ddd27fb8176f31985db4f98e0882fb97a3f3ddfc
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "sid.h"
27
28 #include "compiler/nir/nir_serialize.h"
29 #include "nir/tgsi_to_nir.h"
30 #include "tgsi/tgsi_parse.h"
31 #include "util/hash_table.h"
32 #include "util/crc32.h"
33 #include "util/u_async_debug.h"
34 #include "util/u_memory.h"
35 #include "util/u_prim.h"
36
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "ac_exp_param.h"
40 #include "ac_shader_util.h"
41
42 /* SHADER_CACHE */
43
44 /**
45 * Return the IR key for the shader cache.
46 */
47 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
48 unsigned char ir_sha1_cache_key[20])
49 {
50 struct blob blob;
51 unsigned ir_size;
52 void *ir_binary;
53
54 if (sel->tokens) {
55 ir_binary = sel->tokens;
56 ir_size = tgsi_num_tokens(sel->tokens) *
57 sizeof(struct tgsi_token);
58 } else {
59 assert(sel->nir);
60
61 blob_init(&blob);
62 nir_serialize(&blob, sel->nir, true);
63 ir_binary = blob.data;
64 ir_size = blob.size;
65 }
66
67 /* These settings affect the compilation, but they are not derived
68 * from the input shader IR.
69 */
70 unsigned shader_variant_flags = 0;
71
72 if (ngg)
73 shader_variant_flags |= 1 << 0;
74 if (sel->nir)
75 shader_variant_flags |= 1 << 1;
76 if (si_get_wave_size(sel->screen, sel->type, ngg, es) == 32)
77 shader_variant_flags |= 1 << 2;
78 if (sel->force_correct_derivs_after_kill)
79 shader_variant_flags |= 1 << 3;
80
81 struct mesa_sha1 ctx;
82 _mesa_sha1_init(&ctx);
83 _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
84 _mesa_sha1_update(&ctx, ir_binary, ir_size);
85 if (sel->type == PIPE_SHADER_VERTEX ||
86 sel->type == PIPE_SHADER_TESS_EVAL ||
87 sel->type == PIPE_SHADER_GEOMETRY)
88 _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so));
89 _mesa_sha1_final(&ctx, ir_sha1_cache_key);
90
91 if (sel->nir)
92 blob_finish(&blob);
93 }
94
95 /** Copy "data" to "ptr" and return the next dword following copied data. */
96 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
97 {
98 /* data may be NULL if size == 0 */
99 if (size)
100 memcpy(ptr, data, size);
101 ptr += DIV_ROUND_UP(size, 4);
102 return ptr;
103 }
104
105 /** Read data from "ptr". Return the next dword following the data. */
106 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
107 {
108 memcpy(data, ptr, size);
109 ptr += DIV_ROUND_UP(size, 4);
110 return ptr;
111 }
112
113 /**
114 * Write the size as uint followed by the data. Return the next dword
115 * following the copied data.
116 */
117 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
118 {
119 *ptr++ = size;
120 return write_data(ptr, data, size);
121 }
122
123 /**
124 * Read the size as uint followed by the data. Return both via parameters.
125 * Return the next dword following the data.
126 */
127 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
128 {
129 *size = *ptr++;
130 assert(*data == NULL);
131 if (!*size)
132 return ptr;
133 *data = malloc(*size);
134 return read_data(ptr, *data, *size);
135 }
136
137 /**
138 * Return the shader binary in a buffer. The first 4 bytes contain its size
139 * as integer.
140 */
141 static void *si_get_shader_binary(struct si_shader *shader)
142 {
143 /* There is always a size of data followed by the data itself. */
144 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
145 strlen(shader->binary.llvm_ir_string) + 1 : 0;
146
147 /* Refuse to allocate overly large buffers and guard against integer
148 * overflow. */
149 if (shader->binary.elf_size > UINT_MAX / 4 ||
150 llvm_ir_size > UINT_MAX / 4)
151 return NULL;
152
153 unsigned size =
154 4 + /* total size */
155 4 + /* CRC32 of the data below */
156 align(sizeof(shader->config), 4) +
157 align(sizeof(shader->info), 4) +
158 4 + align(shader->binary.elf_size, 4) +
159 4 + align(llvm_ir_size, 4);
160 void *buffer = CALLOC(1, size);
161 uint32_t *ptr = (uint32_t*)buffer;
162
163 if (!buffer)
164 return NULL;
165
166 *ptr++ = size;
167 ptr++; /* CRC32 is calculated at the end. */
168
169 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
170 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
171 ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size);
172 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
173 assert((char *)ptr - (char *)buffer == size);
174
175 /* Compute CRC32. */
176 ptr = (uint32_t*)buffer;
177 ptr++;
178 *ptr = util_hash_crc32(ptr + 1, size - 8);
179
180 return buffer;
181 }
182
183 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
184 {
185 uint32_t *ptr = (uint32_t*)binary;
186 uint32_t size = *ptr++;
187 uint32_t crc32 = *ptr++;
188 unsigned chunk_size;
189 unsigned elf_size;
190
191 if (util_hash_crc32(ptr, size - 8) != crc32) {
192 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
193 return false;
194 }
195
196 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
197 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
198 ptr = read_chunk(ptr, (void**)&shader->binary.elf_buffer,
199 &elf_size);
200 shader->binary.elf_size = elf_size;
201 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
202
203 return true;
204 }
205
206 /**
207 * Insert a shader into the cache. It's assumed the shader is not in the cache.
208 * Use si_shader_cache_load_shader before calling this.
209 */
210 void si_shader_cache_insert_shader(struct si_screen *sscreen,
211 unsigned char ir_sha1_cache_key[20],
212 struct si_shader *shader,
213 bool insert_into_disk_cache)
214 {
215 void *hw_binary;
216 struct hash_entry *entry;
217 uint8_t key[CACHE_KEY_SIZE];
218
219 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
220 if (entry)
221 return; /* already added */
222
223 hw_binary = si_get_shader_binary(shader);
224 if (!hw_binary)
225 return;
226
227 if (_mesa_hash_table_insert(sscreen->shader_cache,
228 mem_dup(ir_sha1_cache_key, 20),
229 hw_binary) == NULL) {
230 FREE(hw_binary);
231 return;
232 }
233
234 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
235 disk_cache_compute_key(sscreen->disk_shader_cache,
236 ir_sha1_cache_key, 20, key);
237 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
238 *((uint32_t *) hw_binary), NULL);
239 }
240 }
241
242 bool si_shader_cache_load_shader(struct si_screen *sscreen,
243 unsigned char ir_sha1_cache_key[20],
244 struct si_shader *shader)
245 {
246 struct hash_entry *entry =
247 _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
248 if (!entry) {
249 if (sscreen->disk_shader_cache) {
250 unsigned char sha1[CACHE_KEY_SIZE];
251
252 disk_cache_compute_key(sscreen->disk_shader_cache,
253 ir_sha1_cache_key, 20, sha1);
254
255 size_t binary_size;
256 uint8_t *buffer =
257 disk_cache_get(sscreen->disk_shader_cache,
258 sha1, &binary_size);
259 if (!buffer)
260 return false;
261
262 if (binary_size < sizeof(uint32_t) ||
263 *((uint32_t*)buffer) != binary_size) {
264 /* Something has gone wrong discard the item
265 * from the cache and rebuild/link from
266 * source.
267 */
268 assert(!"Invalid radeonsi shader disk cache "
269 "item!");
270
271 disk_cache_remove(sscreen->disk_shader_cache,
272 sha1);
273 free(buffer);
274
275 return false;
276 }
277
278 if (!si_load_shader_binary(shader, buffer)) {
279 free(buffer);
280 return false;
281 }
282 free(buffer);
283
284 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key,
285 shader, false);
286 } else {
287 return false;
288 }
289 } else {
290 if (!si_load_shader_binary(shader, entry->data))
291 return false;
292 }
293 p_atomic_inc(&sscreen->num_shader_cache_hits);
294 return true;
295 }
296
297 static uint32_t si_shader_cache_key_hash(const void *key)
298 {
299 /* Take the first dword of SHA1. */
300 return *(uint32_t*)key;
301 }
302
303 static bool si_shader_cache_key_equals(const void *a, const void *b)
304 {
305 /* Compare SHA1s. */
306 return memcmp(a, b, 20) == 0;
307 }
308
309 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
310 {
311 FREE((void*)entry->key);
312 FREE(entry->data);
313 }
314
315 bool si_init_shader_cache(struct si_screen *sscreen)
316 {
317 (void) simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
318 sscreen->shader_cache =
319 _mesa_hash_table_create(NULL,
320 si_shader_cache_key_hash,
321 si_shader_cache_key_equals);
322
323 return sscreen->shader_cache != NULL;
324 }
325
326 void si_destroy_shader_cache(struct si_screen *sscreen)
327 {
328 if (sscreen->shader_cache)
329 _mesa_hash_table_destroy(sscreen->shader_cache,
330 si_destroy_shader_cache_entry);
331 simple_mtx_destroy(&sscreen->shader_cache_mutex);
332 }
333
334 /* SHADER STATES */
335
336 static void si_set_tesseval_regs(struct si_screen *sscreen,
337 const struct si_shader_selector *tes,
338 struct si_pm4_state *pm4)
339 {
340 const struct tgsi_shader_info *info = &tes->info;
341 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
342 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
343 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
344 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
345 unsigned type, partitioning, topology, distribution_mode;
346
347 switch (tes_prim_mode) {
348 case PIPE_PRIM_LINES:
349 type = V_028B6C_TESS_ISOLINE;
350 break;
351 case PIPE_PRIM_TRIANGLES:
352 type = V_028B6C_TESS_TRIANGLE;
353 break;
354 case PIPE_PRIM_QUADS:
355 type = V_028B6C_TESS_QUAD;
356 break;
357 default:
358 assert(0);
359 return;
360 }
361
362 switch (tes_spacing) {
363 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
364 partitioning = V_028B6C_PART_FRAC_ODD;
365 break;
366 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
367 partitioning = V_028B6C_PART_FRAC_EVEN;
368 break;
369 case PIPE_TESS_SPACING_EQUAL:
370 partitioning = V_028B6C_PART_INTEGER;
371 break;
372 default:
373 assert(0);
374 return;
375 }
376
377 if (tes_point_mode)
378 topology = V_028B6C_OUTPUT_POINT;
379 else if (tes_prim_mode == PIPE_PRIM_LINES)
380 topology = V_028B6C_OUTPUT_LINE;
381 else if (tes_vertex_order_cw)
382 /* for some reason, this must be the other way around */
383 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
384 else
385 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
386
387 if (sscreen->info.has_distributed_tess) {
388 if (sscreen->info.family == CHIP_FIJI ||
389 sscreen->info.family >= CHIP_POLARIS10)
390 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
391 else
392 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
393 } else
394 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
395
396 assert(pm4->shader);
397 pm4->shader->vgt_tf_param = S_028B6C_TYPE(type) |
398 S_028B6C_PARTITIONING(partitioning) |
399 S_028B6C_TOPOLOGY(topology) |
400 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
401 }
402
403 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
404 * whether the "fractional odd" tessellation spacing is used.
405 *
406 * Possible VGT configurations and which state should set the register:
407 *
408 * Reg set in | VGT shader configuration | Value
409 * ------------------------------------------------------
410 * VS as VS | VS | 30
411 * VS as ES | ES -> GS -> VS | 30
412 * TES as VS | LS -> HS -> VS | 14 or 30
413 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
414 *
415 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
416 */
417 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
418 struct si_shader_selector *sel,
419 struct si_shader *shader,
420 struct si_pm4_state *pm4)
421 {
422 unsigned type = sel->type;
423
424 if (sscreen->info.family < CHIP_POLARIS10 ||
425 sscreen->info.chip_class >= GFX10)
426 return;
427
428 /* VS as VS, or VS as ES: */
429 if ((type == PIPE_SHADER_VERTEX &&
430 (!shader ||
431 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
432 /* TES as VS, or TES as ES: */
433 type == PIPE_SHADER_TESS_EVAL) {
434 unsigned vtx_reuse_depth = 30;
435
436 if (type == PIPE_SHADER_TESS_EVAL &&
437 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
438 PIPE_TESS_SPACING_FRACTIONAL_ODD)
439 vtx_reuse_depth = 14;
440
441 assert(pm4->shader);
442 pm4->shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
443 }
444 }
445
446 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
447 {
448 if (shader->pm4)
449 si_pm4_clear_state(shader->pm4);
450 else
451 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
452
453 if (shader->pm4) {
454 shader->pm4->shader = shader;
455 return shader->pm4;
456 } else {
457 fprintf(stderr, "radeonsi: Failed to create pm4 state.\n");
458 return NULL;
459 }
460 }
461
462 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
463 {
464 /* Add the pointer to VBO descriptors. */
465 return num_always_on_user_sgprs + 1;
466 }
467
468 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
469 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen,
470 struct si_shader *shader, bool legacy_vs_prim_id)
471 {
472 assert(shader->selector->type == PIPE_SHADER_VERTEX ||
473 (shader->previous_stage_sel &&
474 shader->previous_stage_sel->type == PIPE_SHADER_VERTEX));
475
476 /* GFX6-9 LS (VertexID, RelAutoindex, InstanceID / StepRate0(==1), ...).
477 * GFX6-9 ES,VS (VertexID, InstanceID / StepRate0(==1), VSPrimID, ...)
478 * GFX10 LS (VertexID, RelAutoindex, UserVGPR1, InstanceID).
479 * GFX10 ES,VS (VertexID, UserVGPR0, UserVGPR1 or VSPrimID, UserVGPR2 or InstanceID)
480 */
481 bool is_ls = shader->selector->type == PIPE_SHADER_TESS_CTRL || shader->key.as_ls;
482
483 if (sscreen->info.chip_class >= GFX10 && shader->info.uses_instanceid)
484 return 3;
485 else if ((is_ls && shader->info.uses_instanceid) || legacy_vs_prim_id)
486 return 2;
487 else if (is_ls || shader->info.uses_instanceid)
488 return 1;
489 else
490 return 0;
491 }
492
493 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
494 {
495 struct si_pm4_state *pm4;
496 uint64_t va;
497
498 assert(sscreen->info.chip_class <= GFX8);
499
500 pm4 = si_get_shader_pm4_state(shader);
501 if (!pm4)
502 return;
503
504 va = shader->bo->gpu_address;
505 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
506
507 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
508 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
509
510 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
511 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
512 S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
513 S_00B528_DX10_CLAMP(1) |
514 S_00B528_FLOAT_MODE(shader->config.float_mode);
515 shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
516 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
517 }
518
519 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
520 {
521 struct si_pm4_state *pm4;
522 uint64_t va;
523
524 pm4 = si_get_shader_pm4_state(shader);
525 if (!pm4)
526 return;
527
528 va = shader->bo->gpu_address;
529 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
530
531 if (sscreen->info.chip_class >= GFX9) {
532 if (sscreen->info.chip_class >= GFX10) {
533 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
534 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
535 } else {
536 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
537 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
538 }
539
540 unsigned num_user_sgprs =
541 si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
542
543 shader->config.rsrc2 =
544 S_00B42C_USER_SGPR(num_user_sgprs) |
545 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
546
547 if (sscreen->info.chip_class >= GFX10)
548 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
549 else
550 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
551 } else {
552 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
553 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
554
555 shader->config.rsrc2 =
556 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
557 S_00B42C_OC_LDS_EN(1) |
558 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
559 }
560
561 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
562 S_00B428_VGPRS((shader->config.num_vgprs - 1) /
563 (sscreen->ge_wave_size == 32 ? 8 : 4)) |
564 (sscreen->info.chip_class <= GFX9 ?
565 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) : 0) |
566 S_00B428_DX10_CLAMP(1) |
567 S_00B428_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
568 S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) |
569 S_00B428_FLOAT_MODE(shader->config.float_mode) |
570 S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9 ?
571 si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0));
572
573 if (sscreen->info.chip_class <= GFX8) {
574 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
575 shader->config.rsrc2);
576 }
577 }
578
579 static void si_emit_shader_es(struct si_context *sctx)
580 {
581 struct si_shader *shader = sctx->queued.named.es->shader;
582 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
583
584 if (!shader)
585 return;
586
587 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
588 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
589 shader->selector->esgs_itemsize / 4);
590
591 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
592 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
593 SI_TRACKED_VGT_TF_PARAM,
594 shader->vgt_tf_param);
595
596 if (shader->vgt_vertex_reuse_block_cntl)
597 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
598 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
599 shader->vgt_vertex_reuse_block_cntl);
600
601 if (initial_cdw != sctx->gfx_cs->current.cdw)
602 sctx->context_roll = true;
603 }
604
605 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
606 {
607 struct si_pm4_state *pm4;
608 unsigned num_user_sgprs;
609 unsigned vgpr_comp_cnt;
610 uint64_t va;
611 unsigned oc_lds_en;
612
613 assert(sscreen->info.chip_class <= GFX8);
614
615 pm4 = si_get_shader_pm4_state(shader);
616 if (!pm4)
617 return;
618
619 pm4->atom.emit = si_emit_shader_es;
620 va = shader->bo->gpu_address;
621 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
622
623 if (shader->selector->type == PIPE_SHADER_VERTEX) {
624 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
625 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
626 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
627 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
628 num_user_sgprs = SI_TES_NUM_USER_SGPR;
629 } else
630 unreachable("invalid shader selector type");
631
632 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
633
634 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
635 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
636 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
637 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
638 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
639 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
640 S_00B328_DX10_CLAMP(1) |
641 S_00B328_FLOAT_MODE(shader->config.float_mode));
642 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
643 S_00B32C_USER_SGPR(num_user_sgprs) |
644 S_00B32C_OC_LDS_EN(oc_lds_en) |
645 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
646
647 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
648 si_set_tesseval_regs(sscreen, shader->selector, pm4);
649
650 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
651 }
652
653 void gfx9_get_gs_info(struct si_shader_selector *es,
654 struct si_shader_selector *gs,
655 struct gfx9_gs_info *out)
656 {
657 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
658 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
659 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
660 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
661
662 /* All these are in dwords: */
663 /* We can't allow using the whole LDS, because GS waves compete with
664 * other shader stages for LDS space. */
665 const unsigned max_lds_size = 8 * 1024;
666 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
667 unsigned esgs_lds_size;
668
669 /* All these are per subgroup: */
670 const unsigned max_out_prims = 32 * 1024;
671 const unsigned max_es_verts = 255;
672 const unsigned ideal_gs_prims = 64;
673 unsigned max_gs_prims, gs_prims;
674 unsigned min_es_verts, es_verts, worst_case_es_verts;
675
676 if (uses_adjacency || gs_num_invocations > 1)
677 max_gs_prims = 127 / gs_num_invocations;
678 else
679 max_gs_prims = 255;
680
681 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
682 * Make sure we don't go over the maximum value.
683 */
684 if (gs->gs_max_out_vertices > 0) {
685 max_gs_prims = MIN2(max_gs_prims,
686 max_out_prims /
687 (gs->gs_max_out_vertices * gs_num_invocations));
688 }
689 assert(max_gs_prims > 0);
690
691 /* If the primitive has adjacency, halve the number of vertices
692 * that will be reused in multiple primitives.
693 */
694 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
695
696 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
697 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
698
699 /* Compute ESGS LDS size based on the worst case number of ES vertices
700 * needed to create the target number of GS prims per subgroup.
701 */
702 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
703
704 /* If total LDS usage is too big, refactor partitions based on ratio
705 * of ESGS item sizes.
706 */
707 if (esgs_lds_size > max_lds_size) {
708 /* Our target GS Prims Per Subgroup was too large. Calculate
709 * the maximum number of GS Prims Per Subgroup that will fit
710 * into LDS, capped by the maximum that the hardware can support.
711 */
712 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
713 max_gs_prims);
714 assert(gs_prims > 0);
715 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
716 max_es_verts);
717
718 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
719 assert(esgs_lds_size <= max_lds_size);
720 }
721
722 /* Now calculate remaining ESGS information. */
723 if (esgs_lds_size)
724 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
725 else
726 es_verts = max_es_verts;
727
728 /* Vertices for adjacency primitives are not always reused, so restore
729 * it for ES_VERTS_PER_SUBGRP.
730 */
731 min_es_verts = gs->gs_input_verts_per_prim;
732
733 /* For normal primitives, the VGT only checks if they are past the ES
734 * verts per subgroup after allocating a full GS primitive and if they
735 * are, kick off a new subgroup. But if those additional ES verts are
736 * unique (e.g. not reused) we need to make sure there is enough LDS
737 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
738 */
739 es_verts -= min_es_verts - 1;
740
741 out->es_verts_per_subgroup = es_verts;
742 out->gs_prims_per_subgroup = gs_prims;
743 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
744 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
745 gs->gs_max_out_vertices;
746 out->esgs_ring_size = 4 * esgs_lds_size;
747
748 assert(out->max_prims_per_subgroup <= max_out_prims);
749 }
750
751 static void si_emit_shader_gs(struct si_context *sctx)
752 {
753 struct si_shader *shader = sctx->queued.named.gs->shader;
754 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
755
756 if (!shader)
757 return;
758
759 /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
760 * R_028A68_VGT_GSVS_RING_OFFSET_3 */
761 radeon_opt_set_context_reg3(sctx, R_028A60_VGT_GSVS_RING_OFFSET_1,
762 SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
763 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1,
764 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
765 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3);
766
767 /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
768 radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
769 SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
770 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
771
772 /* R_028B38_VGT_GS_MAX_VERT_OUT */
773 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT,
774 SI_TRACKED_VGT_GS_MAX_VERT_OUT,
775 shader->ctx_reg.gs.vgt_gs_max_vert_out);
776
777 /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
778 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
779 radeon_opt_set_context_reg4(sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE,
780 SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
781 shader->ctx_reg.gs.vgt_gs_vert_itemsize,
782 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
783 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2,
784 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
785
786 /* R_028B90_VGT_GS_INSTANCE_CNT */
787 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT,
788 SI_TRACKED_VGT_GS_INSTANCE_CNT,
789 shader->ctx_reg.gs.vgt_gs_instance_cnt);
790
791 if (sctx->chip_class >= GFX9) {
792 /* R_028A44_VGT_GS_ONCHIP_CNTL */
793 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
794 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
795 shader->ctx_reg.gs.vgt_gs_onchip_cntl);
796 /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
797 radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
798 SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
799 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
800 /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
801 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
802 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
803 shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
804
805 if (shader->key.part.gs.es->type == PIPE_SHADER_TESS_EVAL)
806 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
807 SI_TRACKED_VGT_TF_PARAM,
808 shader->vgt_tf_param);
809 if (shader->vgt_vertex_reuse_block_cntl)
810 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
811 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
812 shader->vgt_vertex_reuse_block_cntl);
813 }
814
815 if (initial_cdw != sctx->gfx_cs->current.cdw)
816 sctx->context_roll = true;
817 }
818
819 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
820 {
821 struct si_shader_selector *sel = shader->selector;
822 const ubyte *num_components = sel->info.num_stream_output_components;
823 unsigned gs_num_invocations = sel->gs_num_invocations;
824 struct si_pm4_state *pm4;
825 uint64_t va;
826 unsigned max_stream = sel->max_gs_stream;
827 unsigned offset;
828
829 pm4 = si_get_shader_pm4_state(shader);
830 if (!pm4)
831 return;
832
833 pm4->atom.emit = si_emit_shader_gs;
834
835 offset = num_components[0] * sel->gs_max_out_vertices;
836 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
837
838 if (max_stream >= 1)
839 offset += num_components[1] * sel->gs_max_out_vertices;
840 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
841
842 if (max_stream >= 2)
843 offset += num_components[2] * sel->gs_max_out_vertices;
844 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
845
846 if (max_stream >= 3)
847 offset += num_components[3] * sel->gs_max_out_vertices;
848 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
849
850 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
851 assert(offset < (1 << 15));
852
853 shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->gs_max_out_vertices;
854
855 shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
856 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 1) ? num_components[1] : 0;
857 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 2) ? num_components[2] : 0;
858 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 3) ? num_components[3] : 0;
859
860 shader->ctx_reg.gs.vgt_gs_instance_cnt = S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
861 S_028B90_ENABLE(gs_num_invocations > 0);
862
863 va = shader->bo->gpu_address;
864 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
865
866 if (sscreen->info.chip_class >= GFX9) {
867 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
868 unsigned es_type = shader->key.part.gs.es->type;
869 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
870
871 if (es_type == PIPE_SHADER_VERTEX) {
872 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
873 } else if (es_type == PIPE_SHADER_TESS_EVAL)
874 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
875 else
876 unreachable("invalid shader selector type");
877
878 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
879 * VGPR[0:4] are always loaded.
880 */
881 if (sel->info.uses_invocationid)
882 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
883 else if (sel->info.uses_primid)
884 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
885 else if (input_prim >= PIPE_PRIM_TRIANGLES)
886 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
887 else
888 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
889
890 unsigned num_user_sgprs;
891 if (es_type == PIPE_SHADER_VERTEX)
892 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
893 else
894 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
895
896 if (sscreen->info.chip_class >= GFX10) {
897 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
898 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
899 } else {
900 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
901 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
902 }
903
904 uint32_t rsrc1 =
905 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
906 S_00B228_DX10_CLAMP(1) |
907 S_00B228_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
908 S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) |
909 S_00B228_FLOAT_MODE(shader->config.float_mode) |
910 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
911 uint32_t rsrc2 =
912 S_00B22C_USER_SGPR(num_user_sgprs) |
913 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
914 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
915 S_00B22C_LDS_SIZE(shader->config.lds_size) |
916 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
917
918 if (sscreen->info.chip_class >= GFX10) {
919 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
920 } else {
921 rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8);
922 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
923 }
924
925 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
926 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
927
928 shader->ctx_reg.gs.vgt_gs_onchip_cntl =
929 S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
930 S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
931 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
932 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
933 S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
934 shader->ctx_reg.gs.vgt_esgs_ring_itemsize =
935 shader->key.part.gs.es->esgs_itemsize / 4;
936
937 if (es_type == PIPE_SHADER_TESS_EVAL)
938 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
939
940 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
941 NULL, pm4);
942 } else {
943 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
944 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
945
946 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
947 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
948 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
949 S_00B228_DX10_CLAMP(1) |
950 S_00B228_FLOAT_MODE(shader->config.float_mode));
951 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
952 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
953 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
954 }
955 }
956
957 /* Common tail code for NGG primitive shaders. */
958 static void gfx10_emit_shader_ngg_tail(struct si_context *sctx,
959 struct si_shader *shader,
960 unsigned initial_cdw)
961 {
962 radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
963 SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
964 shader->ctx_reg.ngg.ge_max_output_per_subgroup);
965 radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL,
966 SI_TRACKED_GE_NGG_SUBGRP_CNTL,
967 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl);
968 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN,
969 SI_TRACKED_VGT_PRIMITIVEID_EN,
970 shader->ctx_reg.ngg.vgt_primitiveid_en);
971 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
972 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
973 shader->ctx_reg.ngg.vgt_gs_onchip_cntl);
974 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT,
975 SI_TRACKED_VGT_GS_INSTANCE_CNT,
976 shader->ctx_reg.ngg.vgt_gs_instance_cnt);
977 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
978 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
979 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize);
980 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG,
981 SI_TRACKED_SPI_VS_OUT_CONFIG,
982 shader->ctx_reg.ngg.spi_vs_out_config);
983 radeon_opt_set_context_reg2(sctx, R_028708_SPI_SHADER_IDX_FORMAT,
984 SI_TRACKED_SPI_SHADER_IDX_FORMAT,
985 shader->ctx_reg.ngg.spi_shader_idx_format,
986 shader->ctx_reg.ngg.spi_shader_pos_format);
987 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL,
988 SI_TRACKED_PA_CL_VTE_CNTL,
989 shader->ctx_reg.ngg.pa_cl_vte_cntl);
990 radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL,
991 SI_TRACKED_PA_CL_NGG_CNTL,
992 shader->ctx_reg.ngg.pa_cl_ngg_cntl);
993
994 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
995 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS,
996 shader->pa_cl_vs_out_cntl,
997 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
998
999 if (initial_cdw != sctx->gfx_cs->current.cdw)
1000 sctx->context_roll = true;
1001 }
1002
1003 static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx)
1004 {
1005 struct si_shader *shader = sctx->queued.named.gs->shader;
1006 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1007
1008 if (!shader)
1009 return;
1010
1011 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1012 }
1013
1014 static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx)
1015 {
1016 struct si_shader *shader = sctx->queued.named.gs->shader;
1017 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1018
1019 if (!shader)
1020 return;
1021
1022 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
1023 SI_TRACKED_VGT_TF_PARAM,
1024 shader->vgt_tf_param);
1025
1026 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1027 }
1028
1029 static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx)
1030 {
1031 struct si_shader *shader = sctx->queued.named.gs->shader;
1032 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1033
1034 if (!shader)
1035 return;
1036
1037 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT,
1038 SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1039 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1040
1041 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1042 }
1043
1044 static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx)
1045 {
1046 struct si_shader *shader = sctx->queued.named.gs->shader;
1047 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1048
1049 if (!shader)
1050 return;
1051
1052 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT,
1053 SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1054 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1055 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
1056 SI_TRACKED_VGT_TF_PARAM,
1057 shader->vgt_tf_param);
1058
1059 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1060 }
1061
1062 unsigned si_get_input_prim(const struct si_shader_selector *gs)
1063 {
1064 if (gs->type == PIPE_SHADER_GEOMETRY)
1065 return gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
1066
1067 if (gs->type == PIPE_SHADER_TESS_EVAL) {
1068 if (gs->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1069 return PIPE_PRIM_POINTS;
1070 if (gs->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
1071 return PIPE_PRIM_LINES;
1072 return PIPE_PRIM_TRIANGLES;
1073 }
1074
1075 /* TODO: Set this correctly if the primitive type is set in the shader key. */
1076 return PIPE_PRIM_TRIANGLES; /* worst case for all callers */
1077 }
1078
1079 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel, bool ngg)
1080 {
1081 bool misc_vec_ena =
1082 sel->info.writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1083 sel->info.writes_layer || sel->info.writes_viewport_index;
1084 return S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
1085 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1086 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
1087 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1088 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1089 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
1090 }
1091
1092 /**
1093 * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1094 * in NGG mode.
1095 */
1096 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1097 {
1098 const struct si_shader_selector *gs_sel = shader->selector;
1099 const struct tgsi_shader_info *gs_info = &gs_sel->info;
1100 enum pipe_shader_type gs_type = shader->selector->type;
1101 const struct si_shader_selector *es_sel =
1102 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1103 const struct tgsi_shader_info *es_info = &es_sel->info;
1104 enum pipe_shader_type es_type = es_sel->type;
1105 unsigned num_user_sgprs;
1106 unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1107 uint64_t va;
1108 unsigned window_space =
1109 gs_info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1110 bool es_enable_prim_id = shader->key.mono.u.vs_export_prim_id || es_info->uses_primid;
1111 unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1112 unsigned input_prim = si_get_input_prim(gs_sel);
1113 bool break_wave_at_eoi = false;
1114 struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader);
1115 if (!pm4)
1116 return;
1117
1118 if (es_type == PIPE_SHADER_TESS_EVAL) {
1119 pm4->atom.emit = gs_type == PIPE_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs
1120 : gfx10_emit_shader_ngg_tess_nogs;
1121 } else {
1122 pm4->atom.emit = gs_type == PIPE_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs
1123 : gfx10_emit_shader_ngg_notess_nogs;
1124 }
1125
1126 va = shader->bo->gpu_address;
1127 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1128
1129 if (es_type == PIPE_SHADER_VERTEX) {
1130 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1131
1132 if (es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1133 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
1134 es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1135 } else {
1136 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
1137 }
1138 } else {
1139 assert(es_type == PIPE_SHADER_TESS_EVAL);
1140 es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1141 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
1142
1143 if (es_enable_prim_id || gs_info->uses_primid)
1144 break_wave_at_eoi = true;
1145 }
1146
1147 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1148 * VGPR[0:4] are always loaded.
1149 *
1150 * Vertex shaders always need to load VGPR3, because they need to
1151 * pass edge flags for decomposed primitives (such as quads) to the PA
1152 * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1153 */
1154 if (gs_info->uses_invocationid || gs_type == PIPE_SHADER_VERTEX)
1155 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1156 else if (gs_info->uses_primid)
1157 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1158 else if (input_prim >= PIPE_PRIM_TRIANGLES)
1159 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1160 else
1161 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1162
1163 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1164 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
1165 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1166 S_00B228_VGPRS((shader->config.num_vgprs - 1) /
1167 (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1168 S_00B228_FLOAT_MODE(shader->config.float_mode) |
1169 S_00B228_DX10_CLAMP(1) |
1170 S_00B228_MEM_ORDERED(1) |
1171 S_00B228_WGP_MODE(1) |
1172 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1173 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1174 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1175 S_00B22C_USER_SGPR(num_user_sgprs) |
1176 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1177 S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1178 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
1179 S_00B22C_LDS_SIZE(shader->config.lds_size));
1180
1181 nparams = MAX2(shader->info.nr_param_exports, 1);
1182 shader->ctx_reg.ngg.spi_vs_out_config =
1183 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
1184 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1185
1186 shader->ctx_reg.ngg.spi_shader_idx_format =
1187 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP);
1188 shader->ctx_reg.ngg.spi_shader_pos_format =
1189 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1190 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
1191 V_02870C_SPI_SHADER_4COMP :
1192 V_02870C_SPI_SHADER_NONE) |
1193 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
1194 V_02870C_SPI_SHADER_4COMP :
1195 V_02870C_SPI_SHADER_NONE) |
1196 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
1197 V_02870C_SPI_SHADER_4COMP :
1198 V_02870C_SPI_SHADER_NONE);
1199
1200 shader->ctx_reg.ngg.vgt_primitiveid_en =
1201 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
1202 S_028A84_NGG_DISABLE_PROVOK_REUSE(es_enable_prim_id);
1203
1204 if (gs_type == PIPE_SHADER_GEOMETRY) {
1205 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4;
1206 shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->gs_max_out_vertices;
1207 } else {
1208 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1;
1209 }
1210
1211 if (es_type == PIPE_SHADER_TESS_EVAL)
1212 si_set_tesseval_regs(sscreen, es_sel, pm4);
1213
1214 shader->ctx_reg.ngg.vgt_gs_onchip_cntl =
1215 S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1216 S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1217 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1218 shader->ctx_reg.ngg.ge_max_output_per_subgroup =
1219 S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1220 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl =
1221 S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) |
1222 S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1223 shader->ctx_reg.ngg.vgt_gs_instance_cnt =
1224 S_028B90_CNT(gs_num_invocations) |
1225 S_028B90_ENABLE(gs_num_invocations > 1) |
1226 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(
1227 shader->ngg.max_vert_out_per_gs_instance);
1228
1229 /* Always output hw-generated edge flags and pass them via the prim
1230 * export to prevent drawing lines on internal edges of decomposed
1231 * primitives (such as quads) with polygon mode = lines. Only VS needs
1232 * this.
1233 */
1234 shader->ctx_reg.ngg.pa_cl_ngg_cntl =
1235 S_028838_INDEX_BUF_EDGE_FLAG_ENA(gs_type == PIPE_SHADER_VERTEX);
1236 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(gs_sel, true);
1237
1238 shader->ge_cntl =
1239 S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1240 S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts) |
1241 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1242
1243 /* Bug workaround for a possible hang with non-tessellation cases.
1244 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
1245 *
1246 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
1247 */
1248 if ((sscreen->info.family == CHIP_NAVI10 ||
1249 sscreen->info.family == CHIP_NAVI12 ||
1250 sscreen->info.family == CHIP_NAVI14) &&
1251 (es_type == PIPE_SHADER_VERTEX || gs_type == PIPE_SHADER_VERTEX) && /* = no tess */
1252 shader->ngg.hw_max_esverts != 256) {
1253 shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1254
1255 if (shader->ngg.hw_max_esverts > 5) {
1256 shader->ge_cntl |=
1257 S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1258 }
1259 }
1260
1261 if (window_space) {
1262 shader->ctx_reg.ngg.pa_cl_vte_cntl =
1263 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1264 } else {
1265 shader->ctx_reg.ngg.pa_cl_vte_cntl =
1266 S_028818_VTX_W0_FMT(1) |
1267 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1268 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1269 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1270 }
1271 }
1272
1273 static void si_emit_shader_vs(struct si_context *sctx)
1274 {
1275 struct si_shader *shader = sctx->queued.named.vs->shader;
1276 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1277
1278 if (!shader)
1279 return;
1280
1281 radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE,
1282 SI_TRACKED_VGT_GS_MODE,
1283 shader->ctx_reg.vs.vgt_gs_mode);
1284 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN,
1285 SI_TRACKED_VGT_PRIMITIVEID_EN,
1286 shader->ctx_reg.vs.vgt_primitiveid_en);
1287
1288 if (sctx->chip_class <= GFX8) {
1289 radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF,
1290 SI_TRACKED_VGT_REUSE_OFF,
1291 shader->ctx_reg.vs.vgt_reuse_off);
1292 }
1293
1294 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG,
1295 SI_TRACKED_SPI_VS_OUT_CONFIG,
1296 shader->ctx_reg.vs.spi_vs_out_config);
1297
1298 radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1299 SI_TRACKED_SPI_SHADER_POS_FORMAT,
1300 shader->ctx_reg.vs.spi_shader_pos_format);
1301
1302 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL,
1303 SI_TRACKED_PA_CL_VTE_CNTL,
1304 shader->ctx_reg.vs.pa_cl_vte_cntl);
1305
1306 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
1307 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
1308 SI_TRACKED_VGT_TF_PARAM,
1309 shader->vgt_tf_param);
1310
1311 if (shader->vgt_vertex_reuse_block_cntl)
1312 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1313 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1314 shader->vgt_vertex_reuse_block_cntl);
1315
1316 if (initial_cdw != sctx->gfx_cs->current.cdw)
1317 sctx->context_roll = true;
1318
1319 /* Required programming for tessellation. (legacy pipeline only) */
1320 if (sctx->chip_class == GFX10 &&
1321 shader->selector->type == PIPE_SHADER_TESS_EVAL) {
1322 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1323 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1324 S_028A44_ES_VERTS_PER_SUBGRP(250) |
1325 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1326 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1327 }
1328
1329 if (sctx->chip_class >= GFX10) {
1330 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
1331 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS,
1332 shader->pa_cl_vs_out_cntl,
1333 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
1334 }
1335 }
1336
1337 /**
1338 * Compute the state for \p shader, which will run as a vertex shader on the
1339 * hardware.
1340 *
1341 * If \p gs is non-NULL, it points to the geometry shader for which this shader
1342 * is the copy shader.
1343 */
1344 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1345 struct si_shader_selector *gs)
1346 {
1347 const struct tgsi_shader_info *info = &shader->selector->info;
1348 struct si_pm4_state *pm4;
1349 unsigned num_user_sgprs, vgpr_comp_cnt;
1350 uint64_t va;
1351 unsigned nparams, oc_lds_en;
1352 unsigned window_space =
1353 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1354 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1355
1356 pm4 = si_get_shader_pm4_state(shader);
1357 if (!pm4)
1358 return;
1359
1360 pm4->atom.emit = si_emit_shader_vs;
1361
1362 /* We always write VGT_GS_MODE in the VS state, because every switch
1363 * between different shader pipelines involving a different GS or no
1364 * GS at all involves a switch of the VS (different GS use different
1365 * copy shaders). On the other hand, when the API switches from a GS to
1366 * no GS and then back to the same GS used originally, the GS state is
1367 * not sent again.
1368 */
1369 if (!gs) {
1370 unsigned mode = V_028A40_GS_OFF;
1371
1372 /* PrimID needs GS scenario A. */
1373 if (enable_prim_id)
1374 mode = V_028A40_GS_SCENARIO_A;
1375
1376 shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1377 shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1378 } else {
1379 shader->ctx_reg.vs.vgt_gs_mode = ac_vgt_gs_mode(gs->gs_max_out_vertices,
1380 sscreen->info.chip_class);
1381 shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1382 }
1383
1384 if (sscreen->info.chip_class <= GFX8) {
1385 /* Reuse needs to be set off if we write oViewport. */
1386 shader->ctx_reg.vs.vgt_reuse_off =
1387 S_028AB4_REUSE_OFF(info->writes_viewport_index);
1388 }
1389
1390 va = shader->bo->gpu_address;
1391 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1392
1393 if (gs) {
1394 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1395 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1396 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
1397 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1398
1399 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1400 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
1401 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1402 } else {
1403 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
1404 }
1405 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
1406 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1407 num_user_sgprs = SI_TES_NUM_USER_SGPR;
1408 } else
1409 unreachable("invalid shader selector type");
1410
1411 /* VS is required to export at least one param. */
1412 nparams = MAX2(shader->info.nr_param_exports, 1);
1413 shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1414
1415 if (sscreen->info.chip_class >= GFX10) {
1416 shader->ctx_reg.vs.spi_vs_out_config |=
1417 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1418 }
1419
1420 shader->ctx_reg.vs.spi_shader_pos_format =
1421 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1422 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
1423 V_02870C_SPI_SHADER_4COMP :
1424 V_02870C_SPI_SHADER_NONE) |
1425 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
1426 V_02870C_SPI_SHADER_4COMP :
1427 V_02870C_SPI_SHADER_NONE) |
1428 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
1429 V_02870C_SPI_SHADER_4COMP :
1430 V_02870C_SPI_SHADER_NONE);
1431 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, false);
1432
1433 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
1434
1435 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1436 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
1437
1438 uint32_t rsrc1 = S_00B128_VGPRS((shader->config.num_vgprs - 1) /
1439 (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1440 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1441 S_00B128_DX10_CLAMP(1) |
1442 S_00B128_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1443 S_00B128_FLOAT_MODE(shader->config.float_mode);
1444 uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) |
1445 S_00B12C_OC_LDS_EN(oc_lds_en) |
1446 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1447
1448 if (sscreen->info.chip_class <= GFX9)
1449 rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8);
1450
1451 if (!sscreen->use_ngg_streamout) {
1452 rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1453 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1454 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1455 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1456 S_00B12C_SO_EN(!!shader->selector->so.num_outputs);
1457 }
1458
1459 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1460 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1461
1462 if (window_space)
1463 shader->ctx_reg.vs.pa_cl_vte_cntl =
1464 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1465 else
1466 shader->ctx_reg.vs.pa_cl_vte_cntl =
1467 S_028818_VTX_W0_FMT(1) |
1468 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1469 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1470 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1471
1472 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
1473 si_set_tesseval_regs(sscreen, shader->selector, pm4);
1474
1475 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
1476 }
1477
1478 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1479 {
1480 struct tgsi_shader_info *info = &ps->selector->info;
1481 unsigned num_colors = !!(info->colors_read & 0x0f) +
1482 !!(info->colors_read & 0xf0);
1483 unsigned num_interp = ps->selector->info.num_inputs +
1484 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1485
1486 assert(num_interp <= 32);
1487 return MIN2(num_interp, 32);
1488 }
1489
1490 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1491 {
1492 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1493 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1494
1495 /* If the i-th target format is set, all previous target formats must
1496 * be non-zero to avoid hangs.
1497 */
1498 for (i = 0; i < num_targets; i++)
1499 if (!(value & (0xf << (i * 4))))
1500 value |= V_028714_SPI_SHADER_32_R << (i * 4);
1501
1502 return value;
1503 }
1504
1505 static void si_emit_shader_ps(struct si_context *sctx)
1506 {
1507 struct si_shader *shader = sctx->queued.named.ps->shader;
1508 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1509
1510 if (!shader)
1511 return;
1512
1513 /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1514 radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA,
1515 SI_TRACKED_SPI_PS_INPUT_ENA,
1516 shader->ctx_reg.ps.spi_ps_input_ena,
1517 shader->ctx_reg.ps.spi_ps_input_addr);
1518
1519 radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL,
1520 SI_TRACKED_SPI_BARYC_CNTL,
1521 shader->ctx_reg.ps.spi_baryc_cntl);
1522 radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL,
1523 SI_TRACKED_SPI_PS_IN_CONTROL,
1524 shader->ctx_reg.ps.spi_ps_in_control);
1525
1526 /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1527 radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT,
1528 SI_TRACKED_SPI_SHADER_Z_FORMAT,
1529 shader->ctx_reg.ps.spi_shader_z_format,
1530 shader->ctx_reg.ps.spi_shader_col_format);
1531
1532 radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK,
1533 SI_TRACKED_CB_SHADER_MASK,
1534 shader->ctx_reg.ps.cb_shader_mask);
1535
1536 if (initial_cdw != sctx->gfx_cs->current.cdw)
1537 sctx->context_roll = true;
1538 }
1539
1540 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1541 {
1542 struct tgsi_shader_info *info = &shader->selector->info;
1543 struct si_pm4_state *pm4;
1544 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1545 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1546 uint64_t va;
1547 unsigned input_ena = shader->config.spi_ps_input_ena;
1548
1549 /* we need to enable at least one of them, otherwise we hang the GPU */
1550 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1551 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1552 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1553 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1554 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1555 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1556 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1557 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1558 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1559 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1560 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1561 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1562 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1563 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1564
1565 /* Validate interpolation optimization flags (read as implications). */
1566 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1567 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1568 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1569 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1570 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1571 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1572 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1573 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1574 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1575 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1576 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1577 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1578 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1579 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1580 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1581 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1582 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1583 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1584
1585 /* Validate cases when the optimizations are off (read as implications). */
1586 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1587 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1588 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1589 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1590 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1591 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1592
1593 pm4 = si_get_shader_pm4_state(shader);
1594 if (!pm4)
1595 return;
1596
1597 pm4->atom.emit = si_emit_shader_ps;
1598
1599 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1600 * Possible vaules:
1601 * 0 -> Position = pixel center
1602 * 1 -> Position = pixel centroid
1603 * 2 -> Position = at sample position
1604 *
1605 * From GLSL 4.5 specification, section 7.1:
1606 * "The variable gl_FragCoord is available as an input variable from
1607 * within fragment shaders and it holds the window relative coordinates
1608 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1609 * value can be for any location within the pixel, or one of the
1610 * fragment samples. The use of centroid does not further restrict
1611 * this value to be inside the current primitive."
1612 *
1613 * Meaning that centroid has no effect and we can return anything within
1614 * the pixel. Thus, return the value at sample position, because that's
1615 * the most accurate one shaders can get.
1616 */
1617 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1618
1619 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1620 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1621 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1622
1623 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1624 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1625
1626 /* Ensure that some export memory is always allocated, for two reasons:
1627 *
1628 * 1) Correctness: The hardware ignores the EXEC mask if no export
1629 * memory is allocated, so KILL and alpha test do not work correctly
1630 * without this.
1631 * 2) Performance: Every shader needs at least a NULL export, even when
1632 * it writes no color/depth output. The NULL export instruction
1633 * stalls without this setting.
1634 *
1635 * Don't add this to CB_SHADER_MASK.
1636 *
1637 * GFX10 supports pixel shaders without exports by setting both
1638 * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1639 * instructions if any are present.
1640 */
1641 if ((sscreen->info.chip_class <= GFX9 ||
1642 info->uses_kill ||
1643 shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS) &&
1644 !spi_shader_col_format &&
1645 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1646 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1647
1648 shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1649 shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1650
1651 /* Set interpolation controls. */
1652 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
1653 S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32);
1654
1655 shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1656 shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1657 shader->ctx_reg.ps.spi_shader_z_format =
1658 ac_get_spi_shader_z_format(info->writes_z,
1659 info->writes_stencil,
1660 info->writes_samplemask);
1661 shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1662 shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1663
1664 va = shader->bo->gpu_address;
1665 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1666 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1667 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1668
1669 uint32_t rsrc1 =
1670 S_00B028_VGPRS((shader->config.num_vgprs - 1) /
1671 (sscreen->ps_wave_size == 32 ? 8 : 4)) |
1672 S_00B028_DX10_CLAMP(1) |
1673 S_00B028_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1674 S_00B028_FLOAT_MODE(shader->config.float_mode);
1675
1676 if (sscreen->info.chip_class < GFX10) {
1677 rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8);
1678 }
1679
1680 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1);
1681 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1682 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1683 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1684 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1685 }
1686
1687 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1688 struct si_shader *shader)
1689 {
1690 switch (shader->selector->type) {
1691 case PIPE_SHADER_VERTEX:
1692 if (shader->key.as_ls)
1693 si_shader_ls(sscreen, shader);
1694 else if (shader->key.as_es)
1695 si_shader_es(sscreen, shader);
1696 else if (shader->key.as_ngg)
1697 gfx10_shader_ngg(sscreen, shader);
1698 else
1699 si_shader_vs(sscreen, shader, NULL);
1700 break;
1701 case PIPE_SHADER_TESS_CTRL:
1702 si_shader_hs(sscreen, shader);
1703 break;
1704 case PIPE_SHADER_TESS_EVAL:
1705 if (shader->key.as_es)
1706 si_shader_es(sscreen, shader);
1707 else if (shader->key.as_ngg)
1708 gfx10_shader_ngg(sscreen, shader);
1709 else
1710 si_shader_vs(sscreen, shader, NULL);
1711 break;
1712 case PIPE_SHADER_GEOMETRY:
1713 if (shader->key.as_ngg)
1714 gfx10_shader_ngg(sscreen, shader);
1715 else
1716 si_shader_gs(sscreen, shader);
1717 break;
1718 case PIPE_SHADER_FRAGMENT:
1719 si_shader_ps(sscreen, shader);
1720 break;
1721 default:
1722 assert(0);
1723 }
1724 }
1725
1726 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1727 {
1728 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1729 return sctx->queued.named.dsa->alpha_func;
1730 }
1731
1732 void si_shader_selector_key_vs(struct si_context *sctx,
1733 struct si_shader_selector *vs,
1734 struct si_shader_key *key,
1735 struct si_vs_prolog_bits *prolog_key)
1736 {
1737 if (!sctx->vertex_elements ||
1738 vs->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD])
1739 return;
1740
1741 struct si_vertex_elements *elts = sctx->vertex_elements;
1742
1743 prolog_key->instance_divisor_is_one = elts->instance_divisor_is_one;
1744 prolog_key->instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
1745 prolog_key->unpack_instance_id_from_vertex_id =
1746 sctx->prim_discard_cs_instancing;
1747
1748 /* Prefer a monolithic shader to allow scheduling divisions around
1749 * VBO loads. */
1750 if (prolog_key->instance_divisor_is_fetched)
1751 key->opt.prefer_mono = 1;
1752
1753 unsigned count = MIN2(vs->info.num_inputs, elts->count);
1754 unsigned count_mask = (1 << count) - 1;
1755 unsigned fix = elts->fix_fetch_always & count_mask;
1756 unsigned opencode = elts->fix_fetch_opencode & count_mask;
1757
1758 if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
1759 uint32_t mask = elts->fix_fetch_unaligned & count_mask;
1760 while (mask) {
1761 unsigned i = u_bit_scan(&mask);
1762 unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
1763 unsigned vbidx = elts->vertex_buffer_index[i];
1764 struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
1765 unsigned align_mask = (1 << log_hw_load_size) - 1;
1766 if (vb->buffer_offset & align_mask ||
1767 vb->stride & align_mask) {
1768 fix |= 1 << i;
1769 opencode |= 1 << i;
1770 }
1771 }
1772 }
1773
1774 while (fix) {
1775 unsigned i = u_bit_scan(&fix);
1776 key->mono.vs_fix_fetch[i].bits = elts->fix_fetch[i];
1777 }
1778 key->mono.vs_fetch_opencode = opencode;
1779 }
1780
1781 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1782 struct si_shader_selector *vs,
1783 struct si_shader_key *key)
1784 {
1785 struct si_shader_selector *ps = sctx->ps_shader.cso;
1786
1787 key->opt.clip_disable =
1788 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1789 (vs->info.clipdist_writemask ||
1790 vs->info.writes_clipvertex) &&
1791 !vs->info.culldist_writemask;
1792
1793 /* Find out if PS is disabled. */
1794 bool ps_disabled = true;
1795 if (ps) {
1796 bool ps_modifies_zs = ps->info.uses_kill ||
1797 ps->info.writes_z ||
1798 ps->info.writes_stencil ||
1799 ps->info.writes_samplemask ||
1800 sctx->queued.named.blend->alpha_to_coverage ||
1801 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1802 unsigned ps_colormask = si_get_total_colormask(sctx);
1803
1804 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1805 (!ps_colormask &&
1806 !ps_modifies_zs &&
1807 !ps->info.writes_memory);
1808 }
1809
1810 /* Find out which VS outputs aren't used by the PS. */
1811 uint64_t outputs_written = vs->outputs_written_before_ps;
1812 uint64_t inputs_read = 0;
1813
1814 /* Ignore outputs that are not passed from VS to PS. */
1815 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1816 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1817 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1818
1819 if (!ps_disabled) {
1820 inputs_read = ps->inputs_read;
1821 }
1822
1823 uint64_t linked = outputs_written & inputs_read;
1824
1825 key->opt.kill_outputs = ~linked & outputs_written;
1826 }
1827
1828 /* Compute the key for the hw shader variant */
1829 static inline void si_shader_selector_key(struct pipe_context *ctx,
1830 struct si_shader_selector *sel,
1831 union si_vgt_stages_key stages_key,
1832 struct si_shader_key *key)
1833 {
1834 struct si_context *sctx = (struct si_context *)ctx;
1835
1836 memset(key, 0, sizeof(*key));
1837
1838 switch (sel->type) {
1839 case PIPE_SHADER_VERTEX:
1840 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1841
1842 if (sctx->tes_shader.cso)
1843 key->as_ls = 1;
1844 else if (sctx->gs_shader.cso) {
1845 key->as_es = 1;
1846 key->as_ngg = stages_key.u.ngg;
1847 } else {
1848 key->as_ngg = stages_key.u.ngg;
1849 si_shader_selector_key_hw_vs(sctx, sel, key);
1850
1851 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1852 key->mono.u.vs_export_prim_id = 1;
1853 }
1854 break;
1855 case PIPE_SHADER_TESS_CTRL:
1856 if (sctx->chip_class >= GFX9) {
1857 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1858 key, &key->part.tcs.ls_prolog);
1859 key->part.tcs.ls = sctx->vs_shader.cso;
1860
1861 /* When the LS VGPR fix is needed, monolithic shaders
1862 * can:
1863 * - avoid initializing EXEC in both the LS prolog
1864 * and the LS main part when !vs_needs_prolog
1865 * - remove the fixup for unused input VGPRs
1866 */
1867 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1868
1869 /* The LS output / HS input layout can be communicated
1870 * directly instead of via user SGPRs for merged LS-HS.
1871 * The LS VGPR fix prefers this too.
1872 */
1873 key->opt.prefer_mono = 1;
1874 }
1875
1876 key->part.tcs.epilog.prim_mode =
1877 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1878 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1879 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1880 key->part.tcs.epilog.tes_reads_tess_factors =
1881 sctx->tes_shader.cso->info.reads_tess_factors;
1882
1883 if (sel == sctx->fixed_func_tcs_shader.cso)
1884 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1885 break;
1886 case PIPE_SHADER_TESS_EVAL:
1887 key->as_ngg = stages_key.u.ngg;
1888
1889 if (sctx->gs_shader.cso)
1890 key->as_es = 1;
1891 else {
1892 si_shader_selector_key_hw_vs(sctx, sel, key);
1893
1894 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1895 key->mono.u.vs_export_prim_id = 1;
1896 }
1897 break;
1898 case PIPE_SHADER_GEOMETRY:
1899 if (sctx->chip_class >= GFX9) {
1900 if (sctx->tes_shader.cso) {
1901 key->part.gs.es = sctx->tes_shader.cso;
1902 } else {
1903 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1904 key, &key->part.gs.vs_prolog);
1905 key->part.gs.es = sctx->vs_shader.cso;
1906 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1907 }
1908
1909 key->as_ngg = stages_key.u.ngg;
1910
1911 /* Merged ES-GS can have unbalanced wave usage.
1912 *
1913 * ES threads are per-vertex, while GS threads are
1914 * per-primitive. So without any amplification, there
1915 * are fewer GS threads than ES threads, which can result
1916 * in empty (no-op) GS waves. With too much amplification,
1917 * there are more GS threads than ES threads, which
1918 * can result in empty (no-op) ES waves.
1919 *
1920 * Non-monolithic shaders are implemented by setting EXEC
1921 * at the beginning of shader parts, and don't jump to
1922 * the end if EXEC is 0.
1923 *
1924 * Monolithic shaders use conditional blocks, so they can
1925 * jump and skip empty waves of ES or GS. So set this to
1926 * always use optimized variants, which are monolithic.
1927 */
1928 key->opt.prefer_mono = 1;
1929 }
1930 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1931 break;
1932 case PIPE_SHADER_FRAGMENT: {
1933 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1934 struct si_state_blend *blend = sctx->queued.named.blend;
1935
1936 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1937 sel->info.colors_written == 0x1)
1938 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1939
1940 /* Select the shader color format based on whether
1941 * blending or alpha are needed.
1942 */
1943 key->part.ps.epilog.spi_shader_col_format =
1944 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1945 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1946 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1947 sctx->framebuffer.spi_shader_col_format_blend) |
1948 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1949 sctx->framebuffer.spi_shader_col_format_alpha) |
1950 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1951 sctx->framebuffer.spi_shader_col_format);
1952 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1953
1954 /* The output for dual source blending should have
1955 * the same format as the first output.
1956 */
1957 if (blend->dual_src_blend) {
1958 key->part.ps.epilog.spi_shader_col_format |=
1959 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1960 }
1961
1962 /* If alpha-to-coverage is enabled, we have to export alpha
1963 * even if there is no color buffer.
1964 */
1965 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1966 blend->alpha_to_coverage)
1967 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1968
1969 /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
1970 * to the range supported by the type if a channel has less
1971 * than 16 bits and the export format is 16_ABGR.
1972 */
1973 if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) {
1974 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1975 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1976 }
1977
1978 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1979 if (!key->part.ps.epilog.last_cbuf) {
1980 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1981 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1982 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1983 }
1984
1985 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1986 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1987
1988 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1989 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1990
1991 key->part.ps.epilog.alpha_to_one = blend->alpha_to_one &&
1992 rs->multisample_enable;
1993
1994 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1995 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1996 (is_line && rs->line_smooth)) &&
1997 sctx->framebuffer.nr_samples <= 1;
1998 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1999
2000 if (sctx->ps_iter_samples > 1 &&
2001 sel->info.reads_samplemask) {
2002 key->part.ps.prolog.samplemask_log_ps_iter =
2003 util_logbase2(sctx->ps_iter_samples);
2004 }
2005
2006 if (rs->force_persample_interp &&
2007 rs->multisample_enable &&
2008 sctx->framebuffer.nr_samples > 1 &&
2009 sctx->ps_iter_samples > 1) {
2010 key->part.ps.prolog.force_persp_sample_interp =
2011 sel->info.uses_persp_center ||
2012 sel->info.uses_persp_centroid;
2013
2014 key->part.ps.prolog.force_linear_sample_interp =
2015 sel->info.uses_linear_center ||
2016 sel->info.uses_linear_centroid;
2017 } else if (rs->multisample_enable &&
2018 sctx->framebuffer.nr_samples > 1) {
2019 key->part.ps.prolog.bc_optimize_for_persp =
2020 sel->info.uses_persp_center &&
2021 sel->info.uses_persp_centroid;
2022 key->part.ps.prolog.bc_optimize_for_linear =
2023 sel->info.uses_linear_center &&
2024 sel->info.uses_linear_centroid;
2025 } else {
2026 /* Make sure SPI doesn't compute more than 1 pair
2027 * of (i,j), which is the optimization here. */
2028 key->part.ps.prolog.force_persp_center_interp =
2029 sel->info.uses_persp_center +
2030 sel->info.uses_persp_centroid +
2031 sel->info.uses_persp_sample > 1;
2032
2033 key->part.ps.prolog.force_linear_center_interp =
2034 sel->info.uses_linear_center +
2035 sel->info.uses_linear_centroid +
2036 sel->info.uses_linear_sample > 1;
2037
2038 if (sel->info.uses_persp_opcode_interp_sample ||
2039 sel->info.uses_linear_opcode_interp_sample)
2040 key->mono.u.ps.interpolate_at_sample_force_center = 1;
2041 }
2042
2043 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
2044
2045 /* ps_uses_fbfetch is true only if the color buffer is bound. */
2046 if (sctx->ps_uses_fbfetch && !sctx->blitter->running) {
2047 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
2048 struct pipe_resource *tex = cb0->texture;
2049
2050 /* 1D textures are allocated and used as 2D on GFX9. */
2051 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
2052 key->mono.u.ps.fbfetch_is_1D = sctx->chip_class != GFX9 &&
2053 (tex->target == PIPE_TEXTURE_1D ||
2054 tex->target == PIPE_TEXTURE_1D_ARRAY);
2055 key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
2056 tex->target == PIPE_TEXTURE_2D_ARRAY ||
2057 tex->target == PIPE_TEXTURE_CUBE ||
2058 tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2059 tex->target == PIPE_TEXTURE_3D;
2060 }
2061 break;
2062 }
2063 default:
2064 assert(0);
2065 }
2066
2067 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
2068 memset(&key->opt, 0, sizeof(key->opt));
2069 }
2070
2071 static void si_build_shader_variant(struct si_shader *shader,
2072 int thread_index,
2073 bool low_priority)
2074 {
2075 struct si_shader_selector *sel = shader->selector;
2076 struct si_screen *sscreen = sel->screen;
2077 struct ac_llvm_compiler *compiler;
2078 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
2079
2080 if (thread_index >= 0) {
2081 if (low_priority) {
2082 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
2083 compiler = &sscreen->compiler_lowp[thread_index];
2084 } else {
2085 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2086 compiler = &sscreen->compiler[thread_index];
2087 }
2088 if (!debug->async)
2089 debug = NULL;
2090 } else {
2091 assert(!low_priority);
2092 compiler = shader->compiler_ctx_state.compiler;
2093 }
2094
2095 if (!compiler->passes)
2096 si_init_compiler(sscreen, compiler);
2097
2098 if (unlikely(!si_shader_create(sscreen, compiler, shader, debug))) {
2099 PRINT_ERR("Failed to build shader variant (type=%u)\n",
2100 sel->type);
2101 shader->compilation_failed = true;
2102 return;
2103 }
2104
2105 if (shader->compiler_ctx_state.is_debug_context) {
2106 FILE *f = open_memstream(&shader->shader_log,
2107 &shader->shader_log_size);
2108 if (f) {
2109 si_shader_dump(sscreen, shader, NULL, f, false);
2110 fclose(f);
2111 }
2112 }
2113
2114 si_shader_init_pm4_state(sscreen, shader);
2115 }
2116
2117 static void si_build_shader_variant_low_priority(void *job, int thread_index)
2118 {
2119 struct si_shader *shader = (struct si_shader *)job;
2120
2121 assert(thread_index >= 0);
2122
2123 si_build_shader_variant(shader, thread_index, true);
2124 }
2125
2126 static const struct si_shader_key zeroed;
2127
2128 static bool si_check_missing_main_part(struct si_screen *sscreen,
2129 struct si_shader_selector *sel,
2130 struct si_compiler_ctx_state *compiler_state,
2131 struct si_shader_key *key)
2132 {
2133 struct si_shader **mainp = si_get_main_shader_part(sel, key);
2134
2135 if (!*mainp) {
2136 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2137
2138 if (!main_part)
2139 return false;
2140
2141 /* We can leave the fence as permanently signaled because the
2142 * main part becomes visible globally only after it has been
2143 * compiled. */
2144 util_queue_fence_init(&main_part->ready);
2145
2146 main_part->selector = sel;
2147 main_part->key.as_es = key->as_es;
2148 main_part->key.as_ls = key->as_ls;
2149 main_part->key.as_ngg = key->as_ngg;
2150 main_part->is_monolithic = false;
2151
2152 if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
2153 main_part, &compiler_state->debug) != 0) {
2154 FREE(main_part);
2155 return false;
2156 }
2157 *mainp = main_part;
2158 }
2159 return true;
2160 }
2161
2162 /**
2163 * Select a shader variant according to the shader key.
2164 *
2165 * \param optimized_or_none If the key describes an optimized shader variant and
2166 * the compilation isn't finished, don't select any
2167 * shader and return an error.
2168 */
2169 int si_shader_select_with_key(struct si_screen *sscreen,
2170 struct si_shader_ctx_state *state,
2171 struct si_compiler_ctx_state *compiler_state,
2172 struct si_shader_key *key,
2173 int thread_index,
2174 bool optimized_or_none)
2175 {
2176 struct si_shader_selector *sel = state->cso;
2177 struct si_shader_selector *previous_stage_sel = NULL;
2178 struct si_shader *current = state->current;
2179 struct si_shader *iter, *shader = NULL;
2180
2181 again:
2182 /* Check if we don't need to change anything.
2183 * This path is also used for most shaders that don't need multiple
2184 * variants, it will cost just a computation of the key and this
2185 * test. */
2186 if (likely(current &&
2187 memcmp(&current->key, key, sizeof(*key)) == 0)) {
2188 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2189 if (current->is_optimized) {
2190 if (optimized_or_none)
2191 return -1;
2192
2193 memset(&key->opt, 0, sizeof(key->opt));
2194 goto current_not_ready;
2195 }
2196
2197 util_queue_fence_wait(&current->ready);
2198 }
2199
2200 return current->compilation_failed ? -1 : 0;
2201 }
2202 current_not_ready:
2203
2204 /* This must be done before the mutex is locked, because async GS
2205 * compilation calls this function too, and therefore must enter
2206 * the mutex first.
2207 *
2208 * Only wait if we are in a draw call. Don't wait if we are
2209 * in a compiler thread.
2210 */
2211 if (thread_index < 0)
2212 util_queue_fence_wait(&sel->ready);
2213
2214 simple_mtx_lock(&sel->mutex);
2215
2216 /* Find the shader variant. */
2217 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
2218 /* Don't check the "current" shader. We checked it above. */
2219 if (current != iter &&
2220 memcmp(&iter->key, key, sizeof(*key)) == 0) {
2221 simple_mtx_unlock(&sel->mutex);
2222
2223 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2224 /* If it's an optimized shader and its compilation has
2225 * been started but isn't done, use the unoptimized
2226 * shader so as not to cause a stall due to compilation.
2227 */
2228 if (iter->is_optimized) {
2229 if (optimized_or_none)
2230 return -1;
2231 memset(&key->opt, 0, sizeof(key->opt));
2232 goto again;
2233 }
2234
2235 util_queue_fence_wait(&iter->ready);
2236 }
2237
2238 if (iter->compilation_failed) {
2239 return -1; /* skip the draw call */
2240 }
2241
2242 state->current = iter;
2243 return 0;
2244 }
2245 }
2246
2247 /* Build a new shader. */
2248 shader = CALLOC_STRUCT(si_shader);
2249 if (!shader) {
2250 simple_mtx_unlock(&sel->mutex);
2251 return -ENOMEM;
2252 }
2253
2254 util_queue_fence_init(&shader->ready);
2255
2256 shader->selector = sel;
2257 shader->key = *key;
2258 shader->compiler_ctx_state = *compiler_state;
2259
2260 /* If this is a merged shader, get the first shader's selector. */
2261 if (sscreen->info.chip_class >= GFX9) {
2262 if (sel->type == PIPE_SHADER_TESS_CTRL)
2263 previous_stage_sel = key->part.tcs.ls;
2264 else if (sel->type == PIPE_SHADER_GEOMETRY)
2265 previous_stage_sel = key->part.gs.es;
2266
2267 /* We need to wait for the previous shader. */
2268 if (previous_stage_sel && thread_index < 0)
2269 util_queue_fence_wait(&previous_stage_sel->ready);
2270 }
2271
2272 bool is_pure_monolithic =
2273 sscreen->use_monolithic_shaders ||
2274 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
2275
2276 /* Compile the main shader part if it doesn't exist. This can happen
2277 * if the initial guess was wrong.
2278 *
2279 * The prim discard CS doesn't need the main shader part.
2280 */
2281 if (!is_pure_monolithic &&
2282 !key->opt.vs_as_prim_discard_cs) {
2283 bool ok = true;
2284
2285 /* Make sure the main shader part is present. This is needed
2286 * for shaders that can be compiled as VS, LS, or ES, and only
2287 * one of them is compiled at creation.
2288 *
2289 * It is also needed for GS, which can be compiled as non-NGG
2290 * and NGG.
2291 *
2292 * For merged shaders, check that the starting shader's main
2293 * part is present.
2294 */
2295 if (previous_stage_sel) {
2296 struct si_shader_key shader1_key = zeroed;
2297
2298 if (sel->type == PIPE_SHADER_TESS_CTRL) {
2299 shader1_key.as_ls = 1;
2300 } else if (sel->type == PIPE_SHADER_GEOMETRY) {
2301 shader1_key.as_es = 1;
2302 shader1_key.as_ngg = key->as_ngg; /* for Wave32 vs Wave64 */
2303 } else {
2304 assert(0);
2305 }
2306
2307 simple_mtx_lock(&previous_stage_sel->mutex);
2308 ok = si_check_missing_main_part(sscreen,
2309 previous_stage_sel,
2310 compiler_state, &shader1_key);
2311 simple_mtx_unlock(&previous_stage_sel->mutex);
2312 }
2313
2314 if (ok) {
2315 ok = si_check_missing_main_part(sscreen, sel,
2316 compiler_state, key);
2317 }
2318
2319 if (!ok) {
2320 FREE(shader);
2321 simple_mtx_unlock(&sel->mutex);
2322 return -ENOMEM; /* skip the draw call */
2323 }
2324 }
2325
2326 /* Keep the reference to the 1st shader of merged shaders, so that
2327 * Gallium can't destroy it before we destroy the 2nd shader.
2328 *
2329 * Set sctx = NULL, because it's unused if we're not releasing
2330 * the shader, and we don't have any sctx here.
2331 */
2332 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
2333 previous_stage_sel);
2334
2335 /* Monolithic-only shaders don't make a distinction between optimized
2336 * and unoptimized. */
2337 shader->is_monolithic =
2338 is_pure_monolithic ||
2339 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2340
2341 /* The prim discard CS is always optimized. */
2342 shader->is_optimized =
2343 (!is_pure_monolithic || key->opt.vs_as_prim_discard_cs) &&
2344 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2345
2346 /* If it's an optimized shader, compile it asynchronously. */
2347 if (shader->is_optimized && thread_index < 0) {
2348 /* Compile it asynchronously. */
2349 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
2350 shader, &shader->ready,
2351 si_build_shader_variant_low_priority, NULL,
2352 0);
2353
2354 /* Add only after the ready fence was reset, to guard against a
2355 * race with si_bind_XX_shader. */
2356 if (!sel->last_variant) {
2357 sel->first_variant = shader;
2358 sel->last_variant = shader;
2359 } else {
2360 sel->last_variant->next_variant = shader;
2361 sel->last_variant = shader;
2362 }
2363
2364 /* Use the default (unoptimized) shader for now. */
2365 memset(&key->opt, 0, sizeof(key->opt));
2366 simple_mtx_unlock(&sel->mutex);
2367
2368 if (sscreen->options.sync_compile)
2369 util_queue_fence_wait(&shader->ready);
2370
2371 if (optimized_or_none)
2372 return -1;
2373 goto again;
2374 }
2375
2376 /* Reset the fence before adding to the variant list. */
2377 util_queue_fence_reset(&shader->ready);
2378
2379 if (!sel->last_variant) {
2380 sel->first_variant = shader;
2381 sel->last_variant = shader;
2382 } else {
2383 sel->last_variant->next_variant = shader;
2384 sel->last_variant = shader;
2385 }
2386
2387 simple_mtx_unlock(&sel->mutex);
2388
2389 assert(!shader->is_optimized);
2390 si_build_shader_variant(shader, thread_index, false);
2391
2392 util_queue_fence_signal(&shader->ready);
2393
2394 if (!shader->compilation_failed)
2395 state->current = shader;
2396
2397 return shader->compilation_failed ? -1 : 0;
2398 }
2399
2400 static int si_shader_select(struct pipe_context *ctx,
2401 struct si_shader_ctx_state *state,
2402 union si_vgt_stages_key stages_key,
2403 struct si_compiler_ctx_state *compiler_state)
2404 {
2405 struct si_context *sctx = (struct si_context *)ctx;
2406 struct si_shader_key key;
2407
2408 si_shader_selector_key(ctx, state->cso, stages_key, &key);
2409 return si_shader_select_with_key(sctx->screen, state, compiler_state,
2410 &key, -1, false);
2411 }
2412
2413 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
2414 bool streamout,
2415 struct si_shader_key *key)
2416 {
2417 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
2418
2419 switch (info->processor) {
2420 case PIPE_SHADER_VERTEX:
2421 switch (next_shader) {
2422 case PIPE_SHADER_GEOMETRY:
2423 key->as_es = 1;
2424 break;
2425 case PIPE_SHADER_TESS_CTRL:
2426 case PIPE_SHADER_TESS_EVAL:
2427 key->as_ls = 1;
2428 break;
2429 default:
2430 /* If POSITION isn't written, it can only be a HW VS
2431 * if streamout is used. If streamout isn't used,
2432 * assume that it's a HW LS. (the next shader is TCS)
2433 * This heuristic is needed for separate shader objects.
2434 */
2435 if (!info->writes_position && !streamout)
2436 key->as_ls = 1;
2437 }
2438 break;
2439
2440 case PIPE_SHADER_TESS_EVAL:
2441 if (next_shader == PIPE_SHADER_GEOMETRY ||
2442 !info->writes_position)
2443 key->as_es = 1;
2444 break;
2445 }
2446 }
2447
2448 /**
2449 * Compile the main shader part or the monolithic shader as part of
2450 * si_shader_selector initialization. Since it can be done asynchronously,
2451 * there is no way to report compile failures to applications.
2452 */
2453 static void si_init_shader_selector_async(void *job, int thread_index)
2454 {
2455 struct si_shader_selector *sel = (struct si_shader_selector *)job;
2456 struct si_screen *sscreen = sel->screen;
2457 struct ac_llvm_compiler *compiler;
2458 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2459
2460 assert(!debug->debug_message || debug->async);
2461 assert(thread_index >= 0);
2462 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2463 compiler = &sscreen->compiler[thread_index];
2464
2465 if (!compiler->passes)
2466 si_init_compiler(sscreen, compiler);
2467
2468 /* Compile the main shader part for use with a prolog and/or epilog.
2469 * If this fails, the driver will try to compile a monolithic shader
2470 * on demand.
2471 */
2472 if (!sscreen->use_monolithic_shaders) {
2473 struct si_shader *shader = CALLOC_STRUCT(si_shader);
2474 unsigned char ir_sha1_cache_key[20];
2475
2476 if (!shader) {
2477 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2478 return;
2479 }
2480
2481 /* We can leave the fence signaled because use of the default
2482 * main part is guarded by the selector's ready fence. */
2483 util_queue_fence_init(&shader->ready);
2484
2485 shader->selector = sel;
2486 shader->is_monolithic = false;
2487 si_parse_next_shader_property(&sel->info,
2488 sel->so.num_outputs != 0,
2489 &shader->key);
2490
2491 if (sscreen->use_ngg &&
2492 (!sel->so.num_outputs || sscreen->use_ngg_streamout) &&
2493 ((sel->type == PIPE_SHADER_VERTEX && !shader->key.as_ls) ||
2494 sel->type == PIPE_SHADER_TESS_EVAL ||
2495 sel->type == PIPE_SHADER_GEOMETRY))
2496 shader->key.as_ngg = 1;
2497
2498 if (sel->tokens || sel->nir) {
2499 si_get_ir_cache_key(sel, shader->key.as_ngg,
2500 shader->key.as_es, ir_sha1_cache_key);
2501 }
2502
2503 /* Try to load the shader from the shader cache. */
2504 simple_mtx_lock(&sscreen->shader_cache_mutex);
2505
2506 if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
2507 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2508 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
2509 } else {
2510 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2511
2512 /* Compile the shader if it hasn't been loaded from the cache. */
2513 if (si_compile_tgsi_shader(sscreen, compiler, shader,
2514 debug) != 0) {
2515 FREE(shader);
2516 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2517 return;
2518 }
2519
2520 simple_mtx_lock(&sscreen->shader_cache_mutex);
2521 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key,
2522 shader, true);
2523 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2524 }
2525
2526 *si_get_main_shader_part(sel, &shader->key) = shader;
2527
2528 /* Unset "outputs_written" flags for outputs converted to
2529 * DEFAULT_VAL, so that later inter-shader optimizations don't
2530 * try to eliminate outputs that don't exist in the final
2531 * shader.
2532 *
2533 * This is only done if non-monolithic shaders are enabled.
2534 */
2535 if ((sel->type == PIPE_SHADER_VERTEX ||
2536 sel->type == PIPE_SHADER_TESS_EVAL) &&
2537 !shader->key.as_ls &&
2538 !shader->key.as_es) {
2539 unsigned i;
2540
2541 for (i = 0; i < sel->info.num_outputs; i++) {
2542 unsigned offset = shader->info.vs_output_param_offset[i];
2543
2544 if (offset <= AC_EXP_PARAM_OFFSET_31)
2545 continue;
2546
2547 unsigned name = sel->info.output_semantic_name[i];
2548 unsigned index = sel->info.output_semantic_index[i];
2549 unsigned id;
2550
2551 switch (name) {
2552 case TGSI_SEMANTIC_GENERIC:
2553 /* don't process indices the function can't handle */
2554 if (index >= SI_MAX_IO_GENERIC)
2555 break;
2556 /* fall through */
2557 default:
2558 id = si_shader_io_get_unique_index(name, index, true);
2559 sel->outputs_written_before_ps &= ~(1ull << id);
2560 break;
2561 case TGSI_SEMANTIC_POSITION: /* ignore these */
2562 case TGSI_SEMANTIC_PSIZE:
2563 case TGSI_SEMANTIC_CLIPVERTEX:
2564 case TGSI_SEMANTIC_EDGEFLAG:
2565 break;
2566 }
2567 }
2568 }
2569 }
2570
2571 /* The GS copy shader is always pre-compiled. */
2572 if (sel->type == PIPE_SHADER_GEOMETRY &&
2573 (!sscreen->use_ngg ||
2574 !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */
2575 sel->tess_turns_off_ngg)) {
2576 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2577 if (!sel->gs_copy_shader) {
2578 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2579 return;
2580 }
2581
2582 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2583 }
2584
2585 if (sel->nir) {
2586 /* Serialize NIR to save memory. Monolithic shader variants
2587 * have to deserialize NIR before compilation.
2588 */
2589 struct blob blob;
2590 blob_init(&blob);
2591 nir_serialize(&blob, sel->nir, false);
2592 sel->nir_binary = malloc(blob.size);
2593 memcpy(sel->nir_binary, blob.data, blob.size);
2594 sel->nir_size = blob.size;
2595 blob_finish(&blob);
2596
2597 ralloc_free(sel->nir);
2598 sel->nir = NULL;
2599 }
2600 }
2601
2602 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
2603 struct util_queue_fence *ready_fence,
2604 struct si_compiler_ctx_state *compiler_ctx_state,
2605 void *job, util_queue_execute_func execute)
2606 {
2607 util_queue_fence_init(ready_fence);
2608
2609 struct util_async_debug_callback async_debug;
2610 bool debug =
2611 (sctx->debug.debug_message && !sctx->debug.async) ||
2612 sctx->is_debug ||
2613 si_can_dump_shader(sctx->screen, processor);
2614
2615 if (debug) {
2616 u_async_debug_init(&async_debug);
2617 compiler_ctx_state->debug = async_debug.base;
2618 }
2619
2620 util_queue_add_job(&sctx->screen->shader_compiler_queue, job,
2621 ready_fence, execute, NULL, 0);
2622
2623 if (debug) {
2624 util_queue_fence_wait(ready_fence);
2625 u_async_debug_drain(&async_debug, &sctx->debug);
2626 u_async_debug_cleanup(&async_debug);
2627 }
2628
2629 if (sctx->screen->options.sync_compile)
2630 util_queue_fence_wait(ready_fence);
2631 }
2632
2633 /* Return descriptor slot usage masks from the given shader info. */
2634 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2635 uint32_t *const_and_shader_buffers,
2636 uint64_t *samplers_and_images)
2637 {
2638 unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
2639
2640 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2641 num_constbufs = util_last_bit(info->const_buffers_declared);
2642 /* two 8-byte images share one 16-byte slot */
2643 num_images = align(util_last_bit(info->images_declared), 2);
2644 num_msaa_images = align(util_last_bit(info->msaa_images_declared), 2);
2645 num_samplers = util_last_bit(info->samplers_declared);
2646
2647 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2648 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2649 *const_and_shader_buffers =
2650 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2651
2652 /* The layout is:
2653 * - fmask[last] ... fmask[0] go to [15-last .. 15]
2654 * - image[last] ... image[0] go to [31-last .. 31]
2655 * - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
2656 *
2657 * FMASKs for images are placed separately, because MSAA images are rare,
2658 * and so we can benefit from a better cache hit rate if we keep image
2659 * descriptors together.
2660 */
2661 if (num_msaa_images)
2662 num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
2663
2664 start = si_get_image_slot(num_images - 1) / 2;
2665 *samplers_and_images =
2666 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2667 }
2668
2669 static void *si_create_shader_selector(struct pipe_context *ctx,
2670 const struct pipe_shader_state *state)
2671 {
2672 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2673 struct si_context *sctx = (struct si_context*)ctx;
2674 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2675 int i;
2676
2677 if (!sel)
2678 return NULL;
2679
2680 pipe_reference_init(&sel->reference, 1);
2681 sel->screen = sscreen;
2682 sel->compiler_ctx_state.debug = sctx->debug;
2683 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2684
2685 sel->so = state->stream_output;
2686
2687 if (state->type == PIPE_SHADER_IR_TGSI &&
2688 !sscreen->options.enable_nir) {
2689 sel->tokens = tgsi_dup_tokens(state->tokens);
2690 if (!sel->tokens) {
2691 FREE(sel);
2692 return NULL;
2693 }
2694
2695 tgsi_scan_shader(state->tokens, &sel->info);
2696 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2697
2698 /* Fixup for TGSI: Set which opcode uses which (i,j) pair. */
2699 if (sel->info.uses_persp_opcode_interp_centroid)
2700 sel->info.uses_persp_centroid = true;
2701
2702 if (sel->info.uses_linear_opcode_interp_centroid)
2703 sel->info.uses_linear_centroid = true;
2704
2705 if (sel->info.uses_persp_opcode_interp_offset ||
2706 sel->info.uses_persp_opcode_interp_sample)
2707 sel->info.uses_persp_center = true;
2708
2709 if (sel->info.uses_linear_opcode_interp_offset ||
2710 sel->info.uses_linear_opcode_interp_sample)
2711 sel->info.uses_linear_center = true;
2712 } else {
2713 if (state->type == PIPE_SHADER_IR_TGSI) {
2714 sel->nir = tgsi_to_nir(state->tokens, ctx->screen);
2715 } else {
2716 assert(state->type == PIPE_SHADER_IR_NIR);
2717 sel->nir = state->ir.nir;
2718 }
2719
2720 si_nir_scan_shader(sel->nir, &sel->info);
2721 si_nir_scan_tess_ctrl(sel->nir, &sel->tcs_info);
2722 si_nir_adjust_driver_locations(sel->nir);
2723 }
2724
2725 sel->type = sel->info.processor;
2726 p_atomic_inc(&sscreen->num_shaders_created);
2727 si_get_active_slot_masks(&sel->info,
2728 &sel->active_const_and_shader_buffers,
2729 &sel->active_samplers_and_images);
2730
2731 /* Record which streamout buffers are enabled. */
2732 for (i = 0; i < sel->so.num_outputs; i++) {
2733 sel->enabled_streamout_buffer_mask |=
2734 (1 << sel->so.output[i].output_buffer) <<
2735 (sel->so.output[i].stream * 4);
2736 }
2737
2738 /* The prolog is a no-op if there are no inputs. */
2739 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2740 sel->info.num_inputs &&
2741 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
2742
2743 sel->force_correct_derivs_after_kill =
2744 sel->type == PIPE_SHADER_FRAGMENT &&
2745 sel->info.uses_derivatives &&
2746 sel->info.uses_kill &&
2747 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2748
2749 sel->prim_discard_cs_allowed =
2750 sel->type == PIPE_SHADER_VERTEX &&
2751 !sel->info.uses_bindless_images &&
2752 !sel->info.uses_bindless_samplers &&
2753 !sel->info.writes_memory &&
2754 !sel->info.writes_viewport_index &&
2755 !sel->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] &&
2756 !sel->so.num_outputs;
2757
2758 switch (sel->type) {
2759 case PIPE_SHADER_GEOMETRY:
2760 sel->gs_output_prim =
2761 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2762
2763 /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
2764 sel->rast_prim = sel->gs_output_prim;
2765 if (util_rast_prim_is_triangles(sel->rast_prim))
2766 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2767
2768 sel->gs_max_out_vertices =
2769 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2770 sel->gs_num_invocations =
2771 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2772 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2773 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2774 sel->gs_max_out_vertices;
2775
2776 sel->max_gs_stream = 0;
2777 for (i = 0; i < sel->so.num_outputs; i++)
2778 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2779 sel->so.output[i].stream);
2780
2781 sel->gs_input_verts_per_prim =
2782 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2783
2784 /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation. */
2785 sel->tess_turns_off_ngg =
2786 (sscreen->info.family == CHIP_NAVI10 ||
2787 sscreen->info.family == CHIP_NAVI12 ||
2788 sscreen->info.family == CHIP_NAVI14) &&
2789 sel->gs_num_invocations * sel->gs_max_out_vertices > 256;
2790 break;
2791
2792 case PIPE_SHADER_TESS_CTRL:
2793 /* Always reserve space for these. */
2794 sel->patch_outputs_written |=
2795 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2796 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2797 /* fall through */
2798 case PIPE_SHADER_VERTEX:
2799 case PIPE_SHADER_TESS_EVAL:
2800 for (i = 0; i < sel->info.num_outputs; i++) {
2801 unsigned name = sel->info.output_semantic_name[i];
2802 unsigned index = sel->info.output_semantic_index[i];
2803
2804 switch (name) {
2805 case TGSI_SEMANTIC_TESSINNER:
2806 case TGSI_SEMANTIC_TESSOUTER:
2807 case TGSI_SEMANTIC_PATCH:
2808 sel->patch_outputs_written |=
2809 1ull << si_shader_io_get_unique_index_patch(name, index);
2810 break;
2811
2812 case TGSI_SEMANTIC_GENERIC:
2813 /* don't process indices the function can't handle */
2814 if (index >= SI_MAX_IO_GENERIC)
2815 break;
2816 /* fall through */
2817 default:
2818 sel->outputs_written |=
2819 1ull << si_shader_io_get_unique_index(name, index, false);
2820 sel->outputs_written_before_ps |=
2821 1ull << si_shader_io_get_unique_index(name, index, true);
2822 break;
2823 case TGSI_SEMANTIC_EDGEFLAG:
2824 break;
2825 }
2826 }
2827 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2828 sel->lshs_vertex_stride = sel->esgs_itemsize;
2829
2830 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2831 * will start on a different bank. (except for the maximum 32*16).
2832 */
2833 if (sel->lshs_vertex_stride < 32*16)
2834 sel->lshs_vertex_stride += 4;
2835
2836 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2837 * conflicts, i.e. each vertex will start at a different bank.
2838 */
2839 if (sctx->chip_class >= GFX9)
2840 sel->esgs_itemsize += 4;
2841
2842 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2843
2844 /* Only for TES: */
2845 if (sel->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
2846 sel->rast_prim = PIPE_PRIM_POINTS;
2847 else if (sel->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
2848 sel->rast_prim = PIPE_PRIM_LINE_STRIP;
2849 else
2850 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2851 break;
2852
2853 case PIPE_SHADER_FRAGMENT:
2854 for (i = 0; i < sel->info.num_inputs; i++) {
2855 unsigned name = sel->info.input_semantic_name[i];
2856 unsigned index = sel->info.input_semantic_index[i];
2857
2858 switch (name) {
2859 case TGSI_SEMANTIC_GENERIC:
2860 /* don't process indices the function can't handle */
2861 if (index >= SI_MAX_IO_GENERIC)
2862 break;
2863 /* fall through */
2864 default:
2865 sel->inputs_read |=
2866 1ull << si_shader_io_get_unique_index(name, index, true);
2867 break;
2868 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2869 break;
2870 }
2871 }
2872
2873 for (i = 0; i < 8; i++)
2874 if (sel->info.colors_written & (1 << i))
2875 sel->colors_written_4bit |= 0xf << (4 * i);
2876
2877 for (i = 0; i < sel->info.num_inputs; i++) {
2878 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2879 int index = sel->info.input_semantic_index[i];
2880 sel->color_attr_index[index] = i;
2881 }
2882 }
2883 break;
2884 default:;
2885 }
2886
2887 /* PA_CL_VS_OUT_CNTL */
2888 if (sctx->chip_class <= GFX9)
2889 sel->pa_cl_vs_out_cntl = si_get_vs_out_cntl(sel, false);
2890
2891 sel->clipdist_mask = sel->info.writes_clipvertex ?
2892 SIX_BITS : sel->info.clipdist_writemask;
2893 sel->culldist_mask = sel->info.culldist_writemask <<
2894 sel->info.num_written_clipdistance;
2895
2896 /* DB_SHADER_CONTROL */
2897 sel->db_shader_control =
2898 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2899 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2900 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2901 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2902
2903 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2904 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2905 sel->db_shader_control |=
2906 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2907 break;
2908 case TGSI_FS_DEPTH_LAYOUT_LESS:
2909 sel->db_shader_control |=
2910 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2911 break;
2912 }
2913
2914 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2915 *
2916 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2917 * --|-----------|------------|------------|--------------------|-------------------|-------------
2918 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2919 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2920 * 2 | false | true | n/a | LateZ | 1 | 0
2921 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2922 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2923 *
2924 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2925 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2926 *
2927 * Don't use ReZ without profiling !!!
2928 *
2929 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2930 * shaders.
2931 */
2932 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2933 /* Cases 3, 4. */
2934 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2935 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2936 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2937 } else if (sel->info.writes_memory) {
2938 /* Case 2. */
2939 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2940 S_02880C_EXEC_ON_HIER_FAIL(1);
2941 } else {
2942 /* Case 1. */
2943 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2944 }
2945
2946 if (sel->info.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE])
2947 sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2948
2949 (void) simple_mtx_init(&sel->mutex, mtx_plain);
2950
2951 si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready,
2952 &sel->compiler_ctx_state, sel,
2953 si_init_shader_selector_async);
2954 return sel;
2955 }
2956
2957 static void si_update_streamout_state(struct si_context *sctx)
2958 {
2959 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2960
2961 if (!shader_with_so)
2962 return;
2963
2964 sctx->streamout.enabled_stream_buffers_mask =
2965 shader_with_so->enabled_streamout_buffer_mask;
2966 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2967 }
2968
2969 static void si_update_clip_regs(struct si_context *sctx,
2970 struct si_shader_selector *old_hw_vs,
2971 struct si_shader *old_hw_vs_variant,
2972 struct si_shader_selector *next_hw_vs,
2973 struct si_shader *next_hw_vs_variant)
2974 {
2975 if (next_hw_vs &&
2976 (!old_hw_vs ||
2977 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2978 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2979 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2980 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2981 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2982 !old_hw_vs_variant ||
2983 !next_hw_vs_variant ||
2984 old_hw_vs_variant->key.opt.clip_disable !=
2985 next_hw_vs_variant->key.opt.clip_disable))
2986 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2987 }
2988
2989 static void si_update_common_shader_state(struct si_context *sctx)
2990 {
2991 sctx->uses_bindless_samplers =
2992 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2993 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2994 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2995 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2996 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2997 sctx->uses_bindless_images =
2998 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2999 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
3000 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
3001 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
3002 si_shader_uses_bindless_images(sctx->tes_shader.cso);
3003 sctx->do_update_shaders = true;
3004 }
3005
3006 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3007 {
3008 struct si_context *sctx = (struct si_context *)ctx;
3009 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3010 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3011 struct si_shader_selector *sel = state;
3012
3013 if (sctx->vs_shader.cso == sel)
3014 return;
3015
3016 sctx->vs_shader.cso = sel;
3017 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
3018 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] : 0;
3019
3020 if (si_update_ngg(sctx))
3021 si_shader_change_notify(sctx);
3022
3023 si_update_common_shader_state(sctx);
3024 si_update_vs_viewport_state(sctx);
3025 si_set_active_descriptors_for_shader(sctx, sel);
3026 si_update_streamout_state(sctx);
3027 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
3028 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
3029 }
3030
3031 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3032 {
3033 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3034 (sctx->tes_shader.cso &&
3035 sctx->tes_shader.cso->info.uses_primid) ||
3036 (sctx->tcs_shader.cso &&
3037 sctx->tcs_shader.cso->info.uses_primid) ||
3038 (sctx->gs_shader.cso &&
3039 sctx->gs_shader.cso->info.uses_primid) ||
3040 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
3041 sctx->ps_shader.cso->info.uses_primid);
3042 }
3043
3044 bool si_update_ngg(struct si_context *sctx)
3045 {
3046 if (!sctx->screen->use_ngg) {
3047 assert(!sctx->ngg);
3048 return false;
3049 }
3050
3051 bool new_ngg = true;
3052
3053 if (sctx->gs_shader.cso && sctx->tes_shader.cso &&
3054 sctx->gs_shader.cso->tess_turns_off_ngg) {
3055 new_ngg = false;
3056 } else if (!sctx->screen->use_ngg_streamout) {
3057 struct si_shader_selector *last = si_get_vs(sctx)->cso;
3058
3059 if ((last && last->so.num_outputs) ||
3060 sctx->streamout.prims_gen_query_enabled)
3061 new_ngg = false;
3062 }
3063
3064 if (new_ngg != sctx->ngg) {
3065 /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3066 * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3067 * pointers are set.
3068 */
3069 if ((sctx->family == CHIP_NAVI10 ||
3070 sctx->family == CHIP_NAVI12 ||
3071 sctx->family == CHIP_NAVI14) &&
3072 !new_ngg)
3073 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
3074
3075 sctx->ngg = new_ngg;
3076 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
3077 return true;
3078 }
3079 return false;
3080 }
3081
3082 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3083 {
3084 struct si_context *sctx = (struct si_context *)ctx;
3085 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3086 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3087 struct si_shader_selector *sel = state;
3088 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
3089 bool ngg_changed;
3090
3091 if (sctx->gs_shader.cso == sel)
3092 return;
3093
3094 sctx->gs_shader.cso = sel;
3095 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
3096 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3097
3098 si_update_common_shader_state(sctx);
3099 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
3100
3101 ngg_changed = si_update_ngg(sctx);
3102 if (ngg_changed || enable_changed)
3103 si_shader_change_notify(sctx);
3104 if (enable_changed) {
3105 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3106 si_update_tess_uses_prim_id(sctx);
3107 }
3108 si_update_vs_viewport_state(sctx);
3109 si_set_active_descriptors_for_shader(sctx, sel);
3110 si_update_streamout_state(sctx);
3111 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
3112 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
3113 }
3114
3115 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3116 {
3117 struct si_context *sctx = (struct si_context *)ctx;
3118 struct si_shader_selector *sel = state;
3119 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
3120
3121 if (sctx->tcs_shader.cso == sel)
3122 return;
3123
3124 sctx->tcs_shader.cso = sel;
3125 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
3126 si_update_tess_uses_prim_id(sctx);
3127
3128 si_update_common_shader_state(sctx);
3129
3130 if (enable_changed)
3131 sctx->last_tcs = NULL; /* invalidate derived tess state */
3132
3133 si_set_active_descriptors_for_shader(sctx, sel);
3134 }
3135
3136 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3137 {
3138 struct si_context *sctx = (struct si_context *)ctx;
3139 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3140 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3141 struct si_shader_selector *sel = state;
3142 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
3143
3144 if (sctx->tes_shader.cso == sel)
3145 return;
3146
3147 sctx->tes_shader.cso = sel;
3148 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
3149 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3150 si_update_tess_uses_prim_id(sctx);
3151
3152 si_update_common_shader_state(sctx);
3153 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
3154
3155 bool ngg_changed = si_update_ngg(sctx);
3156 if (ngg_changed || enable_changed)
3157 si_shader_change_notify(sctx);
3158 if (enable_changed)
3159 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3160 si_update_vs_viewport_state(sctx);
3161 si_set_active_descriptors_for_shader(sctx, sel);
3162 si_update_streamout_state(sctx);
3163 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
3164 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
3165 }
3166
3167 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3168 {
3169 struct si_context *sctx = (struct si_context *)ctx;
3170 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
3171 struct si_shader_selector *sel = state;
3172
3173 /* skip if supplied shader is one already in use */
3174 if (old_sel == sel)
3175 return;
3176
3177 sctx->ps_shader.cso = sel;
3178 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
3179
3180 si_update_common_shader_state(sctx);
3181 if (sel) {
3182 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3183 si_update_tess_uses_prim_id(sctx);
3184
3185 if (!old_sel ||
3186 old_sel->info.colors_written != sel->info.colors_written)
3187 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3188
3189 if (sctx->screen->has_out_of_order_rast &&
3190 (!old_sel ||
3191 old_sel->info.writes_memory != sel->info.writes_memory ||
3192 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
3193 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
3194 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3195 }
3196 si_set_active_descriptors_for_shader(sctx, sel);
3197 si_update_ps_colorbuf0_slot(sctx);
3198 }
3199
3200 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3201 {
3202 if (shader->is_optimized) {
3203 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
3204 &shader->ready);
3205 }
3206
3207 util_queue_fence_destroy(&shader->ready);
3208
3209 if (shader->pm4) {
3210 /* If destroyed shaders were not unbound, the next compiled
3211 * shader variant could get the same pointer address and so
3212 * binding it to the same shader stage would be considered
3213 * a no-op, causing random behavior.
3214 */
3215 switch (shader->selector->type) {
3216 case PIPE_SHADER_VERTEX:
3217 if (shader->key.as_ls) {
3218 assert(sctx->chip_class <= GFX8);
3219 si_pm4_delete_state(sctx, ls, shader->pm4);
3220 } else if (shader->key.as_es) {
3221 assert(sctx->chip_class <= GFX8);
3222 si_pm4_delete_state(sctx, es, shader->pm4);
3223 } else if (shader->key.as_ngg) {
3224 si_pm4_delete_state(sctx, gs, shader->pm4);
3225 } else {
3226 si_pm4_delete_state(sctx, vs, shader->pm4);
3227 }
3228 break;
3229 case PIPE_SHADER_TESS_CTRL:
3230 si_pm4_delete_state(sctx, hs, shader->pm4);
3231 break;
3232 case PIPE_SHADER_TESS_EVAL:
3233 if (shader->key.as_es) {
3234 assert(sctx->chip_class <= GFX8);
3235 si_pm4_delete_state(sctx, es, shader->pm4);
3236 } else if (shader->key.as_ngg) {
3237 si_pm4_delete_state(sctx, gs, shader->pm4);
3238 } else {
3239 si_pm4_delete_state(sctx, vs, shader->pm4);
3240 }
3241 break;
3242 case PIPE_SHADER_GEOMETRY:
3243 if (shader->is_gs_copy_shader)
3244 si_pm4_delete_state(sctx, vs, shader->pm4);
3245 else
3246 si_pm4_delete_state(sctx, gs, shader->pm4);
3247 break;
3248 case PIPE_SHADER_FRAGMENT:
3249 si_pm4_delete_state(sctx, ps, shader->pm4);
3250 break;
3251 default:;
3252 }
3253 }
3254
3255 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3256 si_shader_destroy(shader);
3257 free(shader);
3258 }
3259
3260 void si_destroy_shader_selector(struct si_context *sctx,
3261 struct si_shader_selector *sel)
3262 {
3263 struct si_shader *p = sel->first_variant, *c;
3264 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
3265 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
3266 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
3267 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
3268 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
3269 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
3270 };
3271
3272 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3273
3274 if (current_shader[sel->type]->cso == sel) {
3275 current_shader[sel->type]->cso = NULL;
3276 current_shader[sel->type]->current = NULL;
3277 }
3278
3279 while (p) {
3280 c = p->next_variant;
3281 si_delete_shader(sctx, p);
3282 p = c;
3283 }
3284
3285 if (sel->main_shader_part)
3286 si_delete_shader(sctx, sel->main_shader_part);
3287 if (sel->main_shader_part_ls)
3288 si_delete_shader(sctx, sel->main_shader_part_ls);
3289 if (sel->main_shader_part_es)
3290 si_delete_shader(sctx, sel->main_shader_part_es);
3291 if (sel->main_shader_part_ngg)
3292 si_delete_shader(sctx, sel->main_shader_part_ngg);
3293 if (sel->gs_copy_shader)
3294 si_delete_shader(sctx, sel->gs_copy_shader);
3295
3296 util_queue_fence_destroy(&sel->ready);
3297 simple_mtx_destroy(&sel->mutex);
3298 free(sel->tokens);
3299 ralloc_free(sel->nir);
3300 free(sel->nir_binary);
3301 free(sel);
3302 }
3303
3304 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3305 {
3306 struct si_context *sctx = (struct si_context *)ctx;
3307 struct si_shader_selector *sel = (struct si_shader_selector *)state;
3308
3309 si_shader_selector_reference(sctx, &sel, NULL);
3310 }
3311
3312 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
3313 struct si_shader *vs, unsigned name,
3314 unsigned index, unsigned interpolate)
3315 {
3316 struct tgsi_shader_info *vsinfo = &vs->selector->info;
3317 unsigned j, offset, ps_input_cntl = 0;
3318
3319 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
3320 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade) ||
3321 name == TGSI_SEMANTIC_PRIMID)
3322 ps_input_cntl |= S_028644_FLAT_SHADE(1);
3323
3324 if (name == TGSI_SEMANTIC_PCOORD ||
3325 (name == TGSI_SEMANTIC_TEXCOORD &&
3326 sctx->sprite_coord_enable & (1 << index))) {
3327 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
3328 }
3329
3330 for (j = 0; j < vsinfo->num_outputs; j++) {
3331 if (name == vsinfo->output_semantic_name[j] &&
3332 index == vsinfo->output_semantic_index[j]) {
3333 offset = vs->info.vs_output_param_offset[j];
3334
3335 if (offset <= AC_EXP_PARAM_OFFSET_31) {
3336 /* The input is loaded from parameter memory. */
3337 ps_input_cntl |= S_028644_OFFSET(offset);
3338 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3339 if (offset == AC_EXP_PARAM_UNDEFINED) {
3340 /* This can happen with depth-only rendering. */
3341 offset = 0;
3342 } else {
3343 /* The input is a DEFAULT_VAL constant. */
3344 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
3345 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
3346 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
3347 }
3348
3349 ps_input_cntl = S_028644_OFFSET(0x20) |
3350 S_028644_DEFAULT_VAL(offset);
3351 }
3352 break;
3353 }
3354 }
3355
3356 if (j == vsinfo->num_outputs && name == TGSI_SEMANTIC_PRIMID)
3357 /* PrimID is written after the last output when HW VS is used. */
3358 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
3359 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3360 /* No corresponding output found, load defaults into input.
3361 * Don't set any other bits.
3362 * (FLAT_SHADE=1 completely changes behavior) */
3363 ps_input_cntl = S_028644_OFFSET(0x20);
3364 /* D3D 9 behaviour. GL is undefined */
3365 if (name == TGSI_SEMANTIC_COLOR && index == 0)
3366 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
3367 }
3368 return ps_input_cntl;
3369 }
3370
3371 static void si_emit_spi_map(struct si_context *sctx)
3372 {
3373 struct si_shader *ps = sctx->ps_shader.current;
3374 struct si_shader *vs = si_get_vs_state(sctx);
3375 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
3376 unsigned i, num_interp, num_written = 0, bcol_interp[2];
3377 unsigned spi_ps_input_cntl[32];
3378
3379 if (!ps || !ps->selector->info.num_inputs)
3380 return;
3381
3382 num_interp = si_get_ps_num_interp(ps);
3383 assert(num_interp > 0);
3384
3385 for (i = 0; i < psinfo->num_inputs; i++) {
3386 unsigned name = psinfo->input_semantic_name[i];
3387 unsigned index = psinfo->input_semantic_index[i];
3388 unsigned interpolate = psinfo->input_interpolate[i];
3389
3390 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name,
3391 index, interpolate);
3392
3393 if (name == TGSI_SEMANTIC_COLOR) {
3394 assert(index < ARRAY_SIZE(bcol_interp));
3395 bcol_interp[index] = interpolate;
3396 }
3397 }
3398
3399 if (ps->key.part.ps.prolog.color_two_side) {
3400 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
3401
3402 for (i = 0; i < 2; i++) {
3403 if (!(psinfo->colors_read & (0xf << (i * 4))))
3404 continue;
3405
3406 spi_ps_input_cntl[num_written++] =
3407 si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
3408
3409 }
3410 }
3411 assert(num_interp == num_written);
3412
3413 /* R_028644_SPI_PS_INPUT_CNTL_0 */
3414 /* Dota 2: Only ~16% of SPI map updates set different values. */
3415 /* Talos: Only ~9% of SPI map updates set different values. */
3416 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
3417 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0,
3418 spi_ps_input_cntl,
3419 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
3420
3421 if (initial_cdw != sctx->gfx_cs->current.cdw)
3422 sctx->context_roll = true;
3423 }
3424
3425 /**
3426 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3427 */
3428 static void si_init_config_add_vgt_flush(struct si_context *sctx)
3429 {
3430 if (sctx->init_config_has_vgt_flush)
3431 return;
3432
3433 /* Done by Vulkan before VGT_FLUSH. */
3434 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
3435 si_pm4_cmd_add(sctx->init_config,
3436 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3437 si_pm4_cmd_end(sctx->init_config, false);
3438
3439 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3440 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
3441 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3442 si_pm4_cmd_end(sctx->init_config, false);
3443 sctx->init_config_has_vgt_flush = true;
3444 }
3445
3446 /* Initialize state related to ESGS / GSVS ring buffers */
3447 static bool si_update_gs_ring_buffers(struct si_context *sctx)
3448 {
3449 struct si_shader_selector *es =
3450 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
3451 struct si_shader_selector *gs = sctx->gs_shader.cso;
3452 struct si_pm4_state *pm4;
3453
3454 /* Chip constants. */
3455 unsigned num_se = sctx->screen->info.max_se;
3456 unsigned wave_size = 64;
3457 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3458 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3459 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3460 */
3461 unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se;
3462 unsigned alignment = 256 * num_se;
3463 /* The maximum size is 63.999 MB per SE. */
3464 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3465
3466 /* Calculate the minimum size. */
3467 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
3468 wave_size, alignment);
3469
3470 /* These are recommended sizes, not minimum sizes. */
3471 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
3472 es->esgs_itemsize * gs->gs_input_verts_per_prim;
3473 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
3474 gs->max_gsvs_emit_size;
3475
3476 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3477 esgs_ring_size = align(esgs_ring_size, alignment);
3478 gsvs_ring_size = align(gsvs_ring_size, alignment);
3479
3480 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3481 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3482
3483 /* Some rings don't have to be allocated if shaders don't use them.
3484 * (e.g. no varyings between ES and GS or GS and VS)
3485 *
3486 * GFX9 doesn't have the ESGS ring.
3487 */
3488 bool update_esgs = sctx->chip_class <= GFX8 &&
3489 esgs_ring_size &&
3490 (!sctx->esgs_ring ||
3491 sctx->esgs_ring->width0 < esgs_ring_size);
3492 bool update_gsvs = gsvs_ring_size &&
3493 (!sctx->gsvs_ring ||
3494 sctx->gsvs_ring->width0 < gsvs_ring_size);
3495
3496 if (!update_esgs && !update_gsvs)
3497 return true;
3498
3499 if (update_esgs) {
3500 pipe_resource_reference(&sctx->esgs_ring, NULL);
3501 sctx->esgs_ring =
3502 pipe_aligned_buffer_create(sctx->b.screen,
3503 SI_RESOURCE_FLAG_UNMAPPABLE,
3504 PIPE_USAGE_DEFAULT,
3505 esgs_ring_size,
3506 sctx->screen->info.pte_fragment_size);
3507 if (!sctx->esgs_ring)
3508 return false;
3509 }
3510
3511 if (update_gsvs) {
3512 pipe_resource_reference(&sctx->gsvs_ring, NULL);
3513 sctx->gsvs_ring =
3514 pipe_aligned_buffer_create(sctx->b.screen,
3515 SI_RESOURCE_FLAG_UNMAPPABLE,
3516 PIPE_USAGE_DEFAULT,
3517 gsvs_ring_size,
3518 sctx->screen->info.pte_fragment_size);
3519 if (!sctx->gsvs_ring)
3520 return false;
3521 }
3522
3523 /* Create the "init_config_gs_rings" state. */
3524 pm4 = CALLOC_STRUCT(si_pm4_state);
3525 if (!pm4)
3526 return false;
3527
3528 if (sctx->chip_class >= GFX7) {
3529 if (sctx->esgs_ring) {
3530 assert(sctx->chip_class <= GFX8);
3531 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
3532 sctx->esgs_ring->width0 / 256);
3533 }
3534 if (sctx->gsvs_ring)
3535 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
3536 sctx->gsvs_ring->width0 / 256);
3537 } else {
3538 if (sctx->esgs_ring)
3539 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
3540 sctx->esgs_ring->width0 / 256);
3541 if (sctx->gsvs_ring)
3542 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
3543 sctx->gsvs_ring->width0 / 256);
3544 }
3545
3546 /* Set the state. */
3547 if (sctx->init_config_gs_rings)
3548 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
3549 sctx->init_config_gs_rings = pm4;
3550
3551 if (!sctx->init_config_has_vgt_flush) {
3552 si_init_config_add_vgt_flush(sctx);
3553 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3554 }
3555
3556 /* Flush the context to re-emit both init_config states. */
3557 sctx->initial_gfx_cs_size = 0; /* force flush */
3558 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3559
3560 /* Set ring bindings. */
3561 if (sctx->esgs_ring) {
3562 assert(sctx->chip_class <= GFX8);
3563 si_set_ring_buffer(sctx, SI_ES_RING_ESGS,
3564 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
3565 true, true, 4, 64, 0);
3566 si_set_ring_buffer(sctx, SI_GS_RING_ESGS,
3567 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
3568 false, false, 0, 0, 0);
3569 }
3570 if (sctx->gsvs_ring) {
3571 si_set_ring_buffer(sctx, SI_RING_GSVS,
3572 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
3573 false, false, 0, 0, 0);
3574 }
3575
3576 return true;
3577 }
3578
3579 static void si_shader_lock(struct si_shader *shader)
3580 {
3581 simple_mtx_lock(&shader->selector->mutex);
3582 if (shader->previous_stage_sel) {
3583 assert(shader->previous_stage_sel != shader->selector);
3584 simple_mtx_lock(&shader->previous_stage_sel->mutex);
3585 }
3586 }
3587
3588 static void si_shader_unlock(struct si_shader *shader)
3589 {
3590 if (shader->previous_stage_sel)
3591 simple_mtx_unlock(&shader->previous_stage_sel->mutex);
3592 simple_mtx_unlock(&shader->selector->mutex);
3593 }
3594
3595 /**
3596 * @returns 1 if \p sel has been updated to use a new scratch buffer
3597 * 0 if not
3598 * < 0 if there was a failure
3599 */
3600 static int si_update_scratch_buffer(struct si_context *sctx,
3601 struct si_shader *shader)
3602 {
3603 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3604
3605 if (!shader)
3606 return 0;
3607
3608 /* This shader doesn't need a scratch buffer */
3609 if (shader->config.scratch_bytes_per_wave == 0)
3610 return 0;
3611
3612 /* Prevent race conditions when updating:
3613 * - si_shader::scratch_bo
3614 * - si_shader::binary::code
3615 * - si_shader::previous_stage::binary::code.
3616 */
3617 si_shader_lock(shader);
3618
3619 /* This shader is already configured to use the current
3620 * scratch buffer. */
3621 if (shader->scratch_bo == sctx->scratch_buffer) {
3622 si_shader_unlock(shader);
3623 return 0;
3624 }
3625
3626 assert(sctx->scratch_buffer);
3627
3628 /* Replace the shader bo with a new bo that has the relocs applied. */
3629 if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
3630 si_shader_unlock(shader);
3631 return -1;
3632 }
3633
3634 /* Update the shader state to use the new shader bo. */
3635 si_shader_init_pm4_state(sctx->screen, shader);
3636
3637 si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3638
3639 si_shader_unlock(shader);
3640 return 1;
3641 }
3642
3643 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
3644 {
3645 return shader ? shader->config.scratch_bytes_per_wave : 0;
3646 }
3647
3648 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3649 {
3650 if (!sctx->tes_shader.cso)
3651 return NULL; /* tessellation disabled */
3652
3653 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
3654 sctx->fixed_func_tcs_shader.current;
3655 }
3656
3657 static bool si_update_scratch_relocs(struct si_context *sctx)
3658 {
3659 struct si_shader *tcs = si_get_tcs_current(sctx);
3660 int r;
3661
3662 /* Update the shaders, so that they are using the latest scratch.
3663 * The scratch buffer may have been changed since these shaders were
3664 * last used, so we still need to try to update them, even if they
3665 * require scratch buffers smaller than the current size.
3666 */
3667 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
3668 if (r < 0)
3669 return false;
3670 if (r == 1)
3671 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3672
3673 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
3674 if (r < 0)
3675 return false;
3676 if (r == 1)
3677 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3678
3679 r = si_update_scratch_buffer(sctx, tcs);
3680 if (r < 0)
3681 return false;
3682 if (r == 1)
3683 si_pm4_bind_state(sctx, hs, tcs->pm4);
3684
3685 /* VS can be bound as LS, ES, or VS. */
3686 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
3687 if (r < 0)
3688 return false;
3689 if (r == 1) {
3690 if (sctx->vs_shader.current->key.as_ls)
3691 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3692 else if (sctx->vs_shader.current->key.as_es)
3693 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3694 else if (sctx->vs_shader.current->key.as_ngg)
3695 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3696 else
3697 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3698 }
3699
3700 /* TES can be bound as ES or VS. */
3701 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
3702 if (r < 0)
3703 return false;
3704 if (r == 1) {
3705 if (sctx->tes_shader.current->key.as_es)
3706 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3707 else if (sctx->tes_shader.current->key.as_ngg)
3708 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3709 else
3710 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3711 }
3712
3713 return true;
3714 }
3715
3716 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3717 {
3718 /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer.
3719 * There are 2 cases to handle:
3720 *
3721 * - If the current needed size is less than the maximum seen size,
3722 * use the maximum seen size, so that WAVESIZE remains the same.
3723 *
3724 * - If the current needed size is greater than the maximum seen size,
3725 * the scratch buffer is reallocated, so we can increase WAVESIZE.
3726 *
3727 * Shaders that set SCRATCH_EN=0 don't allocate scratch space.
3728 * Otherwise, the number of waves that can use scratch is
3729 * SPI_TMPRING_SIZE.WAVES.
3730 */
3731 unsigned bytes = 0;
3732
3733 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
3734 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
3735 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
3736
3737 if (sctx->tes_shader.cso) {
3738 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
3739 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(si_get_tcs_current(sctx)));
3740 }
3741
3742 sctx->max_seen_scratch_bytes_per_wave =
3743 MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes);
3744
3745 unsigned scratch_needed_size =
3746 sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves;
3747 unsigned spi_tmpring_size;
3748
3749 if (scratch_needed_size > 0) {
3750 if (!sctx->scratch_buffer ||
3751 scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
3752 /* Create a bigger scratch buffer */
3753 si_resource_reference(&sctx->scratch_buffer, NULL);
3754
3755 sctx->scratch_buffer =
3756 si_aligned_buffer_create(&sctx->screen->b,
3757 SI_RESOURCE_FLAG_UNMAPPABLE,
3758 PIPE_USAGE_DEFAULT,
3759 scratch_needed_size,
3760 sctx->screen->info.pte_fragment_size);
3761 if (!sctx->scratch_buffer)
3762 return false;
3763
3764 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3765 si_context_add_resource_size(sctx,
3766 &sctx->scratch_buffer->b.b);
3767 }
3768
3769 if (!si_update_scratch_relocs(sctx))
3770 return false;
3771 }
3772
3773 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3774 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3775 "scratch size should already be aligned correctly.");
3776
3777 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3778 S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10);
3779 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3780 sctx->spi_tmpring_size = spi_tmpring_size;
3781 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3782 }
3783 return true;
3784 }
3785
3786 static void si_init_tess_factor_ring(struct si_context *sctx)
3787 {
3788 assert(!sctx->tess_rings);
3789 assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0);
3790
3791 /* The address must be aligned to 2^19, because the shader only
3792 * receives the high 13 bits.
3793 */
3794 sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
3795 SI_RESOURCE_FLAG_32BIT,
3796 PIPE_USAGE_DEFAULT,
3797 sctx->screen->tess_offchip_ring_size +
3798 sctx->screen->tess_factor_ring_size,
3799 1 << 19);
3800 if (!sctx->tess_rings)
3801 return;
3802
3803 si_init_config_add_vgt_flush(sctx);
3804
3805 si_pm4_add_bo(sctx->init_config, si_resource(sctx->tess_rings),
3806 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3807
3808 uint64_t factor_va = si_resource(sctx->tess_rings)->gpu_address +
3809 sctx->screen->tess_offchip_ring_size;
3810
3811 /* Append these registers to the init config state. */
3812 if (sctx->chip_class >= GFX7) {
3813 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3814 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3815 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3816 factor_va >> 8);
3817 if (sctx->chip_class >= GFX10)
3818 si_pm4_set_reg(sctx->init_config, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3819 S_030984_BASE_HI(factor_va >> 40));
3820 else if (sctx->chip_class == GFX9)
3821 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3822 S_030944_BASE_HI(factor_va >> 40));
3823 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3824 sctx->screen->vgt_hs_offchip_param);
3825 } else {
3826 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3827 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3828 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3829 factor_va >> 8);
3830 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3831 sctx->screen->vgt_hs_offchip_param);
3832 }
3833
3834 /* Flush the context to re-emit the init_config state.
3835 * This is done only once in a lifetime of a context.
3836 */
3837 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3838 sctx->initial_gfx_cs_size = 0; /* force flush */
3839 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3840 }
3841
3842 static struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen,
3843 union si_vgt_stages_key key)
3844 {
3845 struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3846 uint32_t stages = 0;
3847
3848 if (key.u.tess) {
3849 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3850 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3851
3852 if (key.u.gs)
3853 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3854 S_028B54_GS_EN(1);
3855 else if (key.u.ngg)
3856 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
3857 else
3858 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3859 } else if (key.u.gs) {
3860 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3861 S_028B54_GS_EN(1);
3862 } else if (key.u.ngg) {
3863 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
3864 }
3865
3866 if (key.u.ngg) {
3867 stages |= S_028B54_PRIMGEN_EN(1);
3868 if (key.u.streamout)
3869 stages |= S_028B54_NGG_WAVE_ID_EN(1);
3870 } else if (key.u.gs)
3871 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3872
3873 if (screen->info.chip_class >= GFX9)
3874 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3875
3876 if (screen->info.chip_class >= GFX10 && screen->ge_wave_size == 32) {
3877 stages |= S_028B54_HS_W32_EN(1) |
3878 S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */
3879 S_028B54_VS_W32_EN(1);
3880 }
3881
3882 si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3883 return pm4;
3884 }
3885
3886 static void si_update_vgt_shader_config(struct si_context *sctx,
3887 union si_vgt_stages_key key)
3888 {
3889 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index];
3890
3891 if (unlikely(!*pm4))
3892 *pm4 = si_build_vgt_shader_config(sctx->screen, key);
3893 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3894 }
3895
3896 bool si_update_shaders(struct si_context *sctx)
3897 {
3898 struct pipe_context *ctx = (struct pipe_context*)sctx;
3899 struct si_compiler_ctx_state compiler_state;
3900 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3901 struct si_shader *old_vs = si_get_vs_state(sctx);
3902 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3903 struct si_shader *old_ps = sctx->ps_shader.current;
3904 union si_vgt_stages_key key;
3905 unsigned old_spi_shader_col_format =
3906 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3907 int r;
3908
3909 compiler_state.compiler = &sctx->compiler;
3910 compiler_state.debug = sctx->debug;
3911 compiler_state.is_debug_context = sctx->is_debug;
3912
3913 key.index = 0;
3914
3915 if (sctx->tes_shader.cso)
3916 key.u.tess = 1;
3917 if (sctx->gs_shader.cso)
3918 key.u.gs = 1;
3919
3920 if (sctx->ngg) {
3921 key.u.ngg = 1;
3922 key.u.streamout = !!si_get_vs(sctx)->cso->so.num_outputs;
3923 }
3924
3925 /* Update TCS and TES. */
3926 if (sctx->tes_shader.cso) {
3927 if (!sctx->tess_rings) {
3928 si_init_tess_factor_ring(sctx);
3929 if (!sctx->tess_rings)
3930 return false;
3931 }
3932
3933 if (sctx->tcs_shader.cso) {
3934 r = si_shader_select(ctx, &sctx->tcs_shader, key,
3935 &compiler_state);
3936 if (r)
3937 return false;
3938 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3939 } else {
3940 if (!sctx->fixed_func_tcs_shader.cso) {
3941 sctx->fixed_func_tcs_shader.cso =
3942 si_create_fixed_func_tcs(sctx);
3943 if (!sctx->fixed_func_tcs_shader.cso)
3944 return false;
3945 }
3946
3947 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3948 key, &compiler_state);
3949 if (r)
3950 return false;
3951 si_pm4_bind_state(sctx, hs,
3952 sctx->fixed_func_tcs_shader.current->pm4);
3953 }
3954
3955 if (!sctx->gs_shader.cso || sctx->chip_class <= GFX8) {
3956 r = si_shader_select(ctx, &sctx->tes_shader, key, &compiler_state);
3957 if (r)
3958 return false;
3959
3960 if (sctx->gs_shader.cso) {
3961 /* TES as ES */
3962 assert(sctx->chip_class <= GFX8);
3963 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3964 } else if (key.u.ngg) {
3965 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3966 } else {
3967 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3968 }
3969 }
3970 } else {
3971 if (sctx->chip_class <= GFX8)
3972 si_pm4_bind_state(sctx, ls, NULL);
3973 si_pm4_bind_state(sctx, hs, NULL);
3974 }
3975
3976 /* Update GS. */
3977 if (sctx->gs_shader.cso) {
3978 r = si_shader_select(ctx, &sctx->gs_shader, key, &compiler_state);
3979 if (r)
3980 return false;
3981 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3982 if (!key.u.ngg) {
3983 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3984
3985 if (!si_update_gs_ring_buffers(sctx))
3986 return false;
3987 } else {
3988 si_pm4_bind_state(sctx, vs, NULL);
3989 }
3990 } else {
3991 if (!key.u.ngg) {
3992 si_pm4_bind_state(sctx, gs, NULL);
3993 if (sctx->chip_class <= GFX8)
3994 si_pm4_bind_state(sctx, es, NULL);
3995 }
3996 }
3997
3998 /* Update VS. */
3999 if ((!key.u.tess && !key.u.gs) || sctx->chip_class <= GFX8) {
4000 r = si_shader_select(ctx, &sctx->vs_shader, key, &compiler_state);
4001 if (r)
4002 return false;
4003
4004 if (!key.u.tess && !key.u.gs) {
4005 if (key.u.ngg) {
4006 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
4007 si_pm4_bind_state(sctx, vs, NULL);
4008 } else {
4009 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
4010 }
4011 } else if (sctx->tes_shader.cso) {
4012 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
4013 } else {
4014 assert(sctx->gs_shader.cso);
4015 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
4016 }
4017 }
4018
4019 si_update_vgt_shader_config(sctx, key);
4020
4021 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
4022 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
4023
4024 if (sctx->ps_shader.cso) {
4025 unsigned db_shader_control;
4026
4027 r = si_shader_select(ctx, &sctx->ps_shader, key, &compiler_state);
4028 if (r)
4029 return false;
4030 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
4031
4032 db_shader_control =
4033 sctx->ps_shader.cso->db_shader_control |
4034 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
4035
4036 if (si_pm4_state_changed(sctx, ps) ||
4037 si_pm4_state_changed(sctx, vs) ||
4038 (key.u.ngg && si_pm4_state_changed(sctx, gs)) ||
4039 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
4040 sctx->flatshade != rs->flatshade) {
4041 sctx->sprite_coord_enable = rs->sprite_coord_enable;
4042 sctx->flatshade = rs->flatshade;
4043 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
4044 }
4045
4046 if (sctx->screen->info.rbplus_allowed &&
4047 si_pm4_state_changed(sctx, ps) &&
4048 (!old_ps ||
4049 old_spi_shader_col_format !=
4050 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
4051 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
4052
4053 if (sctx->ps_db_shader_control != db_shader_control) {
4054 sctx->ps_db_shader_control = db_shader_control;
4055 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
4056 if (sctx->screen->dpbb_allowed)
4057 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
4058 }
4059
4060 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
4061 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
4062 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
4063
4064 if (sctx->chip_class == GFX6)
4065 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
4066
4067 if (sctx->framebuffer.nr_samples <= 1)
4068 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
4069 }
4070 }
4071
4072 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
4073 si_pm4_state_enabled_and_changed(sctx, hs) ||
4074 si_pm4_state_enabled_and_changed(sctx, es) ||
4075 si_pm4_state_enabled_and_changed(sctx, gs) ||
4076 si_pm4_state_enabled_and_changed(sctx, vs) ||
4077 si_pm4_state_enabled_and_changed(sctx, ps)) {
4078 if (!si_update_spi_tmpring_size(sctx))
4079 return false;
4080 }
4081
4082 if (sctx->chip_class >= GFX7) {
4083 if (si_pm4_state_enabled_and_changed(sctx, ls))
4084 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
4085 else if (!sctx->queued.named.ls)
4086 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
4087
4088 if (si_pm4_state_enabled_and_changed(sctx, hs))
4089 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
4090 else if (!sctx->queued.named.hs)
4091 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
4092
4093 if (si_pm4_state_enabled_and_changed(sctx, es))
4094 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
4095 else if (!sctx->queued.named.es)
4096 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
4097
4098 if (si_pm4_state_enabled_and_changed(sctx, gs))
4099 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
4100 else if (!sctx->queued.named.gs)
4101 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
4102
4103 if (si_pm4_state_enabled_and_changed(sctx, vs))
4104 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
4105 else if (!sctx->queued.named.vs)
4106 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
4107
4108 if (si_pm4_state_enabled_and_changed(sctx, ps))
4109 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
4110 else if (!sctx->queued.named.ps)
4111 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
4112 }
4113
4114 sctx->do_update_shaders = false;
4115 return true;
4116 }
4117
4118 static void si_emit_scratch_state(struct si_context *sctx)
4119 {
4120 struct radeon_cmdbuf *cs = sctx->gfx_cs;
4121
4122 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
4123 sctx->spi_tmpring_size);
4124
4125 if (sctx->scratch_buffer) {
4126 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
4127 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
4128 RADEON_PRIO_SCRATCH_BUFFER);
4129 }
4130 }
4131
4132 void si_init_shader_functions(struct si_context *sctx)
4133 {
4134 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
4135 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
4136
4137 sctx->b.create_vs_state = si_create_shader_selector;
4138 sctx->b.create_tcs_state = si_create_shader_selector;
4139 sctx->b.create_tes_state = si_create_shader_selector;
4140 sctx->b.create_gs_state = si_create_shader_selector;
4141 sctx->b.create_fs_state = si_create_shader_selector;
4142
4143 sctx->b.bind_vs_state = si_bind_vs_shader;
4144 sctx->b.bind_tcs_state = si_bind_tcs_shader;
4145 sctx->b.bind_tes_state = si_bind_tes_shader;
4146 sctx->b.bind_gs_state = si_bind_gs_shader;
4147 sctx->b.bind_fs_state = si_bind_ps_shader;
4148
4149 sctx->b.delete_vs_state = si_delete_shader_selector;
4150 sctx->b.delete_tcs_state = si_delete_shader_selector;
4151 sctx->b.delete_tes_state = si_delete_shader_selector;
4152 sctx->b.delete_gs_state = si_delete_shader_selector;
4153 sctx->b.delete_fs_state = si_delete_shader_selector;
4154 }