0766d8cb7d8cbf3708d7d076b4300e3a3ff5bc7c
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "compiler/nir/nir_serialize.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/hash_table.h"
31 #include "util/crc32.h"
32 #include "util/u_async_debug.h"
33 #include "util/u_memory.h"
34 #include "util/u_prim.h"
35
36 #include "util/disk_cache.h"
37 #include "util/mesa-sha1.h"
38 #include "ac_exp_param.h"
39 #include "ac_shader_util.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
45 * size as integer.
46 */
47 void *si_get_ir_binary(struct si_shader_selector *sel)
48 {
49 struct blob blob;
50 unsigned ir_size;
51 void *ir_binary;
52
53 if (sel->tokens) {
54 ir_binary = sel->tokens;
55 ir_size = tgsi_num_tokens(sel->tokens) *
56 sizeof(struct tgsi_token);
57 } else {
58 assert(sel->nir);
59
60 blob_init(&blob);
61 nir_serialize(&blob, sel->nir);
62 ir_binary = blob.data;
63 ir_size = blob.size;
64 }
65
66 unsigned size = 4 + ir_size + sizeof(sel->so);
67 char *result = (char*)MALLOC(size);
68 if (!result)
69 return NULL;
70
71 *((uint32_t*)result) = size;
72 memcpy(result + 4, ir_binary, ir_size);
73 memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
74
75 if (sel->nir)
76 blob_finish(&blob);
77
78 return result;
79 }
80
81 /** Copy "data" to "ptr" and return the next dword following copied data. */
82 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
83 {
84 /* data may be NULL if size == 0 */
85 if (size)
86 memcpy(ptr, data, size);
87 ptr += DIV_ROUND_UP(size, 4);
88 return ptr;
89 }
90
91 /** Read data from "ptr". Return the next dword following the data. */
92 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
93 {
94 memcpy(data, ptr, size);
95 ptr += DIV_ROUND_UP(size, 4);
96 return ptr;
97 }
98
99 /**
100 * Write the size as uint followed by the data. Return the next dword
101 * following the copied data.
102 */
103 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
104 {
105 *ptr++ = size;
106 return write_data(ptr, data, size);
107 }
108
109 /**
110 * Read the size as uint followed by the data. Return both via parameters.
111 * Return the next dword following the data.
112 */
113 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
114 {
115 *size = *ptr++;
116 assert(*data == NULL);
117 if (!*size)
118 return ptr;
119 *data = malloc(*size);
120 return read_data(ptr, *data, *size);
121 }
122
123 /**
124 * Return the shader binary in a buffer. The first 4 bytes contain its size
125 * as integer.
126 */
127 static void *si_get_shader_binary(struct si_shader *shader)
128 {
129 /* There is always a size of data followed by the data itself. */
130 unsigned relocs_size = shader->binary.reloc_count *
131 sizeof(shader->binary.relocs[0]);
132 unsigned disasm_size = shader->binary.disasm_string ?
133 strlen(shader->binary.disasm_string) + 1 : 0;
134 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
135 strlen(shader->binary.llvm_ir_string) + 1 : 0;
136 unsigned size =
137 4 + /* total size */
138 4 + /* CRC32 of the data below */
139 align(sizeof(shader->config), 4) +
140 align(sizeof(shader->info), 4) +
141 4 + align(shader->binary.code_size, 4) +
142 4 + align(shader->binary.rodata_size, 4) +
143 4 + align(relocs_size, 4) +
144 4 + align(disasm_size, 4) +
145 4 + align(llvm_ir_size, 4);
146 void *buffer = CALLOC(1, size);
147 uint32_t *ptr = (uint32_t*)buffer;
148
149 if (!buffer)
150 return NULL;
151
152 *ptr++ = size;
153 ptr++; /* CRC32 is calculated at the end. */
154
155 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
156 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
157 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
158 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
159 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
160 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
161 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
162 assert((char *)ptr - (char *)buffer == size);
163
164 /* Compute CRC32. */
165 ptr = (uint32_t*)buffer;
166 ptr++;
167 *ptr = util_hash_crc32(ptr + 1, size - 8);
168
169 return buffer;
170 }
171
172 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
173 {
174 uint32_t *ptr = (uint32_t*)binary;
175 uint32_t size = *ptr++;
176 uint32_t crc32 = *ptr++;
177 unsigned chunk_size;
178
179 if (util_hash_crc32(ptr, size - 8) != crc32) {
180 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
181 return false;
182 }
183
184 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
185 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
186 ptr = read_chunk(ptr, (void**)&shader->binary.code,
187 &shader->binary.code_size);
188 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
189 &shader->binary.rodata_size);
190 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
191 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
192 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
193 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
194
195 return true;
196 }
197
198 /**
199 * Insert a shader into the cache. It's assumed the shader is not in the cache.
200 * Use si_shader_cache_load_shader before calling this.
201 *
202 * Returns false on failure, in which case the ir_binary should be freed.
203 */
204 bool si_shader_cache_insert_shader(struct si_screen *sscreen, void *ir_binary,
205 struct si_shader *shader,
206 bool insert_into_disk_cache)
207 {
208 void *hw_binary;
209 struct hash_entry *entry;
210 uint8_t key[CACHE_KEY_SIZE];
211
212 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
213 if (entry)
214 return false; /* already added */
215
216 hw_binary = si_get_shader_binary(shader);
217 if (!hw_binary)
218 return false;
219
220 if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
221 hw_binary) == NULL) {
222 FREE(hw_binary);
223 return false;
224 }
225
226 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
227 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
228 *((uint32_t *)ir_binary), key);
229 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
230 *((uint32_t *) hw_binary), NULL);
231 }
232
233 return true;
234 }
235
236 bool si_shader_cache_load_shader(struct si_screen *sscreen, void *ir_binary,
237 struct si_shader *shader)
238 {
239 struct hash_entry *entry =
240 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
241 if (!entry) {
242 if (sscreen->disk_shader_cache) {
243 unsigned char sha1[CACHE_KEY_SIZE];
244 size_t tg_size = *((uint32_t *) ir_binary);
245
246 disk_cache_compute_key(sscreen->disk_shader_cache,
247 ir_binary, tg_size, sha1);
248
249 size_t binary_size;
250 uint8_t *buffer =
251 disk_cache_get(sscreen->disk_shader_cache,
252 sha1, &binary_size);
253 if (!buffer)
254 return false;
255
256 if (binary_size < sizeof(uint32_t) ||
257 *((uint32_t*)buffer) != binary_size) {
258 /* Something has gone wrong discard the item
259 * from the cache and rebuild/link from
260 * source.
261 */
262 assert(!"Invalid radeonsi shader disk cache "
263 "item!");
264
265 disk_cache_remove(sscreen->disk_shader_cache,
266 sha1);
267 free(buffer);
268
269 return false;
270 }
271
272 if (!si_load_shader_binary(shader, buffer)) {
273 free(buffer);
274 return false;
275 }
276 free(buffer);
277
278 if (!si_shader_cache_insert_shader(sscreen, ir_binary,
279 shader, false))
280 FREE(ir_binary);
281 } else {
282 return false;
283 }
284 } else {
285 if (si_load_shader_binary(shader, entry->data))
286 FREE(ir_binary);
287 else
288 return false;
289 }
290 p_atomic_inc(&sscreen->num_shader_cache_hits);
291 return true;
292 }
293
294 static uint32_t si_shader_cache_key_hash(const void *key)
295 {
296 /* The first dword is the key size. */
297 return util_hash_crc32(key, *(uint32_t*)key);
298 }
299
300 static bool si_shader_cache_key_equals(const void *a, const void *b)
301 {
302 uint32_t *keya = (uint32_t*)a;
303 uint32_t *keyb = (uint32_t*)b;
304
305 /* The first dword is the key size. */
306 if (*keya != *keyb)
307 return false;
308
309 return memcmp(keya, keyb, *keya) == 0;
310 }
311
312 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
313 {
314 FREE((void*)entry->key);
315 FREE(entry->data);
316 }
317
318 bool si_init_shader_cache(struct si_screen *sscreen)
319 {
320 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
321 sscreen->shader_cache =
322 _mesa_hash_table_create(NULL,
323 si_shader_cache_key_hash,
324 si_shader_cache_key_equals);
325
326 return sscreen->shader_cache != NULL;
327 }
328
329 void si_destroy_shader_cache(struct si_screen *sscreen)
330 {
331 if (sscreen->shader_cache)
332 _mesa_hash_table_destroy(sscreen->shader_cache,
333 si_destroy_shader_cache_entry);
334 mtx_destroy(&sscreen->shader_cache_mutex);
335 }
336
337 /* SHADER STATES */
338
339 static void si_set_tesseval_regs(struct si_screen *sscreen,
340 struct si_shader_selector *tes,
341 struct si_pm4_state *pm4)
342 {
343 struct tgsi_shader_info *info = &tes->info;
344 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
345 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
346 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
347 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
348 unsigned type, partitioning, topology, distribution_mode;
349
350 switch (tes_prim_mode) {
351 case PIPE_PRIM_LINES:
352 type = V_028B6C_TESS_ISOLINE;
353 break;
354 case PIPE_PRIM_TRIANGLES:
355 type = V_028B6C_TESS_TRIANGLE;
356 break;
357 case PIPE_PRIM_QUADS:
358 type = V_028B6C_TESS_QUAD;
359 break;
360 default:
361 assert(0);
362 return;
363 }
364
365 switch (tes_spacing) {
366 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
367 partitioning = V_028B6C_PART_FRAC_ODD;
368 break;
369 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
370 partitioning = V_028B6C_PART_FRAC_EVEN;
371 break;
372 case PIPE_TESS_SPACING_EQUAL:
373 partitioning = V_028B6C_PART_INTEGER;
374 break;
375 default:
376 assert(0);
377 return;
378 }
379
380 if (tes_point_mode)
381 topology = V_028B6C_OUTPUT_POINT;
382 else if (tes_prim_mode == PIPE_PRIM_LINES)
383 topology = V_028B6C_OUTPUT_LINE;
384 else if (tes_vertex_order_cw)
385 /* for some reason, this must be the other way around */
386 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
387 else
388 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
389
390 if (sscreen->has_distributed_tess) {
391 if (sscreen->info.family == CHIP_FIJI ||
392 sscreen->info.family >= CHIP_POLARIS10)
393 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
394 else
395 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
396 } else
397 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
398
399 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
400 S_028B6C_TYPE(type) |
401 S_028B6C_PARTITIONING(partitioning) |
402 S_028B6C_TOPOLOGY(topology) |
403 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
404 }
405
406 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
407 * whether the "fractional odd" tessellation spacing is used.
408 *
409 * Possible VGT configurations and which state should set the register:
410 *
411 * Reg set in | VGT shader configuration | Value
412 * ------------------------------------------------------
413 * VS as VS | VS | 30
414 * VS as ES | ES -> GS -> VS | 30
415 * TES as VS | LS -> HS -> VS | 14 or 30
416 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
417 *
418 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
419 */
420 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
421 struct si_shader_selector *sel,
422 struct si_shader *shader,
423 struct si_pm4_state *pm4)
424 {
425 unsigned type = sel->type;
426
427 if (sscreen->info.family < CHIP_POLARIS10)
428 return;
429
430 /* VS as VS, or VS as ES: */
431 if ((type == PIPE_SHADER_VERTEX &&
432 (!shader ||
433 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
434 /* TES as VS, or TES as ES: */
435 type == PIPE_SHADER_TESS_EVAL) {
436 unsigned vtx_reuse_depth = 30;
437
438 if (type == PIPE_SHADER_TESS_EVAL &&
439 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
440 PIPE_TESS_SPACING_FRACTIONAL_ODD)
441 vtx_reuse_depth = 14;
442
443 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
444 vtx_reuse_depth);
445 }
446 }
447
448 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
449 {
450 if (shader->pm4)
451 si_pm4_clear_state(shader->pm4);
452 else
453 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
454
455 return shader->pm4;
456 }
457
458 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
459 {
460 /* Add the pointer to VBO descriptors. */
461 if (HAVE_32BIT_POINTERS) {
462 return num_always_on_user_sgprs + 1;
463 } else {
464 assert(num_always_on_user_sgprs % 2 == 0);
465 return num_always_on_user_sgprs + 2;
466 }
467 }
468
469 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
470 {
471 struct si_pm4_state *pm4;
472 unsigned vgpr_comp_cnt;
473 uint64_t va;
474
475 assert(sscreen->info.chip_class <= VI);
476
477 pm4 = si_get_shader_pm4_state(shader);
478 if (!pm4)
479 return;
480
481 va = shader->bo->gpu_address;
482 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
483
484 /* We need at least 2 components for LS.
485 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
486 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
487 */
488 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
489
490 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
491 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
492
493 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
494 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
495 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
496 S_00B528_DX10_CLAMP(1) |
497 S_00B528_FLOAT_MODE(shader->config.float_mode);
498 shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
499 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
500 }
501
502 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
503 {
504 struct si_pm4_state *pm4;
505 uint64_t va;
506 unsigned ls_vgpr_comp_cnt = 0;
507
508 pm4 = si_get_shader_pm4_state(shader);
509 if (!pm4)
510 return;
511
512 va = shader->bo->gpu_address;
513 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
514
515 if (sscreen->info.chip_class >= GFX9) {
516 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
517 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
518
519 /* We need at least 2 components for LS.
520 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
521 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
522 */
523 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
524
525 unsigned num_user_sgprs =
526 si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
527
528 shader->config.rsrc2 =
529 S_00B42C_USER_SGPR(num_user_sgprs) |
530 S_00B42C_USER_SGPR_MSB(num_user_sgprs >> 5) |
531 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
532 } else {
533 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
534 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
535
536 shader->config.rsrc2 =
537 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
538 S_00B42C_OC_LDS_EN(1) |
539 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
540 }
541
542 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
543 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
544 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
545 S_00B428_DX10_CLAMP(1) |
546 S_00B428_FLOAT_MODE(shader->config.float_mode) |
547 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
548
549 if (sscreen->info.chip_class <= VI) {
550 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
551 shader->config.rsrc2);
552 }
553 }
554
555 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
556 {
557 struct si_pm4_state *pm4;
558 unsigned num_user_sgprs;
559 unsigned vgpr_comp_cnt;
560 uint64_t va;
561 unsigned oc_lds_en;
562
563 assert(sscreen->info.chip_class <= VI);
564
565 pm4 = si_get_shader_pm4_state(shader);
566 if (!pm4)
567 return;
568
569 va = shader->bo->gpu_address;
570 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
571
572 if (shader->selector->type == PIPE_SHADER_VERTEX) {
573 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
574 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
575 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
576 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
577 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
578 num_user_sgprs = SI_TES_NUM_USER_SGPR;
579 } else
580 unreachable("invalid shader selector type");
581
582 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
583
584 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
585 shader->selector->esgs_itemsize / 4);
586 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
587 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
588 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
589 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
590 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
591 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
592 S_00B328_DX10_CLAMP(1) |
593 S_00B328_FLOAT_MODE(shader->config.float_mode));
594 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
595 S_00B32C_USER_SGPR(num_user_sgprs) |
596 S_00B32C_OC_LDS_EN(oc_lds_en) |
597 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
598
599 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
600 si_set_tesseval_regs(sscreen, shader->selector, pm4);
601
602 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
603 }
604
605 static unsigned si_conv_prim_to_gs_out(unsigned mode)
606 {
607 static const int prim_conv[] = {
608 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
609 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
610 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
611 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
612 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
613 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
614 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
615 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
616 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
617 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
618 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
619 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
620 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
621 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
622 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
623 };
624 assert(mode < ARRAY_SIZE(prim_conv));
625
626 return prim_conv[mode];
627 }
628
629 struct gfx9_gs_info {
630 unsigned es_verts_per_subgroup;
631 unsigned gs_prims_per_subgroup;
632 unsigned gs_inst_prims_in_subgroup;
633 unsigned max_prims_per_subgroup;
634 unsigned lds_size;
635 };
636
637 static void gfx9_get_gs_info(struct si_shader_selector *es,
638 struct si_shader_selector *gs,
639 struct gfx9_gs_info *out)
640 {
641 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
642 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
643 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
644 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
645
646 /* All these are in dwords: */
647 /* We can't allow using the whole LDS, because GS waves compete with
648 * other shader stages for LDS space. */
649 const unsigned max_lds_size = 8 * 1024;
650 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
651 unsigned esgs_lds_size;
652
653 /* All these are per subgroup: */
654 const unsigned max_out_prims = 32 * 1024;
655 const unsigned max_es_verts = 255;
656 const unsigned ideal_gs_prims = 64;
657 unsigned max_gs_prims, gs_prims;
658 unsigned min_es_verts, es_verts, worst_case_es_verts;
659
660 assert(gs_num_invocations <= 32); /* GL maximum */
661
662 if (uses_adjacency || gs_num_invocations > 1)
663 max_gs_prims = 127 / gs_num_invocations;
664 else
665 max_gs_prims = 255;
666
667 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
668 * Make sure we don't go over the maximum value.
669 */
670 if (gs->gs_max_out_vertices > 0) {
671 max_gs_prims = MIN2(max_gs_prims,
672 max_out_prims /
673 (gs->gs_max_out_vertices * gs_num_invocations));
674 }
675 assert(max_gs_prims > 0);
676
677 /* If the primitive has adjacency, halve the number of vertices
678 * that will be reused in multiple primitives.
679 */
680 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
681
682 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
683 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
684
685 /* Compute ESGS LDS size based on the worst case number of ES vertices
686 * needed to create the target number of GS prims per subgroup.
687 */
688 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
689
690 /* If total LDS usage is too big, refactor partitions based on ratio
691 * of ESGS item sizes.
692 */
693 if (esgs_lds_size > max_lds_size) {
694 /* Our target GS Prims Per Subgroup was too large. Calculate
695 * the maximum number of GS Prims Per Subgroup that will fit
696 * into LDS, capped by the maximum that the hardware can support.
697 */
698 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
699 max_gs_prims);
700 assert(gs_prims > 0);
701 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
702 max_es_verts);
703
704 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
705 assert(esgs_lds_size <= max_lds_size);
706 }
707
708 /* Now calculate remaining ESGS information. */
709 if (esgs_lds_size)
710 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
711 else
712 es_verts = max_es_verts;
713
714 /* Vertices for adjacency primitives are not always reused, so restore
715 * it for ES_VERTS_PER_SUBGRP.
716 */
717 min_es_verts = gs->gs_input_verts_per_prim;
718
719 /* For normal primitives, the VGT only checks if they are past the ES
720 * verts per subgroup after allocating a full GS primitive and if they
721 * are, kick off a new subgroup. But if those additional ES verts are
722 * unique (e.g. not reused) we need to make sure there is enough LDS
723 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
724 */
725 es_verts -= min_es_verts - 1;
726
727 out->es_verts_per_subgroup = es_verts;
728 out->gs_prims_per_subgroup = gs_prims;
729 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
730 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
731 gs->gs_max_out_vertices;
732 out->lds_size = align(esgs_lds_size, 128) / 128;
733
734 assert(out->max_prims_per_subgroup <= max_out_prims);
735 }
736
737 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
738 {
739 struct si_shader_selector *sel = shader->selector;
740 const ubyte *num_components = sel->info.num_stream_output_components;
741 unsigned gs_num_invocations = sel->gs_num_invocations;
742 struct si_pm4_state *pm4;
743 uint64_t va;
744 unsigned max_stream = sel->max_gs_stream;
745 unsigned offset;
746
747 pm4 = si_get_shader_pm4_state(shader);
748 if (!pm4)
749 return;
750
751 offset = num_components[0] * sel->gs_max_out_vertices;
752 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
753 if (max_stream >= 1)
754 offset += num_components[1] * sel->gs_max_out_vertices;
755 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
756 if (max_stream >= 2)
757 offset += num_components[2] * sel->gs_max_out_vertices;
758 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
759 si_pm4_set_reg(pm4, R_028A6C_VGT_GS_OUT_PRIM_TYPE,
760 si_conv_prim_to_gs_out(sel->gs_output_prim));
761 if (max_stream >= 3)
762 offset += num_components[3] * sel->gs_max_out_vertices;
763 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
764
765 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
766 assert(offset < (1 << 15));
767
768 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
769
770 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
771 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
772 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
773 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
774
775 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
776 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
777 S_028B90_ENABLE(gs_num_invocations > 0));
778
779 va = shader->bo->gpu_address;
780 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
781
782 if (sscreen->info.chip_class >= GFX9) {
783 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
784 unsigned es_type = shader->key.part.gs.es->type;
785 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
786 struct gfx9_gs_info gs_info;
787
788 if (es_type == PIPE_SHADER_VERTEX)
789 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
790 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
791 else if (es_type == PIPE_SHADER_TESS_EVAL)
792 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
793 else
794 unreachable("invalid shader selector type");
795
796 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
797 * VGPR[0:4] are always loaded.
798 */
799 if (sel->info.uses_invocationid)
800 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
801 else if (sel->info.uses_primid)
802 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
803 else if (input_prim >= PIPE_PRIM_TRIANGLES)
804 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
805 else
806 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
807
808 unsigned num_user_sgprs;
809 if (es_type == PIPE_SHADER_VERTEX)
810 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
811 else
812 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
813
814 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
815
816 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
817 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
818
819 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
820 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
821 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
822 S_00B228_DX10_CLAMP(1) |
823 S_00B228_FLOAT_MODE(shader->config.float_mode) |
824 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
825 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
826 S_00B22C_USER_SGPR(num_user_sgprs) |
827 S_00B22C_USER_SGPR_MSB(num_user_sgprs >> 5) |
828 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
829 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
830 S_00B22C_LDS_SIZE(gs_info.lds_size) |
831 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
832
833 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
834 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
835 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
836 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
837 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
838 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
839 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
840 shader->key.part.gs.es->esgs_itemsize / 4);
841
842 if (es_type == PIPE_SHADER_TESS_EVAL)
843 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
844
845 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
846 NULL, pm4);
847 } else {
848 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
849 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
850
851 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
852 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
853 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
854 S_00B228_DX10_CLAMP(1) |
855 S_00B228_FLOAT_MODE(shader->config.float_mode));
856 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
857 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
858 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
859 }
860 }
861
862 /**
863 * Compute the state for \p shader, which will run as a vertex shader on the
864 * hardware.
865 *
866 * If \p gs is non-NULL, it points to the geometry shader for which this shader
867 * is the copy shader.
868 */
869 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
870 struct si_shader_selector *gs)
871 {
872 const struct tgsi_shader_info *info = &shader->selector->info;
873 struct si_pm4_state *pm4;
874 unsigned num_user_sgprs;
875 unsigned nparams, vgpr_comp_cnt;
876 uint64_t va;
877 unsigned oc_lds_en;
878 unsigned window_space =
879 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
880 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
881
882 pm4 = si_get_shader_pm4_state(shader);
883 if (!pm4)
884 return;
885
886 /* We always write VGT_GS_MODE in the VS state, because every switch
887 * between different shader pipelines involving a different GS or no
888 * GS at all involves a switch of the VS (different GS use different
889 * copy shaders). On the other hand, when the API switches from a GS to
890 * no GS and then back to the same GS used originally, the GS state is
891 * not sent again.
892 */
893 if (!gs) {
894 unsigned mode = V_028A40_GS_OFF;
895
896 /* PrimID needs GS scenario A. */
897 if (enable_prim_id)
898 mode = V_028A40_GS_SCENARIO_A;
899
900 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
901 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
902 } else {
903 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
904 ac_vgt_gs_mode(gs->gs_max_out_vertices,
905 sscreen->info.chip_class));
906 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
907 }
908
909 if (sscreen->info.chip_class <= VI) {
910 /* Reuse needs to be set off if we write oViewport. */
911 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
912 S_028AB4_REUSE_OFF(info->writes_viewport_index));
913 }
914
915 va = shader->bo->gpu_address;
916 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
917
918 if (gs) {
919 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
920 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
921 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
922 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
923 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
924 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
925 */
926 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
927
928 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
929 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
930 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
931 } else {
932 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
933 }
934 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
935 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
936 num_user_sgprs = SI_TES_NUM_USER_SGPR;
937 } else
938 unreachable("invalid shader selector type");
939
940 /* VS is required to export at least one param. */
941 nparams = MAX2(shader->info.nr_param_exports, 1);
942 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
943 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
944
945 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
946 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
947 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
948 V_02870C_SPI_SHADER_4COMP :
949 V_02870C_SPI_SHADER_NONE) |
950 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
951 V_02870C_SPI_SHADER_4COMP :
952 V_02870C_SPI_SHADER_NONE) |
953 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
954 V_02870C_SPI_SHADER_4COMP :
955 V_02870C_SPI_SHADER_NONE));
956
957 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
958
959 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
960 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
961 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
962 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
963 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
964 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
965 S_00B128_DX10_CLAMP(1) |
966 S_00B128_FLOAT_MODE(shader->config.float_mode));
967 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
968 S_00B12C_USER_SGPR(num_user_sgprs) |
969 S_00B12C_OC_LDS_EN(oc_lds_en) |
970 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
971 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
972 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
973 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
974 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
975 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
976 if (window_space)
977 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
978 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
979 else
980 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
981 S_028818_VTX_W0_FMT(1) |
982 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
983 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
984 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
985
986 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
987 si_set_tesseval_regs(sscreen, shader->selector, pm4);
988
989 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
990 }
991
992 static unsigned si_get_ps_num_interp(struct si_shader *ps)
993 {
994 struct tgsi_shader_info *info = &ps->selector->info;
995 unsigned num_colors = !!(info->colors_read & 0x0f) +
996 !!(info->colors_read & 0xf0);
997 unsigned num_interp = ps->selector->info.num_inputs +
998 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
999
1000 assert(num_interp <= 32);
1001 return MIN2(num_interp, 32);
1002 }
1003
1004 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1005 {
1006 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1007 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1008
1009 /* If the i-th target format is set, all previous target formats must
1010 * be non-zero to avoid hangs.
1011 */
1012 for (i = 0; i < num_targets; i++)
1013 if (!(value & (0xf << (i * 4))))
1014 value |= V_028714_SPI_SHADER_32_R << (i * 4);
1015
1016 return value;
1017 }
1018
1019 static void si_shader_ps(struct si_shader *shader)
1020 {
1021 struct tgsi_shader_info *info = &shader->selector->info;
1022 struct si_pm4_state *pm4;
1023 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1024 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1025 uint64_t va;
1026 unsigned input_ena = shader->config.spi_ps_input_ena;
1027
1028 /* we need to enable at least one of them, otherwise we hang the GPU */
1029 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1030 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1031 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1032 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1033 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1034 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1035 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1036 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1037 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1038 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1039 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1040 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1041 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1042 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1043
1044 /* Validate interpolation optimization flags (read as implications). */
1045 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1046 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1047 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1048 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1049 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1050 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1051 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1052 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1053 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1054 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1055 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1056 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1057 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1058 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1059 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1060 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1061 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1062 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1063
1064 /* Validate cases when the optimizations are off (read as implications). */
1065 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1066 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1067 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1068 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1069 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1070 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1071
1072 pm4 = si_get_shader_pm4_state(shader);
1073 if (!pm4)
1074 return;
1075
1076 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1077 * Possible vaules:
1078 * 0 -> Position = pixel center
1079 * 1 -> Position = pixel centroid
1080 * 2 -> Position = at sample position
1081 *
1082 * From GLSL 4.5 specification, section 7.1:
1083 * "The variable gl_FragCoord is available as an input variable from
1084 * within fragment shaders and it holds the window relative coordinates
1085 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1086 * value can be for any location within the pixel, or one of the
1087 * fragment samples. The use of centroid does not further restrict
1088 * this value to be inside the current primitive."
1089 *
1090 * Meaning that centroid has no effect and we can return anything within
1091 * the pixel. Thus, return the value at sample position, because that's
1092 * the most accurate one shaders can get.
1093 */
1094 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1095
1096 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1097 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1098 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1099
1100 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1101 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1102
1103 /* Ensure that some export memory is always allocated, for two reasons:
1104 *
1105 * 1) Correctness: The hardware ignores the EXEC mask if no export
1106 * memory is allocated, so KILL and alpha test do not work correctly
1107 * without this.
1108 * 2) Performance: Every shader needs at least a NULL export, even when
1109 * it writes no color/depth output. The NULL export instruction
1110 * stalls without this setting.
1111 *
1112 * Don't add this to CB_SHADER_MASK.
1113 */
1114 if (!spi_shader_col_format &&
1115 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1116 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1117
1118 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1119 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1120 shader->config.spi_ps_input_addr);
1121
1122 /* Set interpolation controls. */
1123 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1124
1125 /* Set registers. */
1126 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1127 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1128
1129 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1130 ac_get_spi_shader_z_format(info->writes_z,
1131 info->writes_stencil,
1132 info->writes_samplemask));
1133
1134 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1135 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1136
1137 va = shader->bo->gpu_address;
1138 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1139 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1140 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1141
1142 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1143 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1144 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1145 S_00B028_DX10_CLAMP(1) |
1146 S_00B028_FLOAT_MODE(shader->config.float_mode));
1147 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1148 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1149 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1150 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1151 }
1152
1153 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1154 struct si_shader *shader)
1155 {
1156 switch (shader->selector->type) {
1157 case PIPE_SHADER_VERTEX:
1158 if (shader->key.as_ls)
1159 si_shader_ls(sscreen, shader);
1160 else if (shader->key.as_es)
1161 si_shader_es(sscreen, shader);
1162 else
1163 si_shader_vs(sscreen, shader, NULL);
1164 break;
1165 case PIPE_SHADER_TESS_CTRL:
1166 si_shader_hs(sscreen, shader);
1167 break;
1168 case PIPE_SHADER_TESS_EVAL:
1169 if (shader->key.as_es)
1170 si_shader_es(sscreen, shader);
1171 else
1172 si_shader_vs(sscreen, shader, NULL);
1173 break;
1174 case PIPE_SHADER_GEOMETRY:
1175 si_shader_gs(sscreen, shader);
1176 break;
1177 case PIPE_SHADER_FRAGMENT:
1178 si_shader_ps(shader);
1179 break;
1180 default:
1181 assert(0);
1182 }
1183 }
1184
1185 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1186 {
1187 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1188 if (sctx->queued.named.dsa)
1189 return sctx->queued.named.dsa->alpha_func;
1190
1191 return PIPE_FUNC_ALWAYS;
1192 }
1193
1194 static void si_shader_selector_key_vs(struct si_context *sctx,
1195 struct si_shader_selector *vs,
1196 struct si_shader_key *key,
1197 struct si_vs_prolog_bits *prolog_key)
1198 {
1199 if (!sctx->vertex_elements)
1200 return;
1201
1202 prolog_key->instance_divisor_is_one =
1203 sctx->vertex_elements->instance_divisor_is_one;
1204 prolog_key->instance_divisor_is_fetched =
1205 sctx->vertex_elements->instance_divisor_is_fetched;
1206
1207 /* Prefer a monolithic shader to allow scheduling divisions around
1208 * VBO loads. */
1209 if (prolog_key->instance_divisor_is_fetched)
1210 key->opt.prefer_mono = 1;
1211
1212 unsigned count = MIN2(vs->info.num_inputs,
1213 sctx->vertex_elements->count);
1214 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1215 }
1216
1217 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1218 struct si_shader_selector *vs,
1219 struct si_shader_key *key)
1220 {
1221 struct si_shader_selector *ps = sctx->ps_shader.cso;
1222
1223 key->opt.clip_disable =
1224 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1225 (vs->info.clipdist_writemask ||
1226 vs->info.writes_clipvertex) &&
1227 !vs->info.culldist_writemask;
1228
1229 /* Find out if PS is disabled. */
1230 bool ps_disabled = true;
1231 if (ps) {
1232 const struct si_state_blend *blend = sctx->queued.named.blend;
1233 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1234 bool ps_modifies_zs = ps->info.uses_kill ||
1235 ps->info.writes_z ||
1236 ps->info.writes_stencil ||
1237 ps->info.writes_samplemask ||
1238 alpha_to_coverage ||
1239 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1240 unsigned ps_colormask = si_get_total_colormask(sctx);
1241
1242 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1243 (!ps_colormask &&
1244 !ps_modifies_zs &&
1245 !ps->info.writes_memory);
1246 }
1247
1248 /* Find out which VS outputs aren't used by the PS. */
1249 uint64_t outputs_written = vs->outputs_written_before_ps;
1250 uint64_t inputs_read = 0;
1251
1252 /* Ignore outputs that are not passed from VS to PS. */
1253 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1254 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1255 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1256
1257 if (!ps_disabled) {
1258 inputs_read = ps->inputs_read;
1259 }
1260
1261 uint64_t linked = outputs_written & inputs_read;
1262
1263 key->opt.kill_outputs = ~linked & outputs_written;
1264 }
1265
1266 /* Compute the key for the hw shader variant */
1267 static inline void si_shader_selector_key(struct pipe_context *ctx,
1268 struct si_shader_selector *sel,
1269 struct si_shader_key *key)
1270 {
1271 struct si_context *sctx = (struct si_context *)ctx;
1272
1273 memset(key, 0, sizeof(*key));
1274
1275 switch (sel->type) {
1276 case PIPE_SHADER_VERTEX:
1277 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1278
1279 if (sctx->tes_shader.cso)
1280 key->as_ls = 1;
1281 else if (sctx->gs_shader.cso)
1282 key->as_es = 1;
1283 else {
1284 si_shader_selector_key_hw_vs(sctx, sel, key);
1285
1286 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1287 key->mono.u.vs_export_prim_id = 1;
1288 }
1289 break;
1290 case PIPE_SHADER_TESS_CTRL:
1291 if (sctx->chip_class >= GFX9) {
1292 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1293 key, &key->part.tcs.ls_prolog);
1294 key->part.tcs.ls = sctx->vs_shader.cso;
1295
1296 /* When the LS VGPR fix is needed, monolithic shaders
1297 * can:
1298 * - avoid initializing EXEC in both the LS prolog
1299 * and the LS main part when !vs_needs_prolog
1300 * - remove the fixup for unused input VGPRs
1301 */
1302 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1303
1304 /* The LS output / HS input layout can be communicated
1305 * directly instead of via user SGPRs for merged LS-HS.
1306 * The LS VGPR fix prefers this too.
1307 */
1308 key->opt.prefer_mono = 1;
1309 }
1310
1311 key->part.tcs.epilog.prim_mode =
1312 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1313 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1314 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1315 key->part.tcs.epilog.tes_reads_tess_factors =
1316 sctx->tes_shader.cso->info.reads_tess_factors;
1317
1318 if (sel == sctx->fixed_func_tcs_shader.cso)
1319 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1320 break;
1321 case PIPE_SHADER_TESS_EVAL:
1322 if (sctx->gs_shader.cso)
1323 key->as_es = 1;
1324 else {
1325 si_shader_selector_key_hw_vs(sctx, sel, key);
1326
1327 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1328 key->mono.u.vs_export_prim_id = 1;
1329 }
1330 break;
1331 case PIPE_SHADER_GEOMETRY:
1332 if (sctx->chip_class >= GFX9) {
1333 if (sctx->tes_shader.cso) {
1334 key->part.gs.es = sctx->tes_shader.cso;
1335 } else {
1336 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1337 key, &key->part.gs.vs_prolog);
1338 key->part.gs.es = sctx->vs_shader.cso;
1339 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1340 }
1341
1342 /* Merged ES-GS can have unbalanced wave usage.
1343 *
1344 * ES threads are per-vertex, while GS threads are
1345 * per-primitive. So without any amplification, there
1346 * are fewer GS threads than ES threads, which can result
1347 * in empty (no-op) GS waves. With too much amplification,
1348 * there are more GS threads than ES threads, which
1349 * can result in empty (no-op) ES waves.
1350 *
1351 * Non-monolithic shaders are implemented by setting EXEC
1352 * at the beginning of shader parts, and don't jump to
1353 * the end if EXEC is 0.
1354 *
1355 * Monolithic shaders use conditional blocks, so they can
1356 * jump and skip empty waves of ES or GS. So set this to
1357 * always use optimized variants, which are monolithic.
1358 */
1359 key->opt.prefer_mono = 1;
1360 }
1361 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1362 break;
1363 case PIPE_SHADER_FRAGMENT: {
1364 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1365 struct si_state_blend *blend = sctx->queued.named.blend;
1366
1367 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1368 sel->info.colors_written == 0x1)
1369 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1370
1371 if (blend) {
1372 /* Select the shader color format based on whether
1373 * blending or alpha are needed.
1374 */
1375 key->part.ps.epilog.spi_shader_col_format =
1376 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1377 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1378 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1379 sctx->framebuffer.spi_shader_col_format_blend) |
1380 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1381 sctx->framebuffer.spi_shader_col_format_alpha) |
1382 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1383 sctx->framebuffer.spi_shader_col_format);
1384 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1385
1386 /* The output for dual source blending should have
1387 * the same format as the first output.
1388 */
1389 if (blend->dual_src_blend)
1390 key->part.ps.epilog.spi_shader_col_format |=
1391 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1392 } else
1393 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1394
1395 /* If alpha-to-coverage is enabled, we have to export alpha
1396 * even if there is no color buffer.
1397 */
1398 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1399 blend && blend->alpha_to_coverage)
1400 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1401
1402 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1403 * to the range supported by the type if a channel has less
1404 * than 16 bits and the export format is 16_ABGR.
1405 */
1406 if (sctx->chip_class <= CIK && sctx->family != CHIP_HAWAII) {
1407 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1408 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1409 }
1410
1411 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1412 if (!key->part.ps.epilog.last_cbuf) {
1413 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1414 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1415 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1416 }
1417
1418 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1419 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1420
1421 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1422 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1423
1424 if (sctx->queued.named.blend) {
1425 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1426 rs->multisample_enable;
1427 }
1428
1429 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1430 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1431 (is_line && rs->line_smooth)) &&
1432 sctx->framebuffer.nr_samples <= 1;
1433 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1434
1435 if (sctx->ps_iter_samples > 1 &&
1436 sel->info.reads_samplemask) {
1437 key->part.ps.prolog.samplemask_log_ps_iter =
1438 util_logbase2(sctx->ps_iter_samples);
1439 }
1440
1441 if (rs->force_persample_interp &&
1442 rs->multisample_enable &&
1443 sctx->framebuffer.nr_samples > 1 &&
1444 sctx->ps_iter_samples > 1) {
1445 key->part.ps.prolog.force_persp_sample_interp =
1446 sel->info.uses_persp_center ||
1447 sel->info.uses_persp_centroid;
1448
1449 key->part.ps.prolog.force_linear_sample_interp =
1450 sel->info.uses_linear_center ||
1451 sel->info.uses_linear_centroid;
1452 } else if (rs->multisample_enable &&
1453 sctx->framebuffer.nr_samples > 1) {
1454 key->part.ps.prolog.bc_optimize_for_persp =
1455 sel->info.uses_persp_center &&
1456 sel->info.uses_persp_centroid;
1457 key->part.ps.prolog.bc_optimize_for_linear =
1458 sel->info.uses_linear_center &&
1459 sel->info.uses_linear_centroid;
1460 } else {
1461 /* Make sure SPI doesn't compute more than 1 pair
1462 * of (i,j), which is the optimization here. */
1463 key->part.ps.prolog.force_persp_center_interp =
1464 sel->info.uses_persp_center +
1465 sel->info.uses_persp_centroid +
1466 sel->info.uses_persp_sample > 1;
1467
1468 key->part.ps.prolog.force_linear_center_interp =
1469 sel->info.uses_linear_center +
1470 sel->info.uses_linear_centroid +
1471 sel->info.uses_linear_sample > 1;
1472
1473 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1474 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1475 }
1476
1477 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1478
1479 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1480 if (sctx->ps_uses_fbfetch) {
1481 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1482 struct pipe_resource *tex = cb0->texture;
1483
1484 /* 1D textures are allocated and used as 2D on GFX9. */
1485 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1486 key->mono.u.ps.fbfetch_is_1D = sctx->chip_class != GFX9 &&
1487 (tex->target == PIPE_TEXTURE_1D ||
1488 tex->target == PIPE_TEXTURE_1D_ARRAY);
1489 key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
1490 tex->target == PIPE_TEXTURE_2D_ARRAY ||
1491 tex->target == PIPE_TEXTURE_CUBE ||
1492 tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1493 tex->target == PIPE_TEXTURE_3D;
1494 }
1495 break;
1496 }
1497 default:
1498 assert(0);
1499 }
1500
1501 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1502 memset(&key->opt, 0, sizeof(key->opt));
1503 }
1504
1505 static void si_build_shader_variant(struct si_shader *shader,
1506 int thread_index,
1507 bool low_priority)
1508 {
1509 struct si_shader_selector *sel = shader->selector;
1510 struct si_screen *sscreen = sel->screen;
1511 struct ac_llvm_compiler *compiler;
1512 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1513 int r;
1514
1515 if (thread_index >= 0) {
1516 if (low_priority) {
1517 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
1518 compiler = &sscreen->compiler_lowp[thread_index];
1519 } else {
1520 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1521 compiler = &sscreen->compiler[thread_index];
1522 }
1523 if (!debug->async)
1524 debug = NULL;
1525 } else {
1526 assert(!low_priority);
1527 compiler = shader->compiler_ctx_state.compiler;
1528 }
1529
1530 r = si_shader_create(sscreen, compiler, shader, debug);
1531 if (unlikely(r)) {
1532 PRINT_ERR("Failed to build shader variant (type=%u) %d\n",
1533 sel->type, r);
1534 shader->compilation_failed = true;
1535 return;
1536 }
1537
1538 if (shader->compiler_ctx_state.is_debug_context) {
1539 FILE *f = open_memstream(&shader->shader_log,
1540 &shader->shader_log_size);
1541 if (f) {
1542 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1543 fclose(f);
1544 }
1545 }
1546
1547 si_shader_init_pm4_state(sscreen, shader);
1548 }
1549
1550 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1551 {
1552 struct si_shader *shader = (struct si_shader *)job;
1553
1554 assert(thread_index >= 0);
1555
1556 si_build_shader_variant(shader, thread_index, true);
1557 }
1558
1559 static const struct si_shader_key zeroed;
1560
1561 static bool si_check_missing_main_part(struct si_screen *sscreen,
1562 struct si_shader_selector *sel,
1563 struct si_compiler_ctx_state *compiler_state,
1564 struct si_shader_key *key)
1565 {
1566 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1567
1568 if (!*mainp) {
1569 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1570
1571 if (!main_part)
1572 return false;
1573
1574 /* We can leave the fence as permanently signaled because the
1575 * main part becomes visible globally only after it has been
1576 * compiled. */
1577 util_queue_fence_init(&main_part->ready);
1578
1579 main_part->selector = sel;
1580 main_part->key.as_es = key->as_es;
1581 main_part->key.as_ls = key->as_ls;
1582 main_part->is_monolithic = false;
1583
1584 if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
1585 main_part, &compiler_state->debug) != 0) {
1586 FREE(main_part);
1587 return false;
1588 }
1589 *mainp = main_part;
1590 }
1591 return true;
1592 }
1593
1594 /* Select the hw shader variant depending on the current state. */
1595 static int si_shader_select_with_key(struct si_screen *sscreen,
1596 struct si_shader_ctx_state *state,
1597 struct si_compiler_ctx_state *compiler_state,
1598 struct si_shader_key *key,
1599 int thread_index)
1600 {
1601 struct si_shader_selector *sel = state->cso;
1602 struct si_shader_selector *previous_stage_sel = NULL;
1603 struct si_shader *current = state->current;
1604 struct si_shader *iter, *shader = NULL;
1605
1606 again:
1607 /* Check if we don't need to change anything.
1608 * This path is also used for most shaders that don't need multiple
1609 * variants, it will cost just a computation of the key and this
1610 * test. */
1611 if (likely(current &&
1612 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1613 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1614 if (current->is_optimized) {
1615 memset(&key->opt, 0, sizeof(key->opt));
1616 goto current_not_ready;
1617 }
1618
1619 util_queue_fence_wait(&current->ready);
1620 }
1621
1622 return current->compilation_failed ? -1 : 0;
1623 }
1624 current_not_ready:
1625
1626 /* This must be done before the mutex is locked, because async GS
1627 * compilation calls this function too, and therefore must enter
1628 * the mutex first.
1629 *
1630 * Only wait if we are in a draw call. Don't wait if we are
1631 * in a compiler thread.
1632 */
1633 if (thread_index < 0)
1634 util_queue_fence_wait(&sel->ready);
1635
1636 mtx_lock(&sel->mutex);
1637
1638 /* Find the shader variant. */
1639 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1640 /* Don't check the "current" shader. We checked it above. */
1641 if (current != iter &&
1642 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1643 mtx_unlock(&sel->mutex);
1644
1645 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1646 /* If it's an optimized shader and its compilation has
1647 * been started but isn't done, use the unoptimized
1648 * shader so as not to cause a stall due to compilation.
1649 */
1650 if (iter->is_optimized) {
1651 memset(&key->opt, 0, sizeof(key->opt));
1652 goto again;
1653 }
1654
1655 util_queue_fence_wait(&iter->ready);
1656 }
1657
1658 if (iter->compilation_failed) {
1659 return -1; /* skip the draw call */
1660 }
1661
1662 state->current = iter;
1663 return 0;
1664 }
1665 }
1666
1667 /* Build a new shader. */
1668 shader = CALLOC_STRUCT(si_shader);
1669 if (!shader) {
1670 mtx_unlock(&sel->mutex);
1671 return -ENOMEM;
1672 }
1673
1674 util_queue_fence_init(&shader->ready);
1675
1676 shader->selector = sel;
1677 shader->key = *key;
1678 shader->compiler_ctx_state = *compiler_state;
1679
1680 /* If this is a merged shader, get the first shader's selector. */
1681 if (sscreen->info.chip_class >= GFX9) {
1682 if (sel->type == PIPE_SHADER_TESS_CTRL)
1683 previous_stage_sel = key->part.tcs.ls;
1684 else if (sel->type == PIPE_SHADER_GEOMETRY)
1685 previous_stage_sel = key->part.gs.es;
1686
1687 /* We need to wait for the previous shader. */
1688 if (previous_stage_sel && thread_index < 0)
1689 util_queue_fence_wait(&previous_stage_sel->ready);
1690 }
1691
1692 /* Compile the main shader part if it doesn't exist. This can happen
1693 * if the initial guess was wrong. */
1694 bool is_pure_monolithic =
1695 sscreen->use_monolithic_shaders ||
1696 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1697
1698 if (!is_pure_monolithic) {
1699 bool ok;
1700
1701 /* Make sure the main shader part is present. This is needed
1702 * for shaders that can be compiled as VS, LS, or ES, and only
1703 * one of them is compiled at creation.
1704 *
1705 * For merged shaders, check that the starting shader's main
1706 * part is present.
1707 */
1708 if (previous_stage_sel) {
1709 struct si_shader_key shader1_key = zeroed;
1710
1711 if (sel->type == PIPE_SHADER_TESS_CTRL)
1712 shader1_key.as_ls = 1;
1713 else if (sel->type == PIPE_SHADER_GEOMETRY)
1714 shader1_key.as_es = 1;
1715 else
1716 assert(0);
1717
1718 mtx_lock(&previous_stage_sel->mutex);
1719 ok = si_check_missing_main_part(sscreen,
1720 previous_stage_sel,
1721 compiler_state, &shader1_key);
1722 mtx_unlock(&previous_stage_sel->mutex);
1723 } else {
1724 ok = si_check_missing_main_part(sscreen, sel,
1725 compiler_state, key);
1726 }
1727 if (!ok) {
1728 FREE(shader);
1729 mtx_unlock(&sel->mutex);
1730 return -ENOMEM; /* skip the draw call */
1731 }
1732 }
1733
1734 /* Keep the reference to the 1st shader of merged shaders, so that
1735 * Gallium can't destroy it before we destroy the 2nd shader.
1736 *
1737 * Set sctx = NULL, because it's unused if we're not releasing
1738 * the shader, and we don't have any sctx here.
1739 */
1740 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1741 previous_stage_sel);
1742
1743 /* Monolithic-only shaders don't make a distinction between optimized
1744 * and unoptimized. */
1745 shader->is_monolithic =
1746 is_pure_monolithic ||
1747 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1748
1749 shader->is_optimized =
1750 !is_pure_monolithic &&
1751 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1752
1753 /* If it's an optimized shader, compile it asynchronously. */
1754 if (shader->is_optimized &&
1755 !is_pure_monolithic &&
1756 thread_index < 0) {
1757 /* Compile it asynchronously. */
1758 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1759 shader, &shader->ready,
1760 si_build_shader_variant_low_priority, NULL);
1761
1762 /* Add only after the ready fence was reset, to guard against a
1763 * race with si_bind_XX_shader. */
1764 if (!sel->last_variant) {
1765 sel->first_variant = shader;
1766 sel->last_variant = shader;
1767 } else {
1768 sel->last_variant->next_variant = shader;
1769 sel->last_variant = shader;
1770 }
1771
1772 /* Use the default (unoptimized) shader for now. */
1773 memset(&key->opt, 0, sizeof(key->opt));
1774 mtx_unlock(&sel->mutex);
1775 goto again;
1776 }
1777
1778 /* Reset the fence before adding to the variant list. */
1779 util_queue_fence_reset(&shader->ready);
1780
1781 if (!sel->last_variant) {
1782 sel->first_variant = shader;
1783 sel->last_variant = shader;
1784 } else {
1785 sel->last_variant->next_variant = shader;
1786 sel->last_variant = shader;
1787 }
1788
1789 mtx_unlock(&sel->mutex);
1790
1791 assert(!shader->is_optimized);
1792 si_build_shader_variant(shader, thread_index, false);
1793
1794 util_queue_fence_signal(&shader->ready);
1795
1796 if (!shader->compilation_failed)
1797 state->current = shader;
1798
1799 return shader->compilation_failed ? -1 : 0;
1800 }
1801
1802 static int si_shader_select(struct pipe_context *ctx,
1803 struct si_shader_ctx_state *state,
1804 struct si_compiler_ctx_state *compiler_state)
1805 {
1806 struct si_context *sctx = (struct si_context *)ctx;
1807 struct si_shader_key key;
1808
1809 si_shader_selector_key(ctx, state->cso, &key);
1810 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1811 &key, -1);
1812 }
1813
1814 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1815 bool streamout,
1816 struct si_shader_key *key)
1817 {
1818 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1819
1820 switch (info->processor) {
1821 case PIPE_SHADER_VERTEX:
1822 switch (next_shader) {
1823 case PIPE_SHADER_GEOMETRY:
1824 key->as_es = 1;
1825 break;
1826 case PIPE_SHADER_TESS_CTRL:
1827 case PIPE_SHADER_TESS_EVAL:
1828 key->as_ls = 1;
1829 break;
1830 default:
1831 /* If POSITION isn't written, it can only be a HW VS
1832 * if streamout is used. If streamout isn't used,
1833 * assume that it's a HW LS. (the next shader is TCS)
1834 * This heuristic is needed for separate shader objects.
1835 */
1836 if (!info->writes_position && !streamout)
1837 key->as_ls = 1;
1838 }
1839 break;
1840
1841 case PIPE_SHADER_TESS_EVAL:
1842 if (next_shader == PIPE_SHADER_GEOMETRY ||
1843 !info->writes_position)
1844 key->as_es = 1;
1845 break;
1846 }
1847 }
1848
1849 /**
1850 * Compile the main shader part or the monolithic shader as part of
1851 * si_shader_selector initialization. Since it can be done asynchronously,
1852 * there is no way to report compile failures to applications.
1853 */
1854 static void si_init_shader_selector_async(void *job, int thread_index)
1855 {
1856 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1857 struct si_screen *sscreen = sel->screen;
1858 struct ac_llvm_compiler *compiler;
1859 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1860
1861 assert(!debug->debug_message || debug->async);
1862 assert(thread_index >= 0);
1863 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1864 compiler = &sscreen->compiler[thread_index];
1865
1866 /* Compile the main shader part for use with a prolog and/or epilog.
1867 * If this fails, the driver will try to compile a monolithic shader
1868 * on demand.
1869 */
1870 if (!sscreen->use_monolithic_shaders) {
1871 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1872 void *ir_binary = NULL;
1873
1874 if (!shader) {
1875 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1876 return;
1877 }
1878
1879 /* We can leave the fence signaled because use of the default
1880 * main part is guarded by the selector's ready fence. */
1881 util_queue_fence_init(&shader->ready);
1882
1883 shader->selector = sel;
1884 shader->is_monolithic = false;
1885 si_parse_next_shader_property(&sel->info,
1886 sel->so.num_outputs != 0,
1887 &shader->key);
1888
1889 if (sel->tokens || sel->nir)
1890 ir_binary = si_get_ir_binary(sel);
1891
1892 /* Try to load the shader from the shader cache. */
1893 mtx_lock(&sscreen->shader_cache_mutex);
1894
1895 if (ir_binary &&
1896 si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
1897 mtx_unlock(&sscreen->shader_cache_mutex);
1898 si_shader_dump_stats_for_shader_db(shader, debug);
1899 } else {
1900 mtx_unlock(&sscreen->shader_cache_mutex);
1901
1902 /* Compile the shader if it hasn't been loaded from the cache. */
1903 if (si_compile_tgsi_shader(sscreen, compiler, shader,
1904 debug) != 0) {
1905 FREE(shader);
1906 FREE(ir_binary);
1907 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1908 return;
1909 }
1910
1911 if (ir_binary) {
1912 mtx_lock(&sscreen->shader_cache_mutex);
1913 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
1914 FREE(ir_binary);
1915 mtx_unlock(&sscreen->shader_cache_mutex);
1916 }
1917 }
1918
1919 *si_get_main_shader_part(sel, &shader->key) = shader;
1920
1921 /* Unset "outputs_written" flags for outputs converted to
1922 * DEFAULT_VAL, so that later inter-shader optimizations don't
1923 * try to eliminate outputs that don't exist in the final
1924 * shader.
1925 *
1926 * This is only done if non-monolithic shaders are enabled.
1927 */
1928 if ((sel->type == PIPE_SHADER_VERTEX ||
1929 sel->type == PIPE_SHADER_TESS_EVAL) &&
1930 !shader->key.as_ls &&
1931 !shader->key.as_es) {
1932 unsigned i;
1933
1934 for (i = 0; i < sel->info.num_outputs; i++) {
1935 unsigned offset = shader->info.vs_output_param_offset[i];
1936
1937 if (offset <= AC_EXP_PARAM_OFFSET_31)
1938 continue;
1939
1940 unsigned name = sel->info.output_semantic_name[i];
1941 unsigned index = sel->info.output_semantic_index[i];
1942 unsigned id;
1943
1944 switch (name) {
1945 case TGSI_SEMANTIC_GENERIC:
1946 /* don't process indices the function can't handle */
1947 if (index >= SI_MAX_IO_GENERIC)
1948 break;
1949 /* fall through */
1950 default:
1951 id = si_shader_io_get_unique_index(name, index, true);
1952 sel->outputs_written_before_ps &= ~(1ull << id);
1953 break;
1954 case TGSI_SEMANTIC_POSITION: /* ignore these */
1955 case TGSI_SEMANTIC_PSIZE:
1956 case TGSI_SEMANTIC_CLIPVERTEX:
1957 case TGSI_SEMANTIC_EDGEFLAG:
1958 break;
1959 }
1960 }
1961 }
1962 }
1963
1964 /* The GS copy shader is always pre-compiled. */
1965 if (sel->type == PIPE_SHADER_GEOMETRY) {
1966 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
1967 if (!sel->gs_copy_shader) {
1968 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1969 return;
1970 }
1971
1972 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1973 }
1974 }
1975
1976 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
1977 struct util_queue_fence *ready_fence,
1978 struct si_compiler_ctx_state *compiler_ctx_state,
1979 void *job, util_queue_execute_func execute)
1980 {
1981 util_queue_fence_init(ready_fence);
1982
1983 struct util_async_debug_callback async_debug;
1984 bool wait =
1985 (sctx->debug.debug_message && !sctx->debug.async) ||
1986 sctx->is_debug ||
1987 si_can_dump_shader(sctx->screen, processor);
1988
1989 if (wait) {
1990 u_async_debug_init(&async_debug);
1991 compiler_ctx_state->debug = async_debug.base;
1992 }
1993
1994 util_queue_add_job(&sctx->screen->shader_compiler_queue, job,
1995 ready_fence, execute, NULL);
1996
1997 if (wait) {
1998 util_queue_fence_wait(ready_fence);
1999 u_async_debug_drain(&async_debug, &sctx->debug);
2000 u_async_debug_cleanup(&async_debug);
2001 }
2002 }
2003
2004 /* Return descriptor slot usage masks from the given shader info. */
2005 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2006 uint32_t *const_and_shader_buffers,
2007 uint64_t *samplers_and_images)
2008 {
2009 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
2010
2011 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2012 num_constbufs = util_last_bit(info->const_buffers_declared);
2013 /* two 8-byte images share one 16-byte slot */
2014 num_images = align(util_last_bit(info->images_declared), 2);
2015 num_samplers = util_last_bit(info->samplers_declared);
2016
2017 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2018 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2019 *const_and_shader_buffers =
2020 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2021
2022 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
2023 start = si_get_image_slot(num_images - 1) / 2;
2024 *samplers_and_images =
2025 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2026 }
2027
2028 static void *si_create_shader_selector(struct pipe_context *ctx,
2029 const struct pipe_shader_state *state)
2030 {
2031 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2032 struct si_context *sctx = (struct si_context*)ctx;
2033 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2034 int i;
2035
2036 if (!sel)
2037 return NULL;
2038
2039 pipe_reference_init(&sel->reference, 1);
2040 sel->screen = sscreen;
2041 sel->compiler_ctx_state.debug = sctx->debug;
2042 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2043
2044 sel->so = state->stream_output;
2045
2046 if (state->type == PIPE_SHADER_IR_TGSI) {
2047 sel->tokens = tgsi_dup_tokens(state->tokens);
2048 if (!sel->tokens) {
2049 FREE(sel);
2050 return NULL;
2051 }
2052
2053 tgsi_scan_shader(state->tokens, &sel->info);
2054 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2055 } else {
2056 assert(state->type == PIPE_SHADER_IR_NIR);
2057
2058 sel->nir = state->ir.nir;
2059
2060 si_nir_scan_shader(sel->nir, &sel->info);
2061 si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
2062
2063 si_lower_nir(sel);
2064 }
2065
2066 sel->type = sel->info.processor;
2067 p_atomic_inc(&sscreen->num_shaders_created);
2068 si_get_active_slot_masks(&sel->info,
2069 &sel->active_const_and_shader_buffers,
2070 &sel->active_samplers_and_images);
2071
2072 /* Record which streamout buffers are enabled. */
2073 for (i = 0; i < sel->so.num_outputs; i++) {
2074 sel->enabled_streamout_buffer_mask |=
2075 (1 << sel->so.output[i].output_buffer) <<
2076 (sel->so.output[i].stream * 4);
2077 }
2078
2079 /* The prolog is a no-op if there are no inputs. */
2080 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2081 sel->info.num_inputs &&
2082 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2083
2084 sel->force_correct_derivs_after_kill =
2085 sel->type == PIPE_SHADER_FRAGMENT &&
2086 sel->info.uses_derivatives &&
2087 sel->info.uses_kill &&
2088 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2089
2090 /* Set which opcode uses which (i,j) pair. */
2091 if (sel->info.uses_persp_opcode_interp_centroid)
2092 sel->info.uses_persp_centroid = true;
2093
2094 if (sel->info.uses_linear_opcode_interp_centroid)
2095 sel->info.uses_linear_centroid = true;
2096
2097 if (sel->info.uses_persp_opcode_interp_offset ||
2098 sel->info.uses_persp_opcode_interp_sample)
2099 sel->info.uses_persp_center = true;
2100
2101 if (sel->info.uses_linear_opcode_interp_offset ||
2102 sel->info.uses_linear_opcode_interp_sample)
2103 sel->info.uses_linear_center = true;
2104
2105 switch (sel->type) {
2106 case PIPE_SHADER_GEOMETRY:
2107 sel->gs_output_prim =
2108 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2109 sel->gs_max_out_vertices =
2110 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2111 sel->gs_num_invocations =
2112 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2113 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2114 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2115 sel->gs_max_out_vertices;
2116
2117 sel->max_gs_stream = 0;
2118 for (i = 0; i < sel->so.num_outputs; i++)
2119 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2120 sel->so.output[i].stream);
2121
2122 sel->gs_input_verts_per_prim =
2123 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2124 break;
2125
2126 case PIPE_SHADER_TESS_CTRL:
2127 /* Always reserve space for these. */
2128 sel->patch_outputs_written |=
2129 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2130 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2131 /* fall through */
2132 case PIPE_SHADER_VERTEX:
2133 case PIPE_SHADER_TESS_EVAL:
2134 for (i = 0; i < sel->info.num_outputs; i++) {
2135 unsigned name = sel->info.output_semantic_name[i];
2136 unsigned index = sel->info.output_semantic_index[i];
2137
2138 switch (name) {
2139 case TGSI_SEMANTIC_TESSINNER:
2140 case TGSI_SEMANTIC_TESSOUTER:
2141 case TGSI_SEMANTIC_PATCH:
2142 sel->patch_outputs_written |=
2143 1ull << si_shader_io_get_unique_index_patch(name, index);
2144 break;
2145
2146 case TGSI_SEMANTIC_GENERIC:
2147 /* don't process indices the function can't handle */
2148 if (index >= SI_MAX_IO_GENERIC)
2149 break;
2150 /* fall through */
2151 default:
2152 sel->outputs_written |=
2153 1ull << si_shader_io_get_unique_index(name, index, false);
2154 sel->outputs_written_before_ps |=
2155 1ull << si_shader_io_get_unique_index(name, index, true);
2156 break;
2157 case TGSI_SEMANTIC_EDGEFLAG:
2158 break;
2159 }
2160 }
2161 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2162 sel->lshs_vertex_stride = sel->esgs_itemsize;
2163
2164 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2165 * will start on a different bank. (except for the maximum 32*16).
2166 */
2167 if (sel->lshs_vertex_stride < 32*16)
2168 sel->lshs_vertex_stride += 4;
2169
2170 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2171 * conflicts, i.e. each vertex will start at a different bank.
2172 */
2173 if (sctx->chip_class >= GFX9)
2174 sel->esgs_itemsize += 4;
2175
2176 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2177 break;
2178
2179 case PIPE_SHADER_FRAGMENT:
2180 for (i = 0; i < sel->info.num_inputs; i++) {
2181 unsigned name = sel->info.input_semantic_name[i];
2182 unsigned index = sel->info.input_semantic_index[i];
2183
2184 switch (name) {
2185 case TGSI_SEMANTIC_GENERIC:
2186 /* don't process indices the function can't handle */
2187 if (index >= SI_MAX_IO_GENERIC)
2188 break;
2189 /* fall through */
2190 default:
2191 sel->inputs_read |=
2192 1ull << si_shader_io_get_unique_index(name, index, true);
2193 break;
2194 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2195 break;
2196 }
2197 }
2198
2199 for (i = 0; i < 8; i++)
2200 if (sel->info.colors_written & (1 << i))
2201 sel->colors_written_4bit |= 0xf << (4 * i);
2202
2203 for (i = 0; i < sel->info.num_inputs; i++) {
2204 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2205 int index = sel->info.input_semantic_index[i];
2206 sel->color_attr_index[index] = i;
2207 }
2208 }
2209 break;
2210 }
2211
2212 /* PA_CL_VS_OUT_CNTL */
2213 bool misc_vec_ena =
2214 sel->info.writes_psize || sel->info.writes_edgeflag ||
2215 sel->info.writes_layer || sel->info.writes_viewport_index;
2216 sel->pa_cl_vs_out_cntl =
2217 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2218 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2219 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2220 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2221 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2222 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2223 sel->clipdist_mask = sel->info.writes_clipvertex ?
2224 SIX_BITS : sel->info.clipdist_writemask;
2225 sel->culldist_mask = sel->info.culldist_writemask <<
2226 sel->info.num_written_clipdistance;
2227
2228 /* DB_SHADER_CONTROL */
2229 sel->db_shader_control =
2230 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2231 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2232 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2233 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2234
2235 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2236 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2237 sel->db_shader_control |=
2238 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2239 break;
2240 case TGSI_FS_DEPTH_LAYOUT_LESS:
2241 sel->db_shader_control |=
2242 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2243 break;
2244 }
2245
2246 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2247 *
2248 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2249 * --|-----------|------------|------------|--------------------|-------------------|-------------
2250 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2251 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2252 * 2 | false | true | n/a | LateZ | 1 | 0
2253 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2254 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2255 *
2256 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2257 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2258 *
2259 * Don't use ReZ without profiling !!!
2260 *
2261 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2262 * shaders.
2263 */
2264 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2265 /* Cases 3, 4. */
2266 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2267 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2268 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2269 } else if (sel->info.writes_memory) {
2270 /* Case 2. */
2271 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2272 S_02880C_EXEC_ON_HIER_FAIL(1);
2273 } else {
2274 /* Case 1. */
2275 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2276 }
2277
2278 (void) mtx_init(&sel->mutex, mtx_plain);
2279
2280 si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready,
2281 &sel->compiler_ctx_state, sel,
2282 si_init_shader_selector_async);
2283 return sel;
2284 }
2285
2286 static void si_update_streamout_state(struct si_context *sctx)
2287 {
2288 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2289
2290 if (!shader_with_so)
2291 return;
2292
2293 sctx->streamout.enabled_stream_buffers_mask =
2294 shader_with_so->enabled_streamout_buffer_mask;
2295 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2296 }
2297
2298 static void si_update_clip_regs(struct si_context *sctx,
2299 struct si_shader_selector *old_hw_vs,
2300 struct si_shader *old_hw_vs_variant,
2301 struct si_shader_selector *next_hw_vs,
2302 struct si_shader *next_hw_vs_variant)
2303 {
2304 if (next_hw_vs &&
2305 (!old_hw_vs ||
2306 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2307 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2308 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2309 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2310 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2311 !old_hw_vs_variant ||
2312 !next_hw_vs_variant ||
2313 old_hw_vs_variant->key.opt.clip_disable !=
2314 next_hw_vs_variant->key.opt.clip_disable))
2315 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2316 }
2317
2318 static void si_update_common_shader_state(struct si_context *sctx)
2319 {
2320 sctx->uses_bindless_samplers =
2321 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2322 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2323 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2324 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2325 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2326 sctx->uses_bindless_images =
2327 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2328 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2329 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2330 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2331 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2332 sctx->do_update_shaders = true;
2333 }
2334
2335 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2336 {
2337 struct si_context *sctx = (struct si_context *)ctx;
2338 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2339 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2340 struct si_shader_selector *sel = state;
2341
2342 if (sctx->vs_shader.cso == sel)
2343 return;
2344
2345 sctx->vs_shader.cso = sel;
2346 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2347 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2348
2349 si_update_common_shader_state(sctx);
2350 si_update_vs_viewport_state(sctx);
2351 si_set_active_descriptors_for_shader(sctx, sel);
2352 si_update_streamout_state(sctx);
2353 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2354 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2355 }
2356
2357 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2358 {
2359 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2360 (sctx->tes_shader.cso &&
2361 sctx->tes_shader.cso->info.uses_primid) ||
2362 (sctx->tcs_shader.cso &&
2363 sctx->tcs_shader.cso->info.uses_primid) ||
2364 (sctx->gs_shader.cso &&
2365 sctx->gs_shader.cso->info.uses_primid) ||
2366 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2367 sctx->ps_shader.cso->info.uses_primid);
2368 }
2369
2370 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2371 {
2372 struct si_context *sctx = (struct si_context *)ctx;
2373 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2374 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2375 struct si_shader_selector *sel = state;
2376 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2377
2378 if (sctx->gs_shader.cso == sel)
2379 return;
2380
2381 sctx->gs_shader.cso = sel;
2382 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2383 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2384
2385 si_update_common_shader_state(sctx);
2386 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2387
2388 if (enable_changed) {
2389 si_shader_change_notify(sctx);
2390 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2391 si_update_tess_uses_prim_id(sctx);
2392 }
2393 si_update_vs_viewport_state(sctx);
2394 si_set_active_descriptors_for_shader(sctx, sel);
2395 si_update_streamout_state(sctx);
2396 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2397 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2398 }
2399
2400 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2401 {
2402 struct si_context *sctx = (struct si_context *)ctx;
2403 struct si_shader_selector *sel = state;
2404 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2405
2406 if (sctx->tcs_shader.cso == sel)
2407 return;
2408
2409 sctx->tcs_shader.cso = sel;
2410 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2411 si_update_tess_uses_prim_id(sctx);
2412
2413 si_update_common_shader_state(sctx);
2414
2415 if (enable_changed)
2416 sctx->last_tcs = NULL; /* invalidate derived tess state */
2417
2418 si_set_active_descriptors_for_shader(sctx, sel);
2419 }
2420
2421 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2422 {
2423 struct si_context *sctx = (struct si_context *)ctx;
2424 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2425 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2426 struct si_shader_selector *sel = state;
2427 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2428
2429 if (sctx->tes_shader.cso == sel)
2430 return;
2431
2432 sctx->tes_shader.cso = sel;
2433 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2434 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2435 si_update_tess_uses_prim_id(sctx);
2436
2437 si_update_common_shader_state(sctx);
2438 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2439
2440 if (enable_changed) {
2441 si_shader_change_notify(sctx);
2442 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2443 }
2444 si_update_vs_viewport_state(sctx);
2445 si_set_active_descriptors_for_shader(sctx, sel);
2446 si_update_streamout_state(sctx);
2447 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2448 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2449 }
2450
2451 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2452 {
2453 struct si_context *sctx = (struct si_context *)ctx;
2454 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2455 struct si_shader_selector *sel = state;
2456
2457 /* skip if supplied shader is one already in use */
2458 if (old_sel == sel)
2459 return;
2460
2461 sctx->ps_shader.cso = sel;
2462 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2463
2464 si_update_common_shader_state(sctx);
2465 if (sel) {
2466 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2467 si_update_tess_uses_prim_id(sctx);
2468
2469 if (!old_sel ||
2470 old_sel->info.colors_written != sel->info.colors_written)
2471 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
2472
2473 if (sctx->screen->has_out_of_order_rast &&
2474 (!old_sel ||
2475 old_sel->info.writes_memory != sel->info.writes_memory ||
2476 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2477 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2478 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
2479 }
2480 si_set_active_descriptors_for_shader(sctx, sel);
2481 si_update_ps_colorbuf0_slot(sctx);
2482 }
2483
2484 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2485 {
2486 if (shader->is_optimized) {
2487 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2488 &shader->ready);
2489 }
2490
2491 util_queue_fence_destroy(&shader->ready);
2492
2493 if (shader->pm4) {
2494 switch (shader->selector->type) {
2495 case PIPE_SHADER_VERTEX:
2496 if (shader->key.as_ls) {
2497 assert(sctx->chip_class <= VI);
2498 si_pm4_delete_state(sctx, ls, shader->pm4);
2499 } else if (shader->key.as_es) {
2500 assert(sctx->chip_class <= VI);
2501 si_pm4_delete_state(sctx, es, shader->pm4);
2502 } else {
2503 si_pm4_delete_state(sctx, vs, shader->pm4);
2504 }
2505 break;
2506 case PIPE_SHADER_TESS_CTRL:
2507 si_pm4_delete_state(sctx, hs, shader->pm4);
2508 break;
2509 case PIPE_SHADER_TESS_EVAL:
2510 if (shader->key.as_es) {
2511 assert(sctx->chip_class <= VI);
2512 si_pm4_delete_state(sctx, es, shader->pm4);
2513 } else {
2514 si_pm4_delete_state(sctx, vs, shader->pm4);
2515 }
2516 break;
2517 case PIPE_SHADER_GEOMETRY:
2518 if (shader->is_gs_copy_shader)
2519 si_pm4_delete_state(sctx, vs, shader->pm4);
2520 else
2521 si_pm4_delete_state(sctx, gs, shader->pm4);
2522 break;
2523 case PIPE_SHADER_FRAGMENT:
2524 si_pm4_delete_state(sctx, ps, shader->pm4);
2525 break;
2526 }
2527 }
2528
2529 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2530 si_shader_destroy(shader);
2531 free(shader);
2532 }
2533
2534 void si_destroy_shader_selector(struct si_context *sctx,
2535 struct si_shader_selector *sel)
2536 {
2537 struct si_shader *p = sel->first_variant, *c;
2538 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2539 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2540 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2541 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2542 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2543 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2544 };
2545
2546 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2547
2548 if (current_shader[sel->type]->cso == sel) {
2549 current_shader[sel->type]->cso = NULL;
2550 current_shader[sel->type]->current = NULL;
2551 }
2552
2553 while (p) {
2554 c = p->next_variant;
2555 si_delete_shader(sctx, p);
2556 p = c;
2557 }
2558
2559 if (sel->main_shader_part)
2560 si_delete_shader(sctx, sel->main_shader_part);
2561 if (sel->main_shader_part_ls)
2562 si_delete_shader(sctx, sel->main_shader_part_ls);
2563 if (sel->main_shader_part_es)
2564 si_delete_shader(sctx, sel->main_shader_part_es);
2565 if (sel->gs_copy_shader)
2566 si_delete_shader(sctx, sel->gs_copy_shader);
2567
2568 util_queue_fence_destroy(&sel->ready);
2569 mtx_destroy(&sel->mutex);
2570 free(sel->tokens);
2571 ralloc_free(sel->nir);
2572 free(sel);
2573 }
2574
2575 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2576 {
2577 struct si_context *sctx = (struct si_context *)ctx;
2578 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2579
2580 si_shader_selector_reference(sctx, &sel, NULL);
2581 }
2582
2583 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2584 struct si_shader *vs, unsigned name,
2585 unsigned index, unsigned interpolate)
2586 {
2587 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2588 unsigned j, offset, ps_input_cntl = 0;
2589
2590 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2591 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2592 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2593
2594 if (name == TGSI_SEMANTIC_PCOORD ||
2595 (name == TGSI_SEMANTIC_TEXCOORD &&
2596 sctx->sprite_coord_enable & (1 << index))) {
2597 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2598 }
2599
2600 for (j = 0; j < vsinfo->num_outputs; j++) {
2601 if (name == vsinfo->output_semantic_name[j] &&
2602 index == vsinfo->output_semantic_index[j]) {
2603 offset = vs->info.vs_output_param_offset[j];
2604
2605 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2606 /* The input is loaded from parameter memory. */
2607 ps_input_cntl |= S_028644_OFFSET(offset);
2608 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2609 if (offset == AC_EXP_PARAM_UNDEFINED) {
2610 /* This can happen with depth-only rendering. */
2611 offset = 0;
2612 } else {
2613 /* The input is a DEFAULT_VAL constant. */
2614 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2615 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2616 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2617 }
2618
2619 ps_input_cntl = S_028644_OFFSET(0x20) |
2620 S_028644_DEFAULT_VAL(offset);
2621 }
2622 break;
2623 }
2624 }
2625
2626 if (name == TGSI_SEMANTIC_PRIMID)
2627 /* PrimID is written after the last output. */
2628 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2629 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2630 /* No corresponding output found, load defaults into input.
2631 * Don't set any other bits.
2632 * (FLAT_SHADE=1 completely changes behavior) */
2633 ps_input_cntl = S_028644_OFFSET(0x20);
2634 /* D3D 9 behaviour. GL is undefined */
2635 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2636 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2637 }
2638 return ps_input_cntl;
2639 }
2640
2641 static void si_emit_spi_map(struct si_context *sctx)
2642 {
2643 struct si_shader *ps = sctx->ps_shader.current;
2644 struct si_shader *vs = si_get_vs_state(sctx);
2645 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2646 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2647 unsigned spi_ps_input_cntl[32];
2648
2649 if (!ps || !ps->selector->info.num_inputs)
2650 return;
2651
2652 num_interp = si_get_ps_num_interp(ps);
2653 assert(num_interp > 0);
2654
2655 for (i = 0; i < psinfo->num_inputs; i++) {
2656 unsigned name = psinfo->input_semantic_name[i];
2657 unsigned index = psinfo->input_semantic_index[i];
2658 unsigned interpolate = psinfo->input_interpolate[i];
2659
2660 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name,
2661 index, interpolate);
2662
2663 if (name == TGSI_SEMANTIC_COLOR) {
2664 assert(index < ARRAY_SIZE(bcol_interp));
2665 bcol_interp[index] = interpolate;
2666 }
2667 }
2668
2669 if (ps->key.part.ps.prolog.color_two_side) {
2670 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2671
2672 for (i = 0; i < 2; i++) {
2673 if (!(psinfo->colors_read & (0xf << (i * 4))))
2674 continue;
2675
2676 spi_ps_input_cntl[num_written++] =
2677 si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
2678
2679 }
2680 }
2681 assert(num_interp == num_written);
2682
2683 /* R_028644_SPI_PS_INPUT_CNTL_0 */
2684 /* Dota 2: Only ~16% of SPI map updates set different values. */
2685 /* Talos: Only ~9% of SPI map updates set different values. */
2686 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0,
2687 spi_ps_input_cntl,
2688 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
2689 }
2690
2691 /**
2692 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2693 */
2694 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2695 {
2696 if (sctx->init_config_has_vgt_flush)
2697 return;
2698
2699 /* Done by Vulkan before VGT_FLUSH. */
2700 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2701 si_pm4_cmd_add(sctx->init_config,
2702 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2703 si_pm4_cmd_end(sctx->init_config, false);
2704
2705 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2706 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2707 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2708 si_pm4_cmd_end(sctx->init_config, false);
2709 sctx->init_config_has_vgt_flush = true;
2710 }
2711
2712 /* Initialize state related to ESGS / GSVS ring buffers */
2713 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2714 {
2715 struct si_shader_selector *es =
2716 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2717 struct si_shader_selector *gs = sctx->gs_shader.cso;
2718 struct si_pm4_state *pm4;
2719
2720 /* Chip constants. */
2721 unsigned num_se = sctx->screen->info.max_se;
2722 unsigned wave_size = 64;
2723 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2724 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2725 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2726 */
2727 unsigned gs_vertex_reuse = (sctx->chip_class >= VI ? 32 : 16) * num_se;
2728 unsigned alignment = 256 * num_se;
2729 /* The maximum size is 63.999 MB per SE. */
2730 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2731
2732 /* Calculate the minimum size. */
2733 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2734 wave_size, alignment);
2735
2736 /* These are recommended sizes, not minimum sizes. */
2737 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2738 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2739 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2740 gs->max_gsvs_emit_size;
2741
2742 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2743 esgs_ring_size = align(esgs_ring_size, alignment);
2744 gsvs_ring_size = align(gsvs_ring_size, alignment);
2745
2746 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2747 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2748
2749 /* Some rings don't have to be allocated if shaders don't use them.
2750 * (e.g. no varyings between ES and GS or GS and VS)
2751 *
2752 * GFX9 doesn't have the ESGS ring.
2753 */
2754 bool update_esgs = sctx->chip_class <= VI &&
2755 esgs_ring_size &&
2756 (!sctx->esgs_ring ||
2757 sctx->esgs_ring->width0 < esgs_ring_size);
2758 bool update_gsvs = gsvs_ring_size &&
2759 (!sctx->gsvs_ring ||
2760 sctx->gsvs_ring->width0 < gsvs_ring_size);
2761
2762 if (!update_esgs && !update_gsvs)
2763 return true;
2764
2765 if (update_esgs) {
2766 pipe_resource_reference(&sctx->esgs_ring, NULL);
2767 sctx->esgs_ring =
2768 pipe_aligned_buffer_create(sctx->b.screen,
2769 SI_RESOURCE_FLAG_UNMAPPABLE,
2770 PIPE_USAGE_DEFAULT,
2771 esgs_ring_size, alignment);
2772 if (!sctx->esgs_ring)
2773 return false;
2774 }
2775
2776 if (update_gsvs) {
2777 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2778 sctx->gsvs_ring =
2779 pipe_aligned_buffer_create(sctx->b.screen,
2780 SI_RESOURCE_FLAG_UNMAPPABLE,
2781 PIPE_USAGE_DEFAULT,
2782 gsvs_ring_size, alignment);
2783 if (!sctx->gsvs_ring)
2784 return false;
2785 }
2786
2787 /* Create the "init_config_gs_rings" state. */
2788 pm4 = CALLOC_STRUCT(si_pm4_state);
2789 if (!pm4)
2790 return false;
2791
2792 if (sctx->chip_class >= CIK) {
2793 if (sctx->esgs_ring) {
2794 assert(sctx->chip_class <= VI);
2795 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2796 sctx->esgs_ring->width0 / 256);
2797 }
2798 if (sctx->gsvs_ring)
2799 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2800 sctx->gsvs_ring->width0 / 256);
2801 } else {
2802 if (sctx->esgs_ring)
2803 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2804 sctx->esgs_ring->width0 / 256);
2805 if (sctx->gsvs_ring)
2806 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2807 sctx->gsvs_ring->width0 / 256);
2808 }
2809
2810 /* Set the state. */
2811 if (sctx->init_config_gs_rings)
2812 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2813 sctx->init_config_gs_rings = pm4;
2814
2815 if (!sctx->init_config_has_vgt_flush) {
2816 si_init_config_add_vgt_flush(sctx);
2817 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2818 }
2819
2820 /* Flush the context to re-emit both init_config states. */
2821 sctx->initial_gfx_cs_size = 0; /* force flush */
2822 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
2823
2824 /* Set ring bindings. */
2825 if (sctx->esgs_ring) {
2826 assert(sctx->chip_class <= VI);
2827 si_set_ring_buffer(sctx, SI_ES_RING_ESGS,
2828 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2829 true, true, 4, 64, 0);
2830 si_set_ring_buffer(sctx, SI_GS_RING_ESGS,
2831 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2832 false, false, 0, 0, 0);
2833 }
2834 if (sctx->gsvs_ring) {
2835 si_set_ring_buffer(sctx, SI_RING_GSVS,
2836 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2837 false, false, 0, 0, 0);
2838 }
2839
2840 return true;
2841 }
2842
2843 static void si_shader_lock(struct si_shader *shader)
2844 {
2845 mtx_lock(&shader->selector->mutex);
2846 if (shader->previous_stage_sel) {
2847 assert(shader->previous_stage_sel != shader->selector);
2848 mtx_lock(&shader->previous_stage_sel->mutex);
2849 }
2850 }
2851
2852 static void si_shader_unlock(struct si_shader *shader)
2853 {
2854 if (shader->previous_stage_sel)
2855 mtx_unlock(&shader->previous_stage_sel->mutex);
2856 mtx_unlock(&shader->selector->mutex);
2857 }
2858
2859 /**
2860 * @returns 1 if \p sel has been updated to use a new scratch buffer
2861 * 0 if not
2862 * < 0 if there was a failure
2863 */
2864 static int si_update_scratch_buffer(struct si_context *sctx,
2865 struct si_shader *shader)
2866 {
2867 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2868 int r;
2869
2870 if (!shader)
2871 return 0;
2872
2873 /* This shader doesn't need a scratch buffer */
2874 if (shader->config.scratch_bytes_per_wave == 0)
2875 return 0;
2876
2877 /* Prevent race conditions when updating:
2878 * - si_shader::scratch_bo
2879 * - si_shader::binary::code
2880 * - si_shader::previous_stage::binary::code.
2881 */
2882 si_shader_lock(shader);
2883
2884 /* This shader is already configured to use the current
2885 * scratch buffer. */
2886 if (shader->scratch_bo == sctx->scratch_buffer) {
2887 si_shader_unlock(shader);
2888 return 0;
2889 }
2890
2891 assert(sctx->scratch_buffer);
2892
2893 if (shader->previous_stage)
2894 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2895
2896 si_shader_apply_scratch_relocs(shader, scratch_va);
2897
2898 /* Replace the shader bo with a new bo that has the relocs applied. */
2899 r = si_shader_binary_upload(sctx->screen, shader);
2900 if (r) {
2901 si_shader_unlock(shader);
2902 return r;
2903 }
2904
2905 /* Update the shader state to use the new shader bo. */
2906 si_shader_init_pm4_state(sctx->screen, shader);
2907
2908 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2909
2910 si_shader_unlock(shader);
2911 return 1;
2912 }
2913
2914 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2915 {
2916 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2917 }
2918
2919 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2920 {
2921 return shader ? shader->config.scratch_bytes_per_wave : 0;
2922 }
2923
2924 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2925 {
2926 if (!sctx->tes_shader.cso)
2927 return NULL; /* tessellation disabled */
2928
2929 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2930 sctx->fixed_func_tcs_shader.current;
2931 }
2932
2933 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2934 {
2935 unsigned bytes = 0;
2936
2937 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2938 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2939 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2940 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2941
2942 if (sctx->tes_shader.cso) {
2943 struct si_shader *tcs = si_get_tcs_current(sctx);
2944
2945 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2946 }
2947 return bytes;
2948 }
2949
2950 static bool si_update_scratch_relocs(struct si_context *sctx)
2951 {
2952 struct si_shader *tcs = si_get_tcs_current(sctx);
2953 int r;
2954
2955 /* Update the shaders, so that they are using the latest scratch.
2956 * The scratch buffer may have been changed since these shaders were
2957 * last used, so we still need to try to update them, even if they
2958 * require scratch buffers smaller than the current size.
2959 */
2960 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2961 if (r < 0)
2962 return false;
2963 if (r == 1)
2964 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2965
2966 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2967 if (r < 0)
2968 return false;
2969 if (r == 1)
2970 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2971
2972 r = si_update_scratch_buffer(sctx, tcs);
2973 if (r < 0)
2974 return false;
2975 if (r == 1)
2976 si_pm4_bind_state(sctx, hs, tcs->pm4);
2977
2978 /* VS can be bound as LS, ES, or VS. */
2979 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2980 if (r < 0)
2981 return false;
2982 if (r == 1) {
2983 if (sctx->tes_shader.current)
2984 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2985 else if (sctx->gs_shader.current)
2986 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2987 else
2988 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2989 }
2990
2991 /* TES can be bound as ES or VS. */
2992 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2993 if (r < 0)
2994 return false;
2995 if (r == 1) {
2996 if (sctx->gs_shader.current)
2997 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2998 else
2999 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3000 }
3001
3002 return true;
3003 }
3004
3005 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3006 {
3007 unsigned current_scratch_buffer_size =
3008 si_get_current_scratch_buffer_size(sctx);
3009 unsigned scratch_bytes_per_wave =
3010 si_get_max_scratch_bytes_per_wave(sctx);
3011 unsigned scratch_needed_size = scratch_bytes_per_wave *
3012 sctx->scratch_waves;
3013 unsigned spi_tmpring_size;
3014
3015 if (scratch_needed_size > 0) {
3016 if (scratch_needed_size > current_scratch_buffer_size) {
3017 /* Create a bigger scratch buffer */
3018 r600_resource_reference(&sctx->scratch_buffer, NULL);
3019
3020 sctx->scratch_buffer =
3021 si_aligned_buffer_create(&sctx->screen->b,
3022 SI_RESOURCE_FLAG_UNMAPPABLE,
3023 PIPE_USAGE_DEFAULT,
3024 scratch_needed_size, 256);
3025 if (!sctx->scratch_buffer)
3026 return false;
3027
3028 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3029 si_context_add_resource_size(sctx,
3030 &sctx->scratch_buffer->b.b);
3031 }
3032
3033 if (!si_update_scratch_relocs(sctx))
3034 return false;
3035 }
3036
3037 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3038 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3039 "scratch size should already be aligned correctly.");
3040
3041 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3042 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3043 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3044 sctx->spi_tmpring_size = spi_tmpring_size;
3045 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3046 }
3047 return true;
3048 }
3049
3050 static void si_init_tess_factor_ring(struct si_context *sctx)
3051 {
3052 assert(!sctx->tess_rings);
3053
3054 /* The address must be aligned to 2^19, because the shader only
3055 * receives the high 13 bits.
3056 */
3057 sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
3058 SI_RESOURCE_FLAG_32BIT,
3059 PIPE_USAGE_DEFAULT,
3060 sctx->screen->tess_offchip_ring_size +
3061 sctx->screen->tess_factor_ring_size,
3062 1 << 19);
3063 if (!sctx->tess_rings)
3064 return;
3065
3066 si_init_config_add_vgt_flush(sctx);
3067
3068 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_rings),
3069 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3070
3071 uint64_t factor_va = r600_resource(sctx->tess_rings)->gpu_address +
3072 sctx->screen->tess_offchip_ring_size;
3073
3074 /* Append these registers to the init config state. */
3075 if (sctx->chip_class >= CIK) {
3076 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3077 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3078 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3079 factor_va >> 8);
3080 if (sctx->chip_class >= GFX9)
3081 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3082 S_030944_BASE_HI(factor_va >> 40));
3083 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3084 sctx->screen->vgt_hs_offchip_param);
3085 } else {
3086 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3087 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3088 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3089 factor_va >> 8);
3090 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3091 sctx->screen->vgt_hs_offchip_param);
3092 }
3093
3094 /* Flush the context to re-emit the init_config state.
3095 * This is done only once in a lifetime of a context.
3096 */
3097 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3098 sctx->initial_gfx_cs_size = 0; /* force flush */
3099 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3100 }
3101
3102 static void si_update_vgt_shader_config(struct si_context *sctx)
3103 {
3104 /* Calculate the index of the config.
3105 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3106 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3107 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3108
3109 if (!*pm4) {
3110 uint32_t stages = 0;
3111
3112 *pm4 = CALLOC_STRUCT(si_pm4_state);
3113
3114 if (sctx->tes_shader.cso) {
3115 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3116 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3117
3118 if (sctx->gs_shader.cso)
3119 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3120 S_028B54_GS_EN(1) |
3121 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3122 else
3123 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3124 } else if (sctx->gs_shader.cso) {
3125 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3126 S_028B54_GS_EN(1) |
3127 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3128 }
3129
3130 if (sctx->chip_class >= GFX9)
3131 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3132
3133 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3134 }
3135 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3136 }
3137
3138 bool si_update_shaders(struct si_context *sctx)
3139 {
3140 struct pipe_context *ctx = (struct pipe_context*)sctx;
3141 struct si_compiler_ctx_state compiler_state;
3142 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3143 struct si_shader *old_vs = si_get_vs_state(sctx);
3144 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3145 struct si_shader *old_ps = sctx->ps_shader.current;
3146 unsigned old_spi_shader_col_format =
3147 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3148 int r;
3149
3150 compiler_state.compiler = &sctx->compiler;
3151 compiler_state.debug = sctx->debug;
3152 compiler_state.is_debug_context = sctx->is_debug;
3153
3154 /* Update stages before GS. */
3155 if (sctx->tes_shader.cso) {
3156 if (!sctx->tess_rings) {
3157 si_init_tess_factor_ring(sctx);
3158 if (!sctx->tess_rings)
3159 return false;
3160 }
3161
3162 /* VS as LS */
3163 if (sctx->chip_class <= VI) {
3164 r = si_shader_select(ctx, &sctx->vs_shader,
3165 &compiler_state);
3166 if (r)
3167 return false;
3168 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3169 }
3170
3171 if (sctx->tcs_shader.cso) {
3172 r = si_shader_select(ctx, &sctx->tcs_shader,
3173 &compiler_state);
3174 if (r)
3175 return false;
3176 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3177 } else {
3178 if (!sctx->fixed_func_tcs_shader.cso) {
3179 sctx->fixed_func_tcs_shader.cso =
3180 si_create_fixed_func_tcs(sctx);
3181 if (!sctx->fixed_func_tcs_shader.cso)
3182 return false;
3183 }
3184
3185 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3186 &compiler_state);
3187 if (r)
3188 return false;
3189 si_pm4_bind_state(sctx, hs,
3190 sctx->fixed_func_tcs_shader.current->pm4);
3191 }
3192
3193 if (sctx->gs_shader.cso) {
3194 /* TES as ES */
3195 if (sctx->chip_class <= VI) {
3196 r = si_shader_select(ctx, &sctx->tes_shader,
3197 &compiler_state);
3198 if (r)
3199 return false;
3200 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3201 }
3202 } else {
3203 /* TES as VS */
3204 r = si_shader_select(ctx, &sctx->tes_shader,
3205 &compiler_state);
3206 if (r)
3207 return false;
3208 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3209 }
3210 } else if (sctx->gs_shader.cso) {
3211 if (sctx->chip_class <= VI) {
3212 /* VS as ES */
3213 r = si_shader_select(ctx, &sctx->vs_shader,
3214 &compiler_state);
3215 if (r)
3216 return false;
3217 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3218
3219 si_pm4_bind_state(sctx, ls, NULL);
3220 si_pm4_bind_state(sctx, hs, NULL);
3221 }
3222 } else {
3223 /* VS as VS */
3224 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3225 if (r)
3226 return false;
3227 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3228 si_pm4_bind_state(sctx, ls, NULL);
3229 si_pm4_bind_state(sctx, hs, NULL);
3230 }
3231
3232 /* Update GS. */
3233 if (sctx->gs_shader.cso) {
3234 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3235 if (r)
3236 return false;
3237 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3238 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3239
3240 if (!si_update_gs_ring_buffers(sctx))
3241 return false;
3242 } else {
3243 si_pm4_bind_state(sctx, gs, NULL);
3244 if (sctx->chip_class <= VI)
3245 si_pm4_bind_state(sctx, es, NULL);
3246 }
3247
3248 si_update_vgt_shader_config(sctx);
3249
3250 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3251 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3252
3253 if (sctx->ps_shader.cso) {
3254 unsigned db_shader_control;
3255
3256 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3257 if (r)
3258 return false;
3259 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3260
3261 db_shader_control =
3262 sctx->ps_shader.cso->db_shader_control |
3263 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3264
3265 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3266 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3267 sctx->flatshade != rs->flatshade) {
3268 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3269 sctx->flatshade = rs->flatshade;
3270 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3271 }
3272
3273 if (sctx->screen->rbplus_allowed &&
3274 si_pm4_state_changed(sctx, ps) &&
3275 (!old_ps ||
3276 old_spi_shader_col_format !=
3277 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3278 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3279
3280 if (sctx->ps_db_shader_control != db_shader_control) {
3281 sctx->ps_db_shader_control = db_shader_control;
3282 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3283 if (sctx->screen->dpbb_allowed)
3284 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3285 }
3286
3287 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3288 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3289 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3290
3291 if (sctx->chip_class == SI)
3292 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3293
3294 if (sctx->framebuffer.nr_samples <= 1)
3295 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3296 }
3297 }
3298
3299 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3300 si_pm4_state_enabled_and_changed(sctx, hs) ||
3301 si_pm4_state_enabled_and_changed(sctx, es) ||
3302 si_pm4_state_enabled_and_changed(sctx, gs) ||
3303 si_pm4_state_enabled_and_changed(sctx, vs) ||
3304 si_pm4_state_enabled_and_changed(sctx, ps)) {
3305 if (!si_update_spi_tmpring_size(sctx))
3306 return false;
3307 }
3308
3309 if (sctx->chip_class >= CIK) {
3310 if (si_pm4_state_enabled_and_changed(sctx, ls))
3311 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3312 else if (!sctx->queued.named.ls)
3313 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3314
3315 if (si_pm4_state_enabled_and_changed(sctx, hs))
3316 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3317 else if (!sctx->queued.named.hs)
3318 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3319
3320 if (si_pm4_state_enabled_and_changed(sctx, es))
3321 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3322 else if (!sctx->queued.named.es)
3323 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3324
3325 if (si_pm4_state_enabled_and_changed(sctx, gs))
3326 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3327 else if (!sctx->queued.named.gs)
3328 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3329
3330 if (si_pm4_state_enabled_and_changed(sctx, vs))
3331 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3332 else if (!sctx->queued.named.vs)
3333 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3334
3335 if (si_pm4_state_enabled_and_changed(sctx, ps))
3336 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3337 else if (!sctx->queued.named.ps)
3338 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3339 }
3340
3341 sctx->do_update_shaders = false;
3342 return true;
3343 }
3344
3345 static void si_emit_scratch_state(struct si_context *sctx)
3346 {
3347 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3348
3349 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3350 sctx->spi_tmpring_size);
3351
3352 if (sctx->scratch_buffer) {
3353 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
3354 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3355 RADEON_PRIO_SCRATCH_BUFFER);
3356 }
3357 }
3358
3359 void si_init_shader_functions(struct si_context *sctx)
3360 {
3361 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
3362 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
3363
3364 sctx->b.create_vs_state = si_create_shader_selector;
3365 sctx->b.create_tcs_state = si_create_shader_selector;
3366 sctx->b.create_tes_state = si_create_shader_selector;
3367 sctx->b.create_gs_state = si_create_shader_selector;
3368 sctx->b.create_fs_state = si_create_shader_selector;
3369
3370 sctx->b.bind_vs_state = si_bind_vs_shader;
3371 sctx->b.bind_tcs_state = si_bind_tcs_shader;
3372 sctx->b.bind_tes_state = si_bind_tes_shader;
3373 sctx->b.bind_gs_state = si_bind_gs_shader;
3374 sctx->b.bind_fs_state = si_bind_ps_shader;
3375
3376 sctx->b.delete_vs_state = si_delete_shader_selector;
3377 sctx->b.delete_tcs_state = si_delete_shader_selector;
3378 sctx->b.delete_tes_state = si_delete_shader_selector;
3379 sctx->b.delete_gs_state = si_delete_shader_selector;
3380 sctx->b.delete_fs_state = si_delete_shader_selector;
3381 }