radeonsi: don't interpolate colors if flatshading is enabled
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "si_shader.h"
30 #include "sid.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/u_hash.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39 #include "util/u_simple_shaders.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
45 * integer.
46 */
47 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
48 {
49 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
50 sizeof(struct tgsi_token);
51 unsigned size = 4 + tgsi_size + sizeof(sel->so);
52 char *result = (char*)MALLOC(size);
53
54 if (!result)
55 return NULL;
56
57 *((uint32_t*)result) = size;
58 memcpy(result + 4, sel->tokens, tgsi_size);
59 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
60 return result;
61 }
62
63 /** Copy "data" to "ptr" and return the next dword following copied data. */
64 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
65 {
66 /* data may be NULL if size == 0 */
67 if (size)
68 memcpy(ptr, data, size);
69 ptr += DIV_ROUND_UP(size, 4);
70 return ptr;
71 }
72
73 /** Read data from "ptr". Return the next dword following the data. */
74 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
75 {
76 memcpy(data, ptr, size);
77 ptr += DIV_ROUND_UP(size, 4);
78 return ptr;
79 }
80
81 /**
82 * Write the size as uint followed by the data. Return the next dword
83 * following the copied data.
84 */
85 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
86 {
87 *ptr++ = size;
88 return write_data(ptr, data, size);
89 }
90
91 /**
92 * Read the size as uint followed by the data. Return both via parameters.
93 * Return the next dword following the data.
94 */
95 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
96 {
97 *size = *ptr++;
98 assert(*data == NULL);
99 *data = malloc(*size);
100 return read_data(ptr, *data, *size);
101 }
102
103 /**
104 * Return the shader binary in a buffer. The first 4 bytes contain its size
105 * as integer.
106 */
107 static void *si_get_shader_binary(struct si_shader *shader)
108 {
109 /* There is always a size of data followed by the data itself. */
110 unsigned relocs_size = shader->binary.reloc_count *
111 sizeof(shader->binary.relocs[0]);
112 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
113 unsigned size =
114 4 + /* total size */
115 4 + /* CRC32 of the data below */
116 align(sizeof(shader->config), 4) +
117 align(sizeof(shader->info), 4) +
118 4 + align(shader->binary.code_size, 4) +
119 4 + align(shader->binary.rodata_size, 4) +
120 4 + align(relocs_size, 4) +
121 4 + align(disasm_size, 4);
122 void *buffer = CALLOC(1, size);
123 uint32_t *ptr = (uint32_t*)buffer;
124
125 if (!buffer)
126 return NULL;
127
128 *ptr++ = size;
129 ptr++; /* CRC32 is calculated at the end. */
130
131 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
132 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
133 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
134 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
135 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
136 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
137 assert((char *)ptr - (char *)buffer == size);
138
139 /* Compute CRC32. */
140 ptr = (uint32_t*)buffer;
141 ptr++;
142 *ptr = util_hash_crc32(ptr + 1, size - 8);
143
144 return buffer;
145 }
146
147 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
148 {
149 uint32_t *ptr = (uint32_t*)binary;
150 uint32_t size = *ptr++;
151 uint32_t crc32 = *ptr++;
152 unsigned chunk_size;
153
154 if (util_hash_crc32(ptr, size - 8) != crc32) {
155 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
156 return false;
157 }
158
159 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
160 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
161 ptr = read_chunk(ptr, (void**)&shader->binary.code,
162 &shader->binary.code_size);
163 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
164 &shader->binary.rodata_size);
165 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
166 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
167 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
168
169 return true;
170 }
171
172 /**
173 * Insert a shader into the cache. It's assumed the shader is not in the cache.
174 * Use si_shader_cache_load_shader before calling this.
175 *
176 * Returns false on failure, in which case the tgsi_binary should be freed.
177 */
178 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
179 void *tgsi_binary,
180 struct si_shader *shader)
181 {
182 void *hw_binary = si_get_shader_binary(shader);
183
184 if (!hw_binary)
185 return false;
186
187 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
188 hw_binary) == NULL) {
189 FREE(hw_binary);
190 return false;
191 }
192
193 return true;
194 }
195
196 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
197 void *tgsi_binary,
198 struct si_shader *shader)
199 {
200 struct hash_entry *entry =
201 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
202 if (!entry)
203 return false;
204
205 return si_load_shader_binary(shader, entry->data);
206 }
207
208 static uint32_t si_shader_cache_key_hash(const void *key)
209 {
210 /* The first dword is the key size. */
211 return util_hash_crc32(key, *(uint32_t*)key);
212 }
213
214 static bool si_shader_cache_key_equals(const void *a, const void *b)
215 {
216 uint32_t *keya = (uint32_t*)a;
217 uint32_t *keyb = (uint32_t*)b;
218
219 /* The first dword is the key size. */
220 if (*keya != *keyb)
221 return false;
222
223 return memcmp(keya, keyb, *keya) == 0;
224 }
225
226 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
227 {
228 FREE((void*)entry->key);
229 FREE(entry->data);
230 }
231
232 bool si_init_shader_cache(struct si_screen *sscreen)
233 {
234 pipe_mutex_init(sscreen->shader_cache_mutex);
235 sscreen->shader_cache =
236 _mesa_hash_table_create(NULL,
237 si_shader_cache_key_hash,
238 si_shader_cache_key_equals);
239 return sscreen->shader_cache != NULL;
240 }
241
242 void si_destroy_shader_cache(struct si_screen *sscreen)
243 {
244 if (sscreen->shader_cache)
245 _mesa_hash_table_destroy(sscreen->shader_cache,
246 si_destroy_shader_cache_entry);
247 pipe_mutex_destroy(sscreen->shader_cache_mutex);
248 }
249
250 /* SHADER STATES */
251
252 static void si_set_tesseval_regs(struct si_screen *sscreen,
253 struct si_shader *shader,
254 struct si_pm4_state *pm4)
255 {
256 struct tgsi_shader_info *info = &shader->selector->info;
257 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
258 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
259 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
260 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
261 unsigned type, partitioning, topology, distribution_mode;
262
263 switch (tes_prim_mode) {
264 case PIPE_PRIM_LINES:
265 type = V_028B6C_TESS_ISOLINE;
266 break;
267 case PIPE_PRIM_TRIANGLES:
268 type = V_028B6C_TESS_TRIANGLE;
269 break;
270 case PIPE_PRIM_QUADS:
271 type = V_028B6C_TESS_QUAD;
272 break;
273 default:
274 assert(0);
275 return;
276 }
277
278 switch (tes_spacing) {
279 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
280 partitioning = V_028B6C_PART_FRAC_ODD;
281 break;
282 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
283 partitioning = V_028B6C_PART_FRAC_EVEN;
284 break;
285 case PIPE_TESS_SPACING_EQUAL:
286 partitioning = V_028B6C_PART_INTEGER;
287 break;
288 default:
289 assert(0);
290 return;
291 }
292
293 if (tes_point_mode)
294 topology = V_028B6C_OUTPUT_POINT;
295 else if (tes_prim_mode == PIPE_PRIM_LINES)
296 topology = V_028B6C_OUTPUT_LINE;
297 else if (tes_vertex_order_cw)
298 /* for some reason, this must be the other way around */
299 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
300 else
301 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
302
303 if (sscreen->has_distributed_tess) {
304 if (sscreen->b.family == CHIP_FIJI ||
305 sscreen->b.family >= CHIP_POLARIS10)
306 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
307 else
308 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
309 } else
310 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
311
312 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
313 S_028B6C_TYPE(type) |
314 S_028B6C_PARTITIONING(partitioning) |
315 S_028B6C_TOPOLOGY(topology) |
316 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
317 }
318
319 static void si_shader_ls(struct si_shader *shader)
320 {
321 struct si_pm4_state *pm4;
322 unsigned vgpr_comp_cnt;
323 uint64_t va;
324
325 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
326 if (!pm4)
327 return;
328
329 va = shader->bo->gpu_address;
330 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
331
332 /* We need at least 2 components for LS.
333 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
334 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
335
336 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
337 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
338
339 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
340 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
341 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
342 S_00B528_DX10_CLAMP(1) |
343 S_00B528_FLOAT_MODE(shader->config.float_mode);
344 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
345 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
346 }
347
348 static void si_shader_hs(struct si_shader *shader)
349 {
350 struct si_pm4_state *pm4;
351 uint64_t va;
352
353 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
354 if (!pm4)
355 return;
356
357 va = shader->bo->gpu_address;
358 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
359
360 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
361 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
362 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
363 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
364 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
365 S_00B428_DX10_CLAMP(1) |
366 S_00B428_FLOAT_MODE(shader->config.float_mode));
367 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
368 S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
369 S_00B42C_OC_LDS_EN(1) |
370 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
371 }
372
373 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
374 {
375 struct si_pm4_state *pm4;
376 unsigned num_user_sgprs;
377 unsigned vgpr_comp_cnt;
378 uint64_t va;
379 unsigned oc_lds_en;
380
381 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
382
383 if (!pm4)
384 return;
385
386 va = shader->bo->gpu_address;
387 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
388
389 if (shader->selector->type == PIPE_SHADER_VERTEX) {
390 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
391 num_user_sgprs = SI_ES_NUM_USER_SGPR;
392 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
393 vgpr_comp_cnt = 3; /* all components are needed for TES */
394 num_user_sgprs = SI_TES_NUM_USER_SGPR;
395 } else
396 unreachable("invalid shader selector type");
397
398 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
399
400 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
401 shader->selector->esgs_itemsize / 4);
402 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
403 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
404 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
405 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
406 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
407 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
408 S_00B328_DX10_CLAMP(1) |
409 S_00B328_FLOAT_MODE(shader->config.float_mode));
410 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
411 S_00B32C_USER_SGPR(num_user_sgprs) |
412 S_00B32C_OC_LDS_EN(oc_lds_en) |
413 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
414
415 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
416 si_set_tesseval_regs(sscreen, shader, pm4);
417 }
418
419 /**
420 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
421 * geometry shader.
422 */
423 static uint32_t si_vgt_gs_mode(struct si_shader *shader)
424 {
425 unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
426 unsigned cut_mode;
427
428 if (gs_max_vert_out <= 128) {
429 cut_mode = V_028A40_GS_CUT_128;
430 } else if (gs_max_vert_out <= 256) {
431 cut_mode = V_028A40_GS_CUT_256;
432 } else if (gs_max_vert_out <= 512) {
433 cut_mode = V_028A40_GS_CUT_512;
434 } else {
435 assert(gs_max_vert_out <= 1024);
436 cut_mode = V_028A40_GS_CUT_1024;
437 }
438
439 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
440 S_028A40_CUT_MODE(cut_mode)|
441 S_028A40_ES_WRITE_OPTIMIZE(1) |
442 S_028A40_GS_WRITE_OPTIMIZE(1);
443 }
444
445 static void si_shader_gs(struct si_shader *shader)
446 {
447 unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
448 unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
449 unsigned gs_num_invocations = shader->selector->gs_num_invocations;
450 struct si_pm4_state *pm4;
451 uint64_t va;
452 unsigned max_stream = shader->selector->max_gs_stream;
453
454 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
455 assert(gsvs_itemsize < (1 << 15));
456
457 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
458
459 if (!pm4)
460 return;
461
462 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader));
463
464 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
465 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
466 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
467
468 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
469
470 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
471
472 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
473 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
474 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
475 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
476
477 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
478 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
479 S_028B90_ENABLE(gs_num_invocations > 0));
480
481 va = shader->bo->gpu_address;
482 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
483 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
484 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
485
486 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
487 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
488 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
489 S_00B228_DX10_CLAMP(1) |
490 S_00B228_FLOAT_MODE(shader->config.float_mode));
491 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
492 S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
493 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
494 }
495
496 /**
497 * Compute the state for \p shader, which will run as a vertex shader on the
498 * hardware.
499 *
500 * If \p gs is non-NULL, it points to the geometry shader for which this shader
501 * is the copy shader.
502 */
503 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
504 struct si_shader *gs)
505 {
506 struct si_pm4_state *pm4;
507 unsigned num_user_sgprs;
508 unsigned nparams, vgpr_comp_cnt;
509 uint64_t va;
510 unsigned oc_lds_en;
511 unsigned window_space =
512 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
513 bool enable_prim_id = si_vs_exports_prim_id(shader);
514
515 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
516
517 if (!pm4)
518 return;
519
520 /* We always write VGT_GS_MODE in the VS state, because every switch
521 * between different shader pipelines involving a different GS or no
522 * GS at all involves a switch of the VS (different GS use different
523 * copy shaders). On the other hand, when the API switches from a GS to
524 * no GS and then back to the same GS used originally, the GS state is
525 * not sent again.
526 */
527 if (!gs) {
528 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
529 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
530 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
531 } else {
532 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
533 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
534 }
535
536 va = shader->bo->gpu_address;
537 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
538
539 if (gs) {
540 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
541 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
542 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
543 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
544 num_user_sgprs = SI_VS_NUM_USER_SGPR;
545 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
546 vgpr_comp_cnt = 3; /* all components are needed for TES */
547 num_user_sgprs = SI_TES_NUM_USER_SGPR;
548 } else
549 unreachable("invalid shader selector type");
550
551 /* VS is required to export at least one param. */
552 nparams = MAX2(shader->info.nr_param_exports, 1);
553 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
554 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
555
556 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
557 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
558 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
559 V_02870C_SPI_SHADER_4COMP :
560 V_02870C_SPI_SHADER_NONE) |
561 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
562 V_02870C_SPI_SHADER_4COMP :
563 V_02870C_SPI_SHADER_NONE) |
564 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
565 V_02870C_SPI_SHADER_4COMP :
566 V_02870C_SPI_SHADER_NONE));
567
568 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
569
570 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
571 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
572 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
573 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
574 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
575 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
576 S_00B128_DX10_CLAMP(1) |
577 S_00B128_FLOAT_MODE(shader->config.float_mode));
578 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
579 S_00B12C_USER_SGPR(num_user_sgprs) |
580 S_00B12C_OC_LDS_EN(oc_lds_en) |
581 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
582 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
583 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
584 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
585 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
586 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
587 if (window_space)
588 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
589 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
590 else
591 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
592 S_028818_VTX_W0_FMT(1) |
593 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
594 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
595 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
596
597 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
598 si_set_tesseval_regs(sscreen, shader, pm4);
599 }
600
601 static unsigned si_get_ps_num_interp(struct si_shader *ps)
602 {
603 struct tgsi_shader_info *info = &ps->selector->info;
604 unsigned num_colors = !!(info->colors_read & 0x0f) +
605 !!(info->colors_read & 0xf0);
606 unsigned num_interp = ps->selector->info.num_inputs +
607 (ps->key.ps.prolog.color_two_side ? num_colors : 0);
608
609 assert(num_interp <= 32);
610 return MIN2(num_interp, 32);
611 }
612
613 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
614 {
615 unsigned value = shader->key.ps.epilog.spi_shader_col_format;
616 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
617
618 /* If the i-th target format is set, all previous target formats must
619 * be non-zero to avoid hangs.
620 */
621 for (i = 0; i < num_targets; i++)
622 if (!(value & (0xf << (i * 4))))
623 value |= V_028714_SPI_SHADER_32_R << (i * 4);
624
625 return value;
626 }
627
628 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
629 {
630 unsigned i, cb_shader_mask = 0;
631
632 for (i = 0; i < 8; i++) {
633 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
634 case V_028714_SPI_SHADER_ZERO:
635 break;
636 case V_028714_SPI_SHADER_32_R:
637 cb_shader_mask |= 0x1 << (i * 4);
638 break;
639 case V_028714_SPI_SHADER_32_GR:
640 cb_shader_mask |= 0x3 << (i * 4);
641 break;
642 case V_028714_SPI_SHADER_32_AR:
643 cb_shader_mask |= 0x9 << (i * 4);
644 break;
645 case V_028714_SPI_SHADER_FP16_ABGR:
646 case V_028714_SPI_SHADER_UNORM16_ABGR:
647 case V_028714_SPI_SHADER_SNORM16_ABGR:
648 case V_028714_SPI_SHADER_UINT16_ABGR:
649 case V_028714_SPI_SHADER_SINT16_ABGR:
650 case V_028714_SPI_SHADER_32_ABGR:
651 cb_shader_mask |= 0xf << (i * 4);
652 break;
653 default:
654 assert(0);
655 }
656 }
657 return cb_shader_mask;
658 }
659
660 static void si_shader_ps(struct si_shader *shader)
661 {
662 struct tgsi_shader_info *info = &shader->selector->info;
663 struct si_pm4_state *pm4;
664 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
665 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
666 uint64_t va;
667 unsigned input_ena = shader->config.spi_ps_input_ena;
668
669 /* we need to enable at least one of them, otherwise we hang the GPU */
670 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
671 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
672 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
673 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
674 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
675 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
676 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
677 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
678
679 pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
680
681 if (!pm4)
682 return;
683
684 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
685 * Possible vaules:
686 * 0 -> Position = pixel center
687 * 1 -> Position = pixel centroid
688 * 2 -> Position = at sample position
689 *
690 * From GLSL 4.5 specification, section 7.1:
691 * "The variable gl_FragCoord is available as an input variable from
692 * within fragment shaders and it holds the window relative coordinates
693 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
694 * value can be for any location within the pixel, or one of the
695 * fragment samples. The use of centroid does not further restrict
696 * this value to be inside the current primitive."
697 *
698 * Meaning that centroid has no effect and we can return anything within
699 * the pixel. Thus, return the value at sample position, because that's
700 * the most accurate one shaders can get.
701 */
702 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
703
704 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
705 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
706 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
707
708 spi_shader_col_format = si_get_spi_shader_col_format(shader);
709 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
710
711 /* Ensure that some export memory is always allocated, for two reasons:
712 *
713 * 1) Correctness: The hardware ignores the EXEC mask if no export
714 * memory is allocated, so KILL and alpha test do not work correctly
715 * without this.
716 * 2) Performance: Every shader needs at least a NULL export, even when
717 * it writes no color/depth output. The NULL export instruction
718 * stalls without this setting.
719 *
720 * Don't add this to CB_SHADER_MASK.
721 */
722 if (!spi_shader_col_format &&
723 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
724 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
725
726 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
727 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
728 shader->config.spi_ps_input_addr);
729
730 /* Set interpolation controls. */
731 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
732
733 /* Set registers. */
734 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
735 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
736
737 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
738 info->writes_samplemask ? V_028710_SPI_SHADER_32_ABGR :
739 info->writes_stencil ? V_028710_SPI_SHADER_32_GR :
740 info->writes_z ? V_028710_SPI_SHADER_32_R :
741 V_028710_SPI_SHADER_ZERO);
742
743 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
744 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
745
746 va = shader->bo->gpu_address;
747 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
748 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
749 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
750
751 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
752 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
753 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
754 S_00B028_DX10_CLAMP(1) |
755 S_00B028_FLOAT_MODE(shader->config.float_mode));
756 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
757 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
758 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
759 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
760
761 /* Prefer RE_Z if the shader is complex enough. The requirement is either:
762 * - the shader uses at least 2 VMEM instructions, or
763 * - the code size is at least 50 2-dword instructions or 100 1-dword
764 * instructions.
765 *
766 * Shaders with side effects that must execute independently of the
767 * depth test require LATE_Z.
768 */
769 if (info->writes_memory &&
770 !info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
771 shader->z_order = V_02880C_LATE_Z;
772 else if (info->num_memory_instructions >= 2 ||
773 shader->binary.code_size > 100*4)
774 shader->z_order = V_02880C_EARLY_Z_THEN_RE_Z;
775 else
776 shader->z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
777 }
778
779 static void si_shader_init_pm4_state(struct si_screen *sscreen,
780 struct si_shader *shader)
781 {
782
783 if (shader->pm4)
784 si_pm4_free_state_simple(shader->pm4);
785
786 switch (shader->selector->type) {
787 case PIPE_SHADER_VERTEX:
788 if (shader->key.vs.as_ls)
789 si_shader_ls(shader);
790 else if (shader->key.vs.as_es)
791 si_shader_es(sscreen, shader);
792 else
793 si_shader_vs(sscreen, shader, NULL);
794 break;
795 case PIPE_SHADER_TESS_CTRL:
796 si_shader_hs(shader);
797 break;
798 case PIPE_SHADER_TESS_EVAL:
799 if (shader->key.tes.as_es)
800 si_shader_es(sscreen, shader);
801 else
802 si_shader_vs(sscreen, shader, NULL);
803 break;
804 case PIPE_SHADER_GEOMETRY:
805 si_shader_gs(shader);
806 si_shader_vs(sscreen, shader->gs_copy_shader, shader);
807 break;
808 case PIPE_SHADER_FRAGMENT:
809 si_shader_ps(shader);
810 break;
811 default:
812 assert(0);
813 }
814 }
815
816 static unsigned si_get_alpha_test_func(struct si_context *sctx)
817 {
818 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
819 if (sctx->queued.named.dsa &&
820 !sctx->framebuffer.cb0_is_integer)
821 return sctx->queued.named.dsa->alpha_func;
822
823 return PIPE_FUNC_ALWAYS;
824 }
825
826 /* Compute the key for the hw shader variant */
827 static inline void si_shader_selector_key(struct pipe_context *ctx,
828 struct si_shader_selector *sel,
829 union si_shader_key *key)
830 {
831 struct si_context *sctx = (struct si_context *)ctx;
832 unsigned i;
833
834 memset(key, 0, sizeof(*key));
835
836 switch (sel->type) {
837 case PIPE_SHADER_VERTEX:
838 if (sctx->vertex_elements) {
839 unsigned count = MIN2(sel->info.num_inputs,
840 sctx->vertex_elements->count);
841 for (i = 0; i < count; ++i)
842 key->vs.prolog.instance_divisors[i] =
843 sctx->vertex_elements->elements[i].instance_divisor;
844 }
845 if (sctx->tes_shader.cso)
846 key->vs.as_ls = 1;
847 else if (sctx->gs_shader.cso)
848 key->vs.as_es = 1;
849
850 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
851 sctx->ps_shader.cso->info.uses_primid)
852 key->vs.epilog.export_prim_id = 1;
853 break;
854 case PIPE_SHADER_TESS_CTRL:
855 key->tcs.epilog.prim_mode =
856 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
857
858 if (sel == sctx->fixed_func_tcs_shader.cso)
859 key->tcs.epilog.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
860 break;
861 case PIPE_SHADER_TESS_EVAL:
862 if (sctx->gs_shader.cso)
863 key->tes.as_es = 1;
864 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
865 key->tes.epilog.export_prim_id = 1;
866 break;
867 case PIPE_SHADER_GEOMETRY:
868 break;
869 case PIPE_SHADER_FRAGMENT: {
870 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
871 struct si_state_blend *blend = sctx->queued.named.blend;
872
873 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
874 sel->info.colors_written == 0x1)
875 key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
876
877 if (blend) {
878 /* Select the shader color format based on whether
879 * blending or alpha are needed.
880 */
881 key->ps.epilog.spi_shader_col_format =
882 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
883 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
884 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
885 sctx->framebuffer.spi_shader_col_format_blend) |
886 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
887 sctx->framebuffer.spi_shader_col_format_alpha) |
888 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
889 sctx->framebuffer.spi_shader_col_format);
890 } else
891 key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
892
893 /* If alpha-to-coverage is enabled, we have to export alpha
894 * even if there is no color buffer.
895 */
896 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
897 blend && blend->alpha_to_coverage)
898 key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
899
900 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
901 * to the range supported by the type if a channel has less
902 * than 16 bits and the export format is 16_ABGR.
903 */
904 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
905 key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
906
907 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
908 if (!key->ps.epilog.last_cbuf) {
909 key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
910 key->ps.epilog.color_is_int8 &= sel->info.colors_written;
911 }
912
913 if (rs) {
914 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
915 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
916 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
917 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
918
919 key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
920 key->ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
921
922 if (sctx->queued.named.blend) {
923 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
924 rs->multisample_enable &&
925 !sctx->framebuffer.cb0_is_integer;
926 }
927
928 key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
929 key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
930 (is_line && rs->line_smooth)) &&
931 sctx->framebuffer.nr_samples <= 1;
932 key->ps.epilog.clamp_color = rs->clamp_fragment_color;
933
934 if (rs->force_persample_interp &&
935 rs->multisample_enable &&
936 sctx->framebuffer.nr_samples > 1 &&
937 sctx->ps_iter_samples > 1) {
938 key->ps.prolog.force_persp_sample_interp =
939 sel->info.uses_persp_center ||
940 sel->info.uses_persp_centroid;
941
942 key->ps.prolog.force_linear_sample_interp =
943 sel->info.uses_linear_center ||
944 sel->info.uses_linear_centroid;
945 } else if (rs->multisample_enable &&
946 sctx->framebuffer.nr_samples > 1) {
947 key->ps.prolog.bc_optimize_for_persp =
948 sel->info.uses_persp_center &&
949 sel->info.uses_persp_centroid;
950 key->ps.prolog.bc_optimize_for_linear =
951 sel->info.uses_linear_center &&
952 sel->info.uses_linear_centroid;
953 } else {
954 /* Make sure SPI doesn't compute more than 1 pair
955 * of (i,j), which is the optimization here. */
956 key->ps.prolog.force_persp_center_interp =
957 sel->info.uses_persp_center +
958 sel->info.uses_persp_centroid +
959 sel->info.uses_persp_sample > 1;
960
961 key->ps.prolog.force_linear_center_interp =
962 sel->info.uses_linear_center +
963 sel->info.uses_linear_centroid +
964 sel->info.uses_linear_sample > 1;
965 }
966 }
967
968 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
969 break;
970 }
971 default:
972 assert(0);
973 }
974 }
975
976 /* Select the hw shader variant depending on the current state. */
977 static int si_shader_select_with_key(struct pipe_context *ctx,
978 struct si_shader_ctx_state *state,
979 union si_shader_key *key)
980 {
981 struct si_context *sctx = (struct si_context *)ctx;
982 struct si_shader_selector *sel = state->cso;
983 struct si_shader *current = state->current;
984 struct si_shader *iter, *shader = NULL;
985 int r;
986
987 /* Check if we don't need to change anything.
988 * This path is also used for most shaders that don't need multiple
989 * variants, it will cost just a computation of the key and this
990 * test. */
991 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
992 return 0;
993
994 pipe_mutex_lock(sel->mutex);
995
996 /* Find the shader variant. */
997 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
998 /* Don't check the "current" shader. We checked it above. */
999 if (current != iter &&
1000 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1001 state->current = iter;
1002 pipe_mutex_unlock(sel->mutex);
1003 return 0;
1004 }
1005 }
1006
1007 /* Build a new shader. */
1008 shader = CALLOC_STRUCT(si_shader);
1009 if (!shader) {
1010 pipe_mutex_unlock(sel->mutex);
1011 return -ENOMEM;
1012 }
1013 shader->selector = sel;
1014 shader->key = *key;
1015
1016 r = si_shader_create(sctx->screen, sctx->tm, shader, &sctx->b.debug);
1017 if (unlikely(r)) {
1018 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1019 sel->type, r);
1020 FREE(shader);
1021 pipe_mutex_unlock(sel->mutex);
1022 return r;
1023 }
1024 si_shader_init_pm4_state(sctx->screen, shader);
1025
1026 if (!sel->last_variant) {
1027 sel->first_variant = shader;
1028 sel->last_variant = shader;
1029 } else {
1030 sel->last_variant->next_variant = shader;
1031 sel->last_variant = shader;
1032 }
1033 state->current = shader;
1034 pipe_mutex_unlock(sel->mutex);
1035 return 0;
1036 }
1037
1038 static int si_shader_select(struct pipe_context *ctx,
1039 struct si_shader_ctx_state *state)
1040 {
1041 union si_shader_key key;
1042
1043 si_shader_selector_key(ctx, state->cso, &key);
1044 return si_shader_select_with_key(ctx, state, &key);
1045 }
1046
1047 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1048 union si_shader_key *key)
1049 {
1050 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1051
1052 switch (info->processor) {
1053 case PIPE_SHADER_VERTEX:
1054 switch (next_shader) {
1055 case PIPE_SHADER_GEOMETRY:
1056 key->vs.as_es = 1;
1057 break;
1058 case PIPE_SHADER_TESS_CTRL:
1059 case PIPE_SHADER_TESS_EVAL:
1060 key->vs.as_ls = 1;
1061 break;
1062 }
1063 break;
1064
1065 case PIPE_SHADER_TESS_EVAL:
1066 if (next_shader == PIPE_SHADER_GEOMETRY)
1067 key->tes.as_es = 1;
1068 break;
1069 }
1070 }
1071
1072 static void *si_create_shader_selector(struct pipe_context *ctx,
1073 const struct pipe_shader_state *state)
1074 {
1075 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1076 struct si_context *sctx = (struct si_context*)ctx;
1077 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1078 int i;
1079
1080 if (!sel)
1081 return NULL;
1082
1083 sel->tokens = tgsi_dup_tokens(state->tokens);
1084 if (!sel->tokens) {
1085 FREE(sel);
1086 return NULL;
1087 }
1088
1089 sel->so = state->stream_output;
1090 tgsi_scan_shader(state->tokens, &sel->info);
1091 sel->type = sel->info.processor;
1092 p_atomic_inc(&sscreen->b.num_shaders_created);
1093
1094 /* Set which opcode uses which (i,j) pair. */
1095 if (sel->info.uses_persp_opcode_interp_centroid)
1096 sel->info.uses_persp_centroid = true;
1097
1098 if (sel->info.uses_linear_opcode_interp_centroid)
1099 sel->info.uses_linear_centroid = true;
1100
1101 if (sel->info.uses_persp_opcode_interp_offset ||
1102 sel->info.uses_persp_opcode_interp_sample)
1103 sel->info.uses_persp_center = true;
1104
1105 if (sel->info.uses_linear_opcode_interp_offset ||
1106 sel->info.uses_linear_opcode_interp_sample)
1107 sel->info.uses_linear_center = true;
1108
1109 switch (sel->type) {
1110 case PIPE_SHADER_GEOMETRY:
1111 sel->gs_output_prim =
1112 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1113 sel->gs_max_out_vertices =
1114 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1115 sel->gs_num_invocations =
1116 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1117 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1118 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1119 sel->gs_max_out_vertices;
1120
1121 sel->max_gs_stream = 0;
1122 for (i = 0; i < sel->so.num_outputs; i++)
1123 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1124 sel->so.output[i].stream);
1125
1126 sel->gs_input_verts_per_prim =
1127 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1128 break;
1129
1130 case PIPE_SHADER_TESS_CTRL:
1131 /* Always reserve space for these. */
1132 sel->patch_outputs_written |=
1133 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1134 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1135 /* fall through */
1136 case PIPE_SHADER_VERTEX:
1137 case PIPE_SHADER_TESS_EVAL:
1138 for (i = 0; i < sel->info.num_outputs; i++) {
1139 unsigned name = sel->info.output_semantic_name[i];
1140 unsigned index = sel->info.output_semantic_index[i];
1141
1142 switch (name) {
1143 case TGSI_SEMANTIC_TESSINNER:
1144 case TGSI_SEMANTIC_TESSOUTER:
1145 case TGSI_SEMANTIC_PATCH:
1146 sel->patch_outputs_written |=
1147 1llu << si_shader_io_get_unique_index(name, index);
1148 break;
1149 default:
1150 sel->outputs_written |=
1151 1llu << si_shader_io_get_unique_index(name, index);
1152 }
1153 }
1154 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1155 break;
1156
1157 case PIPE_SHADER_FRAGMENT:
1158 for (i = 0; i < 8; i++)
1159 if (sel->info.colors_written & (1 << i))
1160 sel->colors_written_4bit |= 0xf << (4 * i);
1161
1162 for (i = 0; i < sel->info.num_inputs; i++) {
1163 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1164 int index = sel->info.input_semantic_index[i];
1165 sel->color_attr_index[index] = i;
1166 }
1167 }
1168 break;
1169 }
1170
1171 /* DB_SHADER_CONTROL */
1172 sel->db_shader_control =
1173 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1174 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1175 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1176 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1177
1178 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1179 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1180 sel->db_shader_control |=
1181 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1182 break;
1183 case TGSI_FS_DEPTH_LAYOUT_LESS:
1184 sel->db_shader_control |=
1185 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1186 break;
1187 }
1188
1189 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
1190 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1);
1191
1192 if (sel->info.writes_memory)
1193 sel->db_shader_control |= S_02880C_EXEC_ON_HIER_FAIL(1) |
1194 S_02880C_EXEC_ON_NOOP(1);
1195
1196 /* Compile the main shader part for use with a prolog and/or epilog. */
1197 if (sel->type != PIPE_SHADER_GEOMETRY &&
1198 !sscreen->use_monolithic_shaders) {
1199 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1200 void *tgsi_binary;
1201
1202 if (!shader)
1203 goto error;
1204
1205 shader->selector = sel;
1206 si_parse_next_shader_property(&sel->info, &shader->key);
1207
1208 tgsi_binary = si_get_tgsi_binary(sel);
1209
1210 /* Try to load the shader from the shader cache. */
1211 pipe_mutex_lock(sscreen->shader_cache_mutex);
1212
1213 if (tgsi_binary &&
1214 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1215 FREE(tgsi_binary);
1216 } else {
1217 /* Compile the shader if it hasn't been loaded from the cache. */
1218 if (si_compile_tgsi_shader(sscreen, sctx->tm, shader, false,
1219 &sctx->b.debug) != 0) {
1220 FREE(shader);
1221 FREE(tgsi_binary);
1222 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1223 goto error;
1224 }
1225
1226 if (tgsi_binary &&
1227 !si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1228 FREE(tgsi_binary);
1229 }
1230 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1231
1232 sel->main_shader_part = shader;
1233 }
1234
1235 /* Pre-compilation. */
1236 if (sel->type == PIPE_SHADER_GEOMETRY ||
1237 sscreen->b.debug_flags & DBG_PRECOMPILE) {
1238 struct si_shader_ctx_state state = {sel};
1239 union si_shader_key key;
1240
1241 memset(&key, 0, sizeof(key));
1242 si_parse_next_shader_property(&sel->info, &key);
1243
1244 /* Set reasonable defaults, so that the shader key doesn't
1245 * cause any code to be eliminated.
1246 */
1247 switch (sel->type) {
1248 case PIPE_SHADER_TESS_CTRL:
1249 key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1250 break;
1251 case PIPE_SHADER_FRAGMENT:
1252 key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1253 for (i = 0; i < 8; i++)
1254 if (sel->info.colors_written & (1 << i))
1255 key.ps.epilog.spi_shader_col_format |=
1256 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1257 break;
1258 }
1259
1260 if (si_shader_select_with_key(ctx, &state, &key))
1261 goto error;
1262 }
1263
1264 pipe_mutex_init(sel->mutex);
1265 return sel;
1266
1267 error:
1268 fprintf(stderr, "radeonsi: can't create a shader\n");
1269 tgsi_free_tokens(sel->tokens);
1270 FREE(sel);
1271 return NULL;
1272 }
1273
1274 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1275 {
1276 struct si_context *sctx = (struct si_context *)ctx;
1277 struct si_shader_selector *sel = state;
1278
1279 if (sctx->vs_shader.cso == sel)
1280 return;
1281
1282 sctx->vs_shader.cso = sel;
1283 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1284 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1285 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1286 }
1287
1288 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1289 {
1290 struct si_context *sctx = (struct si_context *)ctx;
1291 struct si_shader_selector *sel = state;
1292 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1293
1294 if (sctx->gs_shader.cso == sel)
1295 return;
1296
1297 sctx->gs_shader.cso = sel;
1298 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1299 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1300 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1301
1302 if (enable_changed)
1303 si_shader_change_notify(sctx);
1304 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1305 }
1306
1307 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1308 {
1309 struct si_context *sctx = (struct si_context *)ctx;
1310 struct si_shader_selector *sel = state;
1311 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1312
1313 if (sctx->tcs_shader.cso == sel)
1314 return;
1315
1316 sctx->tcs_shader.cso = sel;
1317 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1318
1319 if (enable_changed)
1320 sctx->last_tcs = NULL; /* invalidate derived tess state */
1321 }
1322
1323 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1324 {
1325 struct si_context *sctx = (struct si_context *)ctx;
1326 struct si_shader_selector *sel = state;
1327 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1328
1329 if (sctx->tes_shader.cso == sel)
1330 return;
1331
1332 sctx->tes_shader.cso = sel;
1333 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1334 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1335 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1336
1337 if (enable_changed) {
1338 si_shader_change_notify(sctx);
1339 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1340 }
1341 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1342 }
1343
1344 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1345 {
1346 struct si_context *sctx = (struct si_context *)ctx;
1347 struct si_shader_selector *sel = state;
1348
1349 /* skip if supplied shader is one already in use */
1350 if (sctx->ps_shader.cso == sel)
1351 return;
1352
1353 sctx->ps_shader.cso = sel;
1354 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1355 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1356 }
1357
1358 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1359 {
1360 if (shader->pm4) {
1361 switch (shader->selector->type) {
1362 case PIPE_SHADER_VERTEX:
1363 if (shader->key.vs.as_ls)
1364 si_pm4_delete_state(sctx, ls, shader->pm4);
1365 else if (shader->key.vs.as_es)
1366 si_pm4_delete_state(sctx, es, shader->pm4);
1367 else
1368 si_pm4_delete_state(sctx, vs, shader->pm4);
1369 break;
1370 case PIPE_SHADER_TESS_CTRL:
1371 si_pm4_delete_state(sctx, hs, shader->pm4);
1372 break;
1373 case PIPE_SHADER_TESS_EVAL:
1374 if (shader->key.tes.as_es)
1375 si_pm4_delete_state(sctx, es, shader->pm4);
1376 else
1377 si_pm4_delete_state(sctx, vs, shader->pm4);
1378 break;
1379 case PIPE_SHADER_GEOMETRY:
1380 si_pm4_delete_state(sctx, gs, shader->pm4);
1381 si_pm4_delete_state(sctx, vs, shader->gs_copy_shader->pm4);
1382 break;
1383 case PIPE_SHADER_FRAGMENT:
1384 si_pm4_delete_state(sctx, ps, shader->pm4);
1385 break;
1386 }
1387 }
1388
1389 si_shader_destroy(shader);
1390 free(shader);
1391 }
1392
1393 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1394 {
1395 struct si_context *sctx = (struct si_context *)ctx;
1396 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1397 struct si_shader *p = sel->first_variant, *c;
1398 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1399 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1400 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1401 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1402 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1403 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1404 };
1405
1406 if (current_shader[sel->type]->cso == sel) {
1407 current_shader[sel->type]->cso = NULL;
1408 current_shader[sel->type]->current = NULL;
1409 }
1410
1411 while (p) {
1412 c = p->next_variant;
1413 si_delete_shader(sctx, p);
1414 p = c;
1415 }
1416
1417 if (sel->main_shader_part)
1418 si_delete_shader(sctx, sel->main_shader_part);
1419
1420 pipe_mutex_destroy(sel->mutex);
1421 free(sel->tokens);
1422 free(sel);
1423 }
1424
1425 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1426 struct si_shader *vs, unsigned name,
1427 unsigned index, unsigned interpolate)
1428 {
1429 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1430 unsigned j, ps_input_cntl = 0;
1431
1432 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1433 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1434 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1435
1436 if (name == TGSI_SEMANTIC_PCOORD ||
1437 (name == TGSI_SEMANTIC_TEXCOORD &&
1438 sctx->sprite_coord_enable & (1 << index))) {
1439 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1440 }
1441
1442 for (j = 0; j < vsinfo->num_outputs; j++) {
1443 if (name == vsinfo->output_semantic_name[j] &&
1444 index == vsinfo->output_semantic_index[j]) {
1445 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[j]);
1446 break;
1447 }
1448 }
1449
1450 if (name == TGSI_SEMANTIC_PRIMID)
1451 /* PrimID is written after the last output. */
1452 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1453 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1454 /* No corresponding output found, load defaults into input.
1455 * Don't set any other bits.
1456 * (FLAT_SHADE=1 completely changes behavior) */
1457 ps_input_cntl = S_028644_OFFSET(0x20);
1458 /* D3D 9 behaviour. GL is undefined */
1459 if (name == TGSI_SEMANTIC_COLOR && index == 0)
1460 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1461 }
1462 return ps_input_cntl;
1463 }
1464
1465 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1466 {
1467 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1468 struct si_shader *ps = sctx->ps_shader.current;
1469 struct si_shader *vs = si_get_vs_state(sctx);
1470 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1471 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1472
1473 if (!ps || !ps->selector->info.num_inputs)
1474 return;
1475
1476 num_interp = si_get_ps_num_interp(ps);
1477 assert(num_interp > 0);
1478 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1479
1480 for (i = 0; i < psinfo->num_inputs; i++) {
1481 unsigned name = psinfo->input_semantic_name[i];
1482 unsigned index = psinfo->input_semantic_index[i];
1483 unsigned interpolate = psinfo->input_interpolate[i];
1484
1485 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1486 interpolate));
1487 num_written++;
1488
1489 if (name == TGSI_SEMANTIC_COLOR) {
1490 assert(index < ARRAY_SIZE(bcol_interp));
1491 bcol_interp[index] = interpolate;
1492 }
1493 }
1494
1495 if (ps->key.ps.prolog.color_two_side) {
1496 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1497
1498 for (i = 0; i < 2; i++) {
1499 if (!(psinfo->colors_read & (0xf << (i * 4))))
1500 continue;
1501
1502 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1503 i, bcol_interp[i]));
1504 num_written++;
1505 }
1506 }
1507 assert(num_interp == num_written);
1508 }
1509
1510 /**
1511 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1512 */
1513 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1514 {
1515 if (sctx->init_config_has_vgt_flush)
1516 return;
1517
1518 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1519 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1520 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1521 si_pm4_cmd_end(sctx->init_config, false);
1522 sctx->init_config_has_vgt_flush = true;
1523 }
1524
1525 /* Initialize state related to ESGS / GSVS ring buffers */
1526 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1527 {
1528 struct si_shader_selector *es =
1529 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1530 struct si_shader_selector *gs = sctx->gs_shader.cso;
1531 struct si_pm4_state *pm4;
1532
1533 /* Chip constants. */
1534 unsigned num_se = sctx->screen->b.info.max_se;
1535 unsigned wave_size = 64;
1536 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1537 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1538 unsigned alignment = 256 * num_se;
1539 /* The maximum size is 63.999 MB per SE. */
1540 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1541
1542 /* Calculate the minimum size. */
1543 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1544 wave_size, alignment);
1545
1546 /* These are recommended sizes, not minimum sizes. */
1547 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1548 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1549 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1550 gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1551
1552 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1553 esgs_ring_size = align(esgs_ring_size, alignment);
1554 gsvs_ring_size = align(gsvs_ring_size, alignment);
1555
1556 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1557 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1558
1559 /* Some rings don't have to be allocated if shaders don't use them.
1560 * (e.g. no varyings between ES and GS or GS and VS)
1561 */
1562 bool update_esgs = esgs_ring_size &&
1563 (!sctx->esgs_ring ||
1564 sctx->esgs_ring->width0 < esgs_ring_size);
1565 bool update_gsvs = gsvs_ring_size &&
1566 (!sctx->gsvs_ring ||
1567 sctx->gsvs_ring->width0 < gsvs_ring_size);
1568
1569 if (!update_esgs && !update_gsvs)
1570 return true;
1571
1572 if (update_esgs) {
1573 pipe_resource_reference(&sctx->esgs_ring, NULL);
1574 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1575 PIPE_USAGE_DEFAULT,
1576 esgs_ring_size);
1577 if (!sctx->esgs_ring)
1578 return false;
1579 }
1580
1581 if (update_gsvs) {
1582 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1583 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1584 PIPE_USAGE_DEFAULT,
1585 gsvs_ring_size);
1586 if (!sctx->gsvs_ring)
1587 return false;
1588 }
1589
1590 /* Create the "init_config_gs_rings" state. */
1591 pm4 = CALLOC_STRUCT(si_pm4_state);
1592 if (!pm4)
1593 return false;
1594
1595 if (sctx->b.chip_class >= CIK) {
1596 if (sctx->esgs_ring)
1597 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1598 sctx->esgs_ring->width0 / 256);
1599 if (sctx->gsvs_ring)
1600 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1601 sctx->gsvs_ring->width0 / 256);
1602 } else {
1603 if (sctx->esgs_ring)
1604 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1605 sctx->esgs_ring->width0 / 256);
1606 if (sctx->gsvs_ring)
1607 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1608 sctx->gsvs_ring->width0 / 256);
1609 }
1610
1611 /* Set the state. */
1612 if (sctx->init_config_gs_rings)
1613 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1614 sctx->init_config_gs_rings = pm4;
1615
1616 if (!sctx->init_config_has_vgt_flush) {
1617 si_init_config_add_vgt_flush(sctx);
1618 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1619 }
1620
1621 /* Flush the context to re-emit both init_config states. */
1622 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1623 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1624
1625 /* Set ring bindings. */
1626 if (sctx->esgs_ring) {
1627 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
1628 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1629 true, true, 4, 64, 0);
1630 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
1631 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1632 false, false, 0, 0, 0);
1633 }
1634 if (sctx->gsvs_ring)
1635 si_set_ring_buffer(&sctx->b.b, SI_VS_RING_GSVS,
1636 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1637 false, false, 0, 0, 0);
1638 return true;
1639 }
1640
1641 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1642 {
1643 unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1644 uint64_t offset;
1645
1646 if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1647 return;
1648
1649 sctx->last_gsvs_itemsize = gsvs_itemsize;
1650
1651 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS0,
1652 sctx->gsvs_ring, gsvs_itemsize,
1653 64, true, true, 4, 16, 0);
1654
1655 offset = gsvs_itemsize * 64;
1656 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS1,
1657 sctx->gsvs_ring, gsvs_itemsize,
1658 64, true, true, 4, 16, offset);
1659
1660 offset = (gsvs_itemsize * 2) * 64;
1661 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS2,
1662 sctx->gsvs_ring, gsvs_itemsize,
1663 64, true, true, 4, 16, offset);
1664
1665 offset = (gsvs_itemsize * 3) * 64;
1666 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS3,
1667 sctx->gsvs_ring, gsvs_itemsize,
1668 64, true, true, 4, 16, offset);
1669 }
1670
1671 /**
1672 * @returns 1 if \p sel has been updated to use a new scratch buffer
1673 * 0 if not
1674 * < 0 if there was a failure
1675 */
1676 static int si_update_scratch_buffer(struct si_context *sctx,
1677 struct si_shader *shader)
1678 {
1679 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1680 int r;
1681
1682 if (!shader)
1683 return 0;
1684
1685 /* This shader doesn't need a scratch buffer */
1686 if (shader->config.scratch_bytes_per_wave == 0)
1687 return 0;
1688
1689 /* This shader is already configured to use the current
1690 * scratch buffer. */
1691 if (shader->scratch_bo == sctx->scratch_buffer)
1692 return 0;
1693
1694 assert(sctx->scratch_buffer);
1695
1696 si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
1697
1698 /* Replace the shader bo with a new bo that has the relocs applied. */
1699 r = si_shader_binary_upload(sctx->screen, shader);
1700 if (r)
1701 return r;
1702
1703 /* Update the shader state to use the new shader bo. */
1704 si_shader_init_pm4_state(sctx->screen, shader);
1705
1706 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1707
1708 return 1;
1709 }
1710
1711 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1712 {
1713 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1714 }
1715
1716 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1717 {
1718 return shader ? shader->config.scratch_bytes_per_wave : 0;
1719 }
1720
1721 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1722 {
1723 unsigned bytes = 0;
1724
1725 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1726 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1727 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1728 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1729 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1730 return bytes;
1731 }
1732
1733 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1734 {
1735 unsigned current_scratch_buffer_size =
1736 si_get_current_scratch_buffer_size(sctx);
1737 unsigned scratch_bytes_per_wave =
1738 si_get_max_scratch_bytes_per_wave(sctx);
1739 unsigned scratch_needed_size = scratch_bytes_per_wave *
1740 sctx->scratch_waves;
1741 unsigned spi_tmpring_size;
1742 int r;
1743
1744 if (scratch_needed_size > 0) {
1745 if (scratch_needed_size > current_scratch_buffer_size) {
1746 /* Create a bigger scratch buffer */
1747 r600_resource_reference(&sctx->scratch_buffer, NULL);
1748
1749 sctx->scratch_buffer =
1750 si_resource_create_custom(&sctx->screen->b.b,
1751 PIPE_USAGE_DEFAULT, scratch_needed_size);
1752 if (!sctx->scratch_buffer)
1753 return false;
1754 sctx->emit_scratch_reloc = true;
1755 }
1756
1757 /* Update the shaders, so they are using the latest scratch. The
1758 * scratch buffer may have been changed since these shaders were
1759 * last used, so we still need to try to update them, even if
1760 * they require scratch buffers smaller than the current size.
1761 */
1762 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1763 if (r < 0)
1764 return false;
1765 if (r == 1)
1766 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1767
1768 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1769 if (r < 0)
1770 return false;
1771 if (r == 1)
1772 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1773
1774 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1775 if (r < 0)
1776 return false;
1777 if (r == 1)
1778 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1779
1780 /* VS can be bound as LS, ES, or VS. */
1781 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1782 if (r < 0)
1783 return false;
1784 if (r == 1) {
1785 if (sctx->tes_shader.current)
1786 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1787 else if (sctx->gs_shader.current)
1788 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1789 else
1790 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1791 }
1792
1793 /* TES can be bound as ES or VS. */
1794 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1795 if (r < 0)
1796 return false;
1797 if (r == 1) {
1798 if (sctx->gs_shader.current)
1799 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1800 else
1801 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1802 }
1803 }
1804
1805 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1806 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1807 "scratch size should already be aligned correctly.");
1808
1809 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1810 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1811 if (spi_tmpring_size != sctx->spi_tmpring_size) {
1812 sctx->spi_tmpring_size = spi_tmpring_size;
1813 sctx->emit_scratch_reloc = true;
1814 }
1815 return true;
1816 }
1817
1818 static void si_init_tess_factor_ring(struct si_context *sctx)
1819 {
1820 bool double_offchip_buffers = sctx->b.chip_class >= CIK;
1821 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
1822 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
1823 sctx->screen->b.info.max_se;
1824 unsigned offchip_granularity;
1825
1826 switch (sctx->screen->tess_offchip_block_dw_size) {
1827 default:
1828 assert(0);
1829 /* fall through */
1830 case 8192:
1831 offchip_granularity = V_03093C_X_8K_DWORDS;
1832 break;
1833 case 4096:
1834 offchip_granularity = V_03093C_X_4K_DWORDS;
1835 break;
1836 }
1837
1838 switch (sctx->b.chip_class) {
1839 case SI:
1840 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
1841 break;
1842 case CIK:
1843 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
1844 break;
1845 case VI:
1846 default:
1847 max_offchip_buffers = MIN2(max_offchip_buffers, 512);
1848 break;
1849 }
1850
1851 assert(!sctx->tf_ring);
1852 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1853 PIPE_USAGE_DEFAULT,
1854 32768 * sctx->screen->b.info.max_se);
1855 if (!sctx->tf_ring)
1856 return;
1857
1858 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
1859
1860 sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen,
1861 PIPE_BIND_CUSTOM,
1862 PIPE_USAGE_DEFAULT,
1863 max_offchip_buffers *
1864 sctx->screen->tess_offchip_block_dw_size * 4);
1865 if (!sctx->tess_offchip_ring)
1866 return;
1867
1868 si_init_config_add_vgt_flush(sctx);
1869
1870 /* Append these registers to the init config state. */
1871 if (sctx->b.chip_class >= CIK) {
1872 if (sctx->b.chip_class >= VI)
1873 --max_offchip_buffers;
1874
1875 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
1876 S_030938_SIZE(sctx->tf_ring->width0 / 4));
1877 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
1878 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1879 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
1880 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
1881 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
1882 } else {
1883 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
1884 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
1885 S_008988_SIZE(sctx->tf_ring->width0 / 4));
1886 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
1887 r600_resource(sctx->tf_ring)->gpu_address >> 8);
1888 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
1889 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
1890 }
1891
1892 /* Flush the context to re-emit the init_config state.
1893 * This is done only once in a lifetime of a context.
1894 */
1895 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1896 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1897 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1898
1899 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
1900 0, sctx->tf_ring->width0, false, false, 0, 0, 0);
1901
1902 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
1903 sctx->tess_offchip_ring, 0,
1904 sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
1905 }
1906
1907 /**
1908 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
1909 * VS passes its outputs to TES directly, so the fixed-function shader only
1910 * has to write TESSOUTER and TESSINNER.
1911 */
1912 static void si_generate_fixed_func_tcs(struct si_context *sctx)
1913 {
1914 struct ureg_src outer, inner;
1915 struct ureg_dst tessouter, tessinner;
1916 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
1917
1918 if (!ureg)
1919 return; /* if we get here, we're screwed */
1920
1921 assert(!sctx->fixed_func_tcs_shader.cso);
1922
1923 outer = ureg_DECL_system_value(ureg,
1924 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
1925 inner = ureg_DECL_system_value(ureg,
1926 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
1927
1928 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
1929 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
1930
1931 ureg_MOV(ureg, tessouter, outer);
1932 ureg_MOV(ureg, tessinner, inner);
1933 ureg_END(ureg);
1934
1935 sctx->fixed_func_tcs_shader.cso =
1936 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
1937 }
1938
1939 static void si_update_vgt_shader_config(struct si_context *sctx)
1940 {
1941 /* Calculate the index of the config.
1942 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
1943 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
1944 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
1945
1946 if (!*pm4) {
1947 uint32_t stages = 0;
1948
1949 *pm4 = CALLOC_STRUCT(si_pm4_state);
1950
1951 if (sctx->tes_shader.cso) {
1952 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
1953 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
1954
1955 if (sctx->gs_shader.cso)
1956 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
1957 S_028B54_GS_EN(1) |
1958 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1959 else
1960 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
1961 } else if (sctx->gs_shader.cso) {
1962 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
1963 S_028B54_GS_EN(1) |
1964 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1965 }
1966
1967 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
1968 }
1969 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
1970 }
1971
1972 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
1973 {
1974 struct pipe_stream_output_info *so = &shader->so;
1975 uint32_t enabled_stream_buffers_mask = 0;
1976 int i;
1977
1978 for (i = 0; i < so->num_outputs; i++)
1979 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
1980 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
1981 sctx->b.streamout.stride_in_dw = shader->so.stride;
1982 }
1983
1984 bool si_update_shaders(struct si_context *sctx)
1985 {
1986 struct pipe_context *ctx = (struct pipe_context*)sctx;
1987 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1988 int r;
1989
1990 /* Update stages before GS. */
1991 if (sctx->tes_shader.cso) {
1992 if (!sctx->tf_ring) {
1993 si_init_tess_factor_ring(sctx);
1994 if (!sctx->tf_ring)
1995 return false;
1996 }
1997
1998 /* VS as LS */
1999 r = si_shader_select(ctx, &sctx->vs_shader);
2000 if (r)
2001 return false;
2002 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2003
2004 if (sctx->tcs_shader.cso) {
2005 r = si_shader_select(ctx, &sctx->tcs_shader);
2006 if (r)
2007 return false;
2008 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2009 } else {
2010 if (!sctx->fixed_func_tcs_shader.cso) {
2011 si_generate_fixed_func_tcs(sctx);
2012 if (!sctx->fixed_func_tcs_shader.cso)
2013 return false;
2014 }
2015
2016 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
2017 if (r)
2018 return false;
2019 si_pm4_bind_state(sctx, hs,
2020 sctx->fixed_func_tcs_shader.current->pm4);
2021 }
2022
2023 r = si_shader_select(ctx, &sctx->tes_shader);
2024 if (r)
2025 return false;
2026
2027 if (sctx->gs_shader.cso) {
2028 /* TES as ES */
2029 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2030 } else {
2031 /* TES as VS */
2032 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2033 si_update_so(sctx, sctx->tes_shader.cso);
2034 }
2035 } else if (sctx->gs_shader.cso) {
2036 /* VS as ES */
2037 r = si_shader_select(ctx, &sctx->vs_shader);
2038 if (r)
2039 return false;
2040 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2041 } else {
2042 /* VS as VS */
2043 r = si_shader_select(ctx, &sctx->vs_shader);
2044 if (r)
2045 return false;
2046 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2047 si_update_so(sctx, sctx->vs_shader.cso);
2048 }
2049
2050 /* Update GS. */
2051 if (sctx->gs_shader.cso) {
2052 r = si_shader_select(ctx, &sctx->gs_shader);
2053 if (r)
2054 return false;
2055 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2056 si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
2057 si_update_so(sctx, sctx->gs_shader.cso);
2058
2059 if (!si_update_gs_ring_buffers(sctx))
2060 return false;
2061
2062 si_update_gsvs_ring_bindings(sctx);
2063 } else {
2064 si_pm4_bind_state(sctx, gs, NULL);
2065 si_pm4_bind_state(sctx, es, NULL);
2066 }
2067
2068 si_update_vgt_shader_config(sctx);
2069
2070 if (sctx->ps_shader.cso) {
2071 unsigned db_shader_control;
2072
2073 r = si_shader_select(ctx, &sctx->ps_shader);
2074 if (r)
2075 return false;
2076 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2077
2078 db_shader_control =
2079 sctx->ps_shader.cso->db_shader_control |
2080 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS) |
2081 S_02880C_Z_ORDER(sctx->ps_shader.current->z_order);
2082
2083 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2084 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2085 sctx->flatshade != rs->flatshade) {
2086 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2087 sctx->flatshade = rs->flatshade;
2088 si_mark_atom_dirty(sctx, &sctx->spi_map);
2089 }
2090
2091 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2092 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2093
2094 if (sctx->ps_db_shader_control != db_shader_control) {
2095 sctx->ps_db_shader_control = db_shader_control;
2096 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2097 }
2098
2099 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
2100 sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
2101 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2102
2103 if (sctx->b.chip_class == SI)
2104 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2105 }
2106 }
2107
2108 if (si_pm4_state_changed(sctx, ls) ||
2109 si_pm4_state_changed(sctx, hs) ||
2110 si_pm4_state_changed(sctx, es) ||
2111 si_pm4_state_changed(sctx, gs) ||
2112 si_pm4_state_changed(sctx, vs) ||
2113 si_pm4_state_changed(sctx, ps)) {
2114 if (!si_update_spi_tmpring_size(sctx))
2115 return false;
2116 }
2117 return true;
2118 }
2119
2120 void si_init_shader_functions(struct si_context *sctx)
2121 {
2122 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2123
2124 sctx->b.b.create_vs_state = si_create_shader_selector;
2125 sctx->b.b.create_tcs_state = si_create_shader_selector;
2126 sctx->b.b.create_tes_state = si_create_shader_selector;
2127 sctx->b.b.create_gs_state = si_create_shader_selector;
2128 sctx->b.b.create_fs_state = si_create_shader_selector;
2129
2130 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2131 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2132 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2133 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2134 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2135
2136 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2137 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2138 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2139 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2140 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2141 }