0bf783fc17e586019adba9d5dfb30cfeba66a0d3
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "compiler/nir/nir_serialize.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/hash_table.h"
31 #include "util/crc32.h"
32 #include "util/u_async_debug.h"
33 #include "util/u_memory.h"
34 #include "util/u_prim.h"
35
36 #include "util/disk_cache.h"
37 #include "util/mesa-sha1.h"
38 #include "ac_exp_param.h"
39 #include "ac_shader_util.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
45 * size as integer.
46 */
47 void *si_get_ir_binary(struct si_shader_selector *sel)
48 {
49 struct blob blob;
50 unsigned ir_size;
51 void *ir_binary;
52
53 if (sel->tokens) {
54 ir_binary = sel->tokens;
55 ir_size = tgsi_num_tokens(sel->tokens) *
56 sizeof(struct tgsi_token);
57 } else {
58 assert(sel->nir);
59
60 blob_init(&blob);
61 nir_serialize(&blob, sel->nir);
62 ir_binary = blob.data;
63 ir_size = blob.size;
64 }
65
66 unsigned size = 4 + ir_size + sizeof(sel->so);
67 char *result = (char*)MALLOC(size);
68 if (!result)
69 return NULL;
70
71 *((uint32_t*)result) = size;
72 memcpy(result + 4, ir_binary, ir_size);
73 memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
74
75 if (sel->nir)
76 blob_finish(&blob);
77
78 return result;
79 }
80
81 /** Copy "data" to "ptr" and return the next dword following copied data. */
82 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
83 {
84 /* data may be NULL if size == 0 */
85 if (size)
86 memcpy(ptr, data, size);
87 ptr += DIV_ROUND_UP(size, 4);
88 return ptr;
89 }
90
91 /** Read data from "ptr". Return the next dword following the data. */
92 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
93 {
94 memcpy(data, ptr, size);
95 ptr += DIV_ROUND_UP(size, 4);
96 return ptr;
97 }
98
99 /**
100 * Write the size as uint followed by the data. Return the next dword
101 * following the copied data.
102 */
103 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
104 {
105 *ptr++ = size;
106 return write_data(ptr, data, size);
107 }
108
109 /**
110 * Read the size as uint followed by the data. Return both via parameters.
111 * Return the next dword following the data.
112 */
113 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
114 {
115 *size = *ptr++;
116 assert(*data == NULL);
117 if (!*size)
118 return ptr;
119 *data = malloc(*size);
120 return read_data(ptr, *data, *size);
121 }
122
123 /**
124 * Return the shader binary in a buffer. The first 4 bytes contain its size
125 * as integer.
126 */
127 static void *si_get_shader_binary(struct si_shader *shader)
128 {
129 /* There is always a size of data followed by the data itself. */
130 unsigned relocs_size = shader->binary.reloc_count *
131 sizeof(shader->binary.relocs[0]);
132 unsigned disasm_size = shader->binary.disasm_string ?
133 strlen(shader->binary.disasm_string) + 1 : 0;
134 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
135 strlen(shader->binary.llvm_ir_string) + 1 : 0;
136 unsigned size =
137 4 + /* total size */
138 4 + /* CRC32 of the data below */
139 align(sizeof(shader->config), 4) +
140 align(sizeof(shader->info), 4) +
141 4 + align(shader->binary.code_size, 4) +
142 4 + align(shader->binary.rodata_size, 4) +
143 4 + align(relocs_size, 4) +
144 4 + align(disasm_size, 4) +
145 4 + align(llvm_ir_size, 4);
146 void *buffer = CALLOC(1, size);
147 uint32_t *ptr = (uint32_t*)buffer;
148
149 if (!buffer)
150 return NULL;
151
152 *ptr++ = size;
153 ptr++; /* CRC32 is calculated at the end. */
154
155 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
156 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
157 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
158 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
159 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
160 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
161 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
162 assert((char *)ptr - (char *)buffer == size);
163
164 /* Compute CRC32. */
165 ptr = (uint32_t*)buffer;
166 ptr++;
167 *ptr = util_hash_crc32(ptr + 1, size - 8);
168
169 return buffer;
170 }
171
172 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
173 {
174 uint32_t *ptr = (uint32_t*)binary;
175 uint32_t size = *ptr++;
176 uint32_t crc32 = *ptr++;
177 unsigned chunk_size;
178
179 if (util_hash_crc32(ptr, size - 8) != crc32) {
180 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
181 return false;
182 }
183
184 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
185 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
186 ptr = read_chunk(ptr, (void**)&shader->binary.code,
187 &shader->binary.code_size);
188 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
189 &shader->binary.rodata_size);
190 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
191 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
192 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
193 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
194
195 return true;
196 }
197
198 /**
199 * Insert a shader into the cache. It's assumed the shader is not in the cache.
200 * Use si_shader_cache_load_shader before calling this.
201 *
202 * Returns false on failure, in which case the ir_binary should be freed.
203 */
204 bool si_shader_cache_insert_shader(struct si_screen *sscreen, void *ir_binary,
205 struct si_shader *shader,
206 bool insert_into_disk_cache)
207 {
208 void *hw_binary;
209 struct hash_entry *entry;
210 uint8_t key[CACHE_KEY_SIZE];
211
212 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
213 if (entry)
214 return false; /* already added */
215
216 hw_binary = si_get_shader_binary(shader);
217 if (!hw_binary)
218 return false;
219
220 if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
221 hw_binary) == NULL) {
222 FREE(hw_binary);
223 return false;
224 }
225
226 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
227 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
228 *((uint32_t *)ir_binary), key);
229 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
230 *((uint32_t *) hw_binary), NULL);
231 }
232
233 return true;
234 }
235
236 bool si_shader_cache_load_shader(struct si_screen *sscreen, void *ir_binary,
237 struct si_shader *shader)
238 {
239 struct hash_entry *entry =
240 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
241 if (!entry) {
242 if (sscreen->disk_shader_cache) {
243 unsigned char sha1[CACHE_KEY_SIZE];
244 size_t tg_size = *((uint32_t *) ir_binary);
245
246 disk_cache_compute_key(sscreen->disk_shader_cache,
247 ir_binary, tg_size, sha1);
248
249 size_t binary_size;
250 uint8_t *buffer =
251 disk_cache_get(sscreen->disk_shader_cache,
252 sha1, &binary_size);
253 if (!buffer)
254 return false;
255
256 if (binary_size < sizeof(uint32_t) ||
257 *((uint32_t*)buffer) != binary_size) {
258 /* Something has gone wrong discard the item
259 * from the cache and rebuild/link from
260 * source.
261 */
262 assert(!"Invalid radeonsi shader disk cache "
263 "item!");
264
265 disk_cache_remove(sscreen->disk_shader_cache,
266 sha1);
267 free(buffer);
268
269 return false;
270 }
271
272 if (!si_load_shader_binary(shader, buffer)) {
273 free(buffer);
274 return false;
275 }
276 free(buffer);
277
278 if (!si_shader_cache_insert_shader(sscreen, ir_binary,
279 shader, false))
280 FREE(ir_binary);
281 } else {
282 return false;
283 }
284 } else {
285 if (si_load_shader_binary(shader, entry->data))
286 FREE(ir_binary);
287 else
288 return false;
289 }
290 p_atomic_inc(&sscreen->num_shader_cache_hits);
291 return true;
292 }
293
294 static uint32_t si_shader_cache_key_hash(const void *key)
295 {
296 /* The first dword is the key size. */
297 return util_hash_crc32(key, *(uint32_t*)key);
298 }
299
300 static bool si_shader_cache_key_equals(const void *a, const void *b)
301 {
302 uint32_t *keya = (uint32_t*)a;
303 uint32_t *keyb = (uint32_t*)b;
304
305 /* The first dword is the key size. */
306 if (*keya != *keyb)
307 return false;
308
309 return memcmp(keya, keyb, *keya) == 0;
310 }
311
312 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
313 {
314 FREE((void*)entry->key);
315 FREE(entry->data);
316 }
317
318 bool si_init_shader_cache(struct si_screen *sscreen)
319 {
320 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
321 sscreen->shader_cache =
322 _mesa_hash_table_create(NULL,
323 si_shader_cache_key_hash,
324 si_shader_cache_key_equals);
325
326 return sscreen->shader_cache != NULL;
327 }
328
329 void si_destroy_shader_cache(struct si_screen *sscreen)
330 {
331 if (sscreen->shader_cache)
332 _mesa_hash_table_destroy(sscreen->shader_cache,
333 si_destroy_shader_cache_entry);
334 mtx_destroy(&sscreen->shader_cache_mutex);
335 }
336
337 /* SHADER STATES */
338
339 static void si_set_tesseval_regs(struct si_screen *sscreen,
340 struct si_shader_selector *tes,
341 struct si_pm4_state *pm4)
342 {
343 struct tgsi_shader_info *info = &tes->info;
344 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
345 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
346 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
347 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
348 unsigned type, partitioning, topology, distribution_mode;
349
350 switch (tes_prim_mode) {
351 case PIPE_PRIM_LINES:
352 type = V_028B6C_TESS_ISOLINE;
353 break;
354 case PIPE_PRIM_TRIANGLES:
355 type = V_028B6C_TESS_TRIANGLE;
356 break;
357 case PIPE_PRIM_QUADS:
358 type = V_028B6C_TESS_QUAD;
359 break;
360 default:
361 assert(0);
362 return;
363 }
364
365 switch (tes_spacing) {
366 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
367 partitioning = V_028B6C_PART_FRAC_ODD;
368 break;
369 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
370 partitioning = V_028B6C_PART_FRAC_EVEN;
371 break;
372 case PIPE_TESS_SPACING_EQUAL:
373 partitioning = V_028B6C_PART_INTEGER;
374 break;
375 default:
376 assert(0);
377 return;
378 }
379
380 if (tes_point_mode)
381 topology = V_028B6C_OUTPUT_POINT;
382 else if (tes_prim_mode == PIPE_PRIM_LINES)
383 topology = V_028B6C_OUTPUT_LINE;
384 else if (tes_vertex_order_cw)
385 /* for some reason, this must be the other way around */
386 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
387 else
388 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
389
390 if (sscreen->has_distributed_tess) {
391 if (sscreen->info.family == CHIP_FIJI ||
392 sscreen->info.family >= CHIP_POLARIS10)
393 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
394 else
395 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
396 } else
397 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
398
399 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
400 S_028B6C_TYPE(type) |
401 S_028B6C_PARTITIONING(partitioning) |
402 S_028B6C_TOPOLOGY(topology) |
403 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
404 }
405
406 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
407 * whether the "fractional odd" tessellation spacing is used.
408 *
409 * Possible VGT configurations and which state should set the register:
410 *
411 * Reg set in | VGT shader configuration | Value
412 * ------------------------------------------------------
413 * VS as VS | VS | 30
414 * VS as ES | ES -> GS -> VS | 30
415 * TES as VS | LS -> HS -> VS | 14 or 30
416 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
417 *
418 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
419 */
420 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
421 struct si_shader_selector *sel,
422 struct si_shader *shader,
423 struct si_pm4_state *pm4)
424 {
425 unsigned type = sel->type;
426
427 if (sscreen->info.family < CHIP_POLARIS10)
428 return;
429
430 /* VS as VS, or VS as ES: */
431 if ((type == PIPE_SHADER_VERTEX &&
432 (!shader ||
433 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
434 /* TES as VS, or TES as ES: */
435 type == PIPE_SHADER_TESS_EVAL) {
436 unsigned vtx_reuse_depth = 30;
437
438 if (type == PIPE_SHADER_TESS_EVAL &&
439 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
440 PIPE_TESS_SPACING_FRACTIONAL_ODD)
441 vtx_reuse_depth = 14;
442
443 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
444 vtx_reuse_depth);
445 }
446 }
447
448 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
449 {
450 if (shader->pm4)
451 si_pm4_clear_state(shader->pm4);
452 else
453 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
454
455 return shader->pm4;
456 }
457
458 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
459 {
460 /* Add the pointer to VBO descriptors. */
461 if (HAVE_32BIT_POINTERS) {
462 return num_always_on_user_sgprs + 1;
463 } else {
464 assert(num_always_on_user_sgprs % 2 == 0);
465 return num_always_on_user_sgprs + 2;
466 }
467 }
468
469 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
470 {
471 struct si_pm4_state *pm4;
472 unsigned vgpr_comp_cnt;
473 uint64_t va;
474
475 assert(sscreen->info.chip_class <= VI);
476
477 pm4 = si_get_shader_pm4_state(shader);
478 if (!pm4)
479 return;
480
481 va = shader->bo->gpu_address;
482 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
483
484 /* We need at least 2 components for LS.
485 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
486 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
487 */
488 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
489
490 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
491 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
492
493 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
494 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
495 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
496 S_00B528_DX10_CLAMP(1) |
497 S_00B528_FLOAT_MODE(shader->config.float_mode);
498 shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
499 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
500 }
501
502 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
503 {
504 struct si_pm4_state *pm4;
505 uint64_t va;
506 unsigned ls_vgpr_comp_cnt = 0;
507
508 pm4 = si_get_shader_pm4_state(shader);
509 if (!pm4)
510 return;
511
512 va = shader->bo->gpu_address;
513 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
514
515 if (sscreen->info.chip_class >= GFX9) {
516 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
517 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
518
519 /* We need at least 2 components for LS.
520 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
521 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
522 */
523 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
524
525 unsigned num_user_sgprs =
526 si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
527
528 shader->config.rsrc2 =
529 S_00B42C_USER_SGPR(num_user_sgprs) |
530 S_00B42C_USER_SGPR_MSB(num_user_sgprs >> 5) |
531 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
532 } else {
533 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
534 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
535
536 shader->config.rsrc2 =
537 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
538 S_00B42C_OC_LDS_EN(1) |
539 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
540 }
541
542 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
543 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
544 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
545 S_00B428_DX10_CLAMP(1) |
546 S_00B428_FLOAT_MODE(shader->config.float_mode) |
547 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
548
549 if (sscreen->info.chip_class <= VI) {
550 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
551 shader->config.rsrc2);
552 }
553 }
554
555 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
556 {
557 struct si_pm4_state *pm4;
558 unsigned num_user_sgprs;
559 unsigned vgpr_comp_cnt;
560 uint64_t va;
561 unsigned oc_lds_en;
562
563 assert(sscreen->info.chip_class <= VI);
564
565 pm4 = si_get_shader_pm4_state(shader);
566 if (!pm4)
567 return;
568
569 va = shader->bo->gpu_address;
570 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
571
572 if (shader->selector->type == PIPE_SHADER_VERTEX) {
573 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
574 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
575 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
576 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
577 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
578 num_user_sgprs = SI_TES_NUM_USER_SGPR;
579 } else
580 unreachable("invalid shader selector type");
581
582 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
583
584 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
585 shader->selector->esgs_itemsize / 4);
586 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
587 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
588 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
589 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
590 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
591 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
592 S_00B328_DX10_CLAMP(1) |
593 S_00B328_FLOAT_MODE(shader->config.float_mode));
594 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
595 S_00B32C_USER_SGPR(num_user_sgprs) |
596 S_00B32C_OC_LDS_EN(oc_lds_en) |
597 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
598
599 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
600 si_set_tesseval_regs(sscreen, shader->selector, pm4);
601
602 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
603 }
604
605 static unsigned si_conv_prim_to_gs_out(unsigned mode)
606 {
607 static const int prim_conv[] = {
608 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
609 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
610 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
611 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
612 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
613 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
614 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
615 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
616 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
617 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
618 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
619 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
620 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
621 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
622 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
623 };
624 assert(mode < ARRAY_SIZE(prim_conv));
625
626 return prim_conv[mode];
627 }
628
629 struct gfx9_gs_info {
630 unsigned es_verts_per_subgroup;
631 unsigned gs_prims_per_subgroup;
632 unsigned gs_inst_prims_in_subgroup;
633 unsigned max_prims_per_subgroup;
634 unsigned lds_size;
635 };
636
637 static void gfx9_get_gs_info(struct si_shader_selector *es,
638 struct si_shader_selector *gs,
639 struct gfx9_gs_info *out)
640 {
641 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
642 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
643 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
644 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
645
646 /* All these are in dwords: */
647 /* We can't allow using the whole LDS, because GS waves compete with
648 * other shader stages for LDS space. */
649 const unsigned max_lds_size = 8 * 1024;
650 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
651 unsigned esgs_lds_size;
652
653 /* All these are per subgroup: */
654 const unsigned max_out_prims = 32 * 1024;
655 const unsigned max_es_verts = 255;
656 const unsigned ideal_gs_prims = 64;
657 unsigned max_gs_prims, gs_prims;
658 unsigned min_es_verts, es_verts, worst_case_es_verts;
659
660 if (uses_adjacency || gs_num_invocations > 1)
661 max_gs_prims = 127 / gs_num_invocations;
662 else
663 max_gs_prims = 255;
664
665 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
666 * Make sure we don't go over the maximum value.
667 */
668 if (gs->gs_max_out_vertices > 0) {
669 max_gs_prims = MIN2(max_gs_prims,
670 max_out_prims /
671 (gs->gs_max_out_vertices * gs_num_invocations));
672 }
673 assert(max_gs_prims > 0);
674
675 /* If the primitive has adjacency, halve the number of vertices
676 * that will be reused in multiple primitives.
677 */
678 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
679
680 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
681 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
682
683 /* Compute ESGS LDS size based on the worst case number of ES vertices
684 * needed to create the target number of GS prims per subgroup.
685 */
686 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
687
688 /* If total LDS usage is too big, refactor partitions based on ratio
689 * of ESGS item sizes.
690 */
691 if (esgs_lds_size > max_lds_size) {
692 /* Our target GS Prims Per Subgroup was too large. Calculate
693 * the maximum number of GS Prims Per Subgroup that will fit
694 * into LDS, capped by the maximum that the hardware can support.
695 */
696 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
697 max_gs_prims);
698 assert(gs_prims > 0);
699 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
700 max_es_verts);
701
702 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
703 assert(esgs_lds_size <= max_lds_size);
704 }
705
706 /* Now calculate remaining ESGS information. */
707 if (esgs_lds_size)
708 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
709 else
710 es_verts = max_es_verts;
711
712 /* Vertices for adjacency primitives are not always reused, so restore
713 * it for ES_VERTS_PER_SUBGRP.
714 */
715 min_es_verts = gs->gs_input_verts_per_prim;
716
717 /* For normal primitives, the VGT only checks if they are past the ES
718 * verts per subgroup after allocating a full GS primitive and if they
719 * are, kick off a new subgroup. But if those additional ES verts are
720 * unique (e.g. not reused) we need to make sure there is enough LDS
721 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
722 */
723 es_verts -= min_es_verts - 1;
724
725 out->es_verts_per_subgroup = es_verts;
726 out->gs_prims_per_subgroup = gs_prims;
727 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
728 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
729 gs->gs_max_out_vertices;
730 out->lds_size = align(esgs_lds_size, 128) / 128;
731
732 assert(out->max_prims_per_subgroup <= max_out_prims);
733 }
734
735 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
736 {
737 struct si_shader_selector *sel = shader->selector;
738 const ubyte *num_components = sel->info.num_stream_output_components;
739 unsigned gs_num_invocations = sel->gs_num_invocations;
740 struct si_pm4_state *pm4;
741 uint64_t va;
742 unsigned max_stream = sel->max_gs_stream;
743 unsigned offset;
744
745 pm4 = si_get_shader_pm4_state(shader);
746 if (!pm4)
747 return;
748
749 offset = num_components[0] * sel->gs_max_out_vertices;
750 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
751 if (max_stream >= 1)
752 offset += num_components[1] * sel->gs_max_out_vertices;
753 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
754 if (max_stream >= 2)
755 offset += num_components[2] * sel->gs_max_out_vertices;
756 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
757 si_pm4_set_reg(pm4, R_028A6C_VGT_GS_OUT_PRIM_TYPE,
758 si_conv_prim_to_gs_out(sel->gs_output_prim));
759 if (max_stream >= 3)
760 offset += num_components[3] * sel->gs_max_out_vertices;
761 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
762
763 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
764 assert(offset < (1 << 15));
765
766 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
767
768 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
769 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
770 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
771 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
772
773 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
774 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
775 S_028B90_ENABLE(gs_num_invocations > 0));
776
777 va = shader->bo->gpu_address;
778 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
779
780 if (sscreen->info.chip_class >= GFX9) {
781 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
782 unsigned es_type = shader->key.part.gs.es->type;
783 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
784 struct gfx9_gs_info gs_info;
785
786 if (es_type == PIPE_SHADER_VERTEX)
787 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
788 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
789 else if (es_type == PIPE_SHADER_TESS_EVAL)
790 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
791 else
792 unreachable("invalid shader selector type");
793
794 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
795 * VGPR[0:4] are always loaded.
796 */
797 if (sel->info.uses_invocationid)
798 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
799 else if (sel->info.uses_primid)
800 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
801 else if (input_prim >= PIPE_PRIM_TRIANGLES)
802 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
803 else
804 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
805
806 unsigned num_user_sgprs;
807 if (es_type == PIPE_SHADER_VERTEX)
808 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
809 else
810 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
811
812 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
813
814 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
815 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
816
817 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
818 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
819 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
820 S_00B228_DX10_CLAMP(1) |
821 S_00B228_FLOAT_MODE(shader->config.float_mode) |
822 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
823 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
824 S_00B22C_USER_SGPR(num_user_sgprs) |
825 S_00B22C_USER_SGPR_MSB(num_user_sgprs >> 5) |
826 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
827 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
828 S_00B22C_LDS_SIZE(gs_info.lds_size) |
829 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
830
831 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
832 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
833 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
834 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
835 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
836 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
837 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
838 shader->key.part.gs.es->esgs_itemsize / 4);
839
840 if (es_type == PIPE_SHADER_TESS_EVAL)
841 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
842
843 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
844 NULL, pm4);
845 } else {
846 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
847 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
848
849 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
850 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
851 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
852 S_00B228_DX10_CLAMP(1) |
853 S_00B228_FLOAT_MODE(shader->config.float_mode));
854 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
855 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
856 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
857 }
858 }
859
860 /**
861 * Compute the state for \p shader, which will run as a vertex shader on the
862 * hardware.
863 *
864 * If \p gs is non-NULL, it points to the geometry shader for which this shader
865 * is the copy shader.
866 */
867 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
868 struct si_shader_selector *gs)
869 {
870 const struct tgsi_shader_info *info = &shader->selector->info;
871 struct si_pm4_state *pm4;
872 unsigned num_user_sgprs;
873 unsigned nparams, vgpr_comp_cnt;
874 uint64_t va;
875 unsigned oc_lds_en;
876 unsigned window_space =
877 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
878 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
879
880 pm4 = si_get_shader_pm4_state(shader);
881 if (!pm4)
882 return;
883
884 /* We always write VGT_GS_MODE in the VS state, because every switch
885 * between different shader pipelines involving a different GS or no
886 * GS at all involves a switch of the VS (different GS use different
887 * copy shaders). On the other hand, when the API switches from a GS to
888 * no GS and then back to the same GS used originally, the GS state is
889 * not sent again.
890 */
891 if (!gs) {
892 unsigned mode = V_028A40_GS_OFF;
893
894 /* PrimID needs GS scenario A. */
895 if (enable_prim_id)
896 mode = V_028A40_GS_SCENARIO_A;
897
898 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
899 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
900 } else {
901 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
902 ac_vgt_gs_mode(gs->gs_max_out_vertices,
903 sscreen->info.chip_class));
904 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
905 }
906
907 if (sscreen->info.chip_class <= VI) {
908 /* Reuse needs to be set off if we write oViewport. */
909 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
910 S_028AB4_REUSE_OFF(info->writes_viewport_index));
911 }
912
913 va = shader->bo->gpu_address;
914 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
915
916 if (gs) {
917 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
918 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
919 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
920 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
921 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
922 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
923 */
924 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
925
926 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
927 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
928 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
929 } else {
930 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
931 }
932 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
933 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
934 num_user_sgprs = SI_TES_NUM_USER_SGPR;
935 } else
936 unreachable("invalid shader selector type");
937
938 /* VS is required to export at least one param. */
939 nparams = MAX2(shader->info.nr_param_exports, 1);
940 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
941 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
942
943 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
944 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
945 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
946 V_02870C_SPI_SHADER_4COMP :
947 V_02870C_SPI_SHADER_NONE) |
948 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
949 V_02870C_SPI_SHADER_4COMP :
950 V_02870C_SPI_SHADER_NONE) |
951 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
952 V_02870C_SPI_SHADER_4COMP :
953 V_02870C_SPI_SHADER_NONE));
954
955 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
956
957 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
958 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
959 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
960 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
961 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
962 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
963 S_00B128_DX10_CLAMP(1) |
964 S_00B128_FLOAT_MODE(shader->config.float_mode));
965 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
966 S_00B12C_USER_SGPR(num_user_sgprs) |
967 S_00B12C_OC_LDS_EN(oc_lds_en) |
968 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
969 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
970 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
971 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
972 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
973 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
974 if (window_space)
975 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
976 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
977 else
978 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
979 S_028818_VTX_W0_FMT(1) |
980 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
981 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
982 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
983
984 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
985 si_set_tesseval_regs(sscreen, shader->selector, pm4);
986
987 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
988 }
989
990 static unsigned si_get_ps_num_interp(struct si_shader *ps)
991 {
992 struct tgsi_shader_info *info = &ps->selector->info;
993 unsigned num_colors = !!(info->colors_read & 0x0f) +
994 !!(info->colors_read & 0xf0);
995 unsigned num_interp = ps->selector->info.num_inputs +
996 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
997
998 assert(num_interp <= 32);
999 return MIN2(num_interp, 32);
1000 }
1001
1002 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1003 {
1004 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1005 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1006
1007 /* If the i-th target format is set, all previous target formats must
1008 * be non-zero to avoid hangs.
1009 */
1010 for (i = 0; i < num_targets; i++)
1011 if (!(value & (0xf << (i * 4))))
1012 value |= V_028714_SPI_SHADER_32_R << (i * 4);
1013
1014 return value;
1015 }
1016
1017 static void si_shader_ps(struct si_shader *shader)
1018 {
1019 struct tgsi_shader_info *info = &shader->selector->info;
1020 struct si_pm4_state *pm4;
1021 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1022 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1023 uint64_t va;
1024 unsigned input_ena = shader->config.spi_ps_input_ena;
1025
1026 /* we need to enable at least one of them, otherwise we hang the GPU */
1027 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1028 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1029 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1030 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1031 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1032 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1033 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1034 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1035 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1036 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1037 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1038 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1039 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1040 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1041
1042 /* Validate interpolation optimization flags (read as implications). */
1043 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1044 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1045 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1046 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1047 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1048 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1049 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1050 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1051 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1052 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1053 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1054 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1055 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1056 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1057 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1058 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1059 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1060 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1061
1062 /* Validate cases when the optimizations are off (read as implications). */
1063 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1064 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1065 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1066 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1067 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1068 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1069
1070 pm4 = si_get_shader_pm4_state(shader);
1071 if (!pm4)
1072 return;
1073
1074 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1075 * Possible vaules:
1076 * 0 -> Position = pixel center
1077 * 1 -> Position = pixel centroid
1078 * 2 -> Position = at sample position
1079 *
1080 * From GLSL 4.5 specification, section 7.1:
1081 * "The variable gl_FragCoord is available as an input variable from
1082 * within fragment shaders and it holds the window relative coordinates
1083 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1084 * value can be for any location within the pixel, or one of the
1085 * fragment samples. The use of centroid does not further restrict
1086 * this value to be inside the current primitive."
1087 *
1088 * Meaning that centroid has no effect and we can return anything within
1089 * the pixel. Thus, return the value at sample position, because that's
1090 * the most accurate one shaders can get.
1091 */
1092 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1093
1094 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1095 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1096 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1097
1098 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1099 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1100
1101 /* Ensure that some export memory is always allocated, for two reasons:
1102 *
1103 * 1) Correctness: The hardware ignores the EXEC mask if no export
1104 * memory is allocated, so KILL and alpha test do not work correctly
1105 * without this.
1106 * 2) Performance: Every shader needs at least a NULL export, even when
1107 * it writes no color/depth output. The NULL export instruction
1108 * stalls without this setting.
1109 *
1110 * Don't add this to CB_SHADER_MASK.
1111 */
1112 if (!spi_shader_col_format &&
1113 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1114 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1115
1116 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1117 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1118 shader->config.spi_ps_input_addr);
1119
1120 /* Set interpolation controls. */
1121 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1122
1123 /* Set registers. */
1124 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1125 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1126
1127 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1128 ac_get_spi_shader_z_format(info->writes_z,
1129 info->writes_stencil,
1130 info->writes_samplemask));
1131
1132 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1133 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1134
1135 va = shader->bo->gpu_address;
1136 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1137 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1138 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1139
1140 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1141 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1142 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1143 S_00B028_DX10_CLAMP(1) |
1144 S_00B028_FLOAT_MODE(shader->config.float_mode));
1145 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1146 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1147 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1148 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1149 }
1150
1151 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1152 struct si_shader *shader)
1153 {
1154 switch (shader->selector->type) {
1155 case PIPE_SHADER_VERTEX:
1156 if (shader->key.as_ls)
1157 si_shader_ls(sscreen, shader);
1158 else if (shader->key.as_es)
1159 si_shader_es(sscreen, shader);
1160 else
1161 si_shader_vs(sscreen, shader, NULL);
1162 break;
1163 case PIPE_SHADER_TESS_CTRL:
1164 si_shader_hs(sscreen, shader);
1165 break;
1166 case PIPE_SHADER_TESS_EVAL:
1167 if (shader->key.as_es)
1168 si_shader_es(sscreen, shader);
1169 else
1170 si_shader_vs(sscreen, shader, NULL);
1171 break;
1172 case PIPE_SHADER_GEOMETRY:
1173 si_shader_gs(sscreen, shader);
1174 break;
1175 case PIPE_SHADER_FRAGMENT:
1176 si_shader_ps(shader);
1177 break;
1178 default:
1179 assert(0);
1180 }
1181 }
1182
1183 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1184 {
1185 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1186 if (sctx->queued.named.dsa)
1187 return sctx->queued.named.dsa->alpha_func;
1188
1189 return PIPE_FUNC_ALWAYS;
1190 }
1191
1192 static void si_shader_selector_key_vs(struct si_context *sctx,
1193 struct si_shader_selector *vs,
1194 struct si_shader_key *key,
1195 struct si_vs_prolog_bits *prolog_key)
1196 {
1197 if (!sctx->vertex_elements ||
1198 vs->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS])
1199 return;
1200
1201 prolog_key->instance_divisor_is_one =
1202 sctx->vertex_elements->instance_divisor_is_one;
1203 prolog_key->instance_divisor_is_fetched =
1204 sctx->vertex_elements->instance_divisor_is_fetched;
1205
1206 /* Prefer a monolithic shader to allow scheduling divisions around
1207 * VBO loads. */
1208 if (prolog_key->instance_divisor_is_fetched)
1209 key->opt.prefer_mono = 1;
1210
1211 unsigned count = MIN2(vs->info.num_inputs,
1212 sctx->vertex_elements->count);
1213 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1214 }
1215
1216 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1217 struct si_shader_selector *vs,
1218 struct si_shader_key *key)
1219 {
1220 struct si_shader_selector *ps = sctx->ps_shader.cso;
1221
1222 key->opt.clip_disable =
1223 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1224 (vs->info.clipdist_writemask ||
1225 vs->info.writes_clipvertex) &&
1226 !vs->info.culldist_writemask;
1227
1228 /* Find out if PS is disabled. */
1229 bool ps_disabled = true;
1230 if (ps) {
1231 const struct si_state_blend *blend = sctx->queued.named.blend;
1232 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1233 bool ps_modifies_zs = ps->info.uses_kill ||
1234 ps->info.writes_z ||
1235 ps->info.writes_stencil ||
1236 ps->info.writes_samplemask ||
1237 alpha_to_coverage ||
1238 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1239 unsigned ps_colormask = si_get_total_colormask(sctx);
1240
1241 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1242 (!ps_colormask &&
1243 !ps_modifies_zs &&
1244 !ps->info.writes_memory);
1245 }
1246
1247 /* Find out which VS outputs aren't used by the PS. */
1248 uint64_t outputs_written = vs->outputs_written_before_ps;
1249 uint64_t inputs_read = 0;
1250
1251 /* Ignore outputs that are not passed from VS to PS. */
1252 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1253 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1254 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1255
1256 if (!ps_disabled) {
1257 inputs_read = ps->inputs_read;
1258 }
1259
1260 uint64_t linked = outputs_written & inputs_read;
1261
1262 key->opt.kill_outputs = ~linked & outputs_written;
1263 }
1264
1265 /* Compute the key for the hw shader variant */
1266 static inline void si_shader_selector_key(struct pipe_context *ctx,
1267 struct si_shader_selector *sel,
1268 struct si_shader_key *key)
1269 {
1270 struct si_context *sctx = (struct si_context *)ctx;
1271
1272 memset(key, 0, sizeof(*key));
1273
1274 switch (sel->type) {
1275 case PIPE_SHADER_VERTEX:
1276 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1277
1278 if (sctx->tes_shader.cso)
1279 key->as_ls = 1;
1280 else if (sctx->gs_shader.cso)
1281 key->as_es = 1;
1282 else {
1283 si_shader_selector_key_hw_vs(sctx, sel, key);
1284
1285 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1286 key->mono.u.vs_export_prim_id = 1;
1287 }
1288 break;
1289 case PIPE_SHADER_TESS_CTRL:
1290 if (sctx->chip_class >= GFX9) {
1291 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1292 key, &key->part.tcs.ls_prolog);
1293 key->part.tcs.ls = sctx->vs_shader.cso;
1294
1295 /* When the LS VGPR fix is needed, monolithic shaders
1296 * can:
1297 * - avoid initializing EXEC in both the LS prolog
1298 * and the LS main part when !vs_needs_prolog
1299 * - remove the fixup for unused input VGPRs
1300 */
1301 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1302
1303 /* The LS output / HS input layout can be communicated
1304 * directly instead of via user SGPRs for merged LS-HS.
1305 * The LS VGPR fix prefers this too.
1306 */
1307 key->opt.prefer_mono = 1;
1308 }
1309
1310 key->part.tcs.epilog.prim_mode =
1311 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1312 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1313 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1314 key->part.tcs.epilog.tes_reads_tess_factors =
1315 sctx->tes_shader.cso->info.reads_tess_factors;
1316
1317 if (sel == sctx->fixed_func_tcs_shader.cso)
1318 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1319 break;
1320 case PIPE_SHADER_TESS_EVAL:
1321 if (sctx->gs_shader.cso)
1322 key->as_es = 1;
1323 else {
1324 si_shader_selector_key_hw_vs(sctx, sel, key);
1325
1326 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1327 key->mono.u.vs_export_prim_id = 1;
1328 }
1329 break;
1330 case PIPE_SHADER_GEOMETRY:
1331 if (sctx->chip_class >= GFX9) {
1332 if (sctx->tes_shader.cso) {
1333 key->part.gs.es = sctx->tes_shader.cso;
1334 } else {
1335 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1336 key, &key->part.gs.vs_prolog);
1337 key->part.gs.es = sctx->vs_shader.cso;
1338 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1339 }
1340
1341 /* Merged ES-GS can have unbalanced wave usage.
1342 *
1343 * ES threads are per-vertex, while GS threads are
1344 * per-primitive. So without any amplification, there
1345 * are fewer GS threads than ES threads, which can result
1346 * in empty (no-op) GS waves. With too much amplification,
1347 * there are more GS threads than ES threads, which
1348 * can result in empty (no-op) ES waves.
1349 *
1350 * Non-monolithic shaders are implemented by setting EXEC
1351 * at the beginning of shader parts, and don't jump to
1352 * the end if EXEC is 0.
1353 *
1354 * Monolithic shaders use conditional blocks, so they can
1355 * jump and skip empty waves of ES or GS. So set this to
1356 * always use optimized variants, which are monolithic.
1357 */
1358 key->opt.prefer_mono = 1;
1359 }
1360 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1361 break;
1362 case PIPE_SHADER_FRAGMENT: {
1363 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1364 struct si_state_blend *blend = sctx->queued.named.blend;
1365
1366 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1367 sel->info.colors_written == 0x1)
1368 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1369
1370 if (blend) {
1371 /* Select the shader color format based on whether
1372 * blending or alpha are needed.
1373 */
1374 key->part.ps.epilog.spi_shader_col_format =
1375 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1376 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1377 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1378 sctx->framebuffer.spi_shader_col_format_blend) |
1379 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1380 sctx->framebuffer.spi_shader_col_format_alpha) |
1381 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1382 sctx->framebuffer.spi_shader_col_format);
1383 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1384
1385 /* The output for dual source blending should have
1386 * the same format as the first output.
1387 */
1388 if (blend->dual_src_blend)
1389 key->part.ps.epilog.spi_shader_col_format |=
1390 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1391 } else
1392 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1393
1394 /* If alpha-to-coverage is enabled, we have to export alpha
1395 * even if there is no color buffer.
1396 */
1397 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1398 blend && blend->alpha_to_coverage)
1399 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1400
1401 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1402 * to the range supported by the type if a channel has less
1403 * than 16 bits and the export format is 16_ABGR.
1404 */
1405 if (sctx->chip_class <= CIK && sctx->family != CHIP_HAWAII) {
1406 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1407 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1408 }
1409
1410 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1411 if (!key->part.ps.epilog.last_cbuf) {
1412 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1413 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1414 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1415 }
1416
1417 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1418 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1419
1420 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1421 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1422
1423 if (sctx->queued.named.blend) {
1424 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1425 rs->multisample_enable;
1426 }
1427
1428 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1429 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1430 (is_line && rs->line_smooth)) &&
1431 sctx->framebuffer.nr_samples <= 1;
1432 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1433
1434 if (sctx->ps_iter_samples > 1 &&
1435 sel->info.reads_samplemask) {
1436 key->part.ps.prolog.samplemask_log_ps_iter =
1437 util_logbase2(sctx->ps_iter_samples);
1438 }
1439
1440 if (rs->force_persample_interp &&
1441 rs->multisample_enable &&
1442 sctx->framebuffer.nr_samples > 1 &&
1443 sctx->ps_iter_samples > 1) {
1444 key->part.ps.prolog.force_persp_sample_interp =
1445 sel->info.uses_persp_center ||
1446 sel->info.uses_persp_centroid;
1447
1448 key->part.ps.prolog.force_linear_sample_interp =
1449 sel->info.uses_linear_center ||
1450 sel->info.uses_linear_centroid;
1451 } else if (rs->multisample_enable &&
1452 sctx->framebuffer.nr_samples > 1) {
1453 key->part.ps.prolog.bc_optimize_for_persp =
1454 sel->info.uses_persp_center &&
1455 sel->info.uses_persp_centroid;
1456 key->part.ps.prolog.bc_optimize_for_linear =
1457 sel->info.uses_linear_center &&
1458 sel->info.uses_linear_centroid;
1459 } else {
1460 /* Make sure SPI doesn't compute more than 1 pair
1461 * of (i,j), which is the optimization here. */
1462 key->part.ps.prolog.force_persp_center_interp =
1463 sel->info.uses_persp_center +
1464 sel->info.uses_persp_centroid +
1465 sel->info.uses_persp_sample > 1;
1466
1467 key->part.ps.prolog.force_linear_center_interp =
1468 sel->info.uses_linear_center +
1469 sel->info.uses_linear_centroid +
1470 sel->info.uses_linear_sample > 1;
1471
1472 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1473 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1474 }
1475
1476 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1477
1478 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1479 if (sctx->ps_uses_fbfetch) {
1480 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1481 struct pipe_resource *tex = cb0->texture;
1482
1483 /* 1D textures are allocated and used as 2D on GFX9. */
1484 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1485 key->mono.u.ps.fbfetch_is_1D = sctx->chip_class != GFX9 &&
1486 (tex->target == PIPE_TEXTURE_1D ||
1487 tex->target == PIPE_TEXTURE_1D_ARRAY);
1488 key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
1489 tex->target == PIPE_TEXTURE_2D_ARRAY ||
1490 tex->target == PIPE_TEXTURE_CUBE ||
1491 tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1492 tex->target == PIPE_TEXTURE_3D;
1493 }
1494 break;
1495 }
1496 default:
1497 assert(0);
1498 }
1499
1500 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1501 memset(&key->opt, 0, sizeof(key->opt));
1502 }
1503
1504 static void si_build_shader_variant(struct si_shader *shader,
1505 int thread_index,
1506 bool low_priority)
1507 {
1508 struct si_shader_selector *sel = shader->selector;
1509 struct si_screen *sscreen = sel->screen;
1510 struct ac_llvm_compiler *compiler;
1511 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1512 int r;
1513
1514 if (thread_index >= 0) {
1515 if (low_priority) {
1516 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
1517 compiler = &sscreen->compiler_lowp[thread_index];
1518 } else {
1519 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1520 compiler = &sscreen->compiler[thread_index];
1521 }
1522 if (!debug->async)
1523 debug = NULL;
1524 } else {
1525 assert(!low_priority);
1526 compiler = shader->compiler_ctx_state.compiler;
1527 }
1528
1529 r = si_shader_create(sscreen, compiler, shader, debug);
1530 if (unlikely(r)) {
1531 PRINT_ERR("Failed to build shader variant (type=%u) %d\n",
1532 sel->type, r);
1533 shader->compilation_failed = true;
1534 return;
1535 }
1536
1537 if (shader->compiler_ctx_state.is_debug_context) {
1538 FILE *f = open_memstream(&shader->shader_log,
1539 &shader->shader_log_size);
1540 if (f) {
1541 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1542 fclose(f);
1543 }
1544 }
1545
1546 si_shader_init_pm4_state(sscreen, shader);
1547 }
1548
1549 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1550 {
1551 struct si_shader *shader = (struct si_shader *)job;
1552
1553 assert(thread_index >= 0);
1554
1555 si_build_shader_variant(shader, thread_index, true);
1556 }
1557
1558 static const struct si_shader_key zeroed;
1559
1560 static bool si_check_missing_main_part(struct si_screen *sscreen,
1561 struct si_shader_selector *sel,
1562 struct si_compiler_ctx_state *compiler_state,
1563 struct si_shader_key *key)
1564 {
1565 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1566
1567 if (!*mainp) {
1568 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1569
1570 if (!main_part)
1571 return false;
1572
1573 /* We can leave the fence as permanently signaled because the
1574 * main part becomes visible globally only after it has been
1575 * compiled. */
1576 util_queue_fence_init(&main_part->ready);
1577
1578 main_part->selector = sel;
1579 main_part->key.as_es = key->as_es;
1580 main_part->key.as_ls = key->as_ls;
1581 main_part->is_monolithic = false;
1582
1583 if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
1584 main_part, &compiler_state->debug) != 0) {
1585 FREE(main_part);
1586 return false;
1587 }
1588 *mainp = main_part;
1589 }
1590 return true;
1591 }
1592
1593 /* Select the hw shader variant depending on the current state. */
1594 static int si_shader_select_with_key(struct si_screen *sscreen,
1595 struct si_shader_ctx_state *state,
1596 struct si_compiler_ctx_state *compiler_state,
1597 struct si_shader_key *key,
1598 int thread_index)
1599 {
1600 struct si_shader_selector *sel = state->cso;
1601 struct si_shader_selector *previous_stage_sel = NULL;
1602 struct si_shader *current = state->current;
1603 struct si_shader *iter, *shader = NULL;
1604
1605 again:
1606 /* Check if we don't need to change anything.
1607 * This path is also used for most shaders that don't need multiple
1608 * variants, it will cost just a computation of the key and this
1609 * test. */
1610 if (likely(current &&
1611 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1612 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1613 if (current->is_optimized) {
1614 memset(&key->opt, 0, sizeof(key->opt));
1615 goto current_not_ready;
1616 }
1617
1618 util_queue_fence_wait(&current->ready);
1619 }
1620
1621 return current->compilation_failed ? -1 : 0;
1622 }
1623 current_not_ready:
1624
1625 /* This must be done before the mutex is locked, because async GS
1626 * compilation calls this function too, and therefore must enter
1627 * the mutex first.
1628 *
1629 * Only wait if we are in a draw call. Don't wait if we are
1630 * in a compiler thread.
1631 */
1632 if (thread_index < 0)
1633 util_queue_fence_wait(&sel->ready);
1634
1635 mtx_lock(&sel->mutex);
1636
1637 /* Find the shader variant. */
1638 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1639 /* Don't check the "current" shader. We checked it above. */
1640 if (current != iter &&
1641 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1642 mtx_unlock(&sel->mutex);
1643
1644 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1645 /* If it's an optimized shader and its compilation has
1646 * been started but isn't done, use the unoptimized
1647 * shader so as not to cause a stall due to compilation.
1648 */
1649 if (iter->is_optimized) {
1650 memset(&key->opt, 0, sizeof(key->opt));
1651 goto again;
1652 }
1653
1654 util_queue_fence_wait(&iter->ready);
1655 }
1656
1657 if (iter->compilation_failed) {
1658 return -1; /* skip the draw call */
1659 }
1660
1661 state->current = iter;
1662 return 0;
1663 }
1664 }
1665
1666 /* Build a new shader. */
1667 shader = CALLOC_STRUCT(si_shader);
1668 if (!shader) {
1669 mtx_unlock(&sel->mutex);
1670 return -ENOMEM;
1671 }
1672
1673 util_queue_fence_init(&shader->ready);
1674
1675 shader->selector = sel;
1676 shader->key = *key;
1677 shader->compiler_ctx_state = *compiler_state;
1678
1679 /* If this is a merged shader, get the first shader's selector. */
1680 if (sscreen->info.chip_class >= GFX9) {
1681 if (sel->type == PIPE_SHADER_TESS_CTRL)
1682 previous_stage_sel = key->part.tcs.ls;
1683 else if (sel->type == PIPE_SHADER_GEOMETRY)
1684 previous_stage_sel = key->part.gs.es;
1685
1686 /* We need to wait for the previous shader. */
1687 if (previous_stage_sel && thread_index < 0)
1688 util_queue_fence_wait(&previous_stage_sel->ready);
1689 }
1690
1691 /* Compile the main shader part if it doesn't exist. This can happen
1692 * if the initial guess was wrong. */
1693 bool is_pure_monolithic =
1694 sscreen->use_monolithic_shaders ||
1695 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1696
1697 if (!is_pure_monolithic) {
1698 bool ok;
1699
1700 /* Make sure the main shader part is present. This is needed
1701 * for shaders that can be compiled as VS, LS, or ES, and only
1702 * one of them is compiled at creation.
1703 *
1704 * For merged shaders, check that the starting shader's main
1705 * part is present.
1706 */
1707 if (previous_stage_sel) {
1708 struct si_shader_key shader1_key = zeroed;
1709
1710 if (sel->type == PIPE_SHADER_TESS_CTRL)
1711 shader1_key.as_ls = 1;
1712 else if (sel->type == PIPE_SHADER_GEOMETRY)
1713 shader1_key.as_es = 1;
1714 else
1715 assert(0);
1716
1717 mtx_lock(&previous_stage_sel->mutex);
1718 ok = si_check_missing_main_part(sscreen,
1719 previous_stage_sel,
1720 compiler_state, &shader1_key);
1721 mtx_unlock(&previous_stage_sel->mutex);
1722 } else {
1723 ok = si_check_missing_main_part(sscreen, sel,
1724 compiler_state, key);
1725 }
1726 if (!ok) {
1727 FREE(shader);
1728 mtx_unlock(&sel->mutex);
1729 return -ENOMEM; /* skip the draw call */
1730 }
1731 }
1732
1733 /* Keep the reference to the 1st shader of merged shaders, so that
1734 * Gallium can't destroy it before we destroy the 2nd shader.
1735 *
1736 * Set sctx = NULL, because it's unused if we're not releasing
1737 * the shader, and we don't have any sctx here.
1738 */
1739 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1740 previous_stage_sel);
1741
1742 /* Monolithic-only shaders don't make a distinction between optimized
1743 * and unoptimized. */
1744 shader->is_monolithic =
1745 is_pure_monolithic ||
1746 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1747
1748 shader->is_optimized =
1749 !is_pure_monolithic &&
1750 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1751
1752 /* If it's an optimized shader, compile it asynchronously. */
1753 if (shader->is_optimized &&
1754 !is_pure_monolithic &&
1755 thread_index < 0) {
1756 /* Compile it asynchronously. */
1757 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1758 shader, &shader->ready,
1759 si_build_shader_variant_low_priority, NULL);
1760
1761 /* Add only after the ready fence was reset, to guard against a
1762 * race with si_bind_XX_shader. */
1763 if (!sel->last_variant) {
1764 sel->first_variant = shader;
1765 sel->last_variant = shader;
1766 } else {
1767 sel->last_variant->next_variant = shader;
1768 sel->last_variant = shader;
1769 }
1770
1771 /* Use the default (unoptimized) shader for now. */
1772 memset(&key->opt, 0, sizeof(key->opt));
1773 mtx_unlock(&sel->mutex);
1774 goto again;
1775 }
1776
1777 /* Reset the fence before adding to the variant list. */
1778 util_queue_fence_reset(&shader->ready);
1779
1780 if (!sel->last_variant) {
1781 sel->first_variant = shader;
1782 sel->last_variant = shader;
1783 } else {
1784 sel->last_variant->next_variant = shader;
1785 sel->last_variant = shader;
1786 }
1787
1788 mtx_unlock(&sel->mutex);
1789
1790 assert(!shader->is_optimized);
1791 si_build_shader_variant(shader, thread_index, false);
1792
1793 util_queue_fence_signal(&shader->ready);
1794
1795 if (!shader->compilation_failed)
1796 state->current = shader;
1797
1798 return shader->compilation_failed ? -1 : 0;
1799 }
1800
1801 static int si_shader_select(struct pipe_context *ctx,
1802 struct si_shader_ctx_state *state,
1803 struct si_compiler_ctx_state *compiler_state)
1804 {
1805 struct si_context *sctx = (struct si_context *)ctx;
1806 struct si_shader_key key;
1807
1808 si_shader_selector_key(ctx, state->cso, &key);
1809 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1810 &key, -1);
1811 }
1812
1813 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1814 bool streamout,
1815 struct si_shader_key *key)
1816 {
1817 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1818
1819 switch (info->processor) {
1820 case PIPE_SHADER_VERTEX:
1821 switch (next_shader) {
1822 case PIPE_SHADER_GEOMETRY:
1823 key->as_es = 1;
1824 break;
1825 case PIPE_SHADER_TESS_CTRL:
1826 case PIPE_SHADER_TESS_EVAL:
1827 key->as_ls = 1;
1828 break;
1829 default:
1830 /* If POSITION isn't written, it can only be a HW VS
1831 * if streamout is used. If streamout isn't used,
1832 * assume that it's a HW LS. (the next shader is TCS)
1833 * This heuristic is needed for separate shader objects.
1834 */
1835 if (!info->writes_position && !streamout)
1836 key->as_ls = 1;
1837 }
1838 break;
1839
1840 case PIPE_SHADER_TESS_EVAL:
1841 if (next_shader == PIPE_SHADER_GEOMETRY ||
1842 !info->writes_position)
1843 key->as_es = 1;
1844 break;
1845 }
1846 }
1847
1848 /**
1849 * Compile the main shader part or the monolithic shader as part of
1850 * si_shader_selector initialization. Since it can be done asynchronously,
1851 * there is no way to report compile failures to applications.
1852 */
1853 static void si_init_shader_selector_async(void *job, int thread_index)
1854 {
1855 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1856 struct si_screen *sscreen = sel->screen;
1857 struct ac_llvm_compiler *compiler;
1858 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1859
1860 assert(!debug->debug_message || debug->async);
1861 assert(thread_index >= 0);
1862 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1863 compiler = &sscreen->compiler[thread_index];
1864
1865 /* Compile the main shader part for use with a prolog and/or epilog.
1866 * If this fails, the driver will try to compile a monolithic shader
1867 * on demand.
1868 */
1869 if (!sscreen->use_monolithic_shaders) {
1870 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1871 void *ir_binary = NULL;
1872
1873 if (!shader) {
1874 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1875 return;
1876 }
1877
1878 /* We can leave the fence signaled because use of the default
1879 * main part is guarded by the selector's ready fence. */
1880 util_queue_fence_init(&shader->ready);
1881
1882 shader->selector = sel;
1883 shader->is_monolithic = false;
1884 si_parse_next_shader_property(&sel->info,
1885 sel->so.num_outputs != 0,
1886 &shader->key);
1887
1888 if (sel->tokens || sel->nir)
1889 ir_binary = si_get_ir_binary(sel);
1890
1891 /* Try to load the shader from the shader cache. */
1892 mtx_lock(&sscreen->shader_cache_mutex);
1893
1894 if (ir_binary &&
1895 si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
1896 mtx_unlock(&sscreen->shader_cache_mutex);
1897 si_shader_dump_stats_for_shader_db(shader, debug);
1898 } else {
1899 mtx_unlock(&sscreen->shader_cache_mutex);
1900
1901 /* Compile the shader if it hasn't been loaded from the cache. */
1902 if (si_compile_tgsi_shader(sscreen, compiler, shader,
1903 debug) != 0) {
1904 FREE(shader);
1905 FREE(ir_binary);
1906 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1907 return;
1908 }
1909
1910 if (ir_binary) {
1911 mtx_lock(&sscreen->shader_cache_mutex);
1912 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
1913 FREE(ir_binary);
1914 mtx_unlock(&sscreen->shader_cache_mutex);
1915 }
1916 }
1917
1918 *si_get_main_shader_part(sel, &shader->key) = shader;
1919
1920 /* Unset "outputs_written" flags for outputs converted to
1921 * DEFAULT_VAL, so that later inter-shader optimizations don't
1922 * try to eliminate outputs that don't exist in the final
1923 * shader.
1924 *
1925 * This is only done if non-monolithic shaders are enabled.
1926 */
1927 if ((sel->type == PIPE_SHADER_VERTEX ||
1928 sel->type == PIPE_SHADER_TESS_EVAL) &&
1929 !shader->key.as_ls &&
1930 !shader->key.as_es) {
1931 unsigned i;
1932
1933 for (i = 0; i < sel->info.num_outputs; i++) {
1934 unsigned offset = shader->info.vs_output_param_offset[i];
1935
1936 if (offset <= AC_EXP_PARAM_OFFSET_31)
1937 continue;
1938
1939 unsigned name = sel->info.output_semantic_name[i];
1940 unsigned index = sel->info.output_semantic_index[i];
1941 unsigned id;
1942
1943 switch (name) {
1944 case TGSI_SEMANTIC_GENERIC:
1945 /* don't process indices the function can't handle */
1946 if (index >= SI_MAX_IO_GENERIC)
1947 break;
1948 /* fall through */
1949 default:
1950 id = si_shader_io_get_unique_index(name, index, true);
1951 sel->outputs_written_before_ps &= ~(1ull << id);
1952 break;
1953 case TGSI_SEMANTIC_POSITION: /* ignore these */
1954 case TGSI_SEMANTIC_PSIZE:
1955 case TGSI_SEMANTIC_CLIPVERTEX:
1956 case TGSI_SEMANTIC_EDGEFLAG:
1957 break;
1958 }
1959 }
1960 }
1961 }
1962
1963 /* The GS copy shader is always pre-compiled. */
1964 if (sel->type == PIPE_SHADER_GEOMETRY) {
1965 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
1966 if (!sel->gs_copy_shader) {
1967 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1968 return;
1969 }
1970
1971 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1972 }
1973 }
1974
1975 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
1976 struct util_queue_fence *ready_fence,
1977 struct si_compiler_ctx_state *compiler_ctx_state,
1978 void *job, util_queue_execute_func execute)
1979 {
1980 util_queue_fence_init(ready_fence);
1981
1982 struct util_async_debug_callback async_debug;
1983 bool wait =
1984 (sctx->debug.debug_message && !sctx->debug.async) ||
1985 sctx->is_debug ||
1986 si_can_dump_shader(sctx->screen, processor);
1987
1988 if (wait) {
1989 u_async_debug_init(&async_debug);
1990 compiler_ctx_state->debug = async_debug.base;
1991 }
1992
1993 util_queue_add_job(&sctx->screen->shader_compiler_queue, job,
1994 ready_fence, execute, NULL);
1995
1996 if (wait) {
1997 util_queue_fence_wait(ready_fence);
1998 u_async_debug_drain(&async_debug, &sctx->debug);
1999 u_async_debug_cleanup(&async_debug);
2000 }
2001 }
2002
2003 /* Return descriptor slot usage masks from the given shader info. */
2004 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2005 uint32_t *const_and_shader_buffers,
2006 uint64_t *samplers_and_images)
2007 {
2008 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
2009
2010 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2011 num_constbufs = util_last_bit(info->const_buffers_declared);
2012 /* two 8-byte images share one 16-byte slot */
2013 num_images = align(util_last_bit(info->images_declared), 2);
2014 num_samplers = util_last_bit(info->samplers_declared);
2015
2016 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2017 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2018 *const_and_shader_buffers =
2019 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2020
2021 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
2022 start = si_get_image_slot(num_images - 1) / 2;
2023 *samplers_and_images =
2024 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2025 }
2026
2027 static void *si_create_shader_selector(struct pipe_context *ctx,
2028 const struct pipe_shader_state *state)
2029 {
2030 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2031 struct si_context *sctx = (struct si_context*)ctx;
2032 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2033 int i;
2034
2035 if (!sel)
2036 return NULL;
2037
2038 pipe_reference_init(&sel->reference, 1);
2039 sel->screen = sscreen;
2040 sel->compiler_ctx_state.debug = sctx->debug;
2041 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2042
2043 sel->so = state->stream_output;
2044
2045 if (state->type == PIPE_SHADER_IR_TGSI) {
2046 sel->tokens = tgsi_dup_tokens(state->tokens);
2047 if (!sel->tokens) {
2048 FREE(sel);
2049 return NULL;
2050 }
2051
2052 tgsi_scan_shader(state->tokens, &sel->info);
2053 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2054 } else {
2055 assert(state->type == PIPE_SHADER_IR_NIR);
2056
2057 sel->nir = state->ir.nir;
2058
2059 si_nir_scan_shader(sel->nir, &sel->info);
2060 si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
2061
2062 si_lower_nir(sel);
2063 }
2064
2065 sel->type = sel->info.processor;
2066 p_atomic_inc(&sscreen->num_shaders_created);
2067 si_get_active_slot_masks(&sel->info,
2068 &sel->active_const_and_shader_buffers,
2069 &sel->active_samplers_and_images);
2070
2071 /* Record which streamout buffers are enabled. */
2072 for (i = 0; i < sel->so.num_outputs; i++) {
2073 sel->enabled_streamout_buffer_mask |=
2074 (1 << sel->so.output[i].output_buffer) <<
2075 (sel->so.output[i].stream * 4);
2076 }
2077
2078 /* The prolog is a no-op if there are no inputs. */
2079 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2080 sel->info.num_inputs &&
2081 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2082
2083 sel->force_correct_derivs_after_kill =
2084 sel->type == PIPE_SHADER_FRAGMENT &&
2085 sel->info.uses_derivatives &&
2086 sel->info.uses_kill &&
2087 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2088
2089 /* Set which opcode uses which (i,j) pair. */
2090 if (sel->info.uses_persp_opcode_interp_centroid)
2091 sel->info.uses_persp_centroid = true;
2092
2093 if (sel->info.uses_linear_opcode_interp_centroid)
2094 sel->info.uses_linear_centroid = true;
2095
2096 if (sel->info.uses_persp_opcode_interp_offset ||
2097 sel->info.uses_persp_opcode_interp_sample)
2098 sel->info.uses_persp_center = true;
2099
2100 if (sel->info.uses_linear_opcode_interp_offset ||
2101 sel->info.uses_linear_opcode_interp_sample)
2102 sel->info.uses_linear_center = true;
2103
2104 switch (sel->type) {
2105 case PIPE_SHADER_GEOMETRY:
2106 sel->gs_output_prim =
2107 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2108 sel->gs_max_out_vertices =
2109 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2110 sel->gs_num_invocations =
2111 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2112 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2113 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2114 sel->gs_max_out_vertices;
2115
2116 sel->max_gs_stream = 0;
2117 for (i = 0; i < sel->so.num_outputs; i++)
2118 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2119 sel->so.output[i].stream);
2120
2121 sel->gs_input_verts_per_prim =
2122 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2123 break;
2124
2125 case PIPE_SHADER_TESS_CTRL:
2126 /* Always reserve space for these. */
2127 sel->patch_outputs_written |=
2128 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2129 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2130 /* fall through */
2131 case PIPE_SHADER_VERTEX:
2132 case PIPE_SHADER_TESS_EVAL:
2133 for (i = 0; i < sel->info.num_outputs; i++) {
2134 unsigned name = sel->info.output_semantic_name[i];
2135 unsigned index = sel->info.output_semantic_index[i];
2136
2137 switch (name) {
2138 case TGSI_SEMANTIC_TESSINNER:
2139 case TGSI_SEMANTIC_TESSOUTER:
2140 case TGSI_SEMANTIC_PATCH:
2141 sel->patch_outputs_written |=
2142 1ull << si_shader_io_get_unique_index_patch(name, index);
2143 break;
2144
2145 case TGSI_SEMANTIC_GENERIC:
2146 /* don't process indices the function can't handle */
2147 if (index >= SI_MAX_IO_GENERIC)
2148 break;
2149 /* fall through */
2150 default:
2151 sel->outputs_written |=
2152 1ull << si_shader_io_get_unique_index(name, index, false);
2153 sel->outputs_written_before_ps |=
2154 1ull << si_shader_io_get_unique_index(name, index, true);
2155 break;
2156 case TGSI_SEMANTIC_EDGEFLAG:
2157 break;
2158 }
2159 }
2160 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2161 sel->lshs_vertex_stride = sel->esgs_itemsize;
2162
2163 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2164 * will start on a different bank. (except for the maximum 32*16).
2165 */
2166 if (sel->lshs_vertex_stride < 32*16)
2167 sel->lshs_vertex_stride += 4;
2168
2169 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2170 * conflicts, i.e. each vertex will start at a different bank.
2171 */
2172 if (sctx->chip_class >= GFX9)
2173 sel->esgs_itemsize += 4;
2174
2175 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2176 break;
2177
2178 case PIPE_SHADER_FRAGMENT:
2179 for (i = 0; i < sel->info.num_inputs; i++) {
2180 unsigned name = sel->info.input_semantic_name[i];
2181 unsigned index = sel->info.input_semantic_index[i];
2182
2183 switch (name) {
2184 case TGSI_SEMANTIC_GENERIC:
2185 /* don't process indices the function can't handle */
2186 if (index >= SI_MAX_IO_GENERIC)
2187 break;
2188 /* fall through */
2189 default:
2190 sel->inputs_read |=
2191 1ull << si_shader_io_get_unique_index(name, index, true);
2192 break;
2193 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2194 break;
2195 }
2196 }
2197
2198 for (i = 0; i < 8; i++)
2199 if (sel->info.colors_written & (1 << i))
2200 sel->colors_written_4bit |= 0xf << (4 * i);
2201
2202 for (i = 0; i < sel->info.num_inputs; i++) {
2203 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2204 int index = sel->info.input_semantic_index[i];
2205 sel->color_attr_index[index] = i;
2206 }
2207 }
2208 break;
2209 }
2210
2211 /* PA_CL_VS_OUT_CNTL */
2212 bool misc_vec_ena =
2213 sel->info.writes_psize || sel->info.writes_edgeflag ||
2214 sel->info.writes_layer || sel->info.writes_viewport_index;
2215 sel->pa_cl_vs_out_cntl =
2216 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2217 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2218 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2219 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2220 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2221 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2222 sel->clipdist_mask = sel->info.writes_clipvertex ?
2223 SIX_BITS : sel->info.clipdist_writemask;
2224 sel->culldist_mask = sel->info.culldist_writemask <<
2225 sel->info.num_written_clipdistance;
2226
2227 /* DB_SHADER_CONTROL */
2228 sel->db_shader_control =
2229 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2230 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2231 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2232 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2233
2234 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2235 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2236 sel->db_shader_control |=
2237 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2238 break;
2239 case TGSI_FS_DEPTH_LAYOUT_LESS:
2240 sel->db_shader_control |=
2241 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2242 break;
2243 }
2244
2245 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2246 *
2247 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2248 * --|-----------|------------|------------|--------------------|-------------------|-------------
2249 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2250 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2251 * 2 | false | true | n/a | LateZ | 1 | 0
2252 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2253 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2254 *
2255 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2256 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2257 *
2258 * Don't use ReZ without profiling !!!
2259 *
2260 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2261 * shaders.
2262 */
2263 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2264 /* Cases 3, 4. */
2265 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2266 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2267 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2268 } else if (sel->info.writes_memory) {
2269 /* Case 2. */
2270 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2271 S_02880C_EXEC_ON_HIER_FAIL(1);
2272 } else {
2273 /* Case 1. */
2274 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2275 }
2276
2277 (void) mtx_init(&sel->mutex, mtx_plain);
2278
2279 si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready,
2280 &sel->compiler_ctx_state, sel,
2281 si_init_shader_selector_async);
2282 return sel;
2283 }
2284
2285 static void si_update_streamout_state(struct si_context *sctx)
2286 {
2287 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2288
2289 if (!shader_with_so)
2290 return;
2291
2292 sctx->streamout.enabled_stream_buffers_mask =
2293 shader_with_so->enabled_streamout_buffer_mask;
2294 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2295 }
2296
2297 static void si_update_clip_regs(struct si_context *sctx,
2298 struct si_shader_selector *old_hw_vs,
2299 struct si_shader *old_hw_vs_variant,
2300 struct si_shader_selector *next_hw_vs,
2301 struct si_shader *next_hw_vs_variant)
2302 {
2303 if (next_hw_vs &&
2304 (!old_hw_vs ||
2305 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2306 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2307 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2308 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2309 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2310 !old_hw_vs_variant ||
2311 !next_hw_vs_variant ||
2312 old_hw_vs_variant->key.opt.clip_disable !=
2313 next_hw_vs_variant->key.opt.clip_disable))
2314 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2315 }
2316
2317 static void si_update_common_shader_state(struct si_context *sctx)
2318 {
2319 sctx->uses_bindless_samplers =
2320 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2321 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2322 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2323 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2324 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2325 sctx->uses_bindless_images =
2326 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2327 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2328 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2329 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2330 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2331 sctx->do_update_shaders = true;
2332 }
2333
2334 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2335 {
2336 struct si_context *sctx = (struct si_context *)ctx;
2337 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2338 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2339 struct si_shader_selector *sel = state;
2340
2341 if (sctx->vs_shader.cso == sel)
2342 return;
2343
2344 sctx->vs_shader.cso = sel;
2345 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2346 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2347
2348 si_update_common_shader_state(sctx);
2349 si_update_vs_viewport_state(sctx);
2350 si_set_active_descriptors_for_shader(sctx, sel);
2351 si_update_streamout_state(sctx);
2352 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2353 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2354 }
2355
2356 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2357 {
2358 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2359 (sctx->tes_shader.cso &&
2360 sctx->tes_shader.cso->info.uses_primid) ||
2361 (sctx->tcs_shader.cso &&
2362 sctx->tcs_shader.cso->info.uses_primid) ||
2363 (sctx->gs_shader.cso &&
2364 sctx->gs_shader.cso->info.uses_primid) ||
2365 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2366 sctx->ps_shader.cso->info.uses_primid);
2367 }
2368
2369 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2370 {
2371 struct si_context *sctx = (struct si_context *)ctx;
2372 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2373 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2374 struct si_shader_selector *sel = state;
2375 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2376
2377 if (sctx->gs_shader.cso == sel)
2378 return;
2379
2380 sctx->gs_shader.cso = sel;
2381 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2382 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2383
2384 si_update_common_shader_state(sctx);
2385 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2386
2387 if (enable_changed) {
2388 si_shader_change_notify(sctx);
2389 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2390 si_update_tess_uses_prim_id(sctx);
2391 }
2392 si_update_vs_viewport_state(sctx);
2393 si_set_active_descriptors_for_shader(sctx, sel);
2394 si_update_streamout_state(sctx);
2395 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2396 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2397 }
2398
2399 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2400 {
2401 struct si_context *sctx = (struct si_context *)ctx;
2402 struct si_shader_selector *sel = state;
2403 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2404
2405 if (sctx->tcs_shader.cso == sel)
2406 return;
2407
2408 sctx->tcs_shader.cso = sel;
2409 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2410 si_update_tess_uses_prim_id(sctx);
2411
2412 si_update_common_shader_state(sctx);
2413
2414 if (enable_changed)
2415 sctx->last_tcs = NULL; /* invalidate derived tess state */
2416
2417 si_set_active_descriptors_for_shader(sctx, sel);
2418 }
2419
2420 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2421 {
2422 struct si_context *sctx = (struct si_context *)ctx;
2423 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2424 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2425 struct si_shader_selector *sel = state;
2426 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2427
2428 if (sctx->tes_shader.cso == sel)
2429 return;
2430
2431 sctx->tes_shader.cso = sel;
2432 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2433 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2434 si_update_tess_uses_prim_id(sctx);
2435
2436 si_update_common_shader_state(sctx);
2437 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2438
2439 if (enable_changed) {
2440 si_shader_change_notify(sctx);
2441 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2442 }
2443 si_update_vs_viewport_state(sctx);
2444 si_set_active_descriptors_for_shader(sctx, sel);
2445 si_update_streamout_state(sctx);
2446 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2447 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2448 }
2449
2450 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2451 {
2452 struct si_context *sctx = (struct si_context *)ctx;
2453 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2454 struct si_shader_selector *sel = state;
2455
2456 /* skip if supplied shader is one already in use */
2457 if (old_sel == sel)
2458 return;
2459
2460 sctx->ps_shader.cso = sel;
2461 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2462
2463 si_update_common_shader_state(sctx);
2464 if (sel) {
2465 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2466 si_update_tess_uses_prim_id(sctx);
2467
2468 if (!old_sel ||
2469 old_sel->info.colors_written != sel->info.colors_written)
2470 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
2471
2472 if (sctx->screen->has_out_of_order_rast &&
2473 (!old_sel ||
2474 old_sel->info.writes_memory != sel->info.writes_memory ||
2475 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2476 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2477 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
2478 }
2479 si_set_active_descriptors_for_shader(sctx, sel);
2480 si_update_ps_colorbuf0_slot(sctx);
2481 }
2482
2483 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2484 {
2485 if (shader->is_optimized) {
2486 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2487 &shader->ready);
2488 }
2489
2490 util_queue_fence_destroy(&shader->ready);
2491
2492 if (shader->pm4) {
2493 switch (shader->selector->type) {
2494 case PIPE_SHADER_VERTEX:
2495 if (shader->key.as_ls) {
2496 assert(sctx->chip_class <= VI);
2497 si_pm4_delete_state(sctx, ls, shader->pm4);
2498 } else if (shader->key.as_es) {
2499 assert(sctx->chip_class <= VI);
2500 si_pm4_delete_state(sctx, es, shader->pm4);
2501 } else {
2502 si_pm4_delete_state(sctx, vs, shader->pm4);
2503 }
2504 break;
2505 case PIPE_SHADER_TESS_CTRL:
2506 si_pm4_delete_state(sctx, hs, shader->pm4);
2507 break;
2508 case PIPE_SHADER_TESS_EVAL:
2509 if (shader->key.as_es) {
2510 assert(sctx->chip_class <= VI);
2511 si_pm4_delete_state(sctx, es, shader->pm4);
2512 } else {
2513 si_pm4_delete_state(sctx, vs, shader->pm4);
2514 }
2515 break;
2516 case PIPE_SHADER_GEOMETRY:
2517 if (shader->is_gs_copy_shader)
2518 si_pm4_delete_state(sctx, vs, shader->pm4);
2519 else
2520 si_pm4_delete_state(sctx, gs, shader->pm4);
2521 break;
2522 case PIPE_SHADER_FRAGMENT:
2523 si_pm4_delete_state(sctx, ps, shader->pm4);
2524 break;
2525 }
2526 }
2527
2528 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2529 si_shader_destroy(shader);
2530 free(shader);
2531 }
2532
2533 void si_destroy_shader_selector(struct si_context *sctx,
2534 struct si_shader_selector *sel)
2535 {
2536 struct si_shader *p = sel->first_variant, *c;
2537 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2538 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2539 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2540 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2541 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2542 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2543 };
2544
2545 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2546
2547 if (current_shader[sel->type]->cso == sel) {
2548 current_shader[sel->type]->cso = NULL;
2549 current_shader[sel->type]->current = NULL;
2550 }
2551
2552 while (p) {
2553 c = p->next_variant;
2554 si_delete_shader(sctx, p);
2555 p = c;
2556 }
2557
2558 if (sel->main_shader_part)
2559 si_delete_shader(sctx, sel->main_shader_part);
2560 if (sel->main_shader_part_ls)
2561 si_delete_shader(sctx, sel->main_shader_part_ls);
2562 if (sel->main_shader_part_es)
2563 si_delete_shader(sctx, sel->main_shader_part_es);
2564 if (sel->gs_copy_shader)
2565 si_delete_shader(sctx, sel->gs_copy_shader);
2566
2567 util_queue_fence_destroy(&sel->ready);
2568 mtx_destroy(&sel->mutex);
2569 free(sel->tokens);
2570 ralloc_free(sel->nir);
2571 free(sel);
2572 }
2573
2574 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2575 {
2576 struct si_context *sctx = (struct si_context *)ctx;
2577 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2578
2579 si_shader_selector_reference(sctx, &sel, NULL);
2580 }
2581
2582 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2583 struct si_shader *vs, unsigned name,
2584 unsigned index, unsigned interpolate)
2585 {
2586 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2587 unsigned j, offset, ps_input_cntl = 0;
2588
2589 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2590 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2591 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2592
2593 if (name == TGSI_SEMANTIC_PCOORD ||
2594 (name == TGSI_SEMANTIC_TEXCOORD &&
2595 sctx->sprite_coord_enable & (1 << index))) {
2596 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2597 }
2598
2599 for (j = 0; j < vsinfo->num_outputs; j++) {
2600 if (name == vsinfo->output_semantic_name[j] &&
2601 index == vsinfo->output_semantic_index[j]) {
2602 offset = vs->info.vs_output_param_offset[j];
2603
2604 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2605 /* The input is loaded from parameter memory. */
2606 ps_input_cntl |= S_028644_OFFSET(offset);
2607 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2608 if (offset == AC_EXP_PARAM_UNDEFINED) {
2609 /* This can happen with depth-only rendering. */
2610 offset = 0;
2611 } else {
2612 /* The input is a DEFAULT_VAL constant. */
2613 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2614 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2615 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2616 }
2617
2618 ps_input_cntl = S_028644_OFFSET(0x20) |
2619 S_028644_DEFAULT_VAL(offset);
2620 }
2621 break;
2622 }
2623 }
2624
2625 if (name == TGSI_SEMANTIC_PRIMID)
2626 /* PrimID is written after the last output. */
2627 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2628 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2629 /* No corresponding output found, load defaults into input.
2630 * Don't set any other bits.
2631 * (FLAT_SHADE=1 completely changes behavior) */
2632 ps_input_cntl = S_028644_OFFSET(0x20);
2633 /* D3D 9 behaviour. GL is undefined */
2634 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2635 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2636 }
2637 return ps_input_cntl;
2638 }
2639
2640 static void si_emit_spi_map(struct si_context *sctx)
2641 {
2642 struct si_shader *ps = sctx->ps_shader.current;
2643 struct si_shader *vs = si_get_vs_state(sctx);
2644 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2645 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2646 unsigned spi_ps_input_cntl[32];
2647
2648 if (!ps || !ps->selector->info.num_inputs)
2649 return;
2650
2651 num_interp = si_get_ps_num_interp(ps);
2652 assert(num_interp > 0);
2653
2654 for (i = 0; i < psinfo->num_inputs; i++) {
2655 unsigned name = psinfo->input_semantic_name[i];
2656 unsigned index = psinfo->input_semantic_index[i];
2657 unsigned interpolate = psinfo->input_interpolate[i];
2658
2659 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name,
2660 index, interpolate);
2661
2662 if (name == TGSI_SEMANTIC_COLOR) {
2663 assert(index < ARRAY_SIZE(bcol_interp));
2664 bcol_interp[index] = interpolate;
2665 }
2666 }
2667
2668 if (ps->key.part.ps.prolog.color_two_side) {
2669 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2670
2671 for (i = 0; i < 2; i++) {
2672 if (!(psinfo->colors_read & (0xf << (i * 4))))
2673 continue;
2674
2675 spi_ps_input_cntl[num_written++] =
2676 si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
2677
2678 }
2679 }
2680 assert(num_interp == num_written);
2681
2682 /* R_028644_SPI_PS_INPUT_CNTL_0 */
2683 /* Dota 2: Only ~16% of SPI map updates set different values. */
2684 /* Talos: Only ~9% of SPI map updates set different values. */
2685 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0,
2686 spi_ps_input_cntl,
2687 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
2688 }
2689
2690 /**
2691 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2692 */
2693 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2694 {
2695 if (sctx->init_config_has_vgt_flush)
2696 return;
2697
2698 /* Done by Vulkan before VGT_FLUSH. */
2699 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2700 si_pm4_cmd_add(sctx->init_config,
2701 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2702 si_pm4_cmd_end(sctx->init_config, false);
2703
2704 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2705 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2706 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2707 si_pm4_cmd_end(sctx->init_config, false);
2708 sctx->init_config_has_vgt_flush = true;
2709 }
2710
2711 /* Initialize state related to ESGS / GSVS ring buffers */
2712 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2713 {
2714 struct si_shader_selector *es =
2715 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2716 struct si_shader_selector *gs = sctx->gs_shader.cso;
2717 struct si_pm4_state *pm4;
2718
2719 /* Chip constants. */
2720 unsigned num_se = sctx->screen->info.max_se;
2721 unsigned wave_size = 64;
2722 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2723 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2724 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2725 */
2726 unsigned gs_vertex_reuse = (sctx->chip_class >= VI ? 32 : 16) * num_se;
2727 unsigned alignment = 256 * num_se;
2728 /* The maximum size is 63.999 MB per SE. */
2729 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2730
2731 /* Calculate the minimum size. */
2732 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2733 wave_size, alignment);
2734
2735 /* These are recommended sizes, not minimum sizes. */
2736 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2737 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2738 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2739 gs->max_gsvs_emit_size;
2740
2741 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2742 esgs_ring_size = align(esgs_ring_size, alignment);
2743 gsvs_ring_size = align(gsvs_ring_size, alignment);
2744
2745 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2746 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2747
2748 /* Some rings don't have to be allocated if shaders don't use them.
2749 * (e.g. no varyings between ES and GS or GS and VS)
2750 *
2751 * GFX9 doesn't have the ESGS ring.
2752 */
2753 bool update_esgs = sctx->chip_class <= VI &&
2754 esgs_ring_size &&
2755 (!sctx->esgs_ring ||
2756 sctx->esgs_ring->width0 < esgs_ring_size);
2757 bool update_gsvs = gsvs_ring_size &&
2758 (!sctx->gsvs_ring ||
2759 sctx->gsvs_ring->width0 < gsvs_ring_size);
2760
2761 if (!update_esgs && !update_gsvs)
2762 return true;
2763
2764 if (update_esgs) {
2765 pipe_resource_reference(&sctx->esgs_ring, NULL);
2766 sctx->esgs_ring =
2767 pipe_aligned_buffer_create(sctx->b.screen,
2768 SI_RESOURCE_FLAG_UNMAPPABLE,
2769 PIPE_USAGE_DEFAULT,
2770 esgs_ring_size, alignment);
2771 if (!sctx->esgs_ring)
2772 return false;
2773 }
2774
2775 if (update_gsvs) {
2776 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2777 sctx->gsvs_ring =
2778 pipe_aligned_buffer_create(sctx->b.screen,
2779 SI_RESOURCE_FLAG_UNMAPPABLE,
2780 PIPE_USAGE_DEFAULT,
2781 gsvs_ring_size, alignment);
2782 if (!sctx->gsvs_ring)
2783 return false;
2784 }
2785
2786 /* Create the "init_config_gs_rings" state. */
2787 pm4 = CALLOC_STRUCT(si_pm4_state);
2788 if (!pm4)
2789 return false;
2790
2791 if (sctx->chip_class >= CIK) {
2792 if (sctx->esgs_ring) {
2793 assert(sctx->chip_class <= VI);
2794 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2795 sctx->esgs_ring->width0 / 256);
2796 }
2797 if (sctx->gsvs_ring)
2798 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2799 sctx->gsvs_ring->width0 / 256);
2800 } else {
2801 if (sctx->esgs_ring)
2802 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2803 sctx->esgs_ring->width0 / 256);
2804 if (sctx->gsvs_ring)
2805 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2806 sctx->gsvs_ring->width0 / 256);
2807 }
2808
2809 /* Set the state. */
2810 if (sctx->init_config_gs_rings)
2811 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2812 sctx->init_config_gs_rings = pm4;
2813
2814 if (!sctx->init_config_has_vgt_flush) {
2815 si_init_config_add_vgt_flush(sctx);
2816 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2817 }
2818
2819 /* Flush the context to re-emit both init_config states. */
2820 sctx->initial_gfx_cs_size = 0; /* force flush */
2821 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
2822
2823 /* Set ring bindings. */
2824 if (sctx->esgs_ring) {
2825 assert(sctx->chip_class <= VI);
2826 si_set_ring_buffer(sctx, SI_ES_RING_ESGS,
2827 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2828 true, true, 4, 64, 0);
2829 si_set_ring_buffer(sctx, SI_GS_RING_ESGS,
2830 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2831 false, false, 0, 0, 0);
2832 }
2833 if (sctx->gsvs_ring) {
2834 si_set_ring_buffer(sctx, SI_RING_GSVS,
2835 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2836 false, false, 0, 0, 0);
2837 }
2838
2839 return true;
2840 }
2841
2842 static void si_shader_lock(struct si_shader *shader)
2843 {
2844 mtx_lock(&shader->selector->mutex);
2845 if (shader->previous_stage_sel) {
2846 assert(shader->previous_stage_sel != shader->selector);
2847 mtx_lock(&shader->previous_stage_sel->mutex);
2848 }
2849 }
2850
2851 static void si_shader_unlock(struct si_shader *shader)
2852 {
2853 if (shader->previous_stage_sel)
2854 mtx_unlock(&shader->previous_stage_sel->mutex);
2855 mtx_unlock(&shader->selector->mutex);
2856 }
2857
2858 /**
2859 * @returns 1 if \p sel has been updated to use a new scratch buffer
2860 * 0 if not
2861 * < 0 if there was a failure
2862 */
2863 static int si_update_scratch_buffer(struct si_context *sctx,
2864 struct si_shader *shader)
2865 {
2866 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2867 int r;
2868
2869 if (!shader)
2870 return 0;
2871
2872 /* This shader doesn't need a scratch buffer */
2873 if (shader->config.scratch_bytes_per_wave == 0)
2874 return 0;
2875
2876 /* Prevent race conditions when updating:
2877 * - si_shader::scratch_bo
2878 * - si_shader::binary::code
2879 * - si_shader::previous_stage::binary::code.
2880 */
2881 si_shader_lock(shader);
2882
2883 /* This shader is already configured to use the current
2884 * scratch buffer. */
2885 if (shader->scratch_bo == sctx->scratch_buffer) {
2886 si_shader_unlock(shader);
2887 return 0;
2888 }
2889
2890 assert(sctx->scratch_buffer);
2891
2892 if (shader->previous_stage)
2893 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2894
2895 si_shader_apply_scratch_relocs(shader, scratch_va);
2896
2897 /* Replace the shader bo with a new bo that has the relocs applied. */
2898 r = si_shader_binary_upload(sctx->screen, shader);
2899 if (r) {
2900 si_shader_unlock(shader);
2901 return r;
2902 }
2903
2904 /* Update the shader state to use the new shader bo. */
2905 si_shader_init_pm4_state(sctx->screen, shader);
2906
2907 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2908
2909 si_shader_unlock(shader);
2910 return 1;
2911 }
2912
2913 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2914 {
2915 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2916 }
2917
2918 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2919 {
2920 return shader ? shader->config.scratch_bytes_per_wave : 0;
2921 }
2922
2923 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2924 {
2925 if (!sctx->tes_shader.cso)
2926 return NULL; /* tessellation disabled */
2927
2928 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2929 sctx->fixed_func_tcs_shader.current;
2930 }
2931
2932 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2933 {
2934 unsigned bytes = 0;
2935
2936 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2937 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2938 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2939 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2940
2941 if (sctx->tes_shader.cso) {
2942 struct si_shader *tcs = si_get_tcs_current(sctx);
2943
2944 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2945 }
2946 return bytes;
2947 }
2948
2949 static bool si_update_scratch_relocs(struct si_context *sctx)
2950 {
2951 struct si_shader *tcs = si_get_tcs_current(sctx);
2952 int r;
2953
2954 /* Update the shaders, so that they are using the latest scratch.
2955 * The scratch buffer may have been changed since these shaders were
2956 * last used, so we still need to try to update them, even if they
2957 * require scratch buffers smaller than the current size.
2958 */
2959 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2960 if (r < 0)
2961 return false;
2962 if (r == 1)
2963 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2964
2965 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2966 if (r < 0)
2967 return false;
2968 if (r == 1)
2969 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2970
2971 r = si_update_scratch_buffer(sctx, tcs);
2972 if (r < 0)
2973 return false;
2974 if (r == 1)
2975 si_pm4_bind_state(sctx, hs, tcs->pm4);
2976
2977 /* VS can be bound as LS, ES, or VS. */
2978 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2979 if (r < 0)
2980 return false;
2981 if (r == 1) {
2982 if (sctx->tes_shader.current)
2983 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2984 else if (sctx->gs_shader.current)
2985 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2986 else
2987 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2988 }
2989
2990 /* TES can be bound as ES or VS. */
2991 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2992 if (r < 0)
2993 return false;
2994 if (r == 1) {
2995 if (sctx->gs_shader.current)
2996 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2997 else
2998 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2999 }
3000
3001 return true;
3002 }
3003
3004 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3005 {
3006 unsigned current_scratch_buffer_size =
3007 si_get_current_scratch_buffer_size(sctx);
3008 unsigned scratch_bytes_per_wave =
3009 si_get_max_scratch_bytes_per_wave(sctx);
3010 unsigned scratch_needed_size = scratch_bytes_per_wave *
3011 sctx->scratch_waves;
3012 unsigned spi_tmpring_size;
3013
3014 if (scratch_needed_size > 0) {
3015 if (scratch_needed_size > current_scratch_buffer_size) {
3016 /* Create a bigger scratch buffer */
3017 r600_resource_reference(&sctx->scratch_buffer, NULL);
3018
3019 sctx->scratch_buffer =
3020 si_aligned_buffer_create(&sctx->screen->b,
3021 SI_RESOURCE_FLAG_UNMAPPABLE,
3022 PIPE_USAGE_DEFAULT,
3023 scratch_needed_size, 256);
3024 if (!sctx->scratch_buffer)
3025 return false;
3026
3027 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3028 si_context_add_resource_size(sctx,
3029 &sctx->scratch_buffer->b.b);
3030 }
3031
3032 if (!si_update_scratch_relocs(sctx))
3033 return false;
3034 }
3035
3036 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3037 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3038 "scratch size should already be aligned correctly.");
3039
3040 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3041 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3042 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3043 sctx->spi_tmpring_size = spi_tmpring_size;
3044 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3045 }
3046 return true;
3047 }
3048
3049 static void si_init_tess_factor_ring(struct si_context *sctx)
3050 {
3051 assert(!sctx->tess_rings);
3052
3053 /* The address must be aligned to 2^19, because the shader only
3054 * receives the high 13 bits.
3055 */
3056 sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
3057 SI_RESOURCE_FLAG_32BIT,
3058 PIPE_USAGE_DEFAULT,
3059 sctx->screen->tess_offchip_ring_size +
3060 sctx->screen->tess_factor_ring_size,
3061 1 << 19);
3062 if (!sctx->tess_rings)
3063 return;
3064
3065 si_init_config_add_vgt_flush(sctx);
3066
3067 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_rings),
3068 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3069
3070 uint64_t factor_va = r600_resource(sctx->tess_rings)->gpu_address +
3071 sctx->screen->tess_offchip_ring_size;
3072
3073 /* Append these registers to the init config state. */
3074 if (sctx->chip_class >= CIK) {
3075 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3076 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3077 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3078 factor_va >> 8);
3079 if (sctx->chip_class >= GFX9)
3080 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3081 S_030944_BASE_HI(factor_va >> 40));
3082 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3083 sctx->screen->vgt_hs_offchip_param);
3084 } else {
3085 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3086 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3087 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3088 factor_va >> 8);
3089 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3090 sctx->screen->vgt_hs_offchip_param);
3091 }
3092
3093 /* Flush the context to re-emit the init_config state.
3094 * This is done only once in a lifetime of a context.
3095 */
3096 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3097 sctx->initial_gfx_cs_size = 0; /* force flush */
3098 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3099 }
3100
3101 static void si_update_vgt_shader_config(struct si_context *sctx)
3102 {
3103 /* Calculate the index of the config.
3104 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3105 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3106 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3107
3108 if (!*pm4) {
3109 uint32_t stages = 0;
3110
3111 *pm4 = CALLOC_STRUCT(si_pm4_state);
3112
3113 if (sctx->tes_shader.cso) {
3114 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3115 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3116
3117 if (sctx->gs_shader.cso)
3118 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3119 S_028B54_GS_EN(1) |
3120 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3121 else
3122 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3123 } else if (sctx->gs_shader.cso) {
3124 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3125 S_028B54_GS_EN(1) |
3126 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3127 }
3128
3129 if (sctx->chip_class >= GFX9)
3130 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3131
3132 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3133 }
3134 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3135 }
3136
3137 bool si_update_shaders(struct si_context *sctx)
3138 {
3139 struct pipe_context *ctx = (struct pipe_context*)sctx;
3140 struct si_compiler_ctx_state compiler_state;
3141 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3142 struct si_shader *old_vs = si_get_vs_state(sctx);
3143 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3144 struct si_shader *old_ps = sctx->ps_shader.current;
3145 unsigned old_spi_shader_col_format =
3146 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3147 int r;
3148
3149 compiler_state.compiler = &sctx->compiler;
3150 compiler_state.debug = sctx->debug;
3151 compiler_state.is_debug_context = sctx->is_debug;
3152
3153 /* Update stages before GS. */
3154 if (sctx->tes_shader.cso) {
3155 if (!sctx->tess_rings) {
3156 si_init_tess_factor_ring(sctx);
3157 if (!sctx->tess_rings)
3158 return false;
3159 }
3160
3161 /* VS as LS */
3162 if (sctx->chip_class <= VI) {
3163 r = si_shader_select(ctx, &sctx->vs_shader,
3164 &compiler_state);
3165 if (r)
3166 return false;
3167 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3168 }
3169
3170 if (sctx->tcs_shader.cso) {
3171 r = si_shader_select(ctx, &sctx->tcs_shader,
3172 &compiler_state);
3173 if (r)
3174 return false;
3175 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3176 } else {
3177 if (!sctx->fixed_func_tcs_shader.cso) {
3178 sctx->fixed_func_tcs_shader.cso =
3179 si_create_fixed_func_tcs(sctx);
3180 if (!sctx->fixed_func_tcs_shader.cso)
3181 return false;
3182 }
3183
3184 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3185 &compiler_state);
3186 if (r)
3187 return false;
3188 si_pm4_bind_state(sctx, hs,
3189 sctx->fixed_func_tcs_shader.current->pm4);
3190 }
3191
3192 if (sctx->gs_shader.cso) {
3193 /* TES as ES */
3194 if (sctx->chip_class <= VI) {
3195 r = si_shader_select(ctx, &sctx->tes_shader,
3196 &compiler_state);
3197 if (r)
3198 return false;
3199 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3200 }
3201 } else {
3202 /* TES as VS */
3203 r = si_shader_select(ctx, &sctx->tes_shader,
3204 &compiler_state);
3205 if (r)
3206 return false;
3207 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3208 }
3209 } else if (sctx->gs_shader.cso) {
3210 if (sctx->chip_class <= VI) {
3211 /* VS as ES */
3212 r = si_shader_select(ctx, &sctx->vs_shader,
3213 &compiler_state);
3214 if (r)
3215 return false;
3216 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3217
3218 si_pm4_bind_state(sctx, ls, NULL);
3219 si_pm4_bind_state(sctx, hs, NULL);
3220 }
3221 } else {
3222 /* VS as VS */
3223 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3224 if (r)
3225 return false;
3226 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3227 si_pm4_bind_state(sctx, ls, NULL);
3228 si_pm4_bind_state(sctx, hs, NULL);
3229 }
3230
3231 /* Update GS. */
3232 if (sctx->gs_shader.cso) {
3233 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3234 if (r)
3235 return false;
3236 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3237 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3238
3239 if (!si_update_gs_ring_buffers(sctx))
3240 return false;
3241 } else {
3242 si_pm4_bind_state(sctx, gs, NULL);
3243 if (sctx->chip_class <= VI)
3244 si_pm4_bind_state(sctx, es, NULL);
3245 }
3246
3247 si_update_vgt_shader_config(sctx);
3248
3249 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3250 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3251
3252 if (sctx->ps_shader.cso) {
3253 unsigned db_shader_control;
3254
3255 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3256 if (r)
3257 return false;
3258 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3259
3260 db_shader_control =
3261 sctx->ps_shader.cso->db_shader_control |
3262 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3263
3264 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3265 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3266 sctx->flatshade != rs->flatshade) {
3267 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3268 sctx->flatshade = rs->flatshade;
3269 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3270 }
3271
3272 if (sctx->screen->rbplus_allowed &&
3273 si_pm4_state_changed(sctx, ps) &&
3274 (!old_ps ||
3275 old_spi_shader_col_format !=
3276 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3277 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3278
3279 if (sctx->ps_db_shader_control != db_shader_control) {
3280 sctx->ps_db_shader_control = db_shader_control;
3281 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3282 if (sctx->screen->dpbb_allowed)
3283 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3284 }
3285
3286 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3287 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3288 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3289
3290 if (sctx->chip_class == SI)
3291 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3292
3293 if (sctx->framebuffer.nr_samples <= 1)
3294 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3295 }
3296 }
3297
3298 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3299 si_pm4_state_enabled_and_changed(sctx, hs) ||
3300 si_pm4_state_enabled_and_changed(sctx, es) ||
3301 si_pm4_state_enabled_and_changed(sctx, gs) ||
3302 si_pm4_state_enabled_and_changed(sctx, vs) ||
3303 si_pm4_state_enabled_and_changed(sctx, ps)) {
3304 if (!si_update_spi_tmpring_size(sctx))
3305 return false;
3306 }
3307
3308 if (sctx->chip_class >= CIK) {
3309 if (si_pm4_state_enabled_and_changed(sctx, ls))
3310 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3311 else if (!sctx->queued.named.ls)
3312 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3313
3314 if (si_pm4_state_enabled_and_changed(sctx, hs))
3315 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3316 else if (!sctx->queued.named.hs)
3317 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3318
3319 if (si_pm4_state_enabled_and_changed(sctx, es))
3320 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3321 else if (!sctx->queued.named.es)
3322 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3323
3324 if (si_pm4_state_enabled_and_changed(sctx, gs))
3325 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3326 else if (!sctx->queued.named.gs)
3327 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3328
3329 if (si_pm4_state_enabled_and_changed(sctx, vs))
3330 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3331 else if (!sctx->queued.named.vs)
3332 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3333
3334 if (si_pm4_state_enabled_and_changed(sctx, ps))
3335 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3336 else if (!sctx->queued.named.ps)
3337 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3338 }
3339
3340 sctx->do_update_shaders = false;
3341 return true;
3342 }
3343
3344 static void si_emit_scratch_state(struct si_context *sctx)
3345 {
3346 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3347
3348 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3349 sctx->spi_tmpring_size);
3350
3351 if (sctx->scratch_buffer) {
3352 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
3353 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3354 RADEON_PRIO_SCRATCH_BUFFER);
3355 }
3356 }
3357
3358 void si_init_shader_functions(struct si_context *sctx)
3359 {
3360 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
3361 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
3362
3363 sctx->b.create_vs_state = si_create_shader_selector;
3364 sctx->b.create_tcs_state = si_create_shader_selector;
3365 sctx->b.create_tes_state = si_create_shader_selector;
3366 sctx->b.create_gs_state = si_create_shader_selector;
3367 sctx->b.create_fs_state = si_create_shader_selector;
3368
3369 sctx->b.bind_vs_state = si_bind_vs_shader;
3370 sctx->b.bind_tcs_state = si_bind_tcs_shader;
3371 sctx->b.bind_tes_state = si_bind_tes_shader;
3372 sctx->b.bind_gs_state = si_bind_gs_shader;
3373 sctx->b.bind_fs_state = si_bind_ps_shader;
3374
3375 sctx->b.delete_vs_state = si_delete_shader_selector;
3376 sctx->b.delete_tcs_state = si_delete_shader_selector;
3377 sctx->b.delete_tes_state = si_delete_shader_selector;
3378 sctx->b.delete_gs_state = si_delete_shader_selector;
3379 sctx->b.delete_fs_state = si_delete_shader_selector;
3380 }