radeonsi: simplify the signature of si_update_vs_writes_viewport_index
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "gfx9d.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/crc32.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39
40 #include "util/disk_cache.h"
41 #include "util/mesa-sha1.h"
42 #include "ac_exp_param.h"
43
44 /* SHADER_CACHE */
45
46 /**
47 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
48 * integer.
49 */
50 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
51 {
52 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
53 sizeof(struct tgsi_token);
54 unsigned size = 4 + tgsi_size + sizeof(sel->so);
55 char *result = (char*)MALLOC(size);
56
57 if (!result)
58 return NULL;
59
60 *((uint32_t*)result) = size;
61 memcpy(result + 4, sel->tokens, tgsi_size);
62 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
63 return result;
64 }
65
66 /** Copy "data" to "ptr" and return the next dword following copied data. */
67 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
68 {
69 /* data may be NULL if size == 0 */
70 if (size)
71 memcpy(ptr, data, size);
72 ptr += DIV_ROUND_UP(size, 4);
73 return ptr;
74 }
75
76 /** Read data from "ptr". Return the next dword following the data. */
77 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
78 {
79 memcpy(data, ptr, size);
80 ptr += DIV_ROUND_UP(size, 4);
81 return ptr;
82 }
83
84 /**
85 * Write the size as uint followed by the data. Return the next dword
86 * following the copied data.
87 */
88 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
89 {
90 *ptr++ = size;
91 return write_data(ptr, data, size);
92 }
93
94 /**
95 * Read the size as uint followed by the data. Return both via parameters.
96 * Return the next dword following the data.
97 */
98 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
99 {
100 *size = *ptr++;
101 assert(*data == NULL);
102 if (!*size)
103 return ptr;
104 *data = malloc(*size);
105 return read_data(ptr, *data, *size);
106 }
107
108 /**
109 * Return the shader binary in a buffer. The first 4 bytes contain its size
110 * as integer.
111 */
112 static void *si_get_shader_binary(struct si_shader *shader)
113 {
114 /* There is always a size of data followed by the data itself. */
115 unsigned relocs_size = shader->binary.reloc_count *
116 sizeof(shader->binary.relocs[0]);
117 unsigned disasm_size = shader->binary.disasm_string ?
118 strlen(shader->binary.disasm_string) + 1 : 0;
119 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
120 strlen(shader->binary.llvm_ir_string) + 1 : 0;
121 unsigned size =
122 4 + /* total size */
123 4 + /* CRC32 of the data below */
124 align(sizeof(shader->config), 4) +
125 align(sizeof(shader->info), 4) +
126 4 + align(shader->binary.code_size, 4) +
127 4 + align(shader->binary.rodata_size, 4) +
128 4 + align(relocs_size, 4) +
129 4 + align(disasm_size, 4) +
130 4 + align(llvm_ir_size, 4);
131 void *buffer = CALLOC(1, size);
132 uint32_t *ptr = (uint32_t*)buffer;
133
134 if (!buffer)
135 return NULL;
136
137 *ptr++ = size;
138 ptr++; /* CRC32 is calculated at the end. */
139
140 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
141 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
142 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
143 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
144 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
145 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
146 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
147 assert((char *)ptr - (char *)buffer == size);
148
149 /* Compute CRC32. */
150 ptr = (uint32_t*)buffer;
151 ptr++;
152 *ptr = util_hash_crc32(ptr + 1, size - 8);
153
154 return buffer;
155 }
156
157 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
158 {
159 uint32_t *ptr = (uint32_t*)binary;
160 uint32_t size = *ptr++;
161 uint32_t crc32 = *ptr++;
162 unsigned chunk_size;
163
164 if (util_hash_crc32(ptr, size - 8) != crc32) {
165 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
166 return false;
167 }
168
169 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
170 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
171 ptr = read_chunk(ptr, (void**)&shader->binary.code,
172 &shader->binary.code_size);
173 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
174 &shader->binary.rodata_size);
175 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
176 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
177 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
178 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
179
180 return true;
181 }
182
183 /**
184 * Insert a shader into the cache. It's assumed the shader is not in the cache.
185 * Use si_shader_cache_load_shader before calling this.
186 *
187 * Returns false on failure, in which case the tgsi_binary should be freed.
188 */
189 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
190 void *tgsi_binary,
191 struct si_shader *shader,
192 bool insert_into_disk_cache)
193 {
194 void *hw_binary;
195 struct hash_entry *entry;
196 uint8_t key[CACHE_KEY_SIZE];
197
198 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
199 if (entry)
200 return false; /* already added */
201
202 hw_binary = si_get_shader_binary(shader);
203 if (!hw_binary)
204 return false;
205
206 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
207 hw_binary) == NULL) {
208 FREE(hw_binary);
209 return false;
210 }
211
212 if (sscreen->b.disk_shader_cache && insert_into_disk_cache) {
213 disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary,
214 *((uint32_t *)tgsi_binary), key);
215 disk_cache_put(sscreen->b.disk_shader_cache, key, hw_binary,
216 *((uint32_t *) hw_binary), NULL);
217 }
218
219 return true;
220 }
221
222 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
223 void *tgsi_binary,
224 struct si_shader *shader)
225 {
226 struct hash_entry *entry =
227 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
228 if (!entry) {
229 if (sscreen->b.disk_shader_cache) {
230 unsigned char sha1[CACHE_KEY_SIZE];
231 size_t tg_size = *((uint32_t *) tgsi_binary);
232
233 disk_cache_compute_key(sscreen->b.disk_shader_cache,
234 tgsi_binary, tg_size, sha1);
235
236 size_t binary_size;
237 uint8_t *buffer =
238 disk_cache_get(sscreen->b.disk_shader_cache,
239 sha1, &binary_size);
240 if (!buffer)
241 return false;
242
243 if (binary_size < sizeof(uint32_t) ||
244 *((uint32_t*)buffer) != binary_size) {
245 /* Something has gone wrong discard the item
246 * from the cache and rebuild/link from
247 * source.
248 */
249 assert(!"Invalid radeonsi shader disk cache "
250 "item!");
251
252 disk_cache_remove(sscreen->b.disk_shader_cache,
253 sha1);
254 free(buffer);
255
256 return false;
257 }
258
259 if (!si_load_shader_binary(shader, buffer)) {
260 free(buffer);
261 return false;
262 }
263 free(buffer);
264
265 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary,
266 shader, false))
267 FREE(tgsi_binary);
268 } else {
269 return false;
270 }
271 } else {
272 if (si_load_shader_binary(shader, entry->data))
273 FREE(tgsi_binary);
274 else
275 return false;
276 }
277 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
278 return true;
279 }
280
281 static uint32_t si_shader_cache_key_hash(const void *key)
282 {
283 /* The first dword is the key size. */
284 return util_hash_crc32(key, *(uint32_t*)key);
285 }
286
287 static bool si_shader_cache_key_equals(const void *a, const void *b)
288 {
289 uint32_t *keya = (uint32_t*)a;
290 uint32_t *keyb = (uint32_t*)b;
291
292 /* The first dword is the key size. */
293 if (*keya != *keyb)
294 return false;
295
296 return memcmp(keya, keyb, *keya) == 0;
297 }
298
299 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
300 {
301 FREE((void*)entry->key);
302 FREE(entry->data);
303 }
304
305 bool si_init_shader_cache(struct si_screen *sscreen)
306 {
307 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
308 sscreen->shader_cache =
309 _mesa_hash_table_create(NULL,
310 si_shader_cache_key_hash,
311 si_shader_cache_key_equals);
312
313 return sscreen->shader_cache != NULL;
314 }
315
316 void si_destroy_shader_cache(struct si_screen *sscreen)
317 {
318 if (sscreen->shader_cache)
319 _mesa_hash_table_destroy(sscreen->shader_cache,
320 si_destroy_shader_cache_entry);
321 mtx_destroy(&sscreen->shader_cache_mutex);
322 }
323
324 /* SHADER STATES */
325
326 static void si_set_tesseval_regs(struct si_screen *sscreen,
327 struct si_shader_selector *tes,
328 struct si_pm4_state *pm4)
329 {
330 struct tgsi_shader_info *info = &tes->info;
331 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
332 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
333 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
334 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
335 unsigned type, partitioning, topology, distribution_mode;
336
337 switch (tes_prim_mode) {
338 case PIPE_PRIM_LINES:
339 type = V_028B6C_TESS_ISOLINE;
340 break;
341 case PIPE_PRIM_TRIANGLES:
342 type = V_028B6C_TESS_TRIANGLE;
343 break;
344 case PIPE_PRIM_QUADS:
345 type = V_028B6C_TESS_QUAD;
346 break;
347 default:
348 assert(0);
349 return;
350 }
351
352 switch (tes_spacing) {
353 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
354 partitioning = V_028B6C_PART_FRAC_ODD;
355 break;
356 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
357 partitioning = V_028B6C_PART_FRAC_EVEN;
358 break;
359 case PIPE_TESS_SPACING_EQUAL:
360 partitioning = V_028B6C_PART_INTEGER;
361 break;
362 default:
363 assert(0);
364 return;
365 }
366
367 if (tes_point_mode)
368 topology = V_028B6C_OUTPUT_POINT;
369 else if (tes_prim_mode == PIPE_PRIM_LINES)
370 topology = V_028B6C_OUTPUT_LINE;
371 else if (tes_vertex_order_cw)
372 /* for some reason, this must be the other way around */
373 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
374 else
375 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
376
377 if (sscreen->has_distributed_tess) {
378 if (sscreen->b.family == CHIP_FIJI ||
379 sscreen->b.family >= CHIP_POLARIS10)
380 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
381 else
382 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
383 } else
384 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
385
386 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
387 S_028B6C_TYPE(type) |
388 S_028B6C_PARTITIONING(partitioning) |
389 S_028B6C_TOPOLOGY(topology) |
390 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
391 }
392
393 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
394 * whether the "fractional odd" tessellation spacing is used.
395 *
396 * Possible VGT configurations and which state should set the register:
397 *
398 * Reg set in | VGT shader configuration | Value
399 * ------------------------------------------------------
400 * VS as VS | VS | 30
401 * VS as ES | ES -> GS -> VS | 30
402 * TES as VS | LS -> HS -> VS | 14 or 30
403 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
404 *
405 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
406 */
407 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
408 struct si_shader_selector *sel,
409 struct si_shader *shader,
410 struct si_pm4_state *pm4)
411 {
412 unsigned type = sel->type;
413
414 if (sscreen->b.family < CHIP_POLARIS10)
415 return;
416
417 /* VS as VS, or VS as ES: */
418 if ((type == PIPE_SHADER_VERTEX &&
419 (!shader ||
420 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
421 /* TES as VS, or TES as ES: */
422 type == PIPE_SHADER_TESS_EVAL) {
423 unsigned vtx_reuse_depth = 30;
424
425 if (type == PIPE_SHADER_TESS_EVAL &&
426 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
427 PIPE_TESS_SPACING_FRACTIONAL_ODD)
428 vtx_reuse_depth = 14;
429
430 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
431 vtx_reuse_depth);
432 }
433 }
434
435 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
436 {
437 if (shader->pm4)
438 si_pm4_clear_state(shader->pm4);
439 else
440 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
441
442 return shader->pm4;
443 }
444
445 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
446 {
447 struct si_pm4_state *pm4;
448 unsigned vgpr_comp_cnt;
449 uint64_t va;
450
451 assert(sscreen->b.chip_class <= VI);
452
453 pm4 = si_get_shader_pm4_state(shader);
454 if (!pm4)
455 return;
456
457 va = shader->bo->gpu_address;
458 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
459
460 /* We need at least 2 components for LS.
461 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
462 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
463 */
464 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
465
466 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
467 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
468
469 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
470 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
471 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
472 S_00B528_DX10_CLAMP(1) |
473 S_00B528_FLOAT_MODE(shader->config.float_mode);
474 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
475 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
476 }
477
478 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
479 {
480 struct si_pm4_state *pm4;
481 uint64_t va;
482 unsigned ls_vgpr_comp_cnt = 0;
483
484 pm4 = si_get_shader_pm4_state(shader);
485 if (!pm4)
486 return;
487
488 va = shader->bo->gpu_address;
489 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
490
491 if (sscreen->b.chip_class >= GFX9) {
492 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
493 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
494
495 /* We need at least 2 components for LS.
496 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
497 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
498 */
499 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
500
501 shader->config.rsrc2 =
502 S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
503 S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
504 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
505 } else {
506 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
507 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
508
509 shader->config.rsrc2 =
510 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
511 S_00B42C_OC_LDS_EN(1) |
512 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
513 }
514
515 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
516 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
517 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
518 S_00B428_DX10_CLAMP(1) |
519 S_00B428_FLOAT_MODE(shader->config.float_mode) |
520 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
521
522 if (sscreen->b.chip_class <= VI) {
523 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
524 shader->config.rsrc2);
525 }
526 }
527
528 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
529 {
530 struct si_pm4_state *pm4;
531 unsigned num_user_sgprs;
532 unsigned vgpr_comp_cnt;
533 uint64_t va;
534 unsigned oc_lds_en;
535
536 assert(sscreen->b.chip_class <= VI);
537
538 pm4 = si_get_shader_pm4_state(shader);
539 if (!pm4)
540 return;
541
542 va = shader->bo->gpu_address;
543 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
544
545 if (shader->selector->type == PIPE_SHADER_VERTEX) {
546 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
547 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
548 num_user_sgprs = SI_VS_NUM_USER_SGPR;
549 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
550 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
551 num_user_sgprs = SI_TES_NUM_USER_SGPR;
552 } else
553 unreachable("invalid shader selector type");
554
555 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
556
557 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
558 shader->selector->esgs_itemsize / 4);
559 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
560 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
561 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
562 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
563 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
564 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
565 S_00B328_DX10_CLAMP(1) |
566 S_00B328_FLOAT_MODE(shader->config.float_mode));
567 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
568 S_00B32C_USER_SGPR(num_user_sgprs) |
569 S_00B32C_OC_LDS_EN(oc_lds_en) |
570 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
571
572 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
573 si_set_tesseval_regs(sscreen, shader->selector, pm4);
574
575 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
576 }
577
578 /**
579 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
580 * geometry shader.
581 */
582 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
583 {
584 enum chip_class chip_class = sel->screen->b.chip_class;
585 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
586 unsigned cut_mode;
587
588 if (gs_max_vert_out <= 128) {
589 cut_mode = V_028A40_GS_CUT_128;
590 } else if (gs_max_vert_out <= 256) {
591 cut_mode = V_028A40_GS_CUT_256;
592 } else if (gs_max_vert_out <= 512) {
593 cut_mode = V_028A40_GS_CUT_512;
594 } else {
595 assert(gs_max_vert_out <= 1024);
596 cut_mode = V_028A40_GS_CUT_1024;
597 }
598
599 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
600 S_028A40_CUT_MODE(cut_mode)|
601 S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) |
602 S_028A40_GS_WRITE_OPTIMIZE(1) |
603 S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0);
604 }
605
606 struct gfx9_gs_info {
607 unsigned es_verts_per_subgroup;
608 unsigned gs_prims_per_subgroup;
609 unsigned gs_inst_prims_in_subgroup;
610 unsigned max_prims_per_subgroup;
611 unsigned lds_size;
612 };
613
614 static void gfx9_get_gs_info(struct si_shader_selector *es,
615 struct si_shader_selector *gs,
616 struct gfx9_gs_info *out)
617 {
618 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
619 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
620 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
621 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
622
623 /* All these are in dwords: */
624 /* We can't allow using the whole LDS, because GS waves compete with
625 * other shader stages for LDS space. */
626 const unsigned max_lds_size = 8 * 1024;
627 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
628 unsigned esgs_lds_size;
629
630 /* All these are per subgroup: */
631 const unsigned max_out_prims = 32 * 1024;
632 const unsigned max_es_verts = 255;
633 const unsigned ideal_gs_prims = 64;
634 unsigned max_gs_prims, gs_prims;
635 unsigned min_es_verts, es_verts, worst_case_es_verts;
636
637 assert(gs_num_invocations <= 32); /* GL maximum */
638
639 if (uses_adjacency || gs_num_invocations > 1)
640 max_gs_prims = 127 / gs_num_invocations;
641 else
642 max_gs_prims = 255;
643
644 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
645 * Make sure we don't go over the maximum value.
646 */
647 if (gs->gs_max_out_vertices > 0) {
648 max_gs_prims = MIN2(max_gs_prims,
649 max_out_prims /
650 (gs->gs_max_out_vertices * gs_num_invocations));
651 }
652 assert(max_gs_prims > 0);
653
654 /* If the primitive has adjacency, halve the number of vertices
655 * that will be reused in multiple primitives.
656 */
657 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
658
659 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
660 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
661
662 /* Compute ESGS LDS size based on the worst case number of ES vertices
663 * needed to create the target number of GS prims per subgroup.
664 */
665 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
666
667 /* If total LDS usage is too big, refactor partitions based on ratio
668 * of ESGS item sizes.
669 */
670 if (esgs_lds_size > max_lds_size) {
671 /* Our target GS Prims Per Subgroup was too large. Calculate
672 * the maximum number of GS Prims Per Subgroup that will fit
673 * into LDS, capped by the maximum that the hardware can support.
674 */
675 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
676 max_gs_prims);
677 assert(gs_prims > 0);
678 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
679 max_es_verts);
680
681 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
682 assert(esgs_lds_size <= max_lds_size);
683 }
684
685 /* Now calculate remaining ESGS information. */
686 if (esgs_lds_size)
687 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
688 else
689 es_verts = max_es_verts;
690
691 /* Vertices for adjacency primitives are not always reused, so restore
692 * it for ES_VERTS_PER_SUBGRP.
693 */
694 min_es_verts = gs->gs_input_verts_per_prim;
695
696 /* For normal primitives, the VGT only checks if they are past the ES
697 * verts per subgroup after allocating a full GS primitive and if they
698 * are, kick off a new subgroup. But if those additional ES verts are
699 * unique (e.g. not reused) we need to make sure there is enough LDS
700 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
701 */
702 es_verts -= min_es_verts - 1;
703
704 out->es_verts_per_subgroup = es_verts;
705 out->gs_prims_per_subgroup = gs_prims;
706 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
707 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
708 gs->gs_max_out_vertices;
709 out->lds_size = align(esgs_lds_size, 128) / 128;
710
711 assert(out->max_prims_per_subgroup <= max_out_prims);
712 }
713
714 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
715 {
716 struct si_shader_selector *sel = shader->selector;
717 const ubyte *num_components = sel->info.num_stream_output_components;
718 unsigned gs_num_invocations = sel->gs_num_invocations;
719 struct si_pm4_state *pm4;
720 uint64_t va;
721 unsigned max_stream = sel->max_gs_stream;
722 unsigned offset;
723
724 pm4 = si_get_shader_pm4_state(shader);
725 if (!pm4)
726 return;
727
728 offset = num_components[0] * sel->gs_max_out_vertices;
729 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
730 if (max_stream >= 1)
731 offset += num_components[1] * sel->gs_max_out_vertices;
732 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
733 if (max_stream >= 2)
734 offset += num_components[2] * sel->gs_max_out_vertices;
735 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
736 if (max_stream >= 3)
737 offset += num_components[3] * sel->gs_max_out_vertices;
738 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
739
740 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
741 assert(offset < (1 << 15));
742
743 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
744
745 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
746 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
747 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
748 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
749
750 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
751 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
752 S_028B90_ENABLE(gs_num_invocations > 0));
753
754 va = shader->bo->gpu_address;
755 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
756
757 if (sscreen->b.chip_class >= GFX9) {
758 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
759 unsigned es_type = shader->key.part.gs.es->type;
760 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
761 struct gfx9_gs_info gs_info;
762
763 if (es_type == PIPE_SHADER_VERTEX)
764 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
765 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
766 else if (es_type == PIPE_SHADER_TESS_EVAL)
767 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
768 else
769 unreachable("invalid shader selector type");
770
771 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
772 * VGPR[0:4] are always loaded.
773 */
774 if (sel->info.uses_invocationid)
775 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
776 else if (sel->info.uses_primid)
777 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
778 else if (input_prim >= PIPE_PRIM_TRIANGLES)
779 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
780 else
781 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
782
783 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
784
785 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
786 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
787
788 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
789 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
790 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
791 S_00B228_DX10_CLAMP(1) |
792 S_00B228_FLOAT_MODE(shader->config.float_mode) |
793 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
794 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
795 S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
796 S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
797 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
798 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
799 S_00B22C_LDS_SIZE(gs_info.lds_size) |
800 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
801
802 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
803 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
804 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
805 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
806 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
807 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
808 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
809 shader->key.part.gs.es->esgs_itemsize / 4);
810
811 if (es_type == PIPE_SHADER_TESS_EVAL)
812 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
813
814 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
815 NULL, pm4);
816 } else {
817 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
818 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
819
820 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
821 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
822 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
823 S_00B228_DX10_CLAMP(1) |
824 S_00B228_FLOAT_MODE(shader->config.float_mode));
825 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
826 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
827 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
828 }
829 }
830
831 /**
832 * Compute the state for \p shader, which will run as a vertex shader on the
833 * hardware.
834 *
835 * If \p gs is non-NULL, it points to the geometry shader for which this shader
836 * is the copy shader.
837 */
838 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
839 struct si_shader_selector *gs)
840 {
841 const struct tgsi_shader_info *info = &shader->selector->info;
842 struct si_pm4_state *pm4;
843 unsigned num_user_sgprs;
844 unsigned nparams, vgpr_comp_cnt;
845 uint64_t va;
846 unsigned oc_lds_en;
847 unsigned window_space =
848 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
849 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
850
851 pm4 = si_get_shader_pm4_state(shader);
852 if (!pm4)
853 return;
854
855 /* We always write VGT_GS_MODE in the VS state, because every switch
856 * between different shader pipelines involving a different GS or no
857 * GS at all involves a switch of the VS (different GS use different
858 * copy shaders). On the other hand, when the API switches from a GS to
859 * no GS and then back to the same GS used originally, the GS state is
860 * not sent again.
861 */
862 if (!gs) {
863 unsigned mode = V_028A40_GS_OFF;
864
865 /* PrimID needs GS scenario A. */
866 if (enable_prim_id)
867 mode = V_028A40_GS_SCENARIO_A;
868
869 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
870 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
871 } else {
872 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
873 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
874 }
875
876 if (sscreen->b.chip_class <= VI) {
877 /* Reuse needs to be set off if we write oViewport. */
878 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
879 S_028AB4_REUSE_OFF(info->writes_viewport_index));
880 }
881
882 va = shader->bo->gpu_address;
883 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
884
885 if (gs) {
886 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
887 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
888 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
889 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
890 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
891 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
892 */
893 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
894 num_user_sgprs = SI_VS_NUM_USER_SGPR;
895 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
896 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
897 num_user_sgprs = SI_TES_NUM_USER_SGPR;
898 } else
899 unreachable("invalid shader selector type");
900
901 /* VS is required to export at least one param. */
902 nparams = MAX2(shader->info.nr_param_exports, 1);
903 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
904 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
905
906 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
907 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
908 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
909 V_02870C_SPI_SHADER_4COMP :
910 V_02870C_SPI_SHADER_NONE) |
911 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
912 V_02870C_SPI_SHADER_4COMP :
913 V_02870C_SPI_SHADER_NONE) |
914 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
915 V_02870C_SPI_SHADER_4COMP :
916 V_02870C_SPI_SHADER_NONE));
917
918 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
919
920 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
921 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
922 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
923 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
924 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
925 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
926 S_00B128_DX10_CLAMP(1) |
927 S_00B128_FLOAT_MODE(shader->config.float_mode));
928 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
929 S_00B12C_USER_SGPR(num_user_sgprs) |
930 S_00B12C_OC_LDS_EN(oc_lds_en) |
931 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
932 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
933 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
934 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
935 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
936 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
937 if (window_space)
938 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
939 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
940 else
941 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
942 S_028818_VTX_W0_FMT(1) |
943 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
944 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
945 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
946
947 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
948 si_set_tesseval_regs(sscreen, shader->selector, pm4);
949
950 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
951 }
952
953 static unsigned si_get_ps_num_interp(struct si_shader *ps)
954 {
955 struct tgsi_shader_info *info = &ps->selector->info;
956 unsigned num_colors = !!(info->colors_read & 0x0f) +
957 !!(info->colors_read & 0xf0);
958 unsigned num_interp = ps->selector->info.num_inputs +
959 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
960
961 assert(num_interp <= 32);
962 return MIN2(num_interp, 32);
963 }
964
965 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
966 {
967 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
968 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
969
970 /* If the i-th target format is set, all previous target formats must
971 * be non-zero to avoid hangs.
972 */
973 for (i = 0; i < num_targets; i++)
974 if (!(value & (0xf << (i * 4))))
975 value |= V_028714_SPI_SHADER_32_R << (i * 4);
976
977 return value;
978 }
979
980 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
981 {
982 unsigned i, cb_shader_mask = 0;
983
984 for (i = 0; i < 8; i++) {
985 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
986 case V_028714_SPI_SHADER_ZERO:
987 break;
988 case V_028714_SPI_SHADER_32_R:
989 cb_shader_mask |= 0x1 << (i * 4);
990 break;
991 case V_028714_SPI_SHADER_32_GR:
992 cb_shader_mask |= 0x3 << (i * 4);
993 break;
994 case V_028714_SPI_SHADER_32_AR:
995 cb_shader_mask |= 0x9 << (i * 4);
996 break;
997 case V_028714_SPI_SHADER_FP16_ABGR:
998 case V_028714_SPI_SHADER_UNORM16_ABGR:
999 case V_028714_SPI_SHADER_SNORM16_ABGR:
1000 case V_028714_SPI_SHADER_UINT16_ABGR:
1001 case V_028714_SPI_SHADER_SINT16_ABGR:
1002 case V_028714_SPI_SHADER_32_ABGR:
1003 cb_shader_mask |= 0xf << (i * 4);
1004 break;
1005 default:
1006 assert(0);
1007 }
1008 }
1009 return cb_shader_mask;
1010 }
1011
1012 static void si_shader_ps(struct si_shader *shader)
1013 {
1014 struct tgsi_shader_info *info = &shader->selector->info;
1015 struct si_pm4_state *pm4;
1016 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1017 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1018 uint64_t va;
1019 unsigned input_ena = shader->config.spi_ps_input_ena;
1020
1021 /* we need to enable at least one of them, otherwise we hang the GPU */
1022 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1023 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1024 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1025 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1026 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1027 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1028 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1029 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1030 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1031 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1032 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1033 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1034 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1035 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1036
1037 /* Validate interpolation optimization flags (read as implications). */
1038 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1039 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1040 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1041 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1042 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1043 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1044 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1045 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1046 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1047 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1048 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1049 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1050 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1051 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1052 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1053 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1054 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1055 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1056
1057 /* Validate cases when the optimizations are off (read as implications). */
1058 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1059 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1060 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1061 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1062 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1063 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1064
1065 pm4 = si_get_shader_pm4_state(shader);
1066 if (!pm4)
1067 return;
1068
1069 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1070 * Possible vaules:
1071 * 0 -> Position = pixel center
1072 * 1 -> Position = pixel centroid
1073 * 2 -> Position = at sample position
1074 *
1075 * From GLSL 4.5 specification, section 7.1:
1076 * "The variable gl_FragCoord is available as an input variable from
1077 * within fragment shaders and it holds the window relative coordinates
1078 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1079 * value can be for any location within the pixel, or one of the
1080 * fragment samples. The use of centroid does not further restrict
1081 * this value to be inside the current primitive."
1082 *
1083 * Meaning that centroid has no effect and we can return anything within
1084 * the pixel. Thus, return the value at sample position, because that's
1085 * the most accurate one shaders can get.
1086 */
1087 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1088
1089 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1090 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1091 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1092
1093 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1094 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
1095
1096 /* Ensure that some export memory is always allocated, for two reasons:
1097 *
1098 * 1) Correctness: The hardware ignores the EXEC mask if no export
1099 * memory is allocated, so KILL and alpha test do not work correctly
1100 * without this.
1101 * 2) Performance: Every shader needs at least a NULL export, even when
1102 * it writes no color/depth output. The NULL export instruction
1103 * stalls without this setting.
1104 *
1105 * Don't add this to CB_SHADER_MASK.
1106 */
1107 if (!spi_shader_col_format &&
1108 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1109 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1110
1111 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1112 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1113 shader->config.spi_ps_input_addr);
1114
1115 /* Set interpolation controls. */
1116 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1117
1118 /* Set registers. */
1119 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1120 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1121
1122 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1123 si_get_spi_shader_z_format(info->writes_z,
1124 info->writes_stencil,
1125 info->writes_samplemask));
1126
1127 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1128 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1129
1130 va = shader->bo->gpu_address;
1131 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1132 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1133 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1134
1135 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1136 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1137 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1138 S_00B028_DX10_CLAMP(1) |
1139 S_00B028_FLOAT_MODE(shader->config.float_mode));
1140 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1141 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1142 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1143 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1144 }
1145
1146 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1147 struct si_shader *shader)
1148 {
1149 switch (shader->selector->type) {
1150 case PIPE_SHADER_VERTEX:
1151 if (shader->key.as_ls)
1152 si_shader_ls(sscreen, shader);
1153 else if (shader->key.as_es)
1154 si_shader_es(sscreen, shader);
1155 else
1156 si_shader_vs(sscreen, shader, NULL);
1157 break;
1158 case PIPE_SHADER_TESS_CTRL:
1159 si_shader_hs(sscreen, shader);
1160 break;
1161 case PIPE_SHADER_TESS_EVAL:
1162 if (shader->key.as_es)
1163 si_shader_es(sscreen, shader);
1164 else
1165 si_shader_vs(sscreen, shader, NULL);
1166 break;
1167 case PIPE_SHADER_GEOMETRY:
1168 si_shader_gs(sscreen, shader);
1169 break;
1170 case PIPE_SHADER_FRAGMENT:
1171 si_shader_ps(shader);
1172 break;
1173 default:
1174 assert(0);
1175 }
1176 }
1177
1178 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1179 {
1180 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1181 if (sctx->queued.named.dsa)
1182 return sctx->queued.named.dsa->alpha_func;
1183
1184 return PIPE_FUNC_ALWAYS;
1185 }
1186
1187 static void si_shader_selector_key_vs(struct si_context *sctx,
1188 struct si_shader_selector *vs,
1189 struct si_shader_key *key,
1190 struct si_vs_prolog_bits *prolog_key)
1191 {
1192 if (!sctx->vertex_elements)
1193 return;
1194
1195 prolog_key->instance_divisor_is_one =
1196 sctx->vertex_elements->instance_divisor_is_one;
1197 prolog_key->instance_divisor_is_fetched =
1198 sctx->vertex_elements->instance_divisor_is_fetched;
1199
1200 /* Prefer a monolithic shader to allow scheduling divisions around
1201 * VBO loads. */
1202 if (prolog_key->instance_divisor_is_fetched)
1203 key->opt.prefer_mono = 1;
1204
1205 unsigned count = MIN2(vs->info.num_inputs,
1206 sctx->vertex_elements->count);
1207 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1208 }
1209
1210 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1211 struct si_shader_selector *vs,
1212 struct si_shader_key *key)
1213 {
1214 struct si_shader_selector *ps = sctx->ps_shader.cso;
1215
1216 key->opt.clip_disable =
1217 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1218 (vs->info.clipdist_writemask ||
1219 vs->info.writes_clipvertex) &&
1220 !vs->info.culldist_writemask;
1221
1222 /* Find out if PS is disabled. */
1223 bool ps_disabled = true;
1224 if (ps) {
1225 bool ps_modifies_zs = ps->info.uses_kill ||
1226 ps->info.writes_z ||
1227 ps->info.writes_stencil ||
1228 ps->info.writes_samplemask ||
1229 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1230
1231 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1232 sctx->queued.named.blend->cb_target_mask;
1233 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1234 ps_colormask &= ps->colors_written_4bit;
1235
1236 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1237 (!ps_colormask &&
1238 !ps_modifies_zs &&
1239 !ps->info.writes_memory);
1240 }
1241
1242 /* Find out which VS outputs aren't used by the PS. */
1243 uint64_t outputs_written = vs->outputs_written;
1244 uint64_t inputs_read = 0;
1245
1246 /* ignore POSITION, PSIZE */
1247 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) |
1248 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0))));
1249
1250 if (!ps_disabled) {
1251 inputs_read = ps->inputs_read;
1252 }
1253
1254 uint64_t linked = outputs_written & inputs_read;
1255
1256 key->opt.kill_outputs = ~linked & outputs_written;
1257 }
1258
1259 /* Compute the key for the hw shader variant */
1260 static inline void si_shader_selector_key(struct pipe_context *ctx,
1261 struct si_shader_selector *sel,
1262 struct si_shader_key *key)
1263 {
1264 struct si_context *sctx = (struct si_context *)ctx;
1265
1266 memset(key, 0, sizeof(*key));
1267
1268 switch (sel->type) {
1269 case PIPE_SHADER_VERTEX:
1270 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1271
1272 if (sctx->tes_shader.cso)
1273 key->as_ls = 1;
1274 else if (sctx->gs_shader.cso)
1275 key->as_es = 1;
1276 else {
1277 si_shader_selector_key_hw_vs(sctx, sel, key);
1278
1279 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1280 key->mono.u.vs_export_prim_id = 1;
1281 }
1282 break;
1283 case PIPE_SHADER_TESS_CTRL:
1284 if (sctx->b.chip_class >= GFX9) {
1285 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1286 key, &key->part.tcs.ls_prolog);
1287 key->part.tcs.ls = sctx->vs_shader.cso;
1288
1289 /* When the LS VGPR fix is needed, monolithic shaders
1290 * can:
1291 * - avoid initializing EXEC in both the LS prolog
1292 * and the LS main part when !vs_needs_prolog
1293 * - remove the fixup for unused input VGPRs
1294 */
1295 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1296
1297 /* The LS output / HS input layout can be communicated
1298 * directly instead of via user SGPRs for merged LS-HS.
1299 * The LS VGPR fix prefers this too.
1300 */
1301 key->opt.prefer_mono = 1;
1302 }
1303
1304 key->part.tcs.epilog.prim_mode =
1305 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1306 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1307 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1308 key->part.tcs.epilog.tes_reads_tess_factors =
1309 sctx->tes_shader.cso->info.reads_tess_factors;
1310
1311 if (sel == sctx->fixed_func_tcs_shader.cso)
1312 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1313 break;
1314 case PIPE_SHADER_TESS_EVAL:
1315 if (sctx->gs_shader.cso)
1316 key->as_es = 1;
1317 else {
1318 si_shader_selector_key_hw_vs(sctx, sel, key);
1319
1320 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1321 key->mono.u.vs_export_prim_id = 1;
1322 }
1323 break;
1324 case PIPE_SHADER_GEOMETRY:
1325 if (sctx->b.chip_class >= GFX9) {
1326 if (sctx->tes_shader.cso) {
1327 key->part.gs.es = sctx->tes_shader.cso;
1328 } else {
1329 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1330 key, &key->part.gs.vs_prolog);
1331 key->part.gs.es = sctx->vs_shader.cso;
1332 }
1333
1334 /* Merged ES-GS can have unbalanced wave usage.
1335 *
1336 * ES threads are per-vertex, while GS threads are
1337 * per-primitive. So without any amplification, there
1338 * are fewer GS threads than ES threads, which can result
1339 * in empty (no-op) GS waves. With too much amplification,
1340 * there are more GS threads than ES threads, which
1341 * can result in empty (no-op) ES waves.
1342 *
1343 * Non-monolithic shaders are implemented by setting EXEC
1344 * at the beginning of shader parts, and don't jump to
1345 * the end if EXEC is 0.
1346 *
1347 * Monolithic shaders use conditional blocks, so they can
1348 * jump and skip empty waves of ES or GS. So set this to
1349 * always use optimized variants, which are monolithic.
1350 */
1351 key->opt.prefer_mono = 1;
1352 }
1353 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1354 break;
1355 case PIPE_SHADER_FRAGMENT: {
1356 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1357 struct si_state_blend *blend = sctx->queued.named.blend;
1358
1359 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1360 sel->info.colors_written == 0x1)
1361 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1362
1363 if (blend) {
1364 /* Select the shader color format based on whether
1365 * blending or alpha are needed.
1366 */
1367 key->part.ps.epilog.spi_shader_col_format =
1368 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1369 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1370 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1371 sctx->framebuffer.spi_shader_col_format_blend) |
1372 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1373 sctx->framebuffer.spi_shader_col_format_alpha) |
1374 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1375 sctx->framebuffer.spi_shader_col_format);
1376 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1377
1378 /* The output for dual source blending should have
1379 * the same format as the first output.
1380 */
1381 if (blend->dual_src_blend)
1382 key->part.ps.epilog.spi_shader_col_format |=
1383 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1384 } else
1385 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1386
1387 /* If alpha-to-coverage is enabled, we have to export alpha
1388 * even if there is no color buffer.
1389 */
1390 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1391 blend && blend->alpha_to_coverage)
1392 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1393
1394 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1395 * to the range supported by the type if a channel has less
1396 * than 16 bits and the export format is 16_ABGR.
1397 */
1398 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1399 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1400 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1401 }
1402
1403 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1404 if (!key->part.ps.epilog.last_cbuf) {
1405 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1406 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1407 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1408 }
1409
1410 if (rs) {
1411 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1412 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1413 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1414 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1415
1416 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1417 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1418
1419 if (sctx->queued.named.blend) {
1420 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1421 rs->multisample_enable;
1422 }
1423
1424 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1425 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1426 (is_line && rs->line_smooth)) &&
1427 sctx->framebuffer.nr_samples <= 1;
1428 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1429
1430 if (sctx->ps_iter_samples > 1 &&
1431 sel->info.reads_samplemask) {
1432 key->part.ps.prolog.samplemask_log_ps_iter =
1433 util_logbase2(util_next_power_of_two(sctx->ps_iter_samples));
1434 }
1435
1436 if (rs->force_persample_interp &&
1437 rs->multisample_enable &&
1438 sctx->framebuffer.nr_samples > 1 &&
1439 sctx->ps_iter_samples > 1) {
1440 key->part.ps.prolog.force_persp_sample_interp =
1441 sel->info.uses_persp_center ||
1442 sel->info.uses_persp_centroid;
1443
1444 key->part.ps.prolog.force_linear_sample_interp =
1445 sel->info.uses_linear_center ||
1446 sel->info.uses_linear_centroid;
1447 } else if (rs->multisample_enable &&
1448 sctx->framebuffer.nr_samples > 1) {
1449 key->part.ps.prolog.bc_optimize_for_persp =
1450 sel->info.uses_persp_center &&
1451 sel->info.uses_persp_centroid;
1452 key->part.ps.prolog.bc_optimize_for_linear =
1453 sel->info.uses_linear_center &&
1454 sel->info.uses_linear_centroid;
1455 } else {
1456 /* Make sure SPI doesn't compute more than 1 pair
1457 * of (i,j), which is the optimization here. */
1458 key->part.ps.prolog.force_persp_center_interp =
1459 sel->info.uses_persp_center +
1460 sel->info.uses_persp_centroid +
1461 sel->info.uses_persp_sample > 1;
1462
1463 key->part.ps.prolog.force_linear_center_interp =
1464 sel->info.uses_linear_center +
1465 sel->info.uses_linear_centroid +
1466 sel->info.uses_linear_sample > 1;
1467
1468 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1469 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1470 }
1471 }
1472
1473 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1474 break;
1475 }
1476 default:
1477 assert(0);
1478 }
1479
1480 if (unlikely(sctx->screen->b.debug_flags & DBG_NO_OPT_VARIANT))
1481 memset(&key->opt, 0, sizeof(key->opt));
1482 }
1483
1484 static void si_build_shader_variant(struct si_shader *shader,
1485 int thread_index,
1486 bool low_priority)
1487 {
1488 struct si_shader_selector *sel = shader->selector;
1489 struct si_screen *sscreen = sel->screen;
1490 LLVMTargetMachineRef tm;
1491 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1492 int r;
1493
1494 if (thread_index >= 0) {
1495 if (low_priority) {
1496 assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1497 tm = sscreen->tm_low_priority[thread_index];
1498 } else {
1499 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1500 tm = sscreen->tm[thread_index];
1501 }
1502 if (!debug->async)
1503 debug = NULL;
1504 } else {
1505 assert(!low_priority);
1506 tm = shader->compiler_ctx_state.tm;
1507 }
1508
1509 r = si_shader_create(sscreen, tm, shader, debug);
1510 if (unlikely(r)) {
1511 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1512 sel->type, r);
1513 shader->compilation_failed = true;
1514 return;
1515 }
1516
1517 if (shader->compiler_ctx_state.is_debug_context) {
1518 FILE *f = open_memstream(&shader->shader_log,
1519 &shader->shader_log_size);
1520 if (f) {
1521 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1522 fclose(f);
1523 }
1524 }
1525
1526 si_shader_init_pm4_state(sscreen, shader);
1527 }
1528
1529 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1530 {
1531 struct si_shader *shader = (struct si_shader *)job;
1532
1533 assert(thread_index >= 0);
1534
1535 si_build_shader_variant(shader, thread_index, true);
1536 }
1537
1538 static const struct si_shader_key zeroed;
1539
1540 static bool si_check_missing_main_part(struct si_screen *sscreen,
1541 struct si_shader_selector *sel,
1542 struct si_compiler_ctx_state *compiler_state,
1543 struct si_shader_key *key)
1544 {
1545 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1546
1547 if (!*mainp) {
1548 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1549
1550 if (!main_part)
1551 return false;
1552
1553 main_part->selector = sel;
1554 main_part->key.as_es = key->as_es;
1555 main_part->key.as_ls = key->as_ls;
1556
1557 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1558 main_part, false,
1559 &compiler_state->debug) != 0) {
1560 FREE(main_part);
1561 return false;
1562 }
1563 *mainp = main_part;
1564 }
1565 return true;
1566 }
1567
1568 /* Select the hw shader variant depending on the current state. */
1569 static int si_shader_select_with_key(struct si_screen *sscreen,
1570 struct si_shader_ctx_state *state,
1571 struct si_compiler_ctx_state *compiler_state,
1572 struct si_shader_key *key,
1573 int thread_index)
1574 {
1575 struct si_shader_selector *sel = state->cso;
1576 struct si_shader_selector *previous_stage_sel = NULL;
1577 struct si_shader *current = state->current;
1578 struct si_shader *iter, *shader = NULL;
1579
1580 again:
1581 /* Check if we don't need to change anything.
1582 * This path is also used for most shaders that don't need multiple
1583 * variants, it will cost just a computation of the key and this
1584 * test. */
1585 if (likely(current &&
1586 memcmp(&current->key, key, sizeof(*key)) == 0 &&
1587 (!current->is_optimized ||
1588 util_queue_fence_is_signalled(&current->optimized_ready))))
1589 return current->compilation_failed ? -1 : 0;
1590
1591 /* This must be done before the mutex is locked, because async GS
1592 * compilation calls this function too, and therefore must enter
1593 * the mutex first.
1594 *
1595 * Only wait if we are in a draw call. Don't wait if we are
1596 * in a compiler thread.
1597 */
1598 if (thread_index < 0)
1599 util_queue_fence_wait(&sel->ready);
1600
1601 mtx_lock(&sel->mutex);
1602
1603 /* Find the shader variant. */
1604 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1605 /* Don't check the "current" shader. We checked it above. */
1606 if (current != iter &&
1607 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1608 /* If it's an optimized shader and its compilation has
1609 * been started but isn't done, use the unoptimized
1610 * shader so as not to cause a stall due to compilation.
1611 */
1612 if (iter->is_optimized &&
1613 !util_queue_fence_is_signalled(&iter->optimized_ready)) {
1614 memset(&key->opt, 0, sizeof(key->opt));
1615 mtx_unlock(&sel->mutex);
1616 goto again;
1617 }
1618
1619 if (iter->compilation_failed) {
1620 mtx_unlock(&sel->mutex);
1621 return -1; /* skip the draw call */
1622 }
1623
1624 state->current = iter;
1625 mtx_unlock(&sel->mutex);
1626 return 0;
1627 }
1628 }
1629
1630 /* Build a new shader. */
1631 shader = CALLOC_STRUCT(si_shader);
1632 if (!shader) {
1633 mtx_unlock(&sel->mutex);
1634 return -ENOMEM;
1635 }
1636 shader->selector = sel;
1637 shader->key = *key;
1638 shader->compiler_ctx_state = *compiler_state;
1639
1640 /* If this is a merged shader, get the first shader's selector. */
1641 if (sscreen->b.chip_class >= GFX9) {
1642 if (sel->type == PIPE_SHADER_TESS_CTRL)
1643 previous_stage_sel = key->part.tcs.ls;
1644 else if (sel->type == PIPE_SHADER_GEOMETRY)
1645 previous_stage_sel = key->part.gs.es;
1646
1647 /* We need to wait for the previous shader. */
1648 if (previous_stage_sel && thread_index < 0)
1649 util_queue_fence_wait(&previous_stage_sel->ready);
1650 }
1651
1652 /* Compile the main shader part if it doesn't exist. This can happen
1653 * if the initial guess was wrong. */
1654 bool is_pure_monolithic =
1655 sscreen->use_monolithic_shaders ||
1656 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1657
1658 if (!is_pure_monolithic) {
1659 bool ok;
1660
1661 /* Make sure the main shader part is present. This is needed
1662 * for shaders that can be compiled as VS, LS, or ES, and only
1663 * one of them is compiled at creation.
1664 *
1665 * For merged shaders, check that the starting shader's main
1666 * part is present.
1667 */
1668 if (previous_stage_sel) {
1669 struct si_shader_key shader1_key = zeroed;
1670
1671 if (sel->type == PIPE_SHADER_TESS_CTRL)
1672 shader1_key.as_ls = 1;
1673 else if (sel->type == PIPE_SHADER_GEOMETRY)
1674 shader1_key.as_es = 1;
1675 else
1676 assert(0);
1677
1678 mtx_lock(&previous_stage_sel->mutex);
1679 ok = si_check_missing_main_part(sscreen,
1680 previous_stage_sel,
1681 compiler_state, &shader1_key);
1682 mtx_unlock(&previous_stage_sel->mutex);
1683 } else {
1684 ok = si_check_missing_main_part(sscreen, sel,
1685 compiler_state, key);
1686 }
1687 if (!ok) {
1688 FREE(shader);
1689 mtx_unlock(&sel->mutex);
1690 return -ENOMEM; /* skip the draw call */
1691 }
1692 }
1693
1694 /* Keep the reference to the 1st shader of merged shaders, so that
1695 * Gallium can't destroy it before we destroy the 2nd shader.
1696 *
1697 * Set sctx = NULL, because it's unused if we're not releasing
1698 * the shader, and we don't have any sctx here.
1699 */
1700 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1701 previous_stage_sel);
1702
1703 /* Monolithic-only shaders don't make a distinction between optimized
1704 * and unoptimized. */
1705 shader->is_monolithic =
1706 is_pure_monolithic ||
1707 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1708
1709 shader->is_optimized =
1710 !is_pure_monolithic &&
1711 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1712 if (shader->is_optimized)
1713 util_queue_fence_init(&shader->optimized_ready);
1714
1715 if (!sel->last_variant) {
1716 sel->first_variant = shader;
1717 sel->last_variant = shader;
1718 } else {
1719 sel->last_variant->next_variant = shader;
1720 sel->last_variant = shader;
1721 }
1722
1723 /* If it's an optimized shader, compile it asynchronously. */
1724 if (shader->is_optimized &&
1725 !is_pure_monolithic &&
1726 thread_index < 0) {
1727 /* Compile it asynchronously. */
1728 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1729 shader, &shader->optimized_ready,
1730 si_build_shader_variant_low_priority, NULL);
1731
1732 /* Use the default (unoptimized) shader for now. */
1733 memset(&key->opt, 0, sizeof(key->opt));
1734 mtx_unlock(&sel->mutex);
1735 goto again;
1736 }
1737
1738 assert(!shader->is_optimized);
1739 si_build_shader_variant(shader, thread_index, false);
1740
1741 if (!shader->compilation_failed)
1742 state->current = shader;
1743
1744 mtx_unlock(&sel->mutex);
1745 return shader->compilation_failed ? -1 : 0;
1746 }
1747
1748 static int si_shader_select(struct pipe_context *ctx,
1749 struct si_shader_ctx_state *state,
1750 struct si_compiler_ctx_state *compiler_state)
1751 {
1752 struct si_context *sctx = (struct si_context *)ctx;
1753 struct si_shader_key key;
1754
1755 si_shader_selector_key(ctx, state->cso, &key);
1756 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1757 &key, -1);
1758 }
1759
1760 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1761 bool streamout,
1762 struct si_shader_key *key)
1763 {
1764 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1765
1766 switch (info->processor) {
1767 case PIPE_SHADER_VERTEX:
1768 switch (next_shader) {
1769 case PIPE_SHADER_GEOMETRY:
1770 key->as_es = 1;
1771 break;
1772 case PIPE_SHADER_TESS_CTRL:
1773 case PIPE_SHADER_TESS_EVAL:
1774 key->as_ls = 1;
1775 break;
1776 default:
1777 /* If POSITION isn't written, it can only be a HW VS
1778 * if streamout is used. If streamout isn't used,
1779 * assume that it's a HW LS. (the next shader is TCS)
1780 * This heuristic is needed for separate shader objects.
1781 */
1782 if (!info->writes_position && !streamout)
1783 key->as_ls = 1;
1784 }
1785 break;
1786
1787 case PIPE_SHADER_TESS_EVAL:
1788 if (next_shader == PIPE_SHADER_GEOMETRY ||
1789 !info->writes_position)
1790 key->as_es = 1;
1791 break;
1792 }
1793 }
1794
1795 /**
1796 * Compile the main shader part or the monolithic shader as part of
1797 * si_shader_selector initialization. Since it can be done asynchronously,
1798 * there is no way to report compile failures to applications.
1799 */
1800 static void si_init_shader_selector_async(void *job, int thread_index)
1801 {
1802 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1803 struct si_screen *sscreen = sel->screen;
1804 LLVMTargetMachineRef tm;
1805 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1806 unsigned i;
1807
1808 if (thread_index >= 0) {
1809 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1810 tm = sscreen->tm[thread_index];
1811 if (!debug->async)
1812 debug = NULL;
1813 } else {
1814 tm = sel->compiler_ctx_state.tm;
1815 }
1816
1817 /* Compile the main shader part for use with a prolog and/or epilog.
1818 * If this fails, the driver will try to compile a monolithic shader
1819 * on demand.
1820 */
1821 if (!sscreen->use_monolithic_shaders) {
1822 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1823 void *tgsi_binary = NULL;
1824
1825 if (!shader) {
1826 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1827 return;
1828 }
1829
1830 shader->selector = sel;
1831 si_parse_next_shader_property(&sel->info,
1832 sel->so.num_outputs != 0,
1833 &shader->key);
1834
1835 if (sel->tokens)
1836 tgsi_binary = si_get_tgsi_binary(sel);
1837
1838 /* Try to load the shader from the shader cache. */
1839 mtx_lock(&sscreen->shader_cache_mutex);
1840
1841 if (tgsi_binary &&
1842 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1843 mtx_unlock(&sscreen->shader_cache_mutex);
1844 } else {
1845 mtx_unlock(&sscreen->shader_cache_mutex);
1846
1847 /* Compile the shader if it hasn't been loaded from the cache. */
1848 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1849 debug) != 0) {
1850 FREE(shader);
1851 FREE(tgsi_binary);
1852 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1853 return;
1854 }
1855
1856 if (tgsi_binary) {
1857 mtx_lock(&sscreen->shader_cache_mutex);
1858 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true))
1859 FREE(tgsi_binary);
1860 mtx_unlock(&sscreen->shader_cache_mutex);
1861 }
1862 }
1863
1864 *si_get_main_shader_part(sel, &shader->key) = shader;
1865
1866 /* Unset "outputs_written" flags for outputs converted to
1867 * DEFAULT_VAL, so that later inter-shader optimizations don't
1868 * try to eliminate outputs that don't exist in the final
1869 * shader.
1870 *
1871 * This is only done if non-monolithic shaders are enabled.
1872 */
1873 if ((sel->type == PIPE_SHADER_VERTEX ||
1874 sel->type == PIPE_SHADER_TESS_EVAL) &&
1875 !shader->key.as_ls &&
1876 !shader->key.as_es) {
1877 unsigned i;
1878
1879 for (i = 0; i < sel->info.num_outputs; i++) {
1880 unsigned offset = shader->info.vs_output_param_offset[i];
1881
1882 if (offset <= AC_EXP_PARAM_OFFSET_31)
1883 continue;
1884
1885 unsigned name = sel->info.output_semantic_name[i];
1886 unsigned index = sel->info.output_semantic_index[i];
1887 unsigned id;
1888
1889 switch (name) {
1890 case TGSI_SEMANTIC_GENERIC:
1891 /* don't process indices the function can't handle */
1892 if (index >= SI_MAX_IO_GENERIC)
1893 break;
1894 /* fall through */
1895 default:
1896 id = si_shader_io_get_unique_index(name, index);
1897 sel->outputs_written &= ~(1ull << id);
1898 break;
1899 case TGSI_SEMANTIC_POSITION: /* ignore these */
1900 case TGSI_SEMANTIC_PSIZE:
1901 case TGSI_SEMANTIC_CLIPVERTEX:
1902 case TGSI_SEMANTIC_EDGEFLAG:
1903 break;
1904 }
1905 }
1906 }
1907 }
1908
1909 /* Pre-compilation. */
1910 if (sscreen->b.debug_flags & DBG_PRECOMPILE &&
1911 /* GFX9 needs LS or ES for compilation, which we don't have here. */
1912 (sscreen->b.chip_class <= VI ||
1913 (sel->type != PIPE_SHADER_TESS_CTRL &&
1914 sel->type != PIPE_SHADER_GEOMETRY))) {
1915 struct si_shader_ctx_state state = {sel};
1916 struct si_shader_key key;
1917
1918 memset(&key, 0, sizeof(key));
1919 si_parse_next_shader_property(&sel->info,
1920 sel->so.num_outputs != 0,
1921 &key);
1922
1923 /* GFX9 doesn't have LS and ES. */
1924 if (sscreen->b.chip_class >= GFX9) {
1925 key.as_ls = 0;
1926 key.as_es = 0;
1927 }
1928
1929 /* Set reasonable defaults, so that the shader key doesn't
1930 * cause any code to be eliminated.
1931 */
1932 switch (sel->type) {
1933 case PIPE_SHADER_TESS_CTRL:
1934 key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1935 break;
1936 case PIPE_SHADER_FRAGMENT:
1937 key.part.ps.prolog.bc_optimize_for_persp =
1938 sel->info.uses_persp_center &&
1939 sel->info.uses_persp_centroid;
1940 key.part.ps.prolog.bc_optimize_for_linear =
1941 sel->info.uses_linear_center &&
1942 sel->info.uses_linear_centroid;
1943 key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1944 for (i = 0; i < 8; i++)
1945 if (sel->info.colors_written & (1 << i))
1946 key.part.ps.epilog.spi_shader_col_format |=
1947 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1948 break;
1949 }
1950
1951 if (si_shader_select_with_key(sscreen, &state,
1952 &sel->compiler_ctx_state, &key,
1953 thread_index))
1954 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1955 }
1956
1957 /* The GS copy shader is always pre-compiled. */
1958 if (sel->type == PIPE_SHADER_GEOMETRY) {
1959 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1960 if (!sel->gs_copy_shader) {
1961 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1962 return;
1963 }
1964
1965 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1966 }
1967 }
1968
1969 /* Return descriptor slot usage masks from the given shader info. */
1970 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
1971 uint32_t *const_and_shader_buffers,
1972 uint64_t *samplers_and_images)
1973 {
1974 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
1975
1976 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
1977 num_constbufs = util_last_bit(info->const_buffers_declared);
1978 /* two 8-byte images share one 16-byte slot */
1979 num_images = align(util_last_bit(info->images_declared), 2);
1980 num_samplers = util_last_bit(info->samplers_declared);
1981
1982 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
1983 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
1984 *const_and_shader_buffers =
1985 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
1986
1987 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
1988 start = si_get_image_slot(num_images - 1) / 2;
1989 *samplers_and_images =
1990 u_bit_consecutive64(start, num_images / 2 + num_samplers);
1991 }
1992
1993 static void *si_create_shader_selector(struct pipe_context *ctx,
1994 const struct pipe_shader_state *state)
1995 {
1996 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1997 struct si_context *sctx = (struct si_context*)ctx;
1998 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1999 int i;
2000
2001 if (!sel)
2002 return NULL;
2003
2004 pipe_reference_init(&sel->reference, 1);
2005 sel->screen = sscreen;
2006 sel->compiler_ctx_state.tm = sctx->tm;
2007 sel->compiler_ctx_state.debug = sctx->b.debug;
2008 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2009
2010 sel->so = state->stream_output;
2011
2012 if (state->type == PIPE_SHADER_IR_TGSI) {
2013 sel->tokens = tgsi_dup_tokens(state->tokens);
2014 if (!sel->tokens) {
2015 FREE(sel);
2016 return NULL;
2017 }
2018
2019 tgsi_scan_shader(state->tokens, &sel->info);
2020 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2021 } else {
2022 assert(state->type == PIPE_SHADER_IR_NIR);
2023
2024 sel->nir = state->ir.nir;
2025
2026 si_nir_scan_shader(sel->nir, &sel->info);
2027
2028 si_lower_nir(sel);
2029 }
2030
2031 sel->type = sel->info.processor;
2032 p_atomic_inc(&sscreen->b.num_shaders_created);
2033 si_get_active_slot_masks(&sel->info,
2034 &sel->active_const_and_shader_buffers,
2035 &sel->active_samplers_and_images);
2036
2037 /* Record which streamout buffers are enabled. */
2038 for (i = 0; i < sel->so.num_outputs; i++) {
2039 sel->enabled_streamout_buffer_mask |=
2040 (1 << sel->so.output[i].output_buffer) <<
2041 (sel->so.output[i].stream * 4);
2042 }
2043
2044 /* The prolog is a no-op if there are no inputs. */
2045 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2046 sel->info.num_inputs;
2047
2048 /* Set which opcode uses which (i,j) pair. */
2049 if (sel->info.uses_persp_opcode_interp_centroid)
2050 sel->info.uses_persp_centroid = true;
2051
2052 if (sel->info.uses_linear_opcode_interp_centroid)
2053 sel->info.uses_linear_centroid = true;
2054
2055 if (sel->info.uses_persp_opcode_interp_offset ||
2056 sel->info.uses_persp_opcode_interp_sample)
2057 sel->info.uses_persp_center = true;
2058
2059 if (sel->info.uses_linear_opcode_interp_offset ||
2060 sel->info.uses_linear_opcode_interp_sample)
2061 sel->info.uses_linear_center = true;
2062
2063 switch (sel->type) {
2064 case PIPE_SHADER_GEOMETRY:
2065 sel->gs_output_prim =
2066 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2067 sel->gs_max_out_vertices =
2068 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2069 sel->gs_num_invocations =
2070 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2071 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2072 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2073 sel->gs_max_out_vertices;
2074
2075 sel->max_gs_stream = 0;
2076 for (i = 0; i < sel->so.num_outputs; i++)
2077 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2078 sel->so.output[i].stream);
2079
2080 sel->gs_input_verts_per_prim =
2081 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2082 break;
2083
2084 case PIPE_SHADER_TESS_CTRL:
2085 /* Always reserve space for these. */
2086 sel->patch_outputs_written |=
2087 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2088 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2089 /* fall through */
2090 case PIPE_SHADER_VERTEX:
2091 case PIPE_SHADER_TESS_EVAL:
2092 for (i = 0; i < sel->info.num_outputs; i++) {
2093 unsigned name = sel->info.output_semantic_name[i];
2094 unsigned index = sel->info.output_semantic_index[i];
2095
2096 switch (name) {
2097 case TGSI_SEMANTIC_TESSINNER:
2098 case TGSI_SEMANTIC_TESSOUTER:
2099 case TGSI_SEMANTIC_PATCH:
2100 sel->patch_outputs_written |=
2101 1ull << si_shader_io_get_unique_index_patch(name, index);
2102 break;
2103
2104 case TGSI_SEMANTIC_GENERIC:
2105 /* don't process indices the function can't handle */
2106 if (index >= SI_MAX_IO_GENERIC)
2107 break;
2108 /* fall through */
2109 default:
2110 sel->outputs_written |=
2111 1ull << si_shader_io_get_unique_index(name, index);
2112 break;
2113 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2114 case TGSI_SEMANTIC_EDGEFLAG:
2115 break;
2116 }
2117 }
2118 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2119
2120 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2121 * conflicts, i.e. each vertex will start at a different bank.
2122 */
2123 if (sctx->b.chip_class >= GFX9)
2124 sel->esgs_itemsize += 4;
2125 break;
2126
2127 case PIPE_SHADER_FRAGMENT:
2128 for (i = 0; i < sel->info.num_inputs; i++) {
2129 unsigned name = sel->info.input_semantic_name[i];
2130 unsigned index = sel->info.input_semantic_index[i];
2131
2132 switch (name) {
2133 case TGSI_SEMANTIC_GENERIC:
2134 /* don't process indices the function can't handle */
2135 if (index >= SI_MAX_IO_GENERIC)
2136 break;
2137 /* fall through */
2138 default:
2139 sel->inputs_read |=
2140 1ull << si_shader_io_get_unique_index(name, index);
2141 break;
2142 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2143 break;
2144 }
2145 }
2146
2147 for (i = 0; i < 8; i++)
2148 if (sel->info.colors_written & (1 << i))
2149 sel->colors_written_4bit |= 0xf << (4 * i);
2150
2151 for (i = 0; i < sel->info.num_inputs; i++) {
2152 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2153 int index = sel->info.input_semantic_index[i];
2154 sel->color_attr_index[index] = i;
2155 }
2156 }
2157 break;
2158 }
2159
2160 /* PA_CL_VS_OUT_CNTL */
2161 bool misc_vec_ena =
2162 sel->info.writes_psize || sel->info.writes_edgeflag ||
2163 sel->info.writes_layer || sel->info.writes_viewport_index;
2164 sel->pa_cl_vs_out_cntl =
2165 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2166 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2167 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2168 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2169 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2170 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2171 sel->clipdist_mask = sel->info.writes_clipvertex ?
2172 SIX_BITS : sel->info.clipdist_writemask;
2173 sel->culldist_mask = sel->info.culldist_writemask <<
2174 sel->info.num_written_clipdistance;
2175
2176 /* DB_SHADER_CONTROL */
2177 sel->db_shader_control =
2178 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2179 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2180 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2181 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2182
2183 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2184 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2185 sel->db_shader_control |=
2186 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2187 break;
2188 case TGSI_FS_DEPTH_LAYOUT_LESS:
2189 sel->db_shader_control |=
2190 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2191 break;
2192 }
2193
2194 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2195 *
2196 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2197 * --|-----------|------------|------------|--------------------|-------------------|-------------
2198 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2199 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2200 * 2 | false | true | n/a | LateZ | 1 | 0
2201 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2202 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2203 *
2204 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2205 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2206 *
2207 * Don't use ReZ without profiling !!!
2208 *
2209 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2210 * shaders.
2211 */
2212 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2213 /* Cases 3, 4. */
2214 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2215 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2216 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2217 } else if (sel->info.writes_memory) {
2218 /* Case 2. */
2219 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2220 S_02880C_EXEC_ON_HIER_FAIL(1);
2221 } else {
2222 /* Case 1. */
2223 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2224 }
2225
2226 (void) mtx_init(&sel->mutex, mtx_plain);
2227 util_queue_fence_init(&sel->ready);
2228
2229 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
2230 sctx->is_debug ||
2231 si_can_dump_shader(&sscreen->b, sel->info.processor))
2232 si_init_shader_selector_async(sel, -1);
2233 else
2234 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2235 &sel->ready, si_init_shader_selector_async,
2236 NULL);
2237
2238 return sel;
2239 }
2240
2241 static void si_update_streamout_state(struct si_context *sctx)
2242 {
2243 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2244
2245 if (!shader_with_so)
2246 return;
2247
2248 sctx->b.streamout.enabled_stream_buffers_mask =
2249 shader_with_so->enabled_streamout_buffer_mask;
2250 sctx->b.streamout.stride_in_dw = shader_with_so->so.stride;
2251 }
2252
2253 static void si_update_clip_regs(struct si_context *sctx,
2254 struct si_shader_selector *old_hw_vs,
2255 struct si_shader *old_hw_vs_variant,
2256 struct si_shader_selector *next_hw_vs,
2257 struct si_shader *next_hw_vs_variant)
2258 {
2259 if (next_hw_vs &&
2260 (!old_hw_vs ||
2261 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2262 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2263 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2264 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2265 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2266 !old_hw_vs_variant ||
2267 !next_hw_vs_variant ||
2268 old_hw_vs_variant->key.opt.clip_disable !=
2269 next_hw_vs_variant->key.opt.clip_disable))
2270 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2271 }
2272
2273 static void si_update_common_shader_state(struct si_context *sctx)
2274 {
2275 sctx->uses_bindless_samplers =
2276 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2277 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2278 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2279 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2280 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2281 sctx->uses_bindless_images =
2282 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2283 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2284 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2285 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2286 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2287 sctx->do_update_shaders = true;
2288 }
2289
2290 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2291 {
2292 struct si_context *sctx = (struct si_context *)ctx;
2293 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2294 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2295 struct si_shader_selector *sel = state;
2296
2297 if (sctx->vs_shader.cso == sel)
2298 return;
2299
2300 sctx->vs_shader.cso = sel;
2301 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2302
2303 si_update_common_shader_state(sctx);
2304 si_update_vs_writes_viewport_index(sctx);
2305 si_set_active_descriptors_for_shader(sctx, sel);
2306 si_update_streamout_state(sctx);
2307 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2308 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2309 }
2310
2311 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2312 {
2313 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2314 (sctx->tes_shader.cso &&
2315 sctx->tes_shader.cso->info.uses_primid) ||
2316 (sctx->tcs_shader.cso &&
2317 sctx->tcs_shader.cso->info.uses_primid) ||
2318 (sctx->gs_shader.cso &&
2319 sctx->gs_shader.cso->info.uses_primid) ||
2320 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2321 sctx->ps_shader.cso->info.uses_primid);
2322 }
2323
2324 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2325 {
2326 struct si_context *sctx = (struct si_context *)ctx;
2327 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2328 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2329 struct si_shader_selector *sel = state;
2330 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2331
2332 if (sctx->gs_shader.cso == sel)
2333 return;
2334
2335 sctx->gs_shader.cso = sel;
2336 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2337 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2338
2339 si_update_common_shader_state(sctx);
2340 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2341
2342 if (enable_changed) {
2343 si_shader_change_notify(sctx);
2344 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2345 si_update_tess_uses_prim_id(sctx);
2346 }
2347 si_update_vs_writes_viewport_index(sctx);
2348 si_set_active_descriptors_for_shader(sctx, sel);
2349 si_update_streamout_state(sctx);
2350 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2351 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2352 }
2353
2354 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2355 {
2356 struct si_context *sctx = (struct si_context *)ctx;
2357 struct si_shader_selector *sel = state;
2358 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2359
2360 if (sctx->tcs_shader.cso == sel)
2361 return;
2362
2363 sctx->tcs_shader.cso = sel;
2364 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2365 si_update_tess_uses_prim_id(sctx);
2366
2367 si_update_common_shader_state(sctx);
2368
2369 if (enable_changed)
2370 sctx->last_tcs = NULL; /* invalidate derived tess state */
2371
2372 si_set_active_descriptors_for_shader(sctx, sel);
2373 }
2374
2375 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2376 {
2377 struct si_context *sctx = (struct si_context *)ctx;
2378 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2379 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2380 struct si_shader_selector *sel = state;
2381 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2382
2383 if (sctx->tes_shader.cso == sel)
2384 return;
2385
2386 sctx->tes_shader.cso = sel;
2387 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2388 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2389 si_update_tess_uses_prim_id(sctx);
2390
2391 si_update_common_shader_state(sctx);
2392 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2393
2394 if (enable_changed) {
2395 si_shader_change_notify(sctx);
2396 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2397 }
2398 si_update_vs_writes_viewport_index(sctx);
2399 si_set_active_descriptors_for_shader(sctx, sel);
2400 si_update_streamout_state(sctx);
2401 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2402 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2403 }
2404
2405 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2406 {
2407 struct si_context *sctx = (struct si_context *)ctx;
2408 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2409 struct si_shader_selector *sel = state;
2410
2411 /* skip if supplied shader is one already in use */
2412 if (old_sel == sel)
2413 return;
2414
2415 sctx->ps_shader.cso = sel;
2416 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2417
2418 si_update_common_shader_state(sctx);
2419 if (sel) {
2420 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2421 si_update_tess_uses_prim_id(sctx);
2422
2423 if (!old_sel ||
2424 old_sel->info.colors_written != sel->info.colors_written)
2425 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2426
2427 if (sctx->screen->has_out_of_order_rast &&
2428 (!old_sel ||
2429 old_sel->info.writes_memory != sel->info.writes_memory ||
2430 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2431 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2432 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2433 }
2434 si_set_active_descriptors_for_shader(sctx, sel);
2435 }
2436
2437 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2438 {
2439 if (shader->is_optimized) {
2440 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2441 &shader->optimized_ready);
2442 util_queue_fence_destroy(&shader->optimized_ready);
2443 }
2444
2445 if (shader->pm4) {
2446 switch (shader->selector->type) {
2447 case PIPE_SHADER_VERTEX:
2448 if (shader->key.as_ls) {
2449 assert(sctx->b.chip_class <= VI);
2450 si_pm4_delete_state(sctx, ls, shader->pm4);
2451 } else if (shader->key.as_es) {
2452 assert(sctx->b.chip_class <= VI);
2453 si_pm4_delete_state(sctx, es, shader->pm4);
2454 } else {
2455 si_pm4_delete_state(sctx, vs, shader->pm4);
2456 }
2457 break;
2458 case PIPE_SHADER_TESS_CTRL:
2459 si_pm4_delete_state(sctx, hs, shader->pm4);
2460 break;
2461 case PIPE_SHADER_TESS_EVAL:
2462 if (shader->key.as_es) {
2463 assert(sctx->b.chip_class <= VI);
2464 si_pm4_delete_state(sctx, es, shader->pm4);
2465 } else {
2466 si_pm4_delete_state(sctx, vs, shader->pm4);
2467 }
2468 break;
2469 case PIPE_SHADER_GEOMETRY:
2470 if (shader->is_gs_copy_shader)
2471 si_pm4_delete_state(sctx, vs, shader->pm4);
2472 else
2473 si_pm4_delete_state(sctx, gs, shader->pm4);
2474 break;
2475 case PIPE_SHADER_FRAGMENT:
2476 si_pm4_delete_state(sctx, ps, shader->pm4);
2477 break;
2478 }
2479 }
2480
2481 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2482 si_shader_destroy(shader);
2483 free(shader);
2484 }
2485
2486 void si_destroy_shader_selector(struct si_context *sctx,
2487 struct si_shader_selector *sel)
2488 {
2489 struct si_shader *p = sel->first_variant, *c;
2490 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2491 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2492 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2493 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2494 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2495 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2496 };
2497
2498 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2499
2500 if (current_shader[sel->type]->cso == sel) {
2501 current_shader[sel->type]->cso = NULL;
2502 current_shader[sel->type]->current = NULL;
2503 }
2504
2505 while (p) {
2506 c = p->next_variant;
2507 si_delete_shader(sctx, p);
2508 p = c;
2509 }
2510
2511 if (sel->main_shader_part)
2512 si_delete_shader(sctx, sel->main_shader_part);
2513 if (sel->main_shader_part_ls)
2514 si_delete_shader(sctx, sel->main_shader_part_ls);
2515 if (sel->main_shader_part_es)
2516 si_delete_shader(sctx, sel->main_shader_part_es);
2517 if (sel->gs_copy_shader)
2518 si_delete_shader(sctx, sel->gs_copy_shader);
2519
2520 util_queue_fence_destroy(&sel->ready);
2521 mtx_destroy(&sel->mutex);
2522 free(sel->tokens);
2523 ralloc_free(sel->nir);
2524 free(sel);
2525 }
2526
2527 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2528 {
2529 struct si_context *sctx = (struct si_context *)ctx;
2530 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2531
2532 si_shader_selector_reference(sctx, &sel, NULL);
2533 }
2534
2535 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2536 struct si_shader *vs, unsigned name,
2537 unsigned index, unsigned interpolate)
2538 {
2539 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2540 unsigned j, offset, ps_input_cntl = 0;
2541
2542 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2543 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2544 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2545
2546 if (name == TGSI_SEMANTIC_PCOORD ||
2547 (name == TGSI_SEMANTIC_TEXCOORD &&
2548 sctx->sprite_coord_enable & (1 << index))) {
2549 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2550 }
2551
2552 for (j = 0; j < vsinfo->num_outputs; j++) {
2553 if (name == vsinfo->output_semantic_name[j] &&
2554 index == vsinfo->output_semantic_index[j]) {
2555 offset = vs->info.vs_output_param_offset[j];
2556
2557 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2558 /* The input is loaded from parameter memory. */
2559 ps_input_cntl |= S_028644_OFFSET(offset);
2560 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2561 if (offset == AC_EXP_PARAM_UNDEFINED) {
2562 /* This can happen with depth-only rendering. */
2563 offset = 0;
2564 } else {
2565 /* The input is a DEFAULT_VAL constant. */
2566 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2567 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2568 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2569 }
2570
2571 ps_input_cntl = S_028644_OFFSET(0x20) |
2572 S_028644_DEFAULT_VAL(offset);
2573 }
2574 break;
2575 }
2576 }
2577
2578 if (name == TGSI_SEMANTIC_PRIMID)
2579 /* PrimID is written after the last output. */
2580 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2581 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2582 /* No corresponding output found, load defaults into input.
2583 * Don't set any other bits.
2584 * (FLAT_SHADE=1 completely changes behavior) */
2585 ps_input_cntl = S_028644_OFFSET(0x20);
2586 /* D3D 9 behaviour. GL is undefined */
2587 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2588 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2589 }
2590 return ps_input_cntl;
2591 }
2592
2593 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2594 {
2595 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2596 struct si_shader *ps = sctx->ps_shader.current;
2597 struct si_shader *vs = si_get_vs_state(sctx);
2598 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2599 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2600
2601 if (!ps || !ps->selector->info.num_inputs)
2602 return;
2603
2604 num_interp = si_get_ps_num_interp(ps);
2605 assert(num_interp > 0);
2606 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2607
2608 for (i = 0; i < psinfo->num_inputs; i++) {
2609 unsigned name = psinfo->input_semantic_name[i];
2610 unsigned index = psinfo->input_semantic_index[i];
2611 unsigned interpolate = psinfo->input_interpolate[i];
2612
2613 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2614 interpolate));
2615 num_written++;
2616
2617 if (name == TGSI_SEMANTIC_COLOR) {
2618 assert(index < ARRAY_SIZE(bcol_interp));
2619 bcol_interp[index] = interpolate;
2620 }
2621 }
2622
2623 if (ps->key.part.ps.prolog.color_two_side) {
2624 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2625
2626 for (i = 0; i < 2; i++) {
2627 if (!(psinfo->colors_read & (0xf << (i * 4))))
2628 continue;
2629
2630 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2631 i, bcol_interp[i]));
2632 num_written++;
2633 }
2634 }
2635 assert(num_interp == num_written);
2636 }
2637
2638 /**
2639 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2640 */
2641 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2642 {
2643 if (sctx->init_config_has_vgt_flush)
2644 return;
2645
2646 /* Done by Vulkan before VGT_FLUSH. */
2647 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2648 si_pm4_cmd_add(sctx->init_config,
2649 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2650 si_pm4_cmd_end(sctx->init_config, false);
2651
2652 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2653 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2654 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2655 si_pm4_cmd_end(sctx->init_config, false);
2656 sctx->init_config_has_vgt_flush = true;
2657 }
2658
2659 /* Initialize state related to ESGS / GSVS ring buffers */
2660 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2661 {
2662 struct si_shader_selector *es =
2663 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2664 struct si_shader_selector *gs = sctx->gs_shader.cso;
2665 struct si_pm4_state *pm4;
2666
2667 /* Chip constants. */
2668 unsigned num_se = sctx->screen->b.info.max_se;
2669 unsigned wave_size = 64;
2670 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2671 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2672 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2673 */
2674 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2675 unsigned alignment = 256 * num_se;
2676 /* The maximum size is 63.999 MB per SE. */
2677 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2678
2679 /* Calculate the minimum size. */
2680 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2681 wave_size, alignment);
2682
2683 /* These are recommended sizes, not minimum sizes. */
2684 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2685 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2686 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2687 gs->max_gsvs_emit_size;
2688
2689 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2690 esgs_ring_size = align(esgs_ring_size, alignment);
2691 gsvs_ring_size = align(gsvs_ring_size, alignment);
2692
2693 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2694 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2695
2696 /* Some rings don't have to be allocated if shaders don't use them.
2697 * (e.g. no varyings between ES and GS or GS and VS)
2698 *
2699 * GFX9 doesn't have the ESGS ring.
2700 */
2701 bool update_esgs = sctx->b.chip_class <= VI &&
2702 esgs_ring_size &&
2703 (!sctx->esgs_ring ||
2704 sctx->esgs_ring->width0 < esgs_ring_size);
2705 bool update_gsvs = gsvs_ring_size &&
2706 (!sctx->gsvs_ring ||
2707 sctx->gsvs_ring->width0 < gsvs_ring_size);
2708
2709 if (!update_esgs && !update_gsvs)
2710 return true;
2711
2712 if (update_esgs) {
2713 pipe_resource_reference(&sctx->esgs_ring, NULL);
2714 sctx->esgs_ring =
2715 si_aligned_buffer_create(sctx->b.b.screen,
2716 R600_RESOURCE_FLAG_UNMAPPABLE,
2717 PIPE_USAGE_DEFAULT,
2718 esgs_ring_size, alignment);
2719 if (!sctx->esgs_ring)
2720 return false;
2721 }
2722
2723 if (update_gsvs) {
2724 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2725 sctx->gsvs_ring =
2726 si_aligned_buffer_create(sctx->b.b.screen,
2727 R600_RESOURCE_FLAG_UNMAPPABLE,
2728 PIPE_USAGE_DEFAULT,
2729 gsvs_ring_size, alignment);
2730 if (!sctx->gsvs_ring)
2731 return false;
2732 }
2733
2734 /* Create the "init_config_gs_rings" state. */
2735 pm4 = CALLOC_STRUCT(si_pm4_state);
2736 if (!pm4)
2737 return false;
2738
2739 if (sctx->b.chip_class >= CIK) {
2740 if (sctx->esgs_ring) {
2741 assert(sctx->b.chip_class <= VI);
2742 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2743 sctx->esgs_ring->width0 / 256);
2744 }
2745 if (sctx->gsvs_ring)
2746 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2747 sctx->gsvs_ring->width0 / 256);
2748 } else {
2749 if (sctx->esgs_ring)
2750 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2751 sctx->esgs_ring->width0 / 256);
2752 if (sctx->gsvs_ring)
2753 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2754 sctx->gsvs_ring->width0 / 256);
2755 }
2756
2757 /* Set the state. */
2758 if (sctx->init_config_gs_rings)
2759 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2760 sctx->init_config_gs_rings = pm4;
2761
2762 if (!sctx->init_config_has_vgt_flush) {
2763 si_init_config_add_vgt_flush(sctx);
2764 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2765 }
2766
2767 /* Flush the context to re-emit both init_config states. */
2768 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2769 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2770
2771 /* Set ring bindings. */
2772 if (sctx->esgs_ring) {
2773 assert(sctx->b.chip_class <= VI);
2774 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2775 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2776 true, true, 4, 64, 0);
2777 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2778 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2779 false, false, 0, 0, 0);
2780 }
2781 if (sctx->gsvs_ring) {
2782 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2783 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2784 false, false, 0, 0, 0);
2785 }
2786
2787 return true;
2788 }
2789
2790 static void si_shader_lock(struct si_shader *shader)
2791 {
2792 mtx_lock(&shader->selector->mutex);
2793 if (shader->previous_stage_sel) {
2794 assert(shader->previous_stage_sel != shader->selector);
2795 mtx_lock(&shader->previous_stage_sel->mutex);
2796 }
2797 }
2798
2799 static void si_shader_unlock(struct si_shader *shader)
2800 {
2801 if (shader->previous_stage_sel)
2802 mtx_unlock(&shader->previous_stage_sel->mutex);
2803 mtx_unlock(&shader->selector->mutex);
2804 }
2805
2806 /**
2807 * @returns 1 if \p sel has been updated to use a new scratch buffer
2808 * 0 if not
2809 * < 0 if there was a failure
2810 */
2811 static int si_update_scratch_buffer(struct si_context *sctx,
2812 struct si_shader *shader)
2813 {
2814 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2815 int r;
2816
2817 if (!shader)
2818 return 0;
2819
2820 /* This shader doesn't need a scratch buffer */
2821 if (shader->config.scratch_bytes_per_wave == 0)
2822 return 0;
2823
2824 /* Prevent race conditions when updating:
2825 * - si_shader::scratch_bo
2826 * - si_shader::binary::code
2827 * - si_shader::previous_stage::binary::code.
2828 */
2829 si_shader_lock(shader);
2830
2831 /* This shader is already configured to use the current
2832 * scratch buffer. */
2833 if (shader->scratch_bo == sctx->scratch_buffer) {
2834 si_shader_unlock(shader);
2835 return 0;
2836 }
2837
2838 assert(sctx->scratch_buffer);
2839
2840 if (shader->previous_stage)
2841 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2842
2843 si_shader_apply_scratch_relocs(shader, scratch_va);
2844
2845 /* Replace the shader bo with a new bo that has the relocs applied. */
2846 r = si_shader_binary_upload(sctx->screen, shader);
2847 if (r) {
2848 si_shader_unlock(shader);
2849 return r;
2850 }
2851
2852 /* Update the shader state to use the new shader bo. */
2853 si_shader_init_pm4_state(sctx->screen, shader);
2854
2855 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2856
2857 si_shader_unlock(shader);
2858 return 1;
2859 }
2860
2861 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2862 {
2863 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2864 }
2865
2866 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2867 {
2868 return shader ? shader->config.scratch_bytes_per_wave : 0;
2869 }
2870
2871 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2872 {
2873 if (!sctx->tes_shader.cso)
2874 return NULL; /* tessellation disabled */
2875
2876 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2877 sctx->fixed_func_tcs_shader.current;
2878 }
2879
2880 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2881 {
2882 unsigned bytes = 0;
2883
2884 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2885 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2886 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2887 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2888
2889 if (sctx->tes_shader.cso) {
2890 struct si_shader *tcs = si_get_tcs_current(sctx);
2891
2892 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2893 }
2894 return bytes;
2895 }
2896
2897 static bool si_update_scratch_relocs(struct si_context *sctx)
2898 {
2899 struct si_shader *tcs = si_get_tcs_current(sctx);
2900 int r;
2901
2902 /* Update the shaders, so that they are using the latest scratch.
2903 * The scratch buffer may have been changed since these shaders were
2904 * last used, so we still need to try to update them, even if they
2905 * require scratch buffers smaller than the current size.
2906 */
2907 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2908 if (r < 0)
2909 return false;
2910 if (r == 1)
2911 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2912
2913 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2914 if (r < 0)
2915 return false;
2916 if (r == 1)
2917 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2918
2919 r = si_update_scratch_buffer(sctx, tcs);
2920 if (r < 0)
2921 return false;
2922 if (r == 1)
2923 si_pm4_bind_state(sctx, hs, tcs->pm4);
2924
2925 /* VS can be bound as LS, ES, or VS. */
2926 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2927 if (r < 0)
2928 return false;
2929 if (r == 1) {
2930 if (sctx->tes_shader.current)
2931 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2932 else if (sctx->gs_shader.current)
2933 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2934 else
2935 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2936 }
2937
2938 /* TES can be bound as ES or VS. */
2939 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2940 if (r < 0)
2941 return false;
2942 if (r == 1) {
2943 if (sctx->gs_shader.current)
2944 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2945 else
2946 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2947 }
2948
2949 return true;
2950 }
2951
2952 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2953 {
2954 unsigned current_scratch_buffer_size =
2955 si_get_current_scratch_buffer_size(sctx);
2956 unsigned scratch_bytes_per_wave =
2957 si_get_max_scratch_bytes_per_wave(sctx);
2958 unsigned scratch_needed_size = scratch_bytes_per_wave *
2959 sctx->scratch_waves;
2960 unsigned spi_tmpring_size;
2961
2962 if (scratch_needed_size > 0) {
2963 if (scratch_needed_size > current_scratch_buffer_size) {
2964 /* Create a bigger scratch buffer */
2965 r600_resource_reference(&sctx->scratch_buffer, NULL);
2966
2967 sctx->scratch_buffer = (struct r600_resource*)
2968 si_aligned_buffer_create(&sctx->screen->b.b,
2969 R600_RESOURCE_FLAG_UNMAPPABLE,
2970 PIPE_USAGE_DEFAULT,
2971 scratch_needed_size, 256);
2972 if (!sctx->scratch_buffer)
2973 return false;
2974
2975 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2976 r600_context_add_resource_size(&sctx->b.b,
2977 &sctx->scratch_buffer->b.b);
2978 }
2979
2980 if (!si_update_scratch_relocs(sctx))
2981 return false;
2982 }
2983
2984 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2985 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2986 "scratch size should already be aligned correctly.");
2987
2988 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2989 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2990 if (spi_tmpring_size != sctx->spi_tmpring_size) {
2991 sctx->spi_tmpring_size = spi_tmpring_size;
2992 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2993 }
2994 return true;
2995 }
2996
2997 static void si_init_tess_factor_ring(struct si_context *sctx)
2998 {
2999 bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
3000 sctx->b.family != CHIP_CARRIZO &&
3001 sctx->b.family != CHIP_STONEY;
3002 /* This must be one less than the maximum number due to a hw limitation.
3003 * Various hardware bugs in SI, CIK, and GFX9 need this.
3004 */
3005 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 127 : 63;
3006 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
3007 sctx->screen->b.info.max_se;
3008 unsigned offchip_granularity;
3009
3010 switch (sctx->screen->tess_offchip_block_dw_size) {
3011 default:
3012 assert(0);
3013 /* fall through */
3014 case 8192:
3015 offchip_granularity = V_03093C_X_8K_DWORDS;
3016 break;
3017 case 4096:
3018 offchip_granularity = V_03093C_X_4K_DWORDS;
3019 break;
3020 }
3021
3022 assert(!sctx->tf_ring);
3023 /* Use 64K alignment for both rings, so that we can pass the address
3024 * to shaders as one SGPR containing bits [16:47].
3025 */
3026 sctx->tf_ring = si_aligned_buffer_create(sctx->b.b.screen,
3027 R600_RESOURCE_FLAG_UNMAPPABLE,
3028 PIPE_USAGE_DEFAULT,
3029 32768 * sctx->screen->b.info.max_se,
3030 64 * 1024);
3031 if (!sctx->tf_ring)
3032 return;
3033
3034 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
3035
3036 sctx->tess_offchip_ring =
3037 si_aligned_buffer_create(sctx->b.b.screen,
3038 R600_RESOURCE_FLAG_UNMAPPABLE,
3039 PIPE_USAGE_DEFAULT,
3040 max_offchip_buffers *
3041 sctx->screen->tess_offchip_block_dw_size * 4,
3042 64 * 1024);
3043 if (!sctx->tess_offchip_ring)
3044 return;
3045
3046 si_init_config_add_vgt_flush(sctx);
3047
3048 uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
3049 uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
3050 assert((offchip_va & 0xffff) == 0);
3051 assert((factor_va & 0xffff) == 0);
3052
3053 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
3054 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3055 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
3056 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3057
3058 /* Append these registers to the init config state. */
3059 if (sctx->b.chip_class >= CIK) {
3060 if (sctx->b.chip_class >= VI)
3061 --max_offchip_buffers;
3062
3063 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3064 S_030938_SIZE(sctx->tf_ring->width0 / 4));
3065 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3066 factor_va >> 8);
3067 if (sctx->b.chip_class >= GFX9)
3068 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3069 factor_va >> 40);
3070 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3071 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
3072 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
3073 } else {
3074 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
3075 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3076 S_008988_SIZE(sctx->tf_ring->width0 / 4));
3077 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3078 factor_va >> 8);
3079 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3080 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
3081 }
3082
3083 if (sctx->b.chip_class >= GFX9) {
3084 si_pm4_set_reg(sctx->init_config,
3085 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3086 GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3087 offchip_va >> 16);
3088 si_pm4_set_reg(sctx->init_config,
3089 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3090 GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3091 factor_va >> 16);
3092 } else {
3093 si_pm4_set_reg(sctx->init_config,
3094 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3095 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3096 offchip_va >> 16);
3097 si_pm4_set_reg(sctx->init_config,
3098 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3099 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3100 factor_va >> 16);
3101 }
3102
3103 /* Flush the context to re-emit the init_config state.
3104 * This is done only once in a lifetime of a context.
3105 */
3106 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3107 sctx->b.initial_gfx_cs_size = 0; /* force flush */
3108 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
3109 }
3110
3111 /**
3112 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
3113 * VS passes its outputs to TES directly, so the fixed-function shader only
3114 * has to write TESSOUTER and TESSINNER.
3115 */
3116 static void si_generate_fixed_func_tcs(struct si_context *sctx)
3117 {
3118 struct ureg_src outer, inner;
3119 struct ureg_dst tessouter, tessinner;
3120 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
3121
3122 if (!ureg)
3123 return; /* if we get here, we're screwed */
3124
3125 assert(!sctx->fixed_func_tcs_shader.cso);
3126
3127 outer = ureg_DECL_system_value(ureg,
3128 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
3129 inner = ureg_DECL_system_value(ureg,
3130 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
3131
3132 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
3133 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
3134
3135 ureg_MOV(ureg, tessouter, outer);
3136 ureg_MOV(ureg, tessinner, inner);
3137 ureg_END(ureg);
3138
3139 sctx->fixed_func_tcs_shader.cso =
3140 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
3141 }
3142
3143 static void si_update_vgt_shader_config(struct si_context *sctx)
3144 {
3145 /* Calculate the index of the config.
3146 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3147 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3148 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3149
3150 if (!*pm4) {
3151 uint32_t stages = 0;
3152
3153 *pm4 = CALLOC_STRUCT(si_pm4_state);
3154
3155 if (sctx->tes_shader.cso) {
3156 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3157 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3158
3159 if (sctx->gs_shader.cso)
3160 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3161 S_028B54_GS_EN(1) |
3162 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3163 else
3164 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3165 } else if (sctx->gs_shader.cso) {
3166 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3167 S_028B54_GS_EN(1) |
3168 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3169 }
3170
3171 if (sctx->b.chip_class >= GFX9)
3172 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3173
3174 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3175 }
3176 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3177 }
3178
3179 bool si_update_shaders(struct si_context *sctx)
3180 {
3181 struct pipe_context *ctx = (struct pipe_context*)sctx;
3182 struct si_compiler_ctx_state compiler_state;
3183 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3184 struct si_shader *old_vs = si_get_vs_state(sctx);
3185 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3186 struct si_shader *old_ps = sctx->ps_shader.current;
3187 unsigned old_spi_shader_col_format =
3188 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3189 int r;
3190
3191 compiler_state.tm = sctx->tm;
3192 compiler_state.debug = sctx->b.debug;
3193 compiler_state.is_debug_context = sctx->is_debug;
3194
3195 /* Update stages before GS. */
3196 if (sctx->tes_shader.cso) {
3197 if (!sctx->tf_ring) {
3198 si_init_tess_factor_ring(sctx);
3199 if (!sctx->tf_ring)
3200 return false;
3201 }
3202
3203 /* VS as LS */
3204 if (sctx->b.chip_class <= VI) {
3205 r = si_shader_select(ctx, &sctx->vs_shader,
3206 &compiler_state);
3207 if (r)
3208 return false;
3209 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3210 }
3211
3212 if (sctx->tcs_shader.cso) {
3213 r = si_shader_select(ctx, &sctx->tcs_shader,
3214 &compiler_state);
3215 if (r)
3216 return false;
3217 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3218 } else {
3219 if (!sctx->fixed_func_tcs_shader.cso) {
3220 si_generate_fixed_func_tcs(sctx);
3221 if (!sctx->fixed_func_tcs_shader.cso)
3222 return false;
3223 }
3224
3225 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3226 &compiler_state);
3227 if (r)
3228 return false;
3229 si_pm4_bind_state(sctx, hs,
3230 sctx->fixed_func_tcs_shader.current->pm4);
3231 }
3232
3233 if (sctx->gs_shader.cso) {
3234 /* TES as ES */
3235 if (sctx->b.chip_class <= VI) {
3236 r = si_shader_select(ctx, &sctx->tes_shader,
3237 &compiler_state);
3238 if (r)
3239 return false;
3240 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3241 }
3242 } else {
3243 /* TES as VS */
3244 r = si_shader_select(ctx, &sctx->tes_shader,
3245 &compiler_state);
3246 if (r)
3247 return false;
3248 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3249 }
3250 } else if (sctx->gs_shader.cso) {
3251 if (sctx->b.chip_class <= VI) {
3252 /* VS as ES */
3253 r = si_shader_select(ctx, &sctx->vs_shader,
3254 &compiler_state);
3255 if (r)
3256 return false;
3257 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3258
3259 si_pm4_bind_state(sctx, ls, NULL);
3260 si_pm4_bind_state(sctx, hs, NULL);
3261 }
3262 } else {
3263 /* VS as VS */
3264 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3265 if (r)
3266 return false;
3267 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3268 si_pm4_bind_state(sctx, ls, NULL);
3269 si_pm4_bind_state(sctx, hs, NULL);
3270 }
3271
3272 /* Update GS. */
3273 if (sctx->gs_shader.cso) {
3274 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3275 if (r)
3276 return false;
3277 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3278 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3279
3280 if (!si_update_gs_ring_buffers(sctx))
3281 return false;
3282 } else {
3283 si_pm4_bind_state(sctx, gs, NULL);
3284 if (sctx->b.chip_class <= VI)
3285 si_pm4_bind_state(sctx, es, NULL);
3286 }
3287
3288 si_update_vgt_shader_config(sctx);
3289
3290 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3291 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3292
3293 if (sctx->ps_shader.cso) {
3294 unsigned db_shader_control;
3295
3296 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3297 if (r)
3298 return false;
3299 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3300
3301 db_shader_control =
3302 sctx->ps_shader.cso->db_shader_control |
3303 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3304
3305 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3306 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3307 sctx->flatshade != rs->flatshade) {
3308 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3309 sctx->flatshade = rs->flatshade;
3310 si_mark_atom_dirty(sctx, &sctx->spi_map);
3311 }
3312
3313 if (sctx->screen->b.rbplus_allowed &&
3314 si_pm4_state_changed(sctx, ps) &&
3315 (!old_ps ||
3316 old_spi_shader_col_format !=
3317 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3318 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3319
3320 if (sctx->ps_db_shader_control != db_shader_control) {
3321 sctx->ps_db_shader_control = db_shader_control;
3322 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3323 if (sctx->screen->dpbb_allowed)
3324 si_mark_atom_dirty(sctx, &sctx->dpbb_state);
3325 }
3326
3327 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3328 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3329 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3330
3331 if (sctx->b.chip_class == SI)
3332 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3333
3334 if (sctx->framebuffer.nr_samples <= 1)
3335 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3336 }
3337 }
3338
3339 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3340 si_pm4_state_enabled_and_changed(sctx, hs) ||
3341 si_pm4_state_enabled_and_changed(sctx, es) ||
3342 si_pm4_state_enabled_and_changed(sctx, gs) ||
3343 si_pm4_state_enabled_and_changed(sctx, vs) ||
3344 si_pm4_state_enabled_and_changed(sctx, ps)) {
3345 if (!si_update_spi_tmpring_size(sctx))
3346 return false;
3347 }
3348
3349 if (sctx->b.chip_class >= CIK) {
3350 if (si_pm4_state_enabled_and_changed(sctx, ls))
3351 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3352 else if (!sctx->queued.named.ls)
3353 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3354
3355 if (si_pm4_state_enabled_and_changed(sctx, hs))
3356 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3357 else if (!sctx->queued.named.hs)
3358 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3359
3360 if (si_pm4_state_enabled_and_changed(sctx, es))
3361 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3362 else if (!sctx->queued.named.es)
3363 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3364
3365 if (si_pm4_state_enabled_and_changed(sctx, gs))
3366 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3367 else if (!sctx->queued.named.gs)
3368 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3369
3370 if (si_pm4_state_enabled_and_changed(sctx, vs))
3371 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3372 else if (!sctx->queued.named.vs)
3373 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3374
3375 if (si_pm4_state_enabled_and_changed(sctx, ps))
3376 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3377 else if (!sctx->queued.named.ps)
3378 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3379 }
3380
3381 sctx->do_update_shaders = false;
3382 return true;
3383 }
3384
3385 static void si_emit_scratch_state(struct si_context *sctx,
3386 struct r600_atom *atom)
3387 {
3388 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3389
3390 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3391 sctx->spi_tmpring_size);
3392
3393 if (sctx->scratch_buffer) {
3394 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3395 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3396 RADEON_PRIO_SCRATCH_BUFFER);
3397 }
3398 }
3399
3400 void si_init_shader_functions(struct si_context *sctx)
3401 {
3402 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3403 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3404 si_emit_scratch_state);
3405
3406 sctx->b.b.create_vs_state = si_create_shader_selector;
3407 sctx->b.b.create_tcs_state = si_create_shader_selector;
3408 sctx->b.b.create_tes_state = si_create_shader_selector;
3409 sctx->b.b.create_gs_state = si_create_shader_selector;
3410 sctx->b.b.create_fs_state = si_create_shader_selector;
3411
3412 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3413 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3414 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3415 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3416 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3417
3418 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3419 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3420 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3421 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3422 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3423 }