radeonsi: make the GS copy shader owned by the GS selector
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "radeon/r600_cs.h"
31
32 #include "tgsi/tgsi_parse.h"
33 #include "tgsi/tgsi_ureg.h"
34 #include "util/hash_table.h"
35 #include "util/u_hash.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38
39 /* SHADER_CACHE */
40
41 /**
42 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
43 * integer.
44 */
45 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
46 {
47 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
48 sizeof(struct tgsi_token);
49 unsigned size = 4 + tgsi_size + sizeof(sel->so);
50 char *result = (char*)MALLOC(size);
51
52 if (!result)
53 return NULL;
54
55 *((uint32_t*)result) = size;
56 memcpy(result + 4, sel->tokens, tgsi_size);
57 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
58 return result;
59 }
60
61 /** Copy "data" to "ptr" and return the next dword following copied data. */
62 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
63 {
64 /* data may be NULL if size == 0 */
65 if (size)
66 memcpy(ptr, data, size);
67 ptr += DIV_ROUND_UP(size, 4);
68 return ptr;
69 }
70
71 /** Read data from "ptr". Return the next dword following the data. */
72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74 memcpy(data, ptr, size);
75 ptr += DIV_ROUND_UP(size, 4);
76 return ptr;
77 }
78
79 /**
80 * Write the size as uint followed by the data. Return the next dword
81 * following the copied data.
82 */
83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85 *ptr++ = size;
86 return write_data(ptr, data, size);
87 }
88
89 /**
90 * Read the size as uint followed by the data. Return both via parameters.
91 * Return the next dword following the data.
92 */
93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95 *size = *ptr++;
96 assert(*data == NULL);
97 if (!*size)
98 return ptr;
99 *data = malloc(*size);
100 return read_data(ptr, *data, *size);
101 }
102
103 /**
104 * Return the shader binary in a buffer. The first 4 bytes contain its size
105 * as integer.
106 */
107 static void *si_get_shader_binary(struct si_shader *shader)
108 {
109 /* There is always a size of data followed by the data itself. */
110 unsigned relocs_size = shader->binary.reloc_count *
111 sizeof(shader->binary.relocs[0]);
112 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
113 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
114 strlen(shader->binary.llvm_ir_string) + 1 : 0;
115 unsigned size =
116 4 + /* total size */
117 4 + /* CRC32 of the data below */
118 align(sizeof(shader->config), 4) +
119 align(sizeof(shader->info), 4) +
120 4 + align(shader->binary.code_size, 4) +
121 4 + align(shader->binary.rodata_size, 4) +
122 4 + align(relocs_size, 4) +
123 4 + align(disasm_size, 4) +
124 4 + align(llvm_ir_size, 4);
125 void *buffer = CALLOC(1, size);
126 uint32_t *ptr = (uint32_t*)buffer;
127
128 if (!buffer)
129 return NULL;
130
131 *ptr++ = size;
132 ptr++; /* CRC32 is calculated at the end. */
133
134 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
135 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
136 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
137 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
138 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
139 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
140 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
141 assert((char *)ptr - (char *)buffer == size);
142
143 /* Compute CRC32. */
144 ptr = (uint32_t*)buffer;
145 ptr++;
146 *ptr = util_hash_crc32(ptr + 1, size - 8);
147
148 return buffer;
149 }
150
151 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
152 {
153 uint32_t *ptr = (uint32_t*)binary;
154 uint32_t size = *ptr++;
155 uint32_t crc32 = *ptr++;
156 unsigned chunk_size;
157
158 if (util_hash_crc32(ptr, size - 8) != crc32) {
159 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
160 return false;
161 }
162
163 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
164 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
165 ptr = read_chunk(ptr, (void**)&shader->binary.code,
166 &shader->binary.code_size);
167 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
168 &shader->binary.rodata_size);
169 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
170 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
171 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
172 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
173
174 return true;
175 }
176
177 /**
178 * Insert a shader into the cache. It's assumed the shader is not in the cache.
179 * Use si_shader_cache_load_shader before calling this.
180 *
181 * Returns false on failure, in which case the tgsi_binary should be freed.
182 */
183 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
184 void *tgsi_binary,
185 struct si_shader *shader)
186 {
187 void *hw_binary;
188 struct hash_entry *entry;
189
190 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
191 if (entry)
192 return false; /* already added */
193
194 hw_binary = si_get_shader_binary(shader);
195 if (!hw_binary)
196 return false;
197
198 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
199 hw_binary) == NULL) {
200 FREE(hw_binary);
201 return false;
202 }
203
204 return true;
205 }
206
207 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
208 void *tgsi_binary,
209 struct si_shader *shader)
210 {
211 struct hash_entry *entry =
212 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
213 if (!entry)
214 return false;
215
216 if (!si_load_shader_binary(shader, entry->data))
217 return false;
218
219 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
220 return true;
221 }
222
223 static uint32_t si_shader_cache_key_hash(const void *key)
224 {
225 /* The first dword is the key size. */
226 return util_hash_crc32(key, *(uint32_t*)key);
227 }
228
229 static bool si_shader_cache_key_equals(const void *a, const void *b)
230 {
231 uint32_t *keya = (uint32_t*)a;
232 uint32_t *keyb = (uint32_t*)b;
233
234 /* The first dword is the key size. */
235 if (*keya != *keyb)
236 return false;
237
238 return memcmp(keya, keyb, *keya) == 0;
239 }
240
241 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
242 {
243 FREE((void*)entry->key);
244 FREE(entry->data);
245 }
246
247 bool si_init_shader_cache(struct si_screen *sscreen)
248 {
249 pipe_mutex_init(sscreen->shader_cache_mutex);
250 sscreen->shader_cache =
251 _mesa_hash_table_create(NULL,
252 si_shader_cache_key_hash,
253 si_shader_cache_key_equals);
254 return sscreen->shader_cache != NULL;
255 }
256
257 void si_destroy_shader_cache(struct si_screen *sscreen)
258 {
259 if (sscreen->shader_cache)
260 _mesa_hash_table_destroy(sscreen->shader_cache,
261 si_destroy_shader_cache_entry);
262 pipe_mutex_destroy(sscreen->shader_cache_mutex);
263 }
264
265 /* SHADER STATES */
266
267 static void si_set_tesseval_regs(struct si_screen *sscreen,
268 struct si_shader *shader,
269 struct si_pm4_state *pm4)
270 {
271 struct tgsi_shader_info *info = &shader->selector->info;
272 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
273 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
274 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
275 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
276 unsigned type, partitioning, topology, distribution_mode;
277
278 switch (tes_prim_mode) {
279 case PIPE_PRIM_LINES:
280 type = V_028B6C_TESS_ISOLINE;
281 break;
282 case PIPE_PRIM_TRIANGLES:
283 type = V_028B6C_TESS_TRIANGLE;
284 break;
285 case PIPE_PRIM_QUADS:
286 type = V_028B6C_TESS_QUAD;
287 break;
288 default:
289 assert(0);
290 return;
291 }
292
293 switch (tes_spacing) {
294 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
295 partitioning = V_028B6C_PART_FRAC_ODD;
296 break;
297 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
298 partitioning = V_028B6C_PART_FRAC_EVEN;
299 break;
300 case PIPE_TESS_SPACING_EQUAL:
301 partitioning = V_028B6C_PART_INTEGER;
302 break;
303 default:
304 assert(0);
305 return;
306 }
307
308 if (tes_point_mode)
309 topology = V_028B6C_OUTPUT_POINT;
310 else if (tes_prim_mode == PIPE_PRIM_LINES)
311 topology = V_028B6C_OUTPUT_LINE;
312 else if (tes_vertex_order_cw)
313 /* for some reason, this must be the other way around */
314 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
315 else
316 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
317
318 if (sscreen->has_distributed_tess) {
319 if (sscreen->b.family == CHIP_FIJI ||
320 sscreen->b.family >= CHIP_POLARIS10)
321 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
322 else
323 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
324 } else
325 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
326
327 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
328 S_028B6C_TYPE(type) |
329 S_028B6C_PARTITIONING(partitioning) |
330 S_028B6C_TOPOLOGY(topology) |
331 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
332 }
333
334 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
335 {
336 if (shader->pm4)
337 si_pm4_clear_state(shader->pm4);
338 else
339 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
340
341 return shader->pm4;
342 }
343
344 static void si_shader_ls(struct si_shader *shader)
345 {
346 struct si_pm4_state *pm4;
347 unsigned vgpr_comp_cnt;
348 uint64_t va;
349
350 pm4 = si_get_shader_pm4_state(shader);
351 if (!pm4)
352 return;
353
354 va = shader->bo->gpu_address;
355 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
356
357 /* We need at least 2 components for LS.
358 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
359 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
360
361 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
362 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
363
364 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
365 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
366 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
367 S_00B528_DX10_CLAMP(1) |
368 S_00B528_FLOAT_MODE(shader->config.float_mode);
369 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
370 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
371 }
372
373 static void si_shader_hs(struct si_shader *shader)
374 {
375 struct si_pm4_state *pm4;
376 uint64_t va;
377
378 pm4 = si_get_shader_pm4_state(shader);
379 if (!pm4)
380 return;
381
382 va = shader->bo->gpu_address;
383 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
384
385 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
386 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
387 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
388 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
389 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
390 S_00B428_DX10_CLAMP(1) |
391 S_00B428_FLOAT_MODE(shader->config.float_mode));
392 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
393 S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
394 S_00B42C_OC_LDS_EN(1) |
395 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
396 }
397
398 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
399 {
400 struct si_pm4_state *pm4;
401 unsigned num_user_sgprs;
402 unsigned vgpr_comp_cnt;
403 uint64_t va;
404 unsigned oc_lds_en;
405
406 pm4 = si_get_shader_pm4_state(shader);
407 if (!pm4)
408 return;
409
410 va = shader->bo->gpu_address;
411 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
412
413 if (shader->selector->type == PIPE_SHADER_VERTEX) {
414 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
415 num_user_sgprs = SI_ES_NUM_USER_SGPR;
416 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
417 vgpr_comp_cnt = 3; /* all components are needed for TES */
418 num_user_sgprs = SI_TES_NUM_USER_SGPR;
419 } else
420 unreachable("invalid shader selector type");
421
422 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
423
424 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
425 shader->selector->esgs_itemsize / 4);
426 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
427 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
428 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
429 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
430 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
431 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
432 S_00B328_DX10_CLAMP(1) |
433 S_00B328_FLOAT_MODE(shader->config.float_mode));
434 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
435 S_00B32C_USER_SGPR(num_user_sgprs) |
436 S_00B32C_OC_LDS_EN(oc_lds_en) |
437 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
438
439 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
440 si_set_tesseval_regs(sscreen, shader, pm4);
441 }
442
443 /**
444 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
445 * geometry shader.
446 */
447 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
448 {
449 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
450 unsigned cut_mode;
451
452 if (gs_max_vert_out <= 128) {
453 cut_mode = V_028A40_GS_CUT_128;
454 } else if (gs_max_vert_out <= 256) {
455 cut_mode = V_028A40_GS_CUT_256;
456 } else if (gs_max_vert_out <= 512) {
457 cut_mode = V_028A40_GS_CUT_512;
458 } else {
459 assert(gs_max_vert_out <= 1024);
460 cut_mode = V_028A40_GS_CUT_1024;
461 }
462
463 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
464 S_028A40_CUT_MODE(cut_mode)|
465 S_028A40_ES_WRITE_OPTIMIZE(1) |
466 S_028A40_GS_WRITE_OPTIMIZE(1);
467 }
468
469 static void si_shader_gs(struct si_shader *shader)
470 {
471 unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
472 unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
473 unsigned gs_num_invocations = shader->selector->gs_num_invocations;
474 struct si_pm4_state *pm4;
475 uint64_t va;
476 unsigned max_stream = shader->selector->max_gs_stream;
477
478 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
479 assert(gsvs_itemsize < (1 << 15));
480
481 pm4 = si_get_shader_pm4_state(shader);
482 if (!pm4)
483 return;
484
485 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader->selector));
486
487 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
488 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
489 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
490
491 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
492
493 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
494
495 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
496 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
497 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
498 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
499
500 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
501 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
502 S_028B90_ENABLE(gs_num_invocations > 0));
503
504 va = shader->bo->gpu_address;
505 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
506 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
507 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
508
509 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
510 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
511 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
512 S_00B228_DX10_CLAMP(1) |
513 S_00B228_FLOAT_MODE(shader->config.float_mode));
514 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
515 S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
516 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
517 }
518
519 /**
520 * Compute the state for \p shader, which will run as a vertex shader on the
521 * hardware.
522 *
523 * If \p gs is non-NULL, it points to the geometry shader for which this shader
524 * is the copy shader.
525 */
526 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
527 struct si_shader_selector *gs)
528 {
529 struct si_pm4_state *pm4;
530 unsigned num_user_sgprs;
531 unsigned nparams, vgpr_comp_cnt;
532 uint64_t va;
533 unsigned oc_lds_en;
534 unsigned window_space =
535 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
536 bool enable_prim_id = si_vs_exports_prim_id(shader);
537
538 pm4 = si_get_shader_pm4_state(shader);
539 if (!pm4)
540 return;
541
542 /* We always write VGT_GS_MODE in the VS state, because every switch
543 * between different shader pipelines involving a different GS or no
544 * GS at all involves a switch of the VS (different GS use different
545 * copy shaders). On the other hand, when the API switches from a GS to
546 * no GS and then back to the same GS used originally, the GS state is
547 * not sent again.
548 */
549 if (!gs) {
550 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
551 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
552 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
553 } else {
554 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
555 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
556 }
557
558 va = shader->bo->gpu_address;
559 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
560
561 if (gs) {
562 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
563 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
564 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
565 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
566 num_user_sgprs = SI_VS_NUM_USER_SGPR;
567 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
568 vgpr_comp_cnt = 3; /* all components are needed for TES */
569 num_user_sgprs = SI_TES_NUM_USER_SGPR;
570 } else
571 unreachable("invalid shader selector type");
572
573 /* VS is required to export at least one param. */
574 nparams = MAX2(shader->info.nr_param_exports, 1);
575 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
576 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
577
578 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
579 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
580 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
581 V_02870C_SPI_SHADER_4COMP :
582 V_02870C_SPI_SHADER_NONE) |
583 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
584 V_02870C_SPI_SHADER_4COMP :
585 V_02870C_SPI_SHADER_NONE) |
586 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
587 V_02870C_SPI_SHADER_4COMP :
588 V_02870C_SPI_SHADER_NONE));
589
590 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
591
592 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
593 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
594 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
595 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
596 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
597 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
598 S_00B128_DX10_CLAMP(1) |
599 S_00B128_FLOAT_MODE(shader->config.float_mode));
600 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
601 S_00B12C_USER_SGPR(num_user_sgprs) |
602 S_00B12C_OC_LDS_EN(oc_lds_en) |
603 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
604 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
605 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
606 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
607 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
608 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
609 if (window_space)
610 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
611 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
612 else
613 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
614 S_028818_VTX_W0_FMT(1) |
615 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
616 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
617 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
618
619 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
620 si_set_tesseval_regs(sscreen, shader, pm4);
621 }
622
623 static unsigned si_get_ps_num_interp(struct si_shader *ps)
624 {
625 struct tgsi_shader_info *info = &ps->selector->info;
626 unsigned num_colors = !!(info->colors_read & 0x0f) +
627 !!(info->colors_read & 0xf0);
628 unsigned num_interp = ps->selector->info.num_inputs +
629 (ps->key.ps.prolog.color_two_side ? num_colors : 0);
630
631 assert(num_interp <= 32);
632 return MIN2(num_interp, 32);
633 }
634
635 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
636 {
637 unsigned value = shader->key.ps.epilog.spi_shader_col_format;
638 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
639
640 /* If the i-th target format is set, all previous target formats must
641 * be non-zero to avoid hangs.
642 */
643 for (i = 0; i < num_targets; i++)
644 if (!(value & (0xf << (i * 4))))
645 value |= V_028714_SPI_SHADER_32_R << (i * 4);
646
647 return value;
648 }
649
650 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
651 {
652 unsigned i, cb_shader_mask = 0;
653
654 for (i = 0; i < 8; i++) {
655 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
656 case V_028714_SPI_SHADER_ZERO:
657 break;
658 case V_028714_SPI_SHADER_32_R:
659 cb_shader_mask |= 0x1 << (i * 4);
660 break;
661 case V_028714_SPI_SHADER_32_GR:
662 cb_shader_mask |= 0x3 << (i * 4);
663 break;
664 case V_028714_SPI_SHADER_32_AR:
665 cb_shader_mask |= 0x9 << (i * 4);
666 break;
667 case V_028714_SPI_SHADER_FP16_ABGR:
668 case V_028714_SPI_SHADER_UNORM16_ABGR:
669 case V_028714_SPI_SHADER_SNORM16_ABGR:
670 case V_028714_SPI_SHADER_UINT16_ABGR:
671 case V_028714_SPI_SHADER_SINT16_ABGR:
672 case V_028714_SPI_SHADER_32_ABGR:
673 cb_shader_mask |= 0xf << (i * 4);
674 break;
675 default:
676 assert(0);
677 }
678 }
679 return cb_shader_mask;
680 }
681
682 static void si_shader_ps(struct si_shader *shader)
683 {
684 struct tgsi_shader_info *info = &shader->selector->info;
685 struct si_pm4_state *pm4;
686 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
687 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
688 uint64_t va;
689 unsigned input_ena = shader->config.spi_ps_input_ena;
690
691 /* we need to enable at least one of them, otherwise we hang the GPU */
692 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
693 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
694 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
695 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
696 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
697 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
698 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
699 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
700 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
701 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
702 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
703 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
704 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
705 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
706
707 /* Validate interpolation optimization flags (read as implications). */
708 assert(!shader->key.ps.prolog.bc_optimize_for_persp ||
709 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
710 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
711 assert(!shader->key.ps.prolog.bc_optimize_for_linear ||
712 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
713 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
714 assert(!shader->key.ps.prolog.force_persp_center_interp ||
715 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
716 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
717 assert(!shader->key.ps.prolog.force_linear_center_interp ||
718 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
719 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
720 assert(!shader->key.ps.prolog.force_persp_sample_interp ||
721 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
722 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
723 assert(!shader->key.ps.prolog.force_linear_sample_interp ||
724 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
725 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
726
727 /* Validate cases when the optimizations are off (read as implications). */
728 assert(shader->key.ps.prolog.bc_optimize_for_persp ||
729 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
730 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
731 assert(shader->key.ps.prolog.bc_optimize_for_linear ||
732 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
733 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
734
735 pm4 = si_get_shader_pm4_state(shader);
736 if (!pm4)
737 return;
738
739 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
740 * Possible vaules:
741 * 0 -> Position = pixel center
742 * 1 -> Position = pixel centroid
743 * 2 -> Position = at sample position
744 *
745 * From GLSL 4.5 specification, section 7.1:
746 * "The variable gl_FragCoord is available as an input variable from
747 * within fragment shaders and it holds the window relative coordinates
748 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
749 * value can be for any location within the pixel, or one of the
750 * fragment samples. The use of centroid does not further restrict
751 * this value to be inside the current primitive."
752 *
753 * Meaning that centroid has no effect and we can return anything within
754 * the pixel. Thus, return the value at sample position, because that's
755 * the most accurate one shaders can get.
756 */
757 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
758
759 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
760 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
761 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
762
763 spi_shader_col_format = si_get_spi_shader_col_format(shader);
764 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
765
766 /* Ensure that some export memory is always allocated, for two reasons:
767 *
768 * 1) Correctness: The hardware ignores the EXEC mask if no export
769 * memory is allocated, so KILL and alpha test do not work correctly
770 * without this.
771 * 2) Performance: Every shader needs at least a NULL export, even when
772 * it writes no color/depth output. The NULL export instruction
773 * stalls without this setting.
774 *
775 * Don't add this to CB_SHADER_MASK.
776 */
777 if (!spi_shader_col_format &&
778 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
779 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
780
781 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
782 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
783 shader->config.spi_ps_input_addr);
784
785 /* Set interpolation controls. */
786 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
787
788 /* Set registers. */
789 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
790 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
791
792 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
793 si_get_spi_shader_z_format(info->writes_z,
794 info->writes_stencil,
795 info->writes_samplemask));
796
797 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
798 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
799
800 va = shader->bo->gpu_address;
801 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
802 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
803 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
804
805 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
806 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
807 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
808 S_00B028_DX10_CLAMP(1) |
809 S_00B028_FLOAT_MODE(shader->config.float_mode));
810 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
811 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
812 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
813 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
814 }
815
816 static void si_shader_init_pm4_state(struct si_screen *sscreen,
817 struct si_shader *shader)
818 {
819 switch (shader->selector->type) {
820 case PIPE_SHADER_VERTEX:
821 if (shader->key.vs.as_ls)
822 si_shader_ls(shader);
823 else if (shader->key.vs.as_es)
824 si_shader_es(sscreen, shader);
825 else
826 si_shader_vs(sscreen, shader, NULL);
827 break;
828 case PIPE_SHADER_TESS_CTRL:
829 si_shader_hs(shader);
830 break;
831 case PIPE_SHADER_TESS_EVAL:
832 if (shader->key.tes.as_es)
833 si_shader_es(sscreen, shader);
834 else
835 si_shader_vs(sscreen, shader, NULL);
836 break;
837 case PIPE_SHADER_GEOMETRY:
838 si_shader_gs(shader);
839 break;
840 case PIPE_SHADER_FRAGMENT:
841 si_shader_ps(shader);
842 break;
843 default:
844 assert(0);
845 }
846 }
847
848 static unsigned si_get_alpha_test_func(struct si_context *sctx)
849 {
850 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
851 if (sctx->queued.named.dsa)
852 return sctx->queued.named.dsa->alpha_func;
853
854 return PIPE_FUNC_ALWAYS;
855 }
856
857 /* Compute the key for the hw shader variant */
858 static inline void si_shader_selector_key(struct pipe_context *ctx,
859 struct si_shader_selector *sel,
860 union si_shader_key *key)
861 {
862 struct si_context *sctx = (struct si_context *)ctx;
863 unsigned i;
864
865 memset(key, 0, sizeof(*key));
866
867 switch (sel->type) {
868 case PIPE_SHADER_VERTEX:
869 if (sctx->vertex_elements) {
870 unsigned count = MIN2(sel->info.num_inputs,
871 sctx->vertex_elements->count);
872 for (i = 0; i < count; ++i)
873 key->vs.prolog.instance_divisors[i] =
874 sctx->vertex_elements->elements[i].instance_divisor;
875 }
876 if (sctx->tes_shader.cso)
877 key->vs.as_ls = 1;
878 else if (sctx->gs_shader.cso)
879 key->vs.as_es = 1;
880
881 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
882 sctx->ps_shader.cso->info.uses_primid)
883 key->vs.epilog.export_prim_id = 1;
884 break;
885 case PIPE_SHADER_TESS_CTRL:
886 key->tcs.epilog.prim_mode =
887 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
888
889 if (sel == sctx->fixed_func_tcs_shader.cso)
890 key->tcs.epilog.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
891 break;
892 case PIPE_SHADER_TESS_EVAL:
893 if (sctx->gs_shader.cso)
894 key->tes.as_es = 1;
895 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
896 key->tes.epilog.export_prim_id = 1;
897 break;
898 case PIPE_SHADER_GEOMETRY:
899 break;
900 case PIPE_SHADER_FRAGMENT: {
901 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
902 struct si_state_blend *blend = sctx->queued.named.blend;
903
904 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
905 sel->info.colors_written == 0x1)
906 key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
907
908 if (blend) {
909 /* Select the shader color format based on whether
910 * blending or alpha are needed.
911 */
912 key->ps.epilog.spi_shader_col_format =
913 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
914 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
915 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
916 sctx->framebuffer.spi_shader_col_format_blend) |
917 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
918 sctx->framebuffer.spi_shader_col_format_alpha) |
919 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
920 sctx->framebuffer.spi_shader_col_format);
921
922 /* The output for dual source blending should have
923 * the same format as the first output.
924 */
925 if (blend->dual_src_blend)
926 key->ps.epilog.spi_shader_col_format |=
927 (key->ps.epilog.spi_shader_col_format & 0xf) << 4;
928 } else
929 key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
930
931 /* If alpha-to-coverage is enabled, we have to export alpha
932 * even if there is no color buffer.
933 */
934 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
935 blend && blend->alpha_to_coverage)
936 key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
937
938 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
939 * to the range supported by the type if a channel has less
940 * than 16 bits and the export format is 16_ABGR.
941 */
942 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
943 key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
944
945 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
946 if (!key->ps.epilog.last_cbuf) {
947 key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
948 key->ps.epilog.color_is_int8 &= sel->info.colors_written;
949 }
950
951 if (rs) {
952 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
953 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
954 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
955 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
956
957 key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
958 key->ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
959
960 if (sctx->queued.named.blend) {
961 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
962 rs->multisample_enable;
963 }
964
965 key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
966 key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
967 (is_line && rs->line_smooth)) &&
968 sctx->framebuffer.nr_samples <= 1;
969 key->ps.epilog.clamp_color = rs->clamp_fragment_color;
970
971 if (rs->force_persample_interp &&
972 rs->multisample_enable &&
973 sctx->framebuffer.nr_samples > 1 &&
974 sctx->ps_iter_samples > 1) {
975 key->ps.prolog.force_persp_sample_interp =
976 sel->info.uses_persp_center ||
977 sel->info.uses_persp_centroid;
978
979 key->ps.prolog.force_linear_sample_interp =
980 sel->info.uses_linear_center ||
981 sel->info.uses_linear_centroid;
982 } else if (rs->multisample_enable &&
983 sctx->framebuffer.nr_samples > 1) {
984 key->ps.prolog.bc_optimize_for_persp =
985 sel->info.uses_persp_center &&
986 sel->info.uses_persp_centroid;
987 key->ps.prolog.bc_optimize_for_linear =
988 sel->info.uses_linear_center &&
989 sel->info.uses_linear_centroid;
990 } else {
991 /* Make sure SPI doesn't compute more than 1 pair
992 * of (i,j), which is the optimization here. */
993 key->ps.prolog.force_persp_center_interp =
994 sel->info.uses_persp_center +
995 sel->info.uses_persp_centroid +
996 sel->info.uses_persp_sample > 1;
997
998 key->ps.prolog.force_linear_center_interp =
999 sel->info.uses_linear_center +
1000 sel->info.uses_linear_centroid +
1001 sel->info.uses_linear_sample > 1;
1002 }
1003 }
1004
1005 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1006 break;
1007 }
1008 default:
1009 assert(0);
1010 }
1011 }
1012
1013 /* Select the hw shader variant depending on the current state. */
1014 static int si_shader_select_with_key(struct si_screen *sscreen,
1015 struct si_shader_ctx_state *state,
1016 union si_shader_key *key,
1017 LLVMTargetMachineRef tm,
1018 struct pipe_debug_callback *debug,
1019 bool wait,
1020 bool is_debug_context)
1021 {
1022 struct si_shader_selector *sel = state->cso;
1023 struct si_shader *current = state->current;
1024 struct si_shader *iter, *shader = NULL;
1025 int r;
1026
1027 /* Check if we don't need to change anything.
1028 * This path is also used for most shaders that don't need multiple
1029 * variants, it will cost just a computation of the key and this
1030 * test. */
1031 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
1032 return 0;
1033
1034 /* This must be done before the mutex is locked, because async GS
1035 * compilation calls this function too, and therefore must enter
1036 * the mutex first.
1037 */
1038 if (wait)
1039 util_queue_job_wait(&sel->ready);
1040
1041 pipe_mutex_lock(sel->mutex);
1042
1043 /* Find the shader variant. */
1044 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1045 /* Don't check the "current" shader. We checked it above. */
1046 if (current != iter &&
1047 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1048 state->current = iter;
1049 pipe_mutex_unlock(sel->mutex);
1050 return 0;
1051 }
1052 }
1053
1054 /* Build a new shader. */
1055 shader = CALLOC_STRUCT(si_shader);
1056 if (!shader) {
1057 pipe_mutex_unlock(sel->mutex);
1058 return -ENOMEM;
1059 }
1060 shader->selector = sel;
1061 shader->key = *key;
1062
1063 r = si_shader_create(sscreen, tm, shader, debug);
1064 if (unlikely(r)) {
1065 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1066 sel->type, r);
1067 FREE(shader);
1068 pipe_mutex_unlock(sel->mutex);
1069 return r;
1070 }
1071
1072 if (is_debug_context) {
1073 FILE *f = open_memstream(&shader->shader_log,
1074 &shader->shader_log_size);
1075 if (f) {
1076 si_shader_dump(sscreen, shader, NULL, sel->type, f);
1077 fclose(f);
1078 }
1079 }
1080
1081 si_shader_init_pm4_state(sscreen, shader);
1082
1083 if (!sel->last_variant) {
1084 sel->first_variant = shader;
1085 sel->last_variant = shader;
1086 } else {
1087 sel->last_variant->next_variant = shader;
1088 sel->last_variant = shader;
1089 }
1090 state->current = shader;
1091 pipe_mutex_unlock(sel->mutex);
1092 return 0;
1093 }
1094
1095 static int si_shader_select(struct pipe_context *ctx,
1096 struct si_shader_ctx_state *state)
1097 {
1098 struct si_context *sctx = (struct si_context *)ctx;
1099 union si_shader_key key;
1100
1101 si_shader_selector_key(ctx, state->cso, &key);
1102 return si_shader_select_with_key(sctx->screen, state, &key,
1103 sctx->tm, &sctx->b.debug, true,
1104 sctx->is_debug);
1105 }
1106
1107 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1108 union si_shader_key *key)
1109 {
1110 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1111
1112 switch (info->processor) {
1113 case PIPE_SHADER_VERTEX:
1114 switch (next_shader) {
1115 case PIPE_SHADER_GEOMETRY:
1116 key->vs.as_es = 1;
1117 break;
1118 case PIPE_SHADER_TESS_CTRL:
1119 case PIPE_SHADER_TESS_EVAL:
1120 key->vs.as_ls = 1;
1121 break;
1122 }
1123 break;
1124
1125 case PIPE_SHADER_TESS_EVAL:
1126 if (next_shader == PIPE_SHADER_GEOMETRY)
1127 key->tes.as_es = 1;
1128 break;
1129 }
1130 }
1131
1132 /**
1133 * Compile the main shader part or the monolithic shader as part of
1134 * si_shader_selector initialization. Since it can be done asynchronously,
1135 * there is no way to report compile failures to applications.
1136 */
1137 void si_init_shader_selector_async(void *job, int thread_index)
1138 {
1139 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1140 struct si_screen *sscreen = sel->screen;
1141 LLVMTargetMachineRef tm;
1142 struct pipe_debug_callback *debug = &sel->debug;
1143 unsigned i;
1144
1145 if (thread_index >= 0) {
1146 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1147 tm = sscreen->tm[thread_index];
1148 if (!debug->async)
1149 debug = NULL;
1150 } else {
1151 tm = sel->tm;
1152 }
1153
1154 /* Compile the main shader part for use with a prolog and/or epilog.
1155 * If this fails, the driver will try to compile a monolithic shader
1156 * on demand.
1157 */
1158 if (sel->type != PIPE_SHADER_GEOMETRY &&
1159 !sscreen->use_monolithic_shaders) {
1160 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1161 void *tgsi_binary;
1162
1163 if (!shader) {
1164 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1165 return;
1166 }
1167
1168 shader->selector = sel;
1169 si_parse_next_shader_property(&sel->info, &shader->key);
1170
1171 tgsi_binary = si_get_tgsi_binary(sel);
1172
1173 /* Try to load the shader from the shader cache. */
1174 pipe_mutex_lock(sscreen->shader_cache_mutex);
1175
1176 if (tgsi_binary &&
1177 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1178 FREE(tgsi_binary);
1179 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1180 } else {
1181 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1182
1183 /* Compile the shader if it hasn't been loaded from the cache. */
1184 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1185 debug) != 0) {
1186 FREE(shader);
1187 FREE(tgsi_binary);
1188 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1189 return;
1190 }
1191
1192 if (tgsi_binary) {
1193 pipe_mutex_lock(sscreen->shader_cache_mutex);
1194 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1195 FREE(tgsi_binary);
1196 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1197 }
1198 }
1199
1200 sel->main_shader_part = shader;
1201 }
1202
1203 /* Pre-compilation. */
1204 if (sel->type == PIPE_SHADER_GEOMETRY ||
1205 sscreen->b.debug_flags & DBG_PRECOMPILE) {
1206 struct si_shader_ctx_state state = {sel};
1207 union si_shader_key key;
1208
1209 memset(&key, 0, sizeof(key));
1210 si_parse_next_shader_property(&sel->info, &key);
1211
1212 /* Set reasonable defaults, so that the shader key doesn't
1213 * cause any code to be eliminated.
1214 */
1215 switch (sel->type) {
1216 case PIPE_SHADER_TESS_CTRL:
1217 key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1218 break;
1219 case PIPE_SHADER_FRAGMENT:
1220 key.ps.prolog.bc_optimize_for_persp =
1221 sel->info.uses_persp_center &&
1222 sel->info.uses_persp_centroid;
1223 key.ps.prolog.bc_optimize_for_linear =
1224 sel->info.uses_linear_center &&
1225 sel->info.uses_linear_centroid;
1226 key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1227 for (i = 0; i < 8; i++)
1228 if (sel->info.colors_written & (1 << i))
1229 key.ps.epilog.spi_shader_col_format |=
1230 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1231 break;
1232 }
1233
1234 if (si_shader_select_with_key(sscreen, &state, &key, tm, debug,
1235 false, sel->is_debug_context))
1236 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1237 }
1238
1239 /* The GS copy shader is always pre-compiled. */
1240 if (sel->type == PIPE_SHADER_GEOMETRY) {
1241 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1242 if (!sel->gs_copy_shader) {
1243 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1244 return;
1245 }
1246
1247 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1248 }
1249 }
1250
1251 static void *si_create_shader_selector(struct pipe_context *ctx,
1252 const struct pipe_shader_state *state)
1253 {
1254 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1255 struct si_context *sctx = (struct si_context*)ctx;
1256 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1257 int i;
1258
1259 if (!sel)
1260 return NULL;
1261
1262 sel->screen = sscreen;
1263 sel->tm = sctx->tm;
1264 sel->debug = sctx->b.debug;
1265 sel->is_debug_context = sctx->is_debug;
1266 sel->tokens = tgsi_dup_tokens(state->tokens);
1267 if (!sel->tokens) {
1268 FREE(sel);
1269 return NULL;
1270 }
1271
1272 sel->so = state->stream_output;
1273 tgsi_scan_shader(state->tokens, &sel->info);
1274 sel->type = sel->info.processor;
1275 p_atomic_inc(&sscreen->b.num_shaders_created);
1276
1277 /* Set which opcode uses which (i,j) pair. */
1278 if (sel->info.uses_persp_opcode_interp_centroid)
1279 sel->info.uses_persp_centroid = true;
1280
1281 if (sel->info.uses_linear_opcode_interp_centroid)
1282 sel->info.uses_linear_centroid = true;
1283
1284 if (sel->info.uses_persp_opcode_interp_offset ||
1285 sel->info.uses_persp_opcode_interp_sample)
1286 sel->info.uses_persp_center = true;
1287
1288 if (sel->info.uses_linear_opcode_interp_offset ||
1289 sel->info.uses_linear_opcode_interp_sample)
1290 sel->info.uses_linear_center = true;
1291
1292 switch (sel->type) {
1293 case PIPE_SHADER_GEOMETRY:
1294 sel->gs_output_prim =
1295 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1296 sel->gs_max_out_vertices =
1297 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1298 sel->gs_num_invocations =
1299 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1300 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1301 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1302 sel->gs_max_out_vertices;
1303
1304 sel->max_gs_stream = 0;
1305 for (i = 0; i < sel->so.num_outputs; i++)
1306 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1307 sel->so.output[i].stream);
1308
1309 sel->gs_input_verts_per_prim =
1310 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1311 break;
1312
1313 case PIPE_SHADER_TESS_CTRL:
1314 /* Always reserve space for these. */
1315 sel->patch_outputs_written |=
1316 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1317 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1318 /* fall through */
1319 case PIPE_SHADER_VERTEX:
1320 case PIPE_SHADER_TESS_EVAL:
1321 for (i = 0; i < sel->info.num_outputs; i++) {
1322 unsigned name = sel->info.output_semantic_name[i];
1323 unsigned index = sel->info.output_semantic_index[i];
1324
1325 switch (name) {
1326 case TGSI_SEMANTIC_TESSINNER:
1327 case TGSI_SEMANTIC_TESSOUTER:
1328 case TGSI_SEMANTIC_PATCH:
1329 sel->patch_outputs_written |=
1330 1llu << si_shader_io_get_unique_index(name, index);
1331 break;
1332 default:
1333 sel->outputs_written |=
1334 1llu << si_shader_io_get_unique_index(name, index);
1335 }
1336 }
1337 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1338 break;
1339
1340 case PIPE_SHADER_FRAGMENT:
1341 for (i = 0; i < 8; i++)
1342 if (sel->info.colors_written & (1 << i))
1343 sel->colors_written_4bit |= 0xf << (4 * i);
1344
1345 for (i = 0; i < sel->info.num_inputs; i++) {
1346 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1347 int index = sel->info.input_semantic_index[i];
1348 sel->color_attr_index[index] = i;
1349 }
1350 }
1351 break;
1352 }
1353
1354 /* DB_SHADER_CONTROL */
1355 sel->db_shader_control =
1356 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1357 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1358 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1359 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1360
1361 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1362 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1363 sel->db_shader_control |=
1364 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1365 break;
1366 case TGSI_FS_DEPTH_LAYOUT_LESS:
1367 sel->db_shader_control |=
1368 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1369 break;
1370 }
1371
1372 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
1373 *
1374 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
1375 * --|-----------|------------|------------|--------------------|-------------------|-------------
1376 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
1377 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
1378 * 2 | false | true | n/a | LateZ | 1 | 0
1379 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
1380 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
1381 *
1382 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
1383 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
1384 *
1385 * Don't use ReZ without profiling !!!
1386 *
1387 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
1388 * shaders.
1389 */
1390 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
1391 /* Cases 3, 4. */
1392 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
1393 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
1394 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
1395 } else if (sel->info.writes_memory) {
1396 /* Case 2. */
1397 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
1398 S_02880C_EXEC_ON_HIER_FAIL(1);
1399 } else {
1400 /* Case 1. */
1401 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
1402 }
1403
1404 pipe_mutex_init(sel->mutex);
1405 util_queue_fence_init(&sel->ready);
1406
1407 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
1408 sctx->is_debug ||
1409 r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
1410 !util_queue_is_initialized(&sscreen->shader_compiler_queue))
1411 si_init_shader_selector_async(sel, -1);
1412 else
1413 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
1414 &sel->ready, si_init_shader_selector_async,
1415 NULL);
1416
1417 return sel;
1418 }
1419
1420 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1421 {
1422 struct si_context *sctx = (struct si_context *)ctx;
1423 struct si_shader_selector *sel = state;
1424
1425 if (sctx->vs_shader.cso == sel)
1426 return;
1427
1428 sctx->vs_shader.cso = sel;
1429 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1430 sctx->do_update_shaders = true;
1431 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1432 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1433 }
1434
1435 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1436 {
1437 struct si_context *sctx = (struct si_context *)ctx;
1438 struct si_shader_selector *sel = state;
1439 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1440
1441 if (sctx->gs_shader.cso == sel)
1442 return;
1443
1444 sctx->gs_shader.cso = sel;
1445 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1446 sctx->do_update_shaders = true;
1447 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1448 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1449
1450 if (enable_changed)
1451 si_shader_change_notify(sctx);
1452 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1453 }
1454
1455 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1456 {
1457 struct si_context *sctx = (struct si_context *)ctx;
1458 struct si_shader_selector *sel = state;
1459 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1460
1461 if (sctx->tcs_shader.cso == sel)
1462 return;
1463
1464 sctx->tcs_shader.cso = sel;
1465 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1466 sctx->do_update_shaders = true;
1467
1468 if (enable_changed)
1469 sctx->last_tcs = NULL; /* invalidate derived tess state */
1470 }
1471
1472 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1473 {
1474 struct si_context *sctx = (struct si_context *)ctx;
1475 struct si_shader_selector *sel = state;
1476 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1477
1478 if (sctx->tes_shader.cso == sel)
1479 return;
1480
1481 sctx->tes_shader.cso = sel;
1482 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1483 sctx->do_update_shaders = true;
1484 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1485 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1486
1487 if (enable_changed) {
1488 si_shader_change_notify(sctx);
1489 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1490 }
1491 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1492 }
1493
1494 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1495 {
1496 struct si_context *sctx = (struct si_context *)ctx;
1497 struct si_shader_selector *sel = state;
1498
1499 /* skip if supplied shader is one already in use */
1500 if (sctx->ps_shader.cso == sel)
1501 return;
1502
1503 sctx->ps_shader.cso = sel;
1504 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1505 sctx->do_update_shaders = true;
1506 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1507 }
1508
1509 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1510 {
1511 if (shader->pm4) {
1512 switch (shader->selector->type) {
1513 case PIPE_SHADER_VERTEX:
1514 if (shader->key.vs.as_ls)
1515 si_pm4_delete_state(sctx, ls, shader->pm4);
1516 else if (shader->key.vs.as_es)
1517 si_pm4_delete_state(sctx, es, shader->pm4);
1518 else
1519 si_pm4_delete_state(sctx, vs, shader->pm4);
1520 break;
1521 case PIPE_SHADER_TESS_CTRL:
1522 si_pm4_delete_state(sctx, hs, shader->pm4);
1523 break;
1524 case PIPE_SHADER_TESS_EVAL:
1525 if (shader->key.tes.as_es)
1526 si_pm4_delete_state(sctx, es, shader->pm4);
1527 else
1528 si_pm4_delete_state(sctx, vs, shader->pm4);
1529 break;
1530 case PIPE_SHADER_GEOMETRY:
1531 if (shader->is_gs_copy_shader)
1532 si_pm4_delete_state(sctx, vs, shader->pm4);
1533 else
1534 si_pm4_delete_state(sctx, gs, shader->pm4);
1535 break;
1536 case PIPE_SHADER_FRAGMENT:
1537 si_pm4_delete_state(sctx, ps, shader->pm4);
1538 break;
1539 }
1540 }
1541
1542 si_shader_destroy(shader);
1543 free(shader);
1544 }
1545
1546 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1547 {
1548 struct si_context *sctx = (struct si_context *)ctx;
1549 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1550 struct si_shader *p = sel->first_variant, *c;
1551 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1552 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1553 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1554 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1555 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1556 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1557 };
1558
1559 util_queue_job_wait(&sel->ready);
1560
1561 if (current_shader[sel->type]->cso == sel) {
1562 current_shader[sel->type]->cso = NULL;
1563 current_shader[sel->type]->current = NULL;
1564 }
1565
1566 while (p) {
1567 c = p->next_variant;
1568 si_delete_shader(sctx, p);
1569 p = c;
1570 }
1571
1572 if (sel->main_shader_part)
1573 si_delete_shader(sctx, sel->main_shader_part);
1574 if (sel->gs_copy_shader)
1575 si_delete_shader(sctx, sel->gs_copy_shader);
1576
1577 util_queue_fence_destroy(&sel->ready);
1578 pipe_mutex_destroy(sel->mutex);
1579 free(sel->tokens);
1580 free(sel);
1581 }
1582
1583 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1584 struct si_shader *vs, unsigned name,
1585 unsigned index, unsigned interpolate)
1586 {
1587 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1588 unsigned j, offset, ps_input_cntl = 0;
1589
1590 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1591 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1592 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1593
1594 if (name == TGSI_SEMANTIC_PCOORD ||
1595 (name == TGSI_SEMANTIC_TEXCOORD &&
1596 sctx->sprite_coord_enable & (1 << index))) {
1597 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1598 }
1599
1600 for (j = 0; j < vsinfo->num_outputs; j++) {
1601 if (name == vsinfo->output_semantic_name[j] &&
1602 index == vsinfo->output_semantic_index[j]) {
1603 offset = vs->info.vs_output_param_offset[j];
1604
1605 if (offset <= EXP_PARAM_OFFSET_31) {
1606 /* The input is loaded from parameter memory. */
1607 ps_input_cntl |= S_028644_OFFSET(offset);
1608 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1609 /* The input is a DEFAULT_VAL constant. */
1610 assert(offset >= EXP_PARAM_DEFAULT_VAL_0000 &&
1611 offset <= EXP_PARAM_DEFAULT_VAL_1111);
1612
1613 offset -= EXP_PARAM_DEFAULT_VAL_0000;
1614 ps_input_cntl = S_028644_OFFSET(0x20) |
1615 S_028644_DEFAULT_VAL(offset);
1616 }
1617 break;
1618 }
1619 }
1620
1621 if (name == TGSI_SEMANTIC_PRIMID)
1622 /* PrimID is written after the last output. */
1623 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1624 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1625 /* No corresponding output found, load defaults into input.
1626 * Don't set any other bits.
1627 * (FLAT_SHADE=1 completely changes behavior) */
1628 ps_input_cntl = S_028644_OFFSET(0x20);
1629 /* D3D 9 behaviour. GL is undefined */
1630 if (name == TGSI_SEMANTIC_COLOR && index == 0)
1631 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1632 }
1633 return ps_input_cntl;
1634 }
1635
1636 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1637 {
1638 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1639 struct si_shader *ps = sctx->ps_shader.current;
1640 struct si_shader *vs = si_get_vs_state(sctx);
1641 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1642 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1643
1644 if (!ps || !ps->selector->info.num_inputs)
1645 return;
1646
1647 num_interp = si_get_ps_num_interp(ps);
1648 assert(num_interp > 0);
1649 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1650
1651 for (i = 0; i < psinfo->num_inputs; i++) {
1652 unsigned name = psinfo->input_semantic_name[i];
1653 unsigned index = psinfo->input_semantic_index[i];
1654 unsigned interpolate = psinfo->input_interpolate[i];
1655
1656 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1657 interpolate));
1658 num_written++;
1659
1660 if (name == TGSI_SEMANTIC_COLOR) {
1661 assert(index < ARRAY_SIZE(bcol_interp));
1662 bcol_interp[index] = interpolate;
1663 }
1664 }
1665
1666 if (ps->key.ps.prolog.color_two_side) {
1667 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1668
1669 for (i = 0; i < 2; i++) {
1670 if (!(psinfo->colors_read & (0xf << (i * 4))))
1671 continue;
1672
1673 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1674 i, bcol_interp[i]));
1675 num_written++;
1676 }
1677 }
1678 assert(num_interp == num_written);
1679 }
1680
1681 /**
1682 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1683 */
1684 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1685 {
1686 if (sctx->init_config_has_vgt_flush)
1687 return;
1688
1689 /* Done by Vulkan before VGT_FLUSH. */
1690 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1691 si_pm4_cmd_add(sctx->init_config,
1692 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1693 si_pm4_cmd_end(sctx->init_config, false);
1694
1695 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1696 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1697 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1698 si_pm4_cmd_end(sctx->init_config, false);
1699 sctx->init_config_has_vgt_flush = true;
1700 }
1701
1702 /* Initialize state related to ESGS / GSVS ring buffers */
1703 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1704 {
1705 struct si_shader_selector *es =
1706 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1707 struct si_shader_selector *gs = sctx->gs_shader.cso;
1708 struct si_pm4_state *pm4;
1709
1710 /* Chip constants. */
1711 unsigned num_se = sctx->screen->b.info.max_se;
1712 unsigned wave_size = 64;
1713 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1714 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1715 unsigned alignment = 256 * num_se;
1716 /* The maximum size is 63.999 MB per SE. */
1717 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1718
1719 /* Calculate the minimum size. */
1720 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1721 wave_size, alignment);
1722
1723 /* These are recommended sizes, not minimum sizes. */
1724 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1725 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1726 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1727 gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1728
1729 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1730 esgs_ring_size = align(esgs_ring_size, alignment);
1731 gsvs_ring_size = align(gsvs_ring_size, alignment);
1732
1733 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1734 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1735
1736 /* Some rings don't have to be allocated if shaders don't use them.
1737 * (e.g. no varyings between ES and GS or GS and VS)
1738 */
1739 bool update_esgs = esgs_ring_size &&
1740 (!sctx->esgs_ring ||
1741 sctx->esgs_ring->width0 < esgs_ring_size);
1742 bool update_gsvs = gsvs_ring_size &&
1743 (!sctx->gsvs_ring ||
1744 sctx->gsvs_ring->width0 < gsvs_ring_size);
1745
1746 if (!update_esgs && !update_gsvs)
1747 return true;
1748
1749 if (update_esgs) {
1750 pipe_resource_reference(&sctx->esgs_ring, NULL);
1751 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
1752 PIPE_USAGE_DEFAULT,
1753 esgs_ring_size);
1754 if (!sctx->esgs_ring)
1755 return false;
1756 }
1757
1758 if (update_gsvs) {
1759 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1760 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
1761 PIPE_USAGE_DEFAULT,
1762 gsvs_ring_size);
1763 if (!sctx->gsvs_ring)
1764 return false;
1765 }
1766
1767 /* Create the "init_config_gs_rings" state. */
1768 pm4 = CALLOC_STRUCT(si_pm4_state);
1769 if (!pm4)
1770 return false;
1771
1772 if (sctx->b.chip_class >= CIK) {
1773 if (sctx->esgs_ring)
1774 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1775 sctx->esgs_ring->width0 / 256);
1776 if (sctx->gsvs_ring)
1777 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1778 sctx->gsvs_ring->width0 / 256);
1779 } else {
1780 if (sctx->esgs_ring)
1781 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1782 sctx->esgs_ring->width0 / 256);
1783 if (sctx->gsvs_ring)
1784 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1785 sctx->gsvs_ring->width0 / 256);
1786 }
1787
1788 /* Set the state. */
1789 if (sctx->init_config_gs_rings)
1790 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1791 sctx->init_config_gs_rings = pm4;
1792
1793 if (!sctx->init_config_has_vgt_flush) {
1794 si_init_config_add_vgt_flush(sctx);
1795 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1796 }
1797
1798 /* Flush the context to re-emit both init_config states. */
1799 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1800 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1801
1802 /* Set ring bindings. */
1803 if (sctx->esgs_ring) {
1804 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
1805 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1806 true, true, 4, 64, 0);
1807 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
1808 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1809 false, false, 0, 0, 0);
1810 }
1811 if (sctx->gsvs_ring)
1812 si_set_ring_buffer(&sctx->b.b, SI_VS_RING_GSVS,
1813 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1814 false, false, 0, 0, 0);
1815 return true;
1816 }
1817
1818 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1819 {
1820 unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1821 uint64_t offset;
1822
1823 if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1824 return;
1825
1826 sctx->last_gsvs_itemsize = gsvs_itemsize;
1827
1828 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS0,
1829 sctx->gsvs_ring, gsvs_itemsize,
1830 64, true, true, 4, 16, 0);
1831
1832 offset = gsvs_itemsize * 64;
1833 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS1,
1834 sctx->gsvs_ring, gsvs_itemsize,
1835 64, true, true, 4, 16, offset);
1836
1837 offset = (gsvs_itemsize * 2) * 64;
1838 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS2,
1839 sctx->gsvs_ring, gsvs_itemsize,
1840 64, true, true, 4, 16, offset);
1841
1842 offset = (gsvs_itemsize * 3) * 64;
1843 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS3,
1844 sctx->gsvs_ring, gsvs_itemsize,
1845 64, true, true, 4, 16, offset);
1846 }
1847
1848 /**
1849 * @returns 1 if \p sel has been updated to use a new scratch buffer
1850 * 0 if not
1851 * < 0 if there was a failure
1852 */
1853 static int si_update_scratch_buffer(struct si_context *sctx,
1854 struct si_shader *shader)
1855 {
1856 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1857 int r;
1858
1859 if (!shader)
1860 return 0;
1861
1862 /* This shader doesn't need a scratch buffer */
1863 if (shader->config.scratch_bytes_per_wave == 0)
1864 return 0;
1865
1866 /* This shader is already configured to use the current
1867 * scratch buffer. */
1868 if (shader->scratch_bo == sctx->scratch_buffer)
1869 return 0;
1870
1871 assert(sctx->scratch_buffer);
1872
1873 si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
1874
1875 /* Replace the shader bo with a new bo that has the relocs applied. */
1876 r = si_shader_binary_upload(sctx->screen, shader);
1877 if (r)
1878 return r;
1879
1880 /* Update the shader state to use the new shader bo. */
1881 si_shader_init_pm4_state(sctx->screen, shader);
1882
1883 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1884
1885 return 1;
1886 }
1887
1888 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1889 {
1890 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1891 }
1892
1893 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1894 {
1895 return shader ? shader->config.scratch_bytes_per_wave : 0;
1896 }
1897
1898 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1899 {
1900 unsigned bytes = 0;
1901
1902 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1903 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1904 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1905 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1906 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1907 return bytes;
1908 }
1909
1910 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1911 {
1912 unsigned current_scratch_buffer_size =
1913 si_get_current_scratch_buffer_size(sctx);
1914 unsigned scratch_bytes_per_wave =
1915 si_get_max_scratch_bytes_per_wave(sctx);
1916 unsigned scratch_needed_size = scratch_bytes_per_wave *
1917 sctx->scratch_waves;
1918 unsigned spi_tmpring_size;
1919 int r;
1920
1921 if (scratch_needed_size > 0) {
1922 if (scratch_needed_size > current_scratch_buffer_size) {
1923 /* Create a bigger scratch buffer */
1924 r600_resource_reference(&sctx->scratch_buffer, NULL);
1925
1926 sctx->scratch_buffer = (struct r600_resource*)
1927 pipe_buffer_create(&sctx->screen->b.b, 0,
1928 PIPE_USAGE_DEFAULT, scratch_needed_size);
1929 if (!sctx->scratch_buffer)
1930 return false;
1931 sctx->emit_scratch_reloc = true;
1932 }
1933
1934 /* Update the shaders, so they are using the latest scratch. The
1935 * scratch buffer may have been changed since these shaders were
1936 * last used, so we still need to try to update them, even if
1937 * they require scratch buffers smaller than the current size.
1938 */
1939 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1940 if (r < 0)
1941 return false;
1942 if (r == 1)
1943 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1944
1945 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1946 if (r < 0)
1947 return false;
1948 if (r == 1)
1949 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1950
1951 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1952 if (r < 0)
1953 return false;
1954 if (r == 1)
1955 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1956
1957 /* VS can be bound as LS, ES, or VS. */
1958 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1959 if (r < 0)
1960 return false;
1961 if (r == 1) {
1962 if (sctx->tes_shader.current)
1963 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1964 else if (sctx->gs_shader.current)
1965 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1966 else
1967 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1968 }
1969
1970 /* TES can be bound as ES or VS. */
1971 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1972 if (r < 0)
1973 return false;
1974 if (r == 1) {
1975 if (sctx->gs_shader.current)
1976 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1977 else
1978 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1979 }
1980 }
1981
1982 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1983 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1984 "scratch size should already be aligned correctly.");
1985
1986 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1987 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1988 if (spi_tmpring_size != sctx->spi_tmpring_size) {
1989 sctx->spi_tmpring_size = spi_tmpring_size;
1990 sctx->emit_scratch_reloc = true;
1991 }
1992 return true;
1993 }
1994
1995 static void si_init_tess_factor_ring(struct si_context *sctx)
1996 {
1997 bool double_offchip_buffers = sctx->b.chip_class >= CIK;
1998 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
1999 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
2000 sctx->screen->b.info.max_se;
2001 unsigned offchip_granularity;
2002
2003 switch (sctx->screen->tess_offchip_block_dw_size) {
2004 default:
2005 assert(0);
2006 /* fall through */
2007 case 8192:
2008 offchip_granularity = V_03093C_X_8K_DWORDS;
2009 break;
2010 case 4096:
2011 offchip_granularity = V_03093C_X_4K_DWORDS;
2012 break;
2013 }
2014
2015 switch (sctx->b.chip_class) {
2016 case SI:
2017 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2018 break;
2019 case CIK:
2020 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2021 break;
2022 case VI:
2023 default:
2024 max_offchip_buffers = MIN2(max_offchip_buffers, 512);
2025 break;
2026 }
2027
2028 assert(!sctx->tf_ring);
2029 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2030 PIPE_USAGE_DEFAULT,
2031 32768 * sctx->screen->b.info.max_se);
2032 if (!sctx->tf_ring)
2033 return;
2034
2035 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2036
2037 sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2038 PIPE_USAGE_DEFAULT,
2039 max_offchip_buffers *
2040 sctx->screen->tess_offchip_block_dw_size * 4);
2041 if (!sctx->tess_offchip_ring)
2042 return;
2043
2044 si_init_config_add_vgt_flush(sctx);
2045
2046 /* Append these registers to the init config state. */
2047 if (sctx->b.chip_class >= CIK) {
2048 if (sctx->b.chip_class >= VI)
2049 --max_offchip_buffers;
2050
2051 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2052 S_030938_SIZE(sctx->tf_ring->width0 / 4));
2053 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2054 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2055 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2056 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2057 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2058 } else {
2059 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2060 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2061 S_008988_SIZE(sctx->tf_ring->width0 / 4));
2062 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2063 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2064 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2065 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2066 }
2067
2068 /* Flush the context to re-emit the init_config state.
2069 * This is done only once in a lifetime of a context.
2070 */
2071 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2072 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2073 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2074
2075 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
2076 0, sctx->tf_ring->width0, false, false, 0, 0, 0);
2077
2078 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
2079 sctx->tess_offchip_ring, 0,
2080 sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
2081 }
2082
2083 /**
2084 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2085 * VS passes its outputs to TES directly, so the fixed-function shader only
2086 * has to write TESSOUTER and TESSINNER.
2087 */
2088 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2089 {
2090 struct ureg_src outer, inner;
2091 struct ureg_dst tessouter, tessinner;
2092 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2093
2094 if (!ureg)
2095 return; /* if we get here, we're screwed */
2096
2097 assert(!sctx->fixed_func_tcs_shader.cso);
2098
2099 outer = ureg_DECL_system_value(ureg,
2100 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2101 inner = ureg_DECL_system_value(ureg,
2102 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2103
2104 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2105 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2106
2107 ureg_MOV(ureg, tessouter, outer);
2108 ureg_MOV(ureg, tessinner, inner);
2109 ureg_END(ureg);
2110
2111 sctx->fixed_func_tcs_shader.cso =
2112 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2113 }
2114
2115 static void si_update_vgt_shader_config(struct si_context *sctx)
2116 {
2117 /* Calculate the index of the config.
2118 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2119 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2120 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2121
2122 if (!*pm4) {
2123 uint32_t stages = 0;
2124
2125 *pm4 = CALLOC_STRUCT(si_pm4_state);
2126
2127 if (sctx->tes_shader.cso) {
2128 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2129 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2130
2131 if (sctx->gs_shader.cso)
2132 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2133 S_028B54_GS_EN(1) |
2134 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2135 else
2136 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2137 } else if (sctx->gs_shader.cso) {
2138 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2139 S_028B54_GS_EN(1) |
2140 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2141 }
2142
2143 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2144 }
2145 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2146 }
2147
2148 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2149 {
2150 struct pipe_stream_output_info *so = &shader->so;
2151 uint32_t enabled_stream_buffers_mask = 0;
2152 int i;
2153
2154 for (i = 0; i < so->num_outputs; i++)
2155 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2156 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2157 sctx->b.streamout.stride_in_dw = shader->so.stride;
2158 }
2159
2160 bool si_update_shaders(struct si_context *sctx)
2161 {
2162 struct pipe_context *ctx = (struct pipe_context*)sctx;
2163 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2164 int r;
2165
2166 /* Update stages before GS. */
2167 if (sctx->tes_shader.cso) {
2168 if (!sctx->tf_ring) {
2169 si_init_tess_factor_ring(sctx);
2170 if (!sctx->tf_ring)
2171 return false;
2172 }
2173
2174 /* VS as LS */
2175 r = si_shader_select(ctx, &sctx->vs_shader);
2176 if (r)
2177 return false;
2178 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2179
2180 if (sctx->tcs_shader.cso) {
2181 r = si_shader_select(ctx, &sctx->tcs_shader);
2182 if (r)
2183 return false;
2184 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2185 } else {
2186 if (!sctx->fixed_func_tcs_shader.cso) {
2187 si_generate_fixed_func_tcs(sctx);
2188 if (!sctx->fixed_func_tcs_shader.cso)
2189 return false;
2190 }
2191
2192 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
2193 if (r)
2194 return false;
2195 si_pm4_bind_state(sctx, hs,
2196 sctx->fixed_func_tcs_shader.current->pm4);
2197 }
2198
2199 r = si_shader_select(ctx, &sctx->tes_shader);
2200 if (r)
2201 return false;
2202
2203 if (sctx->gs_shader.cso) {
2204 /* TES as ES */
2205 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2206 } else {
2207 /* TES as VS */
2208 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2209 si_update_so(sctx, sctx->tes_shader.cso);
2210 }
2211 } else if (sctx->gs_shader.cso) {
2212 /* VS as ES */
2213 r = si_shader_select(ctx, &sctx->vs_shader);
2214 if (r)
2215 return false;
2216 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2217 } else {
2218 /* VS as VS */
2219 r = si_shader_select(ctx, &sctx->vs_shader);
2220 if (r)
2221 return false;
2222 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2223 si_update_so(sctx, sctx->vs_shader.cso);
2224 }
2225
2226 /* Update GS. */
2227 if (sctx->gs_shader.cso) {
2228 r = si_shader_select(ctx, &sctx->gs_shader);
2229 if (r)
2230 return false;
2231 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2232 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
2233 si_update_so(sctx, sctx->gs_shader.cso);
2234
2235 if (!si_update_gs_ring_buffers(sctx))
2236 return false;
2237
2238 si_update_gsvs_ring_bindings(sctx);
2239 } else {
2240 si_pm4_bind_state(sctx, gs, NULL);
2241 si_pm4_bind_state(sctx, es, NULL);
2242 }
2243
2244 si_update_vgt_shader_config(sctx);
2245
2246 if (sctx->ps_shader.cso) {
2247 unsigned db_shader_control;
2248
2249 r = si_shader_select(ctx, &sctx->ps_shader);
2250 if (r)
2251 return false;
2252 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2253
2254 db_shader_control =
2255 sctx->ps_shader.cso->db_shader_control |
2256 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
2257
2258 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2259 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2260 sctx->flatshade != rs->flatshade) {
2261 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2262 sctx->flatshade = rs->flatshade;
2263 si_mark_atom_dirty(sctx, &sctx->spi_map);
2264 }
2265
2266 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2267 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2268
2269 if (sctx->ps_db_shader_control != db_shader_control) {
2270 sctx->ps_db_shader_control = db_shader_control;
2271 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2272 }
2273
2274 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
2275 sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
2276 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2277
2278 if (sctx->b.chip_class == SI)
2279 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2280
2281 if (sctx->framebuffer.nr_samples <= 1)
2282 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
2283 }
2284 }
2285
2286 if (si_pm4_state_changed(sctx, ls) ||
2287 si_pm4_state_changed(sctx, hs) ||
2288 si_pm4_state_changed(sctx, es) ||
2289 si_pm4_state_changed(sctx, gs) ||
2290 si_pm4_state_changed(sctx, vs) ||
2291 si_pm4_state_changed(sctx, ps)) {
2292 if (!si_update_spi_tmpring_size(sctx))
2293 return false;
2294 }
2295
2296 sctx->do_update_shaders = false;
2297 return true;
2298 }
2299
2300 void si_init_shader_functions(struct si_context *sctx)
2301 {
2302 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2303
2304 sctx->b.b.create_vs_state = si_create_shader_selector;
2305 sctx->b.b.create_tcs_state = si_create_shader_selector;
2306 sctx->b.b.create_tes_state = si_create_shader_selector;
2307 sctx->b.b.create_gs_state = si_create_shader_selector;
2308 sctx->b.b.create_fs_state = si_create_shader_selector;
2309
2310 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2311 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2312 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2313 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2314 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2315
2316 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2317 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2318 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2319 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2320 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2321 }