between ES and GS or GS and VS)
1576 */
1577 bool update_esgs = esgs_ring_size &&
1578 (!sctx->esgs_ring ||
1579 sctx->esgs_ring->width0 < esgs_ring_size);
1580 bool update_gsvs = gsvs_ring_size &&
1581 (!sctx->gsvs_ring ||
1582 sctx->gsvs_ring->width0 < gsvs_ring_size);
1583
1584 if (!update_esgs && !update_gsvs)
1585 return true;
1586
1587 if (update_esgs) {
1588 pipe_resource_reference(&sctx->esgs_ring, NULL);
1589 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1590 PIPE_USAGE_DEFAULT,
1591 esgs_ring_size);
1592 if (!sctx->esgs_ring)
1593 return false;
1594 }
1595
1596 if (update_gsvs) {
1597 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1598 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1599 PIPE_USAGE_DEFAULT,
1600 gsvs_ring_size);
1601 if (!sctx->gsvs_ring)
1602 return false;
1603 }
1604
1605 /* Create the "init_config_gs_rings" state. */
1606 pm4 = CALLOC_STRUCT(si_pm4_state);
1607 if (!pm4)
1608 return false;
1609
1610 if (sctx->b.chip_class >= CIK) {
1611 if (sctx->esgs_ring)
1612 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1613 sctx->esgs_ring->width0 / 256);
1614 if (sctx->gsvs_ring)
1615 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1616 sctx->gsvs_ring->width0 / 256);
1617 } else {
1618 if (sctx->esgs_ring)
1619 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1620 sctx->esgs_ring->width0 / 256);
1621 if (sctx->gsvs_ring)
1622 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1623 sctx->gsvs_ring->width0 / 256);
1624 }
1625
1626 /* Set the state. */
1627 if (sctx->init_config_gs_rings)
1628 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1629 sctx->init_config_gs_rings = pm4;
1630
1631 if (!sctx->init_config_has_vgt_flush) {
1632 si_init_config_add_vgt_flush(sctx);
1633 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1634 }
1635
1636 /* Flush the context to re-emit both init_config states. */
1637 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1638 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1639
1640 /* Set ring bindings. */
1641 if (sctx->esgs_ring) {
1642 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_ESGS,
1643 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1644 true, true, 4, 64, 0);
1645 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_ESGS,
1646 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1647 false, false, 0, 0, 0);
1648 }
1649 if (sctx->gsvs_ring)
1650 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_GSVS,
1651 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1652 false, false, 0, 0, 0);
1653 return true;
1654 }
1655
1656 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1657 {
1658 unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1659 uint64_t offset;
1660
1661 if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1662 return;
1663
1664 sctx->last_gsvs_itemsize = gsvs_itemsize;
1665
1666 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS,
1667 sctx->gsvs_ring, gsvs_itemsize,
1668 64, true, true, 4, 16, 0);
1669
1670 offset = gsvs_itemsize * 64;
1671 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_1,
1672 sctx->gsvs_ring, gsvs_itemsize,
1673 64, true, true, 4, 16, offset);
1674
1675 offset = (gsvs_itemsize * 2) * 64;
1676 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_2,
1677 sctx->gsvs_ring, gsvs_itemsize,
1678 64, true, true, 4, 16, offset);
1679
1680 offset = (gsvs_itemsize * 3) * 64;
1681 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_3,
1682 sctx->gsvs_ring, gsvs_itemsize,
1683 64, true, true, 4, 16, offset);
1684 }
1685
1686 /**
1687 * @returns 1 if \p sel has been updated to use a new scratch buffer
1688 * 0 if not
1689 * < 0 if there was a failure
1690 */
1691 static int si_update_scratch_buffer(struct si_context *sctx,
1692 struct si_shader *shader)
1693 {
1694 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1695 int r;
1696
1697 if (!shader)
1698 return 0;
1699
1700 /* This shader doesn't need a scratch buffer */
1701 if (shader->config.scratch_bytes_per_wave == 0)
1702 return 0;
1703
1704 /* This shader is already configured to use the current
1705 * scratch buffer. */
1706 if (shader->scratch_bo == sctx->scratch_buffer)
1707 return 0;
1708
1709 assert(sctx->scratch_buffer);
1710
1711 si_shader_apply_scratch_relocs(sctx, shader, scratch_va);
1712
1713 /* Replace the shader bo with a new bo that has the relocs applied. */
1714 r = si_shader_binary_upload(sctx->screen, shader);
1715 if (r)
1716 return r;
1717
1718 /* Update the shader state to use the new shader bo. */
1719 si_shader_init_pm4_state(shader);
1720
1721 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1722
1723 return 1;
1724 }
1725
1726 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1727 {
1728 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1729 }
1730
1731 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1732 {
1733 return shader ? shader->config.scratch_bytes_per_wave : 0;
1734 }
1735
1736 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1737 {
1738 unsigned bytes = 0;
1739
1740 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1741 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1742 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1743 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1744 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1745 return bytes;
1746 }
1747
1748 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1749 {
1750 unsigned current_scratch_buffer_size =
1751 si_get_current_scratch_buffer_size(sctx);
1752 unsigned scratch_bytes_per_wave =
1753 si_get_max_scratch_bytes_per_wave(sctx);
1754 unsigned scratch_needed_size = scratch_bytes_per_wave *
1755 sctx->scratch_waves;
1756 unsigned spi_tmpring_size;
1757 int r;
1758
1759 if (scratch_needed_size > 0) {
1760 if (scratch_needed_size > current_scratch_buffer_size) {
1761 /* Create a bigger scratch buffer */
1762 pipe_resource_reference(
1763 (struct pipe_resource**)&sctx->scratch_buffer,
1764 NULL);
1765
1766 sctx->scratch_buffer =
1767 si_resource_create_custom(&sctx->screen->b.b,
1768 PIPE_USAGE_DEFAULT, scratch_needed_size);
1769 if (!sctx->scratch_buffer)
1770 return false;
1771 sctx->emit_scratch_reloc = true;
1772 }
1773
1774 /* Update the shaders, so they are using the latest scratch. The
1775 * scratch buffer may have been changed since these shaders were
1776 * last used, so we still need to try to update them, even if
1777 * they require scratch buffers smaller than the current size.
1778 */
1779 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1780 if (r < 0)
1781 return false;
1782 if (r == 1)
1783 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1784
1785 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1786 if (r < 0)
1787 return false;
1788 if (r == 1)
1789 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1790
1791 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1792 if (r < 0)
1793 return false;
1794 if (r == 1)
1795 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1796
1797 /* VS can be bound as LS, ES, or VS. */
1798 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1799 if (r < 0)
1800 return false;
1801 if (r == 1) {
1802 if (sctx->tes_shader.current)
1803 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1804 else if (sctx->gs_shader.current)
1805 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1806 else
1807 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1808 }
1809
1810 /* TES can be bound as ES or VS. */
1811 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1812 if (r < 0)
1813 return false;
1814 if (r == 1) {
1815 if (sctx->gs_shader.current)
1816 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1817 else
1818 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1819 }
1820 }
1821
1822 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1823 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1824 "scratch size should already be aligned correctly.");
1825
1826 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1827 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1828 if (spi_tmpring_size != sctx->spi_tmpring_size) {
1829 sctx->spi_tmpring_size = spi_tmpring_size;
1830 sctx->emit_scratch_reloc = true;
1831 }
1832 return true;
1833 }
1834
1835 static void si_init_tess_factor_ring(struct si_context *sctx)
1836 {
1837 assert(!sctx->tf_ring);
1838
1839 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1840 PIPE_USAGE_DEFAULT,
1841 32768 * sctx->screen->b.info.max_se);
1842 if (!sctx->tf_ring)
1843 return;
1844
1845 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
1846
1847 si_init_config_add_vgt_flush(sctx);
1848
1849 /* Append these registers to the init config state. */
1850 if (sctx->b.chip_class >= CIK) {
1851 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
1852 S_030938_SIZE(sctx->tf_ring->width0 / 4));
1853 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
1854 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1855 } else {
1856 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
1857 S_008988_SIZE(sctx->tf_ring->width0 / 4));
1858 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
1859 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1860 }
1861
1862 /* Flush the context to re-emit the init_config state.
1863 * This is done only once in a lifetime of a context.
1864 */
1865 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1866 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1867 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1868
1869 si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_TESS_CTRL,
1870 SI_RING_TESS_FACTOR, sctx->tf_ring, 0,
1871 sctx->tf_ring->width0, false, false, 0, 0, 0);
1872 }
1873
1874 /**
1875 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
1876 * VS passes its outputs to TES directly, so the fixed-function shader only
1877 * has to write TESSOUTER and TESSINNER.
1878 */
1879 static void si_generate_fixed_func_tcs(struct si_context *sctx)
1880 {
1881 struct ureg_src const0, const1;
1882 struct ureg_dst tessouter, tessinner;
1883 struct ureg_program *ureg = ureg_create(TGSI_PROCESSOR_TESS_CTRL);
1884
1885 if (!ureg)
1886 return; /* if we get here, we're screwed */
1887
1888 assert(!sctx->fixed_func_tcs_shader.cso);
1889
1890 ureg_DECL_constant2D(ureg, 0, 1, SI_DRIVER_STATE_CONST_BUF);
1891 const0 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 0),
1892 SI_DRIVER_STATE_CONST_BUF);
1893 const1 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 1),
1894 SI_DRIVER_STATE_CONST_BUF);
1895
1896 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
1897 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
1898
1899 ureg_MOV(ureg, tessouter, const0);
1900 ureg_MOV(ureg, tessinner, const1);
1901 ureg_END(ureg);
1902
1903 sctx->fixed_func_tcs_shader.cso =
1904 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
1905 }
1906
1907 static void si_update_vgt_shader_config(struct si_context *sctx)
1908 {
1909 /* Calculate the index of the config.
1910 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
1911 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
1912 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
1913
1914 if (!*pm4) {
1915 uint32_t stages = 0;
1916
1917 *pm4 = CALLOC_STRUCT(si_pm4_state);
1918
1919 if (sctx->tes_shader.cso) {
1920 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
1921 S_028B54_HS_EN(1);
1922
1923 if (sctx->gs_shader.cso)
1924 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
1925 S_028B54_GS_EN(1) |
1926 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1927 else
1928 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
1929 } else if (sctx->gs_shader.cso) {
1930 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
1931 S_028B54_GS_EN(1) |
1932 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1933 }
1934
1935 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
1936 }
1937 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
1938 }
1939
1940 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
1941 {
1942 struct pipe_stream_output_info *so = &shader->so;
1943 uint32_t enabled_stream_buffers_mask = 0;
1944 int i;
1945
1946 for (i = 0; i < so->num_outputs; i++)
1947 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
1948 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
1949 sctx->b.streamout.stride_in_dw = shader->so.stride;
1950 }
1951
1952 bool si_update_shaders(struct si_context *sctx)
1953 {
1954 struct pipe_context *ctx = (struct pipe_context*)sctx;
1955 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1956 int r;
1957
1958 /* Update stages before GS. */
1959 if (sctx->tes_shader.cso) {
1960 if (!sctx->tf_ring) {
1961 si_init_tess_factor_ring(sctx);
1962 if (!sctx->tf_ring)
1963 return false;
1964 }
1965
1966 /* VS as LS */
1967 r = si_shader_select(ctx, &sctx->vs_shader);
1968 if (r)
1969 return false;
1970 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1971
1972 if (sctx->tcs_shader.cso) {
1973 r = si_shader_select(ctx, &sctx->tcs_shader);
1974 if (r)
1975 return false;
1976 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1977 } else {
1978 if (!sctx->fixed_func_tcs_shader.cso) {
1979 si_generate_fixed_func_tcs(sctx);
1980 if (!sctx->fixed_func_tcs_shader.cso)
1981 return false;
1982 }
1983
1984 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
1985 if (r)
1986 return false;
1987 si_pm4_bind_state(sctx, hs,
1988 sctx->fixed_func_tcs_shader.current->pm4);
1989 }
1990
1991 r = si_shader_select(ctx, &sctx->tes_shader);
1992 if (r)
1993 return false;
1994
1995 if (sctx->gs_shader.cso) {
1996 /* TES as ES */
1997 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1998 } else {
1999 /* TES as VS */
2000 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2001 si_update_so(sctx, sctx->tes_shader.cso);
2002 }
2003 } else if (sctx->gs_shader.cso) {
2004 /* VS as ES */
2005 r = si_shader_select(ctx, &sctx->vs_shader);
2006 if (r)
2007 return false;
2008 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2009 } else {
2010 /* VS as VS */
2011 r = si_shader_select(ctx, &sctx->vs_shader);
2012 if (r)
2013 return false;
2014 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2015 si_update_so(sctx, sctx->vs_shader.cso);
2016 }
2017
2018 /* Update GS. */
2019 if (sctx->gs_shader.cso) {
2020 r = si_shader_select(ctx, &sctx->gs_shader);
2021 if (r)
2022 return false;
2023 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2024 si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
2025 si_update_so(sctx, sctx->gs_shader.cso);
2026
2027 if (!si_update_gs_ring_buffers(sctx))
2028 return false;
2029
2030 si_update_gsvs_ring_bindings(sctx);
2031 } else {
2032 si_pm4_bind_state(sctx, gs, NULL);
2033 si_pm4_bind_state(sctx, es, NULL);
2034 }
2035
2036 si_update_vgt_shader_config(sctx);
2037
2038 if (sctx->ps_shader.cso) {
2039 unsigned db_shader_control;
2040
2041 r = si_shader_select(ctx, &sctx->ps_shader);
2042 if (r)
2043 return false;
2044 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2045
2046 db_shader_control =
2047 sctx->ps_shader.cso->db_shader_control |
2048 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS) |
2049 S_02880C_Z_ORDER(sctx->ps_shader.current->z_order);
2050
2051 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2052 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2053 sctx->flatshade != rs->flatshade) {
2054 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2055 sctx->flatshade = rs->flatshade;
2056 si_mark_atom_dirty(sctx, &sctx->spi_map);
2057 }
2058
2059 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2060 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2061
2062 if (sctx->ps_db_shader_control != db_shader_control) {
2063 sctx->ps_db_shader_control = db_shader_control;
2064 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2065 }
2066
2067 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
2068 sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
2069 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2070
2071 if (sctx->b.chip_class == SI)
2072 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2073 }
2074 }
2075
2076 if (si_pm4_state_changed(sctx, ls) ||
2077 si_pm4_state_changed(sctx, hs) ||
2078 si_pm4_state_changed(sctx, es) ||
2079 si_pm4_state_changed(sctx, gs) ||
2080 si_pm4_state_changed(sctx, vs) ||
2081 si_pm4_state_changed(sctx, ps)) {
2082 if (!si_update_spi_tmpring_size(sctx))
2083 return false;
2084 }
2085 return true;
2086 }
2087
2088 void si_init_shader_functions(struct si_context *sctx)
2089 {
2090 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2091
2092 sctx->b.b.create_vs_state = si_create_shader_selector;
2093 sctx->b.b.create_tcs_state = si_create_shader_selector;
2094 sctx->b.b.create_tes_state = si_create_shader_selector;
2095 sctx->b.b.create_gs_state = si_create_shader_selector;
2096 sctx->b.b.create_fs_state = si_create_shader_selector;
2097
2098 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2099 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2100 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2101 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2102 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2103
2104 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2105 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2106 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2107 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2108 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2109 }