radeonsi: ensure sample locations are set for line and polygon smoothing
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "si_shader.h"
30 #include "sid.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/u_hash.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39 #include "util/u_simple_shaders.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
45 * integer.
46 */
47 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
48 {
49 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
50 sizeof(struct tgsi_token);
51 unsigned size = 4 + tgsi_size + sizeof(sel->so);
52 char *result = (char*)MALLOC(size);
53
54 if (!result)
55 return NULL;
56
57 *((uint32_t*)result) = size;
58 memcpy(result + 4, sel->tokens, tgsi_size);
59 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
60 return result;
61 }
62
63 /** Copy "data" to "ptr" and return the next dword following copied data. */
64 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
65 {
66 /* data may be NULL if size == 0 */
67 if (size)
68 memcpy(ptr, data, size);
69 ptr += DIV_ROUND_UP(size, 4);
70 return ptr;
71 }
72
73 /** Read data from "ptr". Return the next dword following the data. */
74 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
75 {
76 memcpy(data, ptr, size);
77 ptr += DIV_ROUND_UP(size, 4);
78 return ptr;
79 }
80
81 /**
82 * Write the size as uint followed by the data. Return the next dword
83 * following the copied data.
84 */
85 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
86 {
87 *ptr++ = size;
88 return write_data(ptr, data, size);
89 }
90
91 /**
92 * Read the size as uint followed by the data. Return both via parameters.
93 * Return the next dword following the data.
94 */
95 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
96 {
97 *size = *ptr++;
98 assert(*data == NULL);
99 if (!*size)
100 return ptr;
101 *data = malloc(*size);
102 return read_data(ptr, *data, *size);
103 }
104
105 /**
106 * Return the shader binary in a buffer. The first 4 bytes contain its size
107 * as integer.
108 */
109 static void *si_get_shader_binary(struct si_shader *shader)
110 {
111 /* There is always a size of data followed by the data itself. */
112 unsigned relocs_size = shader->binary.reloc_count *
113 sizeof(shader->binary.relocs[0]);
114 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
115 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
116 strlen(shader->binary.llvm_ir_string) + 1 : 0;
117 unsigned size =
118 4 + /* total size */
119 4 + /* CRC32 of the data below */
120 align(sizeof(shader->config), 4) +
121 align(sizeof(shader->info), 4) +
122 4 + align(shader->binary.code_size, 4) +
123 4 + align(shader->binary.rodata_size, 4) +
124 4 + align(relocs_size, 4) +
125 4 + align(disasm_size, 4) +
126 4 + align(llvm_ir_size, 4);
127 void *buffer = CALLOC(1, size);
128 uint32_t *ptr = (uint32_t*)buffer;
129
130 if (!buffer)
131 return NULL;
132
133 *ptr++ = size;
134 ptr++; /* CRC32 is calculated at the end. */
135
136 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
137 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
138 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
139 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
140 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
141 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
142 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
143 assert((char *)ptr - (char *)buffer == size);
144
145 /* Compute CRC32. */
146 ptr = (uint32_t*)buffer;
147 ptr++;
148 *ptr = util_hash_crc32(ptr + 1, size - 8);
149
150 return buffer;
151 }
152
153 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
154 {
155 uint32_t *ptr = (uint32_t*)binary;
156 uint32_t size = *ptr++;
157 uint32_t crc32 = *ptr++;
158 unsigned chunk_size;
159
160 if (util_hash_crc32(ptr, size - 8) != crc32) {
161 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
162 return false;
163 }
164
165 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
166 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
167 ptr = read_chunk(ptr, (void**)&shader->binary.code,
168 &shader->binary.code_size);
169 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
170 &shader->binary.rodata_size);
171 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
172 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
173 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
174 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
175
176 return true;
177 }
178
179 /**
180 * Insert a shader into the cache. It's assumed the shader is not in the cache.
181 * Use si_shader_cache_load_shader before calling this.
182 *
183 * Returns false on failure, in which case the tgsi_binary should be freed.
184 */
185 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
186 void *tgsi_binary,
187 struct si_shader *shader)
188 {
189 void *hw_binary;
190 struct hash_entry *entry;
191
192 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
193 if (entry)
194 return false; /* already added */
195
196 hw_binary = si_get_shader_binary(shader);
197 if (!hw_binary)
198 return false;
199
200 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
201 hw_binary) == NULL) {
202 FREE(hw_binary);
203 return false;
204 }
205
206 return true;
207 }
208
209 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
210 void *tgsi_binary,
211 struct si_shader *shader)
212 {
213 struct hash_entry *entry =
214 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
215 if (!entry)
216 return false;
217
218 return si_load_shader_binary(shader, entry->data);
219 }
220
221 static uint32_t si_shader_cache_key_hash(const void *key)
222 {
223 /* The first dword is the key size. */
224 return util_hash_crc32(key, *(uint32_t*)key);
225 }
226
227 static bool si_shader_cache_key_equals(const void *a, const void *b)
228 {
229 uint32_t *keya = (uint32_t*)a;
230 uint32_t *keyb = (uint32_t*)b;
231
232 /* The first dword is the key size. */
233 if (*keya != *keyb)
234 return false;
235
236 return memcmp(keya, keyb, *keya) == 0;
237 }
238
239 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
240 {
241 FREE((void*)entry->key);
242 FREE(entry->data);
243 }
244
245 bool si_init_shader_cache(struct si_screen *sscreen)
246 {
247 pipe_mutex_init(sscreen->shader_cache_mutex);
248 sscreen->shader_cache =
249 _mesa_hash_table_create(NULL,
250 si_shader_cache_key_hash,
251 si_shader_cache_key_equals);
252 return sscreen->shader_cache != NULL;
253 }
254
255 void si_destroy_shader_cache(struct si_screen *sscreen)
256 {
257 if (sscreen->shader_cache)
258 _mesa_hash_table_destroy(sscreen->shader_cache,
259 si_destroy_shader_cache_entry);
260 pipe_mutex_destroy(sscreen->shader_cache_mutex);
261 }
262
263 /* SHADER STATES */
264
265 static void si_set_tesseval_regs(struct si_screen *sscreen,
266 struct si_shader *shader,
267 struct si_pm4_state *pm4)
268 {
269 struct tgsi_shader_info *info = &shader->selector->info;
270 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
271 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
272 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
273 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
274 unsigned type, partitioning, topology, distribution_mode;
275
276 switch (tes_prim_mode) {
277 case PIPE_PRIM_LINES:
278 type = V_028B6C_TESS_ISOLINE;
279 break;
280 case PIPE_PRIM_TRIANGLES:
281 type = V_028B6C_TESS_TRIANGLE;
282 break;
283 case PIPE_PRIM_QUADS:
284 type = V_028B6C_TESS_QUAD;
285 break;
286 default:
287 assert(0);
288 return;
289 }
290
291 switch (tes_spacing) {
292 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
293 partitioning = V_028B6C_PART_FRAC_ODD;
294 break;
295 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
296 partitioning = V_028B6C_PART_FRAC_EVEN;
297 break;
298 case PIPE_TESS_SPACING_EQUAL:
299 partitioning = V_028B6C_PART_INTEGER;
300 break;
301 default:
302 assert(0);
303 return;
304 }
305
306 if (tes_point_mode)
307 topology = V_028B6C_OUTPUT_POINT;
308 else if (tes_prim_mode == PIPE_PRIM_LINES)
309 topology = V_028B6C_OUTPUT_LINE;
310 else if (tes_vertex_order_cw)
311 /* for some reason, this must be the other way around */
312 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
313 else
314 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
315
316 if (sscreen->has_distributed_tess) {
317 if (sscreen->b.family == CHIP_FIJI ||
318 sscreen->b.family >= CHIP_POLARIS10)
319 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
320 else
321 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
322 } else
323 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
324
325 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
326 S_028B6C_TYPE(type) |
327 S_028B6C_PARTITIONING(partitioning) |
328 S_028B6C_TOPOLOGY(topology) |
329 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
330 }
331
332 static void si_shader_ls(struct si_shader *shader)
333 {
334 struct si_pm4_state *pm4;
335 unsigned vgpr_comp_cnt;
336 uint64_t va;
337
338 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
339 if (!pm4)
340 return;
341
342 va = shader->bo->gpu_address;
343 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
344
345 /* We need at least 2 components for LS.
346 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
347 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
348
349 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
350 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
351
352 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
353 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
354 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
355 S_00B528_DX10_CLAMP(1) |
356 S_00B528_FLOAT_MODE(shader->config.float_mode);
357 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
358 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
359 }
360
361 static void si_shader_hs(struct si_shader *shader)
362 {
363 struct si_pm4_state *pm4;
364 uint64_t va;
365
366 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
367 if (!pm4)
368 return;
369
370 va = shader->bo->gpu_address;
371 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
372
373 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
374 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
375 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
376 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
377 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
378 S_00B428_DX10_CLAMP(1) |
379 S_00B428_FLOAT_MODE(shader->config.float_mode));
380 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
381 S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
382 S_00B42C_OC_LDS_EN(1) |
383 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
384 }
385
386 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
387 {
388 struct si_pm4_state *pm4;
389 unsigned num_user_sgprs;
390 unsigned vgpr_comp_cnt;
391 uint64_t va;
392 unsigned oc_lds_en;
393
394 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
395
396 if (!pm4)
397 return;
398
399 va = shader->bo->gpu_address;
400 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
401
402 if (shader->selector->type == PIPE_SHADER_VERTEX) {
403 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
404 num_user_sgprs = SI_ES_NUM_USER_SGPR;
405 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
406 vgpr_comp_cnt = 3; /* all components are needed for TES */
407 num_user_sgprs = SI_TES_NUM_USER_SGPR;
408 } else
409 unreachable("invalid shader selector type");
410
411 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
412
413 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
414 shader->selector->esgs_itemsize / 4);
415 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
416 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
417 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
418 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
419 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
420 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
421 S_00B328_DX10_CLAMP(1) |
422 S_00B328_FLOAT_MODE(shader->config.float_mode));
423 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
424 S_00B32C_USER_SGPR(num_user_sgprs) |
425 S_00B32C_OC_LDS_EN(oc_lds_en) |
426 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
427
428 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
429 si_set_tesseval_regs(sscreen, shader, pm4);
430 }
431
432 /**
433 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
434 * geometry shader.
435 */
436 static uint32_t si_vgt_gs_mode(struct si_shader *shader)
437 {
438 unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
439 unsigned cut_mode;
440
441 if (gs_max_vert_out <= 128) {
442 cut_mode = V_028A40_GS_CUT_128;
443 } else if (gs_max_vert_out <= 256) {
444 cut_mode = V_028A40_GS_CUT_256;
445 } else if (gs_max_vert_out <= 512) {
446 cut_mode = V_028A40_GS_CUT_512;
447 } else {
448 assert(gs_max_vert_out <= 1024);
449 cut_mode = V_028A40_GS_CUT_1024;
450 }
451
452 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
453 S_028A40_CUT_MODE(cut_mode)|
454 S_028A40_ES_WRITE_OPTIMIZE(1) |
455 S_028A40_GS_WRITE_OPTIMIZE(1);
456 }
457
458 static void si_shader_gs(struct si_shader *shader)
459 {
460 unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
461 unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
462 unsigned gs_num_invocations = shader->selector->gs_num_invocations;
463 struct si_pm4_state *pm4;
464 uint64_t va;
465 unsigned max_stream = shader->selector->max_gs_stream;
466
467 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
468 assert(gsvs_itemsize < (1 << 15));
469
470 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
471
472 if (!pm4)
473 return;
474
475 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader));
476
477 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
478 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
479 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
480
481 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
482
483 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
484
485 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
486 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
487 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
488 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
489
490 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
491 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
492 S_028B90_ENABLE(gs_num_invocations > 0));
493
494 va = shader->bo->gpu_address;
495 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
496 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
497 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
498
499 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
500 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
501 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
502 S_00B228_DX10_CLAMP(1) |
503 S_00B228_FLOAT_MODE(shader->config.float_mode));
504 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
505 S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
506 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
507 }
508
509 /**
510 * Compute the state for \p shader, which will run as a vertex shader on the
511 * hardware.
512 *
513 * If \p gs is non-NULL, it points to the geometry shader for which this shader
514 * is the copy shader.
515 */
516 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
517 struct si_shader *gs)
518 {
519 struct si_pm4_state *pm4;
520 unsigned num_user_sgprs;
521 unsigned nparams, vgpr_comp_cnt;
522 uint64_t va;
523 unsigned oc_lds_en;
524 unsigned window_space =
525 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
526 bool enable_prim_id = si_vs_exports_prim_id(shader);
527
528 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
529
530 if (!pm4)
531 return;
532
533 /* We always write VGT_GS_MODE in the VS state, because every switch
534 * between different shader pipelines involving a different GS or no
535 * GS at all involves a switch of the VS (different GS use different
536 * copy shaders). On the other hand, when the API switches from a GS to
537 * no GS and then back to the same GS used originally, the GS state is
538 * not sent again.
539 */
540 if (!gs) {
541 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
542 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
543 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
544 } else {
545 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
546 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
547 }
548
549 va = shader->bo->gpu_address;
550 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
551
552 if (gs) {
553 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
554 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
555 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
556 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
557 num_user_sgprs = SI_VS_NUM_USER_SGPR;
558 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
559 vgpr_comp_cnt = 3; /* all components are needed for TES */
560 num_user_sgprs = SI_TES_NUM_USER_SGPR;
561 } else
562 unreachable("invalid shader selector type");
563
564 /* VS is required to export at least one param. */
565 nparams = MAX2(shader->info.nr_param_exports, 1);
566 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
567 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
568
569 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
570 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
571 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
572 V_02870C_SPI_SHADER_4COMP :
573 V_02870C_SPI_SHADER_NONE) |
574 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
575 V_02870C_SPI_SHADER_4COMP :
576 V_02870C_SPI_SHADER_NONE) |
577 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
578 V_02870C_SPI_SHADER_4COMP :
579 V_02870C_SPI_SHADER_NONE));
580
581 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
582
583 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
584 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
585 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
586 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
587 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
588 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
589 S_00B128_DX10_CLAMP(1) |
590 S_00B128_FLOAT_MODE(shader->config.float_mode));
591 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
592 S_00B12C_USER_SGPR(num_user_sgprs) |
593 S_00B12C_OC_LDS_EN(oc_lds_en) |
594 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
595 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
596 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
597 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
598 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
599 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
600 if (window_space)
601 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
602 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
603 else
604 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
605 S_028818_VTX_W0_FMT(1) |
606 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
607 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
608 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
609
610 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
611 si_set_tesseval_regs(sscreen, shader, pm4);
612 }
613
614 static unsigned si_get_ps_num_interp(struct si_shader *ps)
615 {
616 struct tgsi_shader_info *info = &ps->selector->info;
617 unsigned num_colors = !!(info->colors_read & 0x0f) +
618 !!(info->colors_read & 0xf0);
619 unsigned num_interp = ps->selector->info.num_inputs +
620 (ps->key.ps.prolog.color_two_side ? num_colors : 0);
621
622 assert(num_interp <= 32);
623 return MIN2(num_interp, 32);
624 }
625
626 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
627 {
628 unsigned value = shader->key.ps.epilog.spi_shader_col_format;
629 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
630
631 /* If the i-th target format is set, all previous target formats must
632 * be non-zero to avoid hangs.
633 */
634 for (i = 0; i < num_targets; i++)
635 if (!(value & (0xf << (i * 4))))
636 value |= V_028714_SPI_SHADER_32_R << (i * 4);
637
638 return value;
639 }
640
641 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
642 {
643 unsigned i, cb_shader_mask = 0;
644
645 for (i = 0; i < 8; i++) {
646 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
647 case V_028714_SPI_SHADER_ZERO:
648 break;
649 case V_028714_SPI_SHADER_32_R:
650 cb_shader_mask |= 0x1 << (i * 4);
651 break;
652 case V_028714_SPI_SHADER_32_GR:
653 cb_shader_mask |= 0x3 << (i * 4);
654 break;
655 case V_028714_SPI_SHADER_32_AR:
656 cb_shader_mask |= 0x9 << (i * 4);
657 break;
658 case V_028714_SPI_SHADER_FP16_ABGR:
659 case V_028714_SPI_SHADER_UNORM16_ABGR:
660 case V_028714_SPI_SHADER_SNORM16_ABGR:
661 case V_028714_SPI_SHADER_UINT16_ABGR:
662 case V_028714_SPI_SHADER_SINT16_ABGR:
663 case V_028714_SPI_SHADER_32_ABGR:
664 cb_shader_mask |= 0xf << (i * 4);
665 break;
666 default:
667 assert(0);
668 }
669 }
670 return cb_shader_mask;
671 }
672
673 static void si_shader_ps(struct si_shader *shader)
674 {
675 struct tgsi_shader_info *info = &shader->selector->info;
676 struct si_pm4_state *pm4;
677 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
678 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
679 uint64_t va;
680 unsigned input_ena = shader->config.spi_ps_input_ena;
681
682 /* we need to enable at least one of them, otherwise we hang the GPU */
683 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
684 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
685 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
686 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
687 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
688 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
689 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
690 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
691
692 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
693
694 if (!pm4)
695 return;
696
697 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
698 * Possible vaules:
699 * 0 -> Position = pixel center
700 * 1 -> Position = pixel centroid
701 * 2 -> Position = at sample position
702 *
703 * From GLSL 4.5 specification, section 7.1:
704 * "The variable gl_FragCoord is available as an input variable from
705 * within fragment shaders and it holds the window relative coordinates
706 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
707 * value can be for any location within the pixel, or one of the
708 * fragment samples. The use of centroid does not further restrict
709 * this value to be inside the current primitive."
710 *
711 * Meaning that centroid has no effect and we can return anything within
712 * the pixel. Thus, return the value at sample position, because that's
713 * the most accurate one shaders can get.
714 */
715 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
716
717 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
718 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
719 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
720
721 spi_shader_col_format = si_get_spi_shader_col_format(shader);
722 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
723
724 /* Ensure that some export memory is always allocated, for two reasons:
725 *
726 * 1) Correctness: The hardware ignores the EXEC mask if no export
727 * memory is allocated, so KILL and alpha test do not work correctly
728 * without this.
729 * 2) Performance: Every shader needs at least a NULL export, even when
730 * it writes no color/depth output. The NULL export instruction
731 * stalls without this setting.
732 *
733 * Don't add this to CB_SHADER_MASK.
734 */
735 if (!spi_shader_col_format &&
736 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
737 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
738
739 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
740 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
741 shader->config.spi_ps_input_addr);
742
743 /* Set interpolation controls. */
744 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
745
746 /* Set registers. */
747 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
748 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
749
750 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
751 info->writes_samplemask ? V_028710_SPI_SHADER_32_ABGR :
752 info->writes_stencil ? V_028710_SPI_SHADER_32_GR :
753 info->writes_z ? V_028710_SPI_SHADER_32_R :
754 V_028710_SPI_SHADER_ZERO);
755
756 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
757 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
758
759 va = shader->bo->gpu_address;
760 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
761 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
762 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
763
764 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
765 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
766 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
767 S_00B028_DX10_CLAMP(1) |
768 S_00B028_FLOAT_MODE(shader->config.float_mode));
769 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
770 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
771 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
772 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
773
774 /* Prefer RE_Z if the shader is complex enough. The requirement is either:
775 * - the shader uses at least 2 VMEM instructions, or
776 * - the code size is at least 50 2-dword instructions or 100 1-dword
777 * instructions.
778 *
779 * Shaders with side effects that must execute independently of the
780 * depth test require LATE_Z.
781 */
782 if (info->writes_memory &&
783 !info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
784 shader->z_order = V_02880C_LATE_Z;
785 else if (info->num_memory_instructions >= 2 ||
786 shader->binary.code_size > 100*4)
787 shader->z_order = V_02880C_EARLY_Z_THEN_RE_Z;
788 else
789 shader->z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
790 }
791
792 static void si_shader_init_pm4_state(struct si_screen *sscreen,
793 struct si_shader *shader)
794 {
795
796 if (shader->pm4)
797 si_pm4_free_state_simple(shader->pm4);
798
799 switch (shader->selector->type) {
800 case PIPE_SHADER_VERTEX:
801 if (shader->key.vs.as_ls)
802 si_shader_ls(shader);
803 else if (shader->key.vs.as_es)
804 si_shader_es(sscreen, shader);
805 else
806 si_shader_vs(sscreen, shader, NULL);
807 break;
808 case PIPE_SHADER_TESS_CTRL:
809 si_shader_hs(shader);
810 break;
811 case PIPE_SHADER_TESS_EVAL:
812 if (shader->key.tes.as_es)
813 si_shader_es(sscreen, shader);
814 else
815 si_shader_vs(sscreen, shader, NULL);
816 break;
817 case PIPE_SHADER_GEOMETRY:
818 si_shader_gs(shader);
819 si_shader_vs(sscreen, shader->gs_copy_shader, shader);
820 break;
821 case PIPE_SHADER_FRAGMENT:
822 si_shader_ps(shader);
823 break;
824 default:
825 assert(0);
826 }
827 }
828
829 static unsigned si_get_alpha_test_func(struct si_context *sctx)
830 {
831 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
832 if (sctx->queued.named.dsa &&
833 !sctx->framebuffer.cb0_is_integer)
834 return sctx->queued.named.dsa->alpha_func;
835
836 return PIPE_FUNC_ALWAYS;
837 }
838
839 /* Compute the key for the hw shader variant */
840 static inline void si_shader_selector_key(struct pipe_context *ctx,
841 struct si_shader_selector *sel,
842 union si_shader_key *key)
843 {
844 struct si_context *sctx = (struct si_context *)ctx;
845 unsigned i;
846
847 memset(key, 0, sizeof(*key));
848
849 switch (sel->type) {
850 case PIPE_SHADER_VERTEX:
851 if (sctx->vertex_elements) {
852 unsigned count = MIN2(sel->info.num_inputs,
853 sctx->vertex_elements->count);
854 for (i = 0; i < count; ++i)
855 key->vs.prolog.instance_divisors[i] =
856 sctx->vertex_elements->elements[i].instance_divisor;
857 }
858 if (sctx->tes_shader.cso)
859 key->vs.as_ls = 1;
860 else if (sctx->gs_shader.cso)
861 key->vs.as_es = 1;
862
863 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
864 sctx->ps_shader.cso->info.uses_primid)
865 key->vs.epilog.export_prim_id = 1;
866 break;
867 case PIPE_SHADER_TESS_CTRL:
868 key->tcs.epilog.prim_mode =
869 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
870
871 if (sel == sctx->fixed_func_tcs_shader.cso)
872 key->tcs.epilog.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
873 break;
874 case PIPE_SHADER_TESS_EVAL:
875 if (sctx->gs_shader.cso)
876 key->tes.as_es = 1;
877 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
878 key->tes.epilog.export_prim_id = 1;
879 break;
880 case PIPE_SHADER_GEOMETRY:
881 break;
882 case PIPE_SHADER_FRAGMENT: {
883 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
884 struct si_state_blend *blend = sctx->queued.named.blend;
885
886 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
887 sel->info.colors_written == 0x1)
888 key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
889
890 if (blend) {
891 /* Select the shader color format based on whether
892 * blending or alpha are needed.
893 */
894 key->ps.epilog.spi_shader_col_format =
895 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
896 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
897 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
898 sctx->framebuffer.spi_shader_col_format_blend) |
899 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
900 sctx->framebuffer.spi_shader_col_format_alpha) |
901 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
902 sctx->framebuffer.spi_shader_col_format);
903 } else
904 key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
905
906 /* If alpha-to-coverage is enabled, we have to export alpha
907 * even if there is no color buffer.
908 */
909 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
910 blend && blend->alpha_to_coverage)
911 key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
912
913 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
914 * to the range supported by the type if a channel has less
915 * than 16 bits and the export format is 16_ABGR.
916 */
917 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
918 key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
919
920 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
921 if (!key->ps.epilog.last_cbuf) {
922 key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
923 key->ps.epilog.color_is_int8 &= sel->info.colors_written;
924 }
925
926 if (rs) {
927 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
928 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
929 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
930 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
931
932 key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
933 key->ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
934
935 if (sctx->queued.named.blend) {
936 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
937 rs->multisample_enable &&
938 !sctx->framebuffer.cb0_is_integer;
939 }
940
941 key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
942 key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
943 (is_line && rs->line_smooth)) &&
944 sctx->framebuffer.nr_samples <= 1;
945 key->ps.epilog.clamp_color = rs->clamp_fragment_color;
946
947 if (rs->force_persample_interp &&
948 rs->multisample_enable &&
949 sctx->framebuffer.nr_samples > 1 &&
950 sctx->ps_iter_samples > 1) {
951 key->ps.prolog.force_persp_sample_interp =
952 sel->info.uses_persp_center ||
953 sel->info.uses_persp_centroid;
954
955 key->ps.prolog.force_linear_sample_interp =
956 sel->info.uses_linear_center ||
957 sel->info.uses_linear_centroid;
958 } else if (rs->multisample_enable &&
959 sctx->framebuffer.nr_samples > 1) {
960 key->ps.prolog.bc_optimize_for_persp =
961 sel->info.uses_persp_center &&
962 sel->info.uses_persp_centroid;
963 key->ps.prolog.bc_optimize_for_linear =
964 sel->info.uses_linear_center &&
965 sel->info.uses_linear_centroid;
966 } else {
967 /* Make sure SPI doesn't compute more than 1 pair
968 * of (i,j), which is the optimization here. */
969 key->ps.prolog.force_persp_center_interp =
970 sel->info.uses_persp_center +
971 sel->info.uses_persp_centroid +
972 sel->info.uses_persp_sample > 1;
973
974 key->ps.prolog.force_linear_center_interp =
975 sel->info.uses_linear_center +
976 sel->info.uses_linear_centroid +
977 sel->info.uses_linear_sample > 1;
978 }
979 }
980
981 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
982 break;
983 }
984 default:
985 assert(0);
986 }
987 }
988
989 /* Select the hw shader variant depending on the current state. */
990 static int si_shader_select_with_key(struct si_screen *sscreen,
991 struct si_shader_ctx_state *state,
992 union si_shader_key *key,
993 LLVMTargetMachineRef tm,
994 struct pipe_debug_callback *debug,
995 bool wait)
996 {
997 struct si_shader_selector *sel = state->cso;
998 struct si_shader *current = state->current;
999 struct si_shader *iter, *shader = NULL;
1000 int r;
1001
1002 /* Check if we don't need to change anything.
1003 * This path is also used for most shaders that don't need multiple
1004 * variants, it will cost just a computation of the key and this
1005 * test. */
1006 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
1007 return 0;
1008
1009 /* This must be done before the mutex is locked, because async GS
1010 * compilation calls this function too, and therefore must enter
1011 * the mutex first.
1012 */
1013 if (wait)
1014 util_queue_job_wait(&sel->ready);
1015
1016 pipe_mutex_lock(sel->mutex);
1017
1018 /* Find the shader variant. */
1019 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1020 /* Don't check the "current" shader. We checked it above. */
1021 if (current != iter &&
1022 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1023 state->current = iter;
1024 pipe_mutex_unlock(sel->mutex);
1025 return 0;
1026 }
1027 }
1028
1029 /* Build a new shader. */
1030 shader = CALLOC_STRUCT(si_shader);
1031 if (!shader) {
1032 pipe_mutex_unlock(sel->mutex);
1033 return -ENOMEM;
1034 }
1035 shader->selector = sel;
1036 shader->key = *key;
1037
1038 r = si_shader_create(sscreen, tm, shader, debug);
1039 if (unlikely(r)) {
1040 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1041 sel->type, r);
1042 FREE(shader);
1043 pipe_mutex_unlock(sel->mutex);
1044 return r;
1045 }
1046 si_shader_init_pm4_state(sscreen, shader);
1047
1048 if (!sel->last_variant) {
1049 sel->first_variant = shader;
1050 sel->last_variant = shader;
1051 } else {
1052 sel->last_variant->next_variant = shader;
1053 sel->last_variant = shader;
1054 }
1055 state->current = shader;
1056 pipe_mutex_unlock(sel->mutex);
1057 return 0;
1058 }
1059
1060 static int si_shader_select(struct pipe_context *ctx,
1061 struct si_shader_ctx_state *state)
1062 {
1063 struct si_context *sctx = (struct si_context *)ctx;
1064 union si_shader_key key;
1065
1066 si_shader_selector_key(ctx, state->cso, &key);
1067 return si_shader_select_with_key(sctx->screen, state, &key,
1068 sctx->tm, &sctx->b.debug, true);
1069 }
1070
1071 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1072 union si_shader_key *key)
1073 {
1074 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1075
1076 switch (info->processor) {
1077 case PIPE_SHADER_VERTEX:
1078 switch (next_shader) {
1079 case PIPE_SHADER_GEOMETRY:
1080 key->vs.as_es = 1;
1081 break;
1082 case PIPE_SHADER_TESS_CTRL:
1083 case PIPE_SHADER_TESS_EVAL:
1084 key->vs.as_ls = 1;
1085 break;
1086 }
1087 break;
1088
1089 case PIPE_SHADER_TESS_EVAL:
1090 if (next_shader == PIPE_SHADER_GEOMETRY)
1091 key->tes.as_es = 1;
1092 break;
1093 }
1094 }
1095
1096 /**
1097 * Compile the main shader part or the monolithic shader as part of
1098 * si_shader_selector initialization. Since it can be done asynchronously,
1099 * there is no way to report compile failures to applications.
1100 */
1101 void si_init_shader_selector_async(void *job, int thread_index)
1102 {
1103 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1104 struct si_screen *sscreen = sel->screen;
1105 LLVMTargetMachineRef tm;
1106 struct pipe_debug_callback *debug = &sel->debug;
1107 unsigned i;
1108
1109 if (thread_index >= 0) {
1110 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1111 tm = sscreen->tm[thread_index];
1112 if (!debug->async)
1113 debug = NULL;
1114 } else {
1115 tm = sel->tm;
1116 }
1117
1118 /* Compile the main shader part for use with a prolog and/or epilog.
1119 * If this fails, the driver will try to compile a monolithic shader
1120 * on demand.
1121 */
1122 if (sel->type != PIPE_SHADER_GEOMETRY &&
1123 !sscreen->use_monolithic_shaders) {
1124 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1125 void *tgsi_binary;
1126
1127 if (!shader) {
1128 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1129 return;
1130 }
1131
1132 shader->selector = sel;
1133 si_parse_next_shader_property(&sel->info, &shader->key);
1134
1135 tgsi_binary = si_get_tgsi_binary(sel);
1136
1137 /* Try to load the shader from the shader cache. */
1138 pipe_mutex_lock(sscreen->shader_cache_mutex);
1139
1140 if (tgsi_binary &&
1141 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1142 FREE(tgsi_binary);
1143 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1144 } else {
1145 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1146
1147 /* Compile the shader if it hasn't been loaded from the cache. */
1148 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1149 debug) != 0) {
1150 FREE(shader);
1151 FREE(tgsi_binary);
1152 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1153 return;
1154 }
1155
1156 if (tgsi_binary) {
1157 pipe_mutex_lock(sscreen->shader_cache_mutex);
1158 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1159 FREE(tgsi_binary);
1160 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1161 }
1162 }
1163
1164 sel->main_shader_part = shader;
1165 }
1166
1167 /* Pre-compilation. */
1168 if (sel->type == PIPE_SHADER_GEOMETRY ||
1169 sscreen->b.debug_flags & DBG_PRECOMPILE) {
1170 struct si_shader_ctx_state state = {sel};
1171 union si_shader_key key;
1172
1173 memset(&key, 0, sizeof(key));
1174 si_parse_next_shader_property(&sel->info, &key);
1175
1176 /* Set reasonable defaults, so that the shader key doesn't
1177 * cause any code to be eliminated.
1178 */
1179 switch (sel->type) {
1180 case PIPE_SHADER_TESS_CTRL:
1181 key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1182 break;
1183 case PIPE_SHADER_FRAGMENT:
1184 key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1185 for (i = 0; i < 8; i++)
1186 if (sel->info.colors_written & (1 << i))
1187 key.ps.epilog.spi_shader_col_format |=
1188 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1189 break;
1190 }
1191
1192 if (si_shader_select_with_key(sscreen, &state, &key, tm, debug,
1193 false))
1194 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1195 }
1196 }
1197
1198 static void *si_create_shader_selector(struct pipe_context *ctx,
1199 const struct pipe_shader_state *state)
1200 {
1201 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1202 struct si_context *sctx = (struct si_context*)ctx;
1203 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1204 int i;
1205
1206 if (!sel)
1207 return NULL;
1208
1209 sel->screen = sscreen;
1210 sel->tm = sctx->tm;
1211 sel->debug = sctx->b.debug;
1212 sel->tokens = tgsi_dup_tokens(state->tokens);
1213 if (!sel->tokens) {
1214 FREE(sel);
1215 return NULL;
1216 }
1217
1218 sel->so = state->stream_output;
1219 tgsi_scan_shader(state->tokens, &sel->info);
1220 sel->type = sel->info.processor;
1221 p_atomic_inc(&sscreen->b.num_shaders_created);
1222
1223 /* Set which opcode uses which (i,j) pair. */
1224 if (sel->info.uses_persp_opcode_interp_centroid)
1225 sel->info.uses_persp_centroid = true;
1226
1227 if (sel->info.uses_linear_opcode_interp_centroid)
1228 sel->info.uses_linear_centroid = true;
1229
1230 if (sel->info.uses_persp_opcode_interp_offset ||
1231 sel->info.uses_persp_opcode_interp_sample)
1232 sel->info.uses_persp_center = true;
1233
1234 if (sel->info.uses_linear_opcode_interp_offset ||
1235 sel->info.uses_linear_opcode_interp_sample)
1236 sel->info.uses_linear_center = true;
1237
1238 switch (sel->type) {
1239 case PIPE_SHADER_GEOMETRY:
1240 sel->gs_output_prim =
1241 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1242 sel->gs_max_out_vertices =
1243 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1244 sel->gs_num_invocations =
1245 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1246 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1247 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1248 sel->gs_max_out_vertices;
1249
1250 sel->max_gs_stream = 0;
1251 for (i = 0; i < sel->so.num_outputs; i++)
1252 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1253 sel->so.output[i].stream);
1254
1255 sel->gs_input_verts_per_prim =
1256 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1257 break;
1258
1259 case PIPE_SHADER_TESS_CTRL:
1260 /* Always reserve space for these. */
1261 sel->patch_outputs_written |=
1262 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1263 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1264 /* fall through */
1265 case PIPE_SHADER_VERTEX:
1266 case PIPE_SHADER_TESS_EVAL:
1267 for (i = 0; i < sel->info.num_outputs; i++) {
1268 unsigned name = sel->info.output_semantic_name[i];
1269 unsigned index = sel->info.output_semantic_index[i];
1270
1271 switch (name) {
1272 case TGSI_SEMANTIC_TESSINNER:
1273 case TGSI_SEMANTIC_TESSOUTER:
1274 case TGSI_SEMANTIC_PATCH:
1275 sel->patch_outputs_written |=
1276 1llu << si_shader_io_get_unique_index(name, index);
1277 break;
1278 default:
1279 sel->outputs_written |=
1280 1llu << si_shader_io_get_unique_index(name, index);
1281 }
1282 }
1283 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1284 break;
1285
1286 case PIPE_SHADER_FRAGMENT:
1287 for (i = 0; i < 8; i++)
1288 if (sel->info.colors_written & (1 << i))
1289 sel->colors_written_4bit |= 0xf << (4 * i);
1290
1291 for (i = 0; i < sel->info.num_inputs; i++) {
1292 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1293 int index = sel->info.input_semantic_index[i];
1294 sel->color_attr_index[index] = i;
1295 }
1296 }
1297 break;
1298 }
1299
1300 /* DB_SHADER_CONTROL */
1301 sel->db_shader_control =
1302 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1303 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1304 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1305 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1306
1307 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1308 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1309 sel->db_shader_control |=
1310 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1311 break;
1312 case TGSI_FS_DEPTH_LAYOUT_LESS:
1313 sel->db_shader_control |=
1314 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1315 break;
1316 }
1317
1318 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
1319 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1);
1320
1321 if (sel->info.writes_memory)
1322 sel->db_shader_control |= S_02880C_EXEC_ON_HIER_FAIL(1) |
1323 S_02880C_EXEC_ON_NOOP(1);
1324 pipe_mutex_init(sel->mutex);
1325 util_queue_fence_init(&sel->ready);
1326
1327 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
1328 r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
1329 !util_queue_is_initialized(&sscreen->shader_compiler_queue))
1330 si_init_shader_selector_async(sel, -1);
1331 else
1332 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
1333 &sel->ready, si_init_shader_selector_async,
1334 NULL);
1335
1336 return sel;
1337 }
1338
1339 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1340 {
1341 struct si_context *sctx = (struct si_context *)ctx;
1342 struct si_shader_selector *sel = state;
1343
1344 if (sctx->vs_shader.cso == sel)
1345 return;
1346
1347 sctx->vs_shader.cso = sel;
1348 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1349 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1350 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1351 }
1352
1353 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1354 {
1355 struct si_context *sctx = (struct si_context *)ctx;
1356 struct si_shader_selector *sel = state;
1357 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1358
1359 if (sctx->gs_shader.cso == sel)
1360 return;
1361
1362 sctx->gs_shader.cso = sel;
1363 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1364 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1365 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1366
1367 if (enable_changed)
1368 si_shader_change_notify(sctx);
1369 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1370 }
1371
1372 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1373 {
1374 struct si_context *sctx = (struct si_context *)ctx;
1375 struct si_shader_selector *sel = state;
1376 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1377
1378 if (sctx->tcs_shader.cso == sel)
1379 return;
1380
1381 sctx->tcs_shader.cso = sel;
1382 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1383
1384 if (enable_changed)
1385 sctx->last_tcs = NULL; /* invalidate derived tess state */
1386 }
1387
1388 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1389 {
1390 struct si_context *sctx = (struct si_context *)ctx;
1391 struct si_shader_selector *sel = state;
1392 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1393
1394 if (sctx->tes_shader.cso == sel)
1395 return;
1396
1397 sctx->tes_shader.cso = sel;
1398 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1399 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1400 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1401
1402 if (enable_changed) {
1403 si_shader_change_notify(sctx);
1404 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1405 }
1406 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1407 }
1408
1409 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1410 {
1411 struct si_context *sctx = (struct si_context *)ctx;
1412 struct si_shader_selector *sel = state;
1413
1414 /* skip if supplied shader is one already in use */
1415 if (sctx->ps_shader.cso == sel)
1416 return;
1417
1418 sctx->ps_shader.cso = sel;
1419 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1420 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1421 }
1422
1423 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1424 {
1425 if (shader->pm4) {
1426 switch (shader->selector->type) {
1427 case PIPE_SHADER_VERTEX:
1428 if (shader->key.vs.as_ls)
1429 si_pm4_delete_state(sctx, ls, shader->pm4);
1430 else if (shader->key.vs.as_es)
1431 si_pm4_delete_state(sctx, es, shader->pm4);
1432 else
1433 si_pm4_delete_state(sctx, vs, shader->pm4);
1434 break;
1435 case PIPE_SHADER_TESS_CTRL:
1436 si_pm4_delete_state(sctx, hs, shader->pm4);
1437 break;
1438 case PIPE_SHADER_TESS_EVAL:
1439 if (shader->key.tes.as_es)
1440 si_pm4_delete_state(sctx, es, shader->pm4);
1441 else
1442 si_pm4_delete_state(sctx, vs, shader->pm4);
1443 break;
1444 case PIPE_SHADER_GEOMETRY:
1445 si_pm4_delete_state(sctx, gs, shader->pm4);
1446 si_pm4_delete_state(sctx, vs, shader->gs_copy_shader->pm4);
1447 break;
1448 case PIPE_SHADER_FRAGMENT:
1449 si_pm4_delete_state(sctx, ps, shader->pm4);
1450 break;
1451 }
1452 }
1453
1454 si_shader_destroy(shader);
1455 free(shader);
1456 }
1457
1458 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1459 {
1460 struct si_context *sctx = (struct si_context *)ctx;
1461 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1462 struct si_shader *p = sel->first_variant, *c;
1463 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1464 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1465 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1466 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1467 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1468 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1469 };
1470
1471 util_queue_job_wait(&sel->ready);
1472
1473 if (current_shader[sel->type]->cso == sel) {
1474 current_shader[sel->type]->cso = NULL;
1475 current_shader[sel->type]->current = NULL;
1476 }
1477
1478 while (p) {
1479 c = p->next_variant;
1480 si_delete_shader(sctx, p);
1481 p = c;
1482 }
1483
1484 if (sel->main_shader_part)
1485 si_delete_shader(sctx, sel->main_shader_part);
1486
1487 util_queue_fence_destroy(&sel->ready);
1488 pipe_mutex_destroy(sel->mutex);
1489 free(sel->tokens);
1490 free(sel);
1491 }
1492
1493 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1494 struct si_shader *vs, unsigned name,
1495 unsigned index, unsigned interpolate)
1496 {
1497 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1498 unsigned j, ps_input_cntl = 0;
1499
1500 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1501 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1502 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1503
1504 if (name == TGSI_SEMANTIC_PCOORD ||
1505 (name == TGSI_SEMANTIC_TEXCOORD &&
1506 sctx->sprite_coord_enable & (1 << index))) {
1507 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1508 }
1509
1510 for (j = 0; j < vsinfo->num_outputs; j++) {
1511 if (name == vsinfo->output_semantic_name[j] &&
1512 index == vsinfo->output_semantic_index[j]) {
1513 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[j]);
1514 break;
1515 }
1516 }
1517
1518 if (name == TGSI_SEMANTIC_PRIMID)
1519 /* PrimID is written after the last output. */
1520 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1521 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1522 /* No corresponding output found, load defaults into input.
1523 * Don't set any other bits.
1524 * (FLAT_SHADE=1 completely changes behavior) */
1525 ps_input_cntl = S_028644_OFFSET(0x20);
1526 /* D3D 9 behaviour. GL is undefined */
1527 if (name == TGSI_SEMANTIC_COLOR && index == 0)
1528 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1529 }
1530 return ps_input_cntl;
1531 }
1532
1533 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1534 {
1535 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1536 struct si_shader *ps = sctx->ps_shader.current;
1537 struct si_shader *vs = si_get_vs_state(sctx);
1538 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1539 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1540
1541 if (!ps || !ps->selector->info.num_inputs)
1542 return;
1543
1544 num_interp = si_get_ps_num_interp(ps);
1545 assert(num_interp > 0);
1546 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1547
1548 for (i = 0; i < psinfo->num_inputs; i++) {
1549 unsigned name = psinfo->input_semantic_name[i];
1550 unsigned index = psinfo->input_semantic_index[i];
1551 unsigned interpolate = psinfo->input_interpolate[i];
1552
1553 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1554 interpolate));
1555 num_written++;
1556
1557 if (name == TGSI_SEMANTIC_COLOR) {
1558 assert(index < ARRAY_SIZE(bcol_interp));
1559 bcol_interp[index] = interpolate;
1560 }
1561 }
1562
1563 if (ps->key.ps.prolog.color_two_side) {
1564 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1565
1566 for (i = 0; i < 2; i++) {
1567 if (!(psinfo->colors_read & (0xf << (i * 4))))
1568 continue;
1569
1570 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1571 i, bcol_interp[i]));
1572 num_written++;
1573 }
1574 }
1575 assert(num_interp == num_written);
1576 }
1577
1578 /**
1579 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1580 */
1581 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1582 {
1583 if (sctx->init_config_has_vgt_flush)
1584 return;
1585
1586 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1587 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1588 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1589 si_pm4_cmd_end(sctx->init_config, false);
1590 sctx->init_config_has_vgt_flush = true;
1591 }
1592
1593 /* Initialize state related to ESGS / GSVS ring buffers */
1594 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1595 {
1596 struct si_shader_selector *es =
1597 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1598 struct si_shader_selector *gs = sctx->gs_shader.cso;
1599 struct si_pm4_state *pm4;
1600
1601 /* Chip constants. */
1602 unsigned num_se = sctx->screen->b.info.max_se;
1603 unsigned wave_size = 64;
1604 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1605 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1606 unsigned alignment = 256 * num_se;
1607 /* The maximum size is 63.999 MB per SE. */
1608 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1609
1610 /* Calculate the minimum size. */
1611 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1612 wave_size, alignment);
1613
1614 /* These are recommended sizes, not minimum sizes. */
1615 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1616 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1617 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1618 gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1619
1620 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1621 esgs_ring_size = align(esgs_ring_size, alignment);
1622 gsvs_ring_size = align(gsvs_ring_size, alignment);
1623
1624 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1625 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1626
1627 /* Some rings don't have to be allocated if shaders don't use them.
1628 * (e.g. no varyings between ES and GS or GS and VS)
1629 */
1630 bool update_esgs = esgs_ring_size &&
1631 (!sctx->esgs_ring ||
1632 sctx->esgs_ring->width0 < esgs_ring_size);
1633 bool update_gsvs = gsvs_ring_size &&
1634 (!sctx->gsvs_ring ||
1635 sctx->gsvs_ring->width0 < gsvs_ring_size);
1636
1637 if (!update_esgs && !update_gsvs)
1638 return true;
1639
1640 if (update_esgs) {
1641 pipe_resource_reference(&sctx->esgs_ring, NULL);
1642 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1643 PIPE_USAGE_DEFAULT,
1644 esgs_ring_size);
1645 if (!sctx->esgs_ring)
1646 return false;
1647 }
1648
1649 if (update_gsvs) {
1650 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1651 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1652 PIPE_USAGE_DEFAULT,
1653 gsvs_ring_size);
1654 if (!sctx->gsvs_ring)
1655 return false;
1656 }
1657
1658 /* Create the "init_config_gs_rings" state. */
1659 pm4 = CALLOC_STRUCT(si_pm4_state);
1660 if (!pm4)
1661 return false;
1662
1663 if (sctx->b.chip_class >= CIK) {
1664 if (sctx->esgs_ring)
1665 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1666 sctx->esgs_ring->width0 / 256);
1667 if (sctx->gsvs_ring)
1668 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1669 sctx->gsvs_ring->width0 / 256);
1670 } else {
1671 if (sctx->esgs_ring)
1672 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1673 sctx->esgs_ring->width0 / 256);
1674 if (sctx->gsvs_ring)
1675 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1676 sctx->gsvs_ring->width0 / 256);
1677 }
1678
1679 /* Set the state. */
1680 if (sctx->init_config_gs_rings)
1681 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1682 sctx->init_config_gs_rings = pm4;
1683
1684 if (!sctx->init_config_has_vgt_flush) {
1685 si_init_config_add_vgt_flush(sctx);
1686 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1687 }
1688
1689 /* Flush the context to re-emit both init_config states. */
1690 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1691 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1692
1693 /* Set ring bindings. */
1694 if (sctx->esgs_ring) {
1695 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
1696 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1697 true, true, 4, 64, 0);
1698 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
1699 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1700 false, false, 0, 0, 0);
1701 }
1702 if (sctx->gsvs_ring)
1703 si_set_ring_buffer(&sctx->b.b, SI_VS_RING_GSVS,
1704 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1705 false, false, 0, 0, 0);
1706 return true;
1707 }
1708
1709 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1710 {
1711 unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1712 uint64_t offset;
1713
1714 if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1715 return;
1716
1717 sctx->last_gsvs_itemsize = gsvs_itemsize;
1718
1719 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS0,
1720 sctx->gsvs_ring, gsvs_itemsize,
1721 64, true, true, 4, 16, 0);
1722
1723 offset = gsvs_itemsize * 64;
1724 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS1,
1725 sctx->gsvs_ring, gsvs_itemsize,
1726 64, true, true, 4, 16, offset);
1727
1728 offset = (gsvs_itemsize * 2) * 64;
1729 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS2,
1730 sctx->gsvs_ring, gsvs_itemsize,
1731 64, true, true, 4, 16, offset);
1732
1733 offset = (gsvs_itemsize * 3) * 64;
1734 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS3,
1735 sctx->gsvs_ring, gsvs_itemsize,
1736 64, true, true, 4, 16, offset);
1737 }
1738
1739 /**
1740 * @returns 1 if \p sel has been updated to use a new scratch buffer
1741 * 0 if not
1742 * < 0 if there was a failure
1743 */
1744 static int si_update_scratch_buffer(struct si_context *sctx,
1745 struct si_shader *shader)
1746 {
1747 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1748 int r;
1749
1750 if (!shader)
1751 return 0;
1752
1753 /* This shader doesn't need a scratch buffer */
1754 if (shader->config.scratch_bytes_per_wave == 0)
1755 return 0;
1756
1757 /* This shader is already configured to use the current
1758 * scratch buffer. */
1759 if (shader->scratch_bo == sctx->scratch_buffer)
1760 return 0;
1761
1762 assert(sctx->scratch_buffer);
1763
1764 si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
1765
1766 /* Replace the shader bo with a new bo that has the relocs applied. */
1767 r = si_shader_binary_upload(sctx->screen, shader);
1768 if (r)
1769 return r;
1770
1771 /* Update the shader state to use the new shader bo. */
1772 si_shader_init_pm4_state(sctx->screen, shader);
1773
1774 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1775
1776 return 1;
1777 }
1778
1779 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1780 {
1781 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1782 }
1783
1784 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1785 {
1786 return shader ? shader->config.scratch_bytes_per_wave : 0;
1787 }
1788
1789 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1790 {
1791 unsigned bytes = 0;
1792
1793 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1794 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1795 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1796 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1797 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1798 return bytes;
1799 }
1800
1801 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1802 {
1803 unsigned current_scratch_buffer_size =
1804 si_get_current_scratch_buffer_size(sctx);
1805 unsigned scratch_bytes_per_wave =
1806 si_get_max_scratch_bytes_per_wave(sctx);
1807 unsigned scratch_needed_size = scratch_bytes_per_wave *
1808 sctx->scratch_waves;
1809 unsigned spi_tmpring_size;
1810 int r;
1811
1812 if (scratch_needed_size > 0) {
1813 if (scratch_needed_size > current_scratch_buffer_size) {
1814 /* Create a bigger scratch buffer */
1815 r600_resource_reference(&sctx->scratch_buffer, NULL);
1816
1817 sctx->scratch_buffer =
1818 si_resource_create_custom(&sctx->screen->b.b,
1819 PIPE_USAGE_DEFAULT, scratch_needed_size);
1820 if (!sctx->scratch_buffer)
1821 return false;
1822 sctx->emit_scratch_reloc = true;
1823 }
1824
1825 /* Update the shaders, so they are using the latest scratch. The
1826 * scratch buffer may have been changed since these shaders were
1827 * last used, so we still need to try to update them, even if
1828 * they require scratch buffers smaller than the current size.
1829 */
1830 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1831 if (r < 0)
1832 return false;
1833 if (r == 1)
1834 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1835
1836 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1837 if (r < 0)
1838 return false;
1839 if (r == 1)
1840 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1841
1842 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1843 if (r < 0)
1844 return false;
1845 if (r == 1)
1846 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1847
1848 /* VS can be bound as LS, ES, or VS. */
1849 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1850 if (r < 0)
1851 return false;
1852 if (r == 1) {
1853 if (sctx->tes_shader.current)
1854 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1855 else if (sctx->gs_shader.current)
1856 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1857 else
1858 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1859 }
1860
1861 /* TES can be bound as ES or VS. */
1862 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1863 if (r < 0)
1864 return false;
1865 if (r == 1) {
1866 if (sctx->gs_shader.current)
1867 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1868 else
1869 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1870 }
1871 }
1872
1873 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1874 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1875 "scratch size should already be aligned correctly.");
1876
1877 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1878 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1879 if (spi_tmpring_size != sctx->spi_tmpring_size) {
1880 sctx->spi_tmpring_size = spi_tmpring_size;
1881 sctx->emit_scratch_reloc = true;
1882 }
1883 return true;
1884 }
1885
1886 static void si_init_tess_factor_ring(struct si_context *sctx)
1887 {
1888 bool double_offchip_buffers = sctx->b.chip_class >= CIK;
1889 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
1890 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
1891 sctx->screen->b.info.max_se;
1892 unsigned offchip_granularity;
1893
1894 switch (sctx->screen->tess_offchip_block_dw_size) {
1895 default:
1896 assert(0);
1897 /* fall through */
1898 case 8192:
1899 offchip_granularity = V_03093C_X_8K_DWORDS;
1900 break;
1901 case 4096:
1902 offchip_granularity = V_03093C_X_4K_DWORDS;
1903 break;
1904 }
1905
1906 switch (sctx->b.chip_class) {
1907 case SI:
1908 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
1909 break;
1910 case CIK:
1911 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
1912 break;
1913 case VI:
1914 default:
1915 max_offchip_buffers = MIN2(max_offchip_buffers, 512);
1916 break;
1917 }
1918
1919 assert(!sctx->tf_ring);
1920 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1921 PIPE_USAGE_DEFAULT,
1922 32768 * sctx->screen->b.info.max_se);
1923 if (!sctx->tf_ring)
1924 return;
1925
1926 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
1927
1928 sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen,
1929 PIPE_BIND_CUSTOM,
1930 PIPE_USAGE_DEFAULT,
1931 max_offchip_buffers *
1932 sctx->screen->tess_offchip_block_dw_size * 4);
1933 if (!sctx->tess_offchip_ring)
1934 return;
1935
1936 si_init_config_add_vgt_flush(sctx);
1937
1938 /* Append these registers to the init config state. */
1939 if (sctx->b.chip_class >= CIK) {
1940 if (sctx->b.chip_class >= VI)
1941 --max_offchip_buffers;
1942
1943 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
1944 S_030938_SIZE(sctx->tf_ring->width0 / 4));
1945 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
1946 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1947 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
1948 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
1949 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
1950 } else {
1951 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
1952 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
1953 S_008988_SIZE(sctx->tf_ring->width0 / 4));
1954 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
1955 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1956 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
1957 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
1958 }
1959
1960 /* Flush the context to re-emit the init_config state.
1961 * This is done only once in a lifetime of a context.
1962 */
1963 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1964 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1965 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1966
1967 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
1968 0, sctx->tf_ring->width0, false, false, 0, 0, 0);
1969
1970 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
1971 sctx->tess_offchip_ring, 0,
1972 sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
1973 }
1974
1975 /**
1976 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
1977 * VS passes its outputs to TES directly, so the fixed-function shader only
1978 * has to write TESSOUTER and TESSINNER.
1979 */
1980 static void si_generate_fixed_func_tcs(struct si_context *sctx)
1981 {
1982 struct ureg_src outer, inner;
1983 struct ureg_dst tessouter, tessinner;
1984 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
1985
1986 if (!ureg)
1987 return; /* if we get here, we're screwed */
1988
1989 assert(!sctx->fixed_func_tcs_shader.cso);
1990
1991 outer = ureg_DECL_system_value(ureg,
1992 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
1993 inner = ureg_DECL_system_value(ureg,
1994 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
1995
1996 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
1997 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
1998
1999 ureg_MOV(ureg, tessouter, outer);
2000 ureg_MOV(ureg, tessinner, inner);
2001 ureg_END(ureg);
2002
2003 sctx->fixed_func_tcs_shader.cso =
2004 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2005 }
2006
2007 static void si_update_vgt_shader_config(struct si_context *sctx)
2008 {
2009 /* Calculate the index of the config.
2010 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2011 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2012 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2013
2014 if (!*pm4) {
2015 uint32_t stages = 0;
2016
2017 *pm4 = CALLOC_STRUCT(si_pm4_state);
2018
2019 if (sctx->tes_shader.cso) {
2020 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2021 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2022
2023 if (sctx->gs_shader.cso)
2024 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2025 S_028B54_GS_EN(1) |
2026 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2027 else
2028 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2029 } else if (sctx->gs_shader.cso) {
2030 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2031 S_028B54_GS_EN(1) |
2032 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2033 }
2034
2035 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2036 }
2037 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2038 }
2039
2040 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2041 {
2042 struct pipe_stream_output_info *so = &shader->so;
2043 uint32_t enabled_stream_buffers_mask = 0;
2044 int i;
2045
2046 for (i = 0; i < so->num_outputs; i++)
2047 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2048 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2049 sctx->b.streamout.stride_in_dw = shader->so.stride;
2050 }
2051
2052 bool si_update_shaders(struct si_context *sctx)
2053 {
2054 struct pipe_context *ctx = (struct pipe_context*)sctx;
2055 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2056 int r;
2057
2058 /* Update stages before GS. */
2059 if (sctx->tes_shader.cso) {
2060 if (!sctx->tf_ring) {
2061 si_init_tess_factor_ring(sctx);
2062 if (!sctx->tf_ring)
2063 return false;
2064 }
2065
2066 /* VS as LS */
2067 r = si_shader_select(ctx, &sctx->vs_shader);
2068 if (r)
2069 return false;
2070 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2071
2072 if (sctx->tcs_shader.cso) {
2073 r = si_shader_select(ctx, &sctx->tcs_shader);
2074 if (r)
2075 return false;
2076 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2077 } else {
2078 if (!sctx->fixed_func_tcs_shader.cso) {
2079 si_generate_fixed_func_tcs(sctx);
2080 if (!sctx->fixed_func_tcs_shader.cso)
2081 return false;
2082 }
2083
2084 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
2085 if (r)
2086 return false;
2087 si_pm4_bind_state(sctx, hs,
2088 sctx->fixed_func_tcs_shader.current->pm4);
2089 }
2090
2091 r = si_shader_select(ctx, &sctx->tes_shader);
2092 if (r)
2093 return false;
2094
2095 if (sctx->gs_shader.cso) {
2096 /* TES as ES */
2097 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2098 } else {
2099 /* TES as VS */
2100 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2101 si_update_so(sctx, sctx->tes_shader.cso);
2102 }
2103 } else if (sctx->gs_shader.cso) {
2104 /* VS as ES */
2105 r = si_shader_select(ctx, &sctx->vs_shader);
2106 if (r)
2107 return false;
2108 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2109 } else {
2110 /* VS as VS */
2111 r = si_shader_select(ctx, &sctx->vs_shader);
2112 if (r)
2113 return false;
2114 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2115 si_update_so(sctx, sctx->vs_shader.cso);
2116 }
2117
2118 /* Update GS. */
2119 if (sctx->gs_shader.cso) {
2120 r = si_shader_select(ctx, &sctx->gs_shader);
2121 if (r)
2122 return false;
2123 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2124 si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
2125 si_update_so(sctx, sctx->gs_shader.cso);
2126
2127 if (!si_update_gs_ring_buffers(sctx))
2128 return false;
2129
2130 si_update_gsvs_ring_bindings(sctx);
2131 } else {
2132 si_pm4_bind_state(sctx, gs, NULL);
2133 si_pm4_bind_state(sctx, es, NULL);
2134 }
2135
2136 si_update_vgt_shader_config(sctx);
2137
2138 if (sctx->ps_shader.cso) {
2139 unsigned db_shader_control;
2140
2141 r = si_shader_select(ctx, &sctx->ps_shader);
2142 if (r)
2143 return false;
2144 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2145
2146 db_shader_control =
2147 sctx->ps_shader.cso->db_shader_control |
2148 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS) |
2149 S_02880C_Z_ORDER(sctx->ps_shader.current->z_order);
2150
2151 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2152 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2153 sctx->flatshade != rs->flatshade) {
2154 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2155 sctx->flatshade = rs->flatshade;
2156 si_mark_atom_dirty(sctx, &sctx->spi_map);
2157 }
2158
2159 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2160 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2161
2162 if (sctx->ps_db_shader_control != db_shader_control) {
2163 sctx->ps_db_shader_control = db_shader_control;
2164 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2165 }
2166
2167 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
2168 sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
2169 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2170
2171 if (sctx->b.chip_class == SI)
2172 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2173
2174 if (sctx->framebuffer.nr_samples <= 1)
2175 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
2176 }
2177 }
2178
2179 if (si_pm4_state_changed(sctx, ls) ||
2180 si_pm4_state_changed(sctx, hs) ||
2181 si_pm4_state_changed(sctx, es) ||
2182 si_pm4_state_changed(sctx, gs) ||
2183 si_pm4_state_changed(sctx, vs) ||
2184 si_pm4_state_changed(sctx, ps)) {
2185 if (!si_update_spi_tmpring_size(sctx))
2186 return false;
2187 }
2188 return true;
2189 }
2190
2191 void si_init_shader_functions(struct si_context *sctx)
2192 {
2193 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2194
2195 sctx->b.b.create_vs_state = si_create_shader_selector;
2196 sctx->b.b.create_tcs_state = si_create_shader_selector;
2197 sctx->b.b.create_tes_state = si_create_shader_selector;
2198 sctx->b.b.create_gs_state = si_create_shader_selector;
2199 sctx->b.b.create_fs_state = si_create_shader_selector;
2200
2201 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2202 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2203 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2204 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2205 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2206
2207 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2208 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2209 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2210 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2211 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2212 }