radeonsi: prevent race conditions when doing scratch patching
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "gfx9d.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/crc32.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39
40 #include "util/disk_cache.h"
41 #include "util/mesa-sha1.h"
42 #include "ac_exp_param.h"
43
44 /* SHADER_CACHE */
45
46 /**
47 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
48 * integer.
49 */
50 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
51 {
52 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
53 sizeof(struct tgsi_token);
54 unsigned size = 4 + tgsi_size + sizeof(sel->so);
55 char *result = (char*)MALLOC(size);
56
57 if (!result)
58 return NULL;
59
60 *((uint32_t*)result) = size;
61 memcpy(result + 4, sel->tokens, tgsi_size);
62 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
63 return result;
64 }
65
66 /** Copy "data" to "ptr" and return the next dword following copied data. */
67 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
68 {
69 /* data may be NULL if size == 0 */
70 if (size)
71 memcpy(ptr, data, size);
72 ptr += DIV_ROUND_UP(size, 4);
73 return ptr;
74 }
75
76 /** Read data from "ptr". Return the next dword following the data. */
77 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
78 {
79 memcpy(data, ptr, size);
80 ptr += DIV_ROUND_UP(size, 4);
81 return ptr;
82 }
83
84 /**
85 * Write the size as uint followed by the data. Return the next dword
86 * following the copied data.
87 */
88 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
89 {
90 *ptr++ = size;
91 return write_data(ptr, data, size);
92 }
93
94 /**
95 * Read the size as uint followed by the data. Return both via parameters.
96 * Return the next dword following the data.
97 */
98 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
99 {
100 *size = *ptr++;
101 assert(*data == NULL);
102 if (!*size)
103 return ptr;
104 *data = malloc(*size);
105 return read_data(ptr, *data, *size);
106 }
107
108 /**
109 * Return the shader binary in a buffer. The first 4 bytes contain its size
110 * as integer.
111 */
112 static void *si_get_shader_binary(struct si_shader *shader)
113 {
114 /* There is always a size of data followed by the data itself. */
115 unsigned relocs_size = shader->binary.reloc_count *
116 sizeof(shader->binary.relocs[0]);
117 unsigned disasm_size = shader->binary.disasm_string ?
118 strlen(shader->binary.disasm_string) + 1 : 0;
119 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
120 strlen(shader->binary.llvm_ir_string) + 1 : 0;
121 unsigned size =
122 4 + /* total size */
123 4 + /* CRC32 of the data below */
124 align(sizeof(shader->config), 4) +
125 align(sizeof(shader->info), 4) +
126 4 + align(shader->binary.code_size, 4) +
127 4 + align(shader->binary.rodata_size, 4) +
128 4 + align(relocs_size, 4) +
129 4 + align(disasm_size, 4) +
130 4 + align(llvm_ir_size, 4);
131 void *buffer = CALLOC(1, size);
132 uint32_t *ptr = (uint32_t*)buffer;
133
134 if (!buffer)
135 return NULL;
136
137 *ptr++ = size;
138 ptr++; /* CRC32 is calculated at the end. */
139
140 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
141 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
142 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
143 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
144 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
145 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
146 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
147 assert((char *)ptr - (char *)buffer == size);
148
149 /* Compute CRC32. */
150 ptr = (uint32_t*)buffer;
151 ptr++;
152 *ptr = util_hash_crc32(ptr + 1, size - 8);
153
154 return buffer;
155 }
156
157 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
158 {
159 uint32_t *ptr = (uint32_t*)binary;
160 uint32_t size = *ptr++;
161 uint32_t crc32 = *ptr++;
162 unsigned chunk_size;
163
164 if (util_hash_crc32(ptr, size - 8) != crc32) {
165 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
166 return false;
167 }
168
169 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
170 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
171 ptr = read_chunk(ptr, (void**)&shader->binary.code,
172 &shader->binary.code_size);
173 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
174 &shader->binary.rodata_size);
175 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
176 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
177 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
178 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
179
180 return true;
181 }
182
183 /**
184 * Insert a shader into the cache. It's assumed the shader is not in the cache.
185 * Use si_shader_cache_load_shader before calling this.
186 *
187 * Returns false on failure, in which case the tgsi_binary should be freed.
188 */
189 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
190 void *tgsi_binary,
191 struct si_shader *shader,
192 bool insert_into_disk_cache)
193 {
194 void *hw_binary;
195 struct hash_entry *entry;
196 uint8_t key[CACHE_KEY_SIZE];
197
198 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
199 if (entry)
200 return false; /* already added */
201
202 hw_binary = si_get_shader_binary(shader);
203 if (!hw_binary)
204 return false;
205
206 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
207 hw_binary) == NULL) {
208 FREE(hw_binary);
209 return false;
210 }
211
212 if (sscreen->b.disk_shader_cache && insert_into_disk_cache) {
213 disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary,
214 *((uint32_t *)tgsi_binary), key);
215 disk_cache_put(sscreen->b.disk_shader_cache, key, hw_binary,
216 *((uint32_t *) hw_binary));
217 }
218
219 return true;
220 }
221
222 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
223 void *tgsi_binary,
224 struct si_shader *shader)
225 {
226 struct hash_entry *entry =
227 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
228 if (!entry) {
229 if (sscreen->b.disk_shader_cache) {
230 unsigned char sha1[CACHE_KEY_SIZE];
231 size_t tg_size = *((uint32_t *) tgsi_binary);
232
233 disk_cache_compute_key(sscreen->b.disk_shader_cache,
234 tgsi_binary, tg_size, sha1);
235
236 size_t binary_size;
237 uint8_t *buffer =
238 disk_cache_get(sscreen->b.disk_shader_cache,
239 sha1, &binary_size);
240 if (!buffer)
241 return false;
242
243 if (binary_size < sizeof(uint32_t) ||
244 *((uint32_t*)buffer) != binary_size) {
245 /* Something has gone wrong discard the item
246 * from the cache and rebuild/link from
247 * source.
248 */
249 assert(!"Invalid radeonsi shader disk cache "
250 "item!");
251
252 disk_cache_remove(sscreen->b.disk_shader_cache,
253 sha1);
254 free(buffer);
255
256 return false;
257 }
258
259 if (!si_load_shader_binary(shader, buffer)) {
260 free(buffer);
261 return false;
262 }
263 free(buffer);
264
265 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary,
266 shader, false))
267 FREE(tgsi_binary);
268 } else {
269 return false;
270 }
271 } else {
272 if (si_load_shader_binary(shader, entry->data))
273 FREE(tgsi_binary);
274 else
275 return false;
276 }
277 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
278 return true;
279 }
280
281 static uint32_t si_shader_cache_key_hash(const void *key)
282 {
283 /* The first dword is the key size. */
284 return util_hash_crc32(key, *(uint32_t*)key);
285 }
286
287 static bool si_shader_cache_key_equals(const void *a, const void *b)
288 {
289 uint32_t *keya = (uint32_t*)a;
290 uint32_t *keyb = (uint32_t*)b;
291
292 /* The first dword is the key size. */
293 if (*keya != *keyb)
294 return false;
295
296 return memcmp(keya, keyb, *keya) == 0;
297 }
298
299 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
300 {
301 FREE((void*)entry->key);
302 FREE(entry->data);
303 }
304
305 bool si_init_shader_cache(struct si_screen *sscreen)
306 {
307 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
308 sscreen->shader_cache =
309 _mesa_hash_table_create(NULL,
310 si_shader_cache_key_hash,
311 si_shader_cache_key_equals);
312
313 return sscreen->shader_cache != NULL;
314 }
315
316 void si_destroy_shader_cache(struct si_screen *sscreen)
317 {
318 if (sscreen->shader_cache)
319 _mesa_hash_table_destroy(sscreen->shader_cache,
320 si_destroy_shader_cache_entry);
321 mtx_destroy(&sscreen->shader_cache_mutex);
322 }
323
324 /* SHADER STATES */
325
326 static void si_set_tesseval_regs(struct si_screen *sscreen,
327 struct si_shader_selector *tes,
328 struct si_pm4_state *pm4)
329 {
330 struct tgsi_shader_info *info = &tes->info;
331 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
332 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
333 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
334 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
335 unsigned type, partitioning, topology, distribution_mode;
336
337 switch (tes_prim_mode) {
338 case PIPE_PRIM_LINES:
339 type = V_028B6C_TESS_ISOLINE;
340 break;
341 case PIPE_PRIM_TRIANGLES:
342 type = V_028B6C_TESS_TRIANGLE;
343 break;
344 case PIPE_PRIM_QUADS:
345 type = V_028B6C_TESS_QUAD;
346 break;
347 default:
348 assert(0);
349 return;
350 }
351
352 switch (tes_spacing) {
353 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
354 partitioning = V_028B6C_PART_FRAC_ODD;
355 break;
356 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
357 partitioning = V_028B6C_PART_FRAC_EVEN;
358 break;
359 case PIPE_TESS_SPACING_EQUAL:
360 partitioning = V_028B6C_PART_INTEGER;
361 break;
362 default:
363 assert(0);
364 return;
365 }
366
367 if (tes_point_mode)
368 topology = V_028B6C_OUTPUT_POINT;
369 else if (tes_prim_mode == PIPE_PRIM_LINES)
370 topology = V_028B6C_OUTPUT_LINE;
371 else if (tes_vertex_order_cw)
372 /* for some reason, this must be the other way around */
373 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
374 else
375 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
376
377 if (sscreen->has_distributed_tess) {
378 if (sscreen->b.family == CHIP_FIJI ||
379 sscreen->b.family >= CHIP_POLARIS10)
380 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
381 else
382 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
383 } else
384 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
385
386 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
387 S_028B6C_TYPE(type) |
388 S_028B6C_PARTITIONING(partitioning) |
389 S_028B6C_TOPOLOGY(topology) |
390 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
391 }
392
393 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
394 * whether the "fractional odd" tessellation spacing is used.
395 *
396 * Possible VGT configurations and which state should set the register:
397 *
398 * Reg set in | VGT shader configuration | Value
399 * ------------------------------------------------------
400 * VS as VS | VS | 30
401 * VS as ES | ES -> GS -> VS | 30
402 * TES as VS | LS -> HS -> VS | 14 or 30
403 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
404 *
405 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
406 */
407 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
408 struct si_shader_selector *sel,
409 struct si_shader *shader,
410 struct si_pm4_state *pm4)
411 {
412 unsigned type = sel->type;
413
414 if (sscreen->b.family < CHIP_POLARIS10)
415 return;
416
417 /* VS as VS, or VS as ES: */
418 if ((type == PIPE_SHADER_VERTEX &&
419 (!shader ||
420 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
421 /* TES as VS, or TES as ES: */
422 type == PIPE_SHADER_TESS_EVAL) {
423 unsigned vtx_reuse_depth = 30;
424
425 if (type == PIPE_SHADER_TESS_EVAL &&
426 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
427 PIPE_TESS_SPACING_FRACTIONAL_ODD)
428 vtx_reuse_depth = 14;
429
430 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
431 vtx_reuse_depth);
432 }
433 }
434
435 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
436 {
437 if (shader->pm4)
438 si_pm4_clear_state(shader->pm4);
439 else
440 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
441
442 return shader->pm4;
443 }
444
445 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
446 {
447 struct si_pm4_state *pm4;
448 unsigned vgpr_comp_cnt;
449 uint64_t va;
450
451 assert(sscreen->b.chip_class <= VI);
452
453 pm4 = si_get_shader_pm4_state(shader);
454 if (!pm4)
455 return;
456
457 va = shader->bo->gpu_address;
458 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
459
460 /* We need at least 2 components for LS.
461 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
462 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
463 */
464 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
465
466 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
467 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
468
469 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
470 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
471 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
472 S_00B528_DX10_CLAMP(1) |
473 S_00B528_FLOAT_MODE(shader->config.float_mode);
474 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
475 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
476 }
477
478 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
479 {
480 struct si_pm4_state *pm4;
481 uint64_t va;
482 unsigned ls_vgpr_comp_cnt = 0;
483
484 pm4 = si_get_shader_pm4_state(shader);
485 if (!pm4)
486 return;
487
488 va = shader->bo->gpu_address;
489 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
490
491 if (sscreen->b.chip_class >= GFX9) {
492 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
493 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
494
495 /* We need at least 2 components for LS.
496 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
497 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
498 */
499 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
500
501 if (shader->config.scratch_bytes_per_wave) {
502 fprintf(stderr, "HS: scratch buffer unsupported");
503 abort();
504 }
505
506 shader->config.rsrc2 =
507 S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
508 S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
509 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
510 } else {
511 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
512 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
513
514 shader->config.rsrc2 =
515 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
516 S_00B42C_OC_LDS_EN(1) |
517 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
518 }
519
520 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
521 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
522 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
523 S_00B428_DX10_CLAMP(1) |
524 S_00B428_FLOAT_MODE(shader->config.float_mode) |
525 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
526
527 if (sscreen->b.chip_class <= VI) {
528 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
529 shader->config.rsrc2);
530 }
531 }
532
533 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
534 {
535 struct si_pm4_state *pm4;
536 unsigned num_user_sgprs;
537 unsigned vgpr_comp_cnt;
538 uint64_t va;
539 unsigned oc_lds_en;
540
541 assert(sscreen->b.chip_class <= VI);
542
543 pm4 = si_get_shader_pm4_state(shader);
544 if (!pm4)
545 return;
546
547 va = shader->bo->gpu_address;
548 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
549
550 if (shader->selector->type == PIPE_SHADER_VERTEX) {
551 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
552 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
553 num_user_sgprs = SI_VS_NUM_USER_SGPR;
554 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
555 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
556 num_user_sgprs = SI_TES_NUM_USER_SGPR;
557 } else
558 unreachable("invalid shader selector type");
559
560 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
561
562 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
563 shader->selector->esgs_itemsize / 4);
564 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
565 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
566 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
567 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
568 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
569 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
570 S_00B328_DX10_CLAMP(1) |
571 S_00B328_FLOAT_MODE(shader->config.float_mode));
572 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
573 S_00B32C_USER_SGPR(num_user_sgprs) |
574 S_00B32C_OC_LDS_EN(oc_lds_en) |
575 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
576
577 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
578 si_set_tesseval_regs(sscreen, shader->selector, pm4);
579
580 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
581 }
582
583 /**
584 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
585 * geometry shader.
586 */
587 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
588 {
589 enum chip_class chip_class = sel->screen->b.chip_class;
590 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
591 unsigned cut_mode;
592
593 if (gs_max_vert_out <= 128) {
594 cut_mode = V_028A40_GS_CUT_128;
595 } else if (gs_max_vert_out <= 256) {
596 cut_mode = V_028A40_GS_CUT_256;
597 } else if (gs_max_vert_out <= 512) {
598 cut_mode = V_028A40_GS_CUT_512;
599 } else {
600 assert(gs_max_vert_out <= 1024);
601 cut_mode = V_028A40_GS_CUT_1024;
602 }
603
604 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
605 S_028A40_CUT_MODE(cut_mode)|
606 S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) |
607 S_028A40_GS_WRITE_OPTIMIZE(1) |
608 S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0);
609 }
610
611 struct gfx9_gs_info {
612 unsigned es_verts_per_subgroup;
613 unsigned gs_prims_per_subgroup;
614 unsigned gs_inst_prims_in_subgroup;
615 unsigned max_prims_per_subgroup;
616 unsigned lds_size;
617 };
618
619 static void gfx9_get_gs_info(struct si_shader_selector *es,
620 struct si_shader_selector *gs,
621 struct gfx9_gs_info *out)
622 {
623 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
624 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
625 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
626 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
627
628 /* All these are in dwords: */
629 /* We can't allow using the whole LDS, because GS waves compete with
630 * other shader stages for LDS space. */
631 const unsigned max_lds_size = 8 * 1024;
632 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
633 unsigned esgs_lds_size;
634
635 /* All these are per subgroup: */
636 const unsigned max_out_prims = 32 * 1024;
637 const unsigned max_es_verts = 255;
638 const unsigned ideal_gs_prims = 64;
639 unsigned max_gs_prims, gs_prims;
640 unsigned min_es_verts, es_verts, worst_case_es_verts;
641
642 assert(gs_num_invocations <= 32); /* GL maximum */
643
644 if (uses_adjacency || gs_num_invocations > 1)
645 max_gs_prims = 127 / gs_num_invocations;
646 else
647 max_gs_prims = 255;
648
649 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
650 * Make sure we don't go over the maximum value.
651 */
652 max_gs_prims = MIN2(max_gs_prims,
653 max_out_prims /
654 (gs->gs_max_out_vertices * gs_num_invocations));
655 assert(max_gs_prims > 0);
656
657 /* If the primitive has adjacency, halve the number of vertices
658 * that will be reused in multiple primitives.
659 */
660 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
661
662 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
663 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
664
665 /* Compute ESGS LDS size based on the worst case number of ES vertices
666 * needed to create the target number of GS prims per subgroup.
667 */
668 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
669
670 /* If total LDS usage is too big, refactor partitions based on ratio
671 * of ESGS item sizes.
672 */
673 if (esgs_lds_size > max_lds_size) {
674 /* Our target GS Prims Per Subgroup was too large. Calculate
675 * the maximum number of GS Prims Per Subgroup that will fit
676 * into LDS, capped by the maximum that the hardware can support.
677 */
678 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
679 max_gs_prims);
680 assert(gs_prims > 0);
681 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
682 max_es_verts);
683
684 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
685 assert(esgs_lds_size <= max_lds_size);
686 }
687
688 /* Now calculate remaining ESGS information. */
689 if (esgs_lds_size)
690 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
691 else
692 es_verts = max_es_verts;
693
694 /* Vertices for adjacency primitives are not always reused, so restore
695 * it for ES_VERTS_PER_SUBGRP.
696 */
697 min_es_verts = gs->gs_input_verts_per_prim;
698
699 /* For normal primitives, the VGT only checks if they are past the ES
700 * verts per subgroup after allocating a full GS primitive and if they
701 * are, kick off a new subgroup. But if those additional ES verts are
702 * unique (e.g. not reused) we need to make sure there is enough LDS
703 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
704 */
705 es_verts -= min_es_verts - 1;
706
707 out->es_verts_per_subgroup = es_verts;
708 out->gs_prims_per_subgroup = gs_prims;
709 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
710 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
711 gs->gs_max_out_vertices;
712 out->lds_size = align(esgs_lds_size, 128) / 128;
713
714 assert(out->max_prims_per_subgroup <= max_out_prims);
715 }
716
717 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
718 {
719 struct si_shader_selector *sel = shader->selector;
720 const ubyte *num_components = sel->info.num_stream_output_components;
721 unsigned gs_num_invocations = sel->gs_num_invocations;
722 struct si_pm4_state *pm4;
723 uint64_t va;
724 unsigned max_stream = sel->max_gs_stream;
725 unsigned offset;
726
727 pm4 = si_get_shader_pm4_state(shader);
728 if (!pm4)
729 return;
730
731 offset = num_components[0] * sel->gs_max_out_vertices;
732 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
733 if (max_stream >= 1)
734 offset += num_components[1] * sel->gs_max_out_vertices;
735 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
736 if (max_stream >= 2)
737 offset += num_components[2] * sel->gs_max_out_vertices;
738 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
739 if (max_stream >= 3)
740 offset += num_components[3] * sel->gs_max_out_vertices;
741 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
742
743 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
744 assert(offset < (1 << 15));
745
746 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
747
748 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
749 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
750 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
751 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
752
753 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
754 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
755 S_028B90_ENABLE(gs_num_invocations > 0));
756
757 va = shader->bo->gpu_address;
758 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
759
760 if (sscreen->b.chip_class >= GFX9) {
761 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
762 unsigned es_type = shader->key.part.gs.es->type;
763 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
764 struct gfx9_gs_info gs_info;
765
766 if (es_type == PIPE_SHADER_VERTEX)
767 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
768 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
769 else if (es_type == PIPE_SHADER_TESS_EVAL)
770 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
771 else
772 unreachable("invalid shader selector type");
773
774 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
775 * VGPR[0:4] are always loaded.
776 */
777 if (sel->info.uses_invocationid)
778 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
779 else if (sel->info.uses_primid)
780 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
781 else if (input_prim >= PIPE_PRIM_TRIANGLES)
782 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
783 else
784 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
785
786 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
787
788 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
789 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
790
791 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
792 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
793 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
794 S_00B228_DX10_CLAMP(1) |
795 S_00B228_FLOAT_MODE(shader->config.float_mode) |
796 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
797 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
798 S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
799 S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
800 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
801 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
802 S_00B22C_LDS_SIZE(gs_info.lds_size) |
803 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
804
805 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
806 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
807 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
808 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
809 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
810 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
811 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
812 shader->key.part.gs.es->esgs_itemsize / 4);
813
814 if (es_type == PIPE_SHADER_TESS_EVAL)
815 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
816
817 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
818 NULL, pm4);
819
820 if (shader->config.scratch_bytes_per_wave) {
821 fprintf(stderr, "GS: scratch buffer unsupported");
822 abort();
823 }
824 } else {
825 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
826 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
827
828 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
829 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
830 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
831 S_00B228_DX10_CLAMP(1) |
832 S_00B228_FLOAT_MODE(shader->config.float_mode));
833 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
834 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
835 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
836 }
837 }
838
839 /**
840 * Compute the state for \p shader, which will run as a vertex shader on the
841 * hardware.
842 *
843 * If \p gs is non-NULL, it points to the geometry shader for which this shader
844 * is the copy shader.
845 */
846 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
847 struct si_shader_selector *gs)
848 {
849 struct si_pm4_state *pm4;
850 unsigned num_user_sgprs;
851 unsigned nparams, vgpr_comp_cnt;
852 uint64_t va;
853 unsigned oc_lds_en;
854 unsigned window_space =
855 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
856 bool enable_prim_id = shader->key.mono.vs_export_prim_id;
857
858 pm4 = si_get_shader_pm4_state(shader);
859 if (!pm4)
860 return;
861
862 /* We always write VGT_GS_MODE in the VS state, because every switch
863 * between different shader pipelines involving a different GS or no
864 * GS at all involves a switch of the VS (different GS use different
865 * copy shaders). On the other hand, when the API switches from a GS to
866 * no GS and then back to the same GS used originally, the GS state is
867 * not sent again.
868 */
869 if (!gs) {
870 unsigned mode = 0;
871
872 /* PrimID needs GS scenario A.
873 * GFX9 also needs it when ViewportIndex is enabled.
874 */
875 if (enable_prim_id ||
876 (sscreen->b.chip_class >= GFX9 &&
877 shader->selector->info.writes_viewport_index))
878 mode = V_028A40_GS_SCENARIO_A;
879
880 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
881 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
882 } else {
883 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
884 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
885 }
886
887 va = shader->bo->gpu_address;
888 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
889
890 if (gs) {
891 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
892 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
893 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
894 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
895 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
896 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
897 */
898 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
899 num_user_sgprs = SI_VS_NUM_USER_SGPR;
900 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
901 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
902 num_user_sgprs = SI_TES_NUM_USER_SGPR;
903 } else
904 unreachable("invalid shader selector type");
905
906 /* VS is required to export at least one param. */
907 nparams = MAX2(shader->info.nr_param_exports, 1);
908 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
909 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
910
911 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
912 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
913 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
914 V_02870C_SPI_SHADER_4COMP :
915 V_02870C_SPI_SHADER_NONE) |
916 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
917 V_02870C_SPI_SHADER_4COMP :
918 V_02870C_SPI_SHADER_NONE) |
919 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
920 V_02870C_SPI_SHADER_4COMP :
921 V_02870C_SPI_SHADER_NONE));
922
923 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
924
925 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
926 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
927 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
928 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
929 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
930 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
931 S_00B128_DX10_CLAMP(1) |
932 S_00B128_FLOAT_MODE(shader->config.float_mode));
933 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
934 S_00B12C_USER_SGPR(num_user_sgprs) |
935 S_00B12C_OC_LDS_EN(oc_lds_en) |
936 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
937 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
938 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
939 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
940 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
941 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
942 if (window_space)
943 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
944 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
945 else
946 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
947 S_028818_VTX_W0_FMT(1) |
948 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
949 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
950 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
951
952 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
953 si_set_tesseval_regs(sscreen, shader->selector, pm4);
954
955 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
956 }
957
958 static unsigned si_get_ps_num_interp(struct si_shader *ps)
959 {
960 struct tgsi_shader_info *info = &ps->selector->info;
961 unsigned num_colors = !!(info->colors_read & 0x0f) +
962 !!(info->colors_read & 0xf0);
963 unsigned num_interp = ps->selector->info.num_inputs +
964 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
965
966 assert(num_interp <= 32);
967 return MIN2(num_interp, 32);
968 }
969
970 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
971 {
972 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
973 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
974
975 /* If the i-th target format is set, all previous target formats must
976 * be non-zero to avoid hangs.
977 */
978 for (i = 0; i < num_targets; i++)
979 if (!(value & (0xf << (i * 4))))
980 value |= V_028714_SPI_SHADER_32_R << (i * 4);
981
982 return value;
983 }
984
985 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
986 {
987 unsigned i, cb_shader_mask = 0;
988
989 for (i = 0; i < 8; i++) {
990 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
991 case V_028714_SPI_SHADER_ZERO:
992 break;
993 case V_028714_SPI_SHADER_32_R:
994 cb_shader_mask |= 0x1 << (i * 4);
995 break;
996 case V_028714_SPI_SHADER_32_GR:
997 cb_shader_mask |= 0x3 << (i * 4);
998 break;
999 case V_028714_SPI_SHADER_32_AR:
1000 cb_shader_mask |= 0x9 << (i * 4);
1001 break;
1002 case V_028714_SPI_SHADER_FP16_ABGR:
1003 case V_028714_SPI_SHADER_UNORM16_ABGR:
1004 case V_028714_SPI_SHADER_SNORM16_ABGR:
1005 case V_028714_SPI_SHADER_UINT16_ABGR:
1006 case V_028714_SPI_SHADER_SINT16_ABGR:
1007 case V_028714_SPI_SHADER_32_ABGR:
1008 cb_shader_mask |= 0xf << (i * 4);
1009 break;
1010 default:
1011 assert(0);
1012 }
1013 }
1014 return cb_shader_mask;
1015 }
1016
1017 static void si_shader_ps(struct si_shader *shader)
1018 {
1019 struct tgsi_shader_info *info = &shader->selector->info;
1020 struct si_pm4_state *pm4;
1021 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1022 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1023 uint64_t va;
1024 unsigned input_ena = shader->config.spi_ps_input_ena;
1025
1026 /* we need to enable at least one of them, otherwise we hang the GPU */
1027 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1028 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1029 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1030 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1031 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1032 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1033 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1034 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1035 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1036 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1037 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1038 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1039 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1040 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1041
1042 /* Validate interpolation optimization flags (read as implications). */
1043 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1044 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1045 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1046 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1047 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1048 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1049 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1050 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1051 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1052 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1053 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1054 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1055 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1056 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1057 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1058 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1059 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1060 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1061
1062 /* Validate cases when the optimizations are off (read as implications). */
1063 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1064 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1065 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1066 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1067 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1068 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1069
1070 pm4 = si_get_shader_pm4_state(shader);
1071 if (!pm4)
1072 return;
1073
1074 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1075 * Possible vaules:
1076 * 0 -> Position = pixel center
1077 * 1 -> Position = pixel centroid
1078 * 2 -> Position = at sample position
1079 *
1080 * From GLSL 4.5 specification, section 7.1:
1081 * "The variable gl_FragCoord is available as an input variable from
1082 * within fragment shaders and it holds the window relative coordinates
1083 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1084 * value can be for any location within the pixel, or one of the
1085 * fragment samples. The use of centroid does not further restrict
1086 * this value to be inside the current primitive."
1087 *
1088 * Meaning that centroid has no effect and we can return anything within
1089 * the pixel. Thus, return the value at sample position, because that's
1090 * the most accurate one shaders can get.
1091 */
1092 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1093
1094 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1095 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1096 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1097
1098 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1099 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
1100
1101 /* Ensure that some export memory is always allocated, for two reasons:
1102 *
1103 * 1) Correctness: The hardware ignores the EXEC mask if no export
1104 * memory is allocated, so KILL and alpha test do not work correctly
1105 * without this.
1106 * 2) Performance: Every shader needs at least a NULL export, even when
1107 * it writes no color/depth output. The NULL export instruction
1108 * stalls without this setting.
1109 *
1110 * Don't add this to CB_SHADER_MASK.
1111 */
1112 if (!spi_shader_col_format &&
1113 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1114 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1115
1116 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1117 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1118 shader->config.spi_ps_input_addr);
1119
1120 /* Set interpolation controls. */
1121 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1122
1123 /* Set registers. */
1124 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1125 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1126
1127 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1128 si_get_spi_shader_z_format(info->writes_z,
1129 info->writes_stencil,
1130 info->writes_samplemask));
1131
1132 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1133 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1134
1135 va = shader->bo->gpu_address;
1136 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1137 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1138 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1139
1140 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1141 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1142 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1143 S_00B028_DX10_CLAMP(1) |
1144 S_00B028_FLOAT_MODE(shader->config.float_mode));
1145 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1146 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1147 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1148 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1149 }
1150
1151 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1152 struct si_shader *shader)
1153 {
1154 switch (shader->selector->type) {
1155 case PIPE_SHADER_VERTEX:
1156 if (shader->key.as_ls)
1157 si_shader_ls(sscreen, shader);
1158 else if (shader->key.as_es)
1159 si_shader_es(sscreen, shader);
1160 else
1161 si_shader_vs(sscreen, shader, NULL);
1162 break;
1163 case PIPE_SHADER_TESS_CTRL:
1164 si_shader_hs(sscreen, shader);
1165 break;
1166 case PIPE_SHADER_TESS_EVAL:
1167 if (shader->key.as_es)
1168 si_shader_es(sscreen, shader);
1169 else
1170 si_shader_vs(sscreen, shader, NULL);
1171 break;
1172 case PIPE_SHADER_GEOMETRY:
1173 si_shader_gs(sscreen, shader);
1174 break;
1175 case PIPE_SHADER_FRAGMENT:
1176 si_shader_ps(shader);
1177 break;
1178 default:
1179 assert(0);
1180 }
1181 }
1182
1183 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1184 {
1185 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1186 if (sctx->queued.named.dsa)
1187 return sctx->queued.named.dsa->alpha_func;
1188
1189 return PIPE_FUNC_ALWAYS;
1190 }
1191
1192 static void si_shader_selector_key_vs(struct si_context *sctx,
1193 struct si_shader_selector *vs,
1194 struct si_shader_key *key,
1195 struct si_vs_prolog_bits *prolog_key)
1196 {
1197 if (!sctx->vertex_elements)
1198 return;
1199
1200 unsigned count = MIN2(vs->info.num_inputs,
1201 sctx->vertex_elements->count);
1202 for (unsigned i = 0; i < count; ++i) {
1203 prolog_key->instance_divisors[i] =
1204 sctx->vertex_elements->elements[i].instance_divisor;
1205 }
1206
1207 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1208 }
1209
1210 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1211 struct si_shader_selector *vs,
1212 struct si_shader_key *key)
1213 {
1214 struct si_shader_selector *ps = sctx->ps_shader.cso;
1215
1216 key->opt.hw_vs.clip_disable =
1217 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1218 (vs->info.clipdist_writemask ||
1219 vs->info.writes_clipvertex) &&
1220 !vs->info.culldist_writemask;
1221
1222 /* Find out if PS is disabled. */
1223 bool ps_disabled = true;
1224 if (ps) {
1225 bool ps_modifies_zs = ps->info.uses_kill ||
1226 ps->info.writes_z ||
1227 ps->info.writes_stencil ||
1228 ps->info.writes_samplemask ||
1229 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1230
1231 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1232 sctx->queued.named.blend->cb_target_mask;
1233 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1234 ps_colormask &= ps->colors_written_4bit;
1235
1236 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1237 (!ps_colormask &&
1238 !ps_modifies_zs &&
1239 !ps->info.writes_memory);
1240 }
1241
1242 /* Find out which VS outputs aren't used by the PS. */
1243 uint64_t outputs_written = vs->outputs_written;
1244 uint32_t outputs_written2 = vs->outputs_written2;
1245 uint64_t inputs_read = 0;
1246 uint32_t inputs_read2 = 0;
1247
1248 outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
1249
1250 if (!ps_disabled) {
1251 inputs_read = ps->inputs_read;
1252 inputs_read2 = ps->inputs_read2;
1253 }
1254
1255 uint64_t linked = outputs_written & inputs_read;
1256 uint32_t linked2 = outputs_written2 & inputs_read2;
1257
1258 key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
1259 key->opt.hw_vs.kill_outputs2 = ~linked2 & outputs_written2;
1260 }
1261
1262 /* Compute the key for the hw shader variant */
1263 static inline void si_shader_selector_key(struct pipe_context *ctx,
1264 struct si_shader_selector *sel,
1265 struct si_shader_key *key)
1266 {
1267 struct si_context *sctx = (struct si_context *)ctx;
1268
1269 memset(key, 0, sizeof(*key));
1270
1271 switch (sel->type) {
1272 case PIPE_SHADER_VERTEX:
1273 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1274
1275 if (sctx->tes_shader.cso)
1276 key->as_ls = 1;
1277 else if (sctx->gs_shader.cso)
1278 key->as_es = 1;
1279 else {
1280 si_shader_selector_key_hw_vs(sctx, sel, key);
1281
1282 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1283 key->mono.vs_export_prim_id = 1;
1284 }
1285 break;
1286 case PIPE_SHADER_TESS_CTRL:
1287 if (sctx->b.chip_class >= GFX9) {
1288 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1289 key, &key->part.tcs.ls_prolog);
1290 key->part.tcs.ls = sctx->vs_shader.cso;
1291 }
1292
1293 key->part.tcs.epilog.prim_mode =
1294 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1295 key->part.tcs.epilog.tes_reads_tess_factors =
1296 sctx->tes_shader.cso->info.reads_tess_factors;
1297
1298 if (sel == sctx->fixed_func_tcs_shader.cso)
1299 key->mono.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1300 break;
1301 case PIPE_SHADER_TESS_EVAL:
1302 if (sctx->gs_shader.cso)
1303 key->as_es = 1;
1304 else {
1305 si_shader_selector_key_hw_vs(sctx, sel, key);
1306
1307 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1308 key->mono.vs_export_prim_id = 1;
1309 }
1310 break;
1311 case PIPE_SHADER_GEOMETRY:
1312 if (sctx->b.chip_class >= GFX9) {
1313 if (sctx->tes_shader.cso) {
1314 key->part.gs.es = sctx->tes_shader.cso;
1315 } else {
1316 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1317 key, &key->part.gs.vs_prolog);
1318 key->part.gs.es = sctx->vs_shader.cso;
1319 }
1320
1321 /* Merged ES-GS can have unbalanced wave usage.
1322 *
1323 * ES threads are per-vertex, while GS threads are
1324 * per-primitive. So without any amplification, there
1325 * are fewer GS threads than ES threads, which can result
1326 * in empty (no-op) GS waves. With too much amplification,
1327 * there are more GS threads than ES threads, which
1328 * can result in empty (no-op) ES waves.
1329 *
1330 * Non-monolithic shaders are implemented by setting EXEC
1331 * at the beginning of shader parts, and don't jump to
1332 * the end if EXEC is 0.
1333 *
1334 * Monolithic shaders use conditional blocks, so they can
1335 * jump and skip empty waves of ES or GS. So set this to
1336 * always use optimized variants, which are monolithic.
1337 */
1338 key->opt.prefer_mono = 1;
1339 }
1340 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1341 break;
1342 case PIPE_SHADER_FRAGMENT: {
1343 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1344 struct si_state_blend *blend = sctx->queued.named.blend;
1345
1346 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1347 sel->info.colors_written == 0x1)
1348 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1349
1350 if (blend) {
1351 /* Select the shader color format based on whether
1352 * blending or alpha are needed.
1353 */
1354 key->part.ps.epilog.spi_shader_col_format =
1355 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1356 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1357 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1358 sctx->framebuffer.spi_shader_col_format_blend) |
1359 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1360 sctx->framebuffer.spi_shader_col_format_alpha) |
1361 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1362 sctx->framebuffer.spi_shader_col_format);
1363
1364 /* The output for dual source blending should have
1365 * the same format as the first output.
1366 */
1367 if (blend->dual_src_blend)
1368 key->part.ps.epilog.spi_shader_col_format |=
1369 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1370 } else
1371 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1372
1373 /* If alpha-to-coverage is enabled, we have to export alpha
1374 * even if there is no color buffer.
1375 */
1376 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1377 blend && blend->alpha_to_coverage)
1378 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1379
1380 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1381 * to the range supported by the type if a channel has less
1382 * than 16 bits and the export format is 16_ABGR.
1383 */
1384 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1385 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1386 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1387 }
1388
1389 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1390 if (!key->part.ps.epilog.last_cbuf) {
1391 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1392 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1393 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1394 }
1395
1396 if (rs) {
1397 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1398 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1399 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1400 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1401
1402 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1403 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1404
1405 if (sctx->queued.named.blend) {
1406 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1407 rs->multisample_enable;
1408 }
1409
1410 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1411 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1412 (is_line && rs->line_smooth)) &&
1413 sctx->framebuffer.nr_samples <= 1;
1414 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1415
1416 if (rs->force_persample_interp &&
1417 rs->multisample_enable &&
1418 sctx->framebuffer.nr_samples > 1 &&
1419 sctx->ps_iter_samples > 1) {
1420 key->part.ps.prolog.force_persp_sample_interp =
1421 sel->info.uses_persp_center ||
1422 sel->info.uses_persp_centroid;
1423
1424 key->part.ps.prolog.force_linear_sample_interp =
1425 sel->info.uses_linear_center ||
1426 sel->info.uses_linear_centroid;
1427 } else if (rs->multisample_enable &&
1428 sctx->framebuffer.nr_samples > 1) {
1429 key->part.ps.prolog.bc_optimize_for_persp =
1430 sel->info.uses_persp_center &&
1431 sel->info.uses_persp_centroid;
1432 key->part.ps.prolog.bc_optimize_for_linear =
1433 sel->info.uses_linear_center &&
1434 sel->info.uses_linear_centroid;
1435 } else {
1436 /* Make sure SPI doesn't compute more than 1 pair
1437 * of (i,j), which is the optimization here. */
1438 key->part.ps.prolog.force_persp_center_interp =
1439 sel->info.uses_persp_center +
1440 sel->info.uses_persp_centroid +
1441 sel->info.uses_persp_sample > 1;
1442
1443 key->part.ps.prolog.force_linear_center_interp =
1444 sel->info.uses_linear_center +
1445 sel->info.uses_linear_centroid +
1446 sel->info.uses_linear_sample > 1;
1447 }
1448 }
1449
1450 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1451 break;
1452 }
1453 default:
1454 assert(0);
1455 }
1456 }
1457
1458 static void si_build_shader_variant(void *job, int thread_index)
1459 {
1460 struct si_shader *shader = (struct si_shader *)job;
1461 struct si_shader_selector *sel = shader->selector;
1462 struct si_screen *sscreen = sel->screen;
1463 LLVMTargetMachineRef tm;
1464 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1465 int r;
1466
1467 if (thread_index >= 0) {
1468 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1469 tm = sscreen->tm[thread_index];
1470 if (!debug->async)
1471 debug = NULL;
1472 } else {
1473 tm = shader->compiler_ctx_state.tm;
1474 }
1475
1476 r = si_shader_create(sscreen, tm, shader, debug);
1477 if (unlikely(r)) {
1478 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1479 sel->type, r);
1480 shader->compilation_failed = true;
1481 return;
1482 }
1483
1484 if (shader->compiler_ctx_state.is_debug_context) {
1485 FILE *f = open_memstream(&shader->shader_log,
1486 &shader->shader_log_size);
1487 if (f) {
1488 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1489 fclose(f);
1490 }
1491 }
1492
1493 si_shader_init_pm4_state(sscreen, shader);
1494 }
1495
1496 static const struct si_shader_key zeroed;
1497
1498 static bool si_check_missing_main_part(struct si_screen *sscreen,
1499 struct si_shader_selector *sel,
1500 struct si_compiler_ctx_state *compiler_state,
1501 struct si_shader_key *key)
1502 {
1503 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1504
1505 if (!*mainp) {
1506 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1507
1508 if (!main_part)
1509 return false;
1510
1511 main_part->selector = sel;
1512 main_part->key.as_es = key->as_es;
1513 main_part->key.as_ls = key->as_ls;
1514
1515 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1516 main_part, false,
1517 &compiler_state->debug) != 0) {
1518 FREE(main_part);
1519 return false;
1520 }
1521 *mainp = main_part;
1522 }
1523 return true;
1524 }
1525
1526 static void si_destroy_shader_selector(struct si_context *sctx,
1527 struct si_shader_selector *sel);
1528
1529 static void si_shader_selector_reference(struct si_context *sctx,
1530 struct si_shader_selector **dst,
1531 struct si_shader_selector *src)
1532 {
1533 if (pipe_reference(&(*dst)->reference, &src->reference))
1534 si_destroy_shader_selector(sctx, *dst);
1535
1536 *dst = src;
1537 }
1538
1539 /* Select the hw shader variant depending on the current state. */
1540 static int si_shader_select_with_key(struct si_screen *sscreen,
1541 struct si_shader_ctx_state *state,
1542 struct si_compiler_ctx_state *compiler_state,
1543 struct si_shader_key *key,
1544 int thread_index)
1545 {
1546 struct si_shader_selector *sel = state->cso;
1547 struct si_shader_selector *previous_stage_sel = NULL;
1548 struct si_shader *current = state->current;
1549 struct si_shader *iter, *shader = NULL;
1550
1551 if (unlikely(sscreen->b.debug_flags & DBG_NO_OPT_VARIANT)) {
1552 memset(&key->opt, 0, sizeof(key->opt));
1553 }
1554
1555 again:
1556 /* Check if we don't need to change anything.
1557 * This path is also used for most shaders that don't need multiple
1558 * variants, it will cost just a computation of the key and this
1559 * test. */
1560 if (likely(current &&
1561 memcmp(&current->key, key, sizeof(*key)) == 0 &&
1562 (!current->is_optimized ||
1563 util_queue_fence_is_signalled(&current->optimized_ready))))
1564 return current->compilation_failed ? -1 : 0;
1565
1566 /* This must be done before the mutex is locked, because async GS
1567 * compilation calls this function too, and therefore must enter
1568 * the mutex first.
1569 *
1570 * Only wait if we are in a draw call. Don't wait if we are
1571 * in a compiler thread.
1572 */
1573 if (thread_index < 0)
1574 util_queue_fence_wait(&sel->ready);
1575
1576 mtx_lock(&sel->mutex);
1577
1578 /* Find the shader variant. */
1579 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1580 /* Don't check the "current" shader. We checked it above. */
1581 if (current != iter &&
1582 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1583 /* If it's an optimized shader and its compilation has
1584 * been started but isn't done, use the unoptimized
1585 * shader so as not to cause a stall due to compilation.
1586 */
1587 if (iter->is_optimized &&
1588 !util_queue_fence_is_signalled(&iter->optimized_ready)) {
1589 memset(&key->opt, 0, sizeof(key->opt));
1590 mtx_unlock(&sel->mutex);
1591 goto again;
1592 }
1593
1594 if (iter->compilation_failed) {
1595 mtx_unlock(&sel->mutex);
1596 return -1; /* skip the draw call */
1597 }
1598
1599 state->current = iter;
1600 mtx_unlock(&sel->mutex);
1601 return 0;
1602 }
1603 }
1604
1605 /* Build a new shader. */
1606 shader = CALLOC_STRUCT(si_shader);
1607 if (!shader) {
1608 mtx_unlock(&sel->mutex);
1609 return -ENOMEM;
1610 }
1611 shader->selector = sel;
1612 shader->key = *key;
1613 shader->compiler_ctx_state = *compiler_state;
1614
1615 /* If this is a merged shader, get the first shader's selector. */
1616 if (sscreen->b.chip_class >= GFX9) {
1617 if (sel->type == PIPE_SHADER_TESS_CTRL)
1618 previous_stage_sel = key->part.tcs.ls;
1619 else if (sel->type == PIPE_SHADER_GEOMETRY)
1620 previous_stage_sel = key->part.gs.es;
1621 }
1622
1623 /* Compile the main shader part if it doesn't exist. This can happen
1624 * if the initial guess was wrong. */
1625 bool is_pure_monolithic =
1626 sscreen->use_monolithic_shaders ||
1627 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1628
1629 if (!is_pure_monolithic) {
1630 bool ok;
1631
1632 /* Make sure the main shader part is present. This is needed
1633 * for shaders that can be compiled as VS, LS, or ES, and only
1634 * one of them is compiled at creation.
1635 *
1636 * For merged shaders, check that the starting shader's main
1637 * part is present.
1638 */
1639 if (previous_stage_sel) {
1640 struct si_shader_key shader1_key = zeroed;
1641
1642 if (sel->type == PIPE_SHADER_TESS_CTRL)
1643 shader1_key.as_ls = 1;
1644 else if (sel->type == PIPE_SHADER_GEOMETRY)
1645 shader1_key.as_es = 1;
1646 else
1647 assert(0);
1648
1649 ok = si_check_missing_main_part(sscreen,
1650 previous_stage_sel,
1651 compiler_state, &shader1_key);
1652 } else {
1653 ok = si_check_missing_main_part(sscreen, sel,
1654 compiler_state, key);
1655 }
1656 if (!ok) {
1657 FREE(shader);
1658 mtx_unlock(&sel->mutex);
1659 return -ENOMEM; /* skip the draw call */
1660 }
1661 }
1662
1663 /* Keep the reference to the 1st shader of merged shaders, so that
1664 * Gallium can't destroy it before we destroy the 2nd shader.
1665 *
1666 * Set sctx = NULL, because it's unused if we're not releasing
1667 * the shader, and we don't have any sctx here.
1668 */
1669 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1670 previous_stage_sel);
1671
1672 /* Monolithic-only shaders don't make a distinction between optimized
1673 * and unoptimized. */
1674 shader->is_monolithic =
1675 is_pure_monolithic ||
1676 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1677
1678 shader->is_optimized =
1679 !is_pure_monolithic &&
1680 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1681 if (shader->is_optimized)
1682 util_queue_fence_init(&shader->optimized_ready);
1683
1684 if (!sel->last_variant) {
1685 sel->first_variant = shader;
1686 sel->last_variant = shader;
1687 } else {
1688 sel->last_variant->next_variant = shader;
1689 sel->last_variant = shader;
1690 }
1691
1692 /* If it's an optimized shader, compile it asynchronously. */
1693 if (shader->is_optimized &&
1694 !is_pure_monolithic &&
1695 thread_index < 0) {
1696 /* Compile it asynchronously. */
1697 util_queue_add_job(&sscreen->shader_compiler_queue,
1698 shader, &shader->optimized_ready,
1699 si_build_shader_variant, NULL);
1700
1701 /* Use the default (unoptimized) shader for now. */
1702 memset(&key->opt, 0, sizeof(key->opt));
1703 mtx_unlock(&sel->mutex);
1704 goto again;
1705 }
1706
1707 assert(!shader->is_optimized);
1708 si_build_shader_variant(shader, thread_index);
1709
1710 if (!shader->compilation_failed)
1711 state->current = shader;
1712
1713 mtx_unlock(&sel->mutex);
1714 return shader->compilation_failed ? -1 : 0;
1715 }
1716
1717 static int si_shader_select(struct pipe_context *ctx,
1718 struct si_shader_ctx_state *state,
1719 struct si_compiler_ctx_state *compiler_state)
1720 {
1721 struct si_context *sctx = (struct si_context *)ctx;
1722 struct si_shader_key key;
1723
1724 si_shader_selector_key(ctx, state->cso, &key);
1725 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1726 &key, -1);
1727 }
1728
1729 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1730 struct si_shader_key *key)
1731 {
1732 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1733
1734 switch (info->processor) {
1735 case PIPE_SHADER_VERTEX:
1736 switch (next_shader) {
1737 case PIPE_SHADER_GEOMETRY:
1738 key->as_es = 1;
1739 break;
1740 case PIPE_SHADER_TESS_CTRL:
1741 case PIPE_SHADER_TESS_EVAL:
1742 key->as_ls = 1;
1743 break;
1744 default:
1745 /* If POSITION isn't written, it can't be a HW VS.
1746 * Assume that it's a HW LS. (the next shader is TCS)
1747 * This heuristic is needed for separate shader objects.
1748 */
1749 if (!info->writes_position)
1750 key->as_ls = 1;
1751 }
1752 break;
1753
1754 case PIPE_SHADER_TESS_EVAL:
1755 if (next_shader == PIPE_SHADER_GEOMETRY ||
1756 !info->writes_position)
1757 key->as_es = 1;
1758 break;
1759 }
1760 }
1761
1762 /**
1763 * Compile the main shader part or the monolithic shader as part of
1764 * si_shader_selector initialization. Since it can be done asynchronously,
1765 * there is no way to report compile failures to applications.
1766 */
1767 void si_init_shader_selector_async(void *job, int thread_index)
1768 {
1769 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1770 struct si_screen *sscreen = sel->screen;
1771 LLVMTargetMachineRef tm;
1772 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1773 unsigned i;
1774
1775 if (thread_index >= 0) {
1776 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1777 tm = sscreen->tm[thread_index];
1778 if (!debug->async)
1779 debug = NULL;
1780 } else {
1781 tm = sel->compiler_ctx_state.tm;
1782 }
1783
1784 /* Compile the main shader part for use with a prolog and/or epilog.
1785 * If this fails, the driver will try to compile a monolithic shader
1786 * on demand.
1787 */
1788 if (!sscreen->use_monolithic_shaders) {
1789 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1790 void *tgsi_binary;
1791
1792 if (!shader) {
1793 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1794 return;
1795 }
1796
1797 shader->selector = sel;
1798 si_parse_next_shader_property(&sel->info, &shader->key);
1799
1800 tgsi_binary = si_get_tgsi_binary(sel);
1801
1802 /* Try to load the shader from the shader cache. */
1803 mtx_lock(&sscreen->shader_cache_mutex);
1804
1805 if (tgsi_binary &&
1806 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1807 mtx_unlock(&sscreen->shader_cache_mutex);
1808 } else {
1809 mtx_unlock(&sscreen->shader_cache_mutex);
1810
1811 /* Compile the shader if it hasn't been loaded from the cache. */
1812 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1813 debug) != 0) {
1814 FREE(shader);
1815 FREE(tgsi_binary);
1816 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1817 return;
1818 }
1819
1820 if (tgsi_binary) {
1821 mtx_lock(&sscreen->shader_cache_mutex);
1822 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true))
1823 FREE(tgsi_binary);
1824 mtx_unlock(&sscreen->shader_cache_mutex);
1825 }
1826 }
1827
1828 *si_get_main_shader_part(sel, &shader->key) = shader;
1829
1830 /* Unset "outputs_written" flags for outputs converted to
1831 * DEFAULT_VAL, so that later inter-shader optimizations don't
1832 * try to eliminate outputs that don't exist in the final
1833 * shader.
1834 *
1835 * This is only done if non-monolithic shaders are enabled.
1836 */
1837 if ((sel->type == PIPE_SHADER_VERTEX ||
1838 sel->type == PIPE_SHADER_TESS_EVAL) &&
1839 !shader->key.as_ls &&
1840 !shader->key.as_es) {
1841 unsigned i;
1842
1843 for (i = 0; i < sel->info.num_outputs; i++) {
1844 unsigned offset = shader->info.vs_output_param_offset[i];
1845
1846 if (offset <= AC_EXP_PARAM_OFFSET_31)
1847 continue;
1848
1849 unsigned name = sel->info.output_semantic_name[i];
1850 unsigned index = sel->info.output_semantic_index[i];
1851 unsigned id;
1852
1853 switch (name) {
1854 case TGSI_SEMANTIC_GENERIC:
1855 /* don't process indices the function can't handle */
1856 if (index >= 60)
1857 break;
1858 /* fall through */
1859 case TGSI_SEMANTIC_CLIPDIST:
1860 id = si_shader_io_get_unique_index(name, index);
1861 sel->outputs_written &= ~(1ull << id);
1862 break;
1863 case TGSI_SEMANTIC_POSITION: /* ignore these */
1864 case TGSI_SEMANTIC_PSIZE:
1865 case TGSI_SEMANTIC_CLIPVERTEX:
1866 case TGSI_SEMANTIC_EDGEFLAG:
1867 break;
1868 default:
1869 id = si_shader_io_get_unique_index2(name, index);
1870 sel->outputs_written2 &= ~(1u << id);
1871 }
1872 }
1873 }
1874 }
1875
1876 /* Pre-compilation. */
1877 if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
1878 struct si_shader_ctx_state state = {sel};
1879 struct si_shader_key key;
1880
1881 memset(&key, 0, sizeof(key));
1882 si_parse_next_shader_property(&sel->info, &key);
1883
1884 /* Set reasonable defaults, so that the shader key doesn't
1885 * cause any code to be eliminated.
1886 */
1887 switch (sel->type) {
1888 case PIPE_SHADER_TESS_CTRL:
1889 key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1890 break;
1891 case PIPE_SHADER_FRAGMENT:
1892 key.part.ps.prolog.bc_optimize_for_persp =
1893 sel->info.uses_persp_center &&
1894 sel->info.uses_persp_centroid;
1895 key.part.ps.prolog.bc_optimize_for_linear =
1896 sel->info.uses_linear_center &&
1897 sel->info.uses_linear_centroid;
1898 key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1899 for (i = 0; i < 8; i++)
1900 if (sel->info.colors_written & (1 << i))
1901 key.part.ps.epilog.spi_shader_col_format |=
1902 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1903 break;
1904 }
1905
1906 if (si_shader_select_with_key(sscreen, &state,
1907 &sel->compiler_ctx_state, &key,
1908 thread_index))
1909 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1910 }
1911
1912 /* The GS copy shader is always pre-compiled. */
1913 if (sel->type == PIPE_SHADER_GEOMETRY) {
1914 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1915 if (!sel->gs_copy_shader) {
1916 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1917 return;
1918 }
1919
1920 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1921 }
1922 }
1923
1924 static void *si_create_shader_selector(struct pipe_context *ctx,
1925 const struct pipe_shader_state *state)
1926 {
1927 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1928 struct si_context *sctx = (struct si_context*)ctx;
1929 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1930 int i;
1931
1932 if (!sel)
1933 return NULL;
1934
1935 pipe_reference_init(&sel->reference, 1);
1936 sel->screen = sscreen;
1937 sel->compiler_ctx_state.tm = sctx->tm;
1938 sel->compiler_ctx_state.debug = sctx->b.debug;
1939 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1940 sel->tokens = tgsi_dup_tokens(state->tokens);
1941 if (!sel->tokens) {
1942 FREE(sel);
1943 return NULL;
1944 }
1945
1946 sel->so = state->stream_output;
1947 tgsi_scan_shader(state->tokens, &sel->info);
1948 sel->type = sel->info.processor;
1949 p_atomic_inc(&sscreen->b.num_shaders_created);
1950
1951 /* The prolog is a no-op if there are no inputs. */
1952 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
1953 sel->info.num_inputs;
1954
1955 /* Set which opcode uses which (i,j) pair. */
1956 if (sel->info.uses_persp_opcode_interp_centroid)
1957 sel->info.uses_persp_centroid = true;
1958
1959 if (sel->info.uses_linear_opcode_interp_centroid)
1960 sel->info.uses_linear_centroid = true;
1961
1962 if (sel->info.uses_persp_opcode_interp_offset ||
1963 sel->info.uses_persp_opcode_interp_sample)
1964 sel->info.uses_persp_center = true;
1965
1966 if (sel->info.uses_linear_opcode_interp_offset ||
1967 sel->info.uses_linear_opcode_interp_sample)
1968 sel->info.uses_linear_center = true;
1969
1970 switch (sel->type) {
1971 case PIPE_SHADER_GEOMETRY:
1972 sel->gs_output_prim =
1973 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1974 sel->gs_max_out_vertices =
1975 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1976 sel->gs_num_invocations =
1977 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1978 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1979 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1980 sel->gs_max_out_vertices;
1981
1982 sel->max_gs_stream = 0;
1983 for (i = 0; i < sel->so.num_outputs; i++)
1984 sel->max_gs_stream = MAX2(sel->max_gs_stream,
1985 sel->so.output[i].stream);
1986
1987 sel->gs_input_verts_per_prim =
1988 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1989 break;
1990
1991 case PIPE_SHADER_TESS_CTRL:
1992 /* Always reserve space for these. */
1993 sel->patch_outputs_written |=
1994 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1995 (1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1996 /* fall through */
1997 case PIPE_SHADER_VERTEX:
1998 case PIPE_SHADER_TESS_EVAL:
1999 for (i = 0; i < sel->info.num_outputs; i++) {
2000 unsigned name = sel->info.output_semantic_name[i];
2001 unsigned index = sel->info.output_semantic_index[i];
2002
2003 switch (name) {
2004 case TGSI_SEMANTIC_TESSINNER:
2005 case TGSI_SEMANTIC_TESSOUTER:
2006 case TGSI_SEMANTIC_PATCH:
2007 sel->patch_outputs_written |=
2008 1llu << si_shader_io_get_unique_index(name, index);
2009 break;
2010
2011 case TGSI_SEMANTIC_GENERIC:
2012 /* don't process indices the function can't handle */
2013 if (index >= 60)
2014 break;
2015 /* fall through */
2016 case TGSI_SEMANTIC_POSITION:
2017 case TGSI_SEMANTIC_PSIZE:
2018 case TGSI_SEMANTIC_CLIPDIST:
2019 sel->outputs_written |=
2020 1llu << si_shader_io_get_unique_index(name, index);
2021 break;
2022 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2023 case TGSI_SEMANTIC_EDGEFLAG:
2024 break;
2025 default:
2026 sel->outputs_written2 |=
2027 1u << si_shader_io_get_unique_index2(name, index);
2028 }
2029 }
2030 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2031
2032 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2033 * conflicts, i.e. each vertex will start at a different bank.
2034 */
2035 if (sctx->b.chip_class >= GFX9)
2036 sel->esgs_itemsize += 4;
2037 break;
2038
2039 case PIPE_SHADER_FRAGMENT:
2040 for (i = 0; i < sel->info.num_inputs; i++) {
2041 unsigned name = sel->info.input_semantic_name[i];
2042 unsigned index = sel->info.input_semantic_index[i];
2043
2044 switch (name) {
2045 case TGSI_SEMANTIC_CLIPDIST:
2046 case TGSI_SEMANTIC_GENERIC:
2047 sel->inputs_read |=
2048 1llu << si_shader_io_get_unique_index(name, index);
2049 break;
2050 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2051 break;
2052 default:
2053 sel->inputs_read2 |=
2054 1u << si_shader_io_get_unique_index2(name, index);
2055 }
2056 }
2057
2058 for (i = 0; i < 8; i++)
2059 if (sel->info.colors_written & (1 << i))
2060 sel->colors_written_4bit |= 0xf << (4 * i);
2061
2062 for (i = 0; i < sel->info.num_inputs; i++) {
2063 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2064 int index = sel->info.input_semantic_index[i];
2065 sel->color_attr_index[index] = i;
2066 }
2067 }
2068 break;
2069 }
2070
2071 /* DB_SHADER_CONTROL */
2072 sel->db_shader_control =
2073 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2074 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2075 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2076 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2077
2078 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2079 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2080 sel->db_shader_control |=
2081 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2082 break;
2083 case TGSI_FS_DEPTH_LAYOUT_LESS:
2084 sel->db_shader_control |=
2085 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2086 break;
2087 }
2088
2089 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2090 *
2091 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2092 * --|-----------|------------|------------|--------------------|-------------------|-------------
2093 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2094 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2095 * 2 | false | true | n/a | LateZ | 1 | 0
2096 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2097 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2098 *
2099 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2100 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2101 *
2102 * Don't use ReZ without profiling !!!
2103 *
2104 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2105 * shaders.
2106 */
2107 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2108 /* Cases 3, 4. */
2109 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2110 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2111 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2112 } else if (sel->info.writes_memory) {
2113 /* Case 2. */
2114 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2115 S_02880C_EXEC_ON_HIER_FAIL(1);
2116 } else {
2117 /* Case 1. */
2118 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2119 }
2120
2121 (void) mtx_init(&sel->mutex, mtx_plain);
2122 util_queue_fence_init(&sel->ready);
2123
2124 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
2125 sctx->is_debug ||
2126 r600_can_dump_shader(&sscreen->b, sel->info.processor))
2127 si_init_shader_selector_async(sel, -1);
2128 else
2129 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2130 &sel->ready, si_init_shader_selector_async,
2131 NULL);
2132
2133 return sel;
2134 }
2135
2136 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2137 {
2138 struct si_context *sctx = (struct si_context *)ctx;
2139 struct si_shader_selector *sel = state;
2140
2141 if (sctx->vs_shader.cso == sel)
2142 return;
2143
2144 sctx->vs_shader.cso = sel;
2145 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2146 sctx->do_update_shaders = true;
2147 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2148 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2149 }
2150
2151 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2152 {
2153 struct si_context *sctx = (struct si_context *)ctx;
2154 struct si_shader_selector *sel = state;
2155 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2156
2157 if (sctx->gs_shader.cso == sel)
2158 return;
2159
2160 sctx->gs_shader.cso = sel;
2161 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2162 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2163 sctx->do_update_shaders = true;
2164 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2165 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2166
2167 if (enable_changed)
2168 si_shader_change_notify(sctx);
2169 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2170 }
2171
2172 static void si_update_tcs_tes_uses_prim_id(struct si_context *sctx)
2173 {
2174 sctx->ia_multi_vgt_param_key.u.tcs_tes_uses_prim_id =
2175 (sctx->tes_shader.cso &&
2176 sctx->tes_shader.cso->info.uses_primid) ||
2177 (sctx->tcs_shader.cso &&
2178 sctx->tcs_shader.cso->info.uses_primid);
2179 }
2180
2181 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2182 {
2183 struct si_context *sctx = (struct si_context *)ctx;
2184 struct si_shader_selector *sel = state;
2185 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2186
2187 if (sctx->tcs_shader.cso == sel)
2188 return;
2189
2190 sctx->tcs_shader.cso = sel;
2191 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2192 si_update_tcs_tes_uses_prim_id(sctx);
2193 sctx->do_update_shaders = true;
2194
2195 if (enable_changed)
2196 sctx->last_tcs = NULL; /* invalidate derived tess state */
2197 }
2198
2199 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2200 {
2201 struct si_context *sctx = (struct si_context *)ctx;
2202 struct si_shader_selector *sel = state;
2203 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2204
2205 if (sctx->tes_shader.cso == sel)
2206 return;
2207
2208 sctx->tes_shader.cso = sel;
2209 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2210 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2211 si_update_tcs_tes_uses_prim_id(sctx);
2212 sctx->do_update_shaders = true;
2213 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2214 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2215
2216 if (enable_changed) {
2217 si_shader_change_notify(sctx);
2218 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2219 }
2220 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2221 }
2222
2223 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2224 {
2225 struct si_context *sctx = (struct si_context *)ctx;
2226 struct si_shader_selector *sel = state;
2227
2228 /* skip if supplied shader is one already in use */
2229 if (sctx->ps_shader.cso == sel)
2230 return;
2231
2232 sctx->ps_shader.cso = sel;
2233 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2234 sctx->do_update_shaders = true;
2235 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2236 }
2237
2238 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2239 {
2240 if (shader->is_optimized) {
2241 util_queue_fence_wait(&shader->optimized_ready);
2242 util_queue_fence_destroy(&shader->optimized_ready);
2243 }
2244
2245 if (shader->pm4) {
2246 switch (shader->selector->type) {
2247 case PIPE_SHADER_VERTEX:
2248 if (shader->key.as_ls) {
2249 assert(sctx->b.chip_class <= VI);
2250 si_pm4_delete_state(sctx, ls, shader->pm4);
2251 } else if (shader->key.as_es) {
2252 assert(sctx->b.chip_class <= VI);
2253 si_pm4_delete_state(sctx, es, shader->pm4);
2254 } else {
2255 si_pm4_delete_state(sctx, vs, shader->pm4);
2256 }
2257 break;
2258 case PIPE_SHADER_TESS_CTRL:
2259 si_pm4_delete_state(sctx, hs, shader->pm4);
2260 break;
2261 case PIPE_SHADER_TESS_EVAL:
2262 if (shader->key.as_es) {
2263 assert(sctx->b.chip_class <= VI);
2264 si_pm4_delete_state(sctx, es, shader->pm4);
2265 } else {
2266 si_pm4_delete_state(sctx, vs, shader->pm4);
2267 }
2268 break;
2269 case PIPE_SHADER_GEOMETRY:
2270 if (shader->is_gs_copy_shader)
2271 si_pm4_delete_state(sctx, vs, shader->pm4);
2272 else
2273 si_pm4_delete_state(sctx, gs, shader->pm4);
2274 break;
2275 case PIPE_SHADER_FRAGMENT:
2276 si_pm4_delete_state(sctx, ps, shader->pm4);
2277 break;
2278 }
2279 }
2280
2281 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2282 si_shader_destroy(shader);
2283 free(shader);
2284 }
2285
2286 static void si_destroy_shader_selector(struct si_context *sctx,
2287 struct si_shader_selector *sel)
2288 {
2289 struct si_shader *p = sel->first_variant, *c;
2290 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2291 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2292 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2293 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2294 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2295 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2296 };
2297
2298 util_queue_fence_wait(&sel->ready);
2299
2300 if (current_shader[sel->type]->cso == sel) {
2301 current_shader[sel->type]->cso = NULL;
2302 current_shader[sel->type]->current = NULL;
2303 }
2304
2305 while (p) {
2306 c = p->next_variant;
2307 si_delete_shader(sctx, p);
2308 p = c;
2309 }
2310
2311 if (sel->main_shader_part)
2312 si_delete_shader(sctx, sel->main_shader_part);
2313 if (sel->main_shader_part_ls)
2314 si_delete_shader(sctx, sel->main_shader_part_ls);
2315 if (sel->main_shader_part_es)
2316 si_delete_shader(sctx, sel->main_shader_part_es);
2317 if (sel->gs_copy_shader)
2318 si_delete_shader(sctx, sel->gs_copy_shader);
2319
2320 util_queue_fence_destroy(&sel->ready);
2321 mtx_destroy(&sel->mutex);
2322 free(sel->tokens);
2323 free(sel);
2324 }
2325
2326 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2327 {
2328 struct si_context *sctx = (struct si_context *)ctx;
2329 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2330
2331 si_shader_selector_reference(sctx, &sel, NULL);
2332 }
2333
2334 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2335 struct si_shader *vs, unsigned name,
2336 unsigned index, unsigned interpolate)
2337 {
2338 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2339 unsigned j, offset, ps_input_cntl = 0;
2340
2341 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2342 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2343 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2344
2345 if (name == TGSI_SEMANTIC_PCOORD ||
2346 (name == TGSI_SEMANTIC_TEXCOORD &&
2347 sctx->sprite_coord_enable & (1 << index))) {
2348 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2349 }
2350
2351 for (j = 0; j < vsinfo->num_outputs; j++) {
2352 if (name == vsinfo->output_semantic_name[j] &&
2353 index == vsinfo->output_semantic_index[j]) {
2354 offset = vs->info.vs_output_param_offset[j];
2355
2356 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2357 /* The input is loaded from parameter memory. */
2358 ps_input_cntl |= S_028644_OFFSET(offset);
2359 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2360 if (offset == AC_EXP_PARAM_UNDEFINED) {
2361 /* This can happen with depth-only rendering. */
2362 offset = 0;
2363 } else {
2364 /* The input is a DEFAULT_VAL constant. */
2365 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2366 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2367 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2368 }
2369
2370 ps_input_cntl = S_028644_OFFSET(0x20) |
2371 S_028644_DEFAULT_VAL(offset);
2372 }
2373 break;
2374 }
2375 }
2376
2377 if (name == TGSI_SEMANTIC_PRIMID)
2378 /* PrimID is written after the last output. */
2379 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2380 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2381 /* No corresponding output found, load defaults into input.
2382 * Don't set any other bits.
2383 * (FLAT_SHADE=1 completely changes behavior) */
2384 ps_input_cntl = S_028644_OFFSET(0x20);
2385 /* D3D 9 behaviour. GL is undefined */
2386 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2387 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2388 }
2389 return ps_input_cntl;
2390 }
2391
2392 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2393 {
2394 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2395 struct si_shader *ps = sctx->ps_shader.current;
2396 struct si_shader *vs = si_get_vs_state(sctx);
2397 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2398 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2399
2400 if (!ps || !ps->selector->info.num_inputs)
2401 return;
2402
2403 num_interp = si_get_ps_num_interp(ps);
2404 assert(num_interp > 0);
2405 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2406
2407 for (i = 0; i < psinfo->num_inputs; i++) {
2408 unsigned name = psinfo->input_semantic_name[i];
2409 unsigned index = psinfo->input_semantic_index[i];
2410 unsigned interpolate = psinfo->input_interpolate[i];
2411
2412 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2413 interpolate));
2414 num_written++;
2415
2416 if (name == TGSI_SEMANTIC_COLOR) {
2417 assert(index < ARRAY_SIZE(bcol_interp));
2418 bcol_interp[index] = interpolate;
2419 }
2420 }
2421
2422 if (ps->key.part.ps.prolog.color_two_side) {
2423 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2424
2425 for (i = 0; i < 2; i++) {
2426 if (!(psinfo->colors_read & (0xf << (i * 4))))
2427 continue;
2428
2429 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2430 i, bcol_interp[i]));
2431 num_written++;
2432 }
2433 }
2434 assert(num_interp == num_written);
2435 }
2436
2437 /**
2438 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2439 */
2440 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2441 {
2442 if (sctx->init_config_has_vgt_flush)
2443 return;
2444
2445 /* Done by Vulkan before VGT_FLUSH. */
2446 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2447 si_pm4_cmd_add(sctx->init_config,
2448 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2449 si_pm4_cmd_end(sctx->init_config, false);
2450
2451 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2452 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2453 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2454 si_pm4_cmd_end(sctx->init_config, false);
2455 sctx->init_config_has_vgt_flush = true;
2456 }
2457
2458 /* Initialize state related to ESGS / GSVS ring buffers */
2459 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2460 {
2461 struct si_shader_selector *es =
2462 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2463 struct si_shader_selector *gs = sctx->gs_shader.cso;
2464 struct si_pm4_state *pm4;
2465
2466 /* Chip constants. */
2467 unsigned num_se = sctx->screen->b.info.max_se;
2468 unsigned wave_size = 64;
2469 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2470 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2471 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2472 */
2473 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2474 unsigned alignment = 256 * num_se;
2475 /* The maximum size is 63.999 MB per SE. */
2476 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2477
2478 /* Calculate the minimum size. */
2479 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2480 wave_size, alignment);
2481
2482 /* These are recommended sizes, not minimum sizes. */
2483 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2484 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2485 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2486 gs->max_gsvs_emit_size;
2487
2488 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2489 esgs_ring_size = align(esgs_ring_size, alignment);
2490 gsvs_ring_size = align(gsvs_ring_size, alignment);
2491
2492 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2493 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2494
2495 /* Some rings don't have to be allocated if shaders don't use them.
2496 * (e.g. no varyings between ES and GS or GS and VS)
2497 *
2498 * GFX9 doesn't have the ESGS ring.
2499 */
2500 bool update_esgs = sctx->b.chip_class <= VI &&
2501 esgs_ring_size &&
2502 (!sctx->esgs_ring ||
2503 sctx->esgs_ring->width0 < esgs_ring_size);
2504 bool update_gsvs = gsvs_ring_size &&
2505 (!sctx->gsvs_ring ||
2506 sctx->gsvs_ring->width0 < gsvs_ring_size);
2507
2508 if (!update_esgs && !update_gsvs)
2509 return true;
2510
2511 if (update_esgs) {
2512 pipe_resource_reference(&sctx->esgs_ring, NULL);
2513 sctx->esgs_ring =
2514 r600_aligned_buffer_create(sctx->b.b.screen,
2515 R600_RESOURCE_FLAG_UNMAPPABLE,
2516 PIPE_USAGE_DEFAULT,
2517 esgs_ring_size, alignment);
2518 if (!sctx->esgs_ring)
2519 return false;
2520 }
2521
2522 if (update_gsvs) {
2523 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2524 sctx->gsvs_ring =
2525 r600_aligned_buffer_create(sctx->b.b.screen,
2526 R600_RESOURCE_FLAG_UNMAPPABLE,
2527 PIPE_USAGE_DEFAULT,
2528 gsvs_ring_size, alignment);
2529 if (!sctx->gsvs_ring)
2530 return false;
2531 }
2532
2533 /* Create the "init_config_gs_rings" state. */
2534 pm4 = CALLOC_STRUCT(si_pm4_state);
2535 if (!pm4)
2536 return false;
2537
2538 if (sctx->b.chip_class >= CIK) {
2539 if (sctx->esgs_ring) {
2540 assert(sctx->b.chip_class <= VI);
2541 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2542 sctx->esgs_ring->width0 / 256);
2543 }
2544 if (sctx->gsvs_ring)
2545 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2546 sctx->gsvs_ring->width0 / 256);
2547 } else {
2548 if (sctx->esgs_ring)
2549 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2550 sctx->esgs_ring->width0 / 256);
2551 if (sctx->gsvs_ring)
2552 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2553 sctx->gsvs_ring->width0 / 256);
2554 }
2555
2556 /* Set the state. */
2557 if (sctx->init_config_gs_rings)
2558 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2559 sctx->init_config_gs_rings = pm4;
2560
2561 if (!sctx->init_config_has_vgt_flush) {
2562 si_init_config_add_vgt_flush(sctx);
2563 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2564 }
2565
2566 /* Flush the context to re-emit both init_config states. */
2567 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2568 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2569
2570 /* Set ring bindings. */
2571 if (sctx->esgs_ring) {
2572 assert(sctx->b.chip_class <= VI);
2573 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2574 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2575 true, true, 4, 64, 0);
2576 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2577 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2578 false, false, 0, 0, 0);
2579 }
2580 if (sctx->gsvs_ring) {
2581 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2582 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2583 false, false, 0, 0, 0);
2584 }
2585
2586 return true;
2587 }
2588
2589 static void si_shader_lock(struct si_shader *shader)
2590 {
2591 mtx_lock(&shader->selector->mutex);
2592 if (shader->previous_stage_sel) {
2593 assert(shader->previous_stage_sel != shader->selector);
2594 mtx_lock(&shader->previous_stage_sel->mutex);
2595 }
2596 }
2597
2598 static void si_shader_unlock(struct si_shader *shader)
2599 {
2600 if (shader->previous_stage_sel)
2601 mtx_unlock(&shader->previous_stage_sel->mutex);
2602 mtx_unlock(&shader->selector->mutex);
2603 }
2604
2605 /**
2606 * @returns 1 if \p sel has been updated to use a new scratch buffer
2607 * 0 if not
2608 * < 0 if there was a failure
2609 */
2610 static int si_update_scratch_buffer(struct si_context *sctx,
2611 struct si_shader *shader)
2612 {
2613 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2614 int r;
2615
2616 if (!shader)
2617 return 0;
2618
2619 /* This shader doesn't need a scratch buffer */
2620 if (shader->config.scratch_bytes_per_wave == 0)
2621 return 0;
2622
2623 /* Prevent race conditions when updating:
2624 * - si_shader::scratch_bo
2625 * - si_shader::binary::code
2626 * - si_shader::previous_stage::binary::code.
2627 */
2628 si_shader_lock(shader);
2629
2630 /* This shader is already configured to use the current
2631 * scratch buffer. */
2632 if (shader->scratch_bo == sctx->scratch_buffer) {
2633 si_shader_unlock(shader);
2634 return 0;
2635 }
2636
2637 assert(sctx->scratch_buffer);
2638
2639 if (shader->previous_stage)
2640 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2641
2642 si_shader_apply_scratch_relocs(shader, scratch_va);
2643
2644 /* Replace the shader bo with a new bo that has the relocs applied. */
2645 r = si_shader_binary_upload(sctx->screen, shader);
2646 if (r) {
2647 si_shader_unlock(shader);
2648 return r;
2649 }
2650
2651 /* Update the shader state to use the new shader bo. */
2652 si_shader_init_pm4_state(sctx->screen, shader);
2653
2654 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2655
2656 si_shader_unlock(shader);
2657 return 1;
2658 }
2659
2660 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2661 {
2662 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2663 }
2664
2665 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2666 {
2667 return shader ? shader->config.scratch_bytes_per_wave : 0;
2668 }
2669
2670 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2671 {
2672 unsigned bytes = 0;
2673
2674 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2675 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2676 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2677 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
2678 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2679 return bytes;
2680 }
2681
2682 static bool si_update_scratch_relocs(struct si_context *sctx)
2683 {
2684 int r;
2685
2686 /* Update the shaders, so that they are using the latest scratch.
2687 * The scratch buffer may have been changed since these shaders were
2688 * last used, so we still need to try to update them, even if they
2689 * require scratch buffers smaller than the current size.
2690 */
2691 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2692 if (r < 0)
2693 return false;
2694 if (r == 1)
2695 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2696
2697 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2698 if (r < 0)
2699 return false;
2700 if (r == 1)
2701 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2702
2703 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
2704 if (r < 0)
2705 return false;
2706 if (r == 1)
2707 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2708
2709 /* VS can be bound as LS, ES, or VS. */
2710 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2711 if (r < 0)
2712 return false;
2713 if (r == 1) {
2714 if (sctx->tes_shader.current)
2715 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2716 else if (sctx->gs_shader.current)
2717 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2718 else
2719 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2720 }
2721
2722 /* TES can be bound as ES or VS. */
2723 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2724 if (r < 0)
2725 return false;
2726 if (r == 1) {
2727 if (sctx->gs_shader.current)
2728 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2729 else
2730 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2731 }
2732
2733 return true;
2734 }
2735
2736 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2737 {
2738 unsigned current_scratch_buffer_size =
2739 si_get_current_scratch_buffer_size(sctx);
2740 unsigned scratch_bytes_per_wave =
2741 si_get_max_scratch_bytes_per_wave(sctx);
2742 unsigned scratch_needed_size = scratch_bytes_per_wave *
2743 sctx->scratch_waves;
2744 unsigned spi_tmpring_size;
2745
2746 if (scratch_needed_size > 0) {
2747 if (scratch_needed_size > current_scratch_buffer_size) {
2748 /* Create a bigger scratch buffer */
2749 r600_resource_reference(&sctx->scratch_buffer, NULL);
2750
2751 sctx->scratch_buffer = (struct r600_resource*)
2752 r600_aligned_buffer_create(&sctx->screen->b.b,
2753 R600_RESOURCE_FLAG_UNMAPPABLE,
2754 PIPE_USAGE_DEFAULT,
2755 scratch_needed_size, 256);
2756 if (!sctx->scratch_buffer)
2757 return false;
2758
2759 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2760 r600_context_add_resource_size(&sctx->b.b,
2761 &sctx->scratch_buffer->b.b);
2762 }
2763
2764 if (!si_update_scratch_relocs(sctx))
2765 return false;
2766 }
2767
2768 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2769 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2770 "scratch size should already be aligned correctly.");
2771
2772 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2773 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2774 if (spi_tmpring_size != sctx->spi_tmpring_size) {
2775 sctx->spi_tmpring_size = spi_tmpring_size;
2776 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2777 }
2778 return true;
2779 }
2780
2781 static void si_init_tess_factor_ring(struct si_context *sctx)
2782 {
2783 bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
2784 sctx->b.family != CHIP_CARRIZO &&
2785 sctx->b.family != CHIP_STONEY;
2786 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
2787 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
2788 sctx->screen->b.info.max_se;
2789 unsigned offchip_granularity;
2790
2791 switch (sctx->screen->tess_offchip_block_dw_size) {
2792 default:
2793 assert(0);
2794 /* fall through */
2795 case 8192:
2796 offchip_granularity = V_03093C_X_8K_DWORDS;
2797 break;
2798 case 4096:
2799 offchip_granularity = V_03093C_X_4K_DWORDS;
2800 break;
2801 }
2802
2803 switch (sctx->b.chip_class) {
2804 case SI:
2805 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2806 break;
2807 case CIK:
2808 case VI:
2809 case GFX9:
2810 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2811 break;
2812 default:
2813 assert(0);
2814 return;
2815 }
2816
2817 assert(!sctx->tf_ring);
2818 /* Use 64K alignment for both rings, so that we can pass the address
2819 * to shaders as one SGPR containing bits [16:47].
2820 */
2821 sctx->tf_ring = r600_aligned_buffer_create(sctx->b.b.screen,
2822 R600_RESOURCE_FLAG_UNMAPPABLE,
2823 PIPE_USAGE_DEFAULT,
2824 32768 * sctx->screen->b.info.max_se,
2825 64 * 1024);
2826 if (!sctx->tf_ring)
2827 return;
2828
2829 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2830
2831 sctx->tess_offchip_ring =
2832 r600_aligned_buffer_create(sctx->b.b.screen,
2833 R600_RESOURCE_FLAG_UNMAPPABLE,
2834 PIPE_USAGE_DEFAULT,
2835 max_offchip_buffers *
2836 sctx->screen->tess_offchip_block_dw_size * 4,
2837 64 * 1024);
2838 if (!sctx->tess_offchip_ring)
2839 return;
2840
2841 si_init_config_add_vgt_flush(sctx);
2842
2843 uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
2844 uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
2845 assert((offchip_va & 0xffff) == 0);
2846 assert((factor_va & 0xffff) == 0);
2847
2848 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
2849 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
2850 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
2851 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
2852
2853 /* Append these registers to the init config state. */
2854 if (sctx->b.chip_class >= CIK) {
2855 if (sctx->b.chip_class >= VI)
2856 --max_offchip_buffers;
2857
2858 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2859 S_030938_SIZE(sctx->tf_ring->width0 / 4));
2860 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2861 factor_va >> 8);
2862 if (sctx->b.chip_class >= GFX9)
2863 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
2864 factor_va >> 40);
2865 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2866 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2867 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2868 } else {
2869 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2870 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2871 S_008988_SIZE(sctx->tf_ring->width0 / 4));
2872 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2873 factor_va >> 8);
2874 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2875 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2876 }
2877
2878 if (sctx->b.chip_class >= GFX9) {
2879 si_pm4_set_reg(sctx->init_config,
2880 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
2881 GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
2882 offchip_va >> 16);
2883 si_pm4_set_reg(sctx->init_config,
2884 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
2885 GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
2886 factor_va >> 16);
2887 } else {
2888 si_pm4_set_reg(sctx->init_config,
2889 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
2890 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
2891 offchip_va >> 16);
2892 si_pm4_set_reg(sctx->init_config,
2893 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
2894 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
2895 factor_va >> 16);
2896 }
2897
2898 /* Flush the context to re-emit the init_config state.
2899 * This is done only once in a lifetime of a context.
2900 */
2901 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2902 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2903 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2904 }
2905
2906 /**
2907 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2908 * VS passes its outputs to TES directly, so the fixed-function shader only
2909 * has to write TESSOUTER and TESSINNER.
2910 */
2911 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2912 {
2913 struct ureg_src outer, inner;
2914 struct ureg_dst tessouter, tessinner;
2915 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2916
2917 if (!ureg)
2918 return; /* if we get here, we're screwed */
2919
2920 assert(!sctx->fixed_func_tcs_shader.cso);
2921
2922 outer = ureg_DECL_system_value(ureg,
2923 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2924 inner = ureg_DECL_system_value(ureg,
2925 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2926
2927 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2928 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2929
2930 ureg_MOV(ureg, tessouter, outer);
2931 ureg_MOV(ureg, tessinner, inner);
2932 ureg_END(ureg);
2933
2934 sctx->fixed_func_tcs_shader.cso =
2935 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2936 }
2937
2938 static void si_update_vgt_shader_config(struct si_context *sctx)
2939 {
2940 /* Calculate the index of the config.
2941 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2942 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2943 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2944
2945 if (!*pm4) {
2946 uint32_t stages = 0;
2947
2948 *pm4 = CALLOC_STRUCT(si_pm4_state);
2949
2950 if (sctx->tes_shader.cso) {
2951 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2952 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2953
2954 if (sctx->gs_shader.cso)
2955 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2956 S_028B54_GS_EN(1) |
2957 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2958 else
2959 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2960 } else if (sctx->gs_shader.cso) {
2961 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2962 S_028B54_GS_EN(1) |
2963 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2964 }
2965
2966 if (sctx->b.chip_class >= GFX9)
2967 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
2968
2969 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2970 }
2971 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2972 }
2973
2974 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2975 {
2976 struct pipe_stream_output_info *so = &shader->so;
2977 uint32_t enabled_stream_buffers_mask = 0;
2978 int i;
2979
2980 for (i = 0; i < so->num_outputs; i++)
2981 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2982 sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2983 sctx->b.streamout.stride_in_dw = shader->so.stride;
2984 }
2985
2986 bool si_update_shaders(struct si_context *sctx)
2987 {
2988 struct pipe_context *ctx = (struct pipe_context*)sctx;
2989 struct si_compiler_ctx_state compiler_state;
2990 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2991 struct si_shader *old_vs = si_get_vs_state(sctx);
2992 bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
2993 int r;
2994
2995 compiler_state.tm = sctx->tm;
2996 compiler_state.debug = sctx->b.debug;
2997 compiler_state.is_debug_context = sctx->is_debug;
2998
2999 /* Update stages before GS. */
3000 if (sctx->tes_shader.cso) {
3001 if (!sctx->tf_ring) {
3002 si_init_tess_factor_ring(sctx);
3003 if (!sctx->tf_ring)
3004 return false;
3005 }
3006
3007 /* VS as LS */
3008 if (sctx->b.chip_class <= VI) {
3009 r = si_shader_select(ctx, &sctx->vs_shader,
3010 &compiler_state);
3011 if (r)
3012 return false;
3013 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3014 }
3015
3016 if (sctx->tcs_shader.cso) {
3017 r = si_shader_select(ctx, &sctx->tcs_shader,
3018 &compiler_state);
3019 if (r)
3020 return false;
3021 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3022 } else {
3023 if (!sctx->fixed_func_tcs_shader.cso) {
3024 si_generate_fixed_func_tcs(sctx);
3025 if (!sctx->fixed_func_tcs_shader.cso)
3026 return false;
3027 }
3028
3029 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3030 &compiler_state);
3031 if (r)
3032 return false;
3033 si_pm4_bind_state(sctx, hs,
3034 sctx->fixed_func_tcs_shader.current->pm4);
3035 }
3036
3037 if (sctx->gs_shader.cso) {
3038 /* TES as ES */
3039 if (sctx->b.chip_class <= VI) {
3040 r = si_shader_select(ctx, &sctx->tes_shader,
3041 &compiler_state);
3042 if (r)
3043 return false;
3044 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3045 }
3046 } else {
3047 /* TES as VS */
3048 r = si_shader_select(ctx, &sctx->tes_shader,
3049 &compiler_state);
3050 if (r)
3051 return false;
3052 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3053 si_update_so(sctx, sctx->tes_shader.cso);
3054 }
3055 } else if (sctx->gs_shader.cso) {
3056 if (sctx->b.chip_class <= VI) {
3057 /* VS as ES */
3058 r = si_shader_select(ctx, &sctx->vs_shader,
3059 &compiler_state);
3060 if (r)
3061 return false;
3062 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3063
3064 si_pm4_bind_state(sctx, ls, NULL);
3065 si_pm4_bind_state(sctx, hs, NULL);
3066 }
3067 } else {
3068 /* VS as VS */
3069 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3070 if (r)
3071 return false;
3072 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3073 si_update_so(sctx, sctx->vs_shader.cso);
3074
3075 si_pm4_bind_state(sctx, ls, NULL);
3076 si_pm4_bind_state(sctx, hs, NULL);
3077 }
3078
3079 /* Update GS. */
3080 if (sctx->gs_shader.cso) {
3081 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3082 if (r)
3083 return false;
3084 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3085 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3086 si_update_so(sctx, sctx->gs_shader.cso);
3087
3088 if (!si_update_gs_ring_buffers(sctx))
3089 return false;
3090 } else {
3091 si_pm4_bind_state(sctx, gs, NULL);
3092 if (sctx->b.chip_class <= VI)
3093 si_pm4_bind_state(sctx, es, NULL);
3094 }
3095
3096 si_update_vgt_shader_config(sctx);
3097
3098 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
3099 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3100
3101 if (sctx->ps_shader.cso) {
3102 unsigned db_shader_control;
3103
3104 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3105 if (r)
3106 return false;
3107 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3108
3109 db_shader_control =
3110 sctx->ps_shader.cso->db_shader_control |
3111 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3112
3113 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3114 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3115 sctx->flatshade != rs->flatshade) {
3116 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3117 sctx->flatshade = rs->flatshade;
3118 si_mark_atom_dirty(sctx, &sctx->spi_map);
3119 }
3120
3121 if (sctx->screen->b.rbplus_allowed && si_pm4_state_changed(sctx, ps))
3122 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3123
3124 if (sctx->ps_db_shader_control != db_shader_control) {
3125 sctx->ps_db_shader_control = db_shader_control;
3126 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3127 }
3128
3129 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3130 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3131 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3132
3133 if (sctx->b.chip_class == SI)
3134 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3135
3136 if (sctx->framebuffer.nr_samples <= 1)
3137 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3138 }
3139 }
3140
3141 if (si_pm4_state_changed(sctx, ls) ||
3142 si_pm4_state_changed(sctx, hs) ||
3143 si_pm4_state_changed(sctx, es) ||
3144 si_pm4_state_changed(sctx, gs) ||
3145 si_pm4_state_changed(sctx, vs) ||
3146 si_pm4_state_changed(sctx, ps)) {
3147 if (!si_update_spi_tmpring_size(sctx))
3148 return false;
3149 }
3150
3151 if (sctx->b.chip_class >= CIK)
3152 si_mark_atom_dirty(sctx, &sctx->prefetch_L2);
3153
3154 sctx->do_update_shaders = false;
3155 return true;
3156 }
3157
3158 static void si_emit_scratch_state(struct si_context *sctx,
3159 struct r600_atom *atom)
3160 {
3161 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3162
3163 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3164 sctx->spi_tmpring_size);
3165
3166 if (sctx->scratch_buffer) {
3167 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3168 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3169 RADEON_PRIO_SCRATCH_BUFFER);
3170 }
3171 }
3172
3173 void si_init_shader_functions(struct si_context *sctx)
3174 {
3175 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3176 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3177 si_emit_scratch_state);
3178
3179 sctx->b.b.create_vs_state = si_create_shader_selector;
3180 sctx->b.b.create_tcs_state = si_create_shader_selector;
3181 sctx->b.b.create_tes_state = si_create_shader_selector;
3182 sctx->b.b.create_gs_state = si_create_shader_selector;
3183 sctx->b.b.create_fs_state = si_create_shader_selector;
3184
3185 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3186 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3187 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3188 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3189 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3190
3191 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3192 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3193 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3194 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3195 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3196 }