radeonsi: always use async compiles when creating shader/compute states
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_pipe.h"
25 #include "sid.h"
26 #include "gfx9d.h"
27 #include "radeon/r600_cs.h"
28
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_ureg.h"
31 #include "util/hash_table.h"
32 #include "util/crc32.h"
33 #include "util/u_async_debug.h"
34 #include "util/u_memory.h"
35 #include "util/u_prim.h"
36
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "ac_exp_param.h"
40
41 /* SHADER_CACHE */
42
43 /**
44 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
45 * integer.
46 */
47 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
48 {
49 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
50 sizeof(struct tgsi_token);
51 unsigned size = 4 + tgsi_size + sizeof(sel->so);
52 char *result = (char*)MALLOC(size);
53
54 if (!result)
55 return NULL;
56
57 *((uint32_t*)result) = size;
58 memcpy(result + 4, sel->tokens, tgsi_size);
59 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
60 return result;
61 }
62
63 /** Copy "data" to "ptr" and return the next dword following copied data. */
64 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
65 {
66 /* data may be NULL if size == 0 */
67 if (size)
68 memcpy(ptr, data, size);
69 ptr += DIV_ROUND_UP(size, 4);
70 return ptr;
71 }
72
73 /** Read data from "ptr". Return the next dword following the data. */
74 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
75 {
76 memcpy(data, ptr, size);
77 ptr += DIV_ROUND_UP(size, 4);
78 return ptr;
79 }
80
81 /**
82 * Write the size as uint followed by the data. Return the next dword
83 * following the copied data.
84 */
85 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
86 {
87 *ptr++ = size;
88 return write_data(ptr, data, size);
89 }
90
91 /**
92 * Read the size as uint followed by the data. Return both via parameters.
93 * Return the next dword following the data.
94 */
95 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
96 {
97 *size = *ptr++;
98 assert(*data == NULL);
99 if (!*size)
100 return ptr;
101 *data = malloc(*size);
102 return read_data(ptr, *data, *size);
103 }
104
105 /**
106 * Return the shader binary in a buffer. The first 4 bytes contain its size
107 * as integer.
108 */
109 static void *si_get_shader_binary(struct si_shader *shader)
110 {
111 /* There is always a size of data followed by the data itself. */
112 unsigned relocs_size = shader->binary.reloc_count *
113 sizeof(shader->binary.relocs[0]);
114 unsigned disasm_size = shader->binary.disasm_string ?
115 strlen(shader->binary.disasm_string) + 1 : 0;
116 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
117 strlen(shader->binary.llvm_ir_string) + 1 : 0;
118 unsigned size =
119 4 + /* total size */
120 4 + /* CRC32 of the data below */
121 align(sizeof(shader->config), 4) +
122 align(sizeof(shader->info), 4) +
123 4 + align(shader->binary.code_size, 4) +
124 4 + align(shader->binary.rodata_size, 4) +
125 4 + align(relocs_size, 4) +
126 4 + align(disasm_size, 4) +
127 4 + align(llvm_ir_size, 4);
128 void *buffer = CALLOC(1, size);
129 uint32_t *ptr = (uint32_t*)buffer;
130
131 if (!buffer)
132 return NULL;
133
134 *ptr++ = size;
135 ptr++; /* CRC32 is calculated at the end. */
136
137 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
138 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
139 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
140 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
141 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
142 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
143 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
144 assert((char *)ptr - (char *)buffer == size);
145
146 /* Compute CRC32. */
147 ptr = (uint32_t*)buffer;
148 ptr++;
149 *ptr = util_hash_crc32(ptr + 1, size - 8);
150
151 return buffer;
152 }
153
154 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
155 {
156 uint32_t *ptr = (uint32_t*)binary;
157 uint32_t size = *ptr++;
158 uint32_t crc32 = *ptr++;
159 unsigned chunk_size;
160
161 if (util_hash_crc32(ptr, size - 8) != crc32) {
162 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
163 return false;
164 }
165
166 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
167 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
168 ptr = read_chunk(ptr, (void**)&shader->binary.code,
169 &shader->binary.code_size);
170 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
171 &shader->binary.rodata_size);
172 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
173 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
174 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
175 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
176
177 return true;
178 }
179
180 /**
181 * Insert a shader into the cache. It's assumed the shader is not in the cache.
182 * Use si_shader_cache_load_shader before calling this.
183 *
184 * Returns false on failure, in which case the tgsi_binary should be freed.
185 */
186 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
187 void *tgsi_binary,
188 struct si_shader *shader,
189 bool insert_into_disk_cache)
190 {
191 void *hw_binary;
192 struct hash_entry *entry;
193 uint8_t key[CACHE_KEY_SIZE];
194
195 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
196 if (entry)
197 return false; /* already added */
198
199 hw_binary = si_get_shader_binary(shader);
200 if (!hw_binary)
201 return false;
202
203 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
204 hw_binary) == NULL) {
205 FREE(hw_binary);
206 return false;
207 }
208
209 if (sscreen->b.disk_shader_cache && insert_into_disk_cache) {
210 disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary,
211 *((uint32_t *)tgsi_binary), key);
212 disk_cache_put(sscreen->b.disk_shader_cache, key, hw_binary,
213 *((uint32_t *) hw_binary), NULL);
214 }
215
216 return true;
217 }
218
219 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
220 void *tgsi_binary,
221 struct si_shader *shader)
222 {
223 struct hash_entry *entry =
224 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
225 if (!entry) {
226 if (sscreen->b.disk_shader_cache) {
227 unsigned char sha1[CACHE_KEY_SIZE];
228 size_t tg_size = *((uint32_t *) tgsi_binary);
229
230 disk_cache_compute_key(sscreen->b.disk_shader_cache,
231 tgsi_binary, tg_size, sha1);
232
233 size_t binary_size;
234 uint8_t *buffer =
235 disk_cache_get(sscreen->b.disk_shader_cache,
236 sha1, &binary_size);
237 if (!buffer)
238 return false;
239
240 if (binary_size < sizeof(uint32_t) ||
241 *((uint32_t*)buffer) != binary_size) {
242 /* Something has gone wrong discard the item
243 * from the cache and rebuild/link from
244 * source.
245 */
246 assert(!"Invalid radeonsi shader disk cache "
247 "item!");
248
249 disk_cache_remove(sscreen->b.disk_shader_cache,
250 sha1);
251 free(buffer);
252
253 return false;
254 }
255
256 if (!si_load_shader_binary(shader, buffer)) {
257 free(buffer);
258 return false;
259 }
260 free(buffer);
261
262 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary,
263 shader, false))
264 FREE(tgsi_binary);
265 } else {
266 return false;
267 }
268 } else {
269 if (si_load_shader_binary(shader, entry->data))
270 FREE(tgsi_binary);
271 else
272 return false;
273 }
274 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
275 return true;
276 }
277
278 static uint32_t si_shader_cache_key_hash(const void *key)
279 {
280 /* The first dword is the key size. */
281 return util_hash_crc32(key, *(uint32_t*)key);
282 }
283
284 static bool si_shader_cache_key_equals(const void *a, const void *b)
285 {
286 uint32_t *keya = (uint32_t*)a;
287 uint32_t *keyb = (uint32_t*)b;
288
289 /* The first dword is the key size. */
290 if (*keya != *keyb)
291 return false;
292
293 return memcmp(keya, keyb, *keya) == 0;
294 }
295
296 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
297 {
298 FREE((void*)entry->key);
299 FREE(entry->data);
300 }
301
302 bool si_init_shader_cache(struct si_screen *sscreen)
303 {
304 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
305 sscreen->shader_cache =
306 _mesa_hash_table_create(NULL,
307 si_shader_cache_key_hash,
308 si_shader_cache_key_equals);
309
310 return sscreen->shader_cache != NULL;
311 }
312
313 void si_destroy_shader_cache(struct si_screen *sscreen)
314 {
315 if (sscreen->shader_cache)
316 _mesa_hash_table_destroy(sscreen->shader_cache,
317 si_destroy_shader_cache_entry);
318 mtx_destroy(&sscreen->shader_cache_mutex);
319 }
320
321 /* SHADER STATES */
322
323 static void si_set_tesseval_regs(struct si_screen *sscreen,
324 struct si_shader_selector *tes,
325 struct si_pm4_state *pm4)
326 {
327 struct tgsi_shader_info *info = &tes->info;
328 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
329 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
330 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
331 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
332 unsigned type, partitioning, topology, distribution_mode;
333
334 switch (tes_prim_mode) {
335 case PIPE_PRIM_LINES:
336 type = V_028B6C_TESS_ISOLINE;
337 break;
338 case PIPE_PRIM_TRIANGLES:
339 type = V_028B6C_TESS_TRIANGLE;
340 break;
341 case PIPE_PRIM_QUADS:
342 type = V_028B6C_TESS_QUAD;
343 break;
344 default:
345 assert(0);
346 return;
347 }
348
349 switch (tes_spacing) {
350 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
351 partitioning = V_028B6C_PART_FRAC_ODD;
352 break;
353 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
354 partitioning = V_028B6C_PART_FRAC_EVEN;
355 break;
356 case PIPE_TESS_SPACING_EQUAL:
357 partitioning = V_028B6C_PART_INTEGER;
358 break;
359 default:
360 assert(0);
361 return;
362 }
363
364 if (tes_point_mode)
365 topology = V_028B6C_OUTPUT_POINT;
366 else if (tes_prim_mode == PIPE_PRIM_LINES)
367 topology = V_028B6C_OUTPUT_LINE;
368 else if (tes_vertex_order_cw)
369 /* for some reason, this must be the other way around */
370 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
371 else
372 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
373
374 if (sscreen->has_distributed_tess) {
375 if (sscreen->b.family == CHIP_FIJI ||
376 sscreen->b.family >= CHIP_POLARIS10)
377 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
378 else
379 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
380 } else
381 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
382
383 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
384 S_028B6C_TYPE(type) |
385 S_028B6C_PARTITIONING(partitioning) |
386 S_028B6C_TOPOLOGY(topology) |
387 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
388 }
389
390 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
391 * whether the "fractional odd" tessellation spacing is used.
392 *
393 * Possible VGT configurations and which state should set the register:
394 *
395 * Reg set in | VGT shader configuration | Value
396 * ------------------------------------------------------
397 * VS as VS | VS | 30
398 * VS as ES | ES -> GS -> VS | 30
399 * TES as VS | LS -> HS -> VS | 14 or 30
400 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
401 *
402 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
403 */
404 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
405 struct si_shader_selector *sel,
406 struct si_shader *shader,
407 struct si_pm4_state *pm4)
408 {
409 unsigned type = sel->type;
410
411 if (sscreen->b.family < CHIP_POLARIS10)
412 return;
413
414 /* VS as VS, or VS as ES: */
415 if ((type == PIPE_SHADER_VERTEX &&
416 (!shader ||
417 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
418 /* TES as VS, or TES as ES: */
419 type == PIPE_SHADER_TESS_EVAL) {
420 unsigned vtx_reuse_depth = 30;
421
422 if (type == PIPE_SHADER_TESS_EVAL &&
423 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
424 PIPE_TESS_SPACING_FRACTIONAL_ODD)
425 vtx_reuse_depth = 14;
426
427 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
428 vtx_reuse_depth);
429 }
430 }
431
432 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
433 {
434 if (shader->pm4)
435 si_pm4_clear_state(shader->pm4);
436 else
437 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
438
439 return shader->pm4;
440 }
441
442 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
443 {
444 struct si_pm4_state *pm4;
445 unsigned vgpr_comp_cnt;
446 uint64_t va;
447
448 assert(sscreen->b.chip_class <= VI);
449
450 pm4 = si_get_shader_pm4_state(shader);
451 if (!pm4)
452 return;
453
454 va = shader->bo->gpu_address;
455 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
456
457 /* We need at least 2 components for LS.
458 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
459 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
460 */
461 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
462
463 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
464 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
465
466 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
467 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
468 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
469 S_00B528_DX10_CLAMP(1) |
470 S_00B528_FLOAT_MODE(shader->config.float_mode);
471 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
472 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
473 }
474
475 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
476 {
477 struct si_pm4_state *pm4;
478 uint64_t va;
479 unsigned ls_vgpr_comp_cnt = 0;
480
481 pm4 = si_get_shader_pm4_state(shader);
482 if (!pm4)
483 return;
484
485 va = shader->bo->gpu_address;
486 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
487
488 if (sscreen->b.chip_class >= GFX9) {
489 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
490 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
491
492 /* We need at least 2 components for LS.
493 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
494 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
495 */
496 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
497
498 shader->config.rsrc2 =
499 S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
500 S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
501 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
502 } else {
503 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
504 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
505
506 shader->config.rsrc2 =
507 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
508 S_00B42C_OC_LDS_EN(1) |
509 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
510 }
511
512 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
513 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
514 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
515 S_00B428_DX10_CLAMP(1) |
516 S_00B428_FLOAT_MODE(shader->config.float_mode) |
517 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
518
519 if (sscreen->b.chip_class <= VI) {
520 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
521 shader->config.rsrc2);
522 }
523 }
524
525 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
526 {
527 struct si_pm4_state *pm4;
528 unsigned num_user_sgprs;
529 unsigned vgpr_comp_cnt;
530 uint64_t va;
531 unsigned oc_lds_en;
532
533 assert(sscreen->b.chip_class <= VI);
534
535 pm4 = si_get_shader_pm4_state(shader);
536 if (!pm4)
537 return;
538
539 va = shader->bo->gpu_address;
540 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
541
542 if (shader->selector->type == PIPE_SHADER_VERTEX) {
543 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
544 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
545 num_user_sgprs = SI_VS_NUM_USER_SGPR;
546 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
547 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
548 num_user_sgprs = SI_TES_NUM_USER_SGPR;
549 } else
550 unreachable("invalid shader selector type");
551
552 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
553
554 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
555 shader->selector->esgs_itemsize / 4);
556 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
557 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
558 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
559 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
560 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
561 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
562 S_00B328_DX10_CLAMP(1) |
563 S_00B328_FLOAT_MODE(shader->config.float_mode));
564 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
565 S_00B32C_USER_SGPR(num_user_sgprs) |
566 S_00B32C_OC_LDS_EN(oc_lds_en) |
567 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
568
569 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
570 si_set_tesseval_regs(sscreen, shader->selector, pm4);
571
572 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
573 }
574
575 /**
576 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
577 * geometry shader.
578 */
579 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
580 {
581 enum chip_class chip_class = sel->screen->b.chip_class;
582 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
583 unsigned cut_mode;
584
585 if (gs_max_vert_out <= 128) {
586 cut_mode = V_028A40_GS_CUT_128;
587 } else if (gs_max_vert_out <= 256) {
588 cut_mode = V_028A40_GS_CUT_256;
589 } else if (gs_max_vert_out <= 512) {
590 cut_mode = V_028A40_GS_CUT_512;
591 } else {
592 assert(gs_max_vert_out <= 1024);
593 cut_mode = V_028A40_GS_CUT_1024;
594 }
595
596 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
597 S_028A40_CUT_MODE(cut_mode)|
598 S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) |
599 S_028A40_GS_WRITE_OPTIMIZE(1) |
600 S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0);
601 }
602
603 struct gfx9_gs_info {
604 unsigned es_verts_per_subgroup;
605 unsigned gs_prims_per_subgroup;
606 unsigned gs_inst_prims_in_subgroup;
607 unsigned max_prims_per_subgroup;
608 unsigned lds_size;
609 };
610
611 static void gfx9_get_gs_info(struct si_shader_selector *es,
612 struct si_shader_selector *gs,
613 struct gfx9_gs_info *out)
614 {
615 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
616 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
617 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
618 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
619
620 /* All these are in dwords: */
621 /* We can't allow using the whole LDS, because GS waves compete with
622 * other shader stages for LDS space. */
623 const unsigned max_lds_size = 8 * 1024;
624 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
625 unsigned esgs_lds_size;
626
627 /* All these are per subgroup: */
628 const unsigned max_out_prims = 32 * 1024;
629 const unsigned max_es_verts = 255;
630 const unsigned ideal_gs_prims = 64;
631 unsigned max_gs_prims, gs_prims;
632 unsigned min_es_verts, es_verts, worst_case_es_verts;
633
634 assert(gs_num_invocations <= 32); /* GL maximum */
635
636 if (uses_adjacency || gs_num_invocations > 1)
637 max_gs_prims = 127 / gs_num_invocations;
638 else
639 max_gs_prims = 255;
640
641 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
642 * Make sure we don't go over the maximum value.
643 */
644 if (gs->gs_max_out_vertices > 0) {
645 max_gs_prims = MIN2(max_gs_prims,
646 max_out_prims /
647 (gs->gs_max_out_vertices * gs_num_invocations));
648 }
649 assert(max_gs_prims > 0);
650
651 /* If the primitive has adjacency, halve the number of vertices
652 * that will be reused in multiple primitives.
653 */
654 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
655
656 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
657 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
658
659 /* Compute ESGS LDS size based on the worst case number of ES vertices
660 * needed to create the target number of GS prims per subgroup.
661 */
662 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
663
664 /* If total LDS usage is too big, refactor partitions based on ratio
665 * of ESGS item sizes.
666 */
667 if (esgs_lds_size > max_lds_size) {
668 /* Our target GS Prims Per Subgroup was too large. Calculate
669 * the maximum number of GS Prims Per Subgroup that will fit
670 * into LDS, capped by the maximum that the hardware can support.
671 */
672 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
673 max_gs_prims);
674 assert(gs_prims > 0);
675 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
676 max_es_verts);
677
678 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
679 assert(esgs_lds_size <= max_lds_size);
680 }
681
682 /* Now calculate remaining ESGS information. */
683 if (esgs_lds_size)
684 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
685 else
686 es_verts = max_es_verts;
687
688 /* Vertices for adjacency primitives are not always reused, so restore
689 * it for ES_VERTS_PER_SUBGRP.
690 */
691 min_es_verts = gs->gs_input_verts_per_prim;
692
693 /* For normal primitives, the VGT only checks if they are past the ES
694 * verts per subgroup after allocating a full GS primitive and if they
695 * are, kick off a new subgroup. But if those additional ES verts are
696 * unique (e.g. not reused) we need to make sure there is enough LDS
697 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
698 */
699 es_verts -= min_es_verts - 1;
700
701 out->es_verts_per_subgroup = es_verts;
702 out->gs_prims_per_subgroup = gs_prims;
703 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
704 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
705 gs->gs_max_out_vertices;
706 out->lds_size = align(esgs_lds_size, 128) / 128;
707
708 assert(out->max_prims_per_subgroup <= max_out_prims);
709 }
710
711 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
712 {
713 struct si_shader_selector *sel = shader->selector;
714 const ubyte *num_components = sel->info.num_stream_output_components;
715 unsigned gs_num_invocations = sel->gs_num_invocations;
716 struct si_pm4_state *pm4;
717 uint64_t va;
718 unsigned max_stream = sel->max_gs_stream;
719 unsigned offset;
720
721 pm4 = si_get_shader_pm4_state(shader);
722 if (!pm4)
723 return;
724
725 offset = num_components[0] * sel->gs_max_out_vertices;
726 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
727 if (max_stream >= 1)
728 offset += num_components[1] * sel->gs_max_out_vertices;
729 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
730 if (max_stream >= 2)
731 offset += num_components[2] * sel->gs_max_out_vertices;
732 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
733 if (max_stream >= 3)
734 offset += num_components[3] * sel->gs_max_out_vertices;
735 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
736
737 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
738 assert(offset < (1 << 15));
739
740 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
741
742 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
743 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
744 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
745 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
746
747 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
748 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
749 S_028B90_ENABLE(gs_num_invocations > 0));
750
751 va = shader->bo->gpu_address;
752 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
753
754 if (sscreen->b.chip_class >= GFX9) {
755 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
756 unsigned es_type = shader->key.part.gs.es->type;
757 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
758 struct gfx9_gs_info gs_info;
759
760 if (es_type == PIPE_SHADER_VERTEX)
761 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
762 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
763 else if (es_type == PIPE_SHADER_TESS_EVAL)
764 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
765 else
766 unreachable("invalid shader selector type");
767
768 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
769 * VGPR[0:4] are always loaded.
770 */
771 if (sel->info.uses_invocationid)
772 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
773 else if (sel->info.uses_primid)
774 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
775 else if (input_prim >= PIPE_PRIM_TRIANGLES)
776 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
777 else
778 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
779
780 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
781
782 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
783 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
784
785 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
786 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
787 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
788 S_00B228_DX10_CLAMP(1) |
789 S_00B228_FLOAT_MODE(shader->config.float_mode) |
790 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
791 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
792 S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
793 S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
794 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
795 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
796 S_00B22C_LDS_SIZE(gs_info.lds_size) |
797 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
798
799 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
800 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
801 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
802 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
803 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
804 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
805 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
806 shader->key.part.gs.es->esgs_itemsize / 4);
807
808 if (es_type == PIPE_SHADER_TESS_EVAL)
809 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
810
811 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
812 NULL, pm4);
813 } else {
814 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
815 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
816
817 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
818 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
819 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
820 S_00B228_DX10_CLAMP(1) |
821 S_00B228_FLOAT_MODE(shader->config.float_mode));
822 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
823 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
824 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
825 }
826 }
827
828 /**
829 * Compute the state for \p shader, which will run as a vertex shader on the
830 * hardware.
831 *
832 * If \p gs is non-NULL, it points to the geometry shader for which this shader
833 * is the copy shader.
834 */
835 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
836 struct si_shader_selector *gs)
837 {
838 const struct tgsi_shader_info *info = &shader->selector->info;
839 struct si_pm4_state *pm4;
840 unsigned num_user_sgprs;
841 unsigned nparams, vgpr_comp_cnt;
842 uint64_t va;
843 unsigned oc_lds_en;
844 unsigned window_space =
845 info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
846 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
847
848 pm4 = si_get_shader_pm4_state(shader);
849 if (!pm4)
850 return;
851
852 /* We always write VGT_GS_MODE in the VS state, because every switch
853 * between different shader pipelines involving a different GS or no
854 * GS at all involves a switch of the VS (different GS use different
855 * copy shaders). On the other hand, when the API switches from a GS to
856 * no GS and then back to the same GS used originally, the GS state is
857 * not sent again.
858 */
859 if (!gs) {
860 unsigned mode = V_028A40_GS_OFF;
861
862 /* PrimID needs GS scenario A. */
863 if (enable_prim_id)
864 mode = V_028A40_GS_SCENARIO_A;
865
866 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
867 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
868 } else {
869 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
870 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
871 }
872
873 if (sscreen->b.chip_class <= VI) {
874 /* Reuse needs to be set off if we write oViewport. */
875 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
876 S_028AB4_REUSE_OFF(info->writes_viewport_index));
877 }
878
879 va = shader->bo->gpu_address;
880 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
881
882 if (gs) {
883 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
884 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
885 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
886 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
887 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
888 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
889 */
890 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
891
892 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
893 num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
894 info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
895 } else {
896 num_user_sgprs = SI_VS_NUM_USER_SGPR;
897 }
898 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
899 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
900 num_user_sgprs = SI_TES_NUM_USER_SGPR;
901 } else
902 unreachable("invalid shader selector type");
903
904 /* VS is required to export at least one param. */
905 nparams = MAX2(shader->info.nr_param_exports, 1);
906 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
907 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
908
909 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
910 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
911 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
912 V_02870C_SPI_SHADER_4COMP :
913 V_02870C_SPI_SHADER_NONE) |
914 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
915 V_02870C_SPI_SHADER_4COMP :
916 V_02870C_SPI_SHADER_NONE) |
917 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
918 V_02870C_SPI_SHADER_4COMP :
919 V_02870C_SPI_SHADER_NONE));
920
921 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
922
923 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
924 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
925 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
926 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
927 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
928 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
929 S_00B128_DX10_CLAMP(1) |
930 S_00B128_FLOAT_MODE(shader->config.float_mode));
931 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
932 S_00B12C_USER_SGPR(num_user_sgprs) |
933 S_00B12C_OC_LDS_EN(oc_lds_en) |
934 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
935 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
936 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
937 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
938 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
939 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
940 if (window_space)
941 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
942 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
943 else
944 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
945 S_028818_VTX_W0_FMT(1) |
946 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
947 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
948 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
949
950 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
951 si_set_tesseval_regs(sscreen, shader->selector, pm4);
952
953 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
954 }
955
956 static unsigned si_get_ps_num_interp(struct si_shader *ps)
957 {
958 struct tgsi_shader_info *info = &ps->selector->info;
959 unsigned num_colors = !!(info->colors_read & 0x0f) +
960 !!(info->colors_read & 0xf0);
961 unsigned num_interp = ps->selector->info.num_inputs +
962 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
963
964 assert(num_interp <= 32);
965 return MIN2(num_interp, 32);
966 }
967
968 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
969 {
970 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
971 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
972
973 /* If the i-th target format is set, all previous target formats must
974 * be non-zero to avoid hangs.
975 */
976 for (i = 0; i < num_targets; i++)
977 if (!(value & (0xf << (i * 4))))
978 value |= V_028714_SPI_SHADER_32_R << (i * 4);
979
980 return value;
981 }
982
983 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
984 {
985 unsigned i, cb_shader_mask = 0;
986
987 for (i = 0; i < 8; i++) {
988 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
989 case V_028714_SPI_SHADER_ZERO:
990 break;
991 case V_028714_SPI_SHADER_32_R:
992 cb_shader_mask |= 0x1 << (i * 4);
993 break;
994 case V_028714_SPI_SHADER_32_GR:
995 cb_shader_mask |= 0x3 << (i * 4);
996 break;
997 case V_028714_SPI_SHADER_32_AR:
998 cb_shader_mask |= 0x9 << (i * 4);
999 break;
1000 case V_028714_SPI_SHADER_FP16_ABGR:
1001 case V_028714_SPI_SHADER_UNORM16_ABGR:
1002 case V_028714_SPI_SHADER_SNORM16_ABGR:
1003 case V_028714_SPI_SHADER_UINT16_ABGR:
1004 case V_028714_SPI_SHADER_SINT16_ABGR:
1005 case V_028714_SPI_SHADER_32_ABGR:
1006 cb_shader_mask |= 0xf << (i * 4);
1007 break;
1008 default:
1009 assert(0);
1010 }
1011 }
1012 return cb_shader_mask;
1013 }
1014
1015 static void si_shader_ps(struct si_shader *shader)
1016 {
1017 struct tgsi_shader_info *info = &shader->selector->info;
1018 struct si_pm4_state *pm4;
1019 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1020 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1021 uint64_t va;
1022 unsigned input_ena = shader->config.spi_ps_input_ena;
1023
1024 /* we need to enable at least one of them, otherwise we hang the GPU */
1025 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1026 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1027 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1028 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1029 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1030 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1031 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1032 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1033 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1034 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1035 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1036 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1037 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1038 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1039
1040 /* Validate interpolation optimization flags (read as implications). */
1041 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1042 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1043 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1044 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1045 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1046 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1047 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1048 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1049 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1050 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1051 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1052 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1053 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1054 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1055 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1056 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1057 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1058 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1059
1060 /* Validate cases when the optimizations are off (read as implications). */
1061 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1062 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1063 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1064 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1065 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1066 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1067
1068 pm4 = si_get_shader_pm4_state(shader);
1069 if (!pm4)
1070 return;
1071
1072 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1073 * Possible vaules:
1074 * 0 -> Position = pixel center
1075 * 1 -> Position = pixel centroid
1076 * 2 -> Position = at sample position
1077 *
1078 * From GLSL 4.5 specification, section 7.1:
1079 * "The variable gl_FragCoord is available as an input variable from
1080 * within fragment shaders and it holds the window relative coordinates
1081 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1082 * value can be for any location within the pixel, or one of the
1083 * fragment samples. The use of centroid does not further restrict
1084 * this value to be inside the current primitive."
1085 *
1086 * Meaning that centroid has no effect and we can return anything within
1087 * the pixel. Thus, return the value at sample position, because that's
1088 * the most accurate one shaders can get.
1089 */
1090 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1091
1092 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1093 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1094 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1095
1096 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1097 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
1098
1099 /* Ensure that some export memory is always allocated, for two reasons:
1100 *
1101 * 1) Correctness: The hardware ignores the EXEC mask if no export
1102 * memory is allocated, so KILL and alpha test do not work correctly
1103 * without this.
1104 * 2) Performance: Every shader needs at least a NULL export, even when
1105 * it writes no color/depth output. The NULL export instruction
1106 * stalls without this setting.
1107 *
1108 * Don't add this to CB_SHADER_MASK.
1109 */
1110 if (!spi_shader_col_format &&
1111 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1112 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1113
1114 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1115 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1116 shader->config.spi_ps_input_addr);
1117
1118 /* Set interpolation controls. */
1119 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1120
1121 /* Set registers. */
1122 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1123 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1124
1125 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1126 si_get_spi_shader_z_format(info->writes_z,
1127 info->writes_stencil,
1128 info->writes_samplemask));
1129
1130 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1131 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1132
1133 va = shader->bo->gpu_address;
1134 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1135 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1136 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1137
1138 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1139 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1140 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1141 S_00B028_DX10_CLAMP(1) |
1142 S_00B028_FLOAT_MODE(shader->config.float_mode));
1143 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1144 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1145 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1146 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1147 }
1148
1149 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1150 struct si_shader *shader)
1151 {
1152 switch (shader->selector->type) {
1153 case PIPE_SHADER_VERTEX:
1154 if (shader->key.as_ls)
1155 si_shader_ls(sscreen, shader);
1156 else if (shader->key.as_es)
1157 si_shader_es(sscreen, shader);
1158 else
1159 si_shader_vs(sscreen, shader, NULL);
1160 break;
1161 case PIPE_SHADER_TESS_CTRL:
1162 si_shader_hs(sscreen, shader);
1163 break;
1164 case PIPE_SHADER_TESS_EVAL:
1165 if (shader->key.as_es)
1166 si_shader_es(sscreen, shader);
1167 else
1168 si_shader_vs(sscreen, shader, NULL);
1169 break;
1170 case PIPE_SHADER_GEOMETRY:
1171 si_shader_gs(sscreen, shader);
1172 break;
1173 case PIPE_SHADER_FRAGMENT:
1174 si_shader_ps(shader);
1175 break;
1176 default:
1177 assert(0);
1178 }
1179 }
1180
1181 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1182 {
1183 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1184 if (sctx->queued.named.dsa)
1185 return sctx->queued.named.dsa->alpha_func;
1186
1187 return PIPE_FUNC_ALWAYS;
1188 }
1189
1190 static void si_shader_selector_key_vs(struct si_context *sctx,
1191 struct si_shader_selector *vs,
1192 struct si_shader_key *key,
1193 struct si_vs_prolog_bits *prolog_key)
1194 {
1195 if (!sctx->vertex_elements)
1196 return;
1197
1198 prolog_key->instance_divisor_is_one =
1199 sctx->vertex_elements->instance_divisor_is_one;
1200 prolog_key->instance_divisor_is_fetched =
1201 sctx->vertex_elements->instance_divisor_is_fetched;
1202
1203 /* Prefer a monolithic shader to allow scheduling divisions around
1204 * VBO loads. */
1205 if (prolog_key->instance_divisor_is_fetched)
1206 key->opt.prefer_mono = 1;
1207
1208 unsigned count = MIN2(vs->info.num_inputs,
1209 sctx->vertex_elements->count);
1210 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1211 }
1212
1213 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1214 struct si_shader_selector *vs,
1215 struct si_shader_key *key)
1216 {
1217 struct si_shader_selector *ps = sctx->ps_shader.cso;
1218
1219 key->opt.clip_disable =
1220 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1221 (vs->info.clipdist_writemask ||
1222 vs->info.writes_clipvertex) &&
1223 !vs->info.culldist_writemask;
1224
1225 /* Find out if PS is disabled. */
1226 bool ps_disabled = true;
1227 if (ps) {
1228 bool ps_modifies_zs = ps->info.uses_kill ||
1229 ps->info.writes_z ||
1230 ps->info.writes_stencil ||
1231 ps->info.writes_samplemask ||
1232 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1233
1234 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1235 sctx->queued.named.blend->cb_target_mask;
1236 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1237 ps_colormask &= ps->colors_written_4bit;
1238
1239 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1240 (!ps_colormask &&
1241 !ps_modifies_zs &&
1242 !ps->info.writes_memory);
1243 }
1244
1245 /* Find out which VS outputs aren't used by the PS. */
1246 uint64_t outputs_written = vs->outputs_written;
1247 uint64_t inputs_read = 0;
1248
1249 /* ignore POSITION, PSIZE */
1250 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0) |
1251 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0))));
1252
1253 if (!ps_disabled) {
1254 inputs_read = ps->inputs_read;
1255 }
1256
1257 uint64_t linked = outputs_written & inputs_read;
1258
1259 key->opt.kill_outputs = ~linked & outputs_written;
1260 }
1261
1262 /* Compute the key for the hw shader variant */
1263 static inline void si_shader_selector_key(struct pipe_context *ctx,
1264 struct si_shader_selector *sel,
1265 struct si_shader_key *key)
1266 {
1267 struct si_context *sctx = (struct si_context *)ctx;
1268
1269 memset(key, 0, sizeof(*key));
1270
1271 switch (sel->type) {
1272 case PIPE_SHADER_VERTEX:
1273 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1274
1275 if (sctx->tes_shader.cso)
1276 key->as_ls = 1;
1277 else if (sctx->gs_shader.cso)
1278 key->as_es = 1;
1279 else {
1280 si_shader_selector_key_hw_vs(sctx, sel, key);
1281
1282 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1283 key->mono.u.vs_export_prim_id = 1;
1284 }
1285 break;
1286 case PIPE_SHADER_TESS_CTRL:
1287 if (sctx->b.chip_class >= GFX9) {
1288 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1289 key, &key->part.tcs.ls_prolog);
1290 key->part.tcs.ls = sctx->vs_shader.cso;
1291
1292 /* When the LS VGPR fix is needed, monolithic shaders
1293 * can:
1294 * - avoid initializing EXEC in both the LS prolog
1295 * and the LS main part when !vs_needs_prolog
1296 * - remove the fixup for unused input VGPRs
1297 */
1298 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1299
1300 /* The LS output / HS input layout can be communicated
1301 * directly instead of via user SGPRs for merged LS-HS.
1302 * The LS VGPR fix prefers this too.
1303 */
1304 key->opt.prefer_mono = 1;
1305 }
1306
1307 key->part.tcs.epilog.prim_mode =
1308 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1309 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1310 sel->tcs_info.tessfactors_are_def_in_all_invocs;
1311 key->part.tcs.epilog.tes_reads_tess_factors =
1312 sctx->tes_shader.cso->info.reads_tess_factors;
1313
1314 if (sel == sctx->fixed_func_tcs_shader.cso)
1315 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1316 break;
1317 case PIPE_SHADER_TESS_EVAL:
1318 if (sctx->gs_shader.cso)
1319 key->as_es = 1;
1320 else {
1321 si_shader_selector_key_hw_vs(sctx, sel, key);
1322
1323 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1324 key->mono.u.vs_export_prim_id = 1;
1325 }
1326 break;
1327 case PIPE_SHADER_GEOMETRY:
1328 if (sctx->b.chip_class >= GFX9) {
1329 if (sctx->tes_shader.cso) {
1330 key->part.gs.es = sctx->tes_shader.cso;
1331 } else {
1332 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1333 key, &key->part.gs.vs_prolog);
1334 key->part.gs.es = sctx->vs_shader.cso;
1335 }
1336
1337 /* Merged ES-GS can have unbalanced wave usage.
1338 *
1339 * ES threads are per-vertex, while GS threads are
1340 * per-primitive. So without any amplification, there
1341 * are fewer GS threads than ES threads, which can result
1342 * in empty (no-op) GS waves. With too much amplification,
1343 * there are more GS threads than ES threads, which
1344 * can result in empty (no-op) ES waves.
1345 *
1346 * Non-monolithic shaders are implemented by setting EXEC
1347 * at the beginning of shader parts, and don't jump to
1348 * the end if EXEC is 0.
1349 *
1350 * Monolithic shaders use conditional blocks, so they can
1351 * jump and skip empty waves of ES or GS. So set this to
1352 * always use optimized variants, which are monolithic.
1353 */
1354 key->opt.prefer_mono = 1;
1355 }
1356 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1357 break;
1358 case PIPE_SHADER_FRAGMENT: {
1359 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1360 struct si_state_blend *blend = sctx->queued.named.blend;
1361
1362 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1363 sel->info.colors_written == 0x1)
1364 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1365
1366 if (blend) {
1367 /* Select the shader color format based on whether
1368 * blending or alpha are needed.
1369 */
1370 key->part.ps.epilog.spi_shader_col_format =
1371 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1372 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1373 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1374 sctx->framebuffer.spi_shader_col_format_blend) |
1375 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1376 sctx->framebuffer.spi_shader_col_format_alpha) |
1377 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1378 sctx->framebuffer.spi_shader_col_format);
1379 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1380
1381 /* The output for dual source blending should have
1382 * the same format as the first output.
1383 */
1384 if (blend->dual_src_blend)
1385 key->part.ps.epilog.spi_shader_col_format |=
1386 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1387 } else
1388 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1389
1390 /* If alpha-to-coverage is enabled, we have to export alpha
1391 * even if there is no color buffer.
1392 */
1393 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1394 blend && blend->alpha_to_coverage)
1395 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1396
1397 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1398 * to the range supported by the type if a channel has less
1399 * than 16 bits and the export format is 16_ABGR.
1400 */
1401 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1402 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1403 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1404 }
1405
1406 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1407 if (!key->part.ps.epilog.last_cbuf) {
1408 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1409 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1410 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1411 }
1412
1413 if (rs) {
1414 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1415 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1416 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1417 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1418
1419 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1420 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1421
1422 if (sctx->queued.named.blend) {
1423 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1424 rs->multisample_enable;
1425 }
1426
1427 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1428 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1429 (is_line && rs->line_smooth)) &&
1430 sctx->framebuffer.nr_samples <= 1;
1431 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1432
1433 if (sctx->ps_iter_samples > 1 &&
1434 sel->info.reads_samplemask) {
1435 key->part.ps.prolog.samplemask_log_ps_iter =
1436 util_logbase2(util_next_power_of_two(sctx->ps_iter_samples));
1437 }
1438
1439 if (rs->force_persample_interp &&
1440 rs->multisample_enable &&
1441 sctx->framebuffer.nr_samples > 1 &&
1442 sctx->ps_iter_samples > 1) {
1443 key->part.ps.prolog.force_persp_sample_interp =
1444 sel->info.uses_persp_center ||
1445 sel->info.uses_persp_centroid;
1446
1447 key->part.ps.prolog.force_linear_sample_interp =
1448 sel->info.uses_linear_center ||
1449 sel->info.uses_linear_centroid;
1450 } else if (rs->multisample_enable &&
1451 sctx->framebuffer.nr_samples > 1) {
1452 key->part.ps.prolog.bc_optimize_for_persp =
1453 sel->info.uses_persp_center &&
1454 sel->info.uses_persp_centroid;
1455 key->part.ps.prolog.bc_optimize_for_linear =
1456 sel->info.uses_linear_center &&
1457 sel->info.uses_linear_centroid;
1458 } else {
1459 /* Make sure SPI doesn't compute more than 1 pair
1460 * of (i,j), which is the optimization here. */
1461 key->part.ps.prolog.force_persp_center_interp =
1462 sel->info.uses_persp_center +
1463 sel->info.uses_persp_centroid +
1464 sel->info.uses_persp_sample > 1;
1465
1466 key->part.ps.prolog.force_linear_center_interp =
1467 sel->info.uses_linear_center +
1468 sel->info.uses_linear_centroid +
1469 sel->info.uses_linear_sample > 1;
1470
1471 if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1472 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1473 }
1474 }
1475
1476 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1477 break;
1478 }
1479 default:
1480 assert(0);
1481 }
1482
1483 if (unlikely(sctx->screen->b.debug_flags & DBG(NO_OPT_VARIANT)))
1484 memset(&key->opt, 0, sizeof(key->opt));
1485 }
1486
1487 static void si_build_shader_variant(struct si_shader *shader,
1488 int thread_index,
1489 bool low_priority)
1490 {
1491 struct si_shader_selector *sel = shader->selector;
1492 struct si_screen *sscreen = sel->screen;
1493 LLVMTargetMachineRef tm;
1494 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1495 int r;
1496
1497 if (thread_index >= 0) {
1498 if (low_priority) {
1499 assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1500 tm = sscreen->tm_low_priority[thread_index];
1501 } else {
1502 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1503 tm = sscreen->tm[thread_index];
1504 }
1505 if (!debug->async)
1506 debug = NULL;
1507 } else {
1508 assert(!low_priority);
1509 tm = shader->compiler_ctx_state.tm;
1510 }
1511
1512 r = si_shader_create(sscreen, tm, shader, debug);
1513 if (unlikely(r)) {
1514 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1515 sel->type, r);
1516 shader->compilation_failed = true;
1517 return;
1518 }
1519
1520 if (shader->compiler_ctx_state.is_debug_context) {
1521 FILE *f = open_memstream(&shader->shader_log,
1522 &shader->shader_log_size);
1523 if (f) {
1524 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1525 fclose(f);
1526 }
1527 }
1528
1529 si_shader_init_pm4_state(sscreen, shader);
1530 }
1531
1532 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1533 {
1534 struct si_shader *shader = (struct si_shader *)job;
1535
1536 assert(thread_index >= 0);
1537
1538 si_build_shader_variant(shader, thread_index, true);
1539 }
1540
1541 static const struct si_shader_key zeroed;
1542
1543 static bool si_check_missing_main_part(struct si_screen *sscreen,
1544 struct si_shader_selector *sel,
1545 struct si_compiler_ctx_state *compiler_state,
1546 struct si_shader_key *key)
1547 {
1548 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1549
1550 if (!*mainp) {
1551 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1552
1553 if (!main_part)
1554 return false;
1555
1556 /* We can leave the fence as permanently signaled because the
1557 * main part becomes visible globally only after it has been
1558 * compiled. */
1559 util_queue_fence_init(&main_part->ready);
1560
1561 main_part->selector = sel;
1562 main_part->key.as_es = key->as_es;
1563 main_part->key.as_ls = key->as_ls;
1564
1565 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1566 main_part, false,
1567 &compiler_state->debug) != 0) {
1568 FREE(main_part);
1569 return false;
1570 }
1571 *mainp = main_part;
1572 }
1573 return true;
1574 }
1575
1576 /* Select the hw shader variant depending on the current state. */
1577 static int si_shader_select_with_key(struct si_screen *sscreen,
1578 struct si_shader_ctx_state *state,
1579 struct si_compiler_ctx_state *compiler_state,
1580 struct si_shader_key *key,
1581 int thread_index)
1582 {
1583 struct si_shader_selector *sel = state->cso;
1584 struct si_shader_selector *previous_stage_sel = NULL;
1585 struct si_shader *current = state->current;
1586 struct si_shader *iter, *shader = NULL;
1587
1588 again:
1589 /* Check if we don't need to change anything.
1590 * This path is also used for most shaders that don't need multiple
1591 * variants, it will cost just a computation of the key and this
1592 * test. */
1593 if (likely(current &&
1594 memcmp(&current->key, key, sizeof(*key)) == 0)) {
1595 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1596 if (current->is_optimized) {
1597 memset(&key->opt, 0, sizeof(key->opt));
1598 goto current_not_ready;
1599 }
1600
1601 util_queue_fence_wait(&current->ready);
1602 }
1603
1604 return current->compilation_failed ? -1 : 0;
1605 }
1606 current_not_ready:
1607
1608 /* This must be done before the mutex is locked, because async GS
1609 * compilation calls this function too, and therefore must enter
1610 * the mutex first.
1611 *
1612 * Only wait if we are in a draw call. Don't wait if we are
1613 * in a compiler thread.
1614 */
1615 if (thread_index < 0)
1616 util_queue_fence_wait(&sel->ready);
1617
1618 mtx_lock(&sel->mutex);
1619
1620 /* Find the shader variant. */
1621 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1622 /* Don't check the "current" shader. We checked it above. */
1623 if (current != iter &&
1624 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1625 mtx_unlock(&sel->mutex);
1626
1627 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1628 /* If it's an optimized shader and its compilation has
1629 * been started but isn't done, use the unoptimized
1630 * shader so as not to cause a stall due to compilation.
1631 */
1632 if (iter->is_optimized) {
1633 memset(&key->opt, 0, sizeof(key->opt));
1634 goto again;
1635 }
1636
1637 util_queue_fence_wait(&iter->ready);
1638 }
1639
1640 if (iter->compilation_failed) {
1641 return -1; /* skip the draw call */
1642 }
1643
1644 state->current = iter;
1645 return 0;
1646 }
1647 }
1648
1649 /* Build a new shader. */
1650 shader = CALLOC_STRUCT(si_shader);
1651 if (!shader) {
1652 mtx_unlock(&sel->mutex);
1653 return -ENOMEM;
1654 }
1655
1656 util_queue_fence_init(&shader->ready);
1657
1658 shader->selector = sel;
1659 shader->key = *key;
1660 shader->compiler_ctx_state = *compiler_state;
1661
1662 /* If this is a merged shader, get the first shader's selector. */
1663 if (sscreen->b.chip_class >= GFX9) {
1664 if (sel->type == PIPE_SHADER_TESS_CTRL)
1665 previous_stage_sel = key->part.tcs.ls;
1666 else if (sel->type == PIPE_SHADER_GEOMETRY)
1667 previous_stage_sel = key->part.gs.es;
1668
1669 /* We need to wait for the previous shader. */
1670 if (previous_stage_sel && thread_index < 0)
1671 util_queue_fence_wait(&previous_stage_sel->ready);
1672 }
1673
1674 /* Compile the main shader part if it doesn't exist. This can happen
1675 * if the initial guess was wrong. */
1676 bool is_pure_monolithic =
1677 sscreen->use_monolithic_shaders ||
1678 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1679
1680 if (!is_pure_monolithic) {
1681 bool ok;
1682
1683 /* Make sure the main shader part is present. This is needed
1684 * for shaders that can be compiled as VS, LS, or ES, and only
1685 * one of them is compiled at creation.
1686 *
1687 * For merged shaders, check that the starting shader's main
1688 * part is present.
1689 */
1690 if (previous_stage_sel) {
1691 struct si_shader_key shader1_key = zeroed;
1692
1693 if (sel->type == PIPE_SHADER_TESS_CTRL)
1694 shader1_key.as_ls = 1;
1695 else if (sel->type == PIPE_SHADER_GEOMETRY)
1696 shader1_key.as_es = 1;
1697 else
1698 assert(0);
1699
1700 mtx_lock(&previous_stage_sel->mutex);
1701 ok = si_check_missing_main_part(sscreen,
1702 previous_stage_sel,
1703 compiler_state, &shader1_key);
1704 mtx_unlock(&previous_stage_sel->mutex);
1705 } else {
1706 ok = si_check_missing_main_part(sscreen, sel,
1707 compiler_state, key);
1708 }
1709 if (!ok) {
1710 FREE(shader);
1711 mtx_unlock(&sel->mutex);
1712 return -ENOMEM; /* skip the draw call */
1713 }
1714 }
1715
1716 /* Keep the reference to the 1st shader of merged shaders, so that
1717 * Gallium can't destroy it before we destroy the 2nd shader.
1718 *
1719 * Set sctx = NULL, because it's unused if we're not releasing
1720 * the shader, and we don't have any sctx here.
1721 */
1722 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1723 previous_stage_sel);
1724
1725 /* Monolithic-only shaders don't make a distinction between optimized
1726 * and unoptimized. */
1727 shader->is_monolithic =
1728 is_pure_monolithic ||
1729 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1730
1731 shader->is_optimized =
1732 !is_pure_monolithic &&
1733 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1734
1735 /* If it's an optimized shader, compile it asynchronously. */
1736 if (shader->is_optimized &&
1737 !is_pure_monolithic &&
1738 thread_index < 0) {
1739 /* Compile it asynchronously. */
1740 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1741 shader, &shader->ready,
1742 si_build_shader_variant_low_priority, NULL);
1743
1744 /* Add only after the ready fence was reset, to guard against a
1745 * race with si_bind_XX_shader. */
1746 if (!sel->last_variant) {
1747 sel->first_variant = shader;
1748 sel->last_variant = shader;
1749 } else {
1750 sel->last_variant->next_variant = shader;
1751 sel->last_variant = shader;
1752 }
1753
1754 /* Use the default (unoptimized) shader for now. */
1755 memset(&key->opt, 0, sizeof(key->opt));
1756 mtx_unlock(&sel->mutex);
1757 goto again;
1758 }
1759
1760 /* Reset the fence before adding to the variant list. */
1761 util_queue_fence_reset(&shader->ready);
1762
1763 if (!sel->last_variant) {
1764 sel->first_variant = shader;
1765 sel->last_variant = shader;
1766 } else {
1767 sel->last_variant->next_variant = shader;
1768 sel->last_variant = shader;
1769 }
1770
1771 mtx_unlock(&sel->mutex);
1772
1773 assert(!shader->is_optimized);
1774 si_build_shader_variant(shader, thread_index, false);
1775
1776 util_queue_fence_signal(&shader->ready);
1777
1778 if (!shader->compilation_failed)
1779 state->current = shader;
1780
1781 return shader->compilation_failed ? -1 : 0;
1782 }
1783
1784 static int si_shader_select(struct pipe_context *ctx,
1785 struct si_shader_ctx_state *state,
1786 struct si_compiler_ctx_state *compiler_state)
1787 {
1788 struct si_context *sctx = (struct si_context *)ctx;
1789 struct si_shader_key key;
1790
1791 si_shader_selector_key(ctx, state->cso, &key);
1792 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1793 &key, -1);
1794 }
1795
1796 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1797 bool streamout,
1798 struct si_shader_key *key)
1799 {
1800 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1801
1802 switch (info->processor) {
1803 case PIPE_SHADER_VERTEX:
1804 switch (next_shader) {
1805 case PIPE_SHADER_GEOMETRY:
1806 key->as_es = 1;
1807 break;
1808 case PIPE_SHADER_TESS_CTRL:
1809 case PIPE_SHADER_TESS_EVAL:
1810 key->as_ls = 1;
1811 break;
1812 default:
1813 /* If POSITION isn't written, it can only be a HW VS
1814 * if streamout is used. If streamout isn't used,
1815 * assume that it's a HW LS. (the next shader is TCS)
1816 * This heuristic is needed for separate shader objects.
1817 */
1818 if (!info->writes_position && !streamout)
1819 key->as_ls = 1;
1820 }
1821 break;
1822
1823 case PIPE_SHADER_TESS_EVAL:
1824 if (next_shader == PIPE_SHADER_GEOMETRY ||
1825 !info->writes_position)
1826 key->as_es = 1;
1827 break;
1828 }
1829 }
1830
1831 /**
1832 * Compile the main shader part or the monolithic shader as part of
1833 * si_shader_selector initialization. Since it can be done asynchronously,
1834 * there is no way to report compile failures to applications.
1835 */
1836 static void si_init_shader_selector_async(void *job, int thread_index)
1837 {
1838 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1839 struct si_screen *sscreen = sel->screen;
1840 LLVMTargetMachineRef tm;
1841 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1842 unsigned i;
1843
1844 assert(!debug->debug_message || debug->async);
1845 assert(thread_index >= 0);
1846 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1847 tm = sscreen->tm[thread_index];
1848
1849 /* Compile the main shader part for use with a prolog and/or epilog.
1850 * If this fails, the driver will try to compile a monolithic shader
1851 * on demand.
1852 */
1853 if (!sscreen->use_monolithic_shaders) {
1854 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1855 void *tgsi_binary = NULL;
1856
1857 if (!shader) {
1858 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1859 return;
1860 }
1861
1862 /* We can leave the fence signaled because use of the default
1863 * main part is guarded by the selector's ready fence. */
1864 util_queue_fence_init(&shader->ready);
1865
1866 shader->selector = sel;
1867 si_parse_next_shader_property(&sel->info,
1868 sel->so.num_outputs != 0,
1869 &shader->key);
1870
1871 if (sel->tokens)
1872 tgsi_binary = si_get_tgsi_binary(sel);
1873
1874 /* Try to load the shader from the shader cache. */
1875 mtx_lock(&sscreen->shader_cache_mutex);
1876
1877 if (tgsi_binary &&
1878 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1879 mtx_unlock(&sscreen->shader_cache_mutex);
1880 } else {
1881 mtx_unlock(&sscreen->shader_cache_mutex);
1882
1883 /* Compile the shader if it hasn't been loaded from the cache. */
1884 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1885 debug) != 0) {
1886 FREE(shader);
1887 FREE(tgsi_binary);
1888 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1889 return;
1890 }
1891
1892 if (tgsi_binary) {
1893 mtx_lock(&sscreen->shader_cache_mutex);
1894 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true))
1895 FREE(tgsi_binary);
1896 mtx_unlock(&sscreen->shader_cache_mutex);
1897 }
1898 }
1899
1900 *si_get_main_shader_part(sel, &shader->key) = shader;
1901
1902 /* Unset "outputs_written" flags for outputs converted to
1903 * DEFAULT_VAL, so that later inter-shader optimizations don't
1904 * try to eliminate outputs that don't exist in the final
1905 * shader.
1906 *
1907 * This is only done if non-monolithic shaders are enabled.
1908 */
1909 if ((sel->type == PIPE_SHADER_VERTEX ||
1910 sel->type == PIPE_SHADER_TESS_EVAL) &&
1911 !shader->key.as_ls &&
1912 !shader->key.as_es) {
1913 unsigned i;
1914
1915 for (i = 0; i < sel->info.num_outputs; i++) {
1916 unsigned offset = shader->info.vs_output_param_offset[i];
1917
1918 if (offset <= AC_EXP_PARAM_OFFSET_31)
1919 continue;
1920
1921 unsigned name = sel->info.output_semantic_name[i];
1922 unsigned index = sel->info.output_semantic_index[i];
1923 unsigned id;
1924
1925 switch (name) {
1926 case TGSI_SEMANTIC_GENERIC:
1927 /* don't process indices the function can't handle */
1928 if (index >= SI_MAX_IO_GENERIC)
1929 break;
1930 /* fall through */
1931 default:
1932 id = si_shader_io_get_unique_index(name, index);
1933 sel->outputs_written &= ~(1ull << id);
1934 break;
1935 case TGSI_SEMANTIC_POSITION: /* ignore these */
1936 case TGSI_SEMANTIC_PSIZE:
1937 case TGSI_SEMANTIC_CLIPVERTEX:
1938 case TGSI_SEMANTIC_EDGEFLAG:
1939 break;
1940 }
1941 }
1942 }
1943 }
1944
1945 /* Pre-compilation. */
1946 if (sscreen->b.debug_flags & DBG(PRECOMPILE) &&
1947 /* GFX9 needs LS or ES for compilation, which we don't have here. */
1948 (sscreen->b.chip_class <= VI ||
1949 (sel->type != PIPE_SHADER_TESS_CTRL &&
1950 sel->type != PIPE_SHADER_GEOMETRY))) {
1951 struct si_shader_ctx_state state = {sel};
1952 struct si_shader_key key;
1953
1954 memset(&key, 0, sizeof(key));
1955 si_parse_next_shader_property(&sel->info,
1956 sel->so.num_outputs != 0,
1957 &key);
1958
1959 /* GFX9 doesn't have LS and ES. */
1960 if (sscreen->b.chip_class >= GFX9) {
1961 key.as_ls = 0;
1962 key.as_es = 0;
1963 }
1964
1965 /* Set reasonable defaults, so that the shader key doesn't
1966 * cause any code to be eliminated.
1967 */
1968 switch (sel->type) {
1969 case PIPE_SHADER_TESS_CTRL:
1970 key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1971 break;
1972 case PIPE_SHADER_FRAGMENT:
1973 key.part.ps.prolog.bc_optimize_for_persp =
1974 sel->info.uses_persp_center &&
1975 sel->info.uses_persp_centroid;
1976 key.part.ps.prolog.bc_optimize_for_linear =
1977 sel->info.uses_linear_center &&
1978 sel->info.uses_linear_centroid;
1979 key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1980 for (i = 0; i < 8; i++)
1981 if (sel->info.colors_written & (1 << i))
1982 key.part.ps.epilog.spi_shader_col_format |=
1983 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1984 break;
1985 }
1986
1987 if (si_shader_select_with_key(sscreen, &state,
1988 &sel->compiler_ctx_state, &key,
1989 thread_index))
1990 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1991 }
1992
1993 /* The GS copy shader is always pre-compiled. */
1994 if (sel->type == PIPE_SHADER_GEOMETRY) {
1995 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1996 if (!sel->gs_copy_shader) {
1997 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1998 return;
1999 }
2000
2001 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2002 }
2003 }
2004
2005 /* Return descriptor slot usage masks from the given shader info. */
2006 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2007 uint32_t *const_and_shader_buffers,
2008 uint64_t *samplers_and_images)
2009 {
2010 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
2011
2012 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2013 num_constbufs = util_last_bit(info->const_buffers_declared);
2014 /* two 8-byte images share one 16-byte slot */
2015 num_images = align(util_last_bit(info->images_declared), 2);
2016 num_samplers = util_last_bit(info->samplers_declared);
2017
2018 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2019 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2020 *const_and_shader_buffers =
2021 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2022
2023 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
2024 start = si_get_image_slot(num_images - 1) / 2;
2025 *samplers_and_images =
2026 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2027 }
2028
2029 static void *si_create_shader_selector(struct pipe_context *ctx,
2030 const struct pipe_shader_state *state)
2031 {
2032 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2033 struct si_context *sctx = (struct si_context*)ctx;
2034 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2035 int i;
2036
2037 if (!sel)
2038 return NULL;
2039
2040 pipe_reference_init(&sel->reference, 1);
2041 sel->screen = sscreen;
2042 sel->compiler_ctx_state.debug = sctx->debug;
2043 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2044
2045 sel->so = state->stream_output;
2046
2047 if (state->type == PIPE_SHADER_IR_TGSI) {
2048 sel->tokens = tgsi_dup_tokens(state->tokens);
2049 if (!sel->tokens) {
2050 FREE(sel);
2051 return NULL;
2052 }
2053
2054 tgsi_scan_shader(state->tokens, &sel->info);
2055 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2056 } else {
2057 assert(state->type == PIPE_SHADER_IR_NIR);
2058
2059 sel->nir = state->ir.nir;
2060
2061 si_nir_scan_shader(sel->nir, &sel->info);
2062
2063 si_lower_nir(sel);
2064 }
2065
2066 sel->type = sel->info.processor;
2067 p_atomic_inc(&sscreen->b.num_shaders_created);
2068 si_get_active_slot_masks(&sel->info,
2069 &sel->active_const_and_shader_buffers,
2070 &sel->active_samplers_and_images);
2071
2072 /* Record which streamout buffers are enabled. */
2073 for (i = 0; i < sel->so.num_outputs; i++) {
2074 sel->enabled_streamout_buffer_mask |=
2075 (1 << sel->so.output[i].output_buffer) <<
2076 (sel->so.output[i].stream * 4);
2077 }
2078
2079 /* The prolog is a no-op if there are no inputs. */
2080 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2081 sel->info.num_inputs &&
2082 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2083
2084 sel->force_correct_derivs_after_kill =
2085 sel->type == PIPE_SHADER_FRAGMENT &&
2086 sel->info.uses_derivatives &&
2087 sel->info.uses_kill &&
2088 sctx->screen->b.debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2089
2090 /* Set which opcode uses which (i,j) pair. */
2091 if (sel->info.uses_persp_opcode_interp_centroid)
2092 sel->info.uses_persp_centroid = true;
2093
2094 if (sel->info.uses_linear_opcode_interp_centroid)
2095 sel->info.uses_linear_centroid = true;
2096
2097 if (sel->info.uses_persp_opcode_interp_offset ||
2098 sel->info.uses_persp_opcode_interp_sample)
2099 sel->info.uses_persp_center = true;
2100
2101 if (sel->info.uses_linear_opcode_interp_offset ||
2102 sel->info.uses_linear_opcode_interp_sample)
2103 sel->info.uses_linear_center = true;
2104
2105 switch (sel->type) {
2106 case PIPE_SHADER_GEOMETRY:
2107 sel->gs_output_prim =
2108 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2109 sel->gs_max_out_vertices =
2110 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2111 sel->gs_num_invocations =
2112 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2113 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2114 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2115 sel->gs_max_out_vertices;
2116
2117 sel->max_gs_stream = 0;
2118 for (i = 0; i < sel->so.num_outputs; i++)
2119 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2120 sel->so.output[i].stream);
2121
2122 sel->gs_input_verts_per_prim =
2123 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2124 break;
2125
2126 case PIPE_SHADER_TESS_CTRL:
2127 /* Always reserve space for these. */
2128 sel->patch_outputs_written |=
2129 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2130 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2131 /* fall through */
2132 case PIPE_SHADER_VERTEX:
2133 case PIPE_SHADER_TESS_EVAL:
2134 for (i = 0; i < sel->info.num_outputs; i++) {
2135 unsigned name = sel->info.output_semantic_name[i];
2136 unsigned index = sel->info.output_semantic_index[i];
2137
2138 switch (name) {
2139 case TGSI_SEMANTIC_TESSINNER:
2140 case TGSI_SEMANTIC_TESSOUTER:
2141 case TGSI_SEMANTIC_PATCH:
2142 sel->patch_outputs_written |=
2143 1ull << si_shader_io_get_unique_index_patch(name, index);
2144 break;
2145
2146 case TGSI_SEMANTIC_GENERIC:
2147 /* don't process indices the function can't handle */
2148 if (index >= SI_MAX_IO_GENERIC)
2149 break;
2150 /* fall through */
2151 default:
2152 sel->outputs_written |=
2153 1ull << si_shader_io_get_unique_index(name, index);
2154 break;
2155 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2156 case TGSI_SEMANTIC_EDGEFLAG:
2157 break;
2158 }
2159 }
2160 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2161
2162 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2163 * conflicts, i.e. each vertex will start at a different bank.
2164 */
2165 if (sctx->b.chip_class >= GFX9)
2166 sel->esgs_itemsize += 4;
2167 break;
2168
2169 case PIPE_SHADER_FRAGMENT:
2170 for (i = 0; i < sel->info.num_inputs; i++) {
2171 unsigned name = sel->info.input_semantic_name[i];
2172 unsigned index = sel->info.input_semantic_index[i];
2173
2174 switch (name) {
2175 case TGSI_SEMANTIC_GENERIC:
2176 /* don't process indices the function can't handle */
2177 if (index >= SI_MAX_IO_GENERIC)
2178 break;
2179 /* fall through */
2180 default:
2181 sel->inputs_read |=
2182 1ull << si_shader_io_get_unique_index(name, index);
2183 break;
2184 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2185 break;
2186 }
2187 }
2188
2189 for (i = 0; i < 8; i++)
2190 if (sel->info.colors_written & (1 << i))
2191 sel->colors_written_4bit |= 0xf << (4 * i);
2192
2193 for (i = 0; i < sel->info.num_inputs; i++) {
2194 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2195 int index = sel->info.input_semantic_index[i];
2196 sel->color_attr_index[index] = i;
2197 }
2198 }
2199 break;
2200 }
2201
2202 /* PA_CL_VS_OUT_CNTL */
2203 bool misc_vec_ena =
2204 sel->info.writes_psize || sel->info.writes_edgeflag ||
2205 sel->info.writes_layer || sel->info.writes_viewport_index;
2206 sel->pa_cl_vs_out_cntl =
2207 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2208 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2209 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2210 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2211 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2212 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2213 sel->clipdist_mask = sel->info.writes_clipvertex ?
2214 SIX_BITS : sel->info.clipdist_writemask;
2215 sel->culldist_mask = sel->info.culldist_writemask <<
2216 sel->info.num_written_clipdistance;
2217
2218 /* DB_SHADER_CONTROL */
2219 sel->db_shader_control =
2220 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2221 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2222 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2223 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2224
2225 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2226 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2227 sel->db_shader_control |=
2228 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2229 break;
2230 case TGSI_FS_DEPTH_LAYOUT_LESS:
2231 sel->db_shader_control |=
2232 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2233 break;
2234 }
2235
2236 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2237 *
2238 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2239 * --|-----------|------------|------------|--------------------|-------------------|-------------
2240 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2241 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2242 * 2 | false | true | n/a | LateZ | 1 | 0
2243 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2244 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2245 *
2246 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2247 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2248 *
2249 * Don't use ReZ without profiling !!!
2250 *
2251 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2252 * shaders.
2253 */
2254 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2255 /* Cases 3, 4. */
2256 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2257 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2258 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2259 } else if (sel->info.writes_memory) {
2260 /* Case 2. */
2261 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2262 S_02880C_EXEC_ON_HIER_FAIL(1);
2263 } else {
2264 /* Case 1. */
2265 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2266 }
2267
2268 (void) mtx_init(&sel->mutex, mtx_plain);
2269 util_queue_fence_init(&sel->ready);
2270
2271 struct util_async_debug_callback async_debug;
2272 bool wait =
2273 (sctx->debug.debug_message && !sctx->debug.async) ||
2274 sctx->is_debug ||
2275 si_can_dump_shader(&sscreen->b, sel->info.processor);
2276
2277 if (wait) {
2278 u_async_debug_init(&async_debug);
2279 sel->compiler_ctx_state.debug = async_debug.base;
2280 }
2281
2282 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2283 &sel->ready, si_init_shader_selector_async,
2284 NULL);
2285
2286 if (wait) {
2287 util_queue_fence_wait(&sel->ready);
2288 u_async_debug_drain(&async_debug, &sctx->debug);
2289 u_async_debug_cleanup(&async_debug);
2290 }
2291
2292 return sel;
2293 }
2294
2295 static void si_update_streamout_state(struct si_context *sctx)
2296 {
2297 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2298
2299 if (!shader_with_so)
2300 return;
2301
2302 sctx->streamout.enabled_stream_buffers_mask =
2303 shader_with_so->enabled_streamout_buffer_mask;
2304 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2305 }
2306
2307 static void si_update_clip_regs(struct si_context *sctx,
2308 struct si_shader_selector *old_hw_vs,
2309 struct si_shader *old_hw_vs_variant,
2310 struct si_shader_selector *next_hw_vs,
2311 struct si_shader *next_hw_vs_variant)
2312 {
2313 if (next_hw_vs &&
2314 (!old_hw_vs ||
2315 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2316 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2317 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2318 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2319 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2320 !old_hw_vs_variant ||
2321 !next_hw_vs_variant ||
2322 old_hw_vs_variant->key.opt.clip_disable !=
2323 next_hw_vs_variant->key.opt.clip_disable))
2324 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2325 }
2326
2327 static void si_update_common_shader_state(struct si_context *sctx)
2328 {
2329 sctx->uses_bindless_samplers =
2330 si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2331 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2332 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2333 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2334 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2335 sctx->uses_bindless_images =
2336 si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2337 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2338 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2339 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2340 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2341 sctx->do_update_shaders = true;
2342 }
2343
2344 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2345 {
2346 struct si_context *sctx = (struct si_context *)ctx;
2347 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2348 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2349 struct si_shader_selector *sel = state;
2350
2351 if (sctx->vs_shader.cso == sel)
2352 return;
2353
2354 sctx->vs_shader.cso = sel;
2355 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2356 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2357
2358 si_update_common_shader_state(sctx);
2359 si_update_vs_viewport_state(sctx);
2360 si_set_active_descriptors_for_shader(sctx, sel);
2361 si_update_streamout_state(sctx);
2362 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2363 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2364 }
2365
2366 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2367 {
2368 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2369 (sctx->tes_shader.cso &&
2370 sctx->tes_shader.cso->info.uses_primid) ||
2371 (sctx->tcs_shader.cso &&
2372 sctx->tcs_shader.cso->info.uses_primid) ||
2373 (sctx->gs_shader.cso &&
2374 sctx->gs_shader.cso->info.uses_primid) ||
2375 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2376 sctx->ps_shader.cso->info.uses_primid);
2377 }
2378
2379 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2380 {
2381 struct si_context *sctx = (struct si_context *)ctx;
2382 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2383 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2384 struct si_shader_selector *sel = state;
2385 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2386
2387 if (sctx->gs_shader.cso == sel)
2388 return;
2389
2390 sctx->gs_shader.cso = sel;
2391 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2392 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2393
2394 si_update_common_shader_state(sctx);
2395 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2396
2397 if (enable_changed) {
2398 si_shader_change_notify(sctx);
2399 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2400 si_update_tess_uses_prim_id(sctx);
2401 }
2402 si_update_vs_viewport_state(sctx);
2403 si_set_active_descriptors_for_shader(sctx, sel);
2404 si_update_streamout_state(sctx);
2405 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2406 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2407 }
2408
2409 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2410 {
2411 struct si_context *sctx = (struct si_context *)ctx;
2412 struct si_shader_selector *sel = state;
2413 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2414
2415 if (sctx->tcs_shader.cso == sel)
2416 return;
2417
2418 sctx->tcs_shader.cso = sel;
2419 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2420 si_update_tess_uses_prim_id(sctx);
2421
2422 si_update_common_shader_state(sctx);
2423
2424 if (enable_changed)
2425 sctx->last_tcs = NULL; /* invalidate derived tess state */
2426
2427 si_set_active_descriptors_for_shader(sctx, sel);
2428 }
2429
2430 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2431 {
2432 struct si_context *sctx = (struct si_context *)ctx;
2433 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2434 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2435 struct si_shader_selector *sel = state;
2436 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2437
2438 if (sctx->tes_shader.cso == sel)
2439 return;
2440
2441 sctx->tes_shader.cso = sel;
2442 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2443 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2444 si_update_tess_uses_prim_id(sctx);
2445
2446 si_update_common_shader_state(sctx);
2447 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2448
2449 if (enable_changed) {
2450 si_shader_change_notify(sctx);
2451 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2452 }
2453 si_update_vs_viewport_state(sctx);
2454 si_set_active_descriptors_for_shader(sctx, sel);
2455 si_update_streamout_state(sctx);
2456 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2457 si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2458 }
2459
2460 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2461 {
2462 struct si_context *sctx = (struct si_context *)ctx;
2463 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2464 struct si_shader_selector *sel = state;
2465
2466 /* skip if supplied shader is one already in use */
2467 if (old_sel == sel)
2468 return;
2469
2470 sctx->ps_shader.cso = sel;
2471 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2472
2473 si_update_common_shader_state(sctx);
2474 if (sel) {
2475 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2476 si_update_tess_uses_prim_id(sctx);
2477
2478 if (!old_sel ||
2479 old_sel->info.colors_written != sel->info.colors_written)
2480 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2481
2482 if (sctx->screen->has_out_of_order_rast &&
2483 (!old_sel ||
2484 old_sel->info.writes_memory != sel->info.writes_memory ||
2485 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2486 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2487 si_mark_atom_dirty(sctx, &sctx->msaa_config);
2488 }
2489 si_set_active_descriptors_for_shader(sctx, sel);
2490 }
2491
2492 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2493 {
2494 if (shader->is_optimized) {
2495 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2496 &shader->ready);
2497 }
2498
2499 util_queue_fence_destroy(&shader->ready);
2500
2501 if (shader->pm4) {
2502 switch (shader->selector->type) {
2503 case PIPE_SHADER_VERTEX:
2504 if (shader->key.as_ls) {
2505 assert(sctx->b.chip_class <= VI);
2506 si_pm4_delete_state(sctx, ls, shader->pm4);
2507 } else if (shader->key.as_es) {
2508 assert(sctx->b.chip_class <= VI);
2509 si_pm4_delete_state(sctx, es, shader->pm4);
2510 } else {
2511 si_pm4_delete_state(sctx, vs, shader->pm4);
2512 }
2513 break;
2514 case PIPE_SHADER_TESS_CTRL:
2515 si_pm4_delete_state(sctx, hs, shader->pm4);
2516 break;
2517 case PIPE_SHADER_TESS_EVAL:
2518 if (shader->key.as_es) {
2519 assert(sctx->b.chip_class <= VI);
2520 si_pm4_delete_state(sctx, es, shader->pm4);
2521 } else {
2522 si_pm4_delete_state(sctx, vs, shader->pm4);
2523 }
2524 break;
2525 case PIPE_SHADER_GEOMETRY:
2526 if (shader->is_gs_copy_shader)
2527 si_pm4_delete_state(sctx, vs, shader->pm4);
2528 else
2529 si_pm4_delete_state(sctx, gs, shader->pm4);
2530 break;
2531 case PIPE_SHADER_FRAGMENT:
2532 si_pm4_delete_state(sctx, ps, shader->pm4);
2533 break;
2534 }
2535 }
2536
2537 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2538 si_shader_destroy(shader);
2539 free(shader);
2540 }
2541
2542 void si_destroy_shader_selector(struct si_context *sctx,
2543 struct si_shader_selector *sel)
2544 {
2545 struct si_shader *p = sel->first_variant, *c;
2546 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2547 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2548 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2549 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2550 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2551 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2552 };
2553
2554 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2555
2556 if (current_shader[sel->type]->cso == sel) {
2557 current_shader[sel->type]->cso = NULL;
2558 current_shader[sel->type]->current = NULL;
2559 }
2560
2561 while (p) {
2562 c = p->next_variant;
2563 si_delete_shader(sctx, p);
2564 p = c;
2565 }
2566
2567 if (sel->main_shader_part)
2568 si_delete_shader(sctx, sel->main_shader_part);
2569 if (sel->main_shader_part_ls)
2570 si_delete_shader(sctx, sel->main_shader_part_ls);
2571 if (sel->main_shader_part_es)
2572 si_delete_shader(sctx, sel->main_shader_part_es);
2573 if (sel->gs_copy_shader)
2574 si_delete_shader(sctx, sel->gs_copy_shader);
2575
2576 util_queue_fence_destroy(&sel->ready);
2577 mtx_destroy(&sel->mutex);
2578 free(sel->tokens);
2579 ralloc_free(sel->nir);
2580 free(sel);
2581 }
2582
2583 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2584 {
2585 struct si_context *sctx = (struct si_context *)ctx;
2586 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2587
2588 si_shader_selector_reference(sctx, &sel, NULL);
2589 }
2590
2591 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2592 struct si_shader *vs, unsigned name,
2593 unsigned index, unsigned interpolate)
2594 {
2595 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2596 unsigned j, offset, ps_input_cntl = 0;
2597
2598 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2599 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2600 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2601
2602 if (name == TGSI_SEMANTIC_PCOORD ||
2603 (name == TGSI_SEMANTIC_TEXCOORD &&
2604 sctx->sprite_coord_enable & (1 << index))) {
2605 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2606 }
2607
2608 for (j = 0; j < vsinfo->num_outputs; j++) {
2609 if (name == vsinfo->output_semantic_name[j] &&
2610 index == vsinfo->output_semantic_index[j]) {
2611 offset = vs->info.vs_output_param_offset[j];
2612
2613 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2614 /* The input is loaded from parameter memory. */
2615 ps_input_cntl |= S_028644_OFFSET(offset);
2616 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2617 if (offset == AC_EXP_PARAM_UNDEFINED) {
2618 /* This can happen with depth-only rendering. */
2619 offset = 0;
2620 } else {
2621 /* The input is a DEFAULT_VAL constant. */
2622 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2623 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2624 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2625 }
2626
2627 ps_input_cntl = S_028644_OFFSET(0x20) |
2628 S_028644_DEFAULT_VAL(offset);
2629 }
2630 break;
2631 }
2632 }
2633
2634 if (name == TGSI_SEMANTIC_PRIMID)
2635 /* PrimID is written after the last output. */
2636 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2637 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2638 /* No corresponding output found, load defaults into input.
2639 * Don't set any other bits.
2640 * (FLAT_SHADE=1 completely changes behavior) */
2641 ps_input_cntl = S_028644_OFFSET(0x20);
2642 /* D3D 9 behaviour. GL is undefined */
2643 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2644 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2645 }
2646 return ps_input_cntl;
2647 }
2648
2649 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2650 {
2651 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2652 struct si_shader *ps = sctx->ps_shader.current;
2653 struct si_shader *vs = si_get_vs_state(sctx);
2654 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2655 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2656
2657 if (!ps || !ps->selector->info.num_inputs)
2658 return;
2659
2660 num_interp = si_get_ps_num_interp(ps);
2661 assert(num_interp > 0);
2662 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2663
2664 for (i = 0; i < psinfo->num_inputs; i++) {
2665 unsigned name = psinfo->input_semantic_name[i];
2666 unsigned index = psinfo->input_semantic_index[i];
2667 unsigned interpolate = psinfo->input_interpolate[i];
2668
2669 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2670 interpolate));
2671 num_written++;
2672
2673 if (name == TGSI_SEMANTIC_COLOR) {
2674 assert(index < ARRAY_SIZE(bcol_interp));
2675 bcol_interp[index] = interpolate;
2676 }
2677 }
2678
2679 if (ps->key.part.ps.prolog.color_two_side) {
2680 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2681
2682 for (i = 0; i < 2; i++) {
2683 if (!(psinfo->colors_read & (0xf << (i * 4))))
2684 continue;
2685
2686 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2687 i, bcol_interp[i]));
2688 num_written++;
2689 }
2690 }
2691 assert(num_interp == num_written);
2692 }
2693
2694 /**
2695 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2696 */
2697 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2698 {
2699 if (sctx->init_config_has_vgt_flush)
2700 return;
2701
2702 /* Done by Vulkan before VGT_FLUSH. */
2703 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2704 si_pm4_cmd_add(sctx->init_config,
2705 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2706 si_pm4_cmd_end(sctx->init_config, false);
2707
2708 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2709 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2710 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2711 si_pm4_cmd_end(sctx->init_config, false);
2712 sctx->init_config_has_vgt_flush = true;
2713 }
2714
2715 /* Initialize state related to ESGS / GSVS ring buffers */
2716 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2717 {
2718 struct si_shader_selector *es =
2719 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2720 struct si_shader_selector *gs = sctx->gs_shader.cso;
2721 struct si_pm4_state *pm4;
2722
2723 /* Chip constants. */
2724 unsigned num_se = sctx->screen->b.info.max_se;
2725 unsigned wave_size = 64;
2726 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2727 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2728 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2729 */
2730 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2731 unsigned alignment = 256 * num_se;
2732 /* The maximum size is 63.999 MB per SE. */
2733 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2734
2735 /* Calculate the minimum size. */
2736 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2737 wave_size, alignment);
2738
2739 /* These are recommended sizes, not minimum sizes. */
2740 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2741 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2742 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2743 gs->max_gsvs_emit_size;
2744
2745 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2746 esgs_ring_size = align(esgs_ring_size, alignment);
2747 gsvs_ring_size = align(gsvs_ring_size, alignment);
2748
2749 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2750 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2751
2752 /* Some rings don't have to be allocated if shaders don't use them.
2753 * (e.g. no varyings between ES and GS or GS and VS)
2754 *
2755 * GFX9 doesn't have the ESGS ring.
2756 */
2757 bool update_esgs = sctx->b.chip_class <= VI &&
2758 esgs_ring_size &&
2759 (!sctx->esgs_ring ||
2760 sctx->esgs_ring->width0 < esgs_ring_size);
2761 bool update_gsvs = gsvs_ring_size &&
2762 (!sctx->gsvs_ring ||
2763 sctx->gsvs_ring->width0 < gsvs_ring_size);
2764
2765 if (!update_esgs && !update_gsvs)
2766 return true;
2767
2768 if (update_esgs) {
2769 pipe_resource_reference(&sctx->esgs_ring, NULL);
2770 sctx->esgs_ring =
2771 si_aligned_buffer_create(sctx->b.b.screen,
2772 R600_RESOURCE_FLAG_UNMAPPABLE,
2773 PIPE_USAGE_DEFAULT,
2774 esgs_ring_size, alignment);
2775 if (!sctx->esgs_ring)
2776 return false;
2777 }
2778
2779 if (update_gsvs) {
2780 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2781 sctx->gsvs_ring =
2782 si_aligned_buffer_create(sctx->b.b.screen,
2783 R600_RESOURCE_FLAG_UNMAPPABLE,
2784 PIPE_USAGE_DEFAULT,
2785 gsvs_ring_size, alignment);
2786 if (!sctx->gsvs_ring)
2787 return false;
2788 }
2789
2790 /* Create the "init_config_gs_rings" state. */
2791 pm4 = CALLOC_STRUCT(si_pm4_state);
2792 if (!pm4)
2793 return false;
2794
2795 if (sctx->b.chip_class >= CIK) {
2796 if (sctx->esgs_ring) {
2797 assert(sctx->b.chip_class <= VI);
2798 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2799 sctx->esgs_ring->width0 / 256);
2800 }
2801 if (sctx->gsvs_ring)
2802 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2803 sctx->gsvs_ring->width0 / 256);
2804 } else {
2805 if (sctx->esgs_ring)
2806 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2807 sctx->esgs_ring->width0 / 256);
2808 if (sctx->gsvs_ring)
2809 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2810 sctx->gsvs_ring->width0 / 256);
2811 }
2812
2813 /* Set the state. */
2814 if (sctx->init_config_gs_rings)
2815 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2816 sctx->init_config_gs_rings = pm4;
2817
2818 if (!sctx->init_config_has_vgt_flush) {
2819 si_init_config_add_vgt_flush(sctx);
2820 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2821 }
2822
2823 /* Flush the context to re-emit both init_config states. */
2824 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2825 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2826
2827 /* Set ring bindings. */
2828 if (sctx->esgs_ring) {
2829 assert(sctx->b.chip_class <= VI);
2830 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2831 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2832 true, true, 4, 64, 0);
2833 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2834 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2835 false, false, 0, 0, 0);
2836 }
2837 if (sctx->gsvs_ring) {
2838 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2839 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2840 false, false, 0, 0, 0);
2841 }
2842
2843 return true;
2844 }
2845
2846 static void si_shader_lock(struct si_shader *shader)
2847 {
2848 mtx_lock(&shader->selector->mutex);
2849 if (shader->previous_stage_sel) {
2850 assert(shader->previous_stage_sel != shader->selector);
2851 mtx_lock(&shader->previous_stage_sel->mutex);
2852 }
2853 }
2854
2855 static void si_shader_unlock(struct si_shader *shader)
2856 {
2857 if (shader->previous_stage_sel)
2858 mtx_unlock(&shader->previous_stage_sel->mutex);
2859 mtx_unlock(&shader->selector->mutex);
2860 }
2861
2862 /**
2863 * @returns 1 if \p sel has been updated to use a new scratch buffer
2864 * 0 if not
2865 * < 0 if there was a failure
2866 */
2867 static int si_update_scratch_buffer(struct si_context *sctx,
2868 struct si_shader *shader)
2869 {
2870 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2871 int r;
2872
2873 if (!shader)
2874 return 0;
2875
2876 /* This shader doesn't need a scratch buffer */
2877 if (shader->config.scratch_bytes_per_wave == 0)
2878 return 0;
2879
2880 /* Prevent race conditions when updating:
2881 * - si_shader::scratch_bo
2882 * - si_shader::binary::code
2883 * - si_shader::previous_stage::binary::code.
2884 */
2885 si_shader_lock(shader);
2886
2887 /* This shader is already configured to use the current
2888 * scratch buffer. */
2889 if (shader->scratch_bo == sctx->scratch_buffer) {
2890 si_shader_unlock(shader);
2891 return 0;
2892 }
2893
2894 assert(sctx->scratch_buffer);
2895
2896 if (shader->previous_stage)
2897 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2898
2899 si_shader_apply_scratch_relocs(shader, scratch_va);
2900
2901 /* Replace the shader bo with a new bo that has the relocs applied. */
2902 r = si_shader_binary_upload(sctx->screen, shader);
2903 if (r) {
2904 si_shader_unlock(shader);
2905 return r;
2906 }
2907
2908 /* Update the shader state to use the new shader bo. */
2909 si_shader_init_pm4_state(sctx->screen, shader);
2910
2911 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2912
2913 si_shader_unlock(shader);
2914 return 1;
2915 }
2916
2917 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2918 {
2919 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2920 }
2921
2922 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2923 {
2924 return shader ? shader->config.scratch_bytes_per_wave : 0;
2925 }
2926
2927 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2928 {
2929 if (!sctx->tes_shader.cso)
2930 return NULL; /* tessellation disabled */
2931
2932 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2933 sctx->fixed_func_tcs_shader.current;
2934 }
2935
2936 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2937 {
2938 unsigned bytes = 0;
2939
2940 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2941 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2942 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2943 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2944
2945 if (sctx->tes_shader.cso) {
2946 struct si_shader *tcs = si_get_tcs_current(sctx);
2947
2948 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2949 }
2950 return bytes;
2951 }
2952
2953 static bool si_update_scratch_relocs(struct si_context *sctx)
2954 {
2955 struct si_shader *tcs = si_get_tcs_current(sctx);
2956 int r;
2957
2958 /* Update the shaders, so that they are using the latest scratch.
2959 * The scratch buffer may have been changed since these shaders were
2960 * last used, so we still need to try to update them, even if they
2961 * require scratch buffers smaller than the current size.
2962 */
2963 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2964 if (r < 0)
2965 return false;
2966 if (r == 1)
2967 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2968
2969 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2970 if (r < 0)
2971 return false;
2972 if (r == 1)
2973 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2974
2975 r = si_update_scratch_buffer(sctx, tcs);
2976 if (r < 0)
2977 return false;
2978 if (r == 1)
2979 si_pm4_bind_state(sctx, hs, tcs->pm4);
2980
2981 /* VS can be bound as LS, ES, or VS. */
2982 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2983 if (r < 0)
2984 return false;
2985 if (r == 1) {
2986 if (sctx->tes_shader.current)
2987 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2988 else if (sctx->gs_shader.current)
2989 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2990 else
2991 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2992 }
2993
2994 /* TES can be bound as ES or VS. */
2995 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2996 if (r < 0)
2997 return false;
2998 if (r == 1) {
2999 if (sctx->gs_shader.current)
3000 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3001 else
3002 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3003 }
3004
3005 return true;
3006 }
3007
3008 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3009 {
3010 unsigned current_scratch_buffer_size =
3011 si_get_current_scratch_buffer_size(sctx);
3012 unsigned scratch_bytes_per_wave =
3013 si_get_max_scratch_bytes_per_wave(sctx);
3014 unsigned scratch_needed_size = scratch_bytes_per_wave *
3015 sctx->scratch_waves;
3016 unsigned spi_tmpring_size;
3017
3018 if (scratch_needed_size > 0) {
3019 if (scratch_needed_size > current_scratch_buffer_size) {
3020 /* Create a bigger scratch buffer */
3021 r600_resource_reference(&sctx->scratch_buffer, NULL);
3022
3023 sctx->scratch_buffer = (struct r600_resource*)
3024 si_aligned_buffer_create(&sctx->screen->b.b,
3025 R600_RESOURCE_FLAG_UNMAPPABLE,
3026 PIPE_USAGE_DEFAULT,
3027 scratch_needed_size, 256);
3028 if (!sctx->scratch_buffer)
3029 return false;
3030
3031 si_mark_atom_dirty(sctx, &sctx->scratch_state);
3032 r600_context_add_resource_size(&sctx->b.b,
3033 &sctx->scratch_buffer->b.b);
3034 }
3035
3036 if (!si_update_scratch_relocs(sctx))
3037 return false;
3038 }
3039
3040 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3041 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3042 "scratch size should already be aligned correctly.");
3043
3044 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3045 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3046 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3047 sctx->spi_tmpring_size = spi_tmpring_size;
3048 si_mark_atom_dirty(sctx, &sctx->scratch_state);
3049 }
3050 return true;
3051 }
3052
3053 static void si_init_tess_factor_ring(struct si_context *sctx)
3054 {
3055 bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
3056 sctx->b.family != CHIP_CARRIZO &&
3057 sctx->b.family != CHIP_STONEY;
3058 /* This must be one less than the maximum number due to a hw limitation.
3059 * Various hardware bugs in SI, CIK, and GFX9 need this.
3060 */
3061 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 127 : 63;
3062 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
3063 sctx->screen->b.info.max_se;
3064 unsigned offchip_granularity;
3065
3066 switch (sctx->screen->tess_offchip_block_dw_size) {
3067 default:
3068 assert(0);
3069 /* fall through */
3070 case 8192:
3071 offchip_granularity = V_03093C_X_8K_DWORDS;
3072 break;
3073 case 4096:
3074 offchip_granularity = V_03093C_X_4K_DWORDS;
3075 break;
3076 }
3077
3078 assert(!sctx->tf_ring);
3079 /* Use 64K alignment for both rings, so that we can pass the address
3080 * to shaders as one SGPR containing bits [16:47].
3081 */
3082 sctx->tf_ring = si_aligned_buffer_create(sctx->b.b.screen,
3083 R600_RESOURCE_FLAG_UNMAPPABLE,
3084 PIPE_USAGE_DEFAULT,
3085 32768 * sctx->screen->b.info.max_se,
3086 64 * 1024);
3087 if (!sctx->tf_ring)
3088 return;
3089
3090 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
3091
3092 sctx->tess_offchip_ring =
3093 si_aligned_buffer_create(sctx->b.b.screen,
3094 R600_RESOURCE_FLAG_UNMAPPABLE,
3095 PIPE_USAGE_DEFAULT,
3096 max_offchip_buffers *
3097 sctx->screen->tess_offchip_block_dw_size * 4,
3098 64 * 1024);
3099 if (!sctx->tess_offchip_ring)
3100 return;
3101
3102 si_init_config_add_vgt_flush(sctx);
3103
3104 uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
3105 uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
3106 assert((offchip_va & 0xffff) == 0);
3107 assert((factor_va & 0xffff) == 0);
3108
3109 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
3110 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3111 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
3112 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3113
3114 /* Append these registers to the init config state. */
3115 if (sctx->b.chip_class >= CIK) {
3116 if (sctx->b.chip_class >= VI)
3117 --max_offchip_buffers;
3118
3119 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3120 S_030938_SIZE(sctx->tf_ring->width0 / 4));
3121 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3122 factor_va >> 8);
3123 if (sctx->b.chip_class >= GFX9)
3124 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3125 factor_va >> 40);
3126 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3127 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
3128 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
3129 } else {
3130 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
3131 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3132 S_008988_SIZE(sctx->tf_ring->width0 / 4));
3133 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3134 factor_va >> 8);
3135 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3136 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
3137 }
3138
3139 if (sctx->b.chip_class >= GFX9) {
3140 si_pm4_set_reg(sctx->init_config,
3141 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3142 GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3143 offchip_va >> 16);
3144 si_pm4_set_reg(sctx->init_config,
3145 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
3146 GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3147 factor_va >> 16);
3148 } else {
3149 si_pm4_set_reg(sctx->init_config,
3150 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3151 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
3152 offchip_va >> 16);
3153 si_pm4_set_reg(sctx->init_config,
3154 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
3155 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
3156 factor_va >> 16);
3157 }
3158
3159 /* Flush the context to re-emit the init_config state.
3160 * This is done only once in a lifetime of a context.
3161 */
3162 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3163 sctx->b.initial_gfx_cs_size = 0; /* force flush */
3164 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
3165 }
3166
3167 /**
3168 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
3169 * VS passes its outputs to TES directly, so the fixed-function shader only
3170 * has to write TESSOUTER and TESSINNER.
3171 */
3172 static void si_generate_fixed_func_tcs(struct si_context *sctx)
3173 {
3174 struct ureg_src outer, inner;
3175 struct ureg_dst tessouter, tessinner;
3176 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
3177
3178 if (!ureg)
3179 return; /* if we get here, we're screwed */
3180
3181 assert(!sctx->fixed_func_tcs_shader.cso);
3182
3183 outer = ureg_DECL_system_value(ureg,
3184 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
3185 inner = ureg_DECL_system_value(ureg,
3186 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
3187
3188 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
3189 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
3190
3191 ureg_MOV(ureg, tessouter, outer);
3192 ureg_MOV(ureg, tessinner, inner);
3193 ureg_END(ureg);
3194
3195 sctx->fixed_func_tcs_shader.cso =
3196 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
3197 }
3198
3199 static void si_update_vgt_shader_config(struct si_context *sctx)
3200 {
3201 /* Calculate the index of the config.
3202 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3203 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3204 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3205
3206 if (!*pm4) {
3207 uint32_t stages = 0;
3208
3209 *pm4 = CALLOC_STRUCT(si_pm4_state);
3210
3211 if (sctx->tes_shader.cso) {
3212 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3213 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3214
3215 if (sctx->gs_shader.cso)
3216 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3217 S_028B54_GS_EN(1) |
3218 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3219 else
3220 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3221 } else if (sctx->gs_shader.cso) {
3222 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3223 S_028B54_GS_EN(1) |
3224 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3225 }
3226
3227 if (sctx->b.chip_class >= GFX9)
3228 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3229
3230 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3231 }
3232 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3233 }
3234
3235 bool si_update_shaders(struct si_context *sctx)
3236 {
3237 struct pipe_context *ctx = (struct pipe_context*)sctx;
3238 struct si_compiler_ctx_state compiler_state;
3239 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3240 struct si_shader *old_vs = si_get_vs_state(sctx);
3241 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3242 struct si_shader *old_ps = sctx->ps_shader.current;
3243 unsigned old_spi_shader_col_format =
3244 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3245 int r;
3246
3247 compiler_state.tm = sctx->tm;
3248 compiler_state.debug = sctx->debug;
3249 compiler_state.is_debug_context = sctx->is_debug;
3250
3251 /* Update stages before GS. */
3252 if (sctx->tes_shader.cso) {
3253 if (!sctx->tf_ring) {
3254 si_init_tess_factor_ring(sctx);
3255 if (!sctx->tf_ring)
3256 return false;
3257 }
3258
3259 /* VS as LS */
3260 if (sctx->b.chip_class <= VI) {
3261 r = si_shader_select(ctx, &sctx->vs_shader,
3262 &compiler_state);
3263 if (r)
3264 return false;
3265 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3266 }
3267
3268 if (sctx->tcs_shader.cso) {
3269 r = si_shader_select(ctx, &sctx->tcs_shader,
3270 &compiler_state);
3271 if (r)
3272 return false;
3273 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3274 } else {
3275 if (!sctx->fixed_func_tcs_shader.cso) {
3276 si_generate_fixed_func_tcs(sctx);
3277 if (!sctx->fixed_func_tcs_shader.cso)
3278 return false;
3279 }
3280
3281 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3282 &compiler_state);
3283 if (r)
3284 return false;
3285 si_pm4_bind_state(sctx, hs,
3286 sctx->fixed_func_tcs_shader.current->pm4);
3287 }
3288
3289 if (sctx->gs_shader.cso) {
3290 /* TES as ES */
3291 if (sctx->b.chip_class <= VI) {
3292 r = si_shader_select(ctx, &sctx->tes_shader,
3293 &compiler_state);
3294 if (r)
3295 return false;
3296 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3297 }
3298 } else {
3299 /* TES as VS */
3300 r = si_shader_select(ctx, &sctx->tes_shader,
3301 &compiler_state);
3302 if (r)
3303 return false;
3304 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3305 }
3306 } else if (sctx->gs_shader.cso) {
3307 if (sctx->b.chip_class <= VI) {
3308 /* VS as ES */
3309 r = si_shader_select(ctx, &sctx->vs_shader,
3310 &compiler_state);
3311 if (r)
3312 return false;
3313 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3314
3315 si_pm4_bind_state(sctx, ls, NULL);
3316 si_pm4_bind_state(sctx, hs, NULL);
3317 }
3318 } else {
3319 /* VS as VS */
3320 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3321 if (r)
3322 return false;
3323 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3324 si_pm4_bind_state(sctx, ls, NULL);
3325 si_pm4_bind_state(sctx, hs, NULL);
3326 }
3327
3328 /* Update GS. */
3329 if (sctx->gs_shader.cso) {
3330 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3331 if (r)
3332 return false;
3333 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3334 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3335
3336 if (!si_update_gs_ring_buffers(sctx))
3337 return false;
3338 } else {
3339 si_pm4_bind_state(sctx, gs, NULL);
3340 if (sctx->b.chip_class <= VI)
3341 si_pm4_bind_state(sctx, es, NULL);
3342 }
3343
3344 si_update_vgt_shader_config(sctx);
3345
3346 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3347 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3348
3349 if (sctx->ps_shader.cso) {
3350 unsigned db_shader_control;
3351
3352 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3353 if (r)
3354 return false;
3355 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3356
3357 db_shader_control =
3358 sctx->ps_shader.cso->db_shader_control |
3359 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3360
3361 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3362 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3363 sctx->flatshade != rs->flatshade) {
3364 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3365 sctx->flatshade = rs->flatshade;
3366 si_mark_atom_dirty(sctx, &sctx->spi_map);
3367 }
3368
3369 if (sctx->screen->b.rbplus_allowed &&
3370 si_pm4_state_changed(sctx, ps) &&
3371 (!old_ps ||
3372 old_spi_shader_col_format !=
3373 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3374 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3375
3376 if (sctx->ps_db_shader_control != db_shader_control) {
3377 sctx->ps_db_shader_control = db_shader_control;
3378 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3379 if (sctx->screen->dpbb_allowed)
3380 si_mark_atom_dirty(sctx, &sctx->dpbb_state);
3381 }
3382
3383 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3384 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3385 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3386
3387 if (sctx->b.chip_class == SI)
3388 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3389
3390 if (sctx->framebuffer.nr_samples <= 1)
3391 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3392 }
3393 }
3394
3395 if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3396 si_pm4_state_enabled_and_changed(sctx, hs) ||
3397 si_pm4_state_enabled_and_changed(sctx, es) ||
3398 si_pm4_state_enabled_and_changed(sctx, gs) ||
3399 si_pm4_state_enabled_and_changed(sctx, vs) ||
3400 si_pm4_state_enabled_and_changed(sctx, ps)) {
3401 if (!si_update_spi_tmpring_size(sctx))
3402 return false;
3403 }
3404
3405 if (sctx->b.chip_class >= CIK) {
3406 if (si_pm4_state_enabled_and_changed(sctx, ls))
3407 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3408 else if (!sctx->queued.named.ls)
3409 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3410
3411 if (si_pm4_state_enabled_and_changed(sctx, hs))
3412 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3413 else if (!sctx->queued.named.hs)
3414 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3415
3416 if (si_pm4_state_enabled_and_changed(sctx, es))
3417 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3418 else if (!sctx->queued.named.es)
3419 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3420
3421 if (si_pm4_state_enabled_and_changed(sctx, gs))
3422 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3423 else if (!sctx->queued.named.gs)
3424 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3425
3426 if (si_pm4_state_enabled_and_changed(sctx, vs))
3427 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3428 else if (!sctx->queued.named.vs)
3429 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3430
3431 if (si_pm4_state_enabled_and_changed(sctx, ps))
3432 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3433 else if (!sctx->queued.named.ps)
3434 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3435 }
3436
3437 sctx->do_update_shaders = false;
3438 return true;
3439 }
3440
3441 static void si_emit_scratch_state(struct si_context *sctx,
3442 struct r600_atom *atom)
3443 {
3444 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3445
3446 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3447 sctx->spi_tmpring_size);
3448
3449 if (sctx->scratch_buffer) {
3450 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3451 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3452 RADEON_PRIO_SCRATCH_BUFFER);
3453 }
3454 }
3455
3456 void *si_get_blit_vs(struct si_context *sctx, enum blitter_attrib_type type,
3457 unsigned num_layers)
3458 {
3459 struct pipe_context *pipe = &sctx->b.b;
3460 unsigned vs_blit_property;
3461 void **vs;
3462
3463 switch (type) {
3464 case UTIL_BLITTER_ATTRIB_NONE:
3465 vs = num_layers > 1 ? &sctx->vs_blit_pos_layered :
3466 &sctx->vs_blit_pos;
3467 vs_blit_property = SI_VS_BLIT_SGPRS_POS;
3468 break;
3469 case UTIL_BLITTER_ATTRIB_COLOR:
3470 vs = num_layers > 1 ? &sctx->vs_blit_color_layered :
3471 &sctx->vs_blit_color;
3472 vs_blit_property = SI_VS_BLIT_SGPRS_POS_COLOR;
3473 break;
3474 case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
3475 case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
3476 assert(num_layers == 1);
3477 vs = &sctx->vs_blit_texcoord;
3478 vs_blit_property = SI_VS_BLIT_SGPRS_POS_TEXCOORD;
3479 break;
3480 default:
3481 assert(0);
3482 return NULL;
3483 }
3484 if (*vs)
3485 return *vs;
3486
3487 struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
3488 if (!ureg)
3489 return NULL;
3490
3491 /* Tell the shader to load VS inputs from SGPRs: */
3492 ureg_property(ureg, TGSI_PROPERTY_VS_BLIT_SGPRS, vs_blit_property);
3493 ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, true);
3494
3495 /* This is just a pass-through shader with 1-3 MOV instructions. */
3496 ureg_MOV(ureg,
3497 ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0),
3498 ureg_DECL_vs_input(ureg, 0));
3499
3500 if (type != UTIL_BLITTER_ATTRIB_NONE) {
3501 ureg_MOV(ureg,
3502 ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 0),
3503 ureg_DECL_vs_input(ureg, 1));
3504 }
3505
3506 if (num_layers > 1) {
3507 struct ureg_src instance_id =
3508 ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
3509 struct ureg_dst layer =
3510 ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
3511
3512 ureg_MOV(ureg, ureg_writemask(layer, TGSI_WRITEMASK_X),
3513 ureg_scalar(instance_id, TGSI_SWIZZLE_X));
3514 }
3515 ureg_END(ureg);
3516
3517 *vs = ureg_create_shader_and_destroy(ureg, pipe);
3518 return *vs;
3519 }
3520
3521 void si_init_shader_functions(struct si_context *sctx)
3522 {
3523 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3524 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3525 si_emit_scratch_state);
3526
3527 sctx->b.b.create_vs_state = si_create_shader_selector;
3528 sctx->b.b.create_tcs_state = si_create_shader_selector;
3529 sctx->b.b.create_tes_state = si_create_shader_selector;
3530 sctx->b.b.create_gs_state = si_create_shader_selector;
3531 sctx->b.b.create_fs_state = si_create_shader_selector;
3532
3533 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3534 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3535 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3536 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3537 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3538
3539 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3540 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3541 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3542 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3543 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3544 }