radeonsi: adjust and clean up Z_ORDER and EXEC_ON_x settings
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "radeon/r600_cs.h"
31
32 #include "tgsi/tgsi_parse.h"
33 #include "tgsi/tgsi_ureg.h"
34 #include "util/hash_table.h"
35 #include "util/u_hash.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38
39 /* SHADER_CACHE */
40
41 /**
42 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
43 * integer.
44 */
45 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
46 {
47 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
48 sizeof(struct tgsi_token);
49 unsigned size = 4 + tgsi_size + sizeof(sel->so);
50 char *result = (char*)MALLOC(size);
51
52 if (!result)
53 return NULL;
54
55 *((uint32_t*)result) = size;
56 memcpy(result + 4, sel->tokens, tgsi_size);
57 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
58 return result;
59 }
60
61 /** Copy "data" to "ptr" and return the next dword following copied data. */
62 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
63 {
64 /* data may be NULL if size == 0 */
65 if (size)
66 memcpy(ptr, data, size);
67 ptr += DIV_ROUND_UP(size, 4);
68 return ptr;
69 }
70
71 /** Read data from "ptr". Return the next dword following the data. */
72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74 memcpy(data, ptr, size);
75 ptr += DIV_ROUND_UP(size, 4);
76 return ptr;
77 }
78
79 /**
80 * Write the size as uint followed by the data. Return the next dword
81 * following the copied data.
82 */
83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85 *ptr++ = size;
86 return write_data(ptr, data, size);
87 }
88
89 /**
90 * Read the size as uint followed by the data. Return both via parameters.
91 * Return the next dword following the data.
92 */
93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95 *size = *ptr++;
96 assert(*data == NULL);
97 if (!*size)
98 return ptr;
99 *data = malloc(*size);
100 return read_data(ptr, *data, *size);
101 }
102
103 /**
104 * Return the shader binary in a buffer. The first 4 bytes contain its size
105 * as integer.
106 */
107 static void *si_get_shader_binary(struct si_shader *shader)
108 {
109 /* There is always a size of data followed by the data itself. */
110 unsigned relocs_size = shader->binary.reloc_count *
111 sizeof(shader->binary.relocs[0]);
112 unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
113 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
114 strlen(shader->binary.llvm_ir_string) + 1 : 0;
115 unsigned size =
116 4 + /* total size */
117 4 + /* CRC32 of the data below */
118 align(sizeof(shader->config), 4) +
119 align(sizeof(shader->info), 4) +
120 4 + align(shader->binary.code_size, 4) +
121 4 + align(shader->binary.rodata_size, 4) +
122 4 + align(relocs_size, 4) +
123 4 + align(disasm_size, 4) +
124 4 + align(llvm_ir_size, 4);
125 void *buffer = CALLOC(1, size);
126 uint32_t *ptr = (uint32_t*)buffer;
127
128 if (!buffer)
129 return NULL;
130
131 *ptr++ = size;
132 ptr++; /* CRC32 is calculated at the end. */
133
134 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
135 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
136 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
137 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
138 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
139 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
140 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
141 assert((char *)ptr - (char *)buffer == size);
142
143 /* Compute CRC32. */
144 ptr = (uint32_t*)buffer;
145 ptr++;
146 *ptr = util_hash_crc32(ptr + 1, size - 8);
147
148 return buffer;
149 }
150
151 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
152 {
153 uint32_t *ptr = (uint32_t*)binary;
154 uint32_t size = *ptr++;
155 uint32_t crc32 = *ptr++;
156 unsigned chunk_size;
157
158 if (util_hash_crc32(ptr, size - 8) != crc32) {
159 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
160 return false;
161 }
162
163 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
164 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
165 ptr = read_chunk(ptr, (void**)&shader->binary.code,
166 &shader->binary.code_size);
167 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
168 &shader->binary.rodata_size);
169 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
170 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
171 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
172 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
173
174 return true;
175 }
176
177 /**
178 * Insert a shader into the cache. It's assumed the shader is not in the cache.
179 * Use si_shader_cache_load_shader before calling this.
180 *
181 * Returns false on failure, in which case the tgsi_binary should be freed.
182 */
183 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
184 void *tgsi_binary,
185 struct si_shader *shader)
186 {
187 void *hw_binary;
188 struct hash_entry *entry;
189
190 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
191 if (entry)
192 return false; /* already added */
193
194 hw_binary = si_get_shader_binary(shader);
195 if (!hw_binary)
196 return false;
197
198 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
199 hw_binary) == NULL) {
200 FREE(hw_binary);
201 return false;
202 }
203
204 return true;
205 }
206
207 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
208 void *tgsi_binary,
209 struct si_shader *shader)
210 {
211 struct hash_entry *entry =
212 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
213 if (!entry)
214 return false;
215
216 return si_load_shader_binary(shader, entry->data);
217 }
218
219 static uint32_t si_shader_cache_key_hash(const void *key)
220 {
221 /* The first dword is the key size. */
222 return util_hash_crc32(key, *(uint32_t*)key);
223 }
224
225 static bool si_shader_cache_key_equals(const void *a, const void *b)
226 {
227 uint32_t *keya = (uint32_t*)a;
228 uint32_t *keyb = (uint32_t*)b;
229
230 /* The first dword is the key size. */
231 if (*keya != *keyb)
232 return false;
233
234 return memcmp(keya, keyb, *keya) == 0;
235 }
236
237 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
238 {
239 FREE((void*)entry->key);
240 FREE(entry->data);
241 }
242
243 bool si_init_shader_cache(struct si_screen *sscreen)
244 {
245 pipe_mutex_init(sscreen->shader_cache_mutex);
246 sscreen->shader_cache =
247 _mesa_hash_table_create(NULL,
248 si_shader_cache_key_hash,
249 si_shader_cache_key_equals);
250 return sscreen->shader_cache != NULL;
251 }
252
253 void si_destroy_shader_cache(struct si_screen *sscreen)
254 {
255 if (sscreen->shader_cache)
256 _mesa_hash_table_destroy(sscreen->shader_cache,
257 si_destroy_shader_cache_entry);
258 pipe_mutex_destroy(sscreen->shader_cache_mutex);
259 }
260
261 /* SHADER STATES */
262
263 static void si_set_tesseval_regs(struct si_screen *sscreen,
264 struct si_shader *shader,
265 struct si_pm4_state *pm4)
266 {
267 struct tgsi_shader_info *info = &shader->selector->info;
268 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
269 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
270 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
271 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
272 unsigned type, partitioning, topology, distribution_mode;
273
274 switch (tes_prim_mode) {
275 case PIPE_PRIM_LINES:
276 type = V_028B6C_TESS_ISOLINE;
277 break;
278 case PIPE_PRIM_TRIANGLES:
279 type = V_028B6C_TESS_TRIANGLE;
280 break;
281 case PIPE_PRIM_QUADS:
282 type = V_028B6C_TESS_QUAD;
283 break;
284 default:
285 assert(0);
286 return;
287 }
288
289 switch (tes_spacing) {
290 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
291 partitioning = V_028B6C_PART_FRAC_ODD;
292 break;
293 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
294 partitioning = V_028B6C_PART_FRAC_EVEN;
295 break;
296 case PIPE_TESS_SPACING_EQUAL:
297 partitioning = V_028B6C_PART_INTEGER;
298 break;
299 default:
300 assert(0);
301 return;
302 }
303
304 if (tes_point_mode)
305 topology = V_028B6C_OUTPUT_POINT;
306 else if (tes_prim_mode == PIPE_PRIM_LINES)
307 topology = V_028B6C_OUTPUT_LINE;
308 else if (tes_vertex_order_cw)
309 /* for some reason, this must be the other way around */
310 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
311 else
312 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
313
314 if (sscreen->has_distributed_tess) {
315 if (sscreen->b.family == CHIP_FIJI ||
316 sscreen->b.family >= CHIP_POLARIS10)
317 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
318 else
319 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
320 } else
321 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
322
323 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
324 S_028B6C_TYPE(type) |
325 S_028B6C_PARTITIONING(partitioning) |
326 S_028B6C_TOPOLOGY(topology) |
327 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
328 }
329
330 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
331 {
332 if (shader->pm4)
333 si_pm4_clear_state(shader->pm4);
334 else
335 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
336
337 return shader->pm4;
338 }
339
340 static void si_shader_ls(struct si_shader *shader)
341 {
342 struct si_pm4_state *pm4;
343 unsigned vgpr_comp_cnt;
344 uint64_t va;
345
346 pm4 = si_get_shader_pm4_state(shader);
347 if (!pm4)
348 return;
349
350 va = shader->bo->gpu_address;
351 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
352
353 /* We need at least 2 components for LS.
354 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
355 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
356
357 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
358 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
359
360 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
361 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
362 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
363 S_00B528_DX10_CLAMP(1) |
364 S_00B528_FLOAT_MODE(shader->config.float_mode);
365 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
366 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
367 }
368
369 static void si_shader_hs(struct si_shader *shader)
370 {
371 struct si_pm4_state *pm4;
372 uint64_t va;
373
374 pm4 = si_get_shader_pm4_state(shader);
375 if (!pm4)
376 return;
377
378 va = shader->bo->gpu_address;
379 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
380
381 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
382 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
383 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
384 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
385 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
386 S_00B428_DX10_CLAMP(1) |
387 S_00B428_FLOAT_MODE(shader->config.float_mode));
388 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
389 S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
390 S_00B42C_OC_LDS_EN(1) |
391 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
392 }
393
394 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
395 {
396 struct si_pm4_state *pm4;
397 unsigned num_user_sgprs;
398 unsigned vgpr_comp_cnt;
399 uint64_t va;
400 unsigned oc_lds_en;
401
402 pm4 = si_get_shader_pm4_state(shader);
403 if (!pm4)
404 return;
405
406 va = shader->bo->gpu_address;
407 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
408
409 if (shader->selector->type == PIPE_SHADER_VERTEX) {
410 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
411 num_user_sgprs = SI_ES_NUM_USER_SGPR;
412 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
413 vgpr_comp_cnt = 3; /* all components are needed for TES */
414 num_user_sgprs = SI_TES_NUM_USER_SGPR;
415 } else
416 unreachable("invalid shader selector type");
417
418 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
419
420 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
421 shader->selector->esgs_itemsize / 4);
422 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
423 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
424 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
425 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
426 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
427 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
428 S_00B328_DX10_CLAMP(1) |
429 S_00B328_FLOAT_MODE(shader->config.float_mode));
430 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
431 S_00B32C_USER_SGPR(num_user_sgprs) |
432 S_00B32C_OC_LDS_EN(oc_lds_en) |
433 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
434
435 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
436 si_set_tesseval_regs(sscreen, shader, pm4);
437 }
438
439 /**
440 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
441 * geometry shader.
442 */
443 static uint32_t si_vgt_gs_mode(struct si_shader *shader)
444 {
445 unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
446 unsigned cut_mode;
447
448 if (gs_max_vert_out <= 128) {
449 cut_mode = V_028A40_GS_CUT_128;
450 } else if (gs_max_vert_out <= 256) {
451 cut_mode = V_028A40_GS_CUT_256;
452 } else if (gs_max_vert_out <= 512) {
453 cut_mode = V_028A40_GS_CUT_512;
454 } else {
455 assert(gs_max_vert_out <= 1024);
456 cut_mode = V_028A40_GS_CUT_1024;
457 }
458
459 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
460 S_028A40_CUT_MODE(cut_mode)|
461 S_028A40_ES_WRITE_OPTIMIZE(1) |
462 S_028A40_GS_WRITE_OPTIMIZE(1);
463 }
464
465 static void si_shader_gs(struct si_shader *shader)
466 {
467 unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
468 unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
469 unsigned gs_num_invocations = shader->selector->gs_num_invocations;
470 struct si_pm4_state *pm4;
471 uint64_t va;
472 unsigned max_stream = shader->selector->max_gs_stream;
473
474 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
475 assert(gsvs_itemsize < (1 << 15));
476
477 pm4 = si_get_shader_pm4_state(shader);
478 if (!pm4)
479 return;
480
481 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader));
482
483 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
484 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
485 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
486
487 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
488
489 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
490
491 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
492 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
493 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
494 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
495
496 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
497 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
498 S_028B90_ENABLE(gs_num_invocations > 0));
499
500 va = shader->bo->gpu_address;
501 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
502 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
503 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
504
505 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
506 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
507 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
508 S_00B228_DX10_CLAMP(1) |
509 S_00B228_FLOAT_MODE(shader->config.float_mode));
510 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
511 S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
512 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
513 }
514
515 /**
516 * Compute the state for \p shader, which will run as a vertex shader on the
517 * hardware.
518 *
519 * If \p gs is non-NULL, it points to the geometry shader for which this shader
520 * is the copy shader.
521 */
522 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
523 struct si_shader *gs)
524 {
525 struct si_pm4_state *pm4;
526 unsigned num_user_sgprs;
527 unsigned nparams, vgpr_comp_cnt;
528 uint64_t va;
529 unsigned oc_lds_en;
530 unsigned window_space =
531 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
532 bool enable_prim_id = si_vs_exports_prim_id(shader);
533
534 pm4 = si_get_shader_pm4_state(shader);
535 if (!pm4)
536 return;
537
538 /* We always write VGT_GS_MODE in the VS state, because every switch
539 * between different shader pipelines involving a different GS or no
540 * GS at all involves a switch of the VS (different GS use different
541 * copy shaders). On the other hand, when the API switches from a GS to
542 * no GS and then back to the same GS used originally, the GS state is
543 * not sent again.
544 */
545 if (!gs) {
546 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
547 S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
548 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
549 } else {
550 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
551 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
552 }
553
554 va = shader->bo->gpu_address;
555 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
556
557 if (gs) {
558 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
559 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
560 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
561 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
562 num_user_sgprs = SI_VS_NUM_USER_SGPR;
563 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
564 vgpr_comp_cnt = 3; /* all components are needed for TES */
565 num_user_sgprs = SI_TES_NUM_USER_SGPR;
566 } else
567 unreachable("invalid shader selector type");
568
569 /* VS is required to export at least one param. */
570 nparams = MAX2(shader->info.nr_param_exports, 1);
571 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
572 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
573
574 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
575 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
576 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
577 V_02870C_SPI_SHADER_4COMP :
578 V_02870C_SPI_SHADER_NONE) |
579 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
580 V_02870C_SPI_SHADER_4COMP :
581 V_02870C_SPI_SHADER_NONE) |
582 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
583 V_02870C_SPI_SHADER_4COMP :
584 V_02870C_SPI_SHADER_NONE));
585
586 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
587
588 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
589 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
590 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
591 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
592 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
593 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
594 S_00B128_DX10_CLAMP(1) |
595 S_00B128_FLOAT_MODE(shader->config.float_mode));
596 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
597 S_00B12C_USER_SGPR(num_user_sgprs) |
598 S_00B12C_OC_LDS_EN(oc_lds_en) |
599 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
600 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
601 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
602 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
603 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
604 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
605 if (window_space)
606 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
607 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
608 else
609 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
610 S_028818_VTX_W0_FMT(1) |
611 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
612 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
613 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
614
615 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
616 si_set_tesseval_regs(sscreen, shader, pm4);
617 }
618
619 static unsigned si_get_ps_num_interp(struct si_shader *ps)
620 {
621 struct tgsi_shader_info *info = &ps->selector->info;
622 unsigned num_colors = !!(info->colors_read & 0x0f) +
623 !!(info->colors_read & 0xf0);
624 unsigned num_interp = ps->selector->info.num_inputs +
625 (ps->key.ps.prolog.color_two_side ? num_colors : 0);
626
627 assert(num_interp <= 32);
628 return MIN2(num_interp, 32);
629 }
630
631 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
632 {
633 unsigned value = shader->key.ps.epilog.spi_shader_col_format;
634 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
635
636 /* If the i-th target format is set, all previous target formats must
637 * be non-zero to avoid hangs.
638 */
639 for (i = 0; i < num_targets; i++)
640 if (!(value & (0xf << (i * 4))))
641 value |= V_028714_SPI_SHADER_32_R << (i * 4);
642
643 return value;
644 }
645
646 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
647 {
648 unsigned i, cb_shader_mask = 0;
649
650 for (i = 0; i < 8; i++) {
651 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
652 case V_028714_SPI_SHADER_ZERO:
653 break;
654 case V_028714_SPI_SHADER_32_R:
655 cb_shader_mask |= 0x1 << (i * 4);
656 break;
657 case V_028714_SPI_SHADER_32_GR:
658 cb_shader_mask |= 0x3 << (i * 4);
659 break;
660 case V_028714_SPI_SHADER_32_AR:
661 cb_shader_mask |= 0x9 << (i * 4);
662 break;
663 case V_028714_SPI_SHADER_FP16_ABGR:
664 case V_028714_SPI_SHADER_UNORM16_ABGR:
665 case V_028714_SPI_SHADER_SNORM16_ABGR:
666 case V_028714_SPI_SHADER_UINT16_ABGR:
667 case V_028714_SPI_SHADER_SINT16_ABGR:
668 case V_028714_SPI_SHADER_32_ABGR:
669 cb_shader_mask |= 0xf << (i * 4);
670 break;
671 default:
672 assert(0);
673 }
674 }
675 return cb_shader_mask;
676 }
677
678 static void si_shader_ps(struct si_shader *shader)
679 {
680 struct tgsi_shader_info *info = &shader->selector->info;
681 struct si_pm4_state *pm4;
682 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
683 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
684 uint64_t va;
685 unsigned input_ena = shader->config.spi_ps_input_ena;
686
687 /* we need to enable at least one of them, otherwise we hang the GPU */
688 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
689 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
690 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
691 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
692 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
693 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
694 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
695 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
696 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
697 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
698 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
699 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
700 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
701 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
702
703 /* Validate interpolation optimization flags (read as implications). */
704 assert(!shader->key.ps.prolog.bc_optimize_for_persp ||
705 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
706 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
707 assert(!shader->key.ps.prolog.bc_optimize_for_linear ||
708 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
709 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
710 assert(!shader->key.ps.prolog.force_persp_center_interp ||
711 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
712 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
713 assert(!shader->key.ps.prolog.force_linear_center_interp ||
714 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
715 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
716 assert(!shader->key.ps.prolog.force_persp_sample_interp ||
717 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
718 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
719 assert(!shader->key.ps.prolog.force_linear_sample_interp ||
720 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
721 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
722
723 /* Validate cases when the optimizations are off (read as implications). */
724 assert(shader->key.ps.prolog.bc_optimize_for_persp ||
725 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
726 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
727 assert(shader->key.ps.prolog.bc_optimize_for_linear ||
728 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
729 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
730
731 pm4 = si_get_shader_pm4_state(shader);
732 if (!pm4)
733 return;
734
735 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
736 * Possible vaules:
737 * 0 -> Position = pixel center
738 * 1 -> Position = pixel centroid
739 * 2 -> Position = at sample position
740 *
741 * From GLSL 4.5 specification, section 7.1:
742 * "The variable gl_FragCoord is available as an input variable from
743 * within fragment shaders and it holds the window relative coordinates
744 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
745 * value can be for any location within the pixel, or one of the
746 * fragment samples. The use of centroid does not further restrict
747 * this value to be inside the current primitive."
748 *
749 * Meaning that centroid has no effect and we can return anything within
750 * the pixel. Thus, return the value at sample position, because that's
751 * the most accurate one shaders can get.
752 */
753 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
754
755 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
756 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
757 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
758
759 spi_shader_col_format = si_get_spi_shader_col_format(shader);
760 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
761
762 /* Ensure that some export memory is always allocated, for two reasons:
763 *
764 * 1) Correctness: The hardware ignores the EXEC mask if no export
765 * memory is allocated, so KILL and alpha test do not work correctly
766 * without this.
767 * 2) Performance: Every shader needs at least a NULL export, even when
768 * it writes no color/depth output. The NULL export instruction
769 * stalls without this setting.
770 *
771 * Don't add this to CB_SHADER_MASK.
772 */
773 if (!spi_shader_col_format &&
774 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
775 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
776
777 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
778 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
779 shader->config.spi_ps_input_addr);
780
781 /* Set interpolation controls. */
782 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
783
784 /* Set registers. */
785 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
786 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
787
788 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
789 si_get_spi_shader_z_format(info->writes_z,
790 info->writes_stencil,
791 info->writes_samplemask));
792
793 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
794 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
795
796 va = shader->bo->gpu_address;
797 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
798 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
799 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
800
801 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
802 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
803 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
804 S_00B028_DX10_CLAMP(1) |
805 S_00B028_FLOAT_MODE(shader->config.float_mode));
806 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
807 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
808 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
809 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
810 }
811
812 static void si_shader_init_pm4_state(struct si_screen *sscreen,
813 struct si_shader *shader)
814 {
815 switch (shader->selector->type) {
816 case PIPE_SHADER_VERTEX:
817 if (shader->key.vs.as_ls)
818 si_shader_ls(shader);
819 else if (shader->key.vs.as_es)
820 si_shader_es(sscreen, shader);
821 else
822 si_shader_vs(sscreen, shader, NULL);
823 break;
824 case PIPE_SHADER_TESS_CTRL:
825 si_shader_hs(shader);
826 break;
827 case PIPE_SHADER_TESS_EVAL:
828 if (shader->key.tes.as_es)
829 si_shader_es(sscreen, shader);
830 else
831 si_shader_vs(sscreen, shader, NULL);
832 break;
833 case PIPE_SHADER_GEOMETRY:
834 si_shader_gs(shader);
835 si_shader_vs(sscreen, shader->gs_copy_shader, shader);
836 break;
837 case PIPE_SHADER_FRAGMENT:
838 si_shader_ps(shader);
839 break;
840 default:
841 assert(0);
842 }
843 }
844
845 static unsigned si_get_alpha_test_func(struct si_context *sctx)
846 {
847 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
848 if (sctx->queued.named.dsa &&
849 !sctx->framebuffer.cb0_is_integer)
850 return sctx->queued.named.dsa->alpha_func;
851
852 return PIPE_FUNC_ALWAYS;
853 }
854
855 /* Compute the key for the hw shader variant */
856 static inline void si_shader_selector_key(struct pipe_context *ctx,
857 struct si_shader_selector *sel,
858 union si_shader_key *key)
859 {
860 struct si_context *sctx = (struct si_context *)ctx;
861 unsigned i;
862
863 memset(key, 0, sizeof(*key));
864
865 switch (sel->type) {
866 case PIPE_SHADER_VERTEX:
867 if (sctx->vertex_elements) {
868 unsigned count = MIN2(sel->info.num_inputs,
869 sctx->vertex_elements->count);
870 for (i = 0; i < count; ++i)
871 key->vs.prolog.instance_divisors[i] =
872 sctx->vertex_elements->elements[i].instance_divisor;
873 }
874 if (sctx->tes_shader.cso)
875 key->vs.as_ls = 1;
876 else if (sctx->gs_shader.cso)
877 key->vs.as_es = 1;
878
879 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
880 sctx->ps_shader.cso->info.uses_primid)
881 key->vs.epilog.export_prim_id = 1;
882 break;
883 case PIPE_SHADER_TESS_CTRL:
884 key->tcs.epilog.prim_mode =
885 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
886
887 if (sel == sctx->fixed_func_tcs_shader.cso)
888 key->tcs.epilog.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
889 break;
890 case PIPE_SHADER_TESS_EVAL:
891 if (sctx->gs_shader.cso)
892 key->tes.as_es = 1;
893 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
894 key->tes.epilog.export_prim_id = 1;
895 break;
896 case PIPE_SHADER_GEOMETRY:
897 break;
898 case PIPE_SHADER_FRAGMENT: {
899 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
900 struct si_state_blend *blend = sctx->queued.named.blend;
901
902 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
903 sel->info.colors_written == 0x1)
904 key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
905
906 if (blend) {
907 /* Select the shader color format based on whether
908 * blending or alpha are needed.
909 */
910 key->ps.epilog.spi_shader_col_format =
911 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
912 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
913 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
914 sctx->framebuffer.spi_shader_col_format_blend) |
915 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
916 sctx->framebuffer.spi_shader_col_format_alpha) |
917 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
918 sctx->framebuffer.spi_shader_col_format);
919
920 /* The output for dual source blending should have
921 * the same format as the first output.
922 */
923 if (blend->dual_src_blend)
924 key->ps.epilog.spi_shader_col_format |=
925 (key->ps.epilog.spi_shader_col_format & 0xf) << 4;
926 } else
927 key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
928
929 /* If alpha-to-coverage is enabled, we have to export alpha
930 * even if there is no color buffer.
931 */
932 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
933 blend && blend->alpha_to_coverage)
934 key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
935
936 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
937 * to the range supported by the type if a channel has less
938 * than 16 bits and the export format is 16_ABGR.
939 */
940 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
941 key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
942
943 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
944 if (!key->ps.epilog.last_cbuf) {
945 key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
946 key->ps.epilog.color_is_int8 &= sel->info.colors_written;
947 }
948
949 if (rs) {
950 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
951 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
952 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
953 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
954
955 key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
956 key->ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
957
958 if (sctx->queued.named.blend) {
959 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
960 rs->multisample_enable &&
961 !sctx->framebuffer.cb0_is_integer;
962 }
963
964 key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
965 key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
966 (is_line && rs->line_smooth)) &&
967 sctx->framebuffer.nr_samples <= 1;
968 key->ps.epilog.clamp_color = rs->clamp_fragment_color;
969
970 if (rs->force_persample_interp &&
971 rs->multisample_enable &&
972 sctx->framebuffer.nr_samples > 1 &&
973 sctx->ps_iter_samples > 1) {
974 key->ps.prolog.force_persp_sample_interp =
975 sel->info.uses_persp_center ||
976 sel->info.uses_persp_centroid;
977
978 key->ps.prolog.force_linear_sample_interp =
979 sel->info.uses_linear_center ||
980 sel->info.uses_linear_centroid;
981 } else if (rs->multisample_enable &&
982 sctx->framebuffer.nr_samples > 1) {
983 key->ps.prolog.bc_optimize_for_persp =
984 sel->info.uses_persp_center &&
985 sel->info.uses_persp_centroid;
986 key->ps.prolog.bc_optimize_for_linear =
987 sel->info.uses_linear_center &&
988 sel->info.uses_linear_centroid;
989 } else {
990 /* Make sure SPI doesn't compute more than 1 pair
991 * of (i,j), which is the optimization here. */
992 key->ps.prolog.force_persp_center_interp =
993 sel->info.uses_persp_center +
994 sel->info.uses_persp_centroid +
995 sel->info.uses_persp_sample > 1;
996
997 key->ps.prolog.force_linear_center_interp =
998 sel->info.uses_linear_center +
999 sel->info.uses_linear_centroid +
1000 sel->info.uses_linear_sample > 1;
1001 }
1002 }
1003
1004 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1005 break;
1006 }
1007 default:
1008 assert(0);
1009 }
1010 }
1011
1012 /* Select the hw shader variant depending on the current state. */
1013 static int si_shader_select_with_key(struct si_screen *sscreen,
1014 struct si_shader_ctx_state *state,
1015 union si_shader_key *key,
1016 LLVMTargetMachineRef tm,
1017 struct pipe_debug_callback *debug,
1018 bool wait,
1019 bool is_debug_context)
1020 {
1021 struct si_shader_selector *sel = state->cso;
1022 struct si_shader *current = state->current;
1023 struct si_shader *iter, *shader = NULL;
1024 int r;
1025
1026 /* Check if we don't need to change anything.
1027 * This path is also used for most shaders that don't need multiple
1028 * variants, it will cost just a computation of the key and this
1029 * test. */
1030 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
1031 return 0;
1032
1033 /* This must be done before the mutex is locked, because async GS
1034 * compilation calls this function too, and therefore must enter
1035 * the mutex first.
1036 */
1037 if (wait)
1038 util_queue_job_wait(&sel->ready);
1039
1040 pipe_mutex_lock(sel->mutex);
1041
1042 /* Find the shader variant. */
1043 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1044 /* Don't check the "current" shader. We checked it above. */
1045 if (current != iter &&
1046 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1047 state->current = iter;
1048 pipe_mutex_unlock(sel->mutex);
1049 return 0;
1050 }
1051 }
1052
1053 /* Build a new shader. */
1054 shader = CALLOC_STRUCT(si_shader);
1055 if (!shader) {
1056 pipe_mutex_unlock(sel->mutex);
1057 return -ENOMEM;
1058 }
1059 shader->selector = sel;
1060 shader->key = *key;
1061
1062 r = si_shader_create(sscreen, tm, shader, debug);
1063 if (unlikely(r)) {
1064 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1065 sel->type, r);
1066 FREE(shader);
1067 pipe_mutex_unlock(sel->mutex);
1068 return r;
1069 }
1070
1071 if (is_debug_context) {
1072 FILE *f = open_memstream(&shader->shader_log,
1073 &shader->shader_log_size);
1074 if (f) {
1075 si_shader_dump(sscreen, shader, NULL, sel->type, f);
1076 fclose(f);
1077 }
1078 }
1079
1080 si_shader_init_pm4_state(sscreen, shader);
1081
1082 if (!sel->last_variant) {
1083 sel->first_variant = shader;
1084 sel->last_variant = shader;
1085 } else {
1086 sel->last_variant->next_variant = shader;
1087 sel->last_variant = shader;
1088 }
1089 state->current = shader;
1090 pipe_mutex_unlock(sel->mutex);
1091 return 0;
1092 }
1093
1094 static int si_shader_select(struct pipe_context *ctx,
1095 struct si_shader_ctx_state *state)
1096 {
1097 struct si_context *sctx = (struct si_context *)ctx;
1098 union si_shader_key key;
1099
1100 si_shader_selector_key(ctx, state->cso, &key);
1101 return si_shader_select_with_key(sctx->screen, state, &key,
1102 sctx->tm, &sctx->b.debug, true,
1103 sctx->is_debug);
1104 }
1105
1106 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1107 union si_shader_key *key)
1108 {
1109 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1110
1111 switch (info->processor) {
1112 case PIPE_SHADER_VERTEX:
1113 switch (next_shader) {
1114 case PIPE_SHADER_GEOMETRY:
1115 key->vs.as_es = 1;
1116 break;
1117 case PIPE_SHADER_TESS_CTRL:
1118 case PIPE_SHADER_TESS_EVAL:
1119 key->vs.as_ls = 1;
1120 break;
1121 }
1122 break;
1123
1124 case PIPE_SHADER_TESS_EVAL:
1125 if (next_shader == PIPE_SHADER_GEOMETRY)
1126 key->tes.as_es = 1;
1127 break;
1128 }
1129 }
1130
1131 /**
1132 * Compile the main shader part or the monolithic shader as part of
1133 * si_shader_selector initialization. Since it can be done asynchronously,
1134 * there is no way to report compile failures to applications.
1135 */
1136 void si_init_shader_selector_async(void *job, int thread_index)
1137 {
1138 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1139 struct si_screen *sscreen = sel->screen;
1140 LLVMTargetMachineRef tm;
1141 struct pipe_debug_callback *debug = &sel->debug;
1142 unsigned i;
1143
1144 if (thread_index >= 0) {
1145 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1146 tm = sscreen->tm[thread_index];
1147 if (!debug->async)
1148 debug = NULL;
1149 } else {
1150 tm = sel->tm;
1151 }
1152
1153 /* Compile the main shader part for use with a prolog and/or epilog.
1154 * If this fails, the driver will try to compile a monolithic shader
1155 * on demand.
1156 */
1157 if (sel->type != PIPE_SHADER_GEOMETRY &&
1158 !sscreen->use_monolithic_shaders) {
1159 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1160 void *tgsi_binary;
1161
1162 if (!shader) {
1163 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1164 return;
1165 }
1166
1167 shader->selector = sel;
1168 si_parse_next_shader_property(&sel->info, &shader->key);
1169
1170 tgsi_binary = si_get_tgsi_binary(sel);
1171
1172 /* Try to load the shader from the shader cache. */
1173 pipe_mutex_lock(sscreen->shader_cache_mutex);
1174
1175 if (tgsi_binary &&
1176 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1177 FREE(tgsi_binary);
1178 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1179 } else {
1180 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1181
1182 /* Compile the shader if it hasn't been loaded from the cache. */
1183 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1184 debug) != 0) {
1185 FREE(shader);
1186 FREE(tgsi_binary);
1187 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1188 return;
1189 }
1190
1191 if (tgsi_binary) {
1192 pipe_mutex_lock(sscreen->shader_cache_mutex);
1193 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1194 FREE(tgsi_binary);
1195 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1196 }
1197 }
1198
1199 sel->main_shader_part = shader;
1200 }
1201
1202 /* Pre-compilation. */
1203 if (sel->type == PIPE_SHADER_GEOMETRY ||
1204 sscreen->b.debug_flags & DBG_PRECOMPILE) {
1205 struct si_shader_ctx_state state = {sel};
1206 union si_shader_key key;
1207
1208 memset(&key, 0, sizeof(key));
1209 si_parse_next_shader_property(&sel->info, &key);
1210
1211 /* Set reasonable defaults, so that the shader key doesn't
1212 * cause any code to be eliminated.
1213 */
1214 switch (sel->type) {
1215 case PIPE_SHADER_TESS_CTRL:
1216 key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1217 break;
1218 case PIPE_SHADER_FRAGMENT:
1219 key.ps.prolog.bc_optimize_for_persp =
1220 sel->info.uses_persp_center &&
1221 sel->info.uses_persp_centroid;
1222 key.ps.prolog.bc_optimize_for_linear =
1223 sel->info.uses_linear_center &&
1224 sel->info.uses_linear_centroid;
1225 key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1226 for (i = 0; i < 8; i++)
1227 if (sel->info.colors_written & (1 << i))
1228 key.ps.epilog.spi_shader_col_format |=
1229 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1230 break;
1231 }
1232
1233 if (si_shader_select_with_key(sscreen, &state, &key, tm, debug,
1234 false, sel->is_debug_context))
1235 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1236 }
1237 }
1238
1239 static void *si_create_shader_selector(struct pipe_context *ctx,
1240 const struct pipe_shader_state *state)
1241 {
1242 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1243 struct si_context *sctx = (struct si_context*)ctx;
1244 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1245 int i;
1246
1247 if (!sel)
1248 return NULL;
1249
1250 sel->screen = sscreen;
1251 sel->tm = sctx->tm;
1252 sel->debug = sctx->b.debug;
1253 sel->is_debug_context = sctx->is_debug;
1254 sel->tokens = tgsi_dup_tokens(state->tokens);
1255 if (!sel->tokens) {
1256 FREE(sel);
1257 return NULL;
1258 }
1259
1260 sel->so = state->stream_output;
1261 tgsi_scan_shader(state->tokens, &sel->info);
1262 sel->type = sel->info.processor;
1263 p_atomic_inc(&sscreen->b.num_shaders_created);
1264
1265 /* Set which opcode uses which (i,j) pair. */
1266 if (sel->info.uses_persp_opcode_interp_centroid)
1267 sel->info.uses_persp_centroid = true;
1268
1269 if (sel->info.uses_linear_opcode_interp_centroid)
1270 sel->info.uses_linear_centroid = true;
1271
1272 if (sel->info.uses_persp_opcode_interp_offset ||
1273 sel->info.uses_persp_opcode_interp_sample)
1274 sel->info.uses_persp_center = true;
1275
1276 if (sel->info.uses_linear_opcode_interp_offset ||
1277 sel->info.uses_linear_opcode_interp_sample)
1278 sel->info.uses_linear_center = true;
1279
1280 switch (sel->type) {
1281 case PIPE_SHADER_GEOMETRY:
1282 sel->gs_output_prim =
1283 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1284 sel->gs_max_out_vertices =
1285 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1286 sel->gs_num_invocations =
1287 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1288 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1289 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1290 sel->gs_max_out_vertices;
1291
1292 sel->max_gs_stream = 0;
1293 for (i = 0; i < sel->so.num_outputs; i++)
1294 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1295 sel->so.output[i].stream);
1296
1297 sel->gs_input_verts_per_prim =
1298 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1299 break;
1300
1301 case PIPE_SHADER_TESS_CTRL:
1302 /* Always reserve space for these. */
1303 sel->patch_outputs_written |=
1304 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1305 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1306 /* fall through */
1307 case PIPE_SHADER_VERTEX:
1308 case PIPE_SHADER_TESS_EVAL:
1309 for (i = 0; i < sel->info.num_outputs; i++) {
1310 unsigned name = sel->info.output_semantic_name[i];
1311 unsigned index = sel->info.output_semantic_index[i];
1312
1313 switch (name) {
1314 case TGSI_SEMANTIC_TESSINNER:
1315 case TGSI_SEMANTIC_TESSOUTER:
1316 case TGSI_SEMANTIC_PATCH:
1317 sel->patch_outputs_written |=
1318 1llu << si_shader_io_get_unique_index(name, index);
1319 break;
1320 default:
1321 sel->outputs_written |=
1322 1llu << si_shader_io_get_unique_index(name, index);
1323 }
1324 }
1325 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1326 break;
1327
1328 case PIPE_SHADER_FRAGMENT:
1329 for (i = 0; i < 8; i++)
1330 if (sel->info.colors_written & (1 << i))
1331 sel->colors_written_4bit |= 0xf << (4 * i);
1332
1333 for (i = 0; i < sel->info.num_inputs; i++) {
1334 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1335 int index = sel->info.input_semantic_index[i];
1336 sel->color_attr_index[index] = i;
1337 }
1338 }
1339 break;
1340 }
1341
1342 /* DB_SHADER_CONTROL */
1343 sel->db_shader_control =
1344 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1345 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1346 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1347 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1348
1349 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1350 case TGSI_FS_DEPTH_LAYOUT_GREATER:
1351 sel->db_shader_control |=
1352 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1353 break;
1354 case TGSI_FS_DEPTH_LAYOUT_LESS:
1355 sel->db_shader_control |=
1356 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1357 break;
1358 }
1359
1360 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
1361 *
1362 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
1363 * --|-----------|------------|------------|--------------------|-------------------|-------------
1364 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
1365 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
1366 * 2 | false | true | n/a | LateZ | 1 | 0
1367 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
1368 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
1369 *
1370 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
1371 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
1372 *
1373 * Don't use ReZ without profiling !!!
1374 *
1375 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
1376 * shaders.
1377 */
1378 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
1379 /* Cases 3, 4. */
1380 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
1381 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
1382 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
1383 } else if (sel->info.writes_memory) {
1384 /* Case 2. */
1385 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
1386 S_02880C_EXEC_ON_HIER_FAIL(1);
1387 } else {
1388 /* Case 1. */
1389 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
1390 }
1391
1392 pipe_mutex_init(sel->mutex);
1393 util_queue_fence_init(&sel->ready);
1394
1395 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
1396 sctx->is_debug ||
1397 r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
1398 !util_queue_is_initialized(&sscreen->shader_compiler_queue))
1399 si_init_shader_selector_async(sel, -1);
1400 else
1401 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
1402 &sel->ready, si_init_shader_selector_async,
1403 NULL);
1404
1405 return sel;
1406 }
1407
1408 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1409 {
1410 struct si_context *sctx = (struct si_context *)ctx;
1411 struct si_shader_selector *sel = state;
1412
1413 if (sctx->vs_shader.cso == sel)
1414 return;
1415
1416 sctx->vs_shader.cso = sel;
1417 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1418 sctx->do_update_shaders = true;
1419 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1420 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1421 }
1422
1423 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1424 {
1425 struct si_context *sctx = (struct si_context *)ctx;
1426 struct si_shader_selector *sel = state;
1427 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1428
1429 if (sctx->gs_shader.cso == sel)
1430 return;
1431
1432 sctx->gs_shader.cso = sel;
1433 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1434 sctx->do_update_shaders = true;
1435 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1436 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1437
1438 if (enable_changed)
1439 si_shader_change_notify(sctx);
1440 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1441 }
1442
1443 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1444 {
1445 struct si_context *sctx = (struct si_context *)ctx;
1446 struct si_shader_selector *sel = state;
1447 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1448
1449 if (sctx->tcs_shader.cso == sel)
1450 return;
1451
1452 sctx->tcs_shader.cso = sel;
1453 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1454 sctx->do_update_shaders = true;
1455
1456 if (enable_changed)
1457 sctx->last_tcs = NULL; /* invalidate derived tess state */
1458 }
1459
1460 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1461 {
1462 struct si_context *sctx = (struct si_context *)ctx;
1463 struct si_shader_selector *sel = state;
1464 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1465
1466 if (sctx->tes_shader.cso == sel)
1467 return;
1468
1469 sctx->tes_shader.cso = sel;
1470 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1471 sctx->do_update_shaders = true;
1472 si_mark_atom_dirty(sctx, &sctx->clip_regs);
1473 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1474
1475 if (enable_changed) {
1476 si_shader_change_notify(sctx);
1477 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1478 }
1479 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1480 }
1481
1482 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1483 {
1484 struct si_context *sctx = (struct si_context *)ctx;
1485 struct si_shader_selector *sel = state;
1486
1487 /* skip if supplied shader is one already in use */
1488 if (sctx->ps_shader.cso == sel)
1489 return;
1490
1491 sctx->ps_shader.cso = sel;
1492 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1493 sctx->do_update_shaders = true;
1494 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1495 }
1496
1497 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1498 {
1499 if (shader->pm4) {
1500 switch (shader->selector->type) {
1501 case PIPE_SHADER_VERTEX:
1502 if (shader->key.vs.as_ls)
1503 si_pm4_delete_state(sctx, ls, shader->pm4);
1504 else if (shader->key.vs.as_es)
1505 si_pm4_delete_state(sctx, es, shader->pm4);
1506 else
1507 si_pm4_delete_state(sctx, vs, shader->pm4);
1508 break;
1509 case PIPE_SHADER_TESS_CTRL:
1510 si_pm4_delete_state(sctx, hs, shader->pm4);
1511 break;
1512 case PIPE_SHADER_TESS_EVAL:
1513 if (shader->key.tes.as_es)
1514 si_pm4_delete_state(sctx, es, shader->pm4);
1515 else
1516 si_pm4_delete_state(sctx, vs, shader->pm4);
1517 break;
1518 case PIPE_SHADER_GEOMETRY:
1519 si_pm4_delete_state(sctx, gs, shader->pm4);
1520 si_pm4_delete_state(sctx, vs, shader->gs_copy_shader->pm4);
1521 break;
1522 case PIPE_SHADER_FRAGMENT:
1523 si_pm4_delete_state(sctx, ps, shader->pm4);
1524 break;
1525 }
1526 }
1527
1528 si_shader_destroy(shader);
1529 free(shader);
1530 }
1531
1532 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1533 {
1534 struct si_context *sctx = (struct si_context *)ctx;
1535 struct si_shader_selector *sel = (struct si_shader_selector *)state;
1536 struct si_shader *p = sel->first_variant, *c;
1537 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1538 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1539 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1540 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1541 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1542 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1543 };
1544
1545 util_queue_job_wait(&sel->ready);
1546
1547 if (current_shader[sel->type]->cso == sel) {
1548 current_shader[sel->type]->cso = NULL;
1549 current_shader[sel->type]->current = NULL;
1550 }
1551
1552 while (p) {
1553 c = p->next_variant;
1554 si_delete_shader(sctx, p);
1555 p = c;
1556 }
1557
1558 if (sel->main_shader_part)
1559 si_delete_shader(sctx, sel->main_shader_part);
1560
1561 util_queue_fence_destroy(&sel->ready);
1562 pipe_mutex_destroy(sel->mutex);
1563 free(sel->tokens);
1564 free(sel);
1565 }
1566
1567 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1568 struct si_shader *vs, unsigned name,
1569 unsigned index, unsigned interpolate)
1570 {
1571 struct tgsi_shader_info *vsinfo = &vs->selector->info;
1572 unsigned j, ps_input_cntl = 0;
1573
1574 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1575 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1576 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1577
1578 if (name == TGSI_SEMANTIC_PCOORD ||
1579 (name == TGSI_SEMANTIC_TEXCOORD &&
1580 sctx->sprite_coord_enable & (1 << index))) {
1581 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1582 }
1583
1584 for (j = 0; j < vsinfo->num_outputs; j++) {
1585 if (name == vsinfo->output_semantic_name[j] &&
1586 index == vsinfo->output_semantic_index[j]) {
1587 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[j]);
1588 break;
1589 }
1590 }
1591
1592 if (name == TGSI_SEMANTIC_PRIMID)
1593 /* PrimID is written after the last output. */
1594 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1595 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1596 /* No corresponding output found, load defaults into input.
1597 * Don't set any other bits.
1598 * (FLAT_SHADE=1 completely changes behavior) */
1599 ps_input_cntl = S_028644_OFFSET(0x20);
1600 /* D3D 9 behaviour. GL is undefined */
1601 if (name == TGSI_SEMANTIC_COLOR && index == 0)
1602 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1603 }
1604 return ps_input_cntl;
1605 }
1606
1607 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1608 {
1609 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1610 struct si_shader *ps = sctx->ps_shader.current;
1611 struct si_shader *vs = si_get_vs_state(sctx);
1612 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1613 unsigned i, num_interp, num_written = 0, bcol_interp[2];
1614
1615 if (!ps || !ps->selector->info.num_inputs)
1616 return;
1617
1618 num_interp = si_get_ps_num_interp(ps);
1619 assert(num_interp > 0);
1620 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1621
1622 for (i = 0; i < psinfo->num_inputs; i++) {
1623 unsigned name = psinfo->input_semantic_name[i];
1624 unsigned index = psinfo->input_semantic_index[i];
1625 unsigned interpolate = psinfo->input_interpolate[i];
1626
1627 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1628 interpolate));
1629 num_written++;
1630
1631 if (name == TGSI_SEMANTIC_COLOR) {
1632 assert(index < ARRAY_SIZE(bcol_interp));
1633 bcol_interp[index] = interpolate;
1634 }
1635 }
1636
1637 if (ps->key.ps.prolog.color_two_side) {
1638 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1639
1640 for (i = 0; i < 2; i++) {
1641 if (!(psinfo->colors_read & (0xf << (i * 4))))
1642 continue;
1643
1644 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1645 i, bcol_interp[i]));
1646 num_written++;
1647 }
1648 }
1649 assert(num_interp == num_written);
1650 }
1651
1652 /**
1653 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1654 */
1655 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1656 {
1657 if (sctx->init_config_has_vgt_flush)
1658 return;
1659
1660 /* Done by Vulkan before VGT_FLUSH. */
1661 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1662 si_pm4_cmd_add(sctx->init_config,
1663 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1664 si_pm4_cmd_end(sctx->init_config, false);
1665
1666 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1667 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1668 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1669 si_pm4_cmd_end(sctx->init_config, false);
1670 sctx->init_config_has_vgt_flush = true;
1671 }
1672
1673 /* Initialize state related to ESGS / GSVS ring buffers */
1674 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1675 {
1676 struct si_shader_selector *es =
1677 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1678 struct si_shader_selector *gs = sctx->gs_shader.cso;
1679 struct si_pm4_state *pm4;
1680
1681 /* Chip constants. */
1682 unsigned num_se = sctx->screen->b.info.max_se;
1683 unsigned wave_size = 64;
1684 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1685 unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1686 unsigned alignment = 256 * num_se;
1687 /* The maximum size is 63.999 MB per SE. */
1688 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1689
1690 /* Calculate the minimum size. */
1691 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1692 wave_size, alignment);
1693
1694 /* These are recommended sizes, not minimum sizes. */
1695 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1696 es->esgs_itemsize * gs->gs_input_verts_per_prim;
1697 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1698 gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1699
1700 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1701 esgs_ring_size = align(esgs_ring_size, alignment);
1702 gsvs_ring_size = align(gsvs_ring_size, alignment);
1703
1704 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1705 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1706
1707 /* Some rings don't have to be allocated if shaders don't use them.
1708 * (e.g. no varyings between ES and GS or GS and VS)
1709 */
1710 bool update_esgs = esgs_ring_size &&
1711 (!sctx->esgs_ring ||
1712 sctx->esgs_ring->width0 < esgs_ring_size);
1713 bool update_gsvs = gsvs_ring_size &&
1714 (!sctx->gsvs_ring ||
1715 sctx->gsvs_ring->width0 < gsvs_ring_size);
1716
1717 if (!update_esgs && !update_gsvs)
1718 return true;
1719
1720 if (update_esgs) {
1721 pipe_resource_reference(&sctx->esgs_ring, NULL);
1722 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1723 PIPE_USAGE_DEFAULT,
1724 esgs_ring_size);
1725 if (!sctx->esgs_ring)
1726 return false;
1727 }
1728
1729 if (update_gsvs) {
1730 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1731 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1732 PIPE_USAGE_DEFAULT,
1733 gsvs_ring_size);
1734 if (!sctx->gsvs_ring)
1735 return false;
1736 }
1737
1738 /* Create the "init_config_gs_rings" state. */
1739 pm4 = CALLOC_STRUCT(si_pm4_state);
1740 if (!pm4)
1741 return false;
1742
1743 if (sctx->b.chip_class >= CIK) {
1744 if (sctx->esgs_ring)
1745 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1746 sctx->esgs_ring->width0 / 256);
1747 if (sctx->gsvs_ring)
1748 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1749 sctx->gsvs_ring->width0 / 256);
1750 } else {
1751 if (sctx->esgs_ring)
1752 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1753 sctx->esgs_ring->width0 / 256);
1754 if (sctx->gsvs_ring)
1755 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1756 sctx->gsvs_ring->width0 / 256);
1757 }
1758
1759 /* Set the state. */
1760 if (sctx->init_config_gs_rings)
1761 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1762 sctx->init_config_gs_rings = pm4;
1763
1764 if (!sctx->init_config_has_vgt_flush) {
1765 si_init_config_add_vgt_flush(sctx);
1766 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1767 }
1768
1769 /* Flush the context to re-emit both init_config states. */
1770 sctx->b.initial_gfx_cs_size = 0; /* force flush */
1771 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1772
1773 /* Set ring bindings. */
1774 if (sctx->esgs_ring) {
1775 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
1776 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1777 true, true, 4, 64, 0);
1778 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
1779 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1780 false, false, 0, 0, 0);
1781 }
1782 if (sctx->gsvs_ring)
1783 si_set_ring_buffer(&sctx->b.b, SI_VS_RING_GSVS,
1784 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1785 false, false, 0, 0, 0);
1786 return true;
1787 }
1788
1789 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1790 {
1791 unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1792 uint64_t offset;
1793
1794 if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1795 return;
1796
1797 sctx->last_gsvs_itemsize = gsvs_itemsize;
1798
1799 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS0,
1800 sctx->gsvs_ring, gsvs_itemsize,
1801 64, true, true, 4, 16, 0);
1802
1803 offset = gsvs_itemsize * 64;
1804 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS1,
1805 sctx->gsvs_ring, gsvs_itemsize,
1806 64, true, true, 4, 16, offset);
1807
1808 offset = (gsvs_itemsize * 2) * 64;
1809 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS2,
1810 sctx->gsvs_ring, gsvs_itemsize,
1811 64, true, true, 4, 16, offset);
1812
1813 offset = (gsvs_itemsize * 3) * 64;
1814 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS3,
1815 sctx->gsvs_ring, gsvs_itemsize,
1816 64, true, true, 4, 16, offset);
1817 }
1818
1819 /**
1820 * @returns 1 if \p sel has been updated to use a new scratch buffer
1821 * 0 if not
1822 * < 0 if there was a failure
1823 */
1824 static int si_update_scratch_buffer(struct si_context *sctx,
1825 struct si_shader *shader)
1826 {
1827 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1828 int r;
1829
1830 if (!shader)
1831 return 0;
1832
1833 /* This shader doesn't need a scratch buffer */
1834 if (shader->config.scratch_bytes_per_wave == 0)
1835 return 0;
1836
1837 /* This shader is already configured to use the current
1838 * scratch buffer. */
1839 if (shader->scratch_bo == sctx->scratch_buffer)
1840 return 0;
1841
1842 assert(sctx->scratch_buffer);
1843
1844 si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
1845
1846 /* Replace the shader bo with a new bo that has the relocs applied. */
1847 r = si_shader_binary_upload(sctx->screen, shader);
1848 if (r)
1849 return r;
1850
1851 /* Update the shader state to use the new shader bo. */
1852 si_shader_init_pm4_state(sctx->screen, shader);
1853
1854 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1855
1856 return 1;
1857 }
1858
1859 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1860 {
1861 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1862 }
1863
1864 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1865 {
1866 return shader ? shader->config.scratch_bytes_per_wave : 0;
1867 }
1868
1869 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1870 {
1871 unsigned bytes = 0;
1872
1873 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1874 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1875 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1876 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1877 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1878 return bytes;
1879 }
1880
1881 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1882 {
1883 unsigned current_scratch_buffer_size =
1884 si_get_current_scratch_buffer_size(sctx);
1885 unsigned scratch_bytes_per_wave =
1886 si_get_max_scratch_bytes_per_wave(sctx);
1887 unsigned scratch_needed_size = scratch_bytes_per_wave *
1888 sctx->scratch_waves;
1889 unsigned spi_tmpring_size;
1890 int r;
1891
1892 if (scratch_needed_size > 0) {
1893 if (scratch_needed_size > current_scratch_buffer_size) {
1894 /* Create a bigger scratch buffer */
1895 r600_resource_reference(&sctx->scratch_buffer, NULL);
1896
1897 sctx->scratch_buffer =
1898 si_resource_create_custom(&sctx->screen->b.b,
1899 PIPE_USAGE_DEFAULT, scratch_needed_size);
1900 if (!sctx->scratch_buffer)
1901 return false;
1902 sctx->emit_scratch_reloc = true;
1903 }
1904
1905 /* Update the shaders, so they are using the latest scratch. The
1906 * scratch buffer may have been changed since these shaders were
1907 * last used, so we still need to try to update them, even if
1908 * they require scratch buffers smaller than the current size.
1909 */
1910 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1911 if (r < 0)
1912 return false;
1913 if (r == 1)
1914 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1915
1916 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1917 if (r < 0)
1918 return false;
1919 if (r == 1)
1920 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1921
1922 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1923 if (r < 0)
1924 return false;
1925 if (r == 1)
1926 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1927
1928 /* VS can be bound as LS, ES, or VS. */
1929 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1930 if (r < 0)
1931 return false;
1932 if (r == 1) {
1933 if (sctx->tes_shader.current)
1934 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1935 else if (sctx->gs_shader.current)
1936 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1937 else
1938 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1939 }
1940
1941 /* TES can be bound as ES or VS. */
1942 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1943 if (r < 0)
1944 return false;
1945 if (r == 1) {
1946 if (sctx->gs_shader.current)
1947 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1948 else
1949 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1950 }
1951 }
1952
1953 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1954 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1955 "scratch size should already be aligned correctly.");
1956
1957 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1958 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1959 if (spi_tmpring_size != sctx->spi_tmpring_size) {
1960 sctx->spi_tmpring_size = spi_tmpring_size;
1961 sctx->emit_scratch_reloc = true;
1962 }
1963 return true;
1964 }
1965
1966 static void si_init_tess_factor_ring(struct si_context *sctx)
1967 {
1968 bool double_offchip_buffers = sctx->b.chip_class >= CIK;
1969 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
1970 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
1971 sctx->screen->b.info.max_se;
1972 unsigned offchip_granularity;
1973
1974 switch (sctx->screen->tess_offchip_block_dw_size) {
1975 default:
1976 assert(0);
1977 /* fall through */
1978 case 8192:
1979 offchip_granularity = V_03093C_X_8K_DWORDS;
1980 break;
1981 case 4096:
1982 offchip_granularity = V_03093C_X_4K_DWORDS;
1983 break;
1984 }
1985
1986 switch (sctx->b.chip_class) {
1987 case SI:
1988 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
1989 break;
1990 case CIK:
1991 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
1992 break;
1993 case VI:
1994 default:
1995 max_offchip_buffers = MIN2(max_offchip_buffers, 512);
1996 break;
1997 }
1998
1999 assert(!sctx->tf_ring);
2000 sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
2001 PIPE_USAGE_DEFAULT,
2002 32768 * sctx->screen->b.info.max_se);
2003 if (!sctx->tf_ring)
2004 return;
2005
2006 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2007
2008 sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen,
2009 PIPE_BIND_CUSTOM,
2010 PIPE_USAGE_DEFAULT,
2011 max_offchip_buffers *
2012 sctx->screen->tess_offchip_block_dw_size * 4);
2013 if (!sctx->tess_offchip_ring)
2014 return;
2015
2016 si_init_config_add_vgt_flush(sctx);
2017
2018 /* Append these registers to the init config state. */
2019 if (sctx->b.chip_class >= CIK) {
2020 if (sctx->b.chip_class >= VI)
2021 --max_offchip_buffers;
2022
2023 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2024 S_030938_SIZE(sctx->tf_ring->width0 / 4));
2025 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2026 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2027 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2028 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2029 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2030 } else {
2031 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2032 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2033 S_008988_SIZE(sctx->tf_ring->width0 / 4));
2034 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2035 r600_resource(sctx->tf_ring)->gpu_address >> 8);
2036 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2037 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2038 }
2039
2040 /* Flush the context to re-emit the init_config state.
2041 * This is done only once in a lifetime of a context.
2042 */
2043 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2044 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2045 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2046
2047 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
2048 0, sctx->tf_ring->width0, false, false, 0, 0, 0);
2049
2050 si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
2051 sctx->tess_offchip_ring, 0,
2052 sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
2053 }
2054
2055 /**
2056 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2057 * VS passes its outputs to TES directly, so the fixed-function shader only
2058 * has to write TESSOUTER and TESSINNER.
2059 */
2060 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2061 {
2062 struct ureg_src outer, inner;
2063 struct ureg_dst tessouter, tessinner;
2064 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2065
2066 if (!ureg)
2067 return; /* if we get here, we're screwed */
2068
2069 assert(!sctx->fixed_func_tcs_shader.cso);
2070
2071 outer = ureg_DECL_system_value(ureg,
2072 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2073 inner = ureg_DECL_system_value(ureg,
2074 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2075
2076 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2077 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2078
2079 ureg_MOV(ureg, tessouter, outer);
2080 ureg_MOV(ureg, tessinner, inner);
2081 ureg_END(ureg);
2082
2083 sctx->fixed_func_tcs_shader.cso =
2084 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2085 }
2086
2087 static void si_update_vgt_shader_config(struct si_context *sctx)
2088 {
2089 /* Calculate the index of the config.
2090 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2091 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2092 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2093
2094 if (!*pm4) {
2095 uint32_t stages = 0;
2096
2097 *pm4 = CALLOC_STRUCT(si_pm4_state);
2098
2099 if (sctx->tes_shader.cso) {
2100 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2101 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2102
2103 if (sctx->gs_shader.cso)
2104 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2105 S_028B54_GS_EN(1) |
2106 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2107 else
2108 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2109 } else if (sctx->gs_shader.cso) {
2110 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2111 S_028B54_GS_EN(1) |
2112 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2113 }
2114
2115 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2116 }
2117 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2118 }
2119
2120 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2121 {
2122 struct pipe_stream_output_info *so = &shader->so;
2123 uint32_t enabled_stream_buffers_mask = 0;
2124 int i;
2125
2126 for (i = 0; i < so->num_outputs; i++)
2127 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2128 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2129 sctx->b.streamout.stride_in_dw = shader->so.stride;
2130 }
2131
2132 bool si_update_shaders(struct si_context *sctx)
2133 {
2134 struct pipe_context *ctx = (struct pipe_context*)sctx;
2135 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2136 int r;
2137
2138 /* Update stages before GS. */
2139 if (sctx->tes_shader.cso) {
2140 if (!sctx->tf_ring) {
2141 si_init_tess_factor_ring(sctx);
2142 if (!sctx->tf_ring)
2143 return false;
2144 }
2145
2146 /* VS as LS */
2147 r = si_shader_select(ctx, &sctx->vs_shader);
2148 if (r)
2149 return false;
2150 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2151
2152 if (sctx->tcs_shader.cso) {
2153 r = si_shader_select(ctx, &sctx->tcs_shader);
2154 if (r)
2155 return false;
2156 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2157 } else {
2158 if (!sctx->fixed_func_tcs_shader.cso) {
2159 si_generate_fixed_func_tcs(sctx);
2160 if (!sctx->fixed_func_tcs_shader.cso)
2161 return false;
2162 }
2163
2164 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
2165 if (r)
2166 return false;
2167 si_pm4_bind_state(sctx, hs,
2168 sctx->fixed_func_tcs_shader.current->pm4);
2169 }
2170
2171 r = si_shader_select(ctx, &sctx->tes_shader);
2172 if (r)
2173 return false;
2174
2175 if (sctx->gs_shader.cso) {
2176 /* TES as ES */
2177 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2178 } else {
2179 /* TES as VS */
2180 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2181 si_update_so(sctx, sctx->tes_shader.cso);
2182 }
2183 } else if (sctx->gs_shader.cso) {
2184 /* VS as ES */
2185 r = si_shader_select(ctx, &sctx->vs_shader);
2186 if (r)
2187 return false;
2188 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2189 } else {
2190 /* VS as VS */
2191 r = si_shader_select(ctx, &sctx->vs_shader);
2192 if (r)
2193 return false;
2194 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2195 si_update_so(sctx, sctx->vs_shader.cso);
2196 }
2197
2198 /* Update GS. */
2199 if (sctx->gs_shader.cso) {
2200 r = si_shader_select(ctx, &sctx->gs_shader);
2201 if (r)
2202 return false;
2203 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2204 si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
2205 si_update_so(sctx, sctx->gs_shader.cso);
2206
2207 if (!si_update_gs_ring_buffers(sctx))
2208 return false;
2209
2210 si_update_gsvs_ring_bindings(sctx);
2211 } else {
2212 si_pm4_bind_state(sctx, gs, NULL);
2213 si_pm4_bind_state(sctx, es, NULL);
2214 }
2215
2216 si_update_vgt_shader_config(sctx);
2217
2218 if (sctx->ps_shader.cso) {
2219 unsigned db_shader_control;
2220
2221 r = si_shader_select(ctx, &sctx->ps_shader);
2222 if (r)
2223 return false;
2224 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2225
2226 db_shader_control =
2227 sctx->ps_shader.cso->db_shader_control |
2228 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
2229
2230 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2231 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2232 sctx->flatshade != rs->flatshade) {
2233 sctx->sprite_coord_enable = rs->sprite_coord_enable;
2234 sctx->flatshade = rs->flatshade;
2235 si_mark_atom_dirty(sctx, &sctx->spi_map);
2236 }
2237
2238 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2239 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2240
2241 if (sctx->ps_db_shader_control != db_shader_control) {
2242 sctx->ps_db_shader_control = db_shader_control;
2243 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2244 }
2245
2246 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
2247 sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
2248 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2249
2250 if (sctx->b.chip_class == SI)
2251 si_mark_atom_dirty(sctx, &sctx->db_render_state);
2252
2253 if (sctx->framebuffer.nr_samples <= 1)
2254 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
2255 }
2256 }
2257
2258 if (si_pm4_state_changed(sctx, ls) ||
2259 si_pm4_state_changed(sctx, hs) ||
2260 si_pm4_state_changed(sctx, es) ||
2261 si_pm4_state_changed(sctx, gs) ||
2262 si_pm4_state_changed(sctx, vs) ||
2263 si_pm4_state_changed(sctx, ps)) {
2264 if (!si_update_spi_tmpring_size(sctx))
2265 return false;
2266 }
2267
2268 sctx->do_update_shaders = false;
2269 return true;
2270 }
2271
2272 void si_init_shader_functions(struct si_context *sctx)
2273 {
2274 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2275
2276 sctx->b.b.create_vs_state = si_create_shader_selector;
2277 sctx->b.b.create_tcs_state = si_create_shader_selector;
2278 sctx->b.b.create_tes_state = si_create_shader_selector;
2279 sctx->b.b.create_gs_state = si_create_shader_selector;
2280 sctx->b.b.create_fs_state = si_create_shader_selector;
2281
2282 sctx->b.b.bind_vs_state = si_bind_vs_shader;
2283 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2284 sctx->b.b.bind_tes_state = si_bind_tes_shader;
2285 sctx->b.b.bind_gs_state = si_bind_gs_shader;
2286 sctx->b.b.bind_fs_state = si_bind_ps_shader;
2287
2288 sctx->b.b.delete_vs_state = si_delete_shader_selector;
2289 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2290 sctx->b.b.delete_tes_state = si_delete_shader_selector;
2291 sctx->b.b.delete_gs_state = si_delete_shader_selector;
2292 sctx->b.b.delete_fs_state = si_delete_shader_selector;
2293 }