radeonsi: fix R600_DEBUG=nooptvariant
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "radeon/r600_cs.h"
31
32 #include "tgsi/tgsi_parse.h"
33 #include "tgsi/tgsi_ureg.h"
34 #include "util/hash_table.h"
35 #include "util/crc32.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38
39 /* SHADER_CACHE */
40
41 /**
42 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
43 * integer.
44 */
45 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
46 {
47 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
48 sizeof(struct tgsi_token);
49 unsigned size = 4 + tgsi_size + sizeof(sel->so);
50 char *result = (char*)MALLOC(size);
51
52 if (!result)
53 return NULL;
54
55 *((uint32_t*)result) = size;
56 memcpy(result + 4, sel->tokens, tgsi_size);
57 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
58 return result;
59 }
60
61 /** Copy "data" to "ptr" and return the next dword following copied data. */
62 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
63 {
64 /* data may be NULL if size == 0 */
65 if (size)
66 memcpy(ptr, data, size);
67 ptr += DIV_ROUND_UP(size, 4);
68 return ptr;
69 }
70
71 /** Read data from "ptr". Return the next dword following the data. */
72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74 memcpy(data, ptr, size);
75 ptr += DIV_ROUND_UP(size, 4);
76 return ptr;
77 }
78
79 /**
80 * Write the size as uint followed by the data. Return the next dword
81 * following the copied data.
82 */
83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85 *ptr++ = size;
86 return write_data(ptr, data, size);
87 }
88
89 /**
90 * Read the size as uint followed by the data. Return both via parameters.
91 * Return the next dword following the data.
92 */
93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95 *size = *ptr++;
96 assert(*data == NULL);
97 if (!*size)
98 return ptr;
99 *data = malloc(*size);
100 return read_data(ptr, *data, *size);
101 }
102
103 /**
104 * Return the shader binary in a buffer. The first 4 bytes contain its size
105 * as integer.
106 */
107 static void *si_get_shader_binary(struct si_shader *shader)
108 {
109 /* There is always a size of data followed by the data itself. */
110 unsigned relocs_size = shader->binary.reloc_count *
111 sizeof(shader->binary.relocs[0]);
112 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
113 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
114 strlen(shader->binary.llvm_ir_string) + 1 : 0;
115 unsigned size =
116 4 + /* total size */
117 4 + /* CRC32 of the data below */
118 align(sizeof(shader->config), 4) +
119 align(sizeof(shader->info), 4) +
120 4 + align(shader->binary.code_size, 4) +
121 4 + align(shader->binary.rodata_size, 4) +
122 4 + align(relocs_size, 4) +
123 4 + align(disasm_size, 4) +
124 4 + align(llvm_ir_size, 4);
125 void *buffer = CALLOC(1, size);
126 uint32_t *ptr = (uint32_t*)buffer;
127
128 if (!buffer)
129 return NULL;
130
131 *ptr++ = size;
132 ptr++; /* CRC32 is calculated at the end. */
133
134 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
135 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
136 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
137 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
138 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
139 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
140 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
141 assert((char *)ptr - (char *)buffer == size);
142
143 /* Compute CRC32. */
144 ptr = (uint32_t*)buffer;
145 ptr++;
146 *ptr = util_hash_crc32(ptr + 1, size - 8);
147
148 return buffer;
149 }
150
151 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
152 {
153 uint32_t *ptr = (uint32_t*)binary;
154 uint32_t size = *ptr++;
155 uint32_t crc32 = *ptr++;
156 unsigned chunk_size;
157
158 if (util_hash_crc32(ptr, size - 8) != crc32) {
159 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
160 return false;
161 }
162
163 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
164 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
165 ptr = read_chunk(ptr, (void**)&shader->binary.code,
166 &shader->binary.code_size);
167 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
168 &shader->binary.rodata_size);
169 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
170 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
171 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
172 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
173
174 return true;
175 }
176
177 /**
178 * Insert a shader into the cache. It's assumed the shader is not in the cache.
179 * Use si_shader_cache_load_shader before calling this.
180 *
181 * Returns false on failure, in which case the tgsi_binary should be freed.
182 */
183 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
184 void *tgsi_binary,
185 struct si_shader *shader)
186 {
187 void *hw_binary;
188 struct hash_entry *entry;
189
190 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
191 if (entry)
192 return false; /* already added */
193
194 hw_binary = si_get_shader_binary(shader);
195 if (!hw_binary)
196 return false;
197
198 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
199 hw_binary) == NULL) {
200 FREE(hw_binary);
201 return false;
202 }
203
204 return true;
205 }
206
207 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
208 void *tgsi_binary,
209 struct si_shader *shader)
210 {
211 struct hash_entry *entry =
212 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
213 if (!entry)
214 return false;
215
216 if (!si_load_shader_binary(shader, entry->data))
217 return false;
218
219 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
220 return true;
221 }
222
223 static uint32_t si_shader_cache_key_hash(const void *key)
224 {
225 /* The first dword is the key size. */
226 return util_hash_crc32(key, *(uint32_t*)key);
227 }
228
229 static bool si_shader_cache_key_equals(const void *a, const void *b)
230 {
231 uint32_t *keya = (uint32_t*)a;
232 uint32_t *keyb = (uint32_t*)b;
233
234 /* The first dword is the key size. */
235 if (*keya != *keyb)
236 return false;
237
238 return memcmp(keya, keyb, *keya) == 0;
239 }
240
241 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
242 {
243 FREE((void*)entry->key);
244 FREE(entry->data);
245 }
246
247 bool si_init_shader_cache(struct si_screen *sscreen)
248 {
249 pipe_mutex_init(sscreen->shader_cache_mutex);
250 sscreen->shader_cache =
251 _mesa_hash_table_create(NULL,
252 si_shader_cache_key_hash,
253 si_shader_cache_key_equals);
254 return sscreen->shader_cache != NULL;
255 }
256
257 void si_destroy_shader_cache(struct si_screen *sscreen)
258 {
259 if (sscreen->shader_cache)
260 _mesa_hash_table_destroy(sscreen->shader_cache,
261 si_destroy_shader_cache_entry);
262 pipe_mutex_destroy(sscreen->shader_cache_mutex);
263 }
264
265 /* SHADER STATES */
266
267 static void si_set_tesseval_regs(struct si_screen *sscreen,
268 struct si_shader *shader,
269 struct si_pm4_state *pm4)
270 {
271 struct tgsi_shader_info *info = &shader->selector->info;
272 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
273 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
274 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
275 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
276 unsigned type, partitioning, topology, distribution_mode;
277
278 switch (tes_prim_mode) {
279 case PIPE_PRIM_LINES:
280 type = V_028B6C_TESS_ISOLINE;
281 break;
282 case PIPE_PRIM_TRIANGLES:
283 type = V_028B6C_TESS_TRIANGLE;
284 break;
285 case PIPE_PRIM_QUADS:
286 type = V_028B6C_TESS_QUAD;
287 break;
288 default:
289 assert(0);
290 return;
291 }
292
293 switch (tes_spacing) {
294 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
295 partitioning = V_028B6C_PART_FRAC_ODD;
296 break;
297 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
298 partitioning = V_028B6C_PART_FRAC_EVEN;
299 break;
300 case PIPE_TESS_SPACING_EQUAL:
301 partitioning = V_028B6C_PART_INTEGER;
302 break;
303 default:
304 assert(0);
305 return;
306 }
307
308 if (tes_point_mode)
309 topology = V_028B6C_OUTPUT_POINT;
310 else if (tes_prim_mode == PIPE_PRIM_LINES)
311 topology = V_028B6C_OUTPUT_LINE;
312 else if (tes_vertex_order_cw)
313 /* for some reason, this must be the other way around */
314 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
315 else
316 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
317
318 if (sscreen->has_distributed_tess) {
319 if (sscreen->b.family == CHIP_FIJI ||
320 sscreen->b.family >= CHIP_POLARIS10)
321 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
322 else
323 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
324 } else
325 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
326
327 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
328 S_028B6C_TYPE(type) |
329 S_028B6C_PARTITIONING(partitioning) |
330 S_028B6C_TOPOLOGY(topology) |
331 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
332 }
333
334 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
335 {
336 if (shader->pm4)
337 si_pm4_clear_state(shader->pm4);
338 else
339 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
340
341 return shader->pm4;
342 }
343
344 static void si_shader_ls(struct si_shader *shader)
345 {
346 struct si_pm4_state *pm4;
347 unsigned vgpr_comp_cnt;
348 uint64_t va;
349
350 pm4 = si_get_shader_pm4_state(shader);
351 if (!pm4)
352 return;
353
354 va = shader->bo->gpu_address;
355 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
356
357 /* We need at least 2 components for LS.
358 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
359 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
360
361 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
362 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
363
364 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
365 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
366 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
367 S_00B528_DX10_CLAMP(1) |
368 S_00B528_FLOAT_MODE(shader->config.float_mode);
369 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
370 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
371 }
372
373 static void si_shader_hs(struct si_shader *shader)
374 {
375 struct si_pm4_state *pm4;
376 uint64_t va;
377
378 pm4 = si_get_shader_pm4_state(shader);
379 if (!pm4)
380 return;
381
382 va = shader->bo->gpu_address;
383 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
384
385 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
386 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
387 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
388 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
389 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
390 S_00B428_DX10_CLAMP(1) |
391 S_00B428_FLOAT_MODE(shader->config.float_mode));
392 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
393 S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
394 S_00B42C_OC_LDS_EN(1) |
395 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
396 }
397
398 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
399 {
400 struct si_pm4_state *pm4;
401 unsigned num_user_sgprs;
402 unsigned vgpr_comp_cnt;
403 uint64_t va;
404 unsigned oc_lds_en;
405
406 pm4 = si_get_shader_pm4_state(shader);
407 if (!pm4)
408 return;
409
410 va = shader->bo->gpu_address;
411 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
412
413 if (shader->selector->type == PIPE_SHADER_VERTEX) {
414 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
415 num_user_sgprs = SI_ES_NUM_USER_SGPR;
416 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
417 vgpr_comp_cnt = 3; /* all components are needed for TES */
418 num_user_sgprs = SI_TES_NUM_USER_SGPR;
419 } else
420 unreachable("invalid shader selector type");
421
422 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
423
424 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
425 shader->selector->esgs_itemsize / 4);
426 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
427 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
428 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
429 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
430 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
431 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
432 S_00B328_DX10_CLAMP(1) |
433 S_00B328_FLOAT_MODE(shader->config.float_mode));
434 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
435 S_00B32C_USER_SGPR(num_user_sgprs) |
436 S_00B32C_OC_LDS_EN(oc_lds_en) |
437 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
438
439 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
440 si_set_tesseval_regs(sscreen, shader, pm4);
441 }
442
443 /**
444 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
445 * geometry shader.
446 */
447 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
448 {
449 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
450 unsigned cut_mode;
451
452 if (gs_max_vert_out <= 128) {
453 cut_mode = V_028A40_GS_CUT_128;
454 } else if (gs_max_vert_out <= 256) {
455 cut_mode = V_028A40_GS_CUT_256;
456 } else if (gs_max_vert_out <= 512) {
457 cut_mode = V_028A40_GS_CUT_512;
458 } else {
459 assert(gs_max_vert_out <= 1024);
460 cut_mode = V_028A40_GS_CUT_1024;
461 }
462
463 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
464 S_028A40_CUT_MODE(cut_mode)|
465 S_028A40_ES_WRITE_OPTIMIZE(1) |
466 S_028A40_GS_WRITE_OPTIMIZE(1);
467 }
468
469 static void si_shader_gs(struct si_shader *shader)
470 {
471 struct si_shader_selector *sel = shader->selector;
472 const ubyte *num_components = sel->info.num_stream_output_components;
473 unsigned gs_num_invocations = sel->gs_num_invocations;
474 struct si_pm4_state *pm4;
475 uint64_t va;
476 unsigned max_stream = sel->max_gs_stream;
477 unsigned offset;
478
479 pm4 = si_get_shader_pm4_state(shader);
480 if (!pm4)
481 return;
482
483 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader->selector));
484
485 offset = num_components[0] * sel->gs_max_out_vertices;
486 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
487 if (max_stream >= 1)
488 offset += num_components[1] * sel->gs_max_out_vertices;
489 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
490 if (max_stream >= 2)
491 offset += num_components[2] * sel->gs_max_out_vertices;
492 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
493 if (max_stream >= 3)
494 offset += num_components[3] * sel->gs_max_out_vertices;
495 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
496
497 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
498 assert(offset < (1 << 15));
499
500 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
501
502 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
503 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
504 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
505 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
506
507 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
508 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
509 S_028B90_ENABLE(gs_num_invocations > 0));
510
511 va = shader->bo->gpu_address;
512 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
513 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
514 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
515
516 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
517 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
518 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
519 S_00B228_DX10_CLAMP(1) |
520 S_00B228_FLOAT_MODE(shader->config.float_mode));
521 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
522 S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
523 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
524 }
525
526 /**
527 * Compute the state for \p shader, which will run as a vertex shader on the
528 * hardware.
529 *
530 * If \p gs is non-NULL, it points to the geometry shader for which this shader
531 * is the copy shader.
532 */
533 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
534 struct si_shader_selector *gs)
535 {
536 struct si_pm4_state *pm4;
537 unsigned num_user_sgprs;
538 unsigned nparams, vgpr_comp_cnt;
539 uint64_t va;
540 unsigned oc_lds_en;
541 unsigned window_space =
542 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
543 bool enable_prim_id = si_vs_exports_prim_id(shader);
544
545 pm4 = si_get_shader_pm4_state(shader);
546 if (!pm4)
547 return;
548
549 /* We always write VGT_GS_MODE in the VS state, because every switch
550 * between different shader pipelines involving a different GS or no
551 * GS at all involves a switch of the VS (different GS use different
552 * copy shaders). On the other hand, when the API switches from a GS to
553 * no GS and then back to the same GS used originally, the GS state is
554 * not sent again.
555 */
556 if (!gs) {
557 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
558 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
559 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
560 } else {
561 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
562 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
563 }
564
565 va = shader->bo->gpu_address;
566 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
567
568 if (gs) {
569 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
570 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
571 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
572 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
573 num_user_sgprs = SI_VS_NUM_USER_SGPR;
574 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
575 vgpr_comp_cnt = 3; /* all components are needed for TES */
576 num_user_sgprs = SI_TES_NUM_USER_SGPR;
577 } else
578 unreachable("invalid shader selector type");
579
580 /* VS is required to export at least one param. */
581 nparams = MAX2(shader->info.nr_param_exports, 1);
582 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
583 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
584
585 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
586 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
587 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
588 V_02870C_SPI_SHADER_4COMP :
589 V_02870C_SPI_SHADER_NONE) |
590 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
591 V_02870C_SPI_SHADER_4COMP :
592 V_02870C_SPI_SHADER_NONE) |
593 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
594 V_02870C_SPI_SHADER_4COMP :
595 V_02870C_SPI_SHADER_NONE));
596
597 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
598
599 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
600 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
601 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
602 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
603 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
604 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
605 S_00B128_DX10_CLAMP(1) |
606 S_00B128_FLOAT_MODE(shader->config.float_mode));
607 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
608 S_00B12C_USER_SGPR(num_user_sgprs) |
609 S_00B12C_OC_LDS_EN(oc_lds_en) |
610 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
611 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
612 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
613 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
614 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
615 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
616 if (window_space)
617 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
618 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
619 else
620 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
621 S_028818_VTX_W0_FMT(1) |
622 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
623 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
624 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
625
626 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
627 si_set_tesseval_regs(sscreen, shader, pm4);
628 }
629
630 static unsigned si_get_ps_num_interp(struct si_shader *ps)
631 {
632 struct tgsi_shader_info *info = &ps->selector->info;
633 unsigned num_colors = !!(info->colors_read & 0x0f) +
634 !!(info->colors_read & 0xf0);
635 unsigned num_interp = ps->selector->info.num_inputs +
636 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
637
638 assert(num_interp <= 32);
639 return MIN2(num_interp, 32);
640 }
641
642 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
643 {
644 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
645 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
646
647 /* If the i-th target format is set, all previous target formats must
648 * be non-zero to avoid hangs.
649 */
650 for (i = 0; i < num_targets; i++)
651 if (!(value & (0xf << (i * 4))))
652 value |= V_028714_SPI_SHADER_32_R << (i * 4);
653
654 return value;
655 }
656
657 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
658 {
659 unsigned i, cb_shader_mask = 0;
660
661 for (i = 0; i < 8; i++) {
662 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
663 case V_028714_SPI_SHADER_ZERO:
664 break;
665 case V_028714_SPI_SHADER_32_R:
666 cb_shader_mask |= 0x1 << (i * 4);
667 break;
668 case V_028714_SPI_SHADER_32_GR:
669 cb_shader_mask |= 0x3 << (i * 4);
670 break;
671 case V_028714_SPI_SHADER_32_AR:
672 cb_shader_mask |= 0x9 << (i * 4);
673 break;
674 case V_028714_SPI_SHADER_FP16_ABGR:
675 case V_028714_SPI_SHADER_UNORM16_ABGR:
676 case V_028714_SPI_SHADER_SNORM16_ABGR:
677 case V_028714_SPI_SHADER_UINT16_ABGR:
678 case V_028714_SPI_SHADER_SINT16_ABGR:
679 case V_028714_SPI_SHADER_32_ABGR:
680 cb_shader_mask |= 0xf << (i * 4);
681 break;
682 default:
683 assert(0);
684 }
685 }
686 return cb_shader_mask;
687 }
688
689 static void si_shader_ps(struct si_shader *shader)
690 {
691 struct tgsi_shader_info *info = &shader->selector->info;
692 struct si_pm4_state *pm4;
693 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
694 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
695 uint64_t va;
696 unsigned input_ena = shader->config.spi_ps_input_ena;
697
698 /* we need to enable at least one of them, otherwise we hang the GPU */
699 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
700 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
701 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
702 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
703 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
704 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
705 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
706 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
707 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
708 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
709 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
710 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
711 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
712 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
713
714 /* Validate interpolation optimization flags (read as implications). */
715 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
716 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
717 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
718 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
719 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
720 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
721 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
722 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
723 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
724 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
725 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
726 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
727 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
728 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
729 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
730 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
731 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
732 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
733
734 /* Validate cases when the optimizations are off (read as implications). */
735 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
736 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
737 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
738 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
739 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
740 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
741
742 pm4 = si_get_shader_pm4_state(shader);
743 if (!pm4)
744 return;
745
746 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
747 * Possible vaules:
748 * 0 -> Position = pixel center
749 * 1 -> Position = pixel centroid
750 * 2 -> Position = at sample position
751 *
752 * From GLSL 4.5 specification, section 7.1:
753 * "The variable gl_FragCoord is available as an input variable from
754 * within fragment shaders and it holds the window relative coordinates
755 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
756 * value can be for any location within the pixel, or one of the
757 * fragment samples. The use of centroid does not further restrict
758 * this value to be inside the current primitive."
759 *
760 * Meaning that centroid has no effect and we can return anything within
761 * the pixel. Thus, return the value at sample position, because that's
762 * the most accurate one shaders can get.
763 */
764 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
765
766 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
767 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
768 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
769
770 spi_shader_col_format = si_get_spi_shader_col_format(shader);
771 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
772
773 /* Ensure that some export memory is always allocated, for two reasons:
774 *
775 * 1) Correctness: The hardware ignores the EXEC mask if no export
776 * memory is allocated, so KILL and alpha test do not work correctly
777 * without this.
778 * 2) Performance: Every shader needs at least a NULL export, even when
779 * it writes no color/depth output. The NULL export instruction
780 * stalls without this setting.
781 *
782 * Don't add this to CB_SHADER_MASK.
783 */
784 if (!spi_shader_col_format &&
785 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
786 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
787
788 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
789 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
790 shader->config.spi_ps_input_addr);
791
792 /* Set interpolation controls. */
793 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
794
795 /* Set registers. */
796 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
797 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
798
799 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
800 si_get_spi_shader_z_format(info->writes_z,
801 info->writes_stencil,
802 info->writes_samplemask));
803
804 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
805 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
806
807 va = shader->bo->gpu_address;
808 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
809 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
810 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
811
812 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
813 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
814 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
815 S_00B028_DX10_CLAMP(1) |
816 S_00B028_FLOAT_MODE(shader->config.float_mode));
817 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
818 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
819 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
820 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
821 }
822
823 static void si_shader_init_pm4_state(struct si_screen *sscreen,
824 struct si_shader *shader)
825 {
826 switch (shader->selector->type) {
827 case PIPE_SHADER_VERTEX:
828 if (shader->key.as_ls)
829 si_shader_ls(shader);
830 else if (shader->key.as_es)
831 si_shader_es(sscreen, shader);
832 else
833 si_shader_vs(sscreen, shader, NULL);
834 break;
835 case PIPE_SHADER_TESS_CTRL:
836 si_shader_hs(shader);
837 break;
838 case PIPE_SHADER_TESS_EVAL:
839 if (shader->key.as_es)
840 si_shader_es(sscreen, shader);
841 else
842 si_shader_vs(sscreen, shader, NULL);
843 break;
844 case PIPE_SHADER_GEOMETRY:
845 si_shader_gs(shader);
846 break;
847 case PIPE_SHADER_FRAGMENT:
848 si_shader_ps(shader);
849 break;
850 default:
851 assert(0);
852 }
853 }
854
855 static unsigned si_get_alpha_test_func(struct si_context *sctx)
856 {
857 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
858 if (sctx->queued.named.dsa)
859 return sctx->queued.named.dsa->alpha_func;
860
861 return PIPE_FUNC_ALWAYS;
862 }
863
864 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
865 struct si_shader_selector *vs,
866 struct si_shader_key *key)
867 {
868 struct si_shader_selector *ps = sctx->ps_shader.cso;
869
870 key->opt.hw_vs.clip_disable =
871 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
872 (vs->info.clipdist_writemask ||
873 vs->info.writes_clipvertex) &&
874 !vs->info.culldist_writemask;
875
876 /* Find out if PS is disabled. */
877 bool ps_disabled = true;
878 if (ps) {
879 bool ps_modifies_zs = ps->info.uses_kill ||
880 ps->info.writes_z ||
881 ps->info.writes_stencil ||
882 ps->info.writes_samplemask ||
883 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
884
885 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
886 sctx->queued.named.blend->cb_target_mask;
887 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
888 ps_colormask &= ps->colors_written_4bit;
889
890 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
891 (!ps_colormask &&
892 !ps_modifies_zs &&
893 !ps->info.writes_memory);
894 }
895
896 /* Find out which VS outputs aren't used by the PS. */
897 uint64_t outputs_written = vs->outputs_written;
898 uint32_t outputs_written2 = vs->outputs_written2;
899 uint64_t inputs_read = 0;
900 uint32_t inputs_read2 = 0;
901
902 outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
903
904 if (!ps_disabled) {
905 inputs_read = ps->inputs_read;
906 inputs_read2 = ps->inputs_read2;
907 }
908
909 uint64_t linked = outputs_written & inputs_read;
910 uint32_t linked2 = outputs_written2 & inputs_read2;
911
912 key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
913 key->opt.hw_vs.kill_outputs2 = ~linked2 & outputs_written2;
914 }
915
916 /* Compute the key for the hw shader variant */
917 static inline void si_shader_selector_key(struct pipe_context *ctx,
918 struct si_shader_selector *sel,
919 struct si_shader_key *key)
920 {
921 struct si_context *sctx = (struct si_context *)ctx;
922 unsigned i;
923
924 memset(key, 0, sizeof(*key));
925
926 switch (sel->type) {
927 case PIPE_SHADER_VERTEX:
928 if (sctx->vertex_elements) {
929 unsigned count = MIN2(sel->info.num_inputs,
930 sctx->vertex_elements->count);
931 for (i = 0; i < count; ++i)
932 key->part.vs.prolog.instance_divisors[i] =
933 sctx->vertex_elements->elements[i].instance_divisor;
934
935 key->mono.vs.fix_fetch =
936 sctx->vertex_elements->fix_fetch &
937 u_bit_consecutive64(0, 4 * count);
938 }
939 if (sctx->tes_shader.cso)
940 key->as_ls = 1;
941 else if (sctx->gs_shader.cso)
942 key->as_es = 1;
943 else {
944 si_shader_selector_key_hw_vs(sctx, sel, key);
945
946 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
947 key->part.vs.epilog.export_prim_id = 1;
948 }
949 break;
950 case PIPE_SHADER_TESS_CTRL:
951 key->part.tcs.epilog.prim_mode =
952 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
953
954 if (sel == sctx->fixed_func_tcs_shader.cso)
955 key->mono.tcs.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
956 break;
957 case PIPE_SHADER_TESS_EVAL:
958 if (sctx->gs_shader.cso)
959 key->as_es = 1;
960 else {
961 si_shader_selector_key_hw_vs(sctx, sel, key);
962
963 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
964 key->part.tes.epilog.export_prim_id = 1;
965 }
966 break;
967 case PIPE_SHADER_GEOMETRY:
968 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
969 break;
970 case PIPE_SHADER_FRAGMENT: {
971 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
972 struct si_state_blend *blend = sctx->queued.named.blend;
973
974 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
975 sel->info.colors_written == 0x1)
976 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
977
978 if (blend) {
979 /* Select the shader color format based on whether
980 * blending or alpha are needed.
981 */
982 key->part.ps.epilog.spi_shader_col_format =
983 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
984 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
985 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
986 sctx->framebuffer.spi_shader_col_format_blend) |
987 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
988 sctx->framebuffer.spi_shader_col_format_alpha) |
989 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
990 sctx->framebuffer.spi_shader_col_format);
991
992 /* The output for dual source blending should have
993 * the same format as the first output.
994 */
995 if (blend->dual_src_blend)
996 key->part.ps.epilog.spi_shader_col_format |=
997 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
998 } else
999 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1000
1001 /* If alpha-to-coverage is enabled, we have to export alpha
1002 * even if there is no color buffer.
1003 */
1004 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1005 blend && blend->alpha_to_coverage)
1006 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1007
1008 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1009 * to the range supported by the type if a channel has less
1010 * than 16 bits and the export format is 16_ABGR.
1011 */
1012 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
1013 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1014
1015 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1016 if (!key->part.ps.epilog.last_cbuf) {
1017 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1018 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1019 }
1020
1021 if (rs) {
1022 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1023 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1024 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1025 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1026
1027 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1028 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1029
1030 if (sctx->queued.named.blend) {
1031 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1032 rs->multisample_enable;
1033 }
1034
1035 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1036 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1037 (is_line && rs->line_smooth)) &&
1038 sctx->framebuffer.nr_samples <= 1;
1039 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1040
1041 if (rs->force_persample_interp &&
1042 rs->multisample_enable &&
1043 sctx->framebuffer.nr_samples > 1 &&
1044 sctx->ps_iter_samples > 1) {
1045 key->part.ps.prolog.force_persp_sample_interp =
1046 sel->info.uses_persp_center ||
1047 sel->info.uses_persp_centroid;
1048
1049 key->part.ps.prolog.force_linear_sample_interp =
1050 sel->info.uses_linear_center ||
1051 sel->info.uses_linear_centroid;
1052 } else if (rs->multisample_enable &&
1053 sctx->framebuffer.nr_samples > 1) {
1054 key->part.ps.prolog.bc_optimize_for_persp =
1055 sel->info.uses_persp_center &&
1056 sel->info.uses_persp_centroid;
1057 key->part.ps.prolog.bc_optimize_for_linear =
1058 sel->info.uses_linear_center &&
1059 sel->info.uses_linear_centroid;
1060 } else {
1061 /* Make sure SPI doesn't compute more than 1 pair
1062 * of (i,j), which is the optimization here. */
1063 key->part.ps.prolog.force_persp_center_interp =
1064 sel->info.uses_persp_center +
1065 sel->info.uses_persp_centroid +
1066 sel->info.uses_persp_sample > 1;
1067
1068 key->part.ps.prolog.force_linear_center_interp =
1069 sel->info.uses_linear_center +
1070 sel->info.uses_linear_centroid +
1071 sel->info.uses_linear_sample > 1;
1072 }
1073 }
1074
1075 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1076 break;
1077 }
1078 default:
1079 assert(0);
1080 }
1081 }
1082
1083 static void si_build_shader_variant(void *job, int thread_index)
1084 {
1085 struct si_shader *shader = (struct si_shader *)job;
1086 struct si_shader_selector *sel = shader->selector;
1087 struct si_screen *sscreen = sel->screen;
1088 LLVMTargetMachineRef tm;
1089 struct pipe_debug_callback *debug = &sel->debug;
1090 int r;
1091
1092 if (thread_index >= 0) {
1093 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1094 tm = sscreen->tm[thread_index];
1095 if (!debug->async)
1096 debug = NULL;
1097 } else {
1098 tm = sel->tm;
1099 }
1100
1101 r = si_shader_create(sscreen, tm, shader, debug);
1102 if (unlikely(r)) {
1103 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1104 sel->type, r);
1105 shader->compilation_failed = true;
1106 return;
1107 }
1108
1109 if (sel->is_debug_context) {
1110 FILE *f = open_memstream(&shader->shader_log,
1111 &shader->shader_log_size);
1112 if (f) {
1113 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1114 fclose(f);
1115 }
1116 }
1117
1118 si_shader_init_pm4_state(sscreen, shader);
1119 }
1120
1121 /* Select the hw shader variant depending on the current state. */
1122 static int si_shader_select_with_key(struct si_screen *sscreen,
1123 struct si_shader_ctx_state *state,
1124 struct si_shader_key *key,
1125 int thread_index)
1126 {
1127 static const struct si_shader_key zeroed;
1128 struct si_shader_selector *sel = state->cso;
1129 struct si_shader *current = state->current;
1130 struct si_shader *iter, *shader = NULL;
1131
1132 if (unlikely(sscreen->b.debug_flags & DBG_NO_OPT_VARIANT)) {
1133 memset(&key->opt, 0, sizeof(key->opt));
1134 }
1135
1136 again:
1137 /* Check if we don't need to change anything.
1138 * This path is also used for most shaders that don't need multiple
1139 * variants, it will cost just a computation of the key and this
1140 * test. */
1141 if (likely(current &&
1142 memcmp(&current->key, key, sizeof(*key)) == 0 &&
1143 (!current->is_optimized ||
1144 util_queue_fence_is_signalled(&current->optimized_ready))))
1145 return 0;
1146
1147 /* This must be done before the mutex is locked, because async GS
1148 * compilation calls this function too, and therefore must enter
1149 * the mutex first.
1150 *
1151 * Only wait if we are in a draw call. Don't wait if we are
1152 * in a compiler thread.
1153 */
1154 if (thread_index < 0)
1155 util_queue_job_wait(&sel->ready);
1156
1157 pipe_mutex_lock(sel->mutex);
1158
1159 /* Find the shader variant. */
1160 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1161 /* Don't check the "current" shader. We checked it above. */
1162 if (current != iter &&
1163 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1164 /* If it's an optimized shader and its compilation has
1165 * been started but isn't done, use the unoptimized
1166 * shader so as not to cause a stall due to compilation.
1167 */
1168 if (iter->is_optimized &&
1169 !util_queue_fence_is_signalled(&iter->optimized_ready)) {
1170 memset(&key->opt, 0, sizeof(key->opt));
1171 pipe_mutex_unlock(sel->mutex);
1172 goto again;
1173 }
1174
1175 if (iter->compilation_failed) {
1176 pipe_mutex_unlock(sel->mutex);
1177 return -1; /* skip the draw call */
1178 }
1179
1180 state->current = iter;
1181 pipe_mutex_unlock(sel->mutex);
1182 return 0;
1183 }
1184 }
1185
1186 /* Build a new shader. */
1187 shader = CALLOC_STRUCT(si_shader);
1188 if (!shader) {
1189 pipe_mutex_unlock(sel->mutex);
1190 return -ENOMEM;
1191 }
1192 shader->selector = sel;
1193 shader->key = *key;
1194
1195 /* Monolithic-only shaders don't make a distinction between optimized
1196 * and unoptimized. */
1197 shader->is_monolithic =
1198 !sel->main_shader_part ||
1199 sel->main_shader_part->key.as_ls != key->as_ls ||
1200 sel->main_shader_part->key.as_es != key->as_es ||
1201 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0 ||
1202 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1203
1204 shader->is_optimized =
1205 !sscreen->use_monolithic_shaders &&
1206 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1207 if (shader->is_optimized)
1208 util_queue_fence_init(&shader->optimized_ready);
1209
1210 if (!sel->last_variant) {
1211 sel->first_variant = shader;
1212 sel->last_variant = shader;
1213 } else {
1214 sel->last_variant->next_variant = shader;
1215 sel->last_variant = shader;
1216 }
1217
1218 /* If it's an optimized shader, compile it asynchronously. */
1219 if (shader->is_optimized &&
1220 thread_index < 0) {
1221 /* Compile it asynchronously. */
1222 util_queue_add_job(&sscreen->shader_compiler_queue,
1223 shader, &shader->optimized_ready,
1224 si_build_shader_variant, NULL);
1225
1226 /* Use the default (unoptimized) shader for now. */
1227 memset(&key->opt, 0, sizeof(key->opt));
1228 pipe_mutex_unlock(sel->mutex);
1229 goto again;
1230 }
1231
1232 assert(!shader->is_optimized);
1233 si_build_shader_variant(shader, thread_index);
1234
1235 if (!shader->compilation_failed)
1236 state->current = shader;
1237
1238 pipe_mutex_unlock(sel->mutex);
1239 return shader->compilation_failed ? -1 : 0;
1240 }
1241
1242 static int si_shader_select(struct pipe_context *ctx,
1243 struct si_shader_ctx_state *state)
1244 {
1245 struct si_context *sctx = (struct si_context *)ctx;
1246 struct si_shader_key key;
1247
1248 si_shader_selector_key(ctx, state->cso, &key);
1249 return si_shader_select_with_key(sctx->screen, state, &key, -1);
1250 }
1251
1252 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1253 struct si_shader_key *key)
1254 {
1255 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1256
1257 switch (info->processor) {
1258 case PIPE_SHADER_VERTEX:
1259 switch (next_shader) {
1260 case PIPE_SHADER_GEOMETRY:
1261 key->as_es = 1;
1262 break;
1263 case PIPE_SHADER_TESS_CTRL:
1264 case PIPE_SHADER_TESS_EVAL:
1265 key->as_ls = 1;
1266 break;
1267 default:
1268 /* If POSITION isn't written, it can't be a HW VS.
1269 * Assume that it's a HW LS. (the next shader is TCS)
1270 * This heuristic is needed for separate shader objects.
1271 */
1272 if (!info->writes_position)
1273 key->as_ls = 1;
1274 }
1275 break;
1276
1277 case PIPE_SHADER_TESS_EVAL:
1278 if (next_shader == PIPE_SHADER_GEOMETRY ||
1279 !info->writes_position)
1280 key->as_es = 1;
1281 break;
1282 }
1283 }
1284
1285 /**
1286 * Compile the main shader part or the monolithic shader as part of
1287 * si_shader_selector initialization. Since it can be done asynchronously,
1288 * there is no way to report compile failures to applications.
1289 */
1290 void si_init_shader_selector_async(void *job, int thread_index)
1291 {
1292 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1293 struct si_screen *sscreen = sel->screen;
1294 LLVMTargetMachineRef tm;
1295 struct pipe_debug_callback *debug = &sel->debug;
1296 unsigned i;
1297
1298 if (thread_index >= 0) {
1299 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1300 tm = sscreen->tm[thread_index];
1301 if (!debug->async)
1302 debug = NULL;
1303 } else {
1304 tm = sel->tm;
1305 }
1306
1307 /* Compile the main shader part for use with a prolog and/or epilog.
1308 * If this fails, the driver will try to compile a monolithic shader
1309 * on demand.
1310 */
1311 if (!sscreen->use_monolithic_shaders) {
1312 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1313 void *tgsi_binary;
1314
1315 if (!shader) {
1316 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1317 return;
1318 }
1319
1320 shader->selector = sel;
1321 si_parse_next_shader_property(&sel->info, &shader->key);
1322
1323 tgsi_binary = si_get_tgsi_binary(sel);
1324
1325 /* Try to load the shader from the shader cache. */
1326 pipe_mutex_lock(sscreen->shader_cache_mutex);
1327
1328 if (tgsi_binary &&
1329 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1330 FREE(tgsi_binary);
1331 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1332 } else {
1333 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1334
1335 /* Compile the shader if it hasn't been loaded from the cache. */
1336 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1337 debug) != 0) {
1338 FREE(shader);
1339 FREE(tgsi_binary);
1340 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1341 return;
1342 }
1343
1344 if (tgsi_binary) {
1345 pipe_mutex_lock(sscreen->shader_cache_mutex);
1346 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1347 FREE(tgsi_binary);
1348 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1349 }
1350 }
1351
1352 sel->main_shader_part = shader;
1353
1354 /* Unset "outputs_written" flags for outputs converted to
1355 * DEFAULT_VAL, so that later inter-shader optimizations don't
1356 * try to eliminate outputs that don't exist in the final
1357 * shader.
1358 *
1359 * This is only done if non-monolithic shaders are enabled.
1360 */
1361 if ((sel->type == PIPE_SHADER_VERTEX ||
1362 sel->type == PIPE_SHADER_TESS_EVAL) &&
1363 !shader->key.as_ls &&
1364 !shader->key.as_es) {
1365 unsigned i;
1366
1367 for (i = 0; i < sel->info.num_outputs; i++) {
1368 unsigned offset = shader->info.vs_output_param_offset[i];
1369
1370 if (offset <= EXP_PARAM_OFFSET_31)
1371 continue;
1372
1373 unsigned name = sel->info.output_semantic_name[i];
1374 unsigned index = sel->info.output_semantic_index[i];
1375 unsigned id;
1376
1377 switch (name) {
1378 case TGSI_SEMANTIC_GENERIC:
1379 /* don't process indices the function can't handle */
1380 if (index >= 60)
1381 break;
1382 /* fall through */
1383 case TGSI_SEMANTIC_CLIPDIST:
1384 id = si_shader_io_get_unique_index(name, index);
1385 sel->outputs_written &= ~(1ull << id);
1386 break;
1387 case TGSI_SEMANTIC_POSITION: /* ignore these */
1388 case TGSI_SEMANTIC_PSIZE:
1389 case TGSI_SEMANTIC_CLIPVERTEX:
1390 case TGSI_SEMANTIC_EDGEFLAG:
1391 break;
1392 default:
1393 id = si_shader_io_get_unique_index2(name, index);
1394 sel->outputs_written2 &= ~(1u << id);
1395 }
1396 }
1397 }
1398 }
1399
1400 /* Pre-compilation. */
1401 if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
1402 struct si_shader_ctx_state state = {sel};
1403 struct si_shader_key key;
1404
1405 memset(&key, 0, sizeof(key));
1406 si_parse_next_shader_property(&sel->info, &key);
1407
1408 /* Set reasonable defaults, so that the shader key doesn't
1409 * cause any code to be eliminated.
1410 */
1411 switch (sel->type) {
1412 case PIPE_SHADER_TESS_CTRL:
1413 key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1414 break;
1415 case PIPE_SHADER_FRAGMENT:
1416 key.part.ps.prolog.bc_optimize_for_persp =
1417 sel->info.uses_persp_center &&
1418 sel->info.uses_persp_centroid;
1419 key.part.ps.prolog.bc_optimize_for_linear =
1420 sel->info.uses_linear_center &&
1421 sel->info.uses_linear_centroid;
1422 key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1423 for (i = 0; i < 8; i++)
1424 if (sel->info.colors_written & (1 << i))
1425 key.part.ps.epilog.spi_shader_col_format |=
1426 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1427 break;
1428 }
1429
1430 if (si_shader_select_with_key(sscreen, &state, &key, thread_index))
1431 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1432 }
1433
1434 /* The GS copy shader is always pre-compiled. */
1435 if (sel->type == PIPE_SHADER_GEOMETRY) {
1436 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1437 if (!sel->gs_copy_shader) {
1438 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1439 return;
1440 }
1441
1442 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1443 }
1444 }
1445
1446 static void *si_create_shader_selector(struct pipe_context *ctx,
1447 const struct pipe_shader_state *state)
1448 {
1449 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1450 struct si_context *sctx = (struct si_context*)ctx;
1451 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1452 int i;
1453
1454 if (!sel)
1455 return NULL;
1456
1457 sel->screen = sscreen;
1458 sel->tm = sctx->tm;
1459 sel->debug = sctx->b.debug;
1460 sel->is_debug_context = sctx->is_debug;
1461 sel->tokens = tgsi_dup_tokens(state->tokens);
1462 if (!sel->tokens) {
1463 FREE(sel);
1464 return NULL;
1465 }
1466
1467 sel->so = state->stream_output;
1468 tgsi_scan_shader(state->tokens, &sel->info);
1469 sel->type = sel->info.processor;
1470 p_atomic_inc(&sscreen->b.num_shaders_created);
1471
1472 /* Set which opcode uses which (i,j) pair. */
1473 if (sel->info.uses_persp_opcode_interp_centroid)
1474 sel->info.uses_persp_centroid = true;
1475
1476 if (sel->info.uses_linear_opcode_interp_centroid)
1477 sel->info.uses_linear_centroid = true;
1478
1479 if (sel->info.uses_persp_opcode_interp_offset ||
1480 sel->info.uses_persp_opcode_interp_sample)
1481 sel->info.uses_persp_center = true;
1482
1483 if (sel->info.uses_linear_opcode_interp_offset ||
1484 sel->info.uses_linear_opcode_interp_sample)
1485 sel->info.uses_linear_center = true;
1486
1487 switch (sel->type) {
1488 case PIPE_SHADER_GEOMETRY:
1489 sel->gs_output_prim =
1490 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1491 sel->gs_max_out_vertices =
1492 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1493 sel->gs_num_invocations =
1494 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1495 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1496 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1497 sel->gs_max_out_vertices;
1498
1499 sel->max_gs_stream = 0;
1500 for (i = 0; i < sel->so.num_outputs; i++)
1501 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1502 sel->so.output[i].stream);
1503
1504 sel->gs_input_verts_per_prim =
1505 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1506 break;
1507
1508 case PIPE_SHADER_TESS_CTRL:
1509 /* Always reserve space for these. */
1510 sel->patch_outputs_written |=
1511 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1512 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1513 /* fall through */
1514 case PIPE_SHADER_VERTEX:
1515 case PIPE_SHADER_TESS_EVAL:
1516 for (i = 0; i < sel->info.num_outputs; i++) {
1517 unsigned name = sel->info.output_semantic_name[i];
1518 unsigned index = sel->info.output_semantic_index[i];
1519
1520 switch (name) {
1521 case TGSI_SEMANTIC_TESSINNER:
1522 case TGSI_SEMANTIC_TESSOUTER:
1523 case TGSI_SEMANTIC_PATCH:
1524 sel->patch_outputs_written |=
1525 1llu << si_shader_io_get_unique_index(name, index);
1526 break;
1527
1528 case TGSI_SEMANTIC_GENERIC:
1529 /* don't process indices the function can't handle */
1530 if (index >= 60)
1531 break;
1532 /* fall through */
1533 case TGSI_SEMANTIC_POSITION:
1534 case TGSI_SEMANTIC_PSIZE:
1535 case TGSI_SEMANTIC_CLIPDIST:
1536 sel->outputs_written |=
1537 1llu << si_shader_io_get_unique_index(name, index);
1538 break;
1539 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
1540 case TGSI_SEMANTIC_EDGEFLAG:
1541 break;
1542 default:
1543 sel->outputs_written2 |=
1544 1u << si_shader_io_get_unique_index2(name, index);
1545 }
1546 }
1547 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1548 break;
1549
1550 case PIPE_SHADER_FRAGMENT:
1551 for (i = 0; i < sel->info.num_inputs; i++) {
1552 unsigned name = sel->info.input_semantic_name[i];
1553 unsigned index = sel->info.input_semantic_index[i];
1554
1555 switch (name) {
1556 case TGSI_SEMANTIC_CLIPDIST:
1557 case TGSI_SEMANTIC_GENERIC:
1558 sel->inputs_read |=
1559 1llu << si_shader_io_get_unique_index(name, index);
1560 break;
1561 case TGSI_SEMANTIC_PCOORD: /* ignore this */
1562 break;
1563 default:
1564 sel->inputs_read2 |=
1565 1u << si_shader_io_get_unique_index2(name, index);
1566 }
1567 }
1568
1569 for (i = 0; i < 8; i++)
1570 if (sel->info.colors_written & (1 << i))
1571 sel->colors_written_4bit |= 0xf << (4 * i);
1572
1573 for (i = 0; i < sel->info.num_inputs; i++) {
1574 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1575 int index = sel->info.input_semantic_index[i];
1576 sel->color_attr_index[index] = i;
1577 }
1578 }
1579 break;
1580 }
1581
1582 /* DB_SHADER_CONTROL */
1583 sel->db_shader_control =
1584 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1585 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1586 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1587 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1588
1589 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1590 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1591 sel->db_shader_control |=
1592 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1593 break;
1594 case TGSI_FS_DEPTH_LAYOUT_LESS:
1595 sel->db_shader_control |=
1596 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1597 break;
1598 }
1599
1600 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
1601 *
1602 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
1603 * --|-----------|------------|------------|--------------------|-------------------|-------------
1604 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
1605 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
1606 * 2 | false | true | n/a | LateZ | 1 | 0
1607 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
1608 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
1609 *
1610 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
1611 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
1612 *
1613 * Don't use ReZ without profiling !!!
1614 *
1615 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
1616 * shaders.
1617 */
1618 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
1619 /* Cases 3, 4. */
1620 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
1621 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
1622 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
1623 } else if (sel->info.writes_memory) {
1624 /* Case 2. */
1625 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
1626 S_02880C_EXEC_ON_HIER_FAIL(1);
1627 } else {
1628 /* Case 1. */
1629 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
1630 }
1631
1632 pipe_mutex_init(sel->mutex);
1633 util_queue_fence_init(&sel->ready);
1634
1635 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
1636 sctx->is_debug ||
1637 r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
1638 !util_queue_is_initialized(&sscreen->shader_compiler_queue))
1639 si_init_shader_selector_async(sel, -1);
1640 else
1641 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
1642 &sel->ready, si_init_shader_selector_async,
1643 NULL);
1644
1645 return sel;
1646 }
1647
1648 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1649 {
1650 struct si_context *sctx = (struct si_context *)ctx;
1651 struct si_shader_selector *sel = state;
1652
1653 if (sctx->vs_shader.cso == sel)
1654 return;
1655
1656 sctx->vs_shader.cso = sel;
1657 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1658 sctx->do_update_shaders = true;
1659 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1660 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1661 }
1662
1663 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1664 {
1665 struct si_context *sctx = (struct si_context *)ctx;
1666 struct si_shader_selector *sel = state;
1667 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1668
1669 if (sctx->gs_shader.cso == sel)
1670 return;
1671
1672 sctx->gs_shader.cso = sel;
1673 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1674 sctx->do_update_shaders = true;
1675 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1676 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1677
1678 if (enable_changed)
1679 si_shader_change_notify(sctx);
1680 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1681 }
1682
1683 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1684 {
1685 struct si_context *sctx = (struct si_context *)ctx;
1686 struct si_shader_selector *sel = state;
1687 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1688
1689 if (sctx->tcs_shader.cso == sel)
1690 return;
1691
1692 sctx->tcs_shader.cso = sel;
1693 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1694 sctx->do_update_shaders = true;
1695
1696 if (enable_changed)
1697 sctx->last_tcs = NULL; /* invalidate derived tess state */
1698 }
1699
1700 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1701 {
1702 struct si_context *sctx = (struct si_context *)ctx;
1703 struct si_shader_selector *sel = state;
1704 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1705
1706 if (sctx->tes_shader.cso == sel)
1707 return;
1708
1709 sctx->tes_shader.cso = sel;
1710 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1711 sctx->do_update_shaders = true;
1712 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1713 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1714
1715 if (enable_changed) {
1716 si_shader_change_notify(sctx);
1717 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1718 }
1719 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1720 }
1721
1722 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1723 {
1724 struct si_context *sctx = (struct si_context *)ctx;
1725 struct si_shader_selector *sel = state;
1726
1727 /* skip if supplied shader is one already in use */
1728 if (sctx->ps_shader.cso == sel)
1729 return;
1730
1731 sctx->ps_shader.cso = sel;
1732 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1733 sctx->do_update_shaders = true;
1734 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1735 }
1736
1737 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1738 {
1739 if (shader->is_optimized) {
1740 util_queue_job_wait(&shader->optimized_ready);
1741 util_queue_fence_destroy(&shader->optimized_ready);
1742 }
1743
1744 if (shader->pm4) {
1745 switch (shader->selector->type) {
1746 case PIPE_SHADER_VERTEX:
1747 if (shader->key.as_ls)
1748 si_pm4_delete_state(sctx, ls, shader->pm4);
1749 else if (shader->key.as_es)
1750 si_pm4_delete_state(sctx, es, shader->pm4);
1751 else
1752 si_pm4_delete_state(sctx, vs, shader->pm4);
1753 break;
1754 case PIPE_SHADER_TESS_CTRL:
1755 si_pm4_delete_state(sctx, hs, shader->pm4);
1756 break;
1757 case PIPE_SHADER_TESS_EVAL:
1758 if (shader->key.as_es)
1759 si_pm4_delete_state(sctx, es, shader->pm4);
1760 else
1761 si_pm4_delete_state(sctx, vs, shader->pm4);
1762 break;
1763 case PIPE_SHADER_GEOMETRY:
1764 if (shader->is_gs_copy_shader)
1765 si_pm4_delete_state(sctx, vs, shader->pm4);
1766 else
1767 si_pm4_delete_state(sctx, gs, shader->pm4);
1768 break;
1769 case PIPE_SHADER_FRAGMENT:
1770 si_pm4_delete_state(sctx, ps, shader->pm4);
1771 break;
1772 }
1773 }
1774
1775 si_shader_destroy(shader);
1776 free(shader);
1777 }
1778
1779 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1780 {
1781 struct si_context *sctx = (struct si_context *)ctx;
1782 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1783 struct si_shader *p = sel->first_variant, *c;
1784 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1785 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1786 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1787 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1788 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1789 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1790 };
1791
1792 util_queue_job_wait(&sel->ready);
1793
1794 if (current_shader[sel->type]->cso == sel) {
1795 current_shader[sel->type]->cso = NULL;
1796 current_shader[sel->type]->current = NULL;
1797 }
1798
1799 while (p) {
1800 c = p->next_variant;
1801 si_delete_shader(sctx, p);
1802 p = c;
1803 }
1804
1805 if (sel->main_shader_part)
1806 si_delete_shader(sctx, sel->main_shader_part);
1807 if (sel->gs_copy_shader)
1808 si_delete_shader(sctx, sel->gs_copy_shader);
1809
1810 util_queue_fence_destroy(&sel->ready);
1811 pipe_mutex_destroy(sel->mutex);
1812 free(sel->tokens);
1813 free(sel);
1814 }
1815
1816 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1817 struct si_shader *vs, unsigned name,
1818 unsigned index, unsigned interpolate)
1819 {
1820 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1821 unsigned j, offset, ps_input_cntl = 0;
1822
1823 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1824 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1825 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1826
1827 if (name == TGSI_SEMANTIC_PCOORD ||
1828 (name == TGSI_SEMANTIC_TEXCOORD &&
1829 sctx->sprite_coord_enable & (1 << index))) {
1830 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1831 }
1832
1833 for (j = 0; j < vsinfo->num_outputs; j++) {
1834 if (name == vsinfo->output_semantic_name[j] &&
1835 index == vsinfo->output_semantic_index[j]) {
1836 offset = vs->info.vs_output_param_offset[j];
1837
1838 if (offset <= EXP_PARAM_OFFSET_31) {
1839 /* The input is loaded from parameter memory. */
1840 ps_input_cntl |= S_028644_OFFSET(offset);
1841 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1842 if (offset == EXP_PARAM_UNDEFINED) {
1843 /* This can happen with depth-only rendering. */
1844 offset = 0;
1845 } else {
1846 /* The input is a DEFAULT_VAL constant. */
1847 assert(offset >= EXP_PARAM_DEFAULT_VAL_0000 &&
1848 offset <= EXP_PARAM_DEFAULT_VAL_1111);
1849 offset -= EXP_PARAM_DEFAULT_VAL_0000;
1850 }
1851
1852 ps_input_cntl = S_028644_OFFSET(0x20) |
1853 S_028644_DEFAULT_VAL(offset);
1854 }
1855 break;
1856 }
1857 }
1858
1859 if (name == TGSI_SEMANTIC_PRIMID)
1860 /* PrimID is written after the last output. */
1861 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1862 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1863 /* No corresponding output found, load defaults into input.
1864 * Don't set any other bits.
1865 * (FLAT_SHADE=1 completely changes behavior) */
1866 ps_input_cntl = S_028644_OFFSET(0x20);
1867 /* D3D 9 behaviour. GL is undefined */
1868 if (name == TGSI_SEMANTIC_COLOR && index == 0)
1869 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1870 }
1871 return ps_input_cntl;
1872 }
1873
1874 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1875 {
1876 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1877 struct si_shader *ps = sctx->ps_shader.current;
1878 struct si_shader *vs = si_get_vs_state(sctx);
1879 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1880 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1881
1882 if (!ps || !ps->selector->info.num_inputs)
1883 return;
1884
1885 num_interp = si_get_ps_num_interp(ps);
1886 assert(num_interp > 0);
1887 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1888
1889 for (i = 0; i < psinfo->num_inputs; i++) {
1890 unsigned name = psinfo->input_semantic_name[i];
1891 unsigned index = psinfo->input_semantic_index[i];
1892 unsigned interpolate = psinfo->input_interpolate[i];
1893
1894 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1895 interpolate));
1896 num_written++;
1897
1898 if (name == TGSI_SEMANTIC_COLOR) {
1899 assert(index < ARRAY_SIZE(bcol_interp));
1900 bcol_interp[index] = interpolate;
1901 }
1902 }
1903
1904 if (ps->key.part.ps.prolog.color_two_side) {
1905 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1906
1907 for (i = 0; i < 2; i++) {
1908 if (!(psinfo->colors_read & (0xf << (i * 4))))
1909 continue;
1910
1911 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1912 i, bcol_interp[i]));
1913 num_written++;
1914 }
1915 }
1916 assert(num_interp == num_written);
1917 }
1918
1919 /**
1920 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1921 */
1922 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1923 {
1924 if (sctx->init_config_has_vgt_flush)
1925 return;
1926
1927 /* Done by Vulkan before VGT_FLUSH. */
1928 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1929 si_pm4_cmd_add(sctx->init_config,
1930 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1931 si_pm4_cmd_end(sctx->init_config, false);
1932
1933 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1934 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1935 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1936 si_pm4_cmd_end(sctx->init_config, false);
1937 sctx->init_config_has_vgt_flush = true;
1938 }
1939
1940 /* Initialize state related to ESGS / GSVS ring buffers */
1941 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1942 {
1943 struct si_shader_selector *es =
1944 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1945 struct si_shader_selector *gs = sctx->gs_shader.cso;
1946 struct si_pm4_state *pm4;
1947
1948 /* Chip constants. */
1949 unsigned num_se = sctx->screen->b.info.max_se;
1950 unsigned wave_size = 64;
1951 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1952 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1953 unsigned alignment = 256 * num_se;
1954 /* The maximum size is 63.999 MB per SE. */
1955 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1956
1957 /* Calculate the minimum size. */
1958 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1959 wave_size, alignment);
1960
1961 /* These are recommended sizes, not minimum sizes. */
1962 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1963 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1964 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1965 gs->max_gsvs_emit_size;
1966
1967 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1968 esgs_ring_size = align(esgs_ring_size, alignment);
1969 gsvs_ring_size = align(gsvs_ring_size, alignment);
1970
1971 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1972 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1973
1974 /* Some rings don't have to be allocated if shaders don't use them.
1975 * (e.g. no varyings between ES and GS or GS and VS)
1976 */
1977 bool update_esgs = esgs_ring_size &&
1978 (!sctx->esgs_ring ||
1979 sctx->esgs_ring->width0 < esgs_ring_size);
1980 bool update_gsvs = gsvs_ring_size &&
1981 (!sctx->gsvs_ring ||
1982 sctx->gsvs_ring->width0 < gsvs_ring_size);
1983
1984 if (!update_esgs && !update_gsvs)
1985 return true;
1986
1987 if (update_esgs) {
1988 pipe_resource_reference(&sctx->esgs_ring, NULL);
1989 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
1990 PIPE_USAGE_DEFAULT,
1991 esgs_ring_size);
1992 if (!sctx->esgs_ring)
1993 return false;
1994 }
1995
1996 if (update_gsvs) {
1997 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1998 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
1999 PIPE_USAGE_DEFAULT,
2000 gsvs_ring_size);
2001 if (!sctx->gsvs_ring)
2002 return false;
2003 }
2004
2005 /* Create the "init_config_gs_rings" state. */
2006 pm4 = CALLOC_STRUCT(si_pm4_state);
2007 if (!pm4)
2008 return false;
2009
2010 if (sctx->b.chip_class >= CIK) {
2011 if (sctx->esgs_ring)
2012 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2013 sctx->esgs_ring->width0 / 256);
2014 if (sctx->gsvs_ring)
2015 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2016 sctx->gsvs_ring->width0 / 256);
2017 } else {
2018 if (sctx->esgs_ring)
2019 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2020 sctx->esgs_ring->width0 / 256);
2021 if (sctx->gsvs_ring)
2022 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2023 sctx->gsvs_ring->width0 / 256);
2024 }
2025
2026 /* Set the state. */
2027 if (sctx->init_config_gs_rings)
2028 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2029 sctx->init_config_gs_rings = pm4;
2030
2031 if (!sctx->init_config_has_vgt_flush) {
2032 si_init_config_add_vgt_flush(sctx);
2033 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2034 }
2035
2036 /* Flush the context to re-emit both init_config states. */
2037 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2038 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2039
2040 /* Set ring bindings. */
2041 if (sctx->esgs_ring) {
2042 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2043 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2044 true, true, 4, 64, 0);
2045 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2046 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2047 false, false, 0, 0, 0);
2048 }
2049 if (sctx->gsvs_ring) {
2050 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2051 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2052 false, false, 0, 0, 0);
2053 }
2054
2055 return true;
2056 }
2057
2058 /**
2059 * @returns 1 if \p sel has been updated to use a new scratch buffer
2060 * 0 if not
2061 * < 0 if there was a failure
2062 */
2063 static int si_update_scratch_buffer(struct si_context *sctx,
2064 struct si_shader *shader)
2065 {
2066 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2067 int r;
2068
2069 if (!shader)
2070 return 0;
2071
2072 /* This shader doesn't need a scratch buffer */
2073 if (shader->config.scratch_bytes_per_wave == 0)
2074 return 0;
2075
2076 /* This shader is already configured to use the current
2077 * scratch buffer. */
2078 if (shader->scratch_bo == sctx->scratch_buffer)
2079 return 0;
2080
2081 assert(sctx->scratch_buffer);
2082
2083 si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
2084
2085 /* Replace the shader bo with a new bo that has the relocs applied. */
2086 r = si_shader_binary_upload(sctx->screen, shader);
2087 if (r)
2088 return r;
2089
2090 /* Update the shader state to use the new shader bo. */
2091 si_shader_init_pm4_state(sctx->screen, shader);
2092
2093 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2094
2095 return 1;
2096 }
2097
2098 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2099 {
2100 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2101 }
2102
2103 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2104 {
2105 return shader ? shader->config.scratch_bytes_per_wave : 0;
2106 }
2107
2108 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2109 {
2110 unsigned bytes = 0;
2111
2112 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2113 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2114 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2115 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
2116 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2117 return bytes;
2118 }
2119
2120 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2121 {
2122 unsigned current_scratch_buffer_size =
2123 si_get_current_scratch_buffer_size(sctx);
2124 unsigned scratch_bytes_per_wave =
2125 si_get_max_scratch_bytes_per_wave(sctx);
2126 unsigned scratch_needed_size = scratch_bytes_per_wave *
2127 sctx->scratch_waves;
2128 unsigned spi_tmpring_size;
2129 int r;
2130
2131 if (scratch_needed_size > 0) {
2132 if (scratch_needed_size > current_scratch_buffer_size) {
2133 /* Create a bigger scratch buffer */
2134 r600_resource_reference(&sctx->scratch_buffer, NULL);
2135
2136 sctx->scratch_buffer = (struct r600_resource*)
2137 pipe_buffer_create(&sctx->screen->b.b, 0,
2138 PIPE_USAGE_DEFAULT, scratch_needed_size);
2139 if (!sctx->scratch_buffer)
2140 return false;
2141 sctx->emit_scratch_reloc = true;
2142 }
2143
2144 /* Update the shaders, so they are using the latest scratch. The
2145 * scratch buffer may have been changed since these shaders were
2146 * last used, so we still need to try to update them, even if
2147 * they require scratch buffers smaller than the current size.
2148 */
2149 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2150 if (r < 0)
2151 return false;
2152 if (r == 1)
2153 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2154
2155 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2156 if (r < 0)
2157 return false;
2158 if (r == 1)
2159 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2160
2161 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
2162 if (r < 0)
2163 return false;
2164 if (r == 1)
2165 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2166
2167 /* VS can be bound as LS, ES, or VS. */
2168 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2169 if (r < 0)
2170 return false;
2171 if (r == 1) {
2172 if (sctx->tes_shader.current)
2173 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2174 else if (sctx->gs_shader.current)
2175 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2176 else
2177 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2178 }
2179
2180 /* TES can be bound as ES or VS. */
2181 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2182 if (r < 0)
2183 return false;
2184 if (r == 1) {
2185 if (sctx->gs_shader.current)
2186 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2187 else
2188 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2189 }
2190 }
2191
2192 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2193 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2194 "scratch size should already be aligned correctly.");
2195
2196 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2197 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2198 if (spi_tmpring_size != sctx->spi_tmpring_size) {
2199 sctx->spi_tmpring_size = spi_tmpring_size;
2200 sctx->emit_scratch_reloc = true;
2201 }
2202 return true;
2203 }
2204
2205 static void si_init_tess_factor_ring(struct si_context *sctx)
2206 {
2207 bool double_offchip_buffers = sctx->b.chip_class >= CIK;
2208 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
2209 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
2210 sctx->screen->b.info.max_se;
2211 unsigned offchip_granularity;
2212
2213 switch (sctx->screen->tess_offchip_block_dw_size) {
2214 default:
2215 assert(0);
2216 /* fall through */
2217 case 8192:
2218 offchip_granularity = V_03093C_X_8K_DWORDS;
2219 break;
2220 case 4096:
2221 offchip_granularity = V_03093C_X_4K_DWORDS;
2222 break;
2223 }
2224
2225 switch (sctx->b.chip_class) {
2226 case SI:
2227 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2228 break;
2229 case CIK:
2230 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2231 break;
2232 case VI:
2233 default:
2234 max_offchip_buffers = MIN2(max_offchip_buffers, 512);
2235 break;
2236 }
2237
2238 assert(!sctx->tf_ring);
2239 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2240 PIPE_USAGE_DEFAULT,
2241 32768 * sctx->screen->b.info.max_se);
2242 if (!sctx->tf_ring)
2243 return;
2244
2245 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2246
2247 sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2248 PIPE_USAGE_DEFAULT,
2249 max_offchip_buffers *
2250 sctx->screen->tess_offchip_block_dw_size * 4);
2251 if (!sctx->tess_offchip_ring)
2252 return;
2253
2254 si_init_config_add_vgt_flush(sctx);
2255
2256 /* Append these registers to the init config state. */
2257 if (sctx->b.chip_class >= CIK) {
2258 if (sctx->b.chip_class >= VI)
2259 --max_offchip_buffers;
2260
2261 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2262 S_030938_SIZE(sctx->tf_ring->width0 / 4));
2263 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2264 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2265 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2266 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2267 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2268 } else {
2269 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2270 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2271 S_008988_SIZE(sctx->tf_ring->width0 / 4));
2272 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2273 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2274 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2275 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2276 }
2277
2278 /* Flush the context to re-emit the init_config state.
2279 * This is done only once in a lifetime of a context.
2280 */
2281 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2282 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2283 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2284
2285 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
2286 0, sctx->tf_ring->width0, false, false, 0, 0, 0);
2287
2288 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
2289 sctx->tess_offchip_ring, 0,
2290 sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
2291 }
2292
2293 /**
2294 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2295 * VS passes its outputs to TES directly, so the fixed-function shader only
2296 * has to write TESSOUTER and TESSINNER.
2297 */
2298 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2299 {
2300 struct ureg_src outer, inner;
2301 struct ureg_dst tessouter, tessinner;
2302 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2303
2304 if (!ureg)
2305 return; /* if we get here, we're screwed */
2306
2307 assert(!sctx->fixed_func_tcs_shader.cso);
2308
2309 outer = ureg_DECL_system_value(ureg,
2310 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2311 inner = ureg_DECL_system_value(ureg,
2312 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2313
2314 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2315 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2316
2317 ureg_MOV(ureg, tessouter, outer);
2318 ureg_MOV(ureg, tessinner, inner);
2319 ureg_END(ureg);
2320
2321 sctx->fixed_func_tcs_shader.cso =
2322 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2323 }
2324
2325 static void si_update_vgt_shader_config(struct si_context *sctx)
2326 {
2327 /* Calculate the index of the config.
2328 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2329 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2330 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2331
2332 if (!*pm4) {
2333 uint32_t stages = 0;
2334
2335 *pm4 = CALLOC_STRUCT(si_pm4_state);
2336
2337 if (sctx->tes_shader.cso) {
2338 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2339 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2340
2341 if (sctx->gs_shader.cso)
2342 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2343 S_028B54_GS_EN(1) |
2344 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2345 else
2346 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2347 } else if (sctx->gs_shader.cso) {
2348 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2349 S_028B54_GS_EN(1) |
2350 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2351 }
2352
2353 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2354 }
2355 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2356 }
2357
2358 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2359 {
2360 struct pipe_stream_output_info *so = &shader->so;
2361 uint32_t enabled_stream_buffers_mask = 0;
2362 int i;
2363
2364 for (i = 0; i < so->num_outputs; i++)
2365 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2366 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2367 sctx->b.streamout.stride_in_dw = shader->so.stride;
2368 }
2369
2370 bool si_update_shaders(struct si_context *sctx)
2371 {
2372 struct pipe_context *ctx = (struct pipe_context*)sctx;
2373 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2374 struct si_shader *old_vs = si_get_vs_state(sctx);
2375 bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
2376 int r;
2377
2378 /* Update stages before GS. */
2379 if (sctx->tes_shader.cso) {
2380 if (!sctx->tf_ring) {
2381 si_init_tess_factor_ring(sctx);
2382 if (!sctx->tf_ring)
2383 return false;
2384 }
2385
2386 /* VS as LS */
2387 r = si_shader_select(ctx, &sctx->vs_shader);
2388 if (r)
2389 return false;
2390 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2391
2392 if (sctx->tcs_shader.cso) {
2393 r = si_shader_select(ctx, &sctx->tcs_shader);
2394 if (r)
2395 return false;
2396 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2397 } else {
2398 if (!sctx->fixed_func_tcs_shader.cso) {
2399 si_generate_fixed_func_tcs(sctx);
2400 if (!sctx->fixed_func_tcs_shader.cso)
2401 return false;
2402 }
2403
2404 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
2405 if (r)
2406 return false;
2407 si_pm4_bind_state(sctx, hs,
2408 sctx->fixed_func_tcs_shader.current->pm4);
2409 }
2410
2411 r = si_shader_select(ctx, &sctx->tes_shader);
2412 if (r)
2413 return false;
2414
2415 if (sctx->gs_shader.cso) {
2416 /* TES as ES */
2417 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2418 } else {
2419 /* TES as VS */
2420 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2421 si_update_so(sctx, sctx->tes_shader.cso);
2422 }
2423 } else if (sctx->gs_shader.cso) {
2424 /* VS as ES */
2425 r = si_shader_select(ctx, &sctx->vs_shader);
2426 if (r)
2427 return false;
2428 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2429 } else {
2430 /* VS as VS */
2431 r = si_shader_select(ctx, &sctx->vs_shader);
2432 if (r)
2433 return false;
2434 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2435 si_update_so(sctx, sctx->vs_shader.cso);
2436 }
2437
2438 /* Update GS. */
2439 if (sctx->gs_shader.cso) {
2440 r = si_shader_select(ctx, &sctx->gs_shader);
2441 if (r)
2442 return false;
2443 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2444 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
2445 si_update_so(sctx, sctx->gs_shader.cso);
2446
2447 if (!si_update_gs_ring_buffers(sctx))
2448 return false;
2449 } else {
2450 si_pm4_bind_state(sctx, gs, NULL);
2451 si_pm4_bind_state(sctx, es, NULL);
2452 }
2453
2454 si_update_vgt_shader_config(sctx);
2455
2456 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
2457 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2458
2459 if (sctx->ps_shader.cso) {
2460 unsigned db_shader_control;
2461
2462 r = si_shader_select(ctx, &sctx->ps_shader);
2463 if (r)
2464 return false;
2465 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2466
2467 db_shader_control =
2468 sctx->ps_shader.cso->db_shader_control |
2469 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
2470
2471 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2472 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2473 sctx->flatshade != rs->flatshade) {
2474 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2475 sctx->flatshade = rs->flatshade;
2476 si_mark_atom_dirty(sctx, &sctx->spi_map);
2477 }
2478
2479 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2480 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2481
2482 if (sctx->ps_db_shader_control != db_shader_control) {
2483 sctx->ps_db_shader_control = db_shader_control;
2484 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2485 }
2486
2487 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
2488 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
2489 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2490
2491 if (sctx->b.chip_class == SI)
2492 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2493
2494 if (sctx->framebuffer.nr_samples <= 1)
2495 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
2496 }
2497 }
2498
2499 if (si_pm4_state_changed(sctx, ls) ||
2500 si_pm4_state_changed(sctx, hs) ||
2501 si_pm4_state_changed(sctx, es) ||
2502 si_pm4_state_changed(sctx, gs) ||
2503 si_pm4_state_changed(sctx, vs) ||
2504 si_pm4_state_changed(sctx, ps)) {
2505 if (!si_update_spi_tmpring_size(sctx))
2506 return false;
2507 }
2508
2509 sctx->do_update_shaders = false;
2510 return true;
2511 }
2512
2513 void si_init_shader_functions(struct si_context *sctx)
2514 {
2515 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2516
2517 sctx->b.b.create_vs_state = si_create_shader_selector;
2518 sctx->b.b.create_tcs_state = si_create_shader_selector;
2519 sctx->b.b.create_tes_state = si_create_shader_selector;
2520 sctx->b.b.create_gs_state = si_create_shader_selector;
2521 sctx->b.b.create_fs_state = si_create_shader_selector;
2522
2523 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2524 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2525 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2526 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2527 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2528
2529 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2530 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2531 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2532 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2533 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2534 }