radeonsi: update copyrights
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "sid.h"
27 #include "gfx9d.h"
28 #include "radeon/r600_cs.h"
29
30 #include "compiler/nir/nir_serialize.h"
31 #include "tgsi/tgsi_parse.h"
32 #include "tgsi/tgsi_ureg.h"
33 #include "util/hash_table.h"
34 #include "util/crc32.h"
35 #include "util/u_async_debug.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38
39 #include "util/disk_cache.h"
40 #include "util/mesa-sha1.h"
41 #include "ac_exp_param.h"
42 #include "ac_shader_util.h"
43
44 /* SHADER_CACHE */
45
46 /**
47 * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
48 * size as integer.
49 */
50 static void *si_get_ir_binary(struct si_shader_selector *sel)
51 {
52 struct blob blob;
53 unsigned ir_size;
54 void *ir_binary;
55
56 if (sel->tokens) {
57 ir_binary = sel->tokens;
58 ir_size = tgsi_num_tokens(sel->tokens) *
59 sizeof(struct tgsi_token);
60 } else {
61 assert(sel->nir);
62
63 blob_init(&blob);
64 nir_serialize(&blob, sel->nir);
65 ir_binary = blob.data;
66 ir_size = blob.size;
67 }
68
69 unsigned size = 4 + ir_size + sizeof(sel->so);
70 char *result = (char*)MALLOC(size);
71 if (!result)
72 return NULL;
73
74 *((uint32_t*)result) = size;
75 memcpy(result + 4, ir_binary, ir_size);
76 memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
77
78 if (sel->nir)
79 blob_finish(&blob);
80
81 return result;
82 }
83
84 /** Copy "data" to "ptr" and return the next dword following copied data. */
85 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
86 {
87 /* data may be NULL if size == 0 */
88 if (size)
89 memcpy(ptr, data, size);
90 ptr += DIV_ROUND_UP(size, 4);
91 return ptr;
92 }
93
94 /** Read data from "ptr". Return the next dword following the data. */
95 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
96 {
97 memcpy(data, ptr, size);
98 ptr += DIV_ROUND_UP(size, 4);
99 return ptr;
100 }
101
102 /**
103 * Write the size as uint followed by the data. Return the next dword
104 * following the copied data.
105 */
106 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
107 {
108 *ptr++ = size;
109 return write_data(ptr, data, size);
110 }
111
112 /**
113 * Read the size as uint followed by the data. Return both via parameters.
114 * Return the next dword following the data.
115 */
116 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
117 {
118 *size = *ptr++;
119 assert(*data == NULL);
120 if (!*size)
121 return ptr;
122 *data = malloc(*size);
123 return read_data(ptr, *data, *size);
124 }
125
126 /**
127 * Return the shader binary in a buffer. The first 4 bytes contain its size
128 * as integer.
129 */
130 static void *si_get_shader_binary(struct si_shader *shader)
131 {
132 /* There is always a size of data followed by the data itself. */
133 unsigned relocs_size = shader->binary.reloc_count *
134 sizeof(shader->binary.relocs[0]);
135 unsigned disasm_size = shader->binary.disasm_string ?
136 strlen(shader->binary.disasm_string) + 1 : 0;
137 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
138 strlen(shader->binary.llvm_ir_string) + 1 : 0;
139 unsigned size =
140 4 + /* total size */
141 4 + /* CRC32 of the data below */
142 align(sizeof(shader->config), 4) +
143 align(sizeof(shader->info), 4) +
144 4 + align(shader->binary.code_size, 4) +
145 4 + align(shader->binary.rodata_size, 4) +
146 4 + align(relocs_size, 4) +
147 4 + align(disasm_size, 4) +
148 4 + align(llvm_ir_size, 4);
149 void *buffer = CALLOC(1, size);
150 uint32_t *ptr = (uint32_t*)buffer;
151
152 if (!buffer)
153 return NULL;
154
155 *ptr++ = size;
156 ptr++; /* CRC32 is calculated at the end. */
157
158 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
159 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
160 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
161 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
162 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
163 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
164 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
165 assert((char *)ptr - (char *)buffer == size);
166
167 /* Compute CRC32. */
168 ptr = (uint32_t*)buffer;
169 ptr++;
170 *ptr = util_hash_crc32(ptr + 1, size - 8);
171
172 return buffer;
173 }
174
175 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
176 {
177 uint32_t *ptr = (uint32_t*)binary;
178 uint32_t size = *ptr++;
179 uint32_t crc32 = *ptr++;
180 unsigned chunk_size;
181
182 if (util_hash_crc32(ptr, size - 8) != crc32) {
183 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
184 return false;
185 }
186
187 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
188 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
189 ptr = read_chunk(ptr, (void**)&shader->binary.code,
190 &shader->binary.code_size);
191 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
192 &shader->binary.rodata_size);
193 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
194 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
195 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
196 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
197
198 return true;
199 }
200
201 /**
202 * Insert a shader into the cache. It's assumed the shader is not in the cache.
203 * Use si_shader_cache_load_shader before calling this.
204 *
205 * Returns false on failure, in which case the ir_binary should be freed.
206 */
207 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
208 void *ir_binary,
209 struct si_shader *shader,
210 bool insert_into_disk_cache)
211 {
212 void *hw_binary;
213 struct hash_entry *entry;
214 uint8_t key[CACHE_KEY_SIZE];
215
216 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
217 if (entry)
218 return false; /* already added */
219
220 hw_binary = si_get_shader_binary(shader);
221 if (!hw_binary)
222 return false;
223
224 if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
225 hw_binary) == NULL) {
226 FREE(hw_binary);
227 return false;
228 }
229
230 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
231 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
232 *((uint32_t *)ir_binary), key);
233 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
234 *((uint32_t *) hw_binary), NULL);
235 }
236
237 return true;
238 }
239
240 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
241 void *ir_binary,
242 struct si_shader *shader)
243 {
244 struct hash_entry *entry =
245 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
246 if (!entry) {
247 if (sscreen->disk_shader_cache) {
248 unsigned char sha1[CACHE_KEY_SIZE];
249 size_t tg_size = *((uint32_t *) ir_binary);
250
251 disk_cache_compute_key(sscreen->disk_shader_cache,
252 ir_binary, tg_size, sha1);
253
254 size_t binary_size;
255 uint8_t *buffer =
256 disk_cache_get(sscreen->disk_shader_cache,
257 sha1, &binary_size);
258 if (!buffer)
259 return false;
260
261 if (binary_size < sizeof(uint32_t) ||
262 *((uint32_t*)buffer) != binary_size) {
263 /* Something has gone wrong discard the item
264 * from the cache and rebuild/link from
265 * source.
266 */
267 assert(!"Invalid radeonsi shader disk cache "
268 "item!");
269
270 disk_cache_remove(sscreen->disk_shader_cache,
271 sha1);
272 free(buffer);
273
274 return false;
275 }
276
277 if (!si_load_shader_binary(shader, buffer)) {
278 free(buffer);
279 return false;
280 }
281 free(buffer);
282
283 if (!si_shader_cache_insert_shader(sscreen, ir_binary,
284 shader, false))
285 FREE(ir_binary);
286 } else {
287 return false;
288 }
289 } else {
290 if (si_load_shader_binary(shader, entry->data))
291 FREE(ir_binary);
292 else
293 return false;
294 }
295 p_atomic_inc(&sscreen->num_shader_cache_hits);
296 return true;
297 }
298
299 static uint32_t si_shader_cache_key_hash(const void *key)
300 {
301 /* The first dword is the key size. */
302 return util_hash_crc32(key, *(uint32_t*)key);
303 }
304
305 static bool si_shader_cache_key_equals(const void *a, const void *b)
306 {
307 uint32_t *keya = (uint32_t*)a;
308 uint32_t *keyb = (uint32_t*)b;
309
310 /* The first dword is the key size. */
311 if (*keya != *keyb)
312 return false;
313
314 return memcmp(keya, keyb, *keya) == 0;
315 }
316
317 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
318 {
319 FREE((void*)entry->key);
320 FREE(entry->data);
321 }
322
323 bool si_init_shader_cache(struct si_screen *sscreen)
324 {
325 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
326 sscreen->shader_cache =
327 _mesa_hash_table_create(NULL,
328 si_shader_cache_key_hash,
329 si_shader_cache_key_equals);
330
331 return sscreen->shader_cache != NULL;
332 }
333
334 void si_destroy_shader_cache(struct si_screen *sscreen)
335 {
336 if (sscreen->shader_cache)
337 _mesa_hash_table_destroy(sscreen->shader_cache,
338 si_destroy_shader_cache_entry);
339 mtx_destroy(&sscreen->shader_cache_mutex);
340 }
341
342 /* SHADER STATES */
343
344 static void si_set_tesseval_regs(struct si_screen *sscreen,
345 struct si_shader_selector *tes,
346 struct si_pm4_state *pm4)
347 {
348 struct tgsi_shader_info *info = &tes->info;
349 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
350 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
351 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
352 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
353 unsigned type, partitioning, topology, distribution_mode;
354
355 switch (tes_prim_mode) {
356 case PIPE_PRIM_LINES:
357 type = V_028B6C_TESS_ISOLINE;
358 break;
359 case PIPE_PRIM_TRIANGLES:
360 type = V_028B6C_TESS_TRIANGLE;
361 break;
362 case PIPE_PRIM_QUADS:
363 type = V_028B6C_TESS_QUAD;
364 break;
365 default:
366 assert(0);
367 return;
368 }
369
370 switch (tes_spacing) {
371 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
372 partitioning = V_028B6C_PART_FRAC_ODD;
373 break;
374 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
375 partitioning = V_028B6C_PART_FRAC_EVEN;
376 break;
377 case PIPE_TESS_SPACING_EQUAL:
378 partitioning = V_028B6C_PART_INTEGER;
379 break;
380 default:
381 assert(0);
382 return;
383 }
384
385 if (tes_point_mode)
386 topology = V_028B6C_OUTPUT_POINT;
387 else if (tes_prim_mode == PIPE_PRIM_LINES)
388 topology = V_028B6C_OUTPUT_LINE;
389 else if (tes_vertex_order_cw)
390 /* for some reason, this must be the other way around */
391 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
392 else
393 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
394
395 if (sscreen->has_distributed_tess) {
396 if (sscreen->info.family == CHIP_FIJI ||
397 sscreen->info.family >= CHIP_POLARIS10)
398 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
399 else
400 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
401 } else
402 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
403
404 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
405 S_028B6C_TYPE(type) |
406 S_028B6C_PARTITIONING(partitioning) |
407 S_028B6C_TOPOLOGY(topology) |
408 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
409 }
410
411 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
412 * whether the "fractional odd" tessellation spacing is used.
413 *
414 * Possible VGT configurations and which state should set the register:
415 *
416 * Reg set in | VGT shader configuration | Value
417 * ------------------------------------------------------
418 * VS as VS | VS | 30
419 * VS as ES | ES -> GS -> VS | 30
420 * TES as VS | LS -> HS -> VS | 14 or 30
421 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
422 *
423 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
424 */
425 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
426 struct si_shader_selector *sel,
427 struct si_shader *shader,
428 struct si_pm4_state *pm4)
429 {
430 unsigned type = sel->type;
431
432 if (sscreen->info.family < CHIP_POLARIS10)
433 return;
434
435 /* VS as VS, or VS as ES: */
436 if ((type == PIPE_SHADER_VERTEX &&
437 (!shader ||
438 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
439 /* TES as VS, or TES as ES: */
440 type == PIPE_SHADER_TESS_EVAL) {
441 unsigned vtx_reuse_depth = 30;
442
443 if (type == PIPE_SHADER_TESS_EVAL &&
444 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
445 PIPE_TESS_SPACING_FRACTIONAL_ODD)
446 vtx_reuse_depth = 14;
447
448 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
449 vtx_reuse_depth);
450 }
451 }
452
453 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
454 {
455 if (shader->pm4)
456 si_pm4_clear_state(shader->pm4);
457 else
458 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
459
460 return shader->pm4;
461 }
462
463 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
464 {
465 /* Add the pointer to VBO descriptors. */
466 if (HAVE_32BIT_POINTERS) {
467 return num_always_on_user_sgprs + 1;
468 } else {
469 assert(num_always_on_user_sgprs % 2 == 0);
470 return num_always_on_user_sgprs + 2;
471 }
472 }
473
474 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
475 {
476 struct si_pm4_state *pm4;
477 unsigned vgpr_comp_cnt;
478 uint64_t va;
479
480 assert(sscreen->info.chip_class <= VI);
481
482 pm4 = si_get_shader_pm4_state(shader);
483 if (!pm4)
484 return;
485
486 va = shader->bo->gpu_address;
487 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
488
489 /* We need at least 2 components for LS.
490 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
491 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
492 */
493 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
494
495 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
496 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
497
498 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
499 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
500 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
501 S_00B528_DX10_CLAMP(1) |
502 S_00B528_FLOAT_MODE(shader->config.float_mode);
503 shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
504 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
505 }
506
507 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
508 {
509 struct si_pm4_state *pm4;
510 uint64_t va;
511 unsigned ls_vgpr_comp_cnt = 0;
512
513 pm4 = si_get_shader_pm4_state(shader);
514 if (!pm4)
515 return;
516
517 va = shader->bo->gpu_address;
518 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
519
520 if (sscreen->info.chip_class >= GFX9) {
521 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
522 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
523
524 /* We need at least 2 components for LS.
525 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
526 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
527 */
528 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
529
530 unsigned num_user_sgprs =
531 si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
532
533 shader->config.rsrc2 =
534 S_00B42C_USER_SGPR(num_user_sgprs) |
535 S_00B42C_USER_SGPR_MSB(num_user_sgprs >> 5) |
536 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
537 } else {
538 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
539 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
540
541 shader->config.rsrc2 =
542 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
543 S_00B42C_OC_LDS_EN(1) |
544 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
545 }
546
547 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
548 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
549 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
550 S_00B428_DX10_CLAMP(1) |
551 S_00B428_FLOAT_MODE(shader->config.float_mode) |
552 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
553
554 if (sscreen->info.chip_class <= VI) {
555 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
556 shader->config.rsrc2);
557 }
558 }
559
560 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
561 {
562 struct si_pm4_state *pm4;
563 unsigned num_user_sgprs;
564 unsigned vgpr_comp_cnt;
565 uint64_t va;
566 unsigned oc_lds_en;
567
568 assert(sscreen->info.chip_class <= VI);
569
570 pm4 = si_get_shader_pm4_state(shader);
571 if (!pm4)
572 return;
573
574 va = shader->bo->gpu_address;
575 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
576
577 if (shader->selector->type == PIPE_SHADER_VERTEX) {
578 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
579 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
580 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
581 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
582 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
583 num_user_sgprs = SI_TES_NUM_USER_SGPR;
584 } else
585 unreachable("invalid shader selector type");
586
587 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
588
589 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
590 shader->selector->esgs_itemsize / 4);
591 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
592 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
593 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
594 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
595 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
596 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
597 S_00B328_DX10_CLAMP(1) |
598 S_00B328_FLOAT_MODE(shader->config.float_mode));
599 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
600 S_00B32C_USER_SGPR(num_user_sgprs) |
601 S_00B32C_OC_LDS_EN(oc_lds_en) |
602 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
603
604 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
605 si_set_tesseval_regs(sscreen, shader->selector, pm4);
606
607 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
608 }
609
610 struct gfx9_gs_info {
611 unsigned es_verts_per_subgroup;
612 unsigned gs_prims_per_subgroup;
613 unsigned gs_inst_prims_in_subgroup;
614 unsigned max_prims_per_subgroup;
615 unsigned lds_size;
616 };
617
618 static void gfx9_get_gs_info(struct si_shader_selector *es,
619 struct si_shader_selector *gs,
620 struct gfx9_gs_info *out)
621 {
622 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
623 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
624 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
625 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
626
627 /* All these are in dwords: */
628 /* We can't allow using the whole LDS, because GS waves compete with
629 * other shader stages for LDS space. */
630 const unsigned max_lds_size = 8 * 1024;
631 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
632 unsigned esgs_lds_size;
633
634 /* All these are per subgroup: */
635 const unsigned max_out_prims = 32 * 1024;
636 const unsigned max_es_verts = 255;
637 const unsigned ideal_gs_prims = 64;
638 unsigned max_gs_prims, gs_prims;
639 unsigned min_es_verts, es_verts, worst_case_es_verts;
640
641 assert(gs_num_invocations <= 32); /* GL maximum */
642
643 if (uses_adjacency || gs_num_invocations > 1)
644 max_gs_prims = 127 / gs_num_invocations;
645 else
646 max_gs_prims = 255;
647
648 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
649 * Make sure we don't go over the maximum value.
650 */
651 if (gs->gs_max_out_vertices > 0) {
652 max_gs_prims = MIN2(max_gs_prims,
653 max_out_prims /
654 (gs->gs_max_out_vertices * gs_num_invocations));
655 }
656 assert(max_gs_prims > 0);
657
658 /* If the primitive has adjacency, halve the number of vertices
659 * that will be reused in multiple primitives.
660 */
661 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
662
663 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
664 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
665
666 /* Compute ESGS LDS size based on the worst case number of ES vertices
667 * needed to create the target number of GS prims per subgroup.
668 */
669 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
670
671 /* If total LDS usage is too big, refactor partitions based on ratio
672 * of ESGS item sizes.
673 */
674 if (esgs_lds_size > max_lds_size) {
675 /* Our target GS Prims Per Subgroup was too large. Calculate
676 * the maximum number of GS Prims Per Subgroup that will fit
677 * into LDS, capped by the maximum that the hardware can support.
678 */
679 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
680 max_gs_prims);
681 assert(gs_prims > 0);
682 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
683 max_es_verts);
684
685 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
686 assert(esgs_lds_size <= max_lds_size);
687 }
688
689 /* Now calculate remaining ESGS information. */
690 if (esgs_lds_size)
691 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
692 else
693 es_verts = max_es_verts;
694
695 /* Vertices for adjacency primitives are not always reused, so restore
696 * it for ES_VERTS_PER_SUBGRP.
697 */
698 min_es_verts = gs->gs_input_verts_per_prim;
699
700 /* For normal primitives, the VGT only checks if they are past the ES
701 * verts per subgroup after allocating a full GS primitive and if they
702 * are, kick off a new subgroup. But if those additional ES verts are
703 * unique (e.g. not reused) we need to make sure there is enough LDS
704 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
705 */
706 es_verts -= min_es_verts - 1;
707
708 out->es_verts_per_subgroup = es_verts;
709 out->gs_prims_per_subgroup = gs_prims;
710 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
711 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
712 gs->gs_max_out_vertices;
713 out->lds_size = align(esgs_lds_size, 128) / 128;
714
715 assert(out->max_prims_per_subgroup <= max_out_prims);
716 }
717
718 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
719 {
720 struct si_shader_selector *sel = shader->selector;
721 const ubyte *num_components = sel->info.num_stream_output_components;
722 unsigned gs_num_invocations = sel->gs_num_invocations;
723 struct si_pm4_state *pm4;
724 uint64_t va;
725 unsigned max_stream = sel->max_gs_stream;
726 unsigned offset;
727
728 pm4 = si_get_shader_pm4_state(shader);
729 if (!pm4)
730 return;
731
732 offset = num_components[0] * sel->gs_max_out_vertices;
733 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
734 if (max_stream >= 1)
735 offset += num_components[1] * sel->gs_max_out_vertices;
736 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
737 if (max_stream >= 2)
738 offset += num_components[2] * sel->gs_max_out_vertices;
739 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
740 if (max_stream >= 3)
741 offset += num_components[3] * sel->gs_max_out_vertices;
742 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
743
744 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
745 assert(offset < (1 << 15));
746
747 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
748
749 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
750 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
751 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
752 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
753
754 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
755 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
756 S_028B90_ENABLE(gs_num_invocations > 0));
757
758 va = shader->bo->gpu_address;
759 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
760
761 if (sscreen->info.chip_class >= GFX9) {
762 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
763 unsigned es_type = shader->key.part.gs.es->type;
764 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
765 struct gfx9_gs_info gs_info;
766
767 if (es_type == PIPE_SHADER_VERTEX)
768 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
769 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
770 else if (es_type == PIPE_SHADER_TESS_EVAL)
771 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
772 else
773 unreachable("invalid shader selector type");
774
775 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
776 * VGPR[0:4] are always loaded.
777 */
778 if (sel->info.uses_invocationid)
779 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
780 else if (sel->info.uses_primid)
781 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
782 else if (input_prim >= PIPE_PRIM_TRIANGLES)
783 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
784 else
785 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
786
787 unsigned num_user_sgprs;
788 if (es_type == PIPE_SHADER_VERTEX)
789 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
790 else
791 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
792
793 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
794
795 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
796 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
797
798 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
799 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
800 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
801 S_00B228_DX10_CLAMP(1) |
802 S_00B228_FLOAT_MODE(shader->config.float_mode) |
803 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
804 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
805 S_00B22C_USER_SGPR(num_user_sgprs) |
806 S_00B22C_USER_SGPR_MSB(num_user_sgprs >> 5) |
807 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
808 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
809 S_00B22C_LDS_SIZE(gs_info.lds_size) |
810 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
811
812 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
813 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
814 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
815 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
816 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
817 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
818 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
819 shader->key.part.gs.es->esgs_itemsize / 4);
820
821 if (es_type == PIPE_SHADER_TESS_EVAL)
822 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
823
824 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
825 NULL, pm4);
826 } else {
827 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
828 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
829
830 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
831 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
832 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
833 S_00B228_DX10_CLAMP(1) |
834 S_00B228_FLOAT_MODE(shader->config.float_mode));
835 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
836 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
837 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
838 }
839 }
840
841 /**
842 * Compute the state for \p shader, which will run as a vertex shader on the
843 * hardware.
844 *
845 * If \p gs is non-NULL, it points to the geometry shader for which this shader
846 * is the copy shader.
847 */
848 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
849 struct si_shader_selector *gs)
850 {
851 const struct tgsi_shader_info *info = &shader->selector->info;
852 struct si_pm4_state *pm4;
853 unsigned num_user_sgprs;
854 unsigned nparams, vgpr_comp_cnt;
855 uint64_t va;
856 unsigned oc_lds_en;
857 unsigned window_space =
858 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
859 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
860
861 pm4 = si_get_shader_pm4_state(shader);
862 if (!pm4)
863 return;
864
865 /* We always write VGT_GS_MODE in the VS state, because every switch
866 * between different shader pipelines involving a different GS or no
867 * GS at all involves a switch of the VS (different GS use different
868 * copy shaders). On the other hand, when the API switches from a GS to
869 * no GS and then back to the same GS used originally, the GS state is
870 * not sent again.
871 */
872 if (!gs) {
873 unsigned mode = V_028A40_GS_OFF;
874
875 /* PrimID needs GS scenario A. */
876 if (enable_prim_id)
877 mode = V_028A40_GS_SCENARIO_A;
878
879 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
880 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
881 } else {
882 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
883 ac_vgt_gs_mode(gs->gs_max_out_vertices,
884 sscreen->info.chip_class));
885 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
886 }
887
888 if (sscreen->info.chip_class <= VI) {
889 /* Reuse needs to be set off if we write oViewport. */
890 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
891 S_028AB4_REUSE_OFF(info->writes_viewport_index));
892 }
893
894 va = shader->bo->gpu_address;
895 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
896
897 if (gs) {
898 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
899 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
900 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
901 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
902 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
903 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
904 */
905 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
906
907 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
908 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
909 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
910 } else {
911 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
912 }
913 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
914 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
915 num_user_sgprs = SI_TES_NUM_USER_SGPR;
916 } else
917 unreachable("invalid shader selector type");
918
919 /* VS is required to export at least one param. */
920 nparams = MAX2(shader->info.nr_param_exports, 1);
921 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
922 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
923
924 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
925 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
926 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
927 V_02870C_SPI_SHADER_4COMP :
928 V_02870C_SPI_SHADER_NONE) |
929 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
930 V_02870C_SPI_SHADER_4COMP :
931 V_02870C_SPI_SHADER_NONE) |
932 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
933 V_02870C_SPI_SHADER_4COMP :
934 V_02870C_SPI_SHADER_NONE));
935
936 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
937
938 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
939 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
940 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
941 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
942 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
943 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
944 S_00B128_DX10_CLAMP(1) |
945 S_00B128_FLOAT_MODE(shader->config.float_mode));
946 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
947 S_00B12C_USER_SGPR(num_user_sgprs) |
948 S_00B12C_OC_LDS_EN(oc_lds_en) |
949 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
950 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
951 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
952 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
953 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
954 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
955 if (window_space)
956 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
957 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
958 else
959 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
960 S_028818_VTX_W0_FMT(1) |
961 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
962 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
963 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
964
965 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
966 si_set_tesseval_regs(sscreen, shader->selector, pm4);
967
968 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
969 }
970
971 static unsigned si_get_ps_num_interp(struct si_shader *ps)
972 {
973 struct tgsi_shader_info *info = &ps->selector->info;
974 unsigned num_colors = !!(info->colors_read & 0x0f) +
975 !!(info->colors_read & 0xf0);
976 unsigned num_interp = ps->selector->info.num_inputs +
977 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
978
979 assert(num_interp <= 32);
980 return MIN2(num_interp, 32);
981 }
982
983 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
984 {
985 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
986 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
987
988 /* If the i-th target format is set, all previous target formats must
989 * be non-zero to avoid hangs.
990 */
991 for (i = 0; i < num_targets; i++)
992 if (!(value & (0xf << (i * 4))))
993 value |= V_028714_SPI_SHADER_32_R << (i * 4);
994
995 return value;
996 }
997
998 static void si_shader_ps(struct si_shader *shader)
999 {
1000 struct tgsi_shader_info *info = &shader->selector->info;
1001 struct si_pm4_state *pm4;
1002 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1003 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1004 uint64_t va;
1005 unsigned input_ena = shader->config.spi_ps_input_ena;
1006
1007 /* we need to enable at least one of them, otherwise we hang the GPU */
1008 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1009 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1010 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1011 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1012 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1013 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1014 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1015 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1016 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1017 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1018 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1019 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1020 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1021 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1022
1023 /* Validate interpolation optimization flags (read as implications). */
1024 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1025 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1026 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1027 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1028 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1029 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1030 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1031 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1032 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1033 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1034 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1035 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1036 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1037 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1038 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1039 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1040 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1041 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1042
1043 /* Validate cases when the optimizations are off (read as implications). */
1044 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1045 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1046 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1047 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1048 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1049 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1050
1051 pm4 = si_get_shader_pm4_state(shader);
1052 if (!pm4)
1053 return;
1054
1055 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1056 * Possible vaules:
1057 * 0 -> Position = pixel center
1058 * 1 -> Position = pixel centroid
1059 * 2 -> Position = at sample position
1060 *
1061 * From GLSL 4.5 specification, section 7.1:
1062 * "The variable gl_FragCoord is available as an input variable from
1063 * within fragment shaders and it holds the window relative coordinates
1064 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1065 * value can be for any location within the pixel, or one of the
1066 * fragment samples. The use of centroid does not further restrict
1067 * this value to be inside the current primitive."
1068 *
1069 * Meaning that centroid has no effect and we can return anything within
1070 * the pixel. Thus, return the value at sample position, because that's
1071 * the most accurate one shaders can get.
1072 */
1073 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1074
1075 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1076 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1077 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1078
1079 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1080 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1081
1082 /* Ensure that some export memory is always allocated, for two reasons:
1083 *
1084 * 1) Correctness: The hardware ignores the EXEC mask if no export
1085 * memory is allocated, so KILL and alpha test do not work correctly
1086 * without this.
1087 * 2) Performance: Every shader needs at least a NULL export, even when
1088 * it writes no color/depth output. The NULL export instruction
1089 * stalls without this setting.
1090 *
1091 * Don't add this to CB_SHADER_MASK.
1092 */
1093 if (!spi_shader_col_format &&
1094 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1095 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1096
1097 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1098 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1099 shader->config.spi_ps_input_addr);
1100
1101 /* Set interpolation controls. */
1102 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1103
1104 /* Set registers. */
1105 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1106 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1107
1108 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1109 ac_get_spi_shader_z_format(info->writes_z,
1110 info->writes_stencil,
1111 info->writes_samplemask));
1112
1113 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1114 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1115
1116 va = shader->bo->gpu_address;
1117 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1118 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1119 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1120
1121 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1122 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1123 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1124 S_00B028_DX10_CLAMP(1) |
1125 S_00B028_FLOAT_MODE(shader->config.float_mode));
1126 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1127 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1128 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1129 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1130 }
1131
1132 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1133 struct si_shader *shader)
1134 {
1135 switch (shader->selector->type) {
1136 case PIPE_SHADER_VERTEX:
1137 if (shader->key.as_ls)
1138 si_shader_ls(sscreen, shader);
1139 else if (shader->key.as_es)
1140 si_shader_es(sscreen, shader);
1141 else
1142 si_shader_vs(sscreen, shader, NULL);
1143 break;
1144 case PIPE_SHADER_TESS_CTRL:
1145 si_shader_hs(sscreen, shader);
1146 break;
1147 case PIPE_SHADER_TESS_EVAL:
1148 if (shader->key.as_es)
1149 si_shader_es(sscreen, shader);
1150 else
1151 si_shader_vs(sscreen, shader, NULL);
1152 break;
1153 case PIPE_SHADER_GEOMETRY:
1154 si_shader_gs(sscreen, shader);
1155 break;
1156 case PIPE_SHADER_FRAGMENT:
1157 si_shader_ps(shader);
1158 break;
1159 default:
1160 assert(0);
1161 }
1162 }
1163
1164 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1165 {
1166 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1167 if (sctx->queued.named.dsa)
1168 return sctx->queued.named.dsa->alpha_func;
1169
1170 return PIPE_FUNC_ALWAYS;
1171 }
1172
1173 static void si_shader_selector_key_vs(struct si_context *sctx,
1174 struct si_shader_selector *vs,
1175 struct si_shader_key *key,
1176 struct si_vs_prolog_bits *prolog_key)
1177 {
1178 if (!sctx->vertex_elements)
1179 return;
1180
1181 prolog_key->instance_divisor_is_one =
1182 sctx->vertex_elements->instance_divisor_is_one;
1183 prolog_key->instance_divisor_is_fetched =
1184 sctx->vertex_elements->instance_divisor_is_fetched;
1185
1186 /* Prefer a monolithic shader to allow scheduling divisions around
1187 * VBO loads. */
1188 if (prolog_key->instance_divisor_is_fetched)
1189 key->opt.prefer_mono = 1;
1190
1191 unsigned count = MIN2(vs->info.num_inputs,
1192 sctx->vertex_elements->count);
1193 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1194 }
1195
1196 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1197 struct si_shader_selector *vs,
1198 struct si_shader_key *key)
1199 {
1200 struct si_shader_selector *ps = sctx->ps_shader.cso;
1201
1202 key->opt.clip_disable =
1203 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1204 (vs->info.clipdist_writemask ||
1205 vs->info.writes_clipvertex) &&
1206 !vs->info.culldist_writemask;
1207
1208 /* Find out if PS is disabled. */
1209 bool ps_disabled = true;
1210 if (ps) {
1211 const struct si_state_blend *blend = sctx->queued.named.blend;
1212 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1213 bool ps_modifies_zs = ps->info.uses_kill ||
1214 ps->info.writes_z ||
1215 ps->info.writes_stencil ||
1216 ps->info.writes_samplemask ||
1217 alpha_to_coverage ||
1218 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1219 unsigned ps_colormask = si_get_total_colormask(sctx);
1220
1221 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1222 (!ps_colormask &&
1223 !ps_modifies_zs &&
1224 !ps->info.writes_memory);
1225 }
1226
1227 /* Find out which VS outputs aren't used by the PS. */
1228 uint64_t outputs_written = vs->outputs_written;
1229 uint64_t inputs_read = 0;
1230
1231 /* ignore POSITION, PSIZE */
1232 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) |
1233 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0))));
1234
1235 if (!ps_disabled) {
1236 inputs_read = ps->inputs_read;
1237 }
1238
1239 uint64_t linked = outputs_written & inputs_read;
1240
1241 key->opt.kill_outputs = ~linked & outputs_written;
1242 }
1243
1244 /* Compute the key for the hw shader variant */
1245 static inline void si_shader_selector_key(struct pipe_context *ctx,
1246 struct si_shader_selector *sel,
1247 struct si_shader_key *key)
1248 {
1249 struct si_context *sctx = (struct si_context *)ctx;
1250
1251 memset(key, 0, sizeof(*key));
1252
1253 switch (sel->type) {
1254 case PIPE_SHADER_VERTEX:
1255 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1256
1257 if (sctx->tes_shader.cso)
1258 key->as_ls = 1;
1259 else if (sctx->gs_shader.cso)
1260 key->as_es = 1;
1261 else {
1262 si_shader_selector_key_hw_vs(sctx, sel, key);
1263
1264 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1265 key->mono.u.vs_export_prim_id = 1;
1266 }
1267 break;
1268 case PIPE_SHADER_TESS_CTRL:
1269 if (sctx->b.chip_class >= GFX9) {
1270 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1271 key, &key->part.tcs.ls_prolog);
1272 key->part.tcs.ls = sctx->vs_shader.cso;
1273
1274 /* When the LS VGPR fix is needed, monolithic shaders
1275 * can:
1276 * - avoid initializing EXEC in both the LS prolog
1277 * and the LS main part when !vs_needs_prolog
1278 * - remove the fixup for unused input VGPRs
1279 */
1280 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1281
1282 /* The LS output / HS input layout can be communicated
1283 * directly instead of via user SGPRs for merged LS-HS.
1284 * The LS VGPR fix prefers this too.
1285 */
1286 key->opt.prefer_mono = 1;
1287 }
1288
1289 key->part.tcs.epilog.prim_mode =
1290 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1291 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1292 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1293 key->part.tcs.epilog.tes_reads_tess_factors =
1294 sctx->tes_shader.cso->info.reads_tess_factors;
1295
1296 if (sel == sctx->fixed_func_tcs_shader.cso)
1297 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1298 break;
1299 case PIPE_SHADER_TESS_EVAL:
1300 if (sctx->gs_shader.cso)
1301 key->as_es = 1;
1302 else {
1303 si_shader_selector_key_hw_vs(sctx, sel, key);
1304
1305 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1306 key->mono.u.vs_export_prim_id = 1;
1307 }
1308 break;
1309 case PIPE_SHADER_GEOMETRY:
1310 if (sctx->b.chip_class >= GFX9) {
1311 if (sctx->tes_shader.cso) {
1312 key->part.gs.es = sctx->tes_shader.cso;
1313 } else {
1314 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1315 key, &key->part.gs.vs_prolog);
1316 key->part.gs.es = sctx->vs_shader.cso;
1317 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1318 }
1319
1320 /* Merged ES-GS can have unbalanced wave usage.
1321 *
1322 * ES threads are per-vertex, while GS threads are
1323 * per-primitive. So without any amplification, there
1324 * are fewer GS threads than ES threads, which can result
1325 * in empty (no-op) GS waves. With too much amplification,
1326 * there are more GS threads than ES threads, which
1327 * can result in empty (no-op) ES waves.
1328 *
1329 * Non-monolithic shaders are implemented by setting EXEC
1330 * at the beginning of shader parts, and don't jump to
1331 * the end if EXEC is 0.
1332 *
1333 * Monolithic shaders use conditional blocks, so they can
1334 * jump and skip empty waves of ES or GS. So set this to
1335 * always use optimized variants, which are monolithic.
1336 */
1337 key->opt.prefer_mono = 1;
1338 }
1339 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1340 break;
1341 case PIPE_SHADER_FRAGMENT: {
1342 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1343 struct si_state_blend *blend = sctx->queued.named.blend;
1344
1345 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1346 sel->info.colors_written == 0x1)
1347 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1348
1349 if (blend) {
1350 /* Select the shader color format based on whether
1351 * blending or alpha are needed.
1352 */
1353 key->part.ps.epilog.spi_shader_col_format =
1354 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1355 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1356 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1357 sctx->framebuffer.spi_shader_col_format_blend) |
1358 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1359 sctx->framebuffer.spi_shader_col_format_alpha) |
1360 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1361 sctx->framebuffer.spi_shader_col_format);
1362 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1363
1364 /* The output for dual source blending should have
1365 * the same format as the first output.
1366 */
1367 if (blend->dual_src_blend)
1368 key->part.ps.epilog.spi_shader_col_format |=
1369 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1370 } else
1371 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1372
1373 /* If alpha-to-coverage is enabled, we have to export alpha
1374 * even if there is no color buffer.
1375 */
1376 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1377 blend && blend->alpha_to_coverage)
1378 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1379
1380 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1381 * to the range supported by the type if a channel has less
1382 * than 16 bits and the export format is 16_ABGR.
1383 */
1384 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1385 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1386 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1387 }
1388
1389 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1390 if (!key->part.ps.epilog.last_cbuf) {
1391 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1392 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1393 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1394 }
1395
1396 if (rs) {
1397 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1398 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1399 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1400 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1401
1402 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1403 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1404
1405 if (sctx->queued.named.blend) {
1406 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1407 rs->multisample_enable;
1408 }
1409
1410 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1411 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1412 (is_line && rs->line_smooth)) &&
1413 sctx->framebuffer.nr_samples <= 1;
1414 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1415
1416 if (sctx->ps_iter_samples > 1 &&
1417 sel->info.reads_samplemask) {
1418 key->part.ps.prolog.samplemask_log_ps_iter =
1419 util_logbase2(util_next_power_of_two(sctx->ps_iter_samples));
1420 }
1421
1422 if (rs->force_persample_interp &&
1423 rs->multisample_enable &&
1424 sctx->framebuffer.nr_samples > 1 &&
1425 sctx->ps_iter_samples > 1) {
1426 key->part.ps.prolog.force_persp_sample_interp =
1427 sel->info.uses_persp_center ||
1428 sel->info.uses_persp_centroid;
1429
1430 key->part.ps.prolog.force_linear_sample_interp =
1431 sel->info.uses_linear_center ||
1432 sel->info.uses_linear_centroid;
1433 } else if (rs->multisample_enable &&
1434 sctx->framebuffer.nr_samples > 1) {
1435 key->part.ps.prolog.bc_optimize_for_persp =
1436 sel->info.uses_persp_center &&
1437 sel->info.uses_persp_centroid;
1438 key->part.ps.prolog.bc_optimize_for_linear =
1439 sel->info.uses_linear_center &&
1440 sel->info.uses_linear_centroid;
1441 } else {
1442 /* Make sure SPI doesn't compute more than 1 pair
1443 * of (i,j), which is the optimization here. */
1444 key->part.ps.prolog.force_persp_center_interp =
1445 sel->info.uses_persp_center +
1446 sel->info.uses_persp_centroid +
1447 sel->info.uses_persp_sample > 1;
1448
1449 key->part.ps.prolog.force_linear_center_interp =
1450 sel->info.uses_linear_center +
1451 sel->info.uses_linear_centroid +
1452 sel->info.uses_linear_sample > 1;
1453
1454 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1455 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1456 }
1457 }
1458
1459 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1460
1461 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1462 if (sctx->ps_uses_fbfetch) {
1463 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1464 struct pipe_resource *tex = cb0->texture;
1465
1466 /* 1D textures are allocated and used as 2D on GFX9. */
1467 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1468 key->mono.u.ps.fbfetch_is_1D = sctx->b.chip_class != GFX9 &&
1469 (tex->target == PIPE_TEXTURE_1D ||
1470 tex->target == PIPE_TEXTURE_1D_ARRAY);
1471 key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
1472 tex->target == PIPE_TEXTURE_2D_ARRAY ||
1473 tex->target == PIPE_TEXTURE_CUBE ||
1474 tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1475 tex->target == PIPE_TEXTURE_3D;
1476 }
1477 break;
1478 }
1479 default:
1480 assert(0);
1481 }
1482
1483 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1484 memset(&key->opt, 0, sizeof(key->opt));
1485 }
1486
1487 static void si_build_shader_variant(struct si_shader *shader,
1488 int thread_index,
1489 bool low_priority)
1490 {
1491 struct si_shader_selector *sel = shader->selector;
1492 struct si_screen *sscreen = sel->screen;
1493 LLVMTargetMachineRef tm;
1494 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1495 int r;
1496
1497 if (thread_index >= 0) {
1498 if (low_priority) {
1499 assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1500 tm = sscreen->tm_low_priority[thread_index];
1501 } else {
1502 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1503 tm = sscreen->tm[thread_index];
1504 }
1505 if (!debug->async)
1506 debug = NULL;
1507 } else {
1508 assert(!low_priority);
1509 tm = shader->compiler_ctx_state.tm;
1510 }
1511
1512 r = si_shader_create(sscreen, tm, shader, debug);
1513 if (unlikely(r)) {
1514 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1515 sel->type, r);
1516 shader->compilation_failed = true;
1517 return;
1518 }
1519
1520 if (shader->compiler_ctx_state.is_debug_context) {
1521 FILE *f = open_memstream(&shader->shader_log,
1522 &shader->shader_log_size);
1523 if (f) {
1524 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1525 fclose(f);
1526 }
1527 }
1528
1529 si_shader_init_pm4_state(sscreen, shader);
1530 }
1531
1532 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1533 {
1534 struct si_shader *shader = (struct si_shader *)job;
1535
1536 assert(thread_index >= 0);
1537
1538 si_build_shader_variant(shader, thread_index, true);
1539 }
1540
1541 static const struct si_shader_key zeroed;
1542
1543 static bool si_check_missing_main_part(struct si_screen *sscreen,
1544 struct si_shader_selector *sel,
1545 struct si_compiler_ctx_state *compiler_state,
1546 struct si_shader_key *key)
1547 {
1548 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1549
1550 if (!*mainp) {
1551 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1552
1553 if (!main_part)
1554 return false;
1555
1556 /* We can leave the fence as permanently signaled because the
1557 * main part becomes visible globally only after it has been
1558 * compiled. */
1559 util_queue_fence_init(&main_part->ready);
1560
1561 main_part->selector = sel;
1562 main_part->key.as_es = key->as_es;
1563 main_part->key.as_ls = key->as_ls;
1564
1565 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1566 main_part, false,
1567 &compiler_state->debug) != 0) {
1568 FREE(main_part);
1569 return false;
1570 }
1571 *mainp = main_part;
1572 }
1573 return true;
1574 }
1575
1576 /* Select the hw shader variant depending on the current state. */
1577 static int si_shader_select_with_key(struct si_screen *sscreen,
1578 struct si_shader_ctx_state *state,
1579 struct si_compiler_ctx_state *compiler_state,
1580 struct si_shader_key *key,
1581 int thread_index)
1582 {
1583 struct si_shader_selector *sel = state->cso;
1584 struct si_shader_selector *previous_stage_sel = NULL;
1585 struct si_shader *current = state->current;
1586 struct si_shader *iter, *shader = NULL;
1587
1588 again:
1589 /* Check if we don't need to change anything.
1590 * This path is also used for most shaders that don't need multiple
1591 * variants, it will cost just a computation of the key and this
1592 * test. */
1593 if (likely(current &&
1594 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1595 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1596 if (current->is_optimized) {
1597 memset(&key->opt, 0, sizeof(key->opt));
1598 goto current_not_ready;
1599 }
1600
1601 util_queue_fence_wait(&current->ready);
1602 }
1603
1604 return current->compilation_failed ? -1 : 0;
1605 }
1606 current_not_ready:
1607
1608 /* This must be done before the mutex is locked, because async GS
1609 * compilation calls this function too, and therefore must enter
1610 * the mutex first.
1611 *
1612 * Only wait if we are in a draw call. Don't wait if we are
1613 * in a compiler thread.
1614 */
1615 if (thread_index < 0)
1616 util_queue_fence_wait(&sel->ready);
1617
1618 mtx_lock(&sel->mutex);
1619
1620 /* Find the shader variant. */
1621 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1622 /* Don't check the "current" shader. We checked it above. */
1623 if (current != iter &&
1624 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1625 mtx_unlock(&sel->mutex);
1626
1627 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1628 /* If it's an optimized shader and its compilation has
1629 * been started but isn't done, use the unoptimized
1630 * shader so as not to cause a stall due to compilation.
1631 */
1632 if (iter->is_optimized) {
1633 memset(&key->opt, 0, sizeof(key->opt));
1634 goto again;
1635 }
1636
1637 util_queue_fence_wait(&iter->ready);
1638 }
1639
1640 if (iter->compilation_failed) {
1641 return -1; /* skip the draw call */
1642 }
1643
1644 state->current = iter;
1645 return 0;
1646 }
1647 }
1648
1649 /* Build a new shader. */
1650 shader = CALLOC_STRUCT(si_shader);
1651 if (!shader) {
1652 mtx_unlock(&sel->mutex);
1653 return -ENOMEM;
1654 }
1655
1656 util_queue_fence_init(&shader->ready);
1657
1658 shader->selector = sel;
1659 shader->key = *key;
1660 shader->compiler_ctx_state = *compiler_state;
1661
1662 /* If this is a merged shader, get the first shader's selector. */
1663 if (sscreen->info.chip_class >= GFX9) {
1664 if (sel->type == PIPE_SHADER_TESS_CTRL)
1665 previous_stage_sel = key->part.tcs.ls;
1666 else if (sel->type == PIPE_SHADER_GEOMETRY)
1667 previous_stage_sel = key->part.gs.es;
1668
1669 /* We need to wait for the previous shader. */
1670 if (previous_stage_sel && thread_index < 0)
1671 util_queue_fence_wait(&previous_stage_sel->ready);
1672 }
1673
1674 /* Compile the main shader part if it doesn't exist. This can happen
1675 * if the initial guess was wrong. */
1676 bool is_pure_monolithic =
1677 sscreen->use_monolithic_shaders ||
1678 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1679
1680 if (!is_pure_monolithic) {
1681 bool ok;
1682
1683 /* Make sure the main shader part is present. This is needed
1684 * for shaders that can be compiled as VS, LS, or ES, and only
1685 * one of them is compiled at creation.
1686 *
1687 * For merged shaders, check that the starting shader's main
1688 * part is present.
1689 */
1690 if (previous_stage_sel) {
1691 struct si_shader_key shader1_key = zeroed;
1692
1693 if (sel->type == PIPE_SHADER_TESS_CTRL)
1694 shader1_key.as_ls = 1;
1695 else if (sel->type == PIPE_SHADER_GEOMETRY)
1696 shader1_key.as_es = 1;
1697 else
1698 assert(0);
1699
1700 mtx_lock(&previous_stage_sel->mutex);
1701 ok = si_check_missing_main_part(sscreen,
1702 previous_stage_sel,
1703 compiler_state, &shader1_key);
1704 mtx_unlock(&previous_stage_sel->mutex);
1705 } else {
1706 ok = si_check_missing_main_part(sscreen, sel,
1707 compiler_state, key);
1708 }
1709 if (!ok) {
1710 FREE(shader);
1711 mtx_unlock(&sel->mutex);
1712 return -ENOMEM; /* skip the draw call */
1713 }
1714 }
1715
1716 /* Keep the reference to the 1st shader of merged shaders, so that
1717 * Gallium can't destroy it before we destroy the 2nd shader.
1718 *
1719 * Set sctx = NULL, because it's unused if we're not releasing
1720 * the shader, and we don't have any sctx here.
1721 */
1722 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1723 previous_stage_sel);
1724
1725 /* Monolithic-only shaders don't make a distinction between optimized
1726 * and unoptimized. */
1727 shader->is_monolithic =
1728 is_pure_monolithic ||
1729 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1730
1731 shader->is_optimized =
1732 !is_pure_monolithic &&
1733 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1734
1735 /* If it's an optimized shader, compile it asynchronously. */
1736 if (shader->is_optimized &&
1737 !is_pure_monolithic &&
1738 thread_index < 0) {
1739 /* Compile it asynchronously. */
1740 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1741 shader, &shader->ready,
1742 si_build_shader_variant_low_priority, NULL);
1743
1744 /* Add only after the ready fence was reset, to guard against a
1745 * race with si_bind_XX_shader. */
1746 if (!sel->last_variant) {
1747 sel->first_variant = shader;
1748 sel->last_variant = shader;
1749 } else {
1750 sel->last_variant->next_variant = shader;
1751 sel->last_variant = shader;
1752 }
1753
1754 /* Use the default (unoptimized) shader for now. */
1755 memset(&key->opt, 0, sizeof(key->opt));
1756 mtx_unlock(&sel->mutex);
1757 goto again;
1758 }
1759
1760 /* Reset the fence before adding to the variant list. */
1761 util_queue_fence_reset(&shader->ready);
1762
1763 if (!sel->last_variant) {
1764 sel->first_variant = shader;
1765 sel->last_variant = shader;
1766 } else {
1767 sel->last_variant->next_variant = shader;
1768 sel->last_variant = shader;
1769 }
1770
1771 mtx_unlock(&sel->mutex);
1772
1773 assert(!shader->is_optimized);
1774 si_build_shader_variant(shader, thread_index, false);
1775
1776 util_queue_fence_signal(&shader->ready);
1777
1778 if (!shader->compilation_failed)
1779 state->current = shader;
1780
1781 return shader->compilation_failed ? -1 : 0;
1782 }
1783
1784 static int si_shader_select(struct pipe_context *ctx,
1785 struct si_shader_ctx_state *state,
1786 struct si_compiler_ctx_state *compiler_state)
1787 {
1788 struct si_context *sctx = (struct si_context *)ctx;
1789 struct si_shader_key key;
1790
1791 si_shader_selector_key(ctx, state->cso, &key);
1792 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1793 &key, -1);
1794 }
1795
1796 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1797 bool streamout,
1798 struct si_shader_key *key)
1799 {
1800 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1801
1802 switch (info->processor) {
1803 case PIPE_SHADER_VERTEX:
1804 switch (next_shader) {
1805 case PIPE_SHADER_GEOMETRY:
1806 key->as_es = 1;
1807 break;
1808 case PIPE_SHADER_TESS_CTRL:
1809 case PIPE_SHADER_TESS_EVAL:
1810 key->as_ls = 1;
1811 break;
1812 default:
1813 /* If POSITION isn't written, it can only be a HW VS
1814 * if streamout is used. If streamout isn't used,
1815 * assume that it's a HW LS. (the next shader is TCS)
1816 * This heuristic is needed for separate shader objects.
1817 */
1818 if (!info->writes_position && !streamout)
1819 key->as_ls = 1;
1820 }
1821 break;
1822
1823 case PIPE_SHADER_TESS_EVAL:
1824 if (next_shader == PIPE_SHADER_GEOMETRY ||
1825 !info->writes_position)
1826 key->as_es = 1;
1827 break;
1828 }
1829 }
1830
1831 /**
1832 * Compile the main shader part or the monolithic shader as part of
1833 * si_shader_selector initialization. Since it can be done asynchronously,
1834 * there is no way to report compile failures to applications.
1835 */
1836 static void si_init_shader_selector_async(void *job, int thread_index)
1837 {
1838 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1839 struct si_screen *sscreen = sel->screen;
1840 LLVMTargetMachineRef tm;
1841 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1842
1843 assert(!debug->debug_message || debug->async);
1844 assert(thread_index >= 0);
1845 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1846 tm = sscreen->tm[thread_index];
1847
1848 /* Compile the main shader part for use with a prolog and/or epilog.
1849 * If this fails, the driver will try to compile a monolithic shader
1850 * on demand.
1851 */
1852 if (!sscreen->use_monolithic_shaders) {
1853 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1854 void *ir_binary = NULL;
1855
1856 if (!shader) {
1857 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1858 return;
1859 }
1860
1861 /* We can leave the fence signaled because use of the default
1862 * main part is guarded by the selector's ready fence. */
1863 util_queue_fence_init(&shader->ready);
1864
1865 shader->selector = sel;
1866 si_parse_next_shader_property(&sel->info,
1867 sel->so.num_outputs != 0,
1868 &shader->key);
1869
1870 if (sel->tokens || sel->nir)
1871 ir_binary = si_get_ir_binary(sel);
1872
1873 /* Try to load the shader from the shader cache. */
1874 mtx_lock(&sscreen->shader_cache_mutex);
1875
1876 if (ir_binary &&
1877 si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
1878 mtx_unlock(&sscreen->shader_cache_mutex);
1879 si_shader_dump_stats_for_shader_db(shader, debug);
1880 } else {
1881 mtx_unlock(&sscreen->shader_cache_mutex);
1882
1883 /* Compile the shader if it hasn't been loaded from the cache. */
1884 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1885 debug) != 0) {
1886 FREE(shader);
1887 FREE(ir_binary);
1888 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1889 return;
1890 }
1891
1892 if (ir_binary) {
1893 mtx_lock(&sscreen->shader_cache_mutex);
1894 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
1895 FREE(ir_binary);
1896 mtx_unlock(&sscreen->shader_cache_mutex);
1897 }
1898 }
1899
1900 *si_get_main_shader_part(sel, &shader->key) = shader;
1901
1902 /* Unset "outputs_written" flags for outputs converted to
1903 * DEFAULT_VAL, so that later inter-shader optimizations don't
1904 * try to eliminate outputs that don't exist in the final
1905 * shader.
1906 *
1907 * This is only done if non-monolithic shaders are enabled.
1908 */
1909 if ((sel->type == PIPE_SHADER_VERTEX ||
1910 sel->type == PIPE_SHADER_TESS_EVAL) &&
1911 !shader->key.as_ls &&
1912 !shader->key.as_es) {
1913 unsigned i;
1914
1915 for (i = 0; i < sel->info.num_outputs; i++) {
1916 unsigned offset = shader->info.vs_output_param_offset[i];
1917
1918 if (offset <= AC_EXP_PARAM_OFFSET_31)
1919 continue;
1920
1921 unsigned name = sel->info.output_semantic_name[i];
1922 unsigned index = sel->info.output_semantic_index[i];
1923 unsigned id;
1924
1925 switch (name) {
1926 case TGSI_SEMANTIC_GENERIC:
1927 /* don't process indices the function can't handle */
1928 if (index >= SI_MAX_IO_GENERIC)
1929 break;
1930 /* fall through */
1931 default:
1932 id = si_shader_io_get_unique_index(name, index);
1933 sel->outputs_written &= ~(1ull << id);
1934 break;
1935 case TGSI_SEMANTIC_POSITION: /* ignore these */
1936 case TGSI_SEMANTIC_PSIZE:
1937 case TGSI_SEMANTIC_CLIPVERTEX:
1938 case TGSI_SEMANTIC_EDGEFLAG:
1939 break;
1940 }
1941 }
1942 }
1943 }
1944
1945 /* The GS copy shader is always pre-compiled. */
1946 if (sel->type == PIPE_SHADER_GEOMETRY) {
1947 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1948 if (!sel->gs_copy_shader) {
1949 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1950 return;
1951 }
1952
1953 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1954 }
1955 }
1956
1957 /* Return descriptor slot usage masks from the given shader info. */
1958 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
1959 uint32_t *const_and_shader_buffers,
1960 uint64_t *samplers_and_images)
1961 {
1962 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
1963
1964 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
1965 num_constbufs = util_last_bit(info->const_buffers_declared);
1966 /* two 8-byte images share one 16-byte slot */
1967 num_images = align(util_last_bit(info->images_declared), 2);
1968 num_samplers = util_last_bit(info->samplers_declared);
1969
1970 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
1971 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
1972 *const_and_shader_buffers =
1973 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
1974
1975 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
1976 start = si_get_image_slot(num_images - 1) / 2;
1977 *samplers_and_images =
1978 u_bit_consecutive64(start, num_images / 2 + num_samplers);
1979 }
1980
1981 static void *si_create_shader_selector(struct pipe_context *ctx,
1982 const struct pipe_shader_state *state)
1983 {
1984 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1985 struct si_context *sctx = (struct si_context*)ctx;
1986 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1987 int i;
1988
1989 if (!sel)
1990 return NULL;
1991
1992 pipe_reference_init(&sel->reference, 1);
1993 sel->screen = sscreen;
1994 sel->compiler_ctx_state.debug = sctx->debug;
1995 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1996
1997 sel->so = state->stream_output;
1998
1999 if (state->type == PIPE_SHADER_IR_TGSI) {
2000 sel->tokens = tgsi_dup_tokens(state->tokens);
2001 if (!sel->tokens) {
2002 FREE(sel);
2003 return NULL;
2004 }
2005
2006 tgsi_scan_shader(state->tokens, &sel->info);
2007 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2008 } else {
2009 assert(state->type == PIPE_SHADER_IR_NIR);
2010
2011 sel->nir = state->ir.nir;
2012
2013 si_nir_scan_shader(sel->nir, &sel->info);
2014 si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
2015
2016 si_lower_nir(sel);
2017 }
2018
2019 sel->type = sel->info.processor;
2020 p_atomic_inc(&sscreen->num_shaders_created);
2021 si_get_active_slot_masks(&sel->info,
2022 &sel->active_const_and_shader_buffers,
2023 &sel->active_samplers_and_images);
2024
2025 /* Record which streamout buffers are enabled. */
2026 for (i = 0; i < sel->so.num_outputs; i++) {
2027 sel->enabled_streamout_buffer_mask |=
2028 (1 << sel->so.output[i].output_buffer) <<
2029 (sel->so.output[i].stream * 4);
2030 }
2031
2032 /* The prolog is a no-op if there are no inputs. */
2033 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2034 sel->info.num_inputs &&
2035 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2036
2037 sel->force_correct_derivs_after_kill =
2038 sel->type == PIPE_SHADER_FRAGMENT &&
2039 sel->info.uses_derivatives &&
2040 sel->info.uses_kill &&
2041 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2042
2043 /* Set which opcode uses which (i,j) pair. */
2044 if (sel->info.uses_persp_opcode_interp_centroid)
2045 sel->info.uses_persp_centroid = true;
2046
2047 if (sel->info.uses_linear_opcode_interp_centroid)
2048 sel->info.uses_linear_centroid = true;
2049
2050 if (sel->info.uses_persp_opcode_interp_offset ||
2051 sel->info.uses_persp_opcode_interp_sample)
2052 sel->info.uses_persp_center = true;
2053
2054 if (sel->info.uses_linear_opcode_interp_offset ||
2055 sel->info.uses_linear_opcode_interp_sample)
2056 sel->info.uses_linear_center = true;
2057
2058 switch (sel->type) {
2059 case PIPE_SHADER_GEOMETRY:
2060 sel->gs_output_prim =
2061 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2062 sel->gs_max_out_vertices =
2063 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2064 sel->gs_num_invocations =
2065 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2066 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2067 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2068 sel->gs_max_out_vertices;
2069
2070 sel->max_gs_stream = 0;
2071 for (i = 0; i < sel->so.num_outputs; i++)
2072 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2073 sel->so.output[i].stream);
2074
2075 sel->gs_input_verts_per_prim =
2076 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2077 break;
2078
2079 case PIPE_SHADER_TESS_CTRL:
2080 /* Always reserve space for these. */
2081 sel->patch_outputs_written |=
2082 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2083 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2084 /* fall through */
2085 case PIPE_SHADER_VERTEX:
2086 case PIPE_SHADER_TESS_EVAL:
2087 for (i = 0; i < sel->info.num_outputs; i++) {
2088 unsigned name = sel->info.output_semantic_name[i];
2089 unsigned index = sel->info.output_semantic_index[i];
2090
2091 switch (name) {
2092 case TGSI_SEMANTIC_TESSINNER:
2093 case TGSI_SEMANTIC_TESSOUTER:
2094 case TGSI_SEMANTIC_PATCH:
2095 sel->patch_outputs_written |=
2096 1ull << si_shader_io_get_unique_index_patch(name, index);
2097 break;
2098
2099 case TGSI_SEMANTIC_GENERIC:
2100 /* don't process indices the function can't handle */
2101 if (index >= SI_MAX_IO_GENERIC)
2102 break;
2103 /* fall through */
2104 default:
2105 sel->outputs_written |=
2106 1ull << si_shader_io_get_unique_index(name, index);
2107 break;
2108 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2109 case TGSI_SEMANTIC_EDGEFLAG:
2110 break;
2111 }
2112 }
2113 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2114
2115 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2116 * conflicts, i.e. each vertex will start at a different bank.
2117 */
2118 if (sctx->b.chip_class >= GFX9)
2119 sel->esgs_itemsize += 4;
2120 break;
2121
2122 case PIPE_SHADER_FRAGMENT:
2123 for (i = 0; i < sel->info.num_inputs; i++) {
2124 unsigned name = sel->info.input_semantic_name[i];
2125 unsigned index = sel->info.input_semantic_index[i];
2126
2127 switch (name) {
2128 case TGSI_SEMANTIC_GENERIC:
2129 /* don't process indices the function can't handle */
2130 if (index >= SI_MAX_IO_GENERIC)
2131 break;
2132 /* fall through */
2133 default:
2134 sel->inputs_read |=
2135 1ull << si_shader_io_get_unique_index(name, index);
2136 break;
2137 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2138 break;
2139 }
2140 }
2141
2142 for (i = 0; i < 8; i++)
2143 if (sel->info.colors_written & (1 << i))
2144 sel->colors_written_4bit |= 0xf << (4 * i);
2145
2146 for (i = 0; i < sel->info.num_inputs; i++) {
2147 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2148 int index = sel->info.input_semantic_index[i];
2149 sel->color_attr_index[index] = i;
2150 }
2151 }
2152 break;
2153 }
2154
2155 /* PA_CL_VS_OUT_CNTL */
2156 bool misc_vec_ena =
2157 sel->info.writes_psize || sel->info.writes_edgeflag ||
2158 sel->info.writes_layer || sel->info.writes_viewport_index;
2159 sel->pa_cl_vs_out_cntl =
2160 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2161 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2162 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2163 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2164 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2165 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2166 sel->clipdist_mask = sel->info.writes_clipvertex ?
2167 SIX_BITS : sel->info.clipdist_writemask;
2168 sel->culldist_mask = sel->info.culldist_writemask <<
2169 sel->info.num_written_clipdistance;
2170
2171 /* DB_SHADER_CONTROL */
2172 sel->db_shader_control =
2173 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2174 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2175 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2176 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2177
2178 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2179 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2180 sel->db_shader_control |=
2181 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2182 break;
2183 case TGSI_FS_DEPTH_LAYOUT_LESS:
2184 sel->db_shader_control |=
2185 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2186 break;
2187 }
2188
2189 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2190 *
2191 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2192 * --|-----------|------------|------------|--------------------|-------------------|-------------
2193 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2194 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2195 * 2 | false | true | n/a | LateZ | 1 | 0
2196 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2197 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2198 *
2199 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2200 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2201 *
2202 * Don't use ReZ without profiling !!!
2203 *
2204 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2205 * shaders.
2206 */
2207 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2208 /* Cases 3, 4. */
2209 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2210 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2211 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2212 } else if (sel->info.writes_memory) {
2213 /* Case 2. */
2214 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2215 S_02880C_EXEC_ON_HIER_FAIL(1);
2216 } else {
2217 /* Case 1. */
2218 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2219 }
2220
2221 (void) mtx_init(&sel->mutex, mtx_plain);
2222 util_queue_fence_init(&sel->ready);
2223
2224 struct util_async_debug_callback async_debug;
2225 bool wait =
2226 (sctx->debug.debug_message && !sctx->debug.async) ||
2227 sctx->is_debug ||
2228 si_can_dump_shader(sscreen, sel->info.processor);
2229
2230 if (wait) {
2231 u_async_debug_init(&async_debug);
2232 sel->compiler_ctx_state.debug = async_debug.base;
2233 }
2234
2235 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2236 &sel->ready, si_init_shader_selector_async,
2237 NULL);
2238
2239 if (wait) {
2240 util_queue_fence_wait(&sel->ready);
2241 u_async_debug_drain(&async_debug, &sctx->debug);
2242 u_async_debug_cleanup(&async_debug);
2243 }
2244
2245 return sel;
2246 }
2247
2248 static void si_update_streamout_state(struct si_context *sctx)
2249 {
2250 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2251
2252 if (!shader_with_so)
2253 return;
2254
2255 sctx->streamout.enabled_stream_buffers_mask =
2256 shader_with_so->enabled_streamout_buffer_mask;
2257 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2258 }
2259
2260 static void si_update_clip_regs(struct si_context *sctx,
2261 struct si_shader_selector *old_hw_vs,
2262 struct si_shader *old_hw_vs_variant,
2263 struct si_shader_selector *next_hw_vs,
2264 struct si_shader *next_hw_vs_variant)
2265 {
2266 if (next_hw_vs &&
2267 (!old_hw_vs ||
2268 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2269 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2270 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2271 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2272 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2273 !old_hw_vs_variant ||
2274 !next_hw_vs_variant ||
2275 old_hw_vs_variant->key.opt.clip_disable !=
2276 next_hw_vs_variant->key.opt.clip_disable))
2277 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2278 }
2279
2280 static void si_update_common_shader_state(struct si_context *sctx)
2281 {
2282 sctx->uses_bindless_samplers =
2283 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2284 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2285 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2286 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2287 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2288 sctx->uses_bindless_images =
2289 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2290 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2291 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2292 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2293 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2294 sctx->do_update_shaders = true;
2295 }
2296
2297 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2298 {
2299 struct si_context *sctx = (struct si_context *)ctx;
2300 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2301 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2302 struct si_shader_selector *sel = state;
2303
2304 if (sctx->vs_shader.cso == sel)
2305 return;
2306
2307 sctx->vs_shader.cso = sel;
2308 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2309 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2310
2311 si_update_common_shader_state(sctx);
2312 si_update_vs_viewport_state(sctx);
2313 si_set_active_descriptors_for_shader(sctx, sel);
2314 si_update_streamout_state(sctx);
2315 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2316 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2317 }
2318
2319 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2320 {
2321 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2322 (sctx->tes_shader.cso &&
2323 sctx->tes_shader.cso->info.uses_primid) ||
2324 (sctx->tcs_shader.cso &&
2325 sctx->tcs_shader.cso->info.uses_primid) ||
2326 (sctx->gs_shader.cso &&
2327 sctx->gs_shader.cso->info.uses_primid) ||
2328 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2329 sctx->ps_shader.cso->info.uses_primid);
2330 }
2331
2332 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2333 {
2334 struct si_context *sctx = (struct si_context *)ctx;
2335 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2336 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2337 struct si_shader_selector *sel = state;
2338 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2339
2340 if (sctx->gs_shader.cso == sel)
2341 return;
2342
2343 sctx->gs_shader.cso = sel;
2344 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2345 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2346
2347 si_update_common_shader_state(sctx);
2348 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2349
2350 if (enable_changed) {
2351 si_shader_change_notify(sctx);
2352 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2353 si_update_tess_uses_prim_id(sctx);
2354 }
2355 si_update_vs_viewport_state(sctx);
2356 si_set_active_descriptors_for_shader(sctx, sel);
2357 si_update_streamout_state(sctx);
2358 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2359 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2360 }
2361
2362 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2363 {
2364 struct si_context *sctx = (struct si_context *)ctx;
2365 struct si_shader_selector *sel = state;
2366 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2367
2368 if (sctx->tcs_shader.cso == sel)
2369 return;
2370
2371 sctx->tcs_shader.cso = sel;
2372 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2373 si_update_tess_uses_prim_id(sctx);
2374
2375 si_update_common_shader_state(sctx);
2376
2377 if (enable_changed)
2378 sctx->last_tcs = NULL; /* invalidate derived tess state */
2379
2380 si_set_active_descriptors_for_shader(sctx, sel);
2381 }
2382
2383 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2384 {
2385 struct si_context *sctx = (struct si_context *)ctx;
2386 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2387 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2388 struct si_shader_selector *sel = state;
2389 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2390
2391 if (sctx->tes_shader.cso == sel)
2392 return;
2393
2394 sctx->tes_shader.cso = sel;
2395 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2396 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2397 si_update_tess_uses_prim_id(sctx);
2398
2399 si_update_common_shader_state(sctx);
2400 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2401
2402 if (enable_changed) {
2403 si_shader_change_notify(sctx);
2404 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2405 }
2406 si_update_vs_viewport_state(sctx);
2407 si_set_active_descriptors_for_shader(sctx, sel);
2408 si_update_streamout_state(sctx);
2409 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2410 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2411 }
2412
2413 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2414 {
2415 struct si_context *sctx = (struct si_context *)ctx;
2416 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2417 struct si_shader_selector *sel = state;
2418
2419 /* skip if supplied shader is one already in use */
2420 if (old_sel == sel)
2421 return;
2422
2423 sctx->ps_shader.cso = sel;
2424 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2425
2426 si_update_common_shader_state(sctx);
2427 if (sel) {
2428 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2429 si_update_tess_uses_prim_id(sctx);
2430
2431 if (!old_sel ||
2432 old_sel->info.colors_written != sel->info.colors_written)
2433 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2434
2435 if (sctx->screen->has_out_of_order_rast &&
2436 (!old_sel ||
2437 old_sel->info.writes_memory != sel->info.writes_memory ||
2438 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2439 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2440 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2441 }
2442 si_set_active_descriptors_for_shader(sctx, sel);
2443 si_update_ps_colorbuf0_slot(sctx);
2444 }
2445
2446 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2447 {
2448 if (shader->is_optimized) {
2449 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2450 &shader->ready);
2451 }
2452
2453 util_queue_fence_destroy(&shader->ready);
2454
2455 if (shader->pm4) {
2456 switch (shader->selector->type) {
2457 case PIPE_SHADER_VERTEX:
2458 if (shader->key.as_ls) {
2459 assert(sctx->b.chip_class <= VI);
2460 si_pm4_delete_state(sctx, ls, shader->pm4);
2461 } else if (shader->key.as_es) {
2462 assert(sctx->b.chip_class <= VI);
2463 si_pm4_delete_state(sctx, es, shader->pm4);
2464 } else {
2465 si_pm4_delete_state(sctx, vs, shader->pm4);
2466 }
2467 break;
2468 case PIPE_SHADER_TESS_CTRL:
2469 si_pm4_delete_state(sctx, hs, shader->pm4);
2470 break;
2471 case PIPE_SHADER_TESS_EVAL:
2472 if (shader->key.as_es) {
2473 assert(sctx->b.chip_class <= VI);
2474 si_pm4_delete_state(sctx, es, shader->pm4);
2475 } else {
2476 si_pm4_delete_state(sctx, vs, shader->pm4);
2477 }
2478 break;
2479 case PIPE_SHADER_GEOMETRY:
2480 if (shader->is_gs_copy_shader)
2481 si_pm4_delete_state(sctx, vs, shader->pm4);
2482 else
2483 si_pm4_delete_state(sctx, gs, shader->pm4);
2484 break;
2485 case PIPE_SHADER_FRAGMENT:
2486 si_pm4_delete_state(sctx, ps, shader->pm4);
2487 break;
2488 }
2489 }
2490
2491 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2492 si_shader_destroy(shader);
2493 free(shader);
2494 }
2495
2496 void si_destroy_shader_selector(struct si_context *sctx,
2497 struct si_shader_selector *sel)
2498 {
2499 struct si_shader *p = sel->first_variant, *c;
2500 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2501 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2502 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2503 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2504 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2505 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2506 };
2507
2508 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2509
2510 if (current_shader[sel->type]->cso == sel) {
2511 current_shader[sel->type]->cso = NULL;
2512 current_shader[sel->type]->current = NULL;
2513 }
2514
2515 while (p) {
2516 c = p->next_variant;
2517 si_delete_shader(sctx, p);
2518 p = c;
2519 }
2520
2521 if (sel->main_shader_part)
2522 si_delete_shader(sctx, sel->main_shader_part);
2523 if (sel->main_shader_part_ls)
2524 si_delete_shader(sctx, sel->main_shader_part_ls);
2525 if (sel->main_shader_part_es)
2526 si_delete_shader(sctx, sel->main_shader_part_es);
2527 if (sel->gs_copy_shader)
2528 si_delete_shader(sctx, sel->gs_copy_shader);
2529
2530 util_queue_fence_destroy(&sel->ready);
2531 mtx_destroy(&sel->mutex);
2532 free(sel->tokens);
2533 ralloc_free(sel->nir);
2534 free(sel);
2535 }
2536
2537 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2538 {
2539 struct si_context *sctx = (struct si_context *)ctx;
2540 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2541
2542 si_shader_selector_reference(sctx, &sel, NULL);
2543 }
2544
2545 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2546 struct si_shader *vs, unsigned name,
2547 unsigned index, unsigned interpolate)
2548 {
2549 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2550 unsigned j, offset, ps_input_cntl = 0;
2551
2552 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2553 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2554 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2555
2556 if (name == TGSI_SEMANTIC_PCOORD ||
2557 (name == TGSI_SEMANTIC_TEXCOORD &&
2558 sctx->sprite_coord_enable & (1 << index))) {
2559 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2560 }
2561
2562 for (j = 0; j < vsinfo->num_outputs; j++) {
2563 if (name == vsinfo->output_semantic_name[j] &&
2564 index == vsinfo->output_semantic_index[j]) {
2565 offset = vs->info.vs_output_param_offset[j];
2566
2567 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2568 /* The input is loaded from parameter memory. */
2569 ps_input_cntl |= S_028644_OFFSET(offset);
2570 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2571 if (offset == AC_EXP_PARAM_UNDEFINED) {
2572 /* This can happen with depth-only rendering. */
2573 offset = 0;
2574 } else {
2575 /* The input is a DEFAULT_VAL constant. */
2576 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2577 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2578 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2579 }
2580
2581 ps_input_cntl = S_028644_OFFSET(0x20) |
2582 S_028644_DEFAULT_VAL(offset);
2583 }
2584 break;
2585 }
2586 }
2587
2588 if (name == TGSI_SEMANTIC_PRIMID)
2589 /* PrimID is written after the last output. */
2590 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2591 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2592 /* No corresponding output found, load defaults into input.
2593 * Don't set any other bits.
2594 * (FLAT_SHADE=1 completely changes behavior) */
2595 ps_input_cntl = S_028644_OFFSET(0x20);
2596 /* D3D 9 behaviour. GL is undefined */
2597 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2598 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2599 }
2600 return ps_input_cntl;
2601 }
2602
2603 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2604 {
2605 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
2606 struct si_shader *ps = sctx->ps_shader.current;
2607 struct si_shader *vs = si_get_vs_state(sctx);
2608 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2609 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2610
2611 if (!ps || !ps->selector->info.num_inputs)
2612 return;
2613
2614 num_interp = si_get_ps_num_interp(ps);
2615 assert(num_interp > 0);
2616 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2617
2618 for (i = 0; i < psinfo->num_inputs; i++) {
2619 unsigned name = psinfo->input_semantic_name[i];
2620 unsigned index = psinfo->input_semantic_index[i];
2621 unsigned interpolate = psinfo->input_interpolate[i];
2622
2623 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2624 interpolate));
2625 num_written++;
2626
2627 if (name == TGSI_SEMANTIC_COLOR) {
2628 assert(index < ARRAY_SIZE(bcol_interp));
2629 bcol_interp[index] = interpolate;
2630 }
2631 }
2632
2633 if (ps->key.part.ps.prolog.color_two_side) {
2634 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2635
2636 for (i = 0; i < 2; i++) {
2637 if (!(psinfo->colors_read & (0xf << (i * 4))))
2638 continue;
2639
2640 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2641 i, bcol_interp[i]));
2642 num_written++;
2643 }
2644 }
2645 assert(num_interp == num_written);
2646 }
2647
2648 /**
2649 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2650 */
2651 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2652 {
2653 if (sctx->init_config_has_vgt_flush)
2654 return;
2655
2656 /* Done by Vulkan before VGT_FLUSH. */
2657 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2658 si_pm4_cmd_add(sctx->init_config,
2659 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2660 si_pm4_cmd_end(sctx->init_config, false);
2661
2662 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2663 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2664 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2665 si_pm4_cmd_end(sctx->init_config, false);
2666 sctx->init_config_has_vgt_flush = true;
2667 }
2668
2669 /* Initialize state related to ESGS / GSVS ring buffers */
2670 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2671 {
2672 struct si_shader_selector *es =
2673 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2674 struct si_shader_selector *gs = sctx->gs_shader.cso;
2675 struct si_pm4_state *pm4;
2676
2677 /* Chip constants. */
2678 unsigned num_se = sctx->screen->info.max_se;
2679 unsigned wave_size = 64;
2680 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2681 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2682 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2683 */
2684 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2685 unsigned alignment = 256 * num_se;
2686 /* The maximum size is 63.999 MB per SE. */
2687 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2688
2689 /* Calculate the minimum size. */
2690 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2691 wave_size, alignment);
2692
2693 /* These are recommended sizes, not minimum sizes. */
2694 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2695 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2696 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2697 gs->max_gsvs_emit_size;
2698
2699 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2700 esgs_ring_size = align(esgs_ring_size, alignment);
2701 gsvs_ring_size = align(gsvs_ring_size, alignment);
2702
2703 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2704 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2705
2706 /* Some rings don't have to be allocated if shaders don't use them.
2707 * (e.g. no varyings between ES and GS or GS and VS)
2708 *
2709 * GFX9 doesn't have the ESGS ring.
2710 */
2711 bool update_esgs = sctx->b.chip_class <= VI &&
2712 esgs_ring_size &&
2713 (!sctx->esgs_ring ||
2714 sctx->esgs_ring->width0 < esgs_ring_size);
2715 bool update_gsvs = gsvs_ring_size &&
2716 (!sctx->gsvs_ring ||
2717 sctx->gsvs_ring->width0 < gsvs_ring_size);
2718
2719 if (!update_esgs && !update_gsvs)
2720 return true;
2721
2722 if (update_esgs) {
2723 pipe_resource_reference(&sctx->esgs_ring, NULL);
2724 sctx->esgs_ring =
2725 si_aligned_buffer_create(sctx->b.b.screen,
2726 R600_RESOURCE_FLAG_UNMAPPABLE,
2727 PIPE_USAGE_DEFAULT,
2728 esgs_ring_size, alignment);
2729 if (!sctx->esgs_ring)
2730 return false;
2731 }
2732
2733 if (update_gsvs) {
2734 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2735 sctx->gsvs_ring =
2736 si_aligned_buffer_create(sctx->b.b.screen,
2737 R600_RESOURCE_FLAG_UNMAPPABLE,
2738 PIPE_USAGE_DEFAULT,
2739 gsvs_ring_size, alignment);
2740 if (!sctx->gsvs_ring)
2741 return false;
2742 }
2743
2744 /* Create the "init_config_gs_rings" state. */
2745 pm4 = CALLOC_STRUCT(si_pm4_state);
2746 if (!pm4)
2747 return false;
2748
2749 if (sctx->b.chip_class >= CIK) {
2750 if (sctx->esgs_ring) {
2751 assert(sctx->b.chip_class <= VI);
2752 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2753 sctx->esgs_ring->width0 / 256);
2754 }
2755 if (sctx->gsvs_ring)
2756 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2757 sctx->gsvs_ring->width0 / 256);
2758 } else {
2759 if (sctx->esgs_ring)
2760 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2761 sctx->esgs_ring->width0 / 256);
2762 if (sctx->gsvs_ring)
2763 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2764 sctx->gsvs_ring->width0 / 256);
2765 }
2766
2767 /* Set the state. */
2768 if (sctx->init_config_gs_rings)
2769 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2770 sctx->init_config_gs_rings = pm4;
2771
2772 if (!sctx->init_config_has_vgt_flush) {
2773 si_init_config_add_vgt_flush(sctx);
2774 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2775 }
2776
2777 /* Flush the context to re-emit both init_config states. */
2778 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2779 si_flush_gfx_cs(sctx, PIPE_FLUSH_ASYNC, NULL);
2780
2781 /* Set ring bindings. */
2782 if (sctx->esgs_ring) {
2783 assert(sctx->b.chip_class <= VI);
2784 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2785 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2786 true, true, 4, 64, 0);
2787 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2788 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2789 false, false, 0, 0, 0);
2790 }
2791 if (sctx->gsvs_ring) {
2792 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2793 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2794 false, false, 0, 0, 0);
2795 }
2796
2797 return true;
2798 }
2799
2800 static void si_shader_lock(struct si_shader *shader)
2801 {
2802 mtx_lock(&shader->selector->mutex);
2803 if (shader->previous_stage_sel) {
2804 assert(shader->previous_stage_sel != shader->selector);
2805 mtx_lock(&shader->previous_stage_sel->mutex);
2806 }
2807 }
2808
2809 static void si_shader_unlock(struct si_shader *shader)
2810 {
2811 if (shader->previous_stage_sel)
2812 mtx_unlock(&shader->previous_stage_sel->mutex);
2813 mtx_unlock(&shader->selector->mutex);
2814 }
2815
2816 /**
2817 * @returns 1 if \p sel has been updated to use a new scratch buffer
2818 * 0 if not
2819 * < 0 if there was a failure
2820 */
2821 static int si_update_scratch_buffer(struct si_context *sctx,
2822 struct si_shader *shader)
2823 {
2824 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2825 int r;
2826
2827 if (!shader)
2828 return 0;
2829
2830 /* This shader doesn't need a scratch buffer */
2831 if (shader->config.scratch_bytes_per_wave == 0)
2832 return 0;
2833
2834 /* Prevent race conditions when updating:
2835 * - si_shader::scratch_bo
2836 * - si_shader::binary::code
2837 * - si_shader::previous_stage::binary::code.
2838 */
2839 si_shader_lock(shader);
2840
2841 /* This shader is already configured to use the current
2842 * scratch buffer. */
2843 if (shader->scratch_bo == sctx->scratch_buffer) {
2844 si_shader_unlock(shader);
2845 return 0;
2846 }
2847
2848 assert(sctx->scratch_buffer);
2849
2850 if (shader->previous_stage)
2851 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2852
2853 si_shader_apply_scratch_relocs(shader, scratch_va);
2854
2855 /* Replace the shader bo with a new bo that has the relocs applied. */
2856 r = si_shader_binary_upload(sctx->screen, shader);
2857 if (r) {
2858 si_shader_unlock(shader);
2859 return r;
2860 }
2861
2862 /* Update the shader state to use the new shader bo. */
2863 si_shader_init_pm4_state(sctx->screen, shader);
2864
2865 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2866
2867 si_shader_unlock(shader);
2868 return 1;
2869 }
2870
2871 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2872 {
2873 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2874 }
2875
2876 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2877 {
2878 return shader ? shader->config.scratch_bytes_per_wave : 0;
2879 }
2880
2881 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2882 {
2883 if (!sctx->tes_shader.cso)
2884 return NULL; /* tessellation disabled */
2885
2886 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2887 sctx->fixed_func_tcs_shader.current;
2888 }
2889
2890 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2891 {
2892 unsigned bytes = 0;
2893
2894 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2895 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2896 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2897 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2898
2899 if (sctx->tes_shader.cso) {
2900 struct si_shader *tcs = si_get_tcs_current(sctx);
2901
2902 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2903 }
2904 return bytes;
2905 }
2906
2907 static bool si_update_scratch_relocs(struct si_context *sctx)
2908 {
2909 struct si_shader *tcs = si_get_tcs_current(sctx);
2910 int r;
2911
2912 /* Update the shaders, so that they are using the latest scratch.
2913 * The scratch buffer may have been changed since these shaders were
2914 * last used, so we still need to try to update them, even if they
2915 * require scratch buffers smaller than the current size.
2916 */
2917 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2918 if (r < 0)
2919 return false;
2920 if (r == 1)
2921 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2922
2923 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2924 if (r < 0)
2925 return false;
2926 if (r == 1)
2927 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2928
2929 r = si_update_scratch_buffer(sctx, tcs);
2930 if (r < 0)
2931 return false;
2932 if (r == 1)
2933 si_pm4_bind_state(sctx, hs, tcs->pm4);
2934
2935 /* VS can be bound as LS, ES, or VS. */
2936 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2937 if (r < 0)
2938 return false;
2939 if (r == 1) {
2940 if (sctx->tes_shader.current)
2941 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2942 else if (sctx->gs_shader.current)
2943 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2944 else
2945 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2946 }
2947
2948 /* TES can be bound as ES or VS. */
2949 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2950 if (r < 0)
2951 return false;
2952 if (r == 1) {
2953 if (sctx->gs_shader.current)
2954 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2955 else
2956 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2957 }
2958
2959 return true;
2960 }
2961
2962 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2963 {
2964 unsigned current_scratch_buffer_size =
2965 si_get_current_scratch_buffer_size(sctx);
2966 unsigned scratch_bytes_per_wave =
2967 si_get_max_scratch_bytes_per_wave(sctx);
2968 unsigned scratch_needed_size = scratch_bytes_per_wave *
2969 sctx->scratch_waves;
2970 unsigned spi_tmpring_size;
2971
2972 if (scratch_needed_size > 0) {
2973 if (scratch_needed_size > current_scratch_buffer_size) {
2974 /* Create a bigger scratch buffer */
2975 r600_resource_reference(&sctx->scratch_buffer, NULL);
2976
2977 sctx->scratch_buffer = (struct r600_resource*)
2978 si_aligned_buffer_create(&sctx->screen->b,
2979 R600_RESOURCE_FLAG_UNMAPPABLE,
2980 PIPE_USAGE_DEFAULT,
2981 scratch_needed_size, 256);
2982 if (!sctx->scratch_buffer)
2983 return false;
2984
2985 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2986 si_context_add_resource_size(&sctx->b.b,
2987 &sctx->scratch_buffer->b.b);
2988 }
2989
2990 if (!si_update_scratch_relocs(sctx))
2991 return false;
2992 }
2993
2994 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2995 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2996 "scratch size should already be aligned correctly.");
2997
2998 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2999 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3000 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3001 sctx->spi_tmpring_size = spi_tmpring_size;
3002 si_mark_atom_dirty(sctx, &sctx->scratch_state);
3003 }
3004 return true;
3005 }
3006
3007 static void si_init_tess_factor_ring(struct si_context *sctx)
3008 {
3009 assert(!sctx->tess_rings);
3010
3011 /* The address must be aligned to 2^19, because the shader only
3012 * receives the high 13 bits.
3013 */
3014 sctx->tess_rings = si_aligned_buffer_create(sctx->b.b.screen,
3015 R600_RESOURCE_FLAG_32BIT,
3016 PIPE_USAGE_DEFAULT,
3017 sctx->screen->tess_offchip_ring_size +
3018 sctx->screen->tess_factor_ring_size,
3019 1 << 19);
3020 if (!sctx->tess_rings)
3021 return;
3022
3023 si_init_config_add_vgt_flush(sctx);
3024
3025 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_rings),
3026 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3027
3028 uint64_t factor_va = r600_resource(sctx->tess_rings)->gpu_address +
3029 sctx->screen->tess_offchip_ring_size;
3030
3031 /* Append these registers to the init config state. */
3032 if (sctx->b.chip_class >= CIK) {
3033 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3034 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3035 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3036 factor_va >> 8);
3037 if (sctx->b.chip_class >= GFX9)
3038 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3039 S_030944_BASE_HI(factor_va >> 40));
3040 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3041 sctx->screen->vgt_hs_offchip_param);
3042 } else {
3043 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3044 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3045 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3046 factor_va >> 8);
3047 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3048 sctx->screen->vgt_hs_offchip_param);
3049 }
3050
3051 /* Flush the context to re-emit the init_config state.
3052 * This is done only once in a lifetime of a context.
3053 */
3054 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3055 sctx->b.initial_gfx_cs_size = 0; /* force flush */
3056 si_flush_gfx_cs(sctx, PIPE_FLUSH_ASYNC, NULL);
3057 }
3058
3059 /**
3060 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
3061 * VS passes its outputs to TES directly, so the fixed-function shader only
3062 * has to write TESSOUTER and TESSINNER.
3063 */
3064 static void si_generate_fixed_func_tcs(struct si_context *sctx)
3065 {
3066 struct ureg_src outer, inner;
3067 struct ureg_dst tessouter, tessinner;
3068 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
3069
3070 if (!ureg)
3071 return; /* if we get here, we're screwed */
3072
3073 assert(!sctx->fixed_func_tcs_shader.cso);
3074
3075 outer = ureg_DECL_system_value(ureg,
3076 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
3077 inner = ureg_DECL_system_value(ureg,
3078 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
3079
3080 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
3081 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
3082
3083 ureg_MOV(ureg, tessouter, outer);
3084 ureg_MOV(ureg, tessinner, inner);
3085 ureg_END(ureg);
3086
3087 sctx->fixed_func_tcs_shader.cso =
3088 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
3089 }
3090
3091 static void si_update_vgt_shader_config(struct si_context *sctx)
3092 {
3093 /* Calculate the index of the config.
3094 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3095 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3096 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3097
3098 if (!*pm4) {
3099 uint32_t stages = 0;
3100
3101 *pm4 = CALLOC_STRUCT(si_pm4_state);
3102
3103 if (sctx->tes_shader.cso) {
3104 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3105 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3106
3107 if (sctx->gs_shader.cso)
3108 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3109 S_028B54_GS_EN(1) |
3110 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3111 else
3112 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3113 } else if (sctx->gs_shader.cso) {
3114 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3115 S_028B54_GS_EN(1) |
3116 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3117 }
3118
3119 if (sctx->b.chip_class >= GFX9)
3120 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3121
3122 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3123 }
3124 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3125 }
3126
3127 bool si_update_shaders(struct si_context *sctx)
3128 {
3129 struct pipe_context *ctx = (struct pipe_context*)sctx;
3130 struct si_compiler_ctx_state compiler_state;
3131 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3132 struct si_shader *old_vs = si_get_vs_state(sctx);
3133 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3134 struct si_shader *old_ps = sctx->ps_shader.current;
3135 unsigned old_spi_shader_col_format =
3136 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3137 int r;
3138
3139 compiler_state.tm = sctx->tm;
3140 compiler_state.debug = sctx->debug;
3141 compiler_state.is_debug_context = sctx->is_debug;
3142
3143 /* Update stages before GS. */
3144 if (sctx->tes_shader.cso) {
3145 if (!sctx->tess_rings) {
3146 si_init_tess_factor_ring(sctx);
3147 if (!sctx->tess_rings)
3148 return false;
3149 }
3150
3151 /* VS as LS */
3152 if (sctx->b.chip_class <= VI) {
3153 r = si_shader_select(ctx, &sctx->vs_shader,
3154 &compiler_state);
3155 if (r)
3156 return false;
3157 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3158 }
3159
3160 if (sctx->tcs_shader.cso) {
3161 r = si_shader_select(ctx, &sctx->tcs_shader,
3162 &compiler_state);
3163 if (r)
3164 return false;
3165 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3166 } else {
3167 if (!sctx->fixed_func_tcs_shader.cso) {
3168 si_generate_fixed_func_tcs(sctx);
3169 if (!sctx->fixed_func_tcs_shader.cso)
3170 return false;
3171 }
3172
3173 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3174 &compiler_state);
3175 if (r)
3176 return false;
3177 si_pm4_bind_state(sctx, hs,
3178 sctx->fixed_func_tcs_shader.current->pm4);
3179 }
3180
3181 if (sctx->gs_shader.cso) {
3182 /* TES as ES */
3183 if (sctx->b.chip_class <= VI) {
3184 r = si_shader_select(ctx, &sctx->tes_shader,
3185 &compiler_state);
3186 if (r)
3187 return false;
3188 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3189 }
3190 } else {
3191 /* TES as VS */
3192 r = si_shader_select(ctx, &sctx->tes_shader,
3193 &compiler_state);
3194 if (r)
3195 return false;
3196 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3197 }
3198 } else if (sctx->gs_shader.cso) {
3199 if (sctx->b.chip_class <= VI) {
3200 /* VS as ES */
3201 r = si_shader_select(ctx, &sctx->vs_shader,
3202 &compiler_state);
3203 if (r)
3204 return false;
3205 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3206
3207 si_pm4_bind_state(sctx, ls, NULL);
3208 si_pm4_bind_state(sctx, hs, NULL);
3209 }
3210 } else {
3211 /* VS as VS */
3212 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3213 if (r)
3214 return false;
3215 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3216 si_pm4_bind_state(sctx, ls, NULL);
3217 si_pm4_bind_state(sctx, hs, NULL);
3218 }
3219
3220 /* Update GS. */
3221 if (sctx->gs_shader.cso) {
3222 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3223 if (r)
3224 return false;
3225 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3226 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3227
3228 if (!si_update_gs_ring_buffers(sctx))
3229 return false;
3230 } else {
3231 si_pm4_bind_state(sctx, gs, NULL);
3232 if (sctx->b.chip_class <= VI)
3233 si_pm4_bind_state(sctx, es, NULL);
3234 }
3235
3236 si_update_vgt_shader_config(sctx);
3237
3238 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3239 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3240
3241 if (sctx->ps_shader.cso) {
3242 unsigned db_shader_control;
3243
3244 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3245 if (r)
3246 return false;
3247 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3248
3249 db_shader_control =
3250 sctx->ps_shader.cso->db_shader_control |
3251 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3252
3253 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3254 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3255 sctx->flatshade != rs->flatshade) {
3256 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3257 sctx->flatshade = rs->flatshade;
3258 si_mark_atom_dirty(sctx, &sctx->spi_map);
3259 }
3260
3261 if (sctx->screen->rbplus_allowed &&
3262 si_pm4_state_changed(sctx, ps) &&
3263 (!old_ps ||
3264 old_spi_shader_col_format !=
3265 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3266 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3267
3268 if (sctx->ps_db_shader_control != db_shader_control) {
3269 sctx->ps_db_shader_control = db_shader_control;
3270 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3271 if (sctx->screen->dpbb_allowed)
3272 si_mark_atom_dirty(sctx, &sctx->dpbb_state);
3273 }
3274
3275 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3276 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3277 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3278
3279 if (sctx->b.chip_class == SI)
3280 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3281
3282 if (sctx->framebuffer.nr_samples <= 1)
3283 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3284 }
3285 }
3286
3287 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3288 si_pm4_state_enabled_and_changed(sctx, hs) ||
3289 si_pm4_state_enabled_and_changed(sctx, es) ||
3290 si_pm4_state_enabled_and_changed(sctx, gs) ||
3291 si_pm4_state_enabled_and_changed(sctx, vs) ||
3292 si_pm4_state_enabled_and_changed(sctx, ps)) {
3293 if (!si_update_spi_tmpring_size(sctx))
3294 return false;
3295 }
3296
3297 if (sctx->b.chip_class >= CIK) {
3298 if (si_pm4_state_enabled_and_changed(sctx, ls))
3299 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3300 else if (!sctx->queued.named.ls)
3301 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3302
3303 if (si_pm4_state_enabled_and_changed(sctx, hs))
3304 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3305 else if (!sctx->queued.named.hs)
3306 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3307
3308 if (si_pm4_state_enabled_and_changed(sctx, es))
3309 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3310 else if (!sctx->queued.named.es)
3311 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3312
3313 if (si_pm4_state_enabled_and_changed(sctx, gs))
3314 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3315 else if (!sctx->queued.named.gs)
3316 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3317
3318 if (si_pm4_state_enabled_and_changed(sctx, vs))
3319 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3320 else if (!sctx->queued.named.vs)
3321 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3322
3323 if (si_pm4_state_enabled_and_changed(sctx, ps))
3324 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3325 else if (!sctx->queued.named.ps)
3326 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3327 }
3328
3329 sctx->do_update_shaders = false;
3330 return true;
3331 }
3332
3333 static void si_emit_scratch_state(struct si_context *sctx,
3334 struct r600_atom *atom)
3335 {
3336 struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
3337
3338 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3339 sctx->spi_tmpring_size);
3340
3341 if (sctx->scratch_buffer) {
3342 radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
3343 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3344 RADEON_PRIO_SCRATCH_BUFFER);
3345 }
3346 }
3347
3348 void *si_get_blit_vs(struct si_context *sctx, enum blitter_attrib_type type,
3349 unsigned num_layers)
3350 {
3351 struct pipe_context *pipe = &sctx->b.b;
3352 unsigned vs_blit_property;
3353 void **vs;
3354
3355 switch (type) {
3356 case UTIL_BLITTER_ATTRIB_NONE:
3357 vs = num_layers > 1 ? &sctx->vs_blit_pos_layered :
3358 &sctx->vs_blit_pos;
3359 vs_blit_property = SI_VS_BLIT_SGPRS_POS;
3360 break;
3361 case UTIL_BLITTER_ATTRIB_COLOR:
3362 vs = num_layers > 1 ? &sctx->vs_blit_color_layered :
3363 &sctx->vs_blit_color;
3364 vs_blit_property = SI_VS_BLIT_SGPRS_POS_COLOR;
3365 break;
3366 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
3367 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
3368 assert(num_layers == 1);
3369 vs = &sctx->vs_blit_texcoord;
3370 vs_blit_property = SI_VS_BLIT_SGPRS_POS_TEXCOORD;
3371 break;
3372 default:
3373 assert(0);
3374 return NULL;
3375 }
3376 if (*vs)
3377 return *vs;
3378
3379 struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
3380 if (!ureg)
3381 return NULL;
3382
3383 /* Tell the shader to load VS inputs from SGPRs: */
3384 ureg_property(ureg, TGSI_PROPERTY_VS_BLIT_SGPRS, vs_blit_property);
3385 ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, true);
3386
3387 /* This is just a pass-through shader with 1-3 MOV instructions. */
3388 ureg_MOV(ureg,
3389 ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0),
3390 ureg_DECL_vs_input(ureg, 0));
3391
3392 if (type != UTIL_BLITTER_ATTRIB_NONE) {
3393 ureg_MOV(ureg,
3394 ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 0),
3395 ureg_DECL_vs_input(ureg, 1));
3396 }
3397
3398 if (num_layers > 1) {
3399 struct ureg_src instance_id =
3400 ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
3401 struct ureg_dst layer =
3402 ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
3403
3404 ureg_MOV(ureg, ureg_writemask(layer, TGSI_WRITEMASK_X),
3405 ureg_scalar(instance_id, TGSI_SWIZZLE_X));
3406 }
3407 ureg_END(ureg);
3408
3409 *vs = ureg_create_shader_and_destroy(ureg, pipe);
3410 return *vs;
3411 }
3412
3413 void si_init_shader_functions(struct si_context *sctx)
3414 {
3415 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3416 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3417 si_emit_scratch_state);
3418
3419 sctx->b.b.create_vs_state = si_create_shader_selector;
3420 sctx->b.b.create_tcs_state = si_create_shader_selector;
3421 sctx->b.b.create_tes_state = si_create_shader_selector;
3422 sctx->b.b.create_gs_state = si_create_shader_selector;
3423 sctx->b.b.create_fs_state = si_create_shader_selector;
3424
3425 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3426 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3427 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3428 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3429 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3430
3431 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3432 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3433 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3434 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3435 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3436 }