radeonsi/gfx9: rework the gfx9 scissor bug workaround (v2)
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "compiler/nir/nir_serialize.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/hash_table.h"
31 #include "util/crc32.h"
32 #include "util/u_async_debug.h"
33 #include "util/u_memory.h"
34 #include "util/u_prim.h"
35
36 #include "util/disk_cache.h"
37 #include "util/mesa-sha1.h"
38 #include "ac_exp_param.h"
39 #include "ac_shader_util.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
45 * size as integer.
46 */
47 void *si_get_ir_binary(struct si_shader_selector *sel)
48 {
49 struct blob blob;
50 unsigned ir_size;
51 void *ir_binary;
52
53 if (sel->tokens) {
54 ir_binary = sel->tokens;
55 ir_size = tgsi_num_tokens(sel->tokens) *
56 sizeof(struct tgsi_token);
57 } else {
58 assert(sel->nir);
59
60 blob_init(&blob);
61 nir_serialize(&blob, sel->nir);
62 ir_binary = blob.data;
63 ir_size = blob.size;
64 }
65
66 unsigned size = 4 + ir_size + sizeof(sel->so);
67 char *result = (char*)MALLOC(size);
68 if (!result)
69 return NULL;
70
71 *((uint32_t*)result) = size;
72 memcpy(result + 4, ir_binary, ir_size);
73 memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
74
75 if (sel->nir)
76 blob_finish(&blob);
77
78 return result;
79 }
80
81 /** Copy "data" to "ptr" and return the next dword following copied data. */
82 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
83 {
84 /* data may be NULL if size == 0 */
85 if (size)
86 memcpy(ptr, data, size);
87 ptr += DIV_ROUND_UP(size, 4);
88 return ptr;
89 }
90
91 /** Read data from "ptr". Return the next dword following the data. */
92 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
93 {
94 memcpy(data, ptr, size);
95 ptr += DIV_ROUND_UP(size, 4);
96 return ptr;
97 }
98
99 /**
100 * Write the size as uint followed by the data. Return the next dword
101 * following the copied data.
102 */
103 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
104 {
105 *ptr++ = size;
106 return write_data(ptr, data, size);
107 }
108
109 /**
110 * Read the size as uint followed by the data. Return both via parameters.
111 * Return the next dword following the data.
112 */
113 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
114 {
115 *size = *ptr++;
116 assert(*data == NULL);
117 if (!*size)
118 return ptr;
119 *data = malloc(*size);
120 return read_data(ptr, *data, *size);
121 }
122
123 /**
124 * Return the shader binary in a buffer. The first 4 bytes contain its size
125 * as integer.
126 */
127 static void *si_get_shader_binary(struct si_shader *shader)
128 {
129 /* There is always a size of data followed by the data itself. */
130 unsigned relocs_size = shader->binary.reloc_count *
131 sizeof(shader->binary.relocs[0]);
132 unsigned disasm_size = shader->binary.disasm_string ?
133 strlen(shader->binary.disasm_string) + 1 : 0;
134 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
135 strlen(shader->binary.llvm_ir_string) + 1 : 0;
136 unsigned size =
137 4 + /* total size */
138 4 + /* CRC32 of the data below */
139 align(sizeof(shader->config), 4) +
140 align(sizeof(shader->info), 4) +
141 4 + align(shader->binary.code_size, 4) +
142 4 + align(shader->binary.rodata_size, 4) +
143 4 + align(relocs_size, 4) +
144 4 + align(disasm_size, 4) +
145 4 + align(llvm_ir_size, 4);
146 void *buffer = CALLOC(1, size);
147 uint32_t *ptr = (uint32_t*)buffer;
148
149 if (!buffer)
150 return NULL;
151
152 *ptr++ = size;
153 ptr++; /* CRC32 is calculated at the end. */
154
155 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
156 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
157 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
158 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
159 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
160 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
161 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
162 assert((char *)ptr - (char *)buffer == size);
163
164 /* Compute CRC32. */
165 ptr = (uint32_t*)buffer;
166 ptr++;
167 *ptr = util_hash_crc32(ptr + 1, size - 8);
168
169 return buffer;
170 }
171
172 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
173 {
174 uint32_t *ptr = (uint32_t*)binary;
175 uint32_t size = *ptr++;
176 uint32_t crc32 = *ptr++;
177 unsigned chunk_size;
178
179 if (util_hash_crc32(ptr, size - 8) != crc32) {
180 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
181 return false;
182 }
183
184 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
185 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
186 ptr = read_chunk(ptr, (void**)&shader->binary.code,
187 &shader->binary.code_size);
188 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
189 &shader->binary.rodata_size);
190 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
191 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
192 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
193 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
194
195 return true;
196 }
197
198 /**
199 * Insert a shader into the cache. It's assumed the shader is not in the cache.
200 * Use si_shader_cache_load_shader before calling this.
201 *
202 * Returns false on failure, in which case the ir_binary should be freed.
203 */
204 bool si_shader_cache_insert_shader(struct si_screen *sscreen, void *ir_binary,
205 struct si_shader *shader,
206 bool insert_into_disk_cache)
207 {
208 void *hw_binary;
209 struct hash_entry *entry;
210 uint8_t key[CACHE_KEY_SIZE];
211
212 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
213 if (entry)
214 return false; /* already added */
215
216 hw_binary = si_get_shader_binary(shader);
217 if (!hw_binary)
218 return false;
219
220 if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
221 hw_binary) == NULL) {
222 FREE(hw_binary);
223 return false;
224 }
225
226 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
227 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
228 *((uint32_t *)ir_binary), key);
229 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
230 *((uint32_t *) hw_binary), NULL);
231 }
232
233 return true;
234 }
235
236 bool si_shader_cache_load_shader(struct si_screen *sscreen, void *ir_binary,
237 struct si_shader *shader)
238 {
239 struct hash_entry *entry =
240 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
241 if (!entry) {
242 if (sscreen->disk_shader_cache) {
243 unsigned char sha1[CACHE_KEY_SIZE];
244 size_t tg_size = *((uint32_t *) ir_binary);
245
246 disk_cache_compute_key(sscreen->disk_shader_cache,
247 ir_binary, tg_size, sha1);
248
249 size_t binary_size;
250 uint8_t *buffer =
251 disk_cache_get(sscreen->disk_shader_cache,
252 sha1, &binary_size);
253 if (!buffer)
254 return false;
255
256 if (binary_size < sizeof(uint32_t) ||
257 *((uint32_t*)buffer) != binary_size) {
258 /* Something has gone wrong discard the item
259 * from the cache and rebuild/link from
260 * source.
261 */
262 assert(!"Invalid radeonsi shader disk cache "
263 "item!");
264
265 disk_cache_remove(sscreen->disk_shader_cache,
266 sha1);
267 free(buffer);
268
269 return false;
270 }
271
272 if (!si_load_shader_binary(shader, buffer)) {
273 free(buffer);
274 return false;
275 }
276 free(buffer);
277
278 if (!si_shader_cache_insert_shader(sscreen, ir_binary,
279 shader, false))
280 FREE(ir_binary);
281 } else {
282 return false;
283 }
284 } else {
285 if (si_load_shader_binary(shader, entry->data))
286 FREE(ir_binary);
287 else
288 return false;
289 }
290 p_atomic_inc(&sscreen->num_shader_cache_hits);
291 return true;
292 }
293
294 static uint32_t si_shader_cache_key_hash(const void *key)
295 {
296 /* The first dword is the key size. */
297 return util_hash_crc32(key, *(uint32_t*)key);
298 }
299
300 static bool si_shader_cache_key_equals(const void *a, const void *b)
301 {
302 uint32_t *keya = (uint32_t*)a;
303 uint32_t *keyb = (uint32_t*)b;
304
305 /* The first dword is the key size. */
306 if (*keya != *keyb)
307 return false;
308
309 return memcmp(keya, keyb, *keya) == 0;
310 }
311
312 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
313 {
314 FREE((void*)entry->key);
315 FREE(entry->data);
316 }
317
318 bool si_init_shader_cache(struct si_screen *sscreen)
319 {
320 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
321 sscreen->shader_cache =
322 _mesa_hash_table_create(NULL,
323 si_shader_cache_key_hash,
324 si_shader_cache_key_equals);
325
326 return sscreen->shader_cache != NULL;
327 }
328
329 void si_destroy_shader_cache(struct si_screen *sscreen)
330 {
331 if (sscreen->shader_cache)
332 _mesa_hash_table_destroy(sscreen->shader_cache,
333 si_destroy_shader_cache_entry);
334 mtx_destroy(&sscreen->shader_cache_mutex);
335 }
336
337 /* SHADER STATES */
338
339 static void si_set_tesseval_regs(struct si_screen *sscreen,
340 const struct si_shader_selector *tes,
341 struct si_pm4_state *pm4)
342 {
343 const struct tgsi_shader_info *info = &tes->info;
344 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
345 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
346 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
347 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
348 unsigned type, partitioning, topology, distribution_mode;
349
350 switch (tes_prim_mode) {
351 case PIPE_PRIM_LINES:
352 type = V_028B6C_TESS_ISOLINE;
353 break;
354 case PIPE_PRIM_TRIANGLES:
355 type = V_028B6C_TESS_TRIANGLE;
356 break;
357 case PIPE_PRIM_QUADS:
358 type = V_028B6C_TESS_QUAD;
359 break;
360 default:
361 assert(0);
362 return;
363 }
364
365 switch (tes_spacing) {
366 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
367 partitioning = V_028B6C_PART_FRAC_ODD;
368 break;
369 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
370 partitioning = V_028B6C_PART_FRAC_EVEN;
371 break;
372 case PIPE_TESS_SPACING_EQUAL:
373 partitioning = V_028B6C_PART_INTEGER;
374 break;
375 default:
376 assert(0);
377 return;
378 }
379
380 if (tes_point_mode)
381 topology = V_028B6C_OUTPUT_POINT;
382 else if (tes_prim_mode == PIPE_PRIM_LINES)
383 topology = V_028B6C_OUTPUT_LINE;
384 else if (tes_vertex_order_cw)
385 /* for some reason, this must be the other way around */
386 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
387 else
388 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
389
390 if (sscreen->has_distributed_tess) {
391 if (sscreen->info.family == CHIP_FIJI ||
392 sscreen->info.family >= CHIP_POLARIS10)
393 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
394 else
395 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
396 } else
397 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
398
399 assert(pm4->shader);
400 pm4->shader->vgt_tf_param = S_028B6C_TYPE(type) |
401 S_028B6C_PARTITIONING(partitioning) |
402 S_028B6C_TOPOLOGY(topology) |
403 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
404 }
405
406 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
407 * whether the "fractional odd" tessellation spacing is used.
408 *
409 * Possible VGT configurations and which state should set the register:
410 *
411 * Reg set in | VGT shader configuration | Value
412 * ------------------------------------------------------
413 * VS as VS | VS | 30
414 * VS as ES | ES -> GS -> VS | 30
415 * TES as VS | LS -> HS -> VS | 14 or 30
416 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
417 *
418 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
419 */
420 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
421 struct si_shader_selector *sel,
422 struct si_shader *shader,
423 struct si_pm4_state *pm4)
424 {
425 unsigned type = sel->type;
426
427 if (sscreen->info.family < CHIP_POLARIS10)
428 return;
429
430 /* VS as VS, or VS as ES: */
431 if ((type == PIPE_SHADER_VERTEX &&
432 (!shader ||
433 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
434 /* TES as VS, or TES as ES: */
435 type == PIPE_SHADER_TESS_EVAL) {
436 unsigned vtx_reuse_depth = 30;
437
438 if (type == PIPE_SHADER_TESS_EVAL &&
439 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
440 PIPE_TESS_SPACING_FRACTIONAL_ODD)
441 vtx_reuse_depth = 14;
442
443 assert(pm4->shader);
444 pm4->shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
445 }
446 }
447
448 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
449 {
450 if (shader->pm4)
451 si_pm4_clear_state(shader->pm4);
452 else
453 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
454
455 if (shader->pm4) {
456 shader->pm4->shader = shader;
457 return shader->pm4;
458 } else {
459 fprintf(stderr, "radeonsi: Failed to create pm4 state.\n");
460 return NULL;
461 }
462 }
463
464 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
465 {
466 /* Add the pointer to VBO descriptors. */
467 return num_always_on_user_sgprs + 1;
468 }
469
470 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
471 {
472 struct si_pm4_state *pm4;
473 unsigned vgpr_comp_cnt;
474 uint64_t va;
475
476 assert(sscreen->info.chip_class <= VI);
477
478 pm4 = si_get_shader_pm4_state(shader);
479 if (!pm4)
480 return;
481
482 va = shader->bo->gpu_address;
483 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
484
485 /* We need at least 2 components for LS.
486 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
487 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
488 */
489 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
490
491 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
492 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
493
494 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
495 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
496 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
497 S_00B528_DX10_CLAMP(1) |
498 S_00B528_FLOAT_MODE(shader->config.float_mode);
499 shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
500 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
501 }
502
503 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
504 {
505 struct si_pm4_state *pm4;
506 uint64_t va;
507 unsigned ls_vgpr_comp_cnt = 0;
508
509 pm4 = si_get_shader_pm4_state(shader);
510 if (!pm4)
511 return;
512
513 va = shader->bo->gpu_address;
514 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
515
516 if (sscreen->info.chip_class >= GFX9) {
517 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
518 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
519
520 /* We need at least 2 components for LS.
521 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
522 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
523 */
524 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
525
526 unsigned num_user_sgprs =
527 si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
528
529 shader->config.rsrc2 =
530 S_00B42C_USER_SGPR(num_user_sgprs) |
531 S_00B42C_USER_SGPR_MSB(num_user_sgprs >> 5) |
532 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
533 } else {
534 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
535 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
536
537 shader->config.rsrc2 =
538 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
539 S_00B42C_OC_LDS_EN(1) |
540 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
541 }
542
543 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
544 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
545 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
546 S_00B428_DX10_CLAMP(1) |
547 S_00B428_FLOAT_MODE(shader->config.float_mode) |
548 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
549
550 if (sscreen->info.chip_class <= VI) {
551 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
552 shader->config.rsrc2);
553 }
554 }
555
556 static void si_emit_shader_es(struct si_context *sctx)
557 {
558 struct si_shader *shader = sctx->queued.named.es->shader;
559 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
560
561 if (!shader)
562 return;
563
564 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
565 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
566 shader->selector->esgs_itemsize / 4);
567
568 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
569 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
570 SI_TRACKED_VGT_TF_PARAM,
571 shader->vgt_tf_param);
572
573 if (shader->vgt_vertex_reuse_block_cntl)
574 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
575 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
576 shader->vgt_vertex_reuse_block_cntl);
577
578 if (initial_cdw != sctx->gfx_cs->current.cdw)
579 sctx->context_roll = true;
580 }
581
582 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
583 {
584 struct si_pm4_state *pm4;
585 unsigned num_user_sgprs;
586 unsigned vgpr_comp_cnt;
587 uint64_t va;
588 unsigned oc_lds_en;
589
590 assert(sscreen->info.chip_class <= VI);
591
592 pm4 = si_get_shader_pm4_state(shader);
593 if (!pm4)
594 return;
595
596 pm4->atom.emit = si_emit_shader_es;
597 va = shader->bo->gpu_address;
598 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
599
600 if (shader->selector->type == PIPE_SHADER_VERTEX) {
601 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
602 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
603 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
604 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
605 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
606 num_user_sgprs = SI_TES_NUM_USER_SGPR;
607 } else
608 unreachable("invalid shader selector type");
609
610 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
611
612 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
613 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
614 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
615 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
616 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
617 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
618 S_00B328_DX10_CLAMP(1) |
619 S_00B328_FLOAT_MODE(shader->config.float_mode));
620 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
621 S_00B32C_USER_SGPR(num_user_sgprs) |
622 S_00B32C_OC_LDS_EN(oc_lds_en) |
623 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
624
625 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
626 si_set_tesseval_regs(sscreen, shader->selector, pm4);
627
628 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
629 }
630
631 static unsigned si_conv_prim_to_gs_out(unsigned mode)
632 {
633 static const int prim_conv[] = {
634 [PIPE_PRIM_POINTS] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
635 [PIPE_PRIM_LINES] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
636 [PIPE_PRIM_LINE_LOOP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
637 [PIPE_PRIM_LINE_STRIP] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
638 [PIPE_PRIM_TRIANGLES] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
639 [PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
640 [PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
641 [PIPE_PRIM_QUADS] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
642 [PIPE_PRIM_QUAD_STRIP] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
643 [PIPE_PRIM_POLYGON] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
644 [PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
645 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
646 [PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
647 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
648 [PIPE_PRIM_PATCHES] = V_028A6C_OUTPRIM_TYPE_POINTLIST,
649 };
650 assert(mode < ARRAY_SIZE(prim_conv));
651
652 return prim_conv[mode];
653 }
654
655 struct gfx9_gs_info {
656 unsigned es_verts_per_subgroup;
657 unsigned gs_prims_per_subgroup;
658 unsigned gs_inst_prims_in_subgroup;
659 unsigned max_prims_per_subgroup;
660 unsigned lds_size;
661 };
662
663 static void gfx9_get_gs_info(struct si_shader_selector *es,
664 struct si_shader_selector *gs,
665 struct gfx9_gs_info *out)
666 {
667 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
668 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
669 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
670 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
671
672 /* All these are in dwords: */
673 /* We can't allow using the whole LDS, because GS waves compete with
674 * other shader stages for LDS space. */
675 const unsigned max_lds_size = 8 * 1024;
676 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
677 unsigned esgs_lds_size;
678
679 /* All these are per subgroup: */
680 const unsigned max_out_prims = 32 * 1024;
681 const unsigned max_es_verts = 255;
682 const unsigned ideal_gs_prims = 64;
683 unsigned max_gs_prims, gs_prims;
684 unsigned min_es_verts, es_verts, worst_case_es_verts;
685
686 if (uses_adjacency || gs_num_invocations > 1)
687 max_gs_prims = 127 / gs_num_invocations;
688 else
689 max_gs_prims = 255;
690
691 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
692 * Make sure we don't go over the maximum value.
693 */
694 if (gs->gs_max_out_vertices > 0) {
695 max_gs_prims = MIN2(max_gs_prims,
696 max_out_prims /
697 (gs->gs_max_out_vertices * gs_num_invocations));
698 }
699 assert(max_gs_prims > 0);
700
701 /* If the primitive has adjacency, halve the number of vertices
702 * that will be reused in multiple primitives.
703 */
704 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
705
706 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
707 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
708
709 /* Compute ESGS LDS size based on the worst case number of ES vertices
710 * needed to create the target number of GS prims per subgroup.
711 */
712 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
713
714 /* If total LDS usage is too big, refactor partitions based on ratio
715 * of ESGS item sizes.
716 */
717 if (esgs_lds_size > max_lds_size) {
718 /* Our target GS Prims Per Subgroup was too large. Calculate
719 * the maximum number of GS Prims Per Subgroup that will fit
720 * into LDS, capped by the maximum that the hardware can support.
721 */
722 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
723 max_gs_prims);
724 assert(gs_prims > 0);
725 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
726 max_es_verts);
727
728 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
729 assert(esgs_lds_size <= max_lds_size);
730 }
731
732 /* Now calculate remaining ESGS information. */
733 if (esgs_lds_size)
734 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
735 else
736 es_verts = max_es_verts;
737
738 /* Vertices for adjacency primitives are not always reused, so restore
739 * it for ES_VERTS_PER_SUBGRP.
740 */
741 min_es_verts = gs->gs_input_verts_per_prim;
742
743 /* For normal primitives, the VGT only checks if they are past the ES
744 * verts per subgroup after allocating a full GS primitive and if they
745 * are, kick off a new subgroup. But if those additional ES verts are
746 * unique (e.g. not reused) we need to make sure there is enough LDS
747 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
748 */
749 es_verts -= min_es_verts - 1;
750
751 out->es_verts_per_subgroup = es_verts;
752 out->gs_prims_per_subgroup = gs_prims;
753 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
754 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
755 gs->gs_max_out_vertices;
756 out->lds_size = align(esgs_lds_size, 128) / 128;
757
758 assert(out->max_prims_per_subgroup <= max_out_prims);
759 }
760
761 static void si_emit_shader_gs(struct si_context *sctx)
762 {
763 struct si_shader *shader = sctx->queued.named.gs->shader;
764 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
765
766 if (!shader)
767 return;
768
769 /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
770 * R_028A68_VGT_GSVS_RING_OFFSET_3, R_028A6C_VGT_GS_OUT_PRIM_TYPE */
771 radeon_opt_set_context_reg4(sctx, R_028A60_VGT_GSVS_RING_OFFSET_1,
772 SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
773 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1,
774 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
775 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3,
776 shader->ctx_reg.gs.vgt_gs_out_prim_type);
777
778
779 /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
780 radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
781 SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
782 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
783
784 /* R_028B38_VGT_GS_MAX_VERT_OUT */
785 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT,
786 SI_TRACKED_VGT_GS_MAX_VERT_OUT,
787 shader->ctx_reg.gs.vgt_gs_max_vert_out);
788
789 /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
790 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
791 radeon_opt_set_context_reg4(sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE,
792 SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
793 shader->ctx_reg.gs.vgt_gs_vert_itemsize,
794 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
795 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2,
796 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
797
798 /* R_028B90_VGT_GS_INSTANCE_CNT */
799 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT,
800 SI_TRACKED_VGT_GS_INSTANCE_CNT,
801 shader->ctx_reg.gs.vgt_gs_instance_cnt);
802
803 if (sctx->chip_class >= GFX9) {
804 /* R_028A44_VGT_GS_ONCHIP_CNTL */
805 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
806 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
807 shader->ctx_reg.gs.vgt_gs_onchip_cntl);
808 /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
809 radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
810 SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
811 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
812 /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
813 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
814 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
815 shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
816
817 if (shader->key.part.gs.es->type == PIPE_SHADER_TESS_EVAL)
818 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
819 SI_TRACKED_VGT_TF_PARAM,
820 shader->vgt_tf_param);
821 if (shader->vgt_vertex_reuse_block_cntl)
822 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
823 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
824 shader->vgt_vertex_reuse_block_cntl);
825 }
826
827 if (initial_cdw != sctx->gfx_cs->current.cdw)
828 sctx->context_roll = true;
829 }
830
831 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
832 {
833 struct si_shader_selector *sel = shader->selector;
834 const ubyte *num_components = sel->info.num_stream_output_components;
835 unsigned gs_num_invocations = sel->gs_num_invocations;
836 struct si_pm4_state *pm4;
837 uint64_t va;
838 unsigned max_stream = sel->max_gs_stream;
839 unsigned offset;
840
841 pm4 = si_get_shader_pm4_state(shader);
842 if (!pm4)
843 return;
844
845 pm4->atom.emit = si_emit_shader_gs;
846
847 offset = num_components[0] * sel->gs_max_out_vertices;
848 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
849
850 if (max_stream >= 1)
851 offset += num_components[1] * sel->gs_max_out_vertices;
852 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
853
854 if (max_stream >= 2)
855 offset += num_components[2] * sel->gs_max_out_vertices;
856 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
857
858 shader->ctx_reg.gs.vgt_gs_out_prim_type =
859 si_conv_prim_to_gs_out(sel->gs_output_prim);
860
861 if (max_stream >= 3)
862 offset += num_components[3] * sel->gs_max_out_vertices;
863 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
864
865 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
866 assert(offset < (1 << 15));
867
868 shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->gs_max_out_vertices;
869
870 shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
871 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 1) ? num_components[1] : 0;
872 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 2) ? num_components[2] : 0;
873 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 3) ? num_components[3] : 0;
874
875 shader->ctx_reg.gs.vgt_gs_instance_cnt = S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
876 S_028B90_ENABLE(gs_num_invocations > 0);
877
878 va = shader->bo->gpu_address;
879 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
880
881 if (sscreen->info.chip_class >= GFX9) {
882 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
883 unsigned es_type = shader->key.part.gs.es->type;
884 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
885 struct gfx9_gs_info gs_info;
886
887 if (es_type == PIPE_SHADER_VERTEX)
888 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
889 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
890 else if (es_type == PIPE_SHADER_TESS_EVAL)
891 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
892 else
893 unreachable("invalid shader selector type");
894
895 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
896 * VGPR[0:4] are always loaded.
897 */
898 if (sel->info.uses_invocationid)
899 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
900 else if (sel->info.uses_primid)
901 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
902 else if (input_prim >= PIPE_PRIM_TRIANGLES)
903 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
904 else
905 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
906
907 unsigned num_user_sgprs;
908 if (es_type == PIPE_SHADER_VERTEX)
909 num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
910 else
911 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
912
913 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
914
915 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
916 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
917
918 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
919 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
920 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
921 S_00B228_DX10_CLAMP(1) |
922 S_00B228_FLOAT_MODE(shader->config.float_mode) |
923 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
924 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
925 S_00B22C_USER_SGPR(num_user_sgprs) |
926 S_00B22C_USER_SGPR_MSB(num_user_sgprs >> 5) |
927 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
928 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
929 S_00B22C_LDS_SIZE(gs_info.lds_size) |
930 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
931
932 shader->ctx_reg.gs.vgt_gs_onchip_cntl =
933 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
934 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
935 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup);
936 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
937 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup);
938 shader->ctx_reg.gs.vgt_esgs_ring_itemsize =
939 shader->key.part.gs.es->esgs_itemsize / 4;
940
941 if (es_type == PIPE_SHADER_TESS_EVAL)
942 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
943
944 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
945 NULL, pm4);
946 } else {
947 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
948 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
949
950 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
951 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
952 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
953 S_00B228_DX10_CLAMP(1) |
954 S_00B228_FLOAT_MODE(shader->config.float_mode));
955 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
956 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
957 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
958 }
959 }
960
961 static void si_emit_shader_vs(struct si_context *sctx)
962 {
963 struct si_shader *shader = sctx->queued.named.vs->shader;
964 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
965
966 if (!shader)
967 return;
968
969 radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE,
970 SI_TRACKED_VGT_GS_MODE,
971 shader->ctx_reg.vs.vgt_gs_mode);
972 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN,
973 SI_TRACKED_VGT_PRIMITIVEID_EN,
974 shader->ctx_reg.vs.vgt_primitiveid_en);
975
976 if (sctx->chip_class <= VI) {
977 radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF,
978 SI_TRACKED_VGT_REUSE_OFF,
979 shader->ctx_reg.vs.vgt_reuse_off);
980 }
981
982 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG,
983 SI_TRACKED_SPI_VS_OUT_CONFIG,
984 shader->ctx_reg.vs.spi_vs_out_config);
985
986 radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
987 SI_TRACKED_SPI_SHADER_POS_FORMAT,
988 shader->ctx_reg.vs.spi_shader_pos_format);
989
990 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL,
991 SI_TRACKED_PA_CL_VTE_CNTL,
992 shader->ctx_reg.vs.pa_cl_vte_cntl);
993
994 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
995 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM,
996 SI_TRACKED_VGT_TF_PARAM,
997 shader->vgt_tf_param);
998
999 if (shader->vgt_vertex_reuse_block_cntl)
1000 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1001 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1002 shader->vgt_vertex_reuse_block_cntl);
1003
1004 if (initial_cdw != sctx->gfx_cs->current.cdw)
1005 sctx->context_roll = true;
1006 }
1007
1008 /**
1009 * Compute the state for \p shader, which will run as a vertex shader on the
1010 * hardware.
1011 *
1012 * If \p gs is non-NULL, it points to the geometry shader for which this shader
1013 * is the copy shader.
1014 */
1015 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1016 struct si_shader_selector *gs)
1017 {
1018 const struct tgsi_shader_info *info = &shader->selector->info;
1019 struct si_pm4_state *pm4;
1020 unsigned num_user_sgprs, vgpr_comp_cnt;
1021 uint64_t va;
1022 unsigned nparams, oc_lds_en;
1023 unsigned window_space =
1024 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1025 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1026
1027 pm4 = si_get_shader_pm4_state(shader);
1028 if (!pm4)
1029 return;
1030
1031 pm4->atom.emit = si_emit_shader_vs;
1032
1033 /* We always write VGT_GS_MODE in the VS state, because every switch
1034 * between different shader pipelines involving a different GS or no
1035 * GS at all involves a switch of the VS (different GS use different
1036 * copy shaders). On the other hand, when the API switches from a GS to
1037 * no GS and then back to the same GS used originally, the GS state is
1038 * not sent again.
1039 */
1040 if (!gs) {
1041 unsigned mode = V_028A40_GS_OFF;
1042
1043 /* PrimID needs GS scenario A. */
1044 if (enable_prim_id)
1045 mode = V_028A40_GS_SCENARIO_A;
1046
1047 shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1048 shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1049 } else {
1050 shader->ctx_reg.vs.vgt_gs_mode = ac_vgt_gs_mode(gs->gs_max_out_vertices,
1051 sscreen->info.chip_class);
1052 shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1053 }
1054
1055 if (sscreen->info.chip_class <= VI) {
1056 /* Reuse needs to be set off if we write oViewport. */
1057 shader->ctx_reg.vs.vgt_reuse_off =
1058 S_028AB4_REUSE_OFF(info->writes_viewport_index);
1059 }
1060
1061 va = shader->bo->gpu_address;
1062 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1063
1064 if (gs) {
1065 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1066 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1067 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
1068 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
1069 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
1070 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
1071 */
1072 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
1073
1074 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
1075 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
1076 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
1077 } else {
1078 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
1079 }
1080 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
1081 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1082 num_user_sgprs = SI_TES_NUM_USER_SGPR;
1083 } else
1084 unreachable("invalid shader selector type");
1085
1086 /* VS is required to export at least one param. */
1087 nparams = MAX2(shader->info.nr_param_exports, 1);
1088 shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1089
1090 shader->ctx_reg.vs.spi_shader_pos_format =
1091 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1092 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
1093 V_02870C_SPI_SHADER_4COMP :
1094 V_02870C_SPI_SHADER_NONE) |
1095 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
1096 V_02870C_SPI_SHADER_4COMP :
1097 V_02870C_SPI_SHADER_NONE) |
1098 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
1099 V_02870C_SPI_SHADER_4COMP :
1100 V_02870C_SPI_SHADER_NONE);
1101
1102 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
1103
1104 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1105 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
1106 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
1107 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
1108 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
1109 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1110 S_00B128_DX10_CLAMP(1) |
1111 S_00B128_FLOAT_MODE(shader->config.float_mode));
1112 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
1113 S_00B12C_USER_SGPR(num_user_sgprs) |
1114 S_00B12C_OC_LDS_EN(oc_lds_en) |
1115 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1116 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1117 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1118 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1119 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
1120 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1121
1122 if (window_space)
1123 shader->ctx_reg.vs.pa_cl_vte_cntl =
1124 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1125 else
1126 shader->ctx_reg.vs.pa_cl_vte_cntl =
1127 S_028818_VTX_W0_FMT(1) |
1128 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1129 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1130 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1131
1132 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
1133 si_set_tesseval_regs(sscreen, shader->selector, pm4);
1134
1135 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
1136 }
1137
1138 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1139 {
1140 struct tgsi_shader_info *info = &ps->selector->info;
1141 unsigned num_colors = !!(info->colors_read & 0x0f) +
1142 !!(info->colors_read & 0xf0);
1143 unsigned num_interp = ps->selector->info.num_inputs +
1144 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1145
1146 assert(num_interp <= 32);
1147 return MIN2(num_interp, 32);
1148 }
1149
1150 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1151 {
1152 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1153 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1154
1155 /* If the i-th target format is set, all previous target formats must
1156 * be non-zero to avoid hangs.
1157 */
1158 for (i = 0; i < num_targets; i++)
1159 if (!(value & (0xf << (i * 4))))
1160 value |= V_028714_SPI_SHADER_32_R << (i * 4);
1161
1162 return value;
1163 }
1164
1165 static void si_emit_shader_ps(struct si_context *sctx)
1166 {
1167 struct si_shader *shader = sctx->queued.named.ps->shader;
1168 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1169
1170 if (!shader)
1171 return;
1172
1173 /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1174 radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA,
1175 SI_TRACKED_SPI_PS_INPUT_ENA,
1176 shader->ctx_reg.ps.spi_ps_input_ena,
1177 shader->ctx_reg.ps.spi_ps_input_addr);
1178
1179 radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL,
1180 SI_TRACKED_SPI_BARYC_CNTL,
1181 shader->ctx_reg.ps.spi_baryc_cntl);
1182 radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL,
1183 SI_TRACKED_SPI_PS_IN_CONTROL,
1184 shader->ctx_reg.ps.spi_ps_in_control);
1185
1186 /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1187 radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT,
1188 SI_TRACKED_SPI_SHADER_Z_FORMAT,
1189 shader->ctx_reg.ps.spi_shader_z_format,
1190 shader->ctx_reg.ps.spi_shader_col_format);
1191
1192 radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK,
1193 SI_TRACKED_CB_SHADER_MASK,
1194 shader->ctx_reg.ps.cb_shader_mask);
1195
1196 if (initial_cdw != sctx->gfx_cs->current.cdw)
1197 sctx->context_roll = true;
1198 }
1199
1200 static void si_shader_ps(struct si_shader *shader)
1201 {
1202 struct tgsi_shader_info *info = &shader->selector->info;
1203 struct si_pm4_state *pm4;
1204 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1205 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1206 uint64_t va;
1207 unsigned input_ena = shader->config.spi_ps_input_ena;
1208
1209 /* we need to enable at least one of them, otherwise we hang the GPU */
1210 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1211 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1212 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1213 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1214 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1215 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1216 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1217 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1218 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1219 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1220 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1221 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1222 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1223 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1224
1225 /* Validate interpolation optimization flags (read as implications). */
1226 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1227 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1228 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1229 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1230 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1231 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1232 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1233 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1234 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1235 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1236 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1237 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1238 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1239 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1240 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1241 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1242 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1243 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1244
1245 /* Validate cases when the optimizations are off (read as implications). */
1246 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1247 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1248 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1249 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1250 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1251 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1252
1253 pm4 = si_get_shader_pm4_state(shader);
1254 if (!pm4)
1255 return;
1256
1257 pm4->atom.emit = si_emit_shader_ps;
1258
1259 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1260 * Possible vaules:
1261 * 0 -> Position = pixel center
1262 * 1 -> Position = pixel centroid
1263 * 2 -> Position = at sample position
1264 *
1265 * From GLSL 4.5 specification, section 7.1:
1266 * "The variable gl_FragCoord is available as an input variable from
1267 * within fragment shaders and it holds the window relative coordinates
1268 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1269 * value can be for any location within the pixel, or one of the
1270 * fragment samples. The use of centroid does not further restrict
1271 * this value to be inside the current primitive."
1272 *
1273 * Meaning that centroid has no effect and we can return anything within
1274 * the pixel. Thus, return the value at sample position, because that's
1275 * the most accurate one shaders can get.
1276 */
1277 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1278
1279 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1280 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1281 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1282
1283 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1284 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1285
1286 /* Ensure that some export memory is always allocated, for two reasons:
1287 *
1288 * 1) Correctness: The hardware ignores the EXEC mask if no export
1289 * memory is allocated, so KILL and alpha test do not work correctly
1290 * without this.
1291 * 2) Performance: Every shader needs at least a NULL export, even when
1292 * it writes no color/depth output. The NULL export instruction
1293 * stalls without this setting.
1294 *
1295 * Don't add this to CB_SHADER_MASK.
1296 */
1297 if (!spi_shader_col_format &&
1298 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1299 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1300
1301 shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1302 shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1303
1304 /* Set interpolation controls. */
1305 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1306
1307 shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1308 shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1309 shader->ctx_reg.ps.spi_shader_z_format =
1310 ac_get_spi_shader_z_format(info->writes_z,
1311 info->writes_stencil,
1312 info->writes_samplemask);
1313 shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1314 shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1315
1316 va = shader->bo->gpu_address;
1317 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1318 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1319 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1320
1321 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1322 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1323 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1324 S_00B028_DX10_CLAMP(1) |
1325 S_00B028_FLOAT_MODE(shader->config.float_mode));
1326 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1327 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1328 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1329 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1330 }
1331
1332 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1333 struct si_shader *shader)
1334 {
1335 switch (shader->selector->type) {
1336 case PIPE_SHADER_VERTEX:
1337 if (shader->key.as_ls)
1338 si_shader_ls(sscreen, shader);
1339 else if (shader->key.as_es)
1340 si_shader_es(sscreen, shader);
1341 else
1342 si_shader_vs(sscreen, shader, NULL);
1343 break;
1344 case PIPE_SHADER_TESS_CTRL:
1345 si_shader_hs(sscreen, shader);
1346 break;
1347 case PIPE_SHADER_TESS_EVAL:
1348 if (shader->key.as_es)
1349 si_shader_es(sscreen, shader);
1350 else
1351 si_shader_vs(sscreen, shader, NULL);
1352 break;
1353 case PIPE_SHADER_GEOMETRY:
1354 si_shader_gs(sscreen, shader);
1355 break;
1356 case PIPE_SHADER_FRAGMENT:
1357 si_shader_ps(shader);
1358 break;
1359 default:
1360 assert(0);
1361 }
1362 }
1363
1364 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1365 {
1366 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1367 if (sctx->queued.named.dsa)
1368 return sctx->queued.named.dsa->alpha_func;
1369
1370 return PIPE_FUNC_ALWAYS;
1371 }
1372
1373 static void si_shader_selector_key_vs(struct si_context *sctx,
1374 struct si_shader_selector *vs,
1375 struct si_shader_key *key,
1376 struct si_vs_prolog_bits *prolog_key)
1377 {
1378 if (!sctx->vertex_elements ||
1379 vs->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS])
1380 return;
1381
1382 prolog_key->instance_divisor_is_one =
1383 sctx->vertex_elements->instance_divisor_is_one;
1384 prolog_key->instance_divisor_is_fetched =
1385 sctx->vertex_elements->instance_divisor_is_fetched;
1386
1387 /* Prefer a monolithic shader to allow scheduling divisions around
1388 * VBO loads. */
1389 if (prolog_key->instance_divisor_is_fetched)
1390 key->opt.prefer_mono = 1;
1391
1392 unsigned count = MIN2(vs->info.num_inputs,
1393 sctx->vertex_elements->count);
1394 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1395 }
1396
1397 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1398 struct si_shader_selector *vs,
1399 struct si_shader_key *key)
1400 {
1401 struct si_shader_selector *ps = sctx->ps_shader.cso;
1402
1403 key->opt.clip_disable =
1404 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1405 (vs->info.clipdist_writemask ||
1406 vs->info.writes_clipvertex) &&
1407 !vs->info.culldist_writemask;
1408
1409 /* Find out if PS is disabled. */
1410 bool ps_disabled = true;
1411 if (ps) {
1412 const struct si_state_blend *blend = sctx->queued.named.blend;
1413 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1414 bool ps_modifies_zs = ps->info.uses_kill ||
1415 ps->info.writes_z ||
1416 ps->info.writes_stencil ||
1417 ps->info.writes_samplemask ||
1418 alpha_to_coverage ||
1419 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1420 unsigned ps_colormask = si_get_total_colormask(sctx);
1421
1422 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1423 (!ps_colormask &&
1424 !ps_modifies_zs &&
1425 !ps->info.writes_memory);
1426 }
1427
1428 /* Find out which VS outputs aren't used by the PS. */
1429 uint64_t outputs_written = vs->outputs_written_before_ps;
1430 uint64_t inputs_read = 0;
1431
1432 /* Ignore outputs that are not passed from VS to PS. */
1433 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1434 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1435 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1436
1437 if (!ps_disabled) {
1438 inputs_read = ps->inputs_read;
1439 }
1440
1441 uint64_t linked = outputs_written & inputs_read;
1442
1443 key->opt.kill_outputs = ~linked & outputs_written;
1444 }
1445
1446 /* Compute the key for the hw shader variant */
1447 static inline void si_shader_selector_key(struct pipe_context *ctx,
1448 struct si_shader_selector *sel,
1449 struct si_shader_key *key)
1450 {
1451 struct si_context *sctx = (struct si_context *)ctx;
1452
1453 memset(key, 0, sizeof(*key));
1454
1455 switch (sel->type) {
1456 case PIPE_SHADER_VERTEX:
1457 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1458
1459 if (sctx->tes_shader.cso)
1460 key->as_ls = 1;
1461 else if (sctx->gs_shader.cso)
1462 key->as_es = 1;
1463 else {
1464 si_shader_selector_key_hw_vs(sctx, sel, key);
1465
1466 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1467 key->mono.u.vs_export_prim_id = 1;
1468 }
1469 break;
1470 case PIPE_SHADER_TESS_CTRL:
1471 if (sctx->chip_class >= GFX9) {
1472 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1473 key, &key->part.tcs.ls_prolog);
1474 key->part.tcs.ls = sctx->vs_shader.cso;
1475
1476 /* When the LS VGPR fix is needed, monolithic shaders
1477 * can:
1478 * - avoid initializing EXEC in both the LS prolog
1479 * and the LS main part when !vs_needs_prolog
1480 * - remove the fixup for unused input VGPRs
1481 */
1482 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1483
1484 /* The LS output / HS input layout can be communicated
1485 * directly instead of via user SGPRs for merged LS-HS.
1486 * The LS VGPR fix prefers this too.
1487 */
1488 key->opt.prefer_mono = 1;
1489 }
1490
1491 key->part.tcs.epilog.prim_mode =
1492 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1493 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1494 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1495 key->part.tcs.epilog.tes_reads_tess_factors =
1496 sctx->tes_shader.cso->info.reads_tess_factors;
1497
1498 if (sel == sctx->fixed_func_tcs_shader.cso)
1499 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1500 break;
1501 case PIPE_SHADER_TESS_EVAL:
1502 if (sctx->gs_shader.cso)
1503 key->as_es = 1;
1504 else {
1505 si_shader_selector_key_hw_vs(sctx, sel, key);
1506
1507 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1508 key->mono.u.vs_export_prim_id = 1;
1509 }
1510 break;
1511 case PIPE_SHADER_GEOMETRY:
1512 if (sctx->chip_class >= GFX9) {
1513 if (sctx->tes_shader.cso) {
1514 key->part.gs.es = sctx->tes_shader.cso;
1515 } else {
1516 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1517 key, &key->part.gs.vs_prolog);
1518 key->part.gs.es = sctx->vs_shader.cso;
1519 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1520 }
1521
1522 /* Merged ES-GS can have unbalanced wave usage.
1523 *
1524 * ES threads are per-vertex, while GS threads are
1525 * per-primitive. So without any amplification, there
1526 * are fewer GS threads than ES threads, which can result
1527 * in empty (no-op) GS waves. With too much amplification,
1528 * there are more GS threads than ES threads, which
1529 * can result in empty (no-op) ES waves.
1530 *
1531 * Non-monolithic shaders are implemented by setting EXEC
1532 * at the beginning of shader parts, and don't jump to
1533 * the end if EXEC is 0.
1534 *
1535 * Monolithic shaders use conditional blocks, so they can
1536 * jump and skip empty waves of ES or GS. So set this to
1537 * always use optimized variants, which are monolithic.
1538 */
1539 key->opt.prefer_mono = 1;
1540 }
1541 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1542 break;
1543 case PIPE_SHADER_FRAGMENT: {
1544 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1545 struct si_state_blend *blend = sctx->queued.named.blend;
1546
1547 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1548 sel->info.colors_written == 0x1)
1549 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1550
1551 if (blend) {
1552 /* Select the shader color format based on whether
1553 * blending or alpha are needed.
1554 */
1555 key->part.ps.epilog.spi_shader_col_format =
1556 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1557 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1558 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1559 sctx->framebuffer.spi_shader_col_format_blend) |
1560 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1561 sctx->framebuffer.spi_shader_col_format_alpha) |
1562 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1563 sctx->framebuffer.spi_shader_col_format);
1564 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1565
1566 /* The output for dual source blending should have
1567 * the same format as the first output.
1568 */
1569 if (blend->dual_src_blend)
1570 key->part.ps.epilog.spi_shader_col_format |=
1571 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1572 } else
1573 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1574
1575 /* If alpha-to-coverage is enabled, we have to export alpha
1576 * even if there is no color buffer.
1577 */
1578 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1579 blend && blend->alpha_to_coverage)
1580 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1581
1582 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1583 * to the range supported by the type if a channel has less
1584 * than 16 bits and the export format is 16_ABGR.
1585 */
1586 if (sctx->chip_class <= CIK && sctx->family != CHIP_HAWAII) {
1587 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1588 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1589 }
1590
1591 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1592 if (!key->part.ps.epilog.last_cbuf) {
1593 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1594 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1595 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1596 }
1597
1598 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1599 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1600
1601 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1602 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1603
1604 if (sctx->queued.named.blend) {
1605 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1606 rs->multisample_enable;
1607 }
1608
1609 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1610 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1611 (is_line && rs->line_smooth)) &&
1612 sctx->framebuffer.nr_samples <= 1;
1613 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1614
1615 if (sctx->ps_iter_samples > 1 &&
1616 sel->info.reads_samplemask) {
1617 key->part.ps.prolog.samplemask_log_ps_iter =
1618 util_logbase2(sctx->ps_iter_samples);
1619 }
1620
1621 if (rs->force_persample_interp &&
1622 rs->multisample_enable &&
1623 sctx->framebuffer.nr_samples > 1 &&
1624 sctx->ps_iter_samples > 1) {
1625 key->part.ps.prolog.force_persp_sample_interp =
1626 sel->info.uses_persp_center ||
1627 sel->info.uses_persp_centroid;
1628
1629 key->part.ps.prolog.force_linear_sample_interp =
1630 sel->info.uses_linear_center ||
1631 sel->info.uses_linear_centroid;
1632 } else if (rs->multisample_enable &&
1633 sctx->framebuffer.nr_samples > 1) {
1634 key->part.ps.prolog.bc_optimize_for_persp =
1635 sel->info.uses_persp_center &&
1636 sel->info.uses_persp_centroid;
1637 key->part.ps.prolog.bc_optimize_for_linear =
1638 sel->info.uses_linear_center &&
1639 sel->info.uses_linear_centroid;
1640 } else {
1641 /* Make sure SPI doesn't compute more than 1 pair
1642 * of (i,j), which is the optimization here. */
1643 key->part.ps.prolog.force_persp_center_interp =
1644 sel->info.uses_persp_center +
1645 sel->info.uses_persp_centroid +
1646 sel->info.uses_persp_sample > 1;
1647
1648 key->part.ps.prolog.force_linear_center_interp =
1649 sel->info.uses_linear_center +
1650 sel->info.uses_linear_centroid +
1651 sel->info.uses_linear_sample > 1;
1652
1653 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1654 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1655 }
1656
1657 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1658
1659 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1660 if (sctx->ps_uses_fbfetch && !sctx->blitter->running) {
1661 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1662 struct pipe_resource *tex = cb0->texture;
1663
1664 /* 1D textures are allocated and used as 2D on GFX9. */
1665 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1666 key->mono.u.ps.fbfetch_is_1D = sctx->chip_class != GFX9 &&
1667 (tex->target == PIPE_TEXTURE_1D ||
1668 tex->target == PIPE_TEXTURE_1D_ARRAY);
1669 key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
1670 tex->target == PIPE_TEXTURE_2D_ARRAY ||
1671 tex->target == PIPE_TEXTURE_CUBE ||
1672 tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1673 tex->target == PIPE_TEXTURE_3D;
1674 }
1675 break;
1676 }
1677 default:
1678 assert(0);
1679 }
1680
1681 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1682 memset(&key->opt, 0, sizeof(key->opt));
1683 }
1684
1685 static void si_build_shader_variant(struct si_shader *shader,
1686 int thread_index,
1687 bool low_priority)
1688 {
1689 struct si_shader_selector *sel = shader->selector;
1690 struct si_screen *sscreen = sel->screen;
1691 struct ac_llvm_compiler *compiler;
1692 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1693 int r;
1694
1695 if (thread_index >= 0) {
1696 if (low_priority) {
1697 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
1698 compiler = &sscreen->compiler_lowp[thread_index];
1699 } else {
1700 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1701 compiler = &sscreen->compiler[thread_index];
1702 }
1703 if (!debug->async)
1704 debug = NULL;
1705 } else {
1706 assert(!low_priority);
1707 compiler = shader->compiler_ctx_state.compiler;
1708 }
1709
1710 r = si_shader_create(sscreen, compiler, shader, debug);
1711 if (unlikely(r)) {
1712 PRINT_ERR("Failed to build shader variant (type=%u) %d\n",
1713 sel->type, r);
1714 shader->compilation_failed = true;
1715 return;
1716 }
1717
1718 if (shader->compiler_ctx_state.is_debug_context) {
1719 FILE *f = open_memstream(&shader->shader_log,
1720 &shader->shader_log_size);
1721 if (f) {
1722 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1723 fclose(f);
1724 }
1725 }
1726
1727 si_shader_init_pm4_state(sscreen, shader);
1728 }
1729
1730 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1731 {
1732 struct si_shader *shader = (struct si_shader *)job;
1733
1734 assert(thread_index >= 0);
1735
1736 si_build_shader_variant(shader, thread_index, true);
1737 }
1738
1739 static const struct si_shader_key zeroed;
1740
1741 static bool si_check_missing_main_part(struct si_screen *sscreen,
1742 struct si_shader_selector *sel,
1743 struct si_compiler_ctx_state *compiler_state,
1744 struct si_shader_key *key)
1745 {
1746 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1747
1748 if (!*mainp) {
1749 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1750
1751 if (!main_part)
1752 return false;
1753
1754 /* We can leave the fence as permanently signaled because the
1755 * main part becomes visible globally only after it has been
1756 * compiled. */
1757 util_queue_fence_init(&main_part->ready);
1758
1759 main_part->selector = sel;
1760 main_part->key.as_es = key->as_es;
1761 main_part->key.as_ls = key->as_ls;
1762 main_part->is_monolithic = false;
1763
1764 if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
1765 main_part, &compiler_state->debug) != 0) {
1766 FREE(main_part);
1767 return false;
1768 }
1769 *mainp = main_part;
1770 }
1771 return true;
1772 }
1773
1774 /* Select the hw shader variant depending on the current state. */
1775 static int si_shader_select_with_key(struct si_screen *sscreen,
1776 struct si_shader_ctx_state *state,
1777 struct si_compiler_ctx_state *compiler_state,
1778 struct si_shader_key *key,
1779 int thread_index)
1780 {
1781 struct si_shader_selector *sel = state->cso;
1782 struct si_shader_selector *previous_stage_sel = NULL;
1783 struct si_shader *current = state->current;
1784 struct si_shader *iter, *shader = NULL;
1785
1786 again:
1787 /* Check if we don't need to change anything.
1788 * This path is also used for most shaders that don't need multiple
1789 * variants, it will cost just a computation of the key and this
1790 * test. */
1791 if (likely(current &&
1792 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1793 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1794 if (current->is_optimized) {
1795 memset(&key->opt, 0, sizeof(key->opt));
1796 goto current_not_ready;
1797 }
1798
1799 util_queue_fence_wait(&current->ready);
1800 }
1801
1802 return current->compilation_failed ? -1 : 0;
1803 }
1804 current_not_ready:
1805
1806 /* This must be done before the mutex is locked, because async GS
1807 * compilation calls this function too, and therefore must enter
1808 * the mutex first.
1809 *
1810 * Only wait if we are in a draw call. Don't wait if we are
1811 * in a compiler thread.
1812 */
1813 if (thread_index < 0)
1814 util_queue_fence_wait(&sel->ready);
1815
1816 mtx_lock(&sel->mutex);
1817
1818 /* Find the shader variant. */
1819 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1820 /* Don't check the "current" shader. We checked it above. */
1821 if (current != iter &&
1822 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1823 mtx_unlock(&sel->mutex);
1824
1825 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1826 /* If it's an optimized shader and its compilation has
1827 * been started but isn't done, use the unoptimized
1828 * shader so as not to cause a stall due to compilation.
1829 */
1830 if (iter->is_optimized) {
1831 memset(&key->opt, 0, sizeof(key->opt));
1832 goto again;
1833 }
1834
1835 util_queue_fence_wait(&iter->ready);
1836 }
1837
1838 if (iter->compilation_failed) {
1839 return -1; /* skip the draw call */
1840 }
1841
1842 state->current = iter;
1843 return 0;
1844 }
1845 }
1846
1847 /* Build a new shader. */
1848 shader = CALLOC_STRUCT(si_shader);
1849 if (!shader) {
1850 mtx_unlock(&sel->mutex);
1851 return -ENOMEM;
1852 }
1853
1854 util_queue_fence_init(&shader->ready);
1855
1856 shader->selector = sel;
1857 shader->key = *key;
1858 shader->compiler_ctx_state = *compiler_state;
1859
1860 /* If this is a merged shader, get the first shader's selector. */
1861 if (sscreen->info.chip_class >= GFX9) {
1862 if (sel->type == PIPE_SHADER_TESS_CTRL)
1863 previous_stage_sel = key->part.tcs.ls;
1864 else if (sel->type == PIPE_SHADER_GEOMETRY)
1865 previous_stage_sel = key->part.gs.es;
1866
1867 /* We need to wait for the previous shader. */
1868 if (previous_stage_sel && thread_index < 0)
1869 util_queue_fence_wait(&previous_stage_sel->ready);
1870 }
1871
1872 /* Compile the main shader part if it doesn't exist. This can happen
1873 * if the initial guess was wrong. */
1874 bool is_pure_monolithic =
1875 sscreen->use_monolithic_shaders ||
1876 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1877
1878 if (!is_pure_monolithic) {
1879 bool ok;
1880
1881 /* Make sure the main shader part is present. This is needed
1882 * for shaders that can be compiled as VS, LS, or ES, and only
1883 * one of them is compiled at creation.
1884 *
1885 * For merged shaders, check that the starting shader's main
1886 * part is present.
1887 */
1888 if (previous_stage_sel) {
1889 struct si_shader_key shader1_key = zeroed;
1890
1891 if (sel->type == PIPE_SHADER_TESS_CTRL)
1892 shader1_key.as_ls = 1;
1893 else if (sel->type == PIPE_SHADER_GEOMETRY)
1894 shader1_key.as_es = 1;
1895 else
1896 assert(0);
1897
1898 mtx_lock(&previous_stage_sel->mutex);
1899 ok = si_check_missing_main_part(sscreen,
1900 previous_stage_sel,
1901 compiler_state, &shader1_key);
1902 mtx_unlock(&previous_stage_sel->mutex);
1903 } else {
1904 ok = si_check_missing_main_part(sscreen, sel,
1905 compiler_state, key);
1906 }
1907 if (!ok) {
1908 FREE(shader);
1909 mtx_unlock(&sel->mutex);
1910 return -ENOMEM; /* skip the draw call */
1911 }
1912 }
1913
1914 /* Keep the reference to the 1st shader of merged shaders, so that
1915 * Gallium can't destroy it before we destroy the 2nd shader.
1916 *
1917 * Set sctx = NULL, because it's unused if we're not releasing
1918 * the shader, and we don't have any sctx here.
1919 */
1920 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1921 previous_stage_sel);
1922
1923 /* Monolithic-only shaders don't make a distinction between optimized
1924 * and unoptimized. */
1925 shader->is_monolithic =
1926 is_pure_monolithic ||
1927 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1928
1929 shader->is_optimized =
1930 !is_pure_monolithic &&
1931 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1932
1933 /* If it's an optimized shader, compile it asynchronously. */
1934 if (shader->is_optimized &&
1935 !is_pure_monolithic &&
1936 thread_index < 0) {
1937 /* Compile it asynchronously. */
1938 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1939 shader, &shader->ready,
1940 si_build_shader_variant_low_priority, NULL);
1941
1942 /* Add only after the ready fence was reset, to guard against a
1943 * race with si_bind_XX_shader. */
1944 if (!sel->last_variant) {
1945 sel->first_variant = shader;
1946 sel->last_variant = shader;
1947 } else {
1948 sel->last_variant->next_variant = shader;
1949 sel->last_variant = shader;
1950 }
1951
1952 /* Use the default (unoptimized) shader for now. */
1953 memset(&key->opt, 0, sizeof(key->opt));
1954 mtx_unlock(&sel->mutex);
1955
1956 if (sscreen->options.sync_compile)
1957 util_queue_fence_wait(&shader->ready);
1958
1959 goto again;
1960 }
1961
1962 /* Reset the fence before adding to the variant list. */
1963 util_queue_fence_reset(&shader->ready);
1964
1965 if (!sel->last_variant) {
1966 sel->first_variant = shader;
1967 sel->last_variant = shader;
1968 } else {
1969 sel->last_variant->next_variant = shader;
1970 sel->last_variant = shader;
1971 }
1972
1973 mtx_unlock(&sel->mutex);
1974
1975 assert(!shader->is_optimized);
1976 si_build_shader_variant(shader, thread_index, false);
1977
1978 util_queue_fence_signal(&shader->ready);
1979
1980 if (!shader->compilation_failed)
1981 state->current = shader;
1982
1983 return shader->compilation_failed ? -1 : 0;
1984 }
1985
1986 static int si_shader_select(struct pipe_context *ctx,
1987 struct si_shader_ctx_state *state,
1988 struct si_compiler_ctx_state *compiler_state)
1989 {
1990 struct si_context *sctx = (struct si_context *)ctx;
1991 struct si_shader_key key;
1992
1993 si_shader_selector_key(ctx, state->cso, &key);
1994 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1995 &key, -1);
1996 }
1997
1998 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1999 bool streamout,
2000 struct si_shader_key *key)
2001 {
2002 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
2003
2004 switch (info->processor) {
2005 case PIPE_SHADER_VERTEX:
2006 switch (next_shader) {
2007 case PIPE_SHADER_GEOMETRY:
2008 key->as_es = 1;
2009 break;
2010 case PIPE_SHADER_TESS_CTRL:
2011 case PIPE_SHADER_TESS_EVAL:
2012 key->as_ls = 1;
2013 break;
2014 default:
2015 /* If POSITION isn't written, it can only be a HW VS
2016 * if streamout is used. If streamout isn't used,
2017 * assume that it's a HW LS. (the next shader is TCS)
2018 * This heuristic is needed for separate shader objects.
2019 */
2020 if (!info->writes_position && !streamout)
2021 key->as_ls = 1;
2022 }
2023 break;
2024
2025 case PIPE_SHADER_TESS_EVAL:
2026 if (next_shader == PIPE_SHADER_GEOMETRY ||
2027 !info->writes_position)
2028 key->as_es = 1;
2029 break;
2030 }
2031 }
2032
2033 /**
2034 * Compile the main shader part or the monolithic shader as part of
2035 * si_shader_selector initialization. Since it can be done asynchronously,
2036 * there is no way to report compile failures to applications.
2037 */
2038 static void si_init_shader_selector_async(void *job, int thread_index)
2039 {
2040 struct si_shader_selector *sel = (struct si_shader_selector *)job;
2041 struct si_screen *sscreen = sel->screen;
2042 struct ac_llvm_compiler *compiler;
2043 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2044
2045 assert(!debug->debug_message || debug->async);
2046 assert(thread_index >= 0);
2047 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2048 compiler = &sscreen->compiler[thread_index];
2049
2050 if (sel->nir)
2051 si_lower_nir(sel);
2052
2053 /* Compile the main shader part for use with a prolog and/or epilog.
2054 * If this fails, the driver will try to compile a monolithic shader
2055 * on demand.
2056 */
2057 if (!sscreen->use_monolithic_shaders) {
2058 struct si_shader *shader = CALLOC_STRUCT(si_shader);
2059 void *ir_binary = NULL;
2060
2061 if (!shader) {
2062 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2063 return;
2064 }
2065
2066 /* We can leave the fence signaled because use of the default
2067 * main part is guarded by the selector's ready fence. */
2068 util_queue_fence_init(&shader->ready);
2069
2070 shader->selector = sel;
2071 shader->is_monolithic = false;
2072 si_parse_next_shader_property(&sel->info,
2073 sel->so.num_outputs != 0,
2074 &shader->key);
2075
2076 if (sel->tokens || sel->nir)
2077 ir_binary = si_get_ir_binary(sel);
2078
2079 /* Try to load the shader from the shader cache. */
2080 mtx_lock(&sscreen->shader_cache_mutex);
2081
2082 if (ir_binary &&
2083 si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
2084 mtx_unlock(&sscreen->shader_cache_mutex);
2085 si_shader_dump_stats_for_shader_db(shader, debug);
2086 } else {
2087 mtx_unlock(&sscreen->shader_cache_mutex);
2088
2089 /* Compile the shader if it hasn't been loaded from the cache. */
2090 if (si_compile_tgsi_shader(sscreen, compiler, shader,
2091 debug) != 0) {
2092 FREE(shader);
2093 FREE(ir_binary);
2094 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2095 return;
2096 }
2097
2098 if (ir_binary) {
2099 mtx_lock(&sscreen->shader_cache_mutex);
2100 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
2101 FREE(ir_binary);
2102 mtx_unlock(&sscreen->shader_cache_mutex);
2103 }
2104 }
2105
2106 *si_get_main_shader_part(sel, &shader->key) = shader;
2107
2108 /* Unset "outputs_written" flags for outputs converted to
2109 * DEFAULT_VAL, so that later inter-shader optimizations don't
2110 * try to eliminate outputs that don't exist in the final
2111 * shader.
2112 *
2113 * This is only done if non-monolithic shaders are enabled.
2114 */
2115 if ((sel->type == PIPE_SHADER_VERTEX ||
2116 sel->type == PIPE_SHADER_TESS_EVAL) &&
2117 !shader->key.as_ls &&
2118 !shader->key.as_es) {
2119 unsigned i;
2120
2121 for (i = 0; i < sel->info.num_outputs; i++) {
2122 unsigned offset = shader->info.vs_output_param_offset[i];
2123
2124 if (offset <= AC_EXP_PARAM_OFFSET_31)
2125 continue;
2126
2127 unsigned name = sel->info.output_semantic_name[i];
2128 unsigned index = sel->info.output_semantic_index[i];
2129 unsigned id;
2130
2131 switch (name) {
2132 case TGSI_SEMANTIC_GENERIC:
2133 /* don't process indices the function can't handle */
2134 if (index >= SI_MAX_IO_GENERIC)
2135 break;
2136 /* fall through */
2137 default:
2138 id = si_shader_io_get_unique_index(name, index, true);
2139 sel->outputs_written_before_ps &= ~(1ull << id);
2140 break;
2141 case TGSI_SEMANTIC_POSITION: /* ignore these */
2142 case TGSI_SEMANTIC_PSIZE:
2143 case TGSI_SEMANTIC_CLIPVERTEX:
2144 case TGSI_SEMANTIC_EDGEFLAG:
2145 break;
2146 }
2147 }
2148 }
2149 }
2150
2151 /* The GS copy shader is always pre-compiled. */
2152 if (sel->type == PIPE_SHADER_GEOMETRY) {
2153 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2154 if (!sel->gs_copy_shader) {
2155 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2156 return;
2157 }
2158
2159 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2160 }
2161 }
2162
2163 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
2164 struct util_queue_fence *ready_fence,
2165 struct si_compiler_ctx_state *compiler_ctx_state,
2166 void *job, util_queue_execute_func execute)
2167 {
2168 util_queue_fence_init(ready_fence);
2169
2170 struct util_async_debug_callback async_debug;
2171 bool debug =
2172 (sctx->debug.debug_message && !sctx->debug.async) ||
2173 sctx->is_debug ||
2174 si_can_dump_shader(sctx->screen, processor);
2175
2176 if (debug) {
2177 u_async_debug_init(&async_debug);
2178 compiler_ctx_state->debug = async_debug.base;
2179 }
2180
2181 util_queue_add_job(&sctx->screen->shader_compiler_queue, job,
2182 ready_fence, execute, NULL);
2183
2184 if (debug) {
2185 util_queue_fence_wait(ready_fence);
2186 u_async_debug_drain(&async_debug, &sctx->debug);
2187 u_async_debug_cleanup(&async_debug);
2188 }
2189
2190 if (sctx->screen->options.sync_compile)
2191 util_queue_fence_wait(ready_fence);
2192 }
2193
2194 /* Return descriptor slot usage masks from the given shader info. */
2195 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2196 uint32_t *const_and_shader_buffers,
2197 uint64_t *samplers_and_images)
2198 {
2199 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
2200
2201 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2202 num_constbufs = util_last_bit(info->const_buffers_declared);
2203 /* two 8-byte images share one 16-byte slot */
2204 num_images = align(util_last_bit(info->images_declared), 2);
2205 num_samplers = util_last_bit(info->samplers_declared);
2206
2207 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2208 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2209 *const_and_shader_buffers =
2210 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2211
2212 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
2213 start = si_get_image_slot(num_images - 1) / 2;
2214 *samplers_and_images =
2215 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2216 }
2217
2218 static void *si_create_shader_selector(struct pipe_context *ctx,
2219 const struct pipe_shader_state *state)
2220 {
2221 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2222 struct si_context *sctx = (struct si_context*)ctx;
2223 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2224 int i;
2225
2226 if (!sel)
2227 return NULL;
2228
2229 pipe_reference_init(&sel->reference, 1);
2230 sel->screen = sscreen;
2231 sel->compiler_ctx_state.debug = sctx->debug;
2232 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2233
2234 sel->so = state->stream_output;
2235
2236 if (state->type == PIPE_SHADER_IR_TGSI) {
2237 sel->tokens = tgsi_dup_tokens(state->tokens);
2238 if (!sel->tokens) {
2239 FREE(sel);
2240 return NULL;
2241 }
2242
2243 tgsi_scan_shader(state->tokens, &sel->info);
2244 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2245 } else {
2246 assert(state->type == PIPE_SHADER_IR_NIR);
2247
2248 sel->nir = state->ir.nir;
2249
2250 si_nir_scan_shader(sel->nir, &sel->info);
2251 si_nir_scan_tess_ctrl(sel->nir, &sel->tcs_info);
2252 }
2253
2254 sel->type = sel->info.processor;
2255 p_atomic_inc(&sscreen->num_shaders_created);
2256 si_get_active_slot_masks(&sel->info,
2257 &sel->active_const_and_shader_buffers,
2258 &sel->active_samplers_and_images);
2259
2260 /* Record which streamout buffers are enabled. */
2261 for (i = 0; i < sel->so.num_outputs; i++) {
2262 sel->enabled_streamout_buffer_mask |=
2263 (1 << sel->so.output[i].output_buffer) <<
2264 (sel->so.output[i].stream * 4);
2265 }
2266
2267 /* The prolog is a no-op if there are no inputs. */
2268 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2269 sel->info.num_inputs &&
2270 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2271
2272 sel->force_correct_derivs_after_kill =
2273 sel->type == PIPE_SHADER_FRAGMENT &&
2274 sel->info.uses_derivatives &&
2275 sel->info.uses_kill &&
2276 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2277
2278 /* Set which opcode uses which (i,j) pair. */
2279 if (sel->info.uses_persp_opcode_interp_centroid)
2280 sel->info.uses_persp_centroid = true;
2281
2282 if (sel->info.uses_linear_opcode_interp_centroid)
2283 sel->info.uses_linear_centroid = true;
2284
2285 if (sel->info.uses_persp_opcode_interp_offset ||
2286 sel->info.uses_persp_opcode_interp_sample)
2287 sel->info.uses_persp_center = true;
2288
2289 if (sel->info.uses_linear_opcode_interp_offset ||
2290 sel->info.uses_linear_opcode_interp_sample)
2291 sel->info.uses_linear_center = true;
2292
2293 switch (sel->type) {
2294 case PIPE_SHADER_GEOMETRY:
2295 sel->gs_output_prim =
2296 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2297 sel->gs_max_out_vertices =
2298 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2299 sel->gs_num_invocations =
2300 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2301 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2302 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2303 sel->gs_max_out_vertices;
2304
2305 sel->max_gs_stream = 0;
2306 for (i = 0; i < sel->so.num_outputs; i++)
2307 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2308 sel->so.output[i].stream);
2309
2310 sel->gs_input_verts_per_prim =
2311 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2312 break;
2313
2314 case PIPE_SHADER_TESS_CTRL:
2315 /* Always reserve space for these. */
2316 sel->patch_outputs_written |=
2317 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2318 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2319 /* fall through */
2320 case PIPE_SHADER_VERTEX:
2321 case PIPE_SHADER_TESS_EVAL:
2322 for (i = 0; i < sel->info.num_outputs; i++) {
2323 unsigned name = sel->info.output_semantic_name[i];
2324 unsigned index = sel->info.output_semantic_index[i];
2325
2326 switch (name) {
2327 case TGSI_SEMANTIC_TESSINNER:
2328 case TGSI_SEMANTIC_TESSOUTER:
2329 case TGSI_SEMANTIC_PATCH:
2330 sel->patch_outputs_written |=
2331 1ull << si_shader_io_get_unique_index_patch(name, index);
2332 break;
2333
2334 case TGSI_SEMANTIC_GENERIC:
2335 /* don't process indices the function can't handle */
2336 if (index >= SI_MAX_IO_GENERIC)
2337 break;
2338 /* fall through */
2339 default:
2340 sel->outputs_written |=
2341 1ull << si_shader_io_get_unique_index(name, index, false);
2342 sel->outputs_written_before_ps |=
2343 1ull << si_shader_io_get_unique_index(name, index, true);
2344 break;
2345 case TGSI_SEMANTIC_EDGEFLAG:
2346 break;
2347 }
2348 }
2349 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2350 sel->lshs_vertex_stride = sel->esgs_itemsize;
2351
2352 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2353 * will start on a different bank. (except for the maximum 32*16).
2354 */
2355 if (sel->lshs_vertex_stride < 32*16)
2356 sel->lshs_vertex_stride += 4;
2357
2358 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2359 * conflicts, i.e. each vertex will start at a different bank.
2360 */
2361 if (sctx->chip_class >= GFX9)
2362 sel->esgs_itemsize += 4;
2363
2364 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2365 break;
2366
2367 case PIPE_SHADER_FRAGMENT:
2368 for (i = 0; i < sel->info.num_inputs; i++) {
2369 unsigned name = sel->info.input_semantic_name[i];
2370 unsigned index = sel->info.input_semantic_index[i];
2371
2372 switch (name) {
2373 case TGSI_SEMANTIC_GENERIC:
2374 /* don't process indices the function can't handle */
2375 if (index >= SI_MAX_IO_GENERIC)
2376 break;
2377 /* fall through */
2378 default:
2379 sel->inputs_read |=
2380 1ull << si_shader_io_get_unique_index(name, index, true);
2381 break;
2382 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2383 break;
2384 }
2385 }
2386
2387 for (i = 0; i < 8; i++)
2388 if (sel->info.colors_written & (1 << i))
2389 sel->colors_written_4bit |= 0xf << (4 * i);
2390
2391 for (i = 0; i < sel->info.num_inputs; i++) {
2392 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2393 int index = sel->info.input_semantic_index[i];
2394 sel->color_attr_index[index] = i;
2395 }
2396 }
2397 break;
2398 }
2399
2400 /* PA_CL_VS_OUT_CNTL */
2401 bool misc_vec_ena =
2402 sel->info.writes_psize || sel->info.writes_edgeflag ||
2403 sel->info.writes_layer || sel->info.writes_viewport_index;
2404 sel->pa_cl_vs_out_cntl =
2405 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2406 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2407 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2408 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2409 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2410 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2411 sel->clipdist_mask = sel->info.writes_clipvertex ?
2412 SIX_BITS : sel->info.clipdist_writemask;
2413 sel->culldist_mask = sel->info.culldist_writemask <<
2414 sel->info.num_written_clipdistance;
2415
2416 /* DB_SHADER_CONTROL */
2417 sel->db_shader_control =
2418 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2419 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2420 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2421 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2422
2423 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2424 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2425 sel->db_shader_control |=
2426 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2427 break;
2428 case TGSI_FS_DEPTH_LAYOUT_LESS:
2429 sel->db_shader_control |=
2430 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2431 break;
2432 }
2433
2434 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2435 *
2436 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2437 * --|-----------|------------|------------|--------------------|-------------------|-------------
2438 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2439 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2440 * 2 | false | true | n/a | LateZ | 1 | 0
2441 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2442 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2443 *
2444 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2445 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2446 *
2447 * Don't use ReZ without profiling !!!
2448 *
2449 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2450 * shaders.
2451 */
2452 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2453 /* Cases 3, 4. */
2454 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2455 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2456 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2457 } else if (sel->info.writes_memory) {
2458 /* Case 2. */
2459 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2460 S_02880C_EXEC_ON_HIER_FAIL(1);
2461 } else {
2462 /* Case 1. */
2463 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2464 }
2465
2466 (void) mtx_init(&sel->mutex, mtx_plain);
2467
2468 si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready,
2469 &sel->compiler_ctx_state, sel,
2470 si_init_shader_selector_async);
2471 return sel;
2472 }
2473
2474 static void si_update_streamout_state(struct si_context *sctx)
2475 {
2476 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2477
2478 if (!shader_with_so)
2479 return;
2480
2481 sctx->streamout.enabled_stream_buffers_mask =
2482 shader_with_so->enabled_streamout_buffer_mask;
2483 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2484 }
2485
2486 static void si_update_clip_regs(struct si_context *sctx,
2487 struct si_shader_selector *old_hw_vs,
2488 struct si_shader *old_hw_vs_variant,
2489 struct si_shader_selector *next_hw_vs,
2490 struct si_shader *next_hw_vs_variant)
2491 {
2492 if (next_hw_vs &&
2493 (!old_hw_vs ||
2494 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2495 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2496 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2497 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2498 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2499 !old_hw_vs_variant ||
2500 !next_hw_vs_variant ||
2501 old_hw_vs_variant->key.opt.clip_disable !=
2502 next_hw_vs_variant->key.opt.clip_disable))
2503 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2504 }
2505
2506 static void si_update_common_shader_state(struct si_context *sctx)
2507 {
2508 sctx->uses_bindless_samplers =
2509 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2510 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2511 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2512 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2513 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2514 sctx->uses_bindless_images =
2515 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2516 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2517 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2518 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2519 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2520 sctx->do_update_shaders = true;
2521 }
2522
2523 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2524 {
2525 struct si_context *sctx = (struct si_context *)ctx;
2526 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2527 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2528 struct si_shader_selector *sel = state;
2529
2530 if (sctx->vs_shader.cso == sel)
2531 return;
2532
2533 sctx->vs_shader.cso = sel;
2534 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2535 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2536
2537 si_update_common_shader_state(sctx);
2538 si_update_vs_viewport_state(sctx);
2539 si_set_active_descriptors_for_shader(sctx, sel);
2540 si_update_streamout_state(sctx);
2541 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2542 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2543 }
2544
2545 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2546 {
2547 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2548 (sctx->tes_shader.cso &&
2549 sctx->tes_shader.cso->info.uses_primid) ||
2550 (sctx->tcs_shader.cso &&
2551 sctx->tcs_shader.cso->info.uses_primid) ||
2552 (sctx->gs_shader.cso &&
2553 sctx->gs_shader.cso->info.uses_primid) ||
2554 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2555 sctx->ps_shader.cso->info.uses_primid);
2556 }
2557
2558 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2559 {
2560 struct si_context *sctx = (struct si_context *)ctx;
2561 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2562 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2563 struct si_shader_selector *sel = state;
2564 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2565
2566 if (sctx->gs_shader.cso == sel)
2567 return;
2568
2569 sctx->gs_shader.cso = sel;
2570 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2571 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2572
2573 si_update_common_shader_state(sctx);
2574 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2575
2576 if (enable_changed) {
2577 si_shader_change_notify(sctx);
2578 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2579 si_update_tess_uses_prim_id(sctx);
2580 }
2581 si_update_vs_viewport_state(sctx);
2582 si_set_active_descriptors_for_shader(sctx, sel);
2583 si_update_streamout_state(sctx);
2584 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2585 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2586 }
2587
2588 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2589 {
2590 struct si_context *sctx = (struct si_context *)ctx;
2591 struct si_shader_selector *sel = state;
2592 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2593
2594 if (sctx->tcs_shader.cso == sel)
2595 return;
2596
2597 sctx->tcs_shader.cso = sel;
2598 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2599 si_update_tess_uses_prim_id(sctx);
2600
2601 si_update_common_shader_state(sctx);
2602
2603 if (enable_changed)
2604 sctx->last_tcs = NULL; /* invalidate derived tess state */
2605
2606 si_set_active_descriptors_for_shader(sctx, sel);
2607 }
2608
2609 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2610 {
2611 struct si_context *sctx = (struct si_context *)ctx;
2612 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2613 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2614 struct si_shader_selector *sel = state;
2615 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2616
2617 if (sctx->tes_shader.cso == sel)
2618 return;
2619
2620 sctx->tes_shader.cso = sel;
2621 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2622 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2623 si_update_tess_uses_prim_id(sctx);
2624
2625 si_update_common_shader_state(sctx);
2626 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2627
2628 if (enable_changed) {
2629 si_shader_change_notify(sctx);
2630 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2631 }
2632 si_update_vs_viewport_state(sctx);
2633 si_set_active_descriptors_for_shader(sctx, sel);
2634 si_update_streamout_state(sctx);
2635 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2636 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2637 }
2638
2639 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2640 {
2641 struct si_context *sctx = (struct si_context *)ctx;
2642 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2643 struct si_shader_selector *sel = state;
2644
2645 /* skip if supplied shader is one already in use */
2646 if (old_sel == sel)
2647 return;
2648
2649 sctx->ps_shader.cso = sel;
2650 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2651
2652 si_update_common_shader_state(sctx);
2653 if (sel) {
2654 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2655 si_update_tess_uses_prim_id(sctx);
2656
2657 if (!old_sel ||
2658 old_sel->info.colors_written != sel->info.colors_written)
2659 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
2660
2661 if (sctx->screen->has_out_of_order_rast &&
2662 (!old_sel ||
2663 old_sel->info.writes_memory != sel->info.writes_memory ||
2664 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2665 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2666 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
2667 }
2668 si_set_active_descriptors_for_shader(sctx, sel);
2669 si_update_ps_colorbuf0_slot(sctx);
2670 }
2671
2672 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2673 {
2674 if (shader->is_optimized) {
2675 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2676 &shader->ready);
2677 }
2678
2679 util_queue_fence_destroy(&shader->ready);
2680
2681 if (shader->pm4) {
2682 switch (shader->selector->type) {
2683 case PIPE_SHADER_VERTEX:
2684 if (shader->key.as_ls) {
2685 assert(sctx->chip_class <= VI);
2686 si_pm4_delete_state(sctx, ls, shader->pm4);
2687 } else if (shader->key.as_es) {
2688 assert(sctx->chip_class <= VI);
2689 si_pm4_delete_state(sctx, es, shader->pm4);
2690 } else {
2691 si_pm4_delete_state(sctx, vs, shader->pm4);
2692 }
2693 break;
2694 case PIPE_SHADER_TESS_CTRL:
2695 si_pm4_delete_state(sctx, hs, shader->pm4);
2696 break;
2697 case PIPE_SHADER_TESS_EVAL:
2698 if (shader->key.as_es) {
2699 assert(sctx->chip_class <= VI);
2700 si_pm4_delete_state(sctx, es, shader->pm4);
2701 } else {
2702 si_pm4_delete_state(sctx, vs, shader->pm4);
2703 }
2704 break;
2705 case PIPE_SHADER_GEOMETRY:
2706 if (shader->is_gs_copy_shader)
2707 si_pm4_delete_state(sctx, vs, shader->pm4);
2708 else
2709 si_pm4_delete_state(sctx, gs, shader->pm4);
2710 break;
2711 case PIPE_SHADER_FRAGMENT:
2712 si_pm4_delete_state(sctx, ps, shader->pm4);
2713 break;
2714 }
2715 }
2716
2717 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2718 si_shader_destroy(shader);
2719 free(shader);
2720 }
2721
2722 void si_destroy_shader_selector(struct si_context *sctx,
2723 struct si_shader_selector *sel)
2724 {
2725 struct si_shader *p = sel->first_variant, *c;
2726 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2727 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2728 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2729 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2730 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2731 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2732 };
2733
2734 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2735
2736 if (current_shader[sel->type]->cso == sel) {
2737 current_shader[sel->type]->cso = NULL;
2738 current_shader[sel->type]->current = NULL;
2739 }
2740
2741 while (p) {
2742 c = p->next_variant;
2743 si_delete_shader(sctx, p);
2744 p = c;
2745 }
2746
2747 if (sel->main_shader_part)
2748 si_delete_shader(sctx, sel->main_shader_part);
2749 if (sel->main_shader_part_ls)
2750 si_delete_shader(sctx, sel->main_shader_part_ls);
2751 if (sel->main_shader_part_es)
2752 si_delete_shader(sctx, sel->main_shader_part_es);
2753 if (sel->gs_copy_shader)
2754 si_delete_shader(sctx, sel->gs_copy_shader);
2755
2756 util_queue_fence_destroy(&sel->ready);
2757 mtx_destroy(&sel->mutex);
2758 free(sel->tokens);
2759 ralloc_free(sel->nir);
2760 free(sel);
2761 }
2762
2763 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2764 {
2765 struct si_context *sctx = (struct si_context *)ctx;
2766 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2767
2768 si_shader_selector_reference(sctx, &sel, NULL);
2769 }
2770
2771 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2772 struct si_shader *vs, unsigned name,
2773 unsigned index, unsigned interpolate)
2774 {
2775 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2776 unsigned j, offset, ps_input_cntl = 0;
2777
2778 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2779 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2780 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2781
2782 if (name == TGSI_SEMANTIC_PCOORD ||
2783 (name == TGSI_SEMANTIC_TEXCOORD &&
2784 sctx->sprite_coord_enable & (1 << index))) {
2785 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2786 }
2787
2788 for (j = 0; j < vsinfo->num_outputs; j++) {
2789 if (name == vsinfo->output_semantic_name[j] &&
2790 index == vsinfo->output_semantic_index[j]) {
2791 offset = vs->info.vs_output_param_offset[j];
2792
2793 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2794 /* The input is loaded from parameter memory. */
2795 ps_input_cntl |= S_028644_OFFSET(offset);
2796 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2797 if (offset == AC_EXP_PARAM_UNDEFINED) {
2798 /* This can happen with depth-only rendering. */
2799 offset = 0;
2800 } else {
2801 /* The input is a DEFAULT_VAL constant. */
2802 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2803 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2804 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2805 }
2806
2807 ps_input_cntl = S_028644_OFFSET(0x20) |
2808 S_028644_DEFAULT_VAL(offset);
2809 }
2810 break;
2811 }
2812 }
2813
2814 if (name == TGSI_SEMANTIC_PRIMID)
2815 /* PrimID is written after the last output. */
2816 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2817 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2818 /* No corresponding output found, load defaults into input.
2819 * Don't set any other bits.
2820 * (FLAT_SHADE=1 completely changes behavior) */
2821 ps_input_cntl = S_028644_OFFSET(0x20);
2822 /* D3D 9 behaviour. GL is undefined */
2823 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2824 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2825 }
2826 return ps_input_cntl;
2827 }
2828
2829 static void si_emit_spi_map(struct si_context *sctx)
2830 {
2831 struct si_shader *ps = sctx->ps_shader.current;
2832 struct si_shader *vs = si_get_vs_state(sctx);
2833 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2834 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2835 unsigned spi_ps_input_cntl[32];
2836
2837 if (!ps || !ps->selector->info.num_inputs)
2838 return;
2839
2840 num_interp = si_get_ps_num_interp(ps);
2841 assert(num_interp > 0);
2842
2843 for (i = 0; i < psinfo->num_inputs; i++) {
2844 unsigned name = psinfo->input_semantic_name[i];
2845 unsigned index = psinfo->input_semantic_index[i];
2846 unsigned interpolate = psinfo->input_interpolate[i];
2847
2848 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name,
2849 index, interpolate);
2850
2851 if (name == TGSI_SEMANTIC_COLOR) {
2852 assert(index < ARRAY_SIZE(bcol_interp));
2853 bcol_interp[index] = interpolate;
2854 }
2855 }
2856
2857 if (ps->key.part.ps.prolog.color_two_side) {
2858 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2859
2860 for (i = 0; i < 2; i++) {
2861 if (!(psinfo->colors_read & (0xf << (i * 4))))
2862 continue;
2863
2864 spi_ps_input_cntl[num_written++] =
2865 si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
2866
2867 }
2868 }
2869 assert(num_interp == num_written);
2870
2871 /* R_028644_SPI_PS_INPUT_CNTL_0 */
2872 /* Dota 2: Only ~16% of SPI map updates set different values. */
2873 /* Talos: Only ~9% of SPI map updates set different values. */
2874 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
2875 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0,
2876 spi_ps_input_cntl,
2877 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
2878
2879 if (initial_cdw != sctx->gfx_cs->current.cdw)
2880 sctx->context_roll = true;
2881 }
2882
2883 /**
2884 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2885 */
2886 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2887 {
2888 if (sctx->init_config_has_vgt_flush)
2889 return;
2890
2891 /* Done by Vulkan before VGT_FLUSH. */
2892 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2893 si_pm4_cmd_add(sctx->init_config,
2894 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2895 si_pm4_cmd_end(sctx->init_config, false);
2896
2897 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2898 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2899 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2900 si_pm4_cmd_end(sctx->init_config, false);
2901 sctx->init_config_has_vgt_flush = true;
2902 }
2903
2904 /* Initialize state related to ESGS / GSVS ring buffers */
2905 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2906 {
2907 struct si_shader_selector *es =
2908 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2909 struct si_shader_selector *gs = sctx->gs_shader.cso;
2910 struct si_pm4_state *pm4;
2911
2912 /* Chip constants. */
2913 unsigned num_se = sctx->screen->info.max_se;
2914 unsigned wave_size = 64;
2915 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2916 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2917 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2918 */
2919 unsigned gs_vertex_reuse = (sctx->chip_class >= VI ? 32 : 16) * num_se;
2920 unsigned alignment = 256 * num_se;
2921 /* The maximum size is 63.999 MB per SE. */
2922 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2923
2924 /* Calculate the minimum size. */
2925 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2926 wave_size, alignment);
2927
2928 /* These are recommended sizes, not minimum sizes. */
2929 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2930 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2931 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2932 gs->max_gsvs_emit_size;
2933
2934 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2935 esgs_ring_size = align(esgs_ring_size, alignment);
2936 gsvs_ring_size = align(gsvs_ring_size, alignment);
2937
2938 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2939 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2940
2941 /* Some rings don't have to be allocated if shaders don't use them.
2942 * (e.g. no varyings between ES and GS or GS and VS)
2943 *
2944 * GFX9 doesn't have the ESGS ring.
2945 */
2946 bool update_esgs = sctx->chip_class <= VI &&
2947 esgs_ring_size &&
2948 (!sctx->esgs_ring ||
2949 sctx->esgs_ring->width0 < esgs_ring_size);
2950 bool update_gsvs = gsvs_ring_size &&
2951 (!sctx->gsvs_ring ||
2952 sctx->gsvs_ring->width0 < gsvs_ring_size);
2953
2954 if (!update_esgs && !update_gsvs)
2955 return true;
2956
2957 if (update_esgs) {
2958 pipe_resource_reference(&sctx->esgs_ring, NULL);
2959 sctx->esgs_ring =
2960 pipe_aligned_buffer_create(sctx->b.screen,
2961 SI_RESOURCE_FLAG_UNMAPPABLE,
2962 PIPE_USAGE_DEFAULT,
2963 esgs_ring_size, alignment);
2964 if (!sctx->esgs_ring)
2965 return false;
2966 }
2967
2968 if (update_gsvs) {
2969 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2970 sctx->gsvs_ring =
2971 pipe_aligned_buffer_create(sctx->b.screen,
2972 SI_RESOURCE_FLAG_UNMAPPABLE,
2973 PIPE_USAGE_DEFAULT,
2974 gsvs_ring_size, alignment);
2975 if (!sctx->gsvs_ring)
2976 return false;
2977 }
2978
2979 /* Create the "init_config_gs_rings" state. */
2980 pm4 = CALLOC_STRUCT(si_pm4_state);
2981 if (!pm4)
2982 return false;
2983
2984 if (sctx->chip_class >= CIK) {
2985 if (sctx->esgs_ring) {
2986 assert(sctx->chip_class <= VI);
2987 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2988 sctx->esgs_ring->width0 / 256);
2989 }
2990 if (sctx->gsvs_ring)
2991 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2992 sctx->gsvs_ring->width0 / 256);
2993 } else {
2994 if (sctx->esgs_ring)
2995 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2996 sctx->esgs_ring->width0 / 256);
2997 if (sctx->gsvs_ring)
2998 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2999 sctx->gsvs_ring->width0 / 256);
3000 }
3001
3002 /* Set the state. */
3003 if (sctx->init_config_gs_rings)
3004 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
3005 sctx->init_config_gs_rings = pm4;
3006
3007 if (!sctx->init_config_has_vgt_flush) {
3008 si_init_config_add_vgt_flush(sctx);
3009 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3010 }
3011
3012 /* Flush the context to re-emit both init_config states. */
3013 sctx->initial_gfx_cs_size = 0; /* force flush */
3014 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3015
3016 /* Set ring bindings. */
3017 if (sctx->esgs_ring) {
3018 assert(sctx->chip_class <= VI);
3019 si_set_ring_buffer(sctx, SI_ES_RING_ESGS,
3020 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
3021 true, true, 4, 64, 0);
3022 si_set_ring_buffer(sctx, SI_GS_RING_ESGS,
3023 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
3024 false, false, 0, 0, 0);
3025 }
3026 if (sctx->gsvs_ring) {
3027 si_set_ring_buffer(sctx, SI_RING_GSVS,
3028 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
3029 false, false, 0, 0, 0);
3030 }
3031
3032 return true;
3033 }
3034
3035 static void si_shader_lock(struct si_shader *shader)
3036 {
3037 mtx_lock(&shader->selector->mutex);
3038 if (shader->previous_stage_sel) {
3039 assert(shader->previous_stage_sel != shader->selector);
3040 mtx_lock(&shader->previous_stage_sel->mutex);
3041 }
3042 }
3043
3044 static void si_shader_unlock(struct si_shader *shader)
3045 {
3046 if (shader->previous_stage_sel)
3047 mtx_unlock(&shader->previous_stage_sel->mutex);
3048 mtx_unlock(&shader->selector->mutex);
3049 }
3050
3051 /**
3052 * @returns 1 if \p sel has been updated to use a new scratch buffer
3053 * 0 if not
3054 * < 0 if there was a failure
3055 */
3056 static int si_update_scratch_buffer(struct si_context *sctx,
3057 struct si_shader *shader)
3058 {
3059 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3060 int r;
3061
3062 if (!shader)
3063 return 0;
3064
3065 /* This shader doesn't need a scratch buffer */
3066 if (shader->config.scratch_bytes_per_wave == 0)
3067 return 0;
3068
3069 /* Prevent race conditions when updating:
3070 * - si_shader::scratch_bo
3071 * - si_shader::binary::code
3072 * - si_shader::previous_stage::binary::code.
3073 */
3074 si_shader_lock(shader);
3075
3076 /* This shader is already configured to use the current
3077 * scratch buffer. */
3078 if (shader->scratch_bo == sctx->scratch_buffer) {
3079 si_shader_unlock(shader);
3080 return 0;
3081 }
3082
3083 assert(sctx->scratch_buffer);
3084
3085 if (shader->previous_stage)
3086 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
3087
3088 si_shader_apply_scratch_relocs(shader, scratch_va);
3089
3090 /* Replace the shader bo with a new bo that has the relocs applied. */
3091 r = si_shader_binary_upload(sctx->screen, shader);
3092 if (r) {
3093 si_shader_unlock(shader);
3094 return r;
3095 }
3096
3097 /* Update the shader state to use the new shader bo. */
3098 si_shader_init_pm4_state(sctx->screen, shader);
3099
3100 si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3101
3102 si_shader_unlock(shader);
3103 return 1;
3104 }
3105
3106 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
3107 {
3108 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
3109 }
3110
3111 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
3112 {
3113 return shader ? shader->config.scratch_bytes_per_wave : 0;
3114 }
3115
3116 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3117 {
3118 if (!sctx->tes_shader.cso)
3119 return NULL; /* tessellation disabled */
3120
3121 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
3122 sctx->fixed_func_tcs_shader.current;
3123 }
3124
3125 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
3126 {
3127 unsigned bytes = 0;
3128
3129 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
3130 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
3131 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
3132 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
3133
3134 if (sctx->tes_shader.cso) {
3135 struct si_shader *tcs = si_get_tcs_current(sctx);
3136
3137 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
3138 }
3139 return bytes;
3140 }
3141
3142 static bool si_update_scratch_relocs(struct si_context *sctx)
3143 {
3144 struct si_shader *tcs = si_get_tcs_current(sctx);
3145 int r;
3146
3147 /* Update the shaders, so that they are using the latest scratch.
3148 * The scratch buffer may have been changed since these shaders were
3149 * last used, so we still need to try to update them, even if they
3150 * require scratch buffers smaller than the current size.
3151 */
3152 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
3153 if (r < 0)
3154 return false;
3155 if (r == 1)
3156 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3157
3158 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
3159 if (r < 0)
3160 return false;
3161 if (r == 1)
3162 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3163
3164 r = si_update_scratch_buffer(sctx, tcs);
3165 if (r < 0)
3166 return false;
3167 if (r == 1)
3168 si_pm4_bind_state(sctx, hs, tcs->pm4);
3169
3170 /* VS can be bound as LS, ES, or VS. */
3171 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
3172 if (r < 0)
3173 return false;
3174 if (r == 1) {
3175 if (sctx->tes_shader.current)
3176 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3177 else if (sctx->gs_shader.current)
3178 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3179 else
3180 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3181 }
3182
3183 /* TES can be bound as ES or VS. */
3184 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
3185 if (r < 0)
3186 return false;
3187 if (r == 1) {
3188 if (sctx->gs_shader.current)
3189 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3190 else
3191 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3192 }
3193
3194 return true;
3195 }
3196
3197 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3198 {
3199 unsigned current_scratch_buffer_size =
3200 si_get_current_scratch_buffer_size(sctx);
3201 unsigned scratch_bytes_per_wave =
3202 si_get_max_scratch_bytes_per_wave(sctx);
3203 unsigned scratch_needed_size = scratch_bytes_per_wave *
3204 sctx->scratch_waves;
3205 unsigned spi_tmpring_size;
3206
3207 if (scratch_needed_size > 0) {
3208 if (scratch_needed_size > current_scratch_buffer_size) {
3209 /* Create a bigger scratch buffer */
3210 si_resource_reference(&sctx->scratch_buffer, NULL);
3211
3212 sctx->scratch_buffer =
3213 si_aligned_buffer_create(&sctx->screen->b,
3214 SI_RESOURCE_FLAG_UNMAPPABLE,
3215 PIPE_USAGE_DEFAULT,
3216 scratch_needed_size, 256);
3217 if (!sctx->scratch_buffer)
3218 return false;
3219
3220 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3221 si_context_add_resource_size(sctx,
3222 &sctx->scratch_buffer->b.b);
3223 }
3224
3225 if (!si_update_scratch_relocs(sctx))
3226 return false;
3227 }
3228
3229 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3230 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3231 "scratch size should already be aligned correctly.");
3232
3233 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3234 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3235 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3236 sctx->spi_tmpring_size = spi_tmpring_size;
3237 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3238 }
3239 return true;
3240 }
3241
3242 static void si_init_tess_factor_ring(struct si_context *sctx)
3243 {
3244 assert(!sctx->tess_rings);
3245
3246 /* The address must be aligned to 2^19, because the shader only
3247 * receives the high 13 bits.
3248 */
3249 sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
3250 SI_RESOURCE_FLAG_32BIT,
3251 PIPE_USAGE_DEFAULT,
3252 sctx->screen->tess_offchip_ring_size +
3253 sctx->screen->tess_factor_ring_size,
3254 1 << 19);
3255 if (!sctx->tess_rings)
3256 return;
3257
3258 si_init_config_add_vgt_flush(sctx);
3259
3260 si_pm4_add_bo(sctx->init_config, si_resource(sctx->tess_rings),
3261 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3262
3263 uint64_t factor_va = si_resource(sctx->tess_rings)->gpu_address +
3264 sctx->screen->tess_offchip_ring_size;
3265
3266 /* Append these registers to the init config state. */
3267 if (sctx->chip_class >= CIK) {
3268 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3269 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3270 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3271 factor_va >> 8);
3272 if (sctx->chip_class >= GFX9)
3273 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3274 S_030944_BASE_HI(factor_va >> 40));
3275 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3276 sctx->screen->vgt_hs_offchip_param);
3277 } else {
3278 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3279 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3280 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3281 factor_va >> 8);
3282 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3283 sctx->screen->vgt_hs_offchip_param);
3284 }
3285
3286 /* Flush the context to re-emit the init_config state.
3287 * This is done only once in a lifetime of a context.
3288 */
3289 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3290 sctx->initial_gfx_cs_size = 0; /* force flush */
3291 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3292 }
3293
3294 static void si_update_vgt_shader_config(struct si_context *sctx)
3295 {
3296 /* Calculate the index of the config.
3297 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3298 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3299 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3300
3301 if (!*pm4) {
3302 uint32_t stages = 0;
3303
3304 *pm4 = CALLOC_STRUCT(si_pm4_state);
3305
3306 if (sctx->tes_shader.cso) {
3307 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3308 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3309
3310 if (sctx->gs_shader.cso)
3311 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3312 S_028B54_GS_EN(1) |
3313 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3314 else
3315 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3316 } else if (sctx->gs_shader.cso) {
3317 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3318 S_028B54_GS_EN(1) |
3319 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3320 }
3321
3322 if (sctx->chip_class >= GFX9)
3323 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3324
3325 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3326 }
3327 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3328 }
3329
3330 bool si_update_shaders(struct si_context *sctx)
3331 {
3332 struct pipe_context *ctx = (struct pipe_context*)sctx;
3333 struct si_compiler_ctx_state compiler_state;
3334 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3335 struct si_shader *old_vs = si_get_vs_state(sctx);
3336 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3337 struct si_shader *old_ps = sctx->ps_shader.current;
3338 unsigned old_spi_shader_col_format =
3339 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3340 int r;
3341
3342 compiler_state.compiler = &sctx->compiler;
3343 compiler_state.debug = sctx->debug;
3344 compiler_state.is_debug_context = sctx->is_debug;
3345
3346 /* Update stages before GS. */
3347 if (sctx->tes_shader.cso) {
3348 if (!sctx->tess_rings) {
3349 si_init_tess_factor_ring(sctx);
3350 if (!sctx->tess_rings)
3351 return false;
3352 }
3353
3354 /* VS as LS */
3355 if (sctx->chip_class <= VI) {
3356 r = si_shader_select(ctx, &sctx->vs_shader,
3357 &compiler_state);
3358 if (r)
3359 return false;
3360 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3361 }
3362
3363 if (sctx->tcs_shader.cso) {
3364 r = si_shader_select(ctx, &sctx->tcs_shader,
3365 &compiler_state);
3366 if (r)
3367 return false;
3368 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3369 } else {
3370 if (!sctx->fixed_func_tcs_shader.cso) {
3371 sctx->fixed_func_tcs_shader.cso =
3372 si_create_fixed_func_tcs(sctx);
3373 if (!sctx->fixed_func_tcs_shader.cso)
3374 return false;
3375 }
3376
3377 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3378 &compiler_state);
3379 if (r)
3380 return false;
3381 si_pm4_bind_state(sctx, hs,
3382 sctx->fixed_func_tcs_shader.current->pm4);
3383 }
3384
3385 if (sctx->gs_shader.cso) {
3386 /* TES as ES */
3387 if (sctx->chip_class <= VI) {
3388 r = si_shader_select(ctx, &sctx->tes_shader,
3389 &compiler_state);
3390 if (r)
3391 return false;
3392 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3393 }
3394 } else {
3395 /* TES as VS */
3396 r = si_shader_select(ctx, &sctx->tes_shader,
3397 &compiler_state);
3398 if (r)
3399 return false;
3400 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3401 }
3402 } else if (sctx->gs_shader.cso) {
3403 if (sctx->chip_class <= VI) {
3404 /* VS as ES */
3405 r = si_shader_select(ctx, &sctx->vs_shader,
3406 &compiler_state);
3407 if (r)
3408 return false;
3409 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3410
3411 si_pm4_bind_state(sctx, ls, NULL);
3412 si_pm4_bind_state(sctx, hs, NULL);
3413 }
3414 } else {
3415 /* VS as VS */
3416 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3417 if (r)
3418 return false;
3419 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3420 si_pm4_bind_state(sctx, ls, NULL);
3421 si_pm4_bind_state(sctx, hs, NULL);
3422 }
3423
3424 /* Update GS. */
3425 if (sctx->gs_shader.cso) {
3426 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3427 if (r)
3428 return false;
3429 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3430 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3431
3432 if (!si_update_gs_ring_buffers(sctx))
3433 return false;
3434 } else {
3435 si_pm4_bind_state(sctx, gs, NULL);
3436 if (sctx->chip_class <= VI)
3437 si_pm4_bind_state(sctx, es, NULL);
3438 }
3439
3440 si_update_vgt_shader_config(sctx);
3441
3442 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3443 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3444
3445 if (sctx->ps_shader.cso) {
3446 unsigned db_shader_control;
3447
3448 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3449 if (r)
3450 return false;
3451 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3452
3453 db_shader_control =
3454 sctx->ps_shader.cso->db_shader_control |
3455 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3456
3457 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3458 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3459 sctx->flatshade != rs->flatshade) {
3460 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3461 sctx->flatshade = rs->flatshade;
3462 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3463 }
3464
3465 if (sctx->screen->rbplus_allowed &&
3466 si_pm4_state_changed(sctx, ps) &&
3467 (!old_ps ||
3468 old_spi_shader_col_format !=
3469 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3470 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3471
3472 if (sctx->ps_db_shader_control != db_shader_control) {
3473 sctx->ps_db_shader_control = db_shader_control;
3474 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3475 if (sctx->screen->dpbb_allowed)
3476 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3477 }
3478
3479 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3480 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3481 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3482
3483 if (sctx->chip_class == SI)
3484 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3485
3486 if (sctx->framebuffer.nr_samples <= 1)
3487 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3488 }
3489 }
3490
3491 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3492 si_pm4_state_enabled_and_changed(sctx, hs) ||
3493 si_pm4_state_enabled_and_changed(sctx, es) ||
3494 si_pm4_state_enabled_and_changed(sctx, gs) ||
3495 si_pm4_state_enabled_and_changed(sctx, vs) ||
3496 si_pm4_state_enabled_and_changed(sctx, ps)) {
3497 if (!si_update_spi_tmpring_size(sctx))
3498 return false;
3499 }
3500
3501 if (sctx->chip_class >= CIK) {
3502 if (si_pm4_state_enabled_and_changed(sctx, ls))
3503 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3504 else if (!sctx->queued.named.ls)
3505 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3506
3507 if (si_pm4_state_enabled_and_changed(sctx, hs))
3508 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3509 else if (!sctx->queued.named.hs)
3510 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3511
3512 if (si_pm4_state_enabled_and_changed(sctx, es))
3513 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3514 else if (!sctx->queued.named.es)
3515 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3516
3517 if (si_pm4_state_enabled_and_changed(sctx, gs))
3518 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3519 else if (!sctx->queued.named.gs)
3520 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3521
3522 if (si_pm4_state_enabled_and_changed(sctx, vs))
3523 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3524 else if (!sctx->queued.named.vs)
3525 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3526
3527 if (si_pm4_state_enabled_and_changed(sctx, ps))
3528 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3529 else if (!sctx->queued.named.ps)
3530 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3531 }
3532
3533 sctx->do_update_shaders = false;
3534 return true;
3535 }
3536
3537 static void si_emit_scratch_state(struct si_context *sctx)
3538 {
3539 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3540
3541 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3542 sctx->spi_tmpring_size);
3543
3544 if (sctx->scratch_buffer) {
3545 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
3546 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3547 RADEON_PRIO_SCRATCH_BUFFER);
3548 }
3549 }
3550
3551 void si_init_shader_functions(struct si_context *sctx)
3552 {
3553 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
3554 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
3555
3556 sctx->b.create_vs_state = si_create_shader_selector;
3557 sctx->b.create_tcs_state = si_create_shader_selector;
3558 sctx->b.create_tes_state = si_create_shader_selector;
3559 sctx->b.create_gs_state = si_create_shader_selector;
3560 sctx->b.create_fs_state = si_create_shader_selector;
3561
3562 sctx->b.bind_vs_state = si_bind_vs_shader;
3563 sctx->b.bind_tcs_state = si_bind_tcs_shader;
3564 sctx->b.bind_tes_state = si_bind_tes_shader;
3565 sctx->b.bind_gs_state = si_bind_gs_shader;
3566 sctx->b.bind_fs_state = si_bind_ps_shader;
3567
3568 sctx->b.delete_vs_state = si_delete_shader_selector;
3569 sctx->b.delete_tcs_state = si_delete_shader_selector;
3570 sctx->b.delete_tes_state = si_delete_shader_selector;
3571 sctx->b.delete_gs_state = si_delete_shader_selector;
3572 sctx->b.delete_fs_state = si_delete_shader_selector;
3573 }