radeonsi: move tessellation ring info into si_screen
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_pipe.h"
25 #include "sid.h"
26 #include "gfx9d.h"
27 #include "radeon/r600_cs.h"
28
29 #include "compiler/nir/nir_serialize.h"
30 #include "tgsi/tgsi_parse.h"
31 #include "tgsi/tgsi_ureg.h"
32 #include "util/hash_table.h"
33 #include "util/crc32.h"
34 #include "util/u_async_debug.h"
35 #include "util/u_memory.h"
36 #include "util/u_prim.h"
37
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "ac_exp_param.h"
41 #include "ac_shader_util.h"
42
43 /* SHADER_CACHE */
44
45 /**
46 * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
47 * size as integer.
48 */
49 static void *si_get_ir_binary(struct si_shader_selector *sel)
50 {
51 struct blob blob;
52 unsigned ir_size;
53 void *ir_binary;
54
55 if (sel->tokens) {
56 ir_binary = sel->tokens;
57 ir_size = tgsi_num_tokens(sel->tokens) *
58 sizeof(struct tgsi_token);
59 } else {
60 assert(sel->nir);
61
62 blob_init(&blob);
63 nir_serialize(&blob, sel->nir);
64 ir_binary = blob.data;
65 ir_size = blob.size;
66 }
67
68 unsigned size = 4 + ir_size + sizeof(sel->so);
69 char *result = (char*)MALLOC(size);
70 if (!result)
71 return NULL;
72
73 *((uint32_t*)result) = size;
74 memcpy(result + 4, ir_binary, ir_size);
75 memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
76
77 if (sel->nir)
78 blob_finish(&blob);
79
80 return result;
81 }
82
83 /** Copy "data" to "ptr" and return the next dword following copied data. */
84 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
85 {
86 /* data may be NULL if size == 0 */
87 if (size)
88 memcpy(ptr, data, size);
89 ptr += DIV_ROUND_UP(size, 4);
90 return ptr;
91 }
92
93 /** Read data from "ptr". Return the next dword following the data. */
94 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
95 {
96 memcpy(data, ptr, size);
97 ptr += DIV_ROUND_UP(size, 4);
98 return ptr;
99 }
100
101 /**
102 * Write the size as uint followed by the data. Return the next dword
103 * following the copied data.
104 */
105 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
106 {
107 *ptr++ = size;
108 return write_data(ptr, data, size);
109 }
110
111 /**
112 * Read the size as uint followed by the data. Return both via parameters.
113 * Return the next dword following the data.
114 */
115 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
116 {
117 *size = *ptr++;
118 assert(*data == NULL);
119 if (!*size)
120 return ptr;
121 *data = malloc(*size);
122 return read_data(ptr, *data, *size);
123 }
124
125 /**
126 * Return the shader binary in a buffer. The first 4 bytes contain its size
127 * as integer.
128 */
129 static void *si_get_shader_binary(struct si_shader *shader)
130 {
131 /* There is always a size of data followed by the data itself. */
132 unsigned relocs_size = shader->binary.reloc_count *
133 sizeof(shader->binary.relocs[0]);
134 unsigned disasm_size = shader->binary.disasm_string ?
135 strlen(shader->binary.disasm_string) + 1 : 0;
136 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
137 strlen(shader->binary.llvm_ir_string) + 1 : 0;
138 unsigned size =
139 4 + /* total size */
140 4 + /* CRC32 of the data below */
141 align(sizeof(shader->config), 4) +
142 align(sizeof(shader->info), 4) +
143 4 + align(shader->binary.code_size, 4) +
144 4 + align(shader->binary.rodata_size, 4) +
145 4 + align(relocs_size, 4) +
146 4 + align(disasm_size, 4) +
147 4 + align(llvm_ir_size, 4);
148 void *buffer = CALLOC(1, size);
149 uint32_t *ptr = (uint32_t*)buffer;
150
151 if (!buffer)
152 return NULL;
153
154 *ptr++ = size;
155 ptr++; /* CRC32 is calculated at the end. */
156
157 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
158 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
159 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
160 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
161 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
162 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
163 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
164 assert((char *)ptr - (char *)buffer == size);
165
166 /* Compute CRC32. */
167 ptr = (uint32_t*)buffer;
168 ptr++;
169 *ptr = util_hash_crc32(ptr + 1, size - 8);
170
171 return buffer;
172 }
173
174 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
175 {
176 uint32_t *ptr = (uint32_t*)binary;
177 uint32_t size = *ptr++;
178 uint32_t crc32 = *ptr++;
179 unsigned chunk_size;
180
181 if (util_hash_crc32(ptr, size - 8) != crc32) {
182 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
183 return false;
184 }
185
186 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
187 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
188 ptr = read_chunk(ptr, (void**)&shader->binary.code,
189 &shader->binary.code_size);
190 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
191 &shader->binary.rodata_size);
192 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
193 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
194 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
195 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
196
197 return true;
198 }
199
200 /**
201 * Insert a shader into the cache. It's assumed the shader is not in the cache.
202 * Use si_shader_cache_load_shader before calling this.
203 *
204 * Returns false on failure, in which case the ir_binary should be freed.
205 */
206 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
207 void *ir_binary,
208 struct si_shader *shader,
209 bool insert_into_disk_cache)
210 {
211 void *hw_binary;
212 struct hash_entry *entry;
213 uint8_t key[CACHE_KEY_SIZE];
214
215 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
216 if (entry)
217 return false; /* already added */
218
219 hw_binary = si_get_shader_binary(shader);
220 if (!hw_binary)
221 return false;
222
223 if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
224 hw_binary) == NULL) {
225 FREE(hw_binary);
226 return false;
227 }
228
229 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
230 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
231 *((uint32_t *)ir_binary), key);
232 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
233 *((uint32_t *) hw_binary), NULL);
234 }
235
236 return true;
237 }
238
239 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
240 void *ir_binary,
241 struct si_shader *shader)
242 {
243 struct hash_entry *entry =
244 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
245 if (!entry) {
246 if (sscreen->disk_shader_cache) {
247 unsigned char sha1[CACHE_KEY_SIZE];
248 size_t tg_size = *((uint32_t *) ir_binary);
249
250 disk_cache_compute_key(sscreen->disk_shader_cache,
251 ir_binary, tg_size, sha1);
252
253 size_t binary_size;
254 uint8_t *buffer =
255 disk_cache_get(sscreen->disk_shader_cache,
256 sha1, &binary_size);
257 if (!buffer)
258 return false;
259
260 if (binary_size < sizeof(uint32_t) ||
261 *((uint32_t*)buffer) != binary_size) {
262 /* Something has gone wrong discard the item
263 * from the cache and rebuild/link from
264 * source.
265 */
266 assert(!"Invalid radeonsi shader disk cache "
267 "item!");
268
269 disk_cache_remove(sscreen->disk_shader_cache,
270 sha1);
271 free(buffer);
272
273 return false;
274 }
275
276 if (!si_load_shader_binary(shader, buffer)) {
277 free(buffer);
278 return false;
279 }
280 free(buffer);
281
282 if (!si_shader_cache_insert_shader(sscreen, ir_binary,
283 shader, false))
284 FREE(ir_binary);
285 } else {
286 return false;
287 }
288 } else {
289 if (si_load_shader_binary(shader, entry->data))
290 FREE(ir_binary);
291 else
292 return false;
293 }
294 p_atomic_inc(&sscreen->num_shader_cache_hits);
295 return true;
296 }
297
298 static uint32_t si_shader_cache_key_hash(const void *key)
299 {
300 /* The first dword is the key size. */
301 return util_hash_crc32(key, *(uint32_t*)key);
302 }
303
304 static bool si_shader_cache_key_equals(const void *a, const void *b)
305 {
306 uint32_t *keya = (uint32_t*)a;
307 uint32_t *keyb = (uint32_t*)b;
308
309 /* The first dword is the key size. */
310 if (*keya != *keyb)
311 return false;
312
313 return memcmp(keya, keyb, *keya) == 0;
314 }
315
316 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
317 {
318 FREE((void*)entry->key);
319 FREE(entry->data);
320 }
321
322 bool si_init_shader_cache(struct si_screen *sscreen)
323 {
324 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
325 sscreen->shader_cache =
326 _mesa_hash_table_create(NULL,
327 si_shader_cache_key_hash,
328 si_shader_cache_key_equals);
329
330 return sscreen->shader_cache != NULL;
331 }
332
333 void si_destroy_shader_cache(struct si_screen *sscreen)
334 {
335 if (sscreen->shader_cache)
336 _mesa_hash_table_destroy(sscreen->shader_cache,
337 si_destroy_shader_cache_entry);
338 mtx_destroy(&sscreen->shader_cache_mutex);
339 }
340
341 /* SHADER STATES */
342
343 static void si_set_tesseval_regs(struct si_screen *sscreen,
344 struct si_shader_selector *tes,
345 struct si_pm4_state *pm4)
346 {
347 struct tgsi_shader_info *info = &tes->info;
348 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
349 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
350 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
351 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
352 unsigned type, partitioning, topology, distribution_mode;
353
354 switch (tes_prim_mode) {
355 case PIPE_PRIM_LINES:
356 type = V_028B6C_TESS_ISOLINE;
357 break;
358 case PIPE_PRIM_TRIANGLES:
359 type = V_028B6C_TESS_TRIANGLE;
360 break;
361 case PIPE_PRIM_QUADS:
362 type = V_028B6C_TESS_QUAD;
363 break;
364 default:
365 assert(0);
366 return;
367 }
368
369 switch (tes_spacing) {
370 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
371 partitioning = V_028B6C_PART_FRAC_ODD;
372 break;
373 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
374 partitioning = V_028B6C_PART_FRAC_EVEN;
375 break;
376 case PIPE_TESS_SPACING_EQUAL:
377 partitioning = V_028B6C_PART_INTEGER;
378 break;
379 default:
380 assert(0);
381 return;
382 }
383
384 if (tes_point_mode)
385 topology = V_028B6C_OUTPUT_POINT;
386 else if (tes_prim_mode == PIPE_PRIM_LINES)
387 topology = V_028B6C_OUTPUT_LINE;
388 else if (tes_vertex_order_cw)
389 /* for some reason, this must be the other way around */
390 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
391 else
392 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
393
394 if (sscreen->has_distributed_tess) {
395 if (sscreen->info.family == CHIP_FIJI ||
396 sscreen->info.family >= CHIP_POLARIS10)
397 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
398 else
399 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
400 } else
401 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
402
403 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
404 S_028B6C_TYPE(type) |
405 S_028B6C_PARTITIONING(partitioning) |
406 S_028B6C_TOPOLOGY(topology) |
407 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
408 }
409
410 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
411 * whether the "fractional odd" tessellation spacing is used.
412 *
413 * Possible VGT configurations and which state should set the register:
414 *
415 * Reg set in | VGT shader configuration | Value
416 * ------------------------------------------------------
417 * VS as VS | VS | 30
418 * VS as ES | ES -> GS -> VS | 30
419 * TES as VS | LS -> HS -> VS | 14 or 30
420 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
421 *
422 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
423 */
424 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
425 struct si_shader_selector *sel,
426 struct si_shader *shader,
427 struct si_pm4_state *pm4)
428 {
429 unsigned type = sel->type;
430
431 if (sscreen->info.family < CHIP_POLARIS10)
432 return;
433
434 /* VS as VS, or VS as ES: */
435 if ((type == PIPE_SHADER_VERTEX &&
436 (!shader ||
437 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
438 /* TES as VS, or TES as ES: */
439 type == PIPE_SHADER_TESS_EVAL) {
440 unsigned vtx_reuse_depth = 30;
441
442 if (type == PIPE_SHADER_TESS_EVAL &&
443 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
444 PIPE_TESS_SPACING_FRACTIONAL_ODD)
445 vtx_reuse_depth = 14;
446
447 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
448 vtx_reuse_depth);
449 }
450 }
451
452 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
453 {
454 if (shader->pm4)
455 si_pm4_clear_state(shader->pm4);
456 else
457 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
458
459 return shader->pm4;
460 }
461
462 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
463 {
464 struct si_pm4_state *pm4;
465 unsigned vgpr_comp_cnt;
466 uint64_t va;
467
468 assert(sscreen->info.chip_class <= VI);
469
470 pm4 = si_get_shader_pm4_state(shader);
471 if (!pm4)
472 return;
473
474 va = shader->bo->gpu_address;
475 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
476
477 /* We need at least 2 components for LS.
478 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
479 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
480 */
481 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
482
483 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
484 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
485
486 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
487 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
488 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
489 S_00B528_DX10_CLAMP(1) |
490 S_00B528_FLOAT_MODE(shader->config.float_mode);
491 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
492 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
493 }
494
495 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
496 {
497 struct si_pm4_state *pm4;
498 uint64_t va;
499 unsigned ls_vgpr_comp_cnt = 0;
500
501 pm4 = si_get_shader_pm4_state(shader);
502 if (!pm4)
503 return;
504
505 va = shader->bo->gpu_address;
506 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
507
508 if (sscreen->info.chip_class >= GFX9) {
509 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
510 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
511
512 /* We need at least 2 components for LS.
513 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
514 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
515 */
516 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
517
518 shader->config.rsrc2 =
519 S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
520 S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
521 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
522 } else {
523 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
524 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
525
526 shader->config.rsrc2 =
527 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
528 S_00B42C_OC_LDS_EN(1) |
529 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
530 }
531
532 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
533 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
534 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
535 S_00B428_DX10_CLAMP(1) |
536 S_00B428_FLOAT_MODE(shader->config.float_mode) |
537 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
538
539 if (sscreen->info.chip_class <= VI) {
540 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
541 shader->config.rsrc2);
542 }
543 }
544
545 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
546 {
547 struct si_pm4_state *pm4;
548 unsigned num_user_sgprs;
549 unsigned vgpr_comp_cnt;
550 uint64_t va;
551 unsigned oc_lds_en;
552
553 assert(sscreen->info.chip_class <= VI);
554
555 pm4 = si_get_shader_pm4_state(shader);
556 if (!pm4)
557 return;
558
559 va = shader->bo->gpu_address;
560 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
561
562 if (shader->selector->type == PIPE_SHADER_VERTEX) {
563 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
564 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
565 num_user_sgprs = SI_VS_NUM_USER_SGPR;
566 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
567 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
568 num_user_sgprs = SI_TES_NUM_USER_SGPR;
569 } else
570 unreachable("invalid shader selector type");
571
572 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
573
574 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
575 shader->selector->esgs_itemsize / 4);
576 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
577 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
578 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
579 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
580 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
581 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
582 S_00B328_DX10_CLAMP(1) |
583 S_00B328_FLOAT_MODE(shader->config.float_mode));
584 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
585 S_00B32C_USER_SGPR(num_user_sgprs) |
586 S_00B32C_OC_LDS_EN(oc_lds_en) |
587 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
588
589 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
590 si_set_tesseval_regs(sscreen, shader->selector, pm4);
591
592 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
593 }
594
595 struct gfx9_gs_info {
596 unsigned es_verts_per_subgroup;
597 unsigned gs_prims_per_subgroup;
598 unsigned gs_inst_prims_in_subgroup;
599 unsigned max_prims_per_subgroup;
600 unsigned lds_size;
601 };
602
603 static void gfx9_get_gs_info(struct si_shader_selector *es,
604 struct si_shader_selector *gs,
605 struct gfx9_gs_info *out)
606 {
607 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
608 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
609 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
610 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
611
612 /* All these are in dwords: */
613 /* We can't allow using the whole LDS, because GS waves compete with
614 * other shader stages for LDS space. */
615 const unsigned max_lds_size = 8 * 1024;
616 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
617 unsigned esgs_lds_size;
618
619 /* All these are per subgroup: */
620 const unsigned max_out_prims = 32 * 1024;
621 const unsigned max_es_verts = 255;
622 const unsigned ideal_gs_prims = 64;
623 unsigned max_gs_prims, gs_prims;
624 unsigned min_es_verts, es_verts, worst_case_es_verts;
625
626 assert(gs_num_invocations <= 32); /* GL maximum */
627
628 if (uses_adjacency || gs_num_invocations > 1)
629 max_gs_prims = 127 / gs_num_invocations;
630 else
631 max_gs_prims = 255;
632
633 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
634 * Make sure we don't go over the maximum value.
635 */
636 if (gs->gs_max_out_vertices > 0) {
637 max_gs_prims = MIN2(max_gs_prims,
638 max_out_prims /
639 (gs->gs_max_out_vertices * gs_num_invocations));
640 }
641 assert(max_gs_prims > 0);
642
643 /* If the primitive has adjacency, halve the number of vertices
644 * that will be reused in multiple primitives.
645 */
646 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
647
648 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
649 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
650
651 /* Compute ESGS LDS size based on the worst case number of ES vertices
652 * needed to create the target number of GS prims per subgroup.
653 */
654 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
655
656 /* If total LDS usage is too big, refactor partitions based on ratio
657 * of ESGS item sizes.
658 */
659 if (esgs_lds_size > max_lds_size) {
660 /* Our target GS Prims Per Subgroup was too large. Calculate
661 * the maximum number of GS Prims Per Subgroup that will fit
662 * into LDS, capped by the maximum that the hardware can support.
663 */
664 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
665 max_gs_prims);
666 assert(gs_prims > 0);
667 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
668 max_es_verts);
669
670 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
671 assert(esgs_lds_size <= max_lds_size);
672 }
673
674 /* Now calculate remaining ESGS information. */
675 if (esgs_lds_size)
676 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
677 else
678 es_verts = max_es_verts;
679
680 /* Vertices for adjacency primitives are not always reused, so restore
681 * it for ES_VERTS_PER_SUBGRP.
682 */
683 min_es_verts = gs->gs_input_verts_per_prim;
684
685 /* For normal primitives, the VGT only checks if they are past the ES
686 * verts per subgroup after allocating a full GS primitive and if they
687 * are, kick off a new subgroup. But if those additional ES verts are
688 * unique (e.g. not reused) we need to make sure there is enough LDS
689 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
690 */
691 es_verts -= min_es_verts - 1;
692
693 out->es_verts_per_subgroup = es_verts;
694 out->gs_prims_per_subgroup = gs_prims;
695 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
696 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
697 gs->gs_max_out_vertices;
698 out->lds_size = align(esgs_lds_size, 128) / 128;
699
700 assert(out->max_prims_per_subgroup <= max_out_prims);
701 }
702
703 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
704 {
705 struct si_shader_selector *sel = shader->selector;
706 const ubyte *num_components = sel->info.num_stream_output_components;
707 unsigned gs_num_invocations = sel->gs_num_invocations;
708 struct si_pm4_state *pm4;
709 uint64_t va;
710 unsigned max_stream = sel->max_gs_stream;
711 unsigned offset;
712
713 pm4 = si_get_shader_pm4_state(shader);
714 if (!pm4)
715 return;
716
717 offset = num_components[0] * sel->gs_max_out_vertices;
718 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
719 if (max_stream >= 1)
720 offset += num_components[1] * sel->gs_max_out_vertices;
721 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
722 if (max_stream >= 2)
723 offset += num_components[2] * sel->gs_max_out_vertices;
724 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
725 if (max_stream >= 3)
726 offset += num_components[3] * sel->gs_max_out_vertices;
727 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
728
729 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
730 assert(offset < (1 << 15));
731
732 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
733
734 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
735 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
736 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
737 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
738
739 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
740 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
741 S_028B90_ENABLE(gs_num_invocations > 0));
742
743 va = shader->bo->gpu_address;
744 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
745
746 if (sscreen->info.chip_class >= GFX9) {
747 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
748 unsigned es_type = shader->key.part.gs.es->type;
749 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
750 struct gfx9_gs_info gs_info;
751
752 if (es_type == PIPE_SHADER_VERTEX)
753 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
754 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
755 else if (es_type == PIPE_SHADER_TESS_EVAL)
756 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
757 else
758 unreachable("invalid shader selector type");
759
760 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
761 * VGPR[0:4] are always loaded.
762 */
763 if (sel->info.uses_invocationid)
764 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
765 else if (sel->info.uses_primid)
766 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
767 else if (input_prim >= PIPE_PRIM_TRIANGLES)
768 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
769 else
770 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
771
772 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
773
774 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
775 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
776
777 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
778 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
779 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
780 S_00B228_DX10_CLAMP(1) |
781 S_00B228_FLOAT_MODE(shader->config.float_mode) |
782 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
783 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
784 S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
785 S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
786 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
787 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
788 S_00B22C_LDS_SIZE(gs_info.lds_size) |
789 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
790
791 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
792 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
793 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
794 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
795 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
796 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
797 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
798 shader->key.part.gs.es->esgs_itemsize / 4);
799
800 if (es_type == PIPE_SHADER_TESS_EVAL)
801 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
802
803 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
804 NULL, pm4);
805 } else {
806 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
807 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
808
809 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
810 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
811 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
812 S_00B228_DX10_CLAMP(1) |
813 S_00B228_FLOAT_MODE(shader->config.float_mode));
814 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
815 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
816 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
817 }
818 }
819
820 /**
821 * Compute the state for \p shader, which will run as a vertex shader on the
822 * hardware.
823 *
824 * If \p gs is non-NULL, it points to the geometry shader for which this shader
825 * is the copy shader.
826 */
827 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
828 struct si_shader_selector *gs)
829 {
830 const struct tgsi_shader_info *info = &shader->selector->info;
831 struct si_pm4_state *pm4;
832 unsigned num_user_sgprs;
833 unsigned nparams, vgpr_comp_cnt;
834 uint64_t va;
835 unsigned oc_lds_en;
836 unsigned window_space =
837 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
838 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
839
840 pm4 = si_get_shader_pm4_state(shader);
841 if (!pm4)
842 return;
843
844 /* We always write VGT_GS_MODE in the VS state, because every switch
845 * between different shader pipelines involving a different GS or no
846 * GS at all involves a switch of the VS (different GS use different
847 * copy shaders). On the other hand, when the API switches from a GS to
848 * no GS and then back to the same GS used originally, the GS state is
849 * not sent again.
850 */
851 if (!gs) {
852 unsigned mode = V_028A40_GS_OFF;
853
854 /* PrimID needs GS scenario A. */
855 if (enable_prim_id)
856 mode = V_028A40_GS_SCENARIO_A;
857
858 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
859 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
860 } else {
861 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
862 ac_vgt_gs_mode(gs->gs_max_out_vertices,
863 sscreen->info.chip_class));
864 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
865 }
866
867 if (sscreen->info.chip_class <= VI) {
868 /* Reuse needs to be set off if we write oViewport. */
869 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
870 S_028AB4_REUSE_OFF(info->writes_viewport_index));
871 }
872
873 va = shader->bo->gpu_address;
874 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
875
876 if (gs) {
877 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
878 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
879 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
880 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
881 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
882 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
883 */
884 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
885
886 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
887 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
888 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
889 } else {
890 num_user_sgprs = SI_VS_NUM_USER_SGPR;
891 }
892 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
893 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
894 num_user_sgprs = SI_TES_NUM_USER_SGPR;
895 } else
896 unreachable("invalid shader selector type");
897
898 /* VS is required to export at least one param. */
899 nparams = MAX2(shader->info.nr_param_exports, 1);
900 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
901 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
902
903 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
904 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
905 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
906 V_02870C_SPI_SHADER_4COMP :
907 V_02870C_SPI_SHADER_NONE) |
908 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
909 V_02870C_SPI_SHADER_4COMP :
910 V_02870C_SPI_SHADER_NONE) |
911 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
912 V_02870C_SPI_SHADER_4COMP :
913 V_02870C_SPI_SHADER_NONE));
914
915 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
916
917 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
918 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
919 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
920 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
921 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
922 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
923 S_00B128_DX10_CLAMP(1) |
924 S_00B128_FLOAT_MODE(shader->config.float_mode));
925 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
926 S_00B12C_USER_SGPR(num_user_sgprs) |
927 S_00B12C_OC_LDS_EN(oc_lds_en) |
928 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
929 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
930 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
931 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
932 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
933 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
934 if (window_space)
935 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
936 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
937 else
938 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
939 S_028818_VTX_W0_FMT(1) |
940 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
941 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
942 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
943
944 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
945 si_set_tesseval_regs(sscreen, shader->selector, pm4);
946
947 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
948 }
949
950 static unsigned si_get_ps_num_interp(struct si_shader *ps)
951 {
952 struct tgsi_shader_info *info = &ps->selector->info;
953 unsigned num_colors = !!(info->colors_read & 0x0f) +
954 !!(info->colors_read & 0xf0);
955 unsigned num_interp = ps->selector->info.num_inputs +
956 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
957
958 assert(num_interp <= 32);
959 return MIN2(num_interp, 32);
960 }
961
962 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
963 {
964 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
965 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
966
967 /* If the i-th target format is set, all previous target formats must
968 * be non-zero to avoid hangs.
969 */
970 for (i = 0; i < num_targets; i++)
971 if (!(value & (0xf << (i * 4))))
972 value |= V_028714_SPI_SHADER_32_R << (i * 4);
973
974 return value;
975 }
976
977 static void si_shader_ps(struct si_shader *shader)
978 {
979 struct tgsi_shader_info *info = &shader->selector->info;
980 struct si_pm4_state *pm4;
981 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
982 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
983 uint64_t va;
984 unsigned input_ena = shader->config.spi_ps_input_ena;
985
986 /* we need to enable at least one of them, otherwise we hang the GPU */
987 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
988 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
989 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
990 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
991 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
992 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
993 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
994 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
995 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
996 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
997 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
998 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
999 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1000 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1001
1002 /* Validate interpolation optimization flags (read as implications). */
1003 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1004 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1005 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1006 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1007 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1008 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1009 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1010 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1011 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1012 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1013 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1014 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1015 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1016 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1017 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1018 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1019 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1020 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1021
1022 /* Validate cases when the optimizations are off (read as implications). */
1023 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1024 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1025 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1026 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1027 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1028 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1029
1030 pm4 = si_get_shader_pm4_state(shader);
1031 if (!pm4)
1032 return;
1033
1034 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1035 * Possible vaules:
1036 * 0 -> Position = pixel center
1037 * 1 -> Position = pixel centroid
1038 * 2 -> Position = at sample position
1039 *
1040 * From GLSL 4.5 specification, section 7.1:
1041 * "The variable gl_FragCoord is available as an input variable from
1042 * within fragment shaders and it holds the window relative coordinates
1043 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1044 * value can be for any location within the pixel, or one of the
1045 * fragment samples. The use of centroid does not further restrict
1046 * this value to be inside the current primitive."
1047 *
1048 * Meaning that centroid has no effect and we can return anything within
1049 * the pixel. Thus, return the value at sample position, because that's
1050 * the most accurate one shaders can get.
1051 */
1052 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1053
1054 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1055 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1056 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1057
1058 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1059 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1060
1061 /* Ensure that some export memory is always allocated, for two reasons:
1062 *
1063 * 1) Correctness: The hardware ignores the EXEC mask if no export
1064 * memory is allocated, so KILL and alpha test do not work correctly
1065 * without this.
1066 * 2) Performance: Every shader needs at least a NULL export, even when
1067 * it writes no color/depth output. The NULL export instruction
1068 * stalls without this setting.
1069 *
1070 * Don't add this to CB_SHADER_MASK.
1071 */
1072 if (!spi_shader_col_format &&
1073 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1074 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1075
1076 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1077 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1078 shader->config.spi_ps_input_addr);
1079
1080 /* Set interpolation controls. */
1081 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1082
1083 /* Set registers. */
1084 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1085 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1086
1087 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1088 ac_get_spi_shader_z_format(info->writes_z,
1089 info->writes_stencil,
1090 info->writes_samplemask));
1091
1092 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1093 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1094
1095 va = shader->bo->gpu_address;
1096 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1097 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1098 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1099
1100 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1101 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1102 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1103 S_00B028_DX10_CLAMP(1) |
1104 S_00B028_FLOAT_MODE(shader->config.float_mode));
1105 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1106 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1107 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1108 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1109 }
1110
1111 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1112 struct si_shader *shader)
1113 {
1114 switch (shader->selector->type) {
1115 case PIPE_SHADER_VERTEX:
1116 if (shader->key.as_ls)
1117 si_shader_ls(sscreen, shader);
1118 else if (shader->key.as_es)
1119 si_shader_es(sscreen, shader);
1120 else
1121 si_shader_vs(sscreen, shader, NULL);
1122 break;
1123 case PIPE_SHADER_TESS_CTRL:
1124 si_shader_hs(sscreen, shader);
1125 break;
1126 case PIPE_SHADER_TESS_EVAL:
1127 if (shader->key.as_es)
1128 si_shader_es(sscreen, shader);
1129 else
1130 si_shader_vs(sscreen, shader, NULL);
1131 break;
1132 case PIPE_SHADER_GEOMETRY:
1133 si_shader_gs(sscreen, shader);
1134 break;
1135 case PIPE_SHADER_FRAGMENT:
1136 si_shader_ps(shader);
1137 break;
1138 default:
1139 assert(0);
1140 }
1141 }
1142
1143 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1144 {
1145 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1146 if (sctx->queued.named.dsa)
1147 return sctx->queued.named.dsa->alpha_func;
1148
1149 return PIPE_FUNC_ALWAYS;
1150 }
1151
1152 static void si_shader_selector_key_vs(struct si_context *sctx,
1153 struct si_shader_selector *vs,
1154 struct si_shader_key *key,
1155 struct si_vs_prolog_bits *prolog_key)
1156 {
1157 if (!sctx->vertex_elements)
1158 return;
1159
1160 prolog_key->instance_divisor_is_one =
1161 sctx->vertex_elements->instance_divisor_is_one;
1162 prolog_key->instance_divisor_is_fetched =
1163 sctx->vertex_elements->instance_divisor_is_fetched;
1164
1165 /* Prefer a monolithic shader to allow scheduling divisions around
1166 * VBO loads. */
1167 if (prolog_key->instance_divisor_is_fetched)
1168 key->opt.prefer_mono = 1;
1169
1170 unsigned count = MIN2(vs->info.num_inputs,
1171 sctx->vertex_elements->count);
1172 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1173 }
1174
1175 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1176 struct si_shader_selector *vs,
1177 struct si_shader_key *key)
1178 {
1179 struct si_shader_selector *ps = sctx->ps_shader.cso;
1180
1181 key->opt.clip_disable =
1182 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1183 (vs->info.clipdist_writemask ||
1184 vs->info.writes_clipvertex) &&
1185 !vs->info.culldist_writemask;
1186
1187 /* Find out if PS is disabled. */
1188 bool ps_disabled = true;
1189 if (ps) {
1190 const struct si_state_blend *blend = sctx->queued.named.blend;
1191 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1192 bool ps_modifies_zs = ps->info.uses_kill ||
1193 ps->info.writes_z ||
1194 ps->info.writes_stencil ||
1195 ps->info.writes_samplemask ||
1196 alpha_to_coverage ||
1197 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1198
1199 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1200 sctx->queued.named.blend->cb_target_mask;
1201 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1202 ps_colormask &= ps->colors_written_4bit;
1203
1204 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1205 (!ps_colormask &&
1206 !ps_modifies_zs &&
1207 !ps->info.writes_memory);
1208 }
1209
1210 /* Find out which VS outputs aren't used by the PS. */
1211 uint64_t outputs_written = vs->outputs_written;
1212 uint64_t inputs_read = 0;
1213
1214 /* ignore POSITION, PSIZE */
1215 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) |
1216 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0))));
1217
1218 if (!ps_disabled) {
1219 inputs_read = ps->inputs_read;
1220 }
1221
1222 uint64_t linked = outputs_written & inputs_read;
1223
1224 key->opt.kill_outputs = ~linked & outputs_written;
1225 }
1226
1227 /* Compute the key for the hw shader variant */
1228 static inline void si_shader_selector_key(struct pipe_context *ctx,
1229 struct si_shader_selector *sel,
1230 struct si_shader_key *key)
1231 {
1232 struct si_context *sctx = (struct si_context *)ctx;
1233
1234 memset(key, 0, sizeof(*key));
1235
1236 switch (sel->type) {
1237 case PIPE_SHADER_VERTEX:
1238 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1239
1240 if (sctx->tes_shader.cso)
1241 key->as_ls = 1;
1242 else if (sctx->gs_shader.cso)
1243 key->as_es = 1;
1244 else {
1245 si_shader_selector_key_hw_vs(sctx, sel, key);
1246
1247 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1248 key->mono.u.vs_export_prim_id = 1;
1249 }
1250 break;
1251 case PIPE_SHADER_TESS_CTRL:
1252 if (sctx->b.chip_class >= GFX9) {
1253 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1254 key, &key->part.tcs.ls_prolog);
1255 key->part.tcs.ls = sctx->vs_shader.cso;
1256
1257 /* When the LS VGPR fix is needed, monolithic shaders
1258 * can:
1259 * - avoid initializing EXEC in both the LS prolog
1260 * and the LS main part when !vs_needs_prolog
1261 * - remove the fixup for unused input VGPRs
1262 */
1263 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1264
1265 /* The LS output / HS input layout can be communicated
1266 * directly instead of via user SGPRs for merged LS-HS.
1267 * The LS VGPR fix prefers this too.
1268 */
1269 key->opt.prefer_mono = 1;
1270 }
1271
1272 key->part.tcs.epilog.prim_mode =
1273 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1274 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1275 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1276 key->part.tcs.epilog.tes_reads_tess_factors =
1277 sctx->tes_shader.cso->info.reads_tess_factors;
1278
1279 if (sel == sctx->fixed_func_tcs_shader.cso)
1280 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1281 break;
1282 case PIPE_SHADER_TESS_EVAL:
1283 if (sctx->gs_shader.cso)
1284 key->as_es = 1;
1285 else {
1286 si_shader_selector_key_hw_vs(sctx, sel, key);
1287
1288 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1289 key->mono.u.vs_export_prim_id = 1;
1290 }
1291 break;
1292 case PIPE_SHADER_GEOMETRY:
1293 if (sctx->b.chip_class >= GFX9) {
1294 if (sctx->tes_shader.cso) {
1295 key->part.gs.es = sctx->tes_shader.cso;
1296 } else {
1297 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1298 key, &key->part.gs.vs_prolog);
1299 key->part.gs.es = sctx->vs_shader.cso;
1300 }
1301
1302 /* Merged ES-GS can have unbalanced wave usage.
1303 *
1304 * ES threads are per-vertex, while GS threads are
1305 * per-primitive. So without any amplification, there
1306 * are fewer GS threads than ES threads, which can result
1307 * in empty (no-op) GS waves. With too much amplification,
1308 * there are more GS threads than ES threads, which
1309 * can result in empty (no-op) ES waves.
1310 *
1311 * Non-monolithic shaders are implemented by setting EXEC
1312 * at the beginning of shader parts, and don't jump to
1313 * the end if EXEC is 0.
1314 *
1315 * Monolithic shaders use conditional blocks, so they can
1316 * jump and skip empty waves of ES or GS. So set this to
1317 * always use optimized variants, which are monolithic.
1318 */
1319 key->opt.prefer_mono = 1;
1320 }
1321 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1322 break;
1323 case PIPE_SHADER_FRAGMENT: {
1324 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1325 struct si_state_blend *blend = sctx->queued.named.blend;
1326
1327 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1328 sel->info.colors_written == 0x1)
1329 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1330
1331 if (blend) {
1332 /* Select the shader color format based on whether
1333 * blending or alpha are needed.
1334 */
1335 key->part.ps.epilog.spi_shader_col_format =
1336 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1337 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1338 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1339 sctx->framebuffer.spi_shader_col_format_blend) |
1340 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1341 sctx->framebuffer.spi_shader_col_format_alpha) |
1342 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1343 sctx->framebuffer.spi_shader_col_format);
1344 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1345
1346 /* The output for dual source blending should have
1347 * the same format as the first output.
1348 */
1349 if (blend->dual_src_blend)
1350 key->part.ps.epilog.spi_shader_col_format |=
1351 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1352 } else
1353 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1354
1355 /* If alpha-to-coverage is enabled, we have to export alpha
1356 * even if there is no color buffer.
1357 */
1358 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1359 blend && blend->alpha_to_coverage)
1360 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1361
1362 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1363 * to the range supported by the type if a channel has less
1364 * than 16 bits and the export format is 16_ABGR.
1365 */
1366 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1367 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1368 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1369 }
1370
1371 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1372 if (!key->part.ps.epilog.last_cbuf) {
1373 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1374 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1375 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1376 }
1377
1378 if (rs) {
1379 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1380 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1381 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1382 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1383
1384 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1385 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1386
1387 if (sctx->queued.named.blend) {
1388 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1389 rs->multisample_enable;
1390 }
1391
1392 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1393 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1394 (is_line && rs->line_smooth)) &&
1395 sctx->framebuffer.nr_samples <= 1;
1396 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1397
1398 if (sctx->ps_iter_samples > 1 &&
1399 sel->info.reads_samplemask) {
1400 key->part.ps.prolog.samplemask_log_ps_iter =
1401 util_logbase2(util_next_power_of_two(sctx->ps_iter_samples));
1402 }
1403
1404 if (rs->force_persample_interp &&
1405 rs->multisample_enable &&
1406 sctx->framebuffer.nr_samples > 1 &&
1407 sctx->ps_iter_samples > 1) {
1408 key->part.ps.prolog.force_persp_sample_interp =
1409 sel->info.uses_persp_center ||
1410 sel->info.uses_persp_centroid;
1411
1412 key->part.ps.prolog.force_linear_sample_interp =
1413 sel->info.uses_linear_center ||
1414 sel->info.uses_linear_centroid;
1415 } else if (rs->multisample_enable &&
1416 sctx->framebuffer.nr_samples > 1) {
1417 key->part.ps.prolog.bc_optimize_for_persp =
1418 sel->info.uses_persp_center &&
1419 sel->info.uses_persp_centroid;
1420 key->part.ps.prolog.bc_optimize_for_linear =
1421 sel->info.uses_linear_center &&
1422 sel->info.uses_linear_centroid;
1423 } else {
1424 /* Make sure SPI doesn't compute more than 1 pair
1425 * of (i,j), which is the optimization here. */
1426 key->part.ps.prolog.force_persp_center_interp =
1427 sel->info.uses_persp_center +
1428 sel->info.uses_persp_centroid +
1429 sel->info.uses_persp_sample > 1;
1430
1431 key->part.ps.prolog.force_linear_center_interp =
1432 sel->info.uses_linear_center +
1433 sel->info.uses_linear_centroid +
1434 sel->info.uses_linear_sample > 1;
1435
1436 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1437 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1438 }
1439 }
1440
1441 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1442 break;
1443 }
1444 default:
1445 assert(0);
1446 }
1447
1448 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1449 memset(&key->opt, 0, sizeof(key->opt));
1450 }
1451
1452 static void si_build_shader_variant(struct si_shader *shader,
1453 int thread_index,
1454 bool low_priority)
1455 {
1456 struct si_shader_selector *sel = shader->selector;
1457 struct si_screen *sscreen = sel->screen;
1458 LLVMTargetMachineRef tm;
1459 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1460 int r;
1461
1462 if (thread_index >= 0) {
1463 if (low_priority) {
1464 assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1465 tm = sscreen->tm_low_priority[thread_index];
1466 } else {
1467 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1468 tm = sscreen->tm[thread_index];
1469 }
1470 if (!debug->async)
1471 debug = NULL;
1472 } else {
1473 assert(!low_priority);
1474 tm = shader->compiler_ctx_state.tm;
1475 }
1476
1477 r = si_shader_create(sscreen, tm, shader, debug);
1478 if (unlikely(r)) {
1479 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1480 sel->type, r);
1481 shader->compilation_failed = true;
1482 return;
1483 }
1484
1485 if (shader->compiler_ctx_state.is_debug_context) {
1486 FILE *f = open_memstream(&shader->shader_log,
1487 &shader->shader_log_size);
1488 if (f) {
1489 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1490 fclose(f);
1491 }
1492 }
1493
1494 si_shader_init_pm4_state(sscreen, shader);
1495 }
1496
1497 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1498 {
1499 struct si_shader *shader = (struct si_shader *)job;
1500
1501 assert(thread_index >= 0);
1502
1503 si_build_shader_variant(shader, thread_index, true);
1504 }
1505
1506 static const struct si_shader_key zeroed;
1507
1508 static bool si_check_missing_main_part(struct si_screen *sscreen,
1509 struct si_shader_selector *sel,
1510 struct si_compiler_ctx_state *compiler_state,
1511 struct si_shader_key *key)
1512 {
1513 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1514
1515 if (!*mainp) {
1516 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1517
1518 if (!main_part)
1519 return false;
1520
1521 /* We can leave the fence as permanently signaled because the
1522 * main part becomes visible globally only after it has been
1523 * compiled. */
1524 util_queue_fence_init(&main_part->ready);
1525
1526 main_part->selector = sel;
1527 main_part->key.as_es = key->as_es;
1528 main_part->key.as_ls = key->as_ls;
1529
1530 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1531 main_part, false,
1532 &compiler_state->debug) != 0) {
1533 FREE(main_part);
1534 return false;
1535 }
1536 *mainp = main_part;
1537 }
1538 return true;
1539 }
1540
1541 /* Select the hw shader variant depending on the current state. */
1542 static int si_shader_select_with_key(struct si_screen *sscreen,
1543 struct si_shader_ctx_state *state,
1544 struct si_compiler_ctx_state *compiler_state,
1545 struct si_shader_key *key,
1546 int thread_index)
1547 {
1548 struct si_shader_selector *sel = state->cso;
1549 struct si_shader_selector *previous_stage_sel = NULL;
1550 struct si_shader *current = state->current;
1551 struct si_shader *iter, *shader = NULL;
1552
1553 again:
1554 /* Check if we don't need to change anything.
1555 * This path is also used for most shaders that don't need multiple
1556 * variants, it will cost just a computation of the key and this
1557 * test. */
1558 if (likely(current &&
1559 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1560 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1561 if (current->is_optimized) {
1562 memset(&key->opt, 0, sizeof(key->opt));
1563 goto current_not_ready;
1564 }
1565
1566 util_queue_fence_wait(&current->ready);
1567 }
1568
1569 return current->compilation_failed ? -1 : 0;
1570 }
1571 current_not_ready:
1572
1573 /* This must be done before the mutex is locked, because async GS
1574 * compilation calls this function too, and therefore must enter
1575 * the mutex first.
1576 *
1577 * Only wait if we are in a draw call. Don't wait if we are
1578 * in a compiler thread.
1579 */
1580 if (thread_index < 0)
1581 util_queue_fence_wait(&sel->ready);
1582
1583 mtx_lock(&sel->mutex);
1584
1585 /* Find the shader variant. */
1586 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1587 /* Don't check the "current" shader. We checked it above. */
1588 if (current != iter &&
1589 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1590 mtx_unlock(&sel->mutex);
1591
1592 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1593 /* If it's an optimized shader and its compilation has
1594 * been started but isn't done, use the unoptimized
1595 * shader so as not to cause a stall due to compilation.
1596 */
1597 if (iter->is_optimized) {
1598 memset(&key->opt, 0, sizeof(key->opt));
1599 goto again;
1600 }
1601
1602 util_queue_fence_wait(&iter->ready);
1603 }
1604
1605 if (iter->compilation_failed) {
1606 return -1; /* skip the draw call */
1607 }
1608
1609 state->current = iter;
1610 return 0;
1611 }
1612 }
1613
1614 /* Build a new shader. */
1615 shader = CALLOC_STRUCT(si_shader);
1616 if (!shader) {
1617 mtx_unlock(&sel->mutex);
1618 return -ENOMEM;
1619 }
1620
1621 util_queue_fence_init(&shader->ready);
1622
1623 shader->selector = sel;
1624 shader->key = *key;
1625 shader->compiler_ctx_state = *compiler_state;
1626
1627 /* If this is a merged shader, get the first shader's selector. */
1628 if (sscreen->info.chip_class >= GFX9) {
1629 if (sel->type == PIPE_SHADER_TESS_CTRL)
1630 previous_stage_sel = key->part.tcs.ls;
1631 else if (sel->type == PIPE_SHADER_GEOMETRY)
1632 previous_stage_sel = key->part.gs.es;
1633
1634 /* We need to wait for the previous shader. */
1635 if (previous_stage_sel && thread_index < 0)
1636 util_queue_fence_wait(&previous_stage_sel->ready);
1637 }
1638
1639 /* Compile the main shader part if it doesn't exist. This can happen
1640 * if the initial guess was wrong. */
1641 bool is_pure_monolithic =
1642 sscreen->use_monolithic_shaders ||
1643 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1644
1645 if (!is_pure_monolithic) {
1646 bool ok;
1647
1648 /* Make sure the main shader part is present. This is needed
1649 * for shaders that can be compiled as VS, LS, or ES, and only
1650 * one of them is compiled at creation.
1651 *
1652 * For merged shaders, check that the starting shader's main
1653 * part is present.
1654 */
1655 if (previous_stage_sel) {
1656 struct si_shader_key shader1_key = zeroed;
1657
1658 if (sel->type == PIPE_SHADER_TESS_CTRL)
1659 shader1_key.as_ls = 1;
1660 else if (sel->type == PIPE_SHADER_GEOMETRY)
1661 shader1_key.as_es = 1;
1662 else
1663 assert(0);
1664
1665 mtx_lock(&previous_stage_sel->mutex);
1666 ok = si_check_missing_main_part(sscreen,
1667 previous_stage_sel,
1668 compiler_state, &shader1_key);
1669 mtx_unlock(&previous_stage_sel->mutex);
1670 } else {
1671 ok = si_check_missing_main_part(sscreen, sel,
1672 compiler_state, key);
1673 }
1674 if (!ok) {
1675 FREE(shader);
1676 mtx_unlock(&sel->mutex);
1677 return -ENOMEM; /* skip the draw call */
1678 }
1679 }
1680
1681 /* Keep the reference to the 1st shader of merged shaders, so that
1682 * Gallium can't destroy it before we destroy the 2nd shader.
1683 *
1684 * Set sctx = NULL, because it's unused if we're not releasing
1685 * the shader, and we don't have any sctx here.
1686 */
1687 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1688 previous_stage_sel);
1689
1690 /* Monolithic-only shaders don't make a distinction between optimized
1691 * and unoptimized. */
1692 shader->is_monolithic =
1693 is_pure_monolithic ||
1694 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1695
1696 shader->is_optimized =
1697 !is_pure_monolithic &&
1698 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1699
1700 /* If it's an optimized shader, compile it asynchronously. */
1701 if (shader->is_optimized &&
1702 !is_pure_monolithic &&
1703 thread_index < 0) {
1704 /* Compile it asynchronously. */
1705 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1706 shader, &shader->ready,
1707 si_build_shader_variant_low_priority, NULL);
1708
1709 /* Add only after the ready fence was reset, to guard against a
1710 * race with si_bind_XX_shader. */
1711 if (!sel->last_variant) {
1712 sel->first_variant = shader;
1713 sel->last_variant = shader;
1714 } else {
1715 sel->last_variant->next_variant = shader;
1716 sel->last_variant = shader;
1717 }
1718
1719 /* Use the default (unoptimized) shader for now. */
1720 memset(&key->opt, 0, sizeof(key->opt));
1721 mtx_unlock(&sel->mutex);
1722 goto again;
1723 }
1724
1725 /* Reset the fence before adding to the variant list. */
1726 util_queue_fence_reset(&shader->ready);
1727
1728 if (!sel->last_variant) {
1729 sel->first_variant = shader;
1730 sel->last_variant = shader;
1731 } else {
1732 sel->last_variant->next_variant = shader;
1733 sel->last_variant = shader;
1734 }
1735
1736 mtx_unlock(&sel->mutex);
1737
1738 assert(!shader->is_optimized);
1739 si_build_shader_variant(shader, thread_index, false);
1740
1741 util_queue_fence_signal(&shader->ready);
1742
1743 if (!shader->compilation_failed)
1744 state->current = shader;
1745
1746 return shader->compilation_failed ? -1 : 0;
1747 }
1748
1749 static int si_shader_select(struct pipe_context *ctx,
1750 struct si_shader_ctx_state *state,
1751 struct si_compiler_ctx_state *compiler_state)
1752 {
1753 struct si_context *sctx = (struct si_context *)ctx;
1754 struct si_shader_key key;
1755
1756 si_shader_selector_key(ctx, state->cso, &key);
1757 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1758 &key, -1);
1759 }
1760
1761 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1762 bool streamout,
1763 struct si_shader_key *key)
1764 {
1765 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1766
1767 switch (info->processor) {
1768 case PIPE_SHADER_VERTEX:
1769 switch (next_shader) {
1770 case PIPE_SHADER_GEOMETRY:
1771 key->as_es = 1;
1772 break;
1773 case PIPE_SHADER_TESS_CTRL:
1774 case PIPE_SHADER_TESS_EVAL:
1775 key->as_ls = 1;
1776 break;
1777 default:
1778 /* If POSITION isn't written, it can only be a HW VS
1779 * if streamout is used. If streamout isn't used,
1780 * assume that it's a HW LS. (the next shader is TCS)
1781 * This heuristic is needed for separate shader objects.
1782 */
1783 if (!info->writes_position && !streamout)
1784 key->as_ls = 1;
1785 }
1786 break;
1787
1788 case PIPE_SHADER_TESS_EVAL:
1789 if (next_shader == PIPE_SHADER_GEOMETRY ||
1790 !info->writes_position)
1791 key->as_es = 1;
1792 break;
1793 }
1794 }
1795
1796 /**
1797 * Compile the main shader part or the monolithic shader as part of
1798 * si_shader_selector initialization. Since it can be done asynchronously,
1799 * there is no way to report compile failures to applications.
1800 */
1801 static void si_init_shader_selector_async(void *job, int thread_index)
1802 {
1803 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1804 struct si_screen *sscreen = sel->screen;
1805 LLVMTargetMachineRef tm;
1806 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1807
1808 assert(!debug->debug_message || debug->async);
1809 assert(thread_index >= 0);
1810 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1811 tm = sscreen->tm[thread_index];
1812
1813 /* Compile the main shader part for use with a prolog and/or epilog.
1814 * If this fails, the driver will try to compile a monolithic shader
1815 * on demand.
1816 */
1817 if (!sscreen->use_monolithic_shaders) {
1818 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1819 void *ir_binary = NULL;
1820
1821 if (!shader) {
1822 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1823 return;
1824 }
1825
1826 /* We can leave the fence signaled because use of the default
1827 * main part is guarded by the selector's ready fence. */
1828 util_queue_fence_init(&shader->ready);
1829
1830 shader->selector = sel;
1831 si_parse_next_shader_property(&sel->info,
1832 sel->so.num_outputs != 0,
1833 &shader->key);
1834
1835 if (sel->tokens || sel->nir)
1836 ir_binary = si_get_ir_binary(sel);
1837
1838 /* Try to load the shader from the shader cache. */
1839 mtx_lock(&sscreen->shader_cache_mutex);
1840
1841 if (ir_binary &&
1842 si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
1843 mtx_unlock(&sscreen->shader_cache_mutex);
1844 si_shader_dump_stats_for_shader_db(shader, debug);
1845 } else {
1846 mtx_unlock(&sscreen->shader_cache_mutex);
1847
1848 /* Compile the shader if it hasn't been loaded from the cache. */
1849 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1850 debug) != 0) {
1851 FREE(shader);
1852 FREE(ir_binary);
1853 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1854 return;
1855 }
1856
1857 if (ir_binary) {
1858 mtx_lock(&sscreen->shader_cache_mutex);
1859 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
1860 FREE(ir_binary);
1861 mtx_unlock(&sscreen->shader_cache_mutex);
1862 }
1863 }
1864
1865 *si_get_main_shader_part(sel, &shader->key) = shader;
1866
1867 /* Unset "outputs_written" flags for outputs converted to
1868 * DEFAULT_VAL, so that later inter-shader optimizations don't
1869 * try to eliminate outputs that don't exist in the final
1870 * shader.
1871 *
1872 * This is only done if non-monolithic shaders are enabled.
1873 */
1874 if ((sel->type == PIPE_SHADER_VERTEX ||
1875 sel->type == PIPE_SHADER_TESS_EVAL) &&
1876 !shader->key.as_ls &&
1877 !shader->key.as_es) {
1878 unsigned i;
1879
1880 for (i = 0; i < sel->info.num_outputs; i++) {
1881 unsigned offset = shader->info.vs_output_param_offset[i];
1882
1883 if (offset <= AC_EXP_PARAM_OFFSET_31)
1884 continue;
1885
1886 unsigned name = sel->info.output_semantic_name[i];
1887 unsigned index = sel->info.output_semantic_index[i];
1888 unsigned id;
1889
1890 switch (name) {
1891 case TGSI_SEMANTIC_GENERIC:
1892 /* don't process indices the function can't handle */
1893 if (index >= SI_MAX_IO_GENERIC)
1894 break;
1895 /* fall through */
1896 default:
1897 id = si_shader_io_get_unique_index(name, index);
1898 sel->outputs_written &= ~(1ull << id);
1899 break;
1900 case TGSI_SEMANTIC_POSITION: /* ignore these */
1901 case TGSI_SEMANTIC_PSIZE:
1902 case TGSI_SEMANTIC_CLIPVERTEX:
1903 case TGSI_SEMANTIC_EDGEFLAG:
1904 break;
1905 }
1906 }
1907 }
1908 }
1909
1910 /* The GS copy shader is always pre-compiled. */
1911 if (sel->type == PIPE_SHADER_GEOMETRY) {
1912 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1913 if (!sel->gs_copy_shader) {
1914 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1915 return;
1916 }
1917
1918 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1919 }
1920 }
1921
1922 /* Return descriptor slot usage masks from the given shader info. */
1923 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
1924 uint32_t *const_and_shader_buffers,
1925 uint64_t *samplers_and_images)
1926 {
1927 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
1928
1929 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
1930 num_constbufs = util_last_bit(info->const_buffers_declared);
1931 /* two 8-byte images share one 16-byte slot */
1932 num_images = align(util_last_bit(info->images_declared), 2);
1933 num_samplers = util_last_bit(info->samplers_declared);
1934
1935 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
1936 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
1937 *const_and_shader_buffers =
1938 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
1939
1940 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
1941 start = si_get_image_slot(num_images - 1) / 2;
1942 *samplers_and_images =
1943 u_bit_consecutive64(start, num_images / 2 + num_samplers);
1944 }
1945
1946 static void *si_create_shader_selector(struct pipe_context *ctx,
1947 const struct pipe_shader_state *state)
1948 {
1949 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1950 struct si_context *sctx = (struct si_context*)ctx;
1951 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1952 int i;
1953
1954 if (!sel)
1955 return NULL;
1956
1957 pipe_reference_init(&sel->reference, 1);
1958 sel->screen = sscreen;
1959 sel->compiler_ctx_state.debug = sctx->debug;
1960 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1961
1962 sel->so = state->stream_output;
1963
1964 if (state->type == PIPE_SHADER_IR_TGSI) {
1965 sel->tokens = tgsi_dup_tokens(state->tokens);
1966 if (!sel->tokens) {
1967 FREE(sel);
1968 return NULL;
1969 }
1970
1971 tgsi_scan_shader(state->tokens, &sel->info);
1972 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
1973 } else {
1974 assert(state->type == PIPE_SHADER_IR_NIR);
1975
1976 sel->nir = state->ir.nir;
1977
1978 si_nir_scan_shader(sel->nir, &sel->info);
1979 si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
1980
1981 si_lower_nir(sel);
1982 }
1983
1984 sel->type = sel->info.processor;
1985 p_atomic_inc(&sscreen->num_shaders_created);
1986 si_get_active_slot_masks(&sel->info,
1987 &sel->active_const_and_shader_buffers,
1988 &sel->active_samplers_and_images);
1989
1990 /* Record which streamout buffers are enabled. */
1991 for (i = 0; i < sel->so.num_outputs; i++) {
1992 sel->enabled_streamout_buffer_mask |=
1993 (1 << sel->so.output[i].output_buffer) <<
1994 (sel->so.output[i].stream * 4);
1995 }
1996
1997 /* The prolog is a no-op if there are no inputs. */
1998 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
1999 sel->info.num_inputs &&
2000 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2001
2002 sel->force_correct_derivs_after_kill =
2003 sel->type == PIPE_SHADER_FRAGMENT &&
2004 sel->info.uses_derivatives &&
2005 sel->info.uses_kill &&
2006 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2007
2008 /* Set which opcode uses which (i,j) pair. */
2009 if (sel->info.uses_persp_opcode_interp_centroid)
2010 sel->info.uses_persp_centroid = true;
2011
2012 if (sel->info.uses_linear_opcode_interp_centroid)
2013 sel->info.uses_linear_centroid = true;
2014
2015 if (sel->info.uses_persp_opcode_interp_offset ||
2016 sel->info.uses_persp_opcode_interp_sample)
2017 sel->info.uses_persp_center = true;
2018
2019 if (sel->info.uses_linear_opcode_interp_offset ||
2020 sel->info.uses_linear_opcode_interp_sample)
2021 sel->info.uses_linear_center = true;
2022
2023 switch (sel->type) {
2024 case PIPE_SHADER_GEOMETRY:
2025 sel->gs_output_prim =
2026 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2027 sel->gs_max_out_vertices =
2028 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2029 sel->gs_num_invocations =
2030 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2031 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2032 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2033 sel->gs_max_out_vertices;
2034
2035 sel->max_gs_stream = 0;
2036 for (i = 0; i < sel->so.num_outputs; i++)
2037 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2038 sel->so.output[i].stream);
2039
2040 sel->gs_input_verts_per_prim =
2041 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2042 break;
2043
2044 case PIPE_SHADER_TESS_CTRL:
2045 /* Always reserve space for these. */
2046 sel->patch_outputs_written |=
2047 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2048 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2049 /* fall through */
2050 case PIPE_SHADER_VERTEX:
2051 case PIPE_SHADER_TESS_EVAL:
2052 for (i = 0; i < sel->info.num_outputs; i++) {
2053 unsigned name = sel->info.output_semantic_name[i];
2054 unsigned index = sel->info.output_semantic_index[i];
2055
2056 switch (name) {
2057 case TGSI_SEMANTIC_TESSINNER:
2058 case TGSI_SEMANTIC_TESSOUTER:
2059 case TGSI_SEMANTIC_PATCH:
2060 sel->patch_outputs_written |=
2061 1ull << si_shader_io_get_unique_index_patch(name, index);
2062 break;
2063
2064 case TGSI_SEMANTIC_GENERIC:
2065 /* don't process indices the function can't handle */
2066 if (index >= SI_MAX_IO_GENERIC)
2067 break;
2068 /* fall through */
2069 default:
2070 sel->outputs_written |=
2071 1ull << si_shader_io_get_unique_index(name, index);
2072 break;
2073 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2074 case TGSI_SEMANTIC_EDGEFLAG:
2075 break;
2076 }
2077 }
2078 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2079
2080 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2081 * conflicts, i.e. each vertex will start at a different bank.
2082 */
2083 if (sctx->b.chip_class >= GFX9)
2084 sel->esgs_itemsize += 4;
2085 break;
2086
2087 case PIPE_SHADER_FRAGMENT:
2088 for (i = 0; i < sel->info.num_inputs; i++) {
2089 unsigned name = sel->info.input_semantic_name[i];
2090 unsigned index = sel->info.input_semantic_index[i];
2091
2092 switch (name) {
2093 case TGSI_SEMANTIC_GENERIC:
2094 /* don't process indices the function can't handle */
2095 if (index >= SI_MAX_IO_GENERIC)
2096 break;
2097 /* fall through */
2098 default:
2099 sel->inputs_read |=
2100 1ull << si_shader_io_get_unique_index(name, index);
2101 break;
2102 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2103 break;
2104 }
2105 }
2106
2107 for (i = 0; i < 8; i++)
2108 if (sel->info.colors_written & (1 << i))
2109 sel->colors_written_4bit |= 0xf << (4 * i);
2110
2111 for (i = 0; i < sel->info.num_inputs; i++) {
2112 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2113 int index = sel->info.input_semantic_index[i];
2114 sel->color_attr_index[index] = i;
2115 }
2116 }
2117 break;
2118 }
2119
2120 /* PA_CL_VS_OUT_CNTL */
2121 bool misc_vec_ena =
2122 sel->info.writes_psize || sel->info.writes_edgeflag ||
2123 sel->info.writes_layer || sel->info.writes_viewport_index;
2124 sel->pa_cl_vs_out_cntl =
2125 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2126 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2127 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2128 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2129 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2130 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2131 sel->clipdist_mask = sel->info.writes_clipvertex ?
2132 SIX_BITS : sel->info.clipdist_writemask;
2133 sel->culldist_mask = sel->info.culldist_writemask <<
2134 sel->info.num_written_clipdistance;
2135
2136 /* DB_SHADER_CONTROL */
2137 sel->db_shader_control =
2138 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2139 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2140 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2141 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2142
2143 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2144 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2145 sel->db_shader_control |=
2146 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2147 break;
2148 case TGSI_FS_DEPTH_LAYOUT_LESS:
2149 sel->db_shader_control |=
2150 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2151 break;
2152 }
2153
2154 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2155 *
2156 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2157 * --|-----------|------------|------------|--------------------|-------------------|-------------
2158 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2159 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2160 * 2 | false | true | n/a | LateZ | 1 | 0
2161 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2162 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2163 *
2164 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2165 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2166 *
2167 * Don't use ReZ without profiling !!!
2168 *
2169 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2170 * shaders.
2171 */
2172 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2173 /* Cases 3, 4. */
2174 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2175 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2176 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2177 } else if (sel->info.writes_memory) {
2178 /* Case 2. */
2179 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2180 S_02880C_EXEC_ON_HIER_FAIL(1);
2181 } else {
2182 /* Case 1. */
2183 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2184 }
2185
2186 (void) mtx_init(&sel->mutex, mtx_plain);
2187 util_queue_fence_init(&sel->ready);
2188
2189 struct util_async_debug_callback async_debug;
2190 bool wait =
2191 (sctx->debug.debug_message && !sctx->debug.async) ||
2192 sctx->is_debug ||
2193 si_can_dump_shader(sscreen, sel->info.processor);
2194
2195 if (wait) {
2196 u_async_debug_init(&async_debug);
2197 sel->compiler_ctx_state.debug = async_debug.base;
2198 }
2199
2200 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2201 &sel->ready, si_init_shader_selector_async,
2202 NULL);
2203
2204 if (wait) {
2205 util_queue_fence_wait(&sel->ready);
2206 u_async_debug_drain(&async_debug, &sctx->debug);
2207 u_async_debug_cleanup(&async_debug);
2208 }
2209
2210 return sel;
2211 }
2212
2213 static void si_update_streamout_state(struct si_context *sctx)
2214 {
2215 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2216
2217 if (!shader_with_so)
2218 return;
2219
2220 sctx->streamout.enabled_stream_buffers_mask =
2221 shader_with_so->enabled_streamout_buffer_mask;
2222 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2223 }
2224
2225 static void si_update_clip_regs(struct si_context *sctx,
2226 struct si_shader_selector *old_hw_vs,
2227 struct si_shader *old_hw_vs_variant,
2228 struct si_shader_selector *next_hw_vs,
2229 struct si_shader *next_hw_vs_variant)
2230 {
2231 if (next_hw_vs &&
2232 (!old_hw_vs ||
2233 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2234 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2235 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2236 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2237 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2238 !old_hw_vs_variant ||
2239 !next_hw_vs_variant ||
2240 old_hw_vs_variant->key.opt.clip_disable !=
2241 next_hw_vs_variant->key.opt.clip_disable))
2242 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2243 }
2244
2245 static void si_update_common_shader_state(struct si_context *sctx)
2246 {
2247 sctx->uses_bindless_samplers =
2248 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2249 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2250 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2251 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2252 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2253 sctx->uses_bindless_images =
2254 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2255 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2256 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2257 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2258 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2259 sctx->do_update_shaders = true;
2260 }
2261
2262 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2263 {
2264 struct si_context *sctx = (struct si_context *)ctx;
2265 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2266 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2267 struct si_shader_selector *sel = state;
2268
2269 if (sctx->vs_shader.cso == sel)
2270 return;
2271
2272 sctx->vs_shader.cso = sel;
2273 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2274 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2275
2276 si_update_common_shader_state(sctx);
2277 si_update_vs_viewport_state(sctx);
2278 si_set_active_descriptors_for_shader(sctx, sel);
2279 si_update_streamout_state(sctx);
2280 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2281 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2282 }
2283
2284 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2285 {
2286 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2287 (sctx->tes_shader.cso &&
2288 sctx->tes_shader.cso->info.uses_primid) ||
2289 (sctx->tcs_shader.cso &&
2290 sctx->tcs_shader.cso->info.uses_primid) ||
2291 (sctx->gs_shader.cso &&
2292 sctx->gs_shader.cso->info.uses_primid) ||
2293 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2294 sctx->ps_shader.cso->info.uses_primid);
2295 }
2296
2297 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2298 {
2299 struct si_context *sctx = (struct si_context *)ctx;
2300 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2301 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2302 struct si_shader_selector *sel = state;
2303 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2304
2305 if (sctx->gs_shader.cso == sel)
2306 return;
2307
2308 sctx->gs_shader.cso = sel;
2309 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2310 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2311
2312 si_update_common_shader_state(sctx);
2313 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2314
2315 if (enable_changed) {
2316 si_shader_change_notify(sctx);
2317 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2318 si_update_tess_uses_prim_id(sctx);
2319 }
2320 si_update_vs_viewport_state(sctx);
2321 si_set_active_descriptors_for_shader(sctx, sel);
2322 si_update_streamout_state(sctx);
2323 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2324 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2325 }
2326
2327 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2328 {
2329 struct si_context *sctx = (struct si_context *)ctx;
2330 struct si_shader_selector *sel = state;
2331 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2332
2333 if (sctx->tcs_shader.cso == sel)
2334 return;
2335
2336 sctx->tcs_shader.cso = sel;
2337 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2338 si_update_tess_uses_prim_id(sctx);
2339
2340 si_update_common_shader_state(sctx);
2341
2342 if (enable_changed)
2343 sctx->last_tcs = NULL; /* invalidate derived tess state */
2344
2345 si_set_active_descriptors_for_shader(sctx, sel);
2346 }
2347
2348 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2349 {
2350 struct si_context *sctx = (struct si_context *)ctx;
2351 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2352 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2353 struct si_shader_selector *sel = state;
2354 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2355
2356 if (sctx->tes_shader.cso == sel)
2357 return;
2358
2359 sctx->tes_shader.cso = sel;
2360 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2361 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2362 si_update_tess_uses_prim_id(sctx);
2363
2364 si_update_common_shader_state(sctx);
2365 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2366
2367 if (enable_changed) {
2368 si_shader_change_notify(sctx);
2369 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2370 }
2371 si_update_vs_viewport_state(sctx);
2372 si_set_active_descriptors_for_shader(sctx, sel);
2373 si_update_streamout_state(sctx);
2374 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2375 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2376 }
2377
2378 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2379 {
2380 struct si_context *sctx = (struct si_context *)ctx;
2381 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2382 struct si_shader_selector *sel = state;
2383
2384 /* skip if supplied shader is one already in use */
2385 if (old_sel == sel)
2386 return;
2387
2388 sctx->ps_shader.cso = sel;
2389 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2390
2391 si_update_common_shader_state(sctx);
2392 if (sel) {
2393 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2394 si_update_tess_uses_prim_id(sctx);
2395
2396 if (!old_sel ||
2397 old_sel->info.colors_written != sel->info.colors_written)
2398 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2399
2400 if (sctx->screen->has_out_of_order_rast &&
2401 (!old_sel ||
2402 old_sel->info.writes_memory != sel->info.writes_memory ||
2403 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2404 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2405 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2406 }
2407 si_set_active_descriptors_for_shader(sctx, sel);
2408 }
2409
2410 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2411 {
2412 if (shader->is_optimized) {
2413 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2414 &shader->ready);
2415 }
2416
2417 util_queue_fence_destroy(&shader->ready);
2418
2419 if (shader->pm4) {
2420 switch (shader->selector->type) {
2421 case PIPE_SHADER_VERTEX:
2422 if (shader->key.as_ls) {
2423 assert(sctx->b.chip_class <= VI);
2424 si_pm4_delete_state(sctx, ls, shader->pm4);
2425 } else if (shader->key.as_es) {
2426 assert(sctx->b.chip_class <= VI);
2427 si_pm4_delete_state(sctx, es, shader->pm4);
2428 } else {
2429 si_pm4_delete_state(sctx, vs, shader->pm4);
2430 }
2431 break;
2432 case PIPE_SHADER_TESS_CTRL:
2433 si_pm4_delete_state(sctx, hs, shader->pm4);
2434 break;
2435 case PIPE_SHADER_TESS_EVAL:
2436 if (shader->key.as_es) {
2437 assert(sctx->b.chip_class <= VI);
2438 si_pm4_delete_state(sctx, es, shader->pm4);
2439 } else {
2440 si_pm4_delete_state(sctx, vs, shader->pm4);
2441 }
2442 break;
2443 case PIPE_SHADER_GEOMETRY:
2444 if (shader->is_gs_copy_shader)
2445 si_pm4_delete_state(sctx, vs, shader->pm4);
2446 else
2447 si_pm4_delete_state(sctx, gs, shader->pm4);
2448 break;
2449 case PIPE_SHADER_FRAGMENT:
2450 si_pm4_delete_state(sctx, ps, shader->pm4);
2451 break;
2452 }
2453 }
2454
2455 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2456 si_shader_destroy(shader);
2457 free(shader);
2458 }
2459
2460 void si_destroy_shader_selector(struct si_context *sctx,
2461 struct si_shader_selector *sel)
2462 {
2463 struct si_shader *p = sel->first_variant, *c;
2464 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2465 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2466 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2467 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2468 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2469 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2470 };
2471
2472 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2473
2474 if (current_shader[sel->type]->cso == sel) {
2475 current_shader[sel->type]->cso = NULL;
2476 current_shader[sel->type]->current = NULL;
2477 }
2478
2479 while (p) {
2480 c = p->next_variant;
2481 si_delete_shader(sctx, p);
2482 p = c;
2483 }
2484
2485 if (sel->main_shader_part)
2486 si_delete_shader(sctx, sel->main_shader_part);
2487 if (sel->main_shader_part_ls)
2488 si_delete_shader(sctx, sel->main_shader_part_ls);
2489 if (sel->main_shader_part_es)
2490 si_delete_shader(sctx, sel->main_shader_part_es);
2491 if (sel->gs_copy_shader)
2492 si_delete_shader(sctx, sel->gs_copy_shader);
2493
2494 util_queue_fence_destroy(&sel->ready);
2495 mtx_destroy(&sel->mutex);
2496 free(sel->tokens);
2497 ralloc_free(sel->nir);
2498 free(sel);
2499 }
2500
2501 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2502 {
2503 struct si_context *sctx = (struct si_context *)ctx;
2504 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2505
2506 si_shader_selector_reference(sctx, &sel, NULL);
2507 }
2508
2509 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2510 struct si_shader *vs, unsigned name,
2511 unsigned index, unsigned interpolate)
2512 {
2513 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2514 unsigned j, offset, ps_input_cntl = 0;
2515
2516 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2517 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2518 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2519
2520 if (name == TGSI_SEMANTIC_PCOORD ||
2521 (name == TGSI_SEMANTIC_TEXCOORD &&
2522 sctx->sprite_coord_enable & (1 << index))) {
2523 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2524 }
2525
2526 for (j = 0; j < vsinfo->num_outputs; j++) {
2527 if (name == vsinfo->output_semantic_name[j] &&
2528 index == vsinfo->output_semantic_index[j]) {
2529 offset = vs->info.vs_output_param_offset[j];
2530
2531 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2532 /* The input is loaded from parameter memory. */
2533 ps_input_cntl |= S_028644_OFFSET(offset);
2534 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2535 if (offset == AC_EXP_PARAM_UNDEFINED) {
2536 /* This can happen with depth-only rendering. */
2537 offset = 0;
2538 } else {
2539 /* The input is a DEFAULT_VAL constant. */
2540 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2541 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2542 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2543 }
2544
2545 ps_input_cntl = S_028644_OFFSET(0x20) |
2546 S_028644_DEFAULT_VAL(offset);
2547 }
2548 break;
2549 }
2550 }
2551
2552 if (name == TGSI_SEMANTIC_PRIMID)
2553 /* PrimID is written after the last output. */
2554 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2555 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2556 /* No corresponding output found, load defaults into input.
2557 * Don't set any other bits.
2558 * (FLAT_SHADE=1 completely changes behavior) */
2559 ps_input_cntl = S_028644_OFFSET(0x20);
2560 /* D3D 9 behaviour. GL is undefined */
2561 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2562 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2563 }
2564 return ps_input_cntl;
2565 }
2566
2567 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2568 {
2569 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2570 struct si_shader *ps = sctx->ps_shader.current;
2571 struct si_shader *vs = si_get_vs_state(sctx);
2572 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2573 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2574
2575 if (!ps || !ps->selector->info.num_inputs)
2576 return;
2577
2578 num_interp = si_get_ps_num_interp(ps);
2579 assert(num_interp > 0);
2580 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2581
2582 for (i = 0; i < psinfo->num_inputs; i++) {
2583 unsigned name = psinfo->input_semantic_name[i];
2584 unsigned index = psinfo->input_semantic_index[i];
2585 unsigned interpolate = psinfo->input_interpolate[i];
2586
2587 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2588 interpolate));
2589 num_written++;
2590
2591 if (name == TGSI_SEMANTIC_COLOR) {
2592 assert(index < ARRAY_SIZE(bcol_interp));
2593 bcol_interp[index] = interpolate;
2594 }
2595 }
2596
2597 if (ps->key.part.ps.prolog.color_two_side) {
2598 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2599
2600 for (i = 0; i < 2; i++) {
2601 if (!(psinfo->colors_read & (0xf << (i * 4))))
2602 continue;
2603
2604 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2605 i, bcol_interp[i]));
2606 num_written++;
2607 }
2608 }
2609 assert(num_interp == num_written);
2610 }
2611
2612 /**
2613 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2614 */
2615 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2616 {
2617 if (sctx->init_config_has_vgt_flush)
2618 return;
2619
2620 /* Done by Vulkan before VGT_FLUSH. */
2621 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2622 si_pm4_cmd_add(sctx->init_config,
2623 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2624 si_pm4_cmd_end(sctx->init_config, false);
2625
2626 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2627 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2628 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2629 si_pm4_cmd_end(sctx->init_config, false);
2630 sctx->init_config_has_vgt_flush = true;
2631 }
2632
2633 /* Initialize state related to ESGS / GSVS ring buffers */
2634 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2635 {
2636 struct si_shader_selector *es =
2637 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2638 struct si_shader_selector *gs = sctx->gs_shader.cso;
2639 struct si_pm4_state *pm4;
2640
2641 /* Chip constants. */
2642 unsigned num_se = sctx->screen->info.max_se;
2643 unsigned wave_size = 64;
2644 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2645 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2646 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2647 */
2648 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2649 unsigned alignment = 256 * num_se;
2650 /* The maximum size is 63.999 MB per SE. */
2651 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2652
2653 /* Calculate the minimum size. */
2654 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2655 wave_size, alignment);
2656
2657 /* These are recommended sizes, not minimum sizes. */
2658 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2659 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2660 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2661 gs->max_gsvs_emit_size;
2662
2663 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2664 esgs_ring_size = align(esgs_ring_size, alignment);
2665 gsvs_ring_size = align(gsvs_ring_size, alignment);
2666
2667 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2668 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2669
2670 /* Some rings don't have to be allocated if shaders don't use them.
2671 * (e.g. no varyings between ES and GS or GS and VS)
2672 *
2673 * GFX9 doesn't have the ESGS ring.
2674 */
2675 bool update_esgs = sctx->b.chip_class <= VI &&
2676 esgs_ring_size &&
2677 (!sctx->esgs_ring ||
2678 sctx->esgs_ring->width0 < esgs_ring_size);
2679 bool update_gsvs = gsvs_ring_size &&
2680 (!sctx->gsvs_ring ||
2681 sctx->gsvs_ring->width0 < gsvs_ring_size);
2682
2683 if (!update_esgs && !update_gsvs)
2684 return true;
2685
2686 if (update_esgs) {
2687 pipe_resource_reference(&sctx->esgs_ring, NULL);
2688 sctx->esgs_ring =
2689 si_aligned_buffer_create(sctx->b.b.screen,
2690 R600_RESOURCE_FLAG_UNMAPPABLE,
2691 PIPE_USAGE_DEFAULT,
2692 esgs_ring_size, alignment);
2693 if (!sctx->esgs_ring)
2694 return false;
2695 }
2696
2697 if (update_gsvs) {
2698 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2699 sctx->gsvs_ring =
2700 si_aligned_buffer_create(sctx->b.b.screen,
2701 R600_RESOURCE_FLAG_UNMAPPABLE,
2702 PIPE_USAGE_DEFAULT,
2703 gsvs_ring_size, alignment);
2704 if (!sctx->gsvs_ring)
2705 return false;
2706 }
2707
2708 /* Create the "init_config_gs_rings" state. */
2709 pm4 = CALLOC_STRUCT(si_pm4_state);
2710 if (!pm4)
2711 return false;
2712
2713 if (sctx->b.chip_class >= CIK) {
2714 if (sctx->esgs_ring) {
2715 assert(sctx->b.chip_class <= VI);
2716 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2717 sctx->esgs_ring->width0 / 256);
2718 }
2719 if (sctx->gsvs_ring)
2720 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2721 sctx->gsvs_ring->width0 / 256);
2722 } else {
2723 if (sctx->esgs_ring)
2724 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2725 sctx->esgs_ring->width0 / 256);
2726 if (sctx->gsvs_ring)
2727 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2728 sctx->gsvs_ring->width0 / 256);
2729 }
2730
2731 /* Set the state. */
2732 if (sctx->init_config_gs_rings)
2733 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2734 sctx->init_config_gs_rings = pm4;
2735
2736 if (!sctx->init_config_has_vgt_flush) {
2737 si_init_config_add_vgt_flush(sctx);
2738 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2739 }
2740
2741 /* Flush the context to re-emit both init_config states. */
2742 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2743 si_context_gfx_flush(sctx, PIPE_FLUSH_ASYNC, NULL);
2744
2745 /* Set ring bindings. */
2746 if (sctx->esgs_ring) {
2747 assert(sctx->b.chip_class <= VI);
2748 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2749 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2750 true, true, 4, 64, 0);
2751 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2752 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2753 false, false, 0, 0, 0);
2754 }
2755 if (sctx->gsvs_ring) {
2756 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2757 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2758 false, false, 0, 0, 0);
2759 }
2760
2761 return true;
2762 }
2763
2764 static void si_shader_lock(struct si_shader *shader)
2765 {
2766 mtx_lock(&shader->selector->mutex);
2767 if (shader->previous_stage_sel) {
2768 assert(shader->previous_stage_sel != shader->selector);
2769 mtx_lock(&shader->previous_stage_sel->mutex);
2770 }
2771 }
2772
2773 static void si_shader_unlock(struct si_shader *shader)
2774 {
2775 if (shader->previous_stage_sel)
2776 mtx_unlock(&shader->previous_stage_sel->mutex);
2777 mtx_unlock(&shader->selector->mutex);
2778 }
2779
2780 /**
2781 * @returns 1 if \p sel has been updated to use a new scratch buffer
2782 * 0 if not
2783 * < 0 if there was a failure
2784 */
2785 static int si_update_scratch_buffer(struct si_context *sctx,
2786 struct si_shader *shader)
2787 {
2788 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2789 int r;
2790
2791 if (!shader)
2792 return 0;
2793
2794 /* This shader doesn't need a scratch buffer */
2795 if (shader->config.scratch_bytes_per_wave == 0)
2796 return 0;
2797
2798 /* Prevent race conditions when updating:
2799 * - si_shader::scratch_bo
2800 * - si_shader::binary::code
2801 * - si_shader::previous_stage::binary::code.
2802 */
2803 si_shader_lock(shader);
2804
2805 /* This shader is already configured to use the current
2806 * scratch buffer. */
2807 if (shader->scratch_bo == sctx->scratch_buffer) {
2808 si_shader_unlock(shader);
2809 return 0;
2810 }
2811
2812 assert(sctx->scratch_buffer);
2813
2814 if (shader->previous_stage)
2815 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2816
2817 si_shader_apply_scratch_relocs(shader, scratch_va);
2818
2819 /* Replace the shader bo with a new bo that has the relocs applied. */
2820 r = si_shader_binary_upload(sctx->screen, shader);
2821 if (r) {
2822 si_shader_unlock(shader);
2823 return r;
2824 }
2825
2826 /* Update the shader state to use the new shader bo. */
2827 si_shader_init_pm4_state(sctx->screen, shader);
2828
2829 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2830
2831 si_shader_unlock(shader);
2832 return 1;
2833 }
2834
2835 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2836 {
2837 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2838 }
2839
2840 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2841 {
2842 return shader ? shader->config.scratch_bytes_per_wave : 0;
2843 }
2844
2845 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2846 {
2847 if (!sctx->tes_shader.cso)
2848 return NULL; /* tessellation disabled */
2849
2850 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2851 sctx->fixed_func_tcs_shader.current;
2852 }
2853
2854 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2855 {
2856 unsigned bytes = 0;
2857
2858 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2859 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2860 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2861 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2862
2863 if (sctx->tes_shader.cso) {
2864 struct si_shader *tcs = si_get_tcs_current(sctx);
2865
2866 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2867 }
2868 return bytes;
2869 }
2870
2871 static bool si_update_scratch_relocs(struct si_context *sctx)
2872 {
2873 struct si_shader *tcs = si_get_tcs_current(sctx);
2874 int r;
2875
2876 /* Update the shaders, so that they are using the latest scratch.
2877 * The scratch buffer may have been changed since these shaders were
2878 * last used, so we still need to try to update them, even if they
2879 * require scratch buffers smaller than the current size.
2880 */
2881 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2882 if (r < 0)
2883 return false;
2884 if (r == 1)
2885 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2886
2887 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2888 if (r < 0)
2889 return false;
2890 if (r == 1)
2891 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2892
2893 r = si_update_scratch_buffer(sctx, tcs);
2894 if (r < 0)
2895 return false;
2896 if (r == 1)
2897 si_pm4_bind_state(sctx, hs, tcs->pm4);
2898
2899 /* VS can be bound as LS, ES, or VS. */
2900 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2901 if (r < 0)
2902 return false;
2903 if (r == 1) {
2904 if (sctx->tes_shader.current)
2905 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2906 else if (sctx->gs_shader.current)
2907 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2908 else
2909 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2910 }
2911
2912 /* TES can be bound as ES or VS. */
2913 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2914 if (r < 0)
2915 return false;
2916 if (r == 1) {
2917 if (sctx->gs_shader.current)
2918 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2919 else
2920 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2921 }
2922
2923 return true;
2924 }
2925
2926 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2927 {
2928 unsigned current_scratch_buffer_size =
2929 si_get_current_scratch_buffer_size(sctx);
2930 unsigned scratch_bytes_per_wave =
2931 si_get_max_scratch_bytes_per_wave(sctx);
2932 unsigned scratch_needed_size = scratch_bytes_per_wave *
2933 sctx->scratch_waves;
2934 unsigned spi_tmpring_size;
2935
2936 if (scratch_needed_size > 0) {
2937 if (scratch_needed_size > current_scratch_buffer_size) {
2938 /* Create a bigger scratch buffer */
2939 r600_resource_reference(&sctx->scratch_buffer, NULL);
2940
2941 sctx->scratch_buffer = (struct r600_resource*)
2942 si_aligned_buffer_create(&sctx->screen->b,
2943 R600_RESOURCE_FLAG_UNMAPPABLE,
2944 PIPE_USAGE_DEFAULT,
2945 scratch_needed_size, 256);
2946 if (!sctx->scratch_buffer)
2947 return false;
2948
2949 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2950 si_context_add_resource_size(&sctx->b.b,
2951 &sctx->scratch_buffer->b.b);
2952 }
2953
2954 if (!si_update_scratch_relocs(sctx))
2955 return false;
2956 }
2957
2958 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2959 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2960 "scratch size should already be aligned correctly.");
2961
2962 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2963 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2964 if (spi_tmpring_size != sctx->spi_tmpring_size) {
2965 sctx->spi_tmpring_size = spi_tmpring_size;
2966 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2967 }
2968 return true;
2969 }
2970
2971 static void si_init_tess_factor_ring(struct si_context *sctx)
2972 {
2973 assert(!sctx->tf_ring);
2974
2975 /* Use 64K alignment for both rings, so that we can pass the address
2976 * to shaders as one SGPR containing bits [16:47].
2977 */
2978 sctx->tf_ring = si_aligned_buffer_create(sctx->b.b.screen,
2979 R600_RESOURCE_FLAG_UNMAPPABLE,
2980 PIPE_USAGE_DEFAULT,
2981 sctx->screen->tess_factor_ring_size,
2982 64 * 1024);
2983 if (!sctx->tf_ring)
2984 return;
2985
2986 sctx->tess_offchip_ring =
2987 si_aligned_buffer_create(sctx->b.b.screen,
2988 R600_RESOURCE_FLAG_UNMAPPABLE,
2989 PIPE_USAGE_DEFAULT,
2990 sctx->screen->tess_offchip_ring_size,
2991 64 * 1024);
2992 if (!sctx->tess_offchip_ring)
2993 return;
2994
2995 si_init_config_add_vgt_flush(sctx);
2996
2997 uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
2998 uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
2999 assert((offchip_va & 0xffff) == 0);
3000 assert((factor_va & 0xffff) == 0);
3001
3002 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
3003 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3004 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
3005 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3006
3007 /* Append these registers to the init config state. */
3008 if (sctx->b.chip_class >= CIK) {
3009 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3010 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3011 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3012 factor_va >> 8);
3013 if (sctx->b.chip_class >= GFX9)
3014 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3015 factor_va >> 40);
3016 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3017 sctx->screen->vgt_hs_offchip_param);
3018 } else {
3019 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3020 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3021 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3022 factor_va >> 8);
3023 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3024 sctx->screen->vgt_hs_offchip_param);
3025 }
3026
3027 if (sctx->b.chip_class >= GFX9) {
3028 si_pm4_set_reg(sctx->init_config,
3029 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3030 GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3031 offchip_va >> 16);
3032 si_pm4_set_reg(sctx->init_config,
3033 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3034 GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3035 factor_va >> 16);
3036 } else {
3037 si_pm4_set_reg(sctx->init_config,
3038 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3039 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3040 offchip_va >> 16);
3041 si_pm4_set_reg(sctx->init_config,
3042 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3043 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3044 factor_va >> 16);
3045 }
3046
3047 /* Flush the context to re-emit the init_config state.
3048 * This is done only once in a lifetime of a context.
3049 */
3050 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3051 sctx->b.initial_gfx_cs_size = 0; /* force flush */
3052 si_context_gfx_flush(sctx, PIPE_FLUSH_ASYNC, NULL);
3053 }
3054
3055 /**
3056 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
3057 * VS passes its outputs to TES directly, so the fixed-function shader only
3058 * has to write TESSOUTER and TESSINNER.
3059 */
3060 static void si_generate_fixed_func_tcs(struct si_context *sctx)
3061 {
3062 struct ureg_src outer, inner;
3063 struct ureg_dst tessouter, tessinner;
3064 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
3065
3066 if (!ureg)
3067 return; /* if we get here, we're screwed */
3068
3069 assert(!sctx->fixed_func_tcs_shader.cso);
3070
3071 outer = ureg_DECL_system_value(ureg,
3072 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
3073 inner = ureg_DECL_system_value(ureg,
3074 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
3075
3076 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
3077 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
3078
3079 ureg_MOV(ureg, tessouter, outer);
3080 ureg_MOV(ureg, tessinner, inner);
3081 ureg_END(ureg);
3082
3083 sctx->fixed_func_tcs_shader.cso =
3084 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
3085 }
3086
3087 static void si_update_vgt_shader_config(struct si_context *sctx)
3088 {
3089 /* Calculate the index of the config.
3090 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3091 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3092 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3093
3094 if (!*pm4) {
3095 uint32_t stages = 0;
3096
3097 *pm4 = CALLOC_STRUCT(si_pm4_state);
3098
3099 if (sctx->tes_shader.cso) {
3100 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3101 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3102
3103 if (sctx->gs_shader.cso)
3104 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3105 S_028B54_GS_EN(1) |
3106 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3107 else
3108 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3109 } else if (sctx->gs_shader.cso) {
3110 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3111 S_028B54_GS_EN(1) |
3112 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3113 }
3114
3115 if (sctx->b.chip_class >= GFX9)
3116 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3117
3118 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3119 }
3120 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3121 }
3122
3123 bool si_update_shaders(struct si_context *sctx)
3124 {
3125 struct pipe_context *ctx = (struct pipe_context*)sctx;
3126 struct si_compiler_ctx_state compiler_state;
3127 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3128 struct si_shader *old_vs = si_get_vs_state(sctx);
3129 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3130 struct si_shader *old_ps = sctx->ps_shader.current;
3131 unsigned old_spi_shader_col_format =
3132 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3133 int r;
3134
3135 compiler_state.tm = sctx->tm;
3136 compiler_state.debug = sctx->debug;
3137 compiler_state.is_debug_context = sctx->is_debug;
3138
3139 /* Update stages before GS. */
3140 if (sctx->tes_shader.cso) {
3141 if (!sctx->tf_ring) {
3142 si_init_tess_factor_ring(sctx);
3143 if (!sctx->tf_ring)
3144 return false;
3145 }
3146
3147 /* VS as LS */
3148 if (sctx->b.chip_class <= VI) {
3149 r = si_shader_select(ctx, &sctx->vs_shader,
3150 &compiler_state);
3151 if (r)
3152 return false;
3153 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3154 }
3155
3156 if (sctx->tcs_shader.cso) {
3157 r = si_shader_select(ctx, &sctx->tcs_shader,
3158 &compiler_state);
3159 if (r)
3160 return false;
3161 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3162 } else {
3163 if (!sctx->fixed_func_tcs_shader.cso) {
3164 si_generate_fixed_func_tcs(sctx);
3165 if (!sctx->fixed_func_tcs_shader.cso)
3166 return false;
3167 }
3168
3169 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3170 &compiler_state);
3171 if (r)
3172 return false;
3173 si_pm4_bind_state(sctx, hs,
3174 sctx->fixed_func_tcs_shader.current->pm4);
3175 }
3176
3177 if (sctx->gs_shader.cso) {
3178 /* TES as ES */
3179 if (sctx->b.chip_class <= VI) {
3180 r = si_shader_select(ctx, &sctx->tes_shader,
3181 &compiler_state);
3182 if (r)
3183 return false;
3184 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3185 }
3186 } else {
3187 /* TES as VS */
3188 r = si_shader_select(ctx, &sctx->tes_shader,
3189 &compiler_state);
3190 if (r)
3191 return false;
3192 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3193 }
3194 } else if (sctx->gs_shader.cso) {
3195 if (sctx->b.chip_class <= VI) {
3196 /* VS as ES */
3197 r = si_shader_select(ctx, &sctx->vs_shader,
3198 &compiler_state);
3199 if (r)
3200 return false;
3201 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3202
3203 si_pm4_bind_state(sctx, ls, NULL);
3204 si_pm4_bind_state(sctx, hs, NULL);
3205 }
3206 } else {
3207 /* VS as VS */
3208 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3209 if (r)
3210 return false;
3211 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3212 si_pm4_bind_state(sctx, ls, NULL);
3213 si_pm4_bind_state(sctx, hs, NULL);
3214 }
3215
3216 /* Update GS. */
3217 if (sctx->gs_shader.cso) {
3218 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3219 if (r)
3220 return false;
3221 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3222 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3223
3224 if (!si_update_gs_ring_buffers(sctx))
3225 return false;
3226 } else {
3227 si_pm4_bind_state(sctx, gs, NULL);
3228 if (sctx->b.chip_class <= VI)
3229 si_pm4_bind_state(sctx, es, NULL);
3230 }
3231
3232 si_update_vgt_shader_config(sctx);
3233
3234 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3235 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3236
3237 if (sctx->ps_shader.cso) {
3238 unsigned db_shader_control;
3239
3240 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3241 if (r)
3242 return false;
3243 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3244
3245 db_shader_control =
3246 sctx->ps_shader.cso->db_shader_control |
3247 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3248
3249 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3250 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3251 sctx->flatshade != rs->flatshade) {
3252 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3253 sctx->flatshade = rs->flatshade;
3254 si_mark_atom_dirty(sctx, &sctx->spi_map);
3255 }
3256
3257 if (sctx->screen->rbplus_allowed &&
3258 si_pm4_state_changed(sctx, ps) &&
3259 (!old_ps ||
3260 old_spi_shader_col_format !=
3261 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3262 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3263
3264 if (sctx->ps_db_shader_control != db_shader_control) {
3265 sctx->ps_db_shader_control = db_shader_control;
3266 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3267 if (sctx->screen->dpbb_allowed)
3268 si_mark_atom_dirty(sctx, &sctx->dpbb_state);
3269 }
3270
3271 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3272 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3273 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3274
3275 if (sctx->b.chip_class == SI)
3276 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3277
3278 if (sctx->framebuffer.nr_samples <= 1)
3279 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3280 }
3281 }
3282
3283 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3284 si_pm4_state_enabled_and_changed(sctx, hs) ||
3285 si_pm4_state_enabled_and_changed(sctx, es) ||
3286 si_pm4_state_enabled_and_changed(sctx, gs) ||
3287 si_pm4_state_enabled_and_changed(sctx, vs) ||
3288 si_pm4_state_enabled_and_changed(sctx, ps)) {
3289 if (!si_update_spi_tmpring_size(sctx))
3290 return false;
3291 }
3292
3293 if (sctx->b.chip_class >= CIK) {
3294 if (si_pm4_state_enabled_and_changed(sctx, ls))
3295 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3296 else if (!sctx->queued.named.ls)
3297 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3298
3299 if (si_pm4_state_enabled_and_changed(sctx, hs))
3300 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3301 else if (!sctx->queued.named.hs)
3302 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3303
3304 if (si_pm4_state_enabled_and_changed(sctx, es))
3305 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3306 else if (!sctx->queued.named.es)
3307 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3308
3309 if (si_pm4_state_enabled_and_changed(sctx, gs))
3310 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3311 else if (!sctx->queued.named.gs)
3312 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3313
3314 if (si_pm4_state_enabled_and_changed(sctx, vs))
3315 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3316 else if (!sctx->queued.named.vs)
3317 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3318
3319 if (si_pm4_state_enabled_and_changed(sctx, ps))
3320 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3321 else if (!sctx->queued.named.ps)
3322 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3323 }
3324
3325 sctx->do_update_shaders = false;
3326 return true;
3327 }
3328
3329 static void si_emit_scratch_state(struct si_context *sctx,
3330 struct r600_atom *atom)
3331 {
3332 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3333
3334 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3335 sctx->spi_tmpring_size);
3336
3337 if (sctx->scratch_buffer) {
3338 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3339 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3340 RADEON_PRIO_SCRATCH_BUFFER);
3341 }
3342 }
3343
3344 void *si_get_blit_vs(struct si_context *sctx, enum blitter_attrib_type type,
3345 unsigned num_layers)
3346 {
3347 struct pipe_context *pipe = &sctx->b.b;
3348 unsigned vs_blit_property;
3349 void **vs;
3350
3351 switch (type) {
3352 case UTIL_BLITTER_ATTRIB_NONE:
3353 vs = num_layers > 1 ? &sctx->vs_blit_pos_layered :
3354 &sctx->vs_blit_pos;
3355 vs_blit_property = SI_VS_BLIT_SGPRS_POS;
3356 break;
3357 case UTIL_BLITTER_ATTRIB_COLOR:
3358 vs = num_layers > 1 ? &sctx->vs_blit_color_layered :
3359 &sctx->vs_blit_color;
3360 vs_blit_property = SI_VS_BLIT_SGPRS_POS_COLOR;
3361 break;
3362 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
3363 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
3364 assert(num_layers == 1);
3365 vs = &sctx->vs_blit_texcoord;
3366 vs_blit_property = SI_VS_BLIT_SGPRS_POS_TEXCOORD;
3367 break;
3368 default:
3369 assert(0);
3370 return NULL;
3371 }
3372 if (*vs)
3373 return *vs;
3374
3375 struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
3376 if (!ureg)
3377 return NULL;
3378
3379 /* Tell the shader to load VS inputs from SGPRs: */
3380 ureg_property(ureg, TGSI_PROPERTY_VS_BLIT_SGPRS, vs_blit_property);
3381 ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, true);
3382
3383 /* This is just a pass-through shader with 1-3 MOV instructions. */
3384 ureg_MOV(ureg,
3385 ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0),
3386 ureg_DECL_vs_input(ureg, 0));
3387
3388 if (type != UTIL_BLITTER_ATTRIB_NONE) {
3389 ureg_MOV(ureg,
3390 ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 0),
3391 ureg_DECL_vs_input(ureg, 1));
3392 }
3393
3394 if (num_layers > 1) {
3395 struct ureg_src instance_id =
3396 ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
3397 struct ureg_dst layer =
3398 ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
3399
3400 ureg_MOV(ureg, ureg_writemask(layer, TGSI_WRITEMASK_X),
3401 ureg_scalar(instance_id, TGSI_SWIZZLE_X));
3402 }
3403 ureg_END(ureg);
3404
3405 *vs = ureg_create_shader_and_destroy(ureg, pipe);
3406 return *vs;
3407 }
3408
3409 void si_init_shader_functions(struct si_context *sctx)
3410 {
3411 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3412 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3413 si_emit_scratch_state);
3414
3415 sctx->b.b.create_vs_state = si_create_shader_selector;
3416 sctx->b.b.create_tcs_state = si_create_shader_selector;
3417 sctx->b.b.create_tes_state = si_create_shader_selector;
3418 sctx->b.b.create_gs_state = si_create_shader_selector;
3419 sctx->b.b.create_fs_state = si_create_shader_selector;
3420
3421 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3422 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3423 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3424 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3425 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3426
3427 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3428 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3429 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3430 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3431 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3432 }