radeonsi/gfx9: fix LS scratch buffer support without TCS for GFX9
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Christian König <christian.koenig@amd.com>
25 * Marek Olšák <maraeo@gmail.com>
26 */
27
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "gfx9d.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/crc32.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39
40 #include "util/disk_cache.h"
41 #include "util/mesa-sha1.h"
42 #include "ac_exp_param.h"
43
44 /* SHADER_CACHE */
45
46 /**
47 * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
48 * integer.
49 */
50 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
51 {
52 unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
53 sizeof(struct tgsi_token);
54 unsigned size = 4 + tgsi_size + sizeof(sel->so);
55 char *result = (char*)MALLOC(size);
56
57 if (!result)
58 return NULL;
59
60 *((uint32_t*)result) = size;
61 memcpy(result + 4, sel->tokens, tgsi_size);
62 memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
63 return result;
64 }
65
66 /** Copy "data" to "ptr" and return the next dword following copied data. */
67 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
68 {
69 /* data may be NULL if size == 0 */
70 if (size)
71 memcpy(ptr, data, size);
72 ptr += DIV_ROUND_UP(size, 4);
73 return ptr;
74 }
75
76 /** Read data from "ptr". Return the next dword following the data. */
77 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
78 {
79 memcpy(data, ptr, size);
80 ptr += DIV_ROUND_UP(size, 4);
81 return ptr;
82 }
83
84 /**
85 * Write the size as uint followed by the data. Return the next dword
86 * following the copied data.
87 */
88 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
89 {
90 *ptr++ = size;
91 return write_data(ptr, data, size);
92 }
93
94 /**
95 * Read the size as uint followed by the data. Return both via parameters.
96 * Return the next dword following the data.
97 */
98 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
99 {
100 *size = *ptr++;
101 assert(*data == NULL);
102 if (!*size)
103 return ptr;
104 *data = malloc(*size);
105 return read_data(ptr, *data, *size);
106 }
107
108 /**
109 * Return the shader binary in a buffer. The first 4 bytes contain its size
110 * as integer.
111 */
112 static void *si_get_shader_binary(struct si_shader *shader)
113 {
114 /* There is always a size of data followed by the data itself. */
115 unsigned relocs_size = shader->binary.reloc_count *
116 sizeof(shader->binary.relocs[0]);
117 unsigned disasm_size = shader->binary.disasm_string ?
118 strlen(shader->binary.disasm_string) + 1 : 0;
119 unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
120 strlen(shader->binary.llvm_ir_string) + 1 : 0;
121 unsigned size =
122 4 + /* total size */
123 4 + /* CRC32 of the data below */
124 align(sizeof(shader->config), 4) +
125 align(sizeof(shader->info), 4) +
126 4 + align(shader->binary.code_size, 4) +
127 4 + align(shader->binary.rodata_size, 4) +
128 4 + align(relocs_size, 4) +
129 4 + align(disasm_size, 4) +
130 4 + align(llvm_ir_size, 4);
131 void *buffer = CALLOC(1, size);
132 uint32_t *ptr = (uint32_t*)buffer;
133
134 if (!buffer)
135 return NULL;
136
137 *ptr++ = size;
138 ptr++; /* CRC32 is calculated at the end. */
139
140 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
141 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
142 ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
143 ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
144 ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
145 ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
146 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
147 assert((char *)ptr - (char *)buffer == size);
148
149 /* Compute CRC32. */
150 ptr = (uint32_t*)buffer;
151 ptr++;
152 *ptr = util_hash_crc32(ptr + 1, size - 8);
153
154 return buffer;
155 }
156
157 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
158 {
159 uint32_t *ptr = (uint32_t*)binary;
160 uint32_t size = *ptr++;
161 uint32_t crc32 = *ptr++;
162 unsigned chunk_size;
163
164 if (util_hash_crc32(ptr, size - 8) != crc32) {
165 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
166 return false;
167 }
168
169 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
170 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
171 ptr = read_chunk(ptr, (void**)&shader->binary.code,
172 &shader->binary.code_size);
173 ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
174 &shader->binary.rodata_size);
175 ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
176 shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
177 ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
178 ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
179
180 return true;
181 }
182
183 /**
184 * Insert a shader into the cache. It's assumed the shader is not in the cache.
185 * Use si_shader_cache_load_shader before calling this.
186 *
187 * Returns false on failure, in which case the tgsi_binary should be freed.
188 */
189 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
190 void *tgsi_binary,
191 struct si_shader *shader,
192 bool insert_into_disk_cache)
193 {
194 void *hw_binary;
195 struct hash_entry *entry;
196 uint8_t key[CACHE_KEY_SIZE];
197
198 entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
199 if (entry)
200 return false; /* already added */
201
202 hw_binary = si_get_shader_binary(shader);
203 if (!hw_binary)
204 return false;
205
206 if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
207 hw_binary) == NULL) {
208 FREE(hw_binary);
209 return false;
210 }
211
212 if (sscreen->b.disk_shader_cache && insert_into_disk_cache) {
213 disk_cache_compute_key(sscreen->b.disk_shader_cache, tgsi_binary,
214 *((uint32_t *)tgsi_binary), key);
215 disk_cache_put(sscreen->b.disk_shader_cache, key, hw_binary,
216 *((uint32_t *) hw_binary));
217 }
218
219 return true;
220 }
221
222 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
223 void *tgsi_binary,
224 struct si_shader *shader)
225 {
226 struct hash_entry *entry =
227 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
228 if (!entry) {
229 if (sscreen->b.disk_shader_cache) {
230 unsigned char sha1[CACHE_KEY_SIZE];
231 size_t tg_size = *((uint32_t *) tgsi_binary);
232
233 disk_cache_compute_key(sscreen->b.disk_shader_cache,
234 tgsi_binary, tg_size, sha1);
235
236 size_t binary_size;
237 uint8_t *buffer =
238 disk_cache_get(sscreen->b.disk_shader_cache,
239 sha1, &binary_size);
240 if (!buffer)
241 return false;
242
243 if (binary_size < sizeof(uint32_t) ||
244 *((uint32_t*)buffer) != binary_size) {
245 /* Something has gone wrong discard the item
246 * from the cache and rebuild/link from
247 * source.
248 */
249 assert(!"Invalid radeonsi shader disk cache "
250 "item!");
251
252 disk_cache_remove(sscreen->b.disk_shader_cache,
253 sha1);
254 free(buffer);
255
256 return false;
257 }
258
259 if (!si_load_shader_binary(shader, buffer)) {
260 free(buffer);
261 return false;
262 }
263 free(buffer);
264
265 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary,
266 shader, false))
267 FREE(tgsi_binary);
268 } else {
269 return false;
270 }
271 } else {
272 if (si_load_shader_binary(shader, entry->data))
273 FREE(tgsi_binary);
274 else
275 return false;
276 }
277 p_atomic_inc(&sscreen->b.num_shader_cache_hits);
278 return true;
279 }
280
281 static uint32_t si_shader_cache_key_hash(const void *key)
282 {
283 /* The first dword is the key size. */
284 return util_hash_crc32(key, *(uint32_t*)key);
285 }
286
287 static bool si_shader_cache_key_equals(const void *a, const void *b)
288 {
289 uint32_t *keya = (uint32_t*)a;
290 uint32_t *keyb = (uint32_t*)b;
291
292 /* The first dword is the key size. */
293 if (*keya != *keyb)
294 return false;
295
296 return memcmp(keya, keyb, *keya) == 0;
297 }
298
299 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
300 {
301 FREE((void*)entry->key);
302 FREE(entry->data);
303 }
304
305 bool si_init_shader_cache(struct si_screen *sscreen)
306 {
307 (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
308 sscreen->shader_cache =
309 _mesa_hash_table_create(NULL,
310 si_shader_cache_key_hash,
311 si_shader_cache_key_equals);
312
313 return sscreen->shader_cache != NULL;
314 }
315
316 void si_destroy_shader_cache(struct si_screen *sscreen)
317 {
318 if (sscreen->shader_cache)
319 _mesa_hash_table_destroy(sscreen->shader_cache,
320 si_destroy_shader_cache_entry);
321 mtx_destroy(&sscreen->shader_cache_mutex);
322 }
323
324 /* SHADER STATES */
325
326 static void si_set_tesseval_regs(struct si_screen *sscreen,
327 struct si_shader_selector *tes,
328 struct si_pm4_state *pm4)
329 {
330 struct tgsi_shader_info *info = &tes->info;
331 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
332 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
333 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
334 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
335 unsigned type, partitioning, topology, distribution_mode;
336
337 switch (tes_prim_mode) {
338 case PIPE_PRIM_LINES:
339 type = V_028B6C_TESS_ISOLINE;
340 break;
341 case PIPE_PRIM_TRIANGLES:
342 type = V_028B6C_TESS_TRIANGLE;
343 break;
344 case PIPE_PRIM_QUADS:
345 type = V_028B6C_TESS_QUAD;
346 break;
347 default:
348 assert(0);
349 return;
350 }
351
352 switch (tes_spacing) {
353 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
354 partitioning = V_028B6C_PART_FRAC_ODD;
355 break;
356 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
357 partitioning = V_028B6C_PART_FRAC_EVEN;
358 break;
359 case PIPE_TESS_SPACING_EQUAL:
360 partitioning = V_028B6C_PART_INTEGER;
361 break;
362 default:
363 assert(0);
364 return;
365 }
366
367 if (tes_point_mode)
368 topology = V_028B6C_OUTPUT_POINT;
369 else if (tes_prim_mode == PIPE_PRIM_LINES)
370 topology = V_028B6C_OUTPUT_LINE;
371 else if (tes_vertex_order_cw)
372 /* for some reason, this must be the other way around */
373 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
374 else
375 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
376
377 if (sscreen->has_distributed_tess) {
378 if (sscreen->b.family == CHIP_FIJI ||
379 sscreen->b.family >= CHIP_POLARIS10)
380 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
381 else
382 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
383 } else
384 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
385
386 si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
387 S_028B6C_TYPE(type) |
388 S_028B6C_PARTITIONING(partitioning) |
389 S_028B6C_TOPOLOGY(topology) |
390 S_028B6C_DISTRIBUTION_MODE(distribution_mode));
391 }
392
393 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
394 * whether the "fractional odd" tessellation spacing is used.
395 *
396 * Possible VGT configurations and which state should set the register:
397 *
398 * Reg set in | VGT shader configuration | Value
399 * ------------------------------------------------------
400 * VS as VS | VS | 30
401 * VS as ES | ES -> GS -> VS | 30
402 * TES as VS | LS -> HS -> VS | 14 or 30
403 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
404 *
405 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
406 */
407 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
408 struct si_shader_selector *sel,
409 struct si_shader *shader,
410 struct si_pm4_state *pm4)
411 {
412 unsigned type = sel->type;
413
414 if (sscreen->b.family < CHIP_POLARIS10)
415 return;
416
417 /* VS as VS, or VS as ES: */
418 if ((type == PIPE_SHADER_VERTEX &&
419 (!shader ||
420 (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
421 /* TES as VS, or TES as ES: */
422 type == PIPE_SHADER_TESS_EVAL) {
423 unsigned vtx_reuse_depth = 30;
424
425 if (type == PIPE_SHADER_TESS_EVAL &&
426 sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
427 PIPE_TESS_SPACING_FRACTIONAL_ODD)
428 vtx_reuse_depth = 14;
429
430 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
431 vtx_reuse_depth);
432 }
433 }
434
435 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
436 {
437 if (shader->pm4)
438 si_pm4_clear_state(shader->pm4);
439 else
440 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
441
442 return shader->pm4;
443 }
444
445 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
446 {
447 struct si_pm4_state *pm4;
448 unsigned vgpr_comp_cnt;
449 uint64_t va;
450
451 assert(sscreen->b.chip_class <= VI);
452
453 pm4 = si_get_shader_pm4_state(shader);
454 if (!pm4)
455 return;
456
457 va = shader->bo->gpu_address;
458 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
459
460 /* We need at least 2 components for LS.
461 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
462 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
463 */
464 vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
465
466 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
467 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
468
469 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
470 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
471 S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
472 S_00B528_DX10_CLAMP(1) |
473 S_00B528_FLOAT_MODE(shader->config.float_mode);
474 shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_VS_NUM_USER_SGPR) |
475 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
476 }
477
478 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
479 {
480 struct si_pm4_state *pm4;
481 uint64_t va;
482 unsigned ls_vgpr_comp_cnt = 0;
483
484 pm4 = si_get_shader_pm4_state(shader);
485 if (!pm4)
486 return;
487
488 va = shader->bo->gpu_address;
489 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
490
491 if (sscreen->b.chip_class >= GFX9) {
492 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
493 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, va >> 40);
494
495 /* We need at least 2 components for LS.
496 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
497 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
498 */
499 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
500
501 shader->config.rsrc2 =
502 S_00B42C_USER_SGPR(GFX9_TCS_NUM_USER_SGPR) |
503 S_00B42C_USER_SGPR_MSB(GFX9_TCS_NUM_USER_SGPR >> 5) |
504 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
505 } else {
506 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
507 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
508
509 shader->config.rsrc2 =
510 S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
511 S_00B42C_OC_LDS_EN(1) |
512 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
513 }
514
515 si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
516 S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
517 S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
518 S_00B428_DX10_CLAMP(1) |
519 S_00B428_FLOAT_MODE(shader->config.float_mode) |
520 S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
521
522 if (sscreen->b.chip_class <= VI) {
523 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
524 shader->config.rsrc2);
525 }
526 }
527
528 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
529 {
530 struct si_pm4_state *pm4;
531 unsigned num_user_sgprs;
532 unsigned vgpr_comp_cnt;
533 uint64_t va;
534 unsigned oc_lds_en;
535
536 assert(sscreen->b.chip_class <= VI);
537
538 pm4 = si_get_shader_pm4_state(shader);
539 if (!pm4)
540 return;
541
542 va = shader->bo->gpu_address;
543 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
544
545 if (shader->selector->type == PIPE_SHADER_VERTEX) {
546 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
547 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
548 num_user_sgprs = SI_VS_NUM_USER_SGPR;
549 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
550 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
551 num_user_sgprs = SI_TES_NUM_USER_SGPR;
552 } else
553 unreachable("invalid shader selector type");
554
555 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
556
557 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
558 shader->selector->esgs_itemsize / 4);
559 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
560 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
561 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
562 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
563 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
564 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
565 S_00B328_DX10_CLAMP(1) |
566 S_00B328_FLOAT_MODE(shader->config.float_mode));
567 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
568 S_00B32C_USER_SGPR(num_user_sgprs) |
569 S_00B32C_OC_LDS_EN(oc_lds_en) |
570 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
571
572 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
573 si_set_tesseval_regs(sscreen, shader->selector, pm4);
574
575 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
576 }
577
578 /**
579 * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
580 * geometry shader.
581 */
582 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
583 {
584 enum chip_class chip_class = sel->screen->b.chip_class;
585 unsigned gs_max_vert_out = sel->gs_max_out_vertices;
586 unsigned cut_mode;
587
588 if (gs_max_vert_out <= 128) {
589 cut_mode = V_028A40_GS_CUT_128;
590 } else if (gs_max_vert_out <= 256) {
591 cut_mode = V_028A40_GS_CUT_256;
592 } else if (gs_max_vert_out <= 512) {
593 cut_mode = V_028A40_GS_CUT_512;
594 } else {
595 assert(gs_max_vert_out <= 1024);
596 cut_mode = V_028A40_GS_CUT_1024;
597 }
598
599 return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
600 S_028A40_CUT_MODE(cut_mode)|
601 S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) |
602 S_028A40_GS_WRITE_OPTIMIZE(1) |
603 S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0);
604 }
605
606 struct gfx9_gs_info {
607 unsigned es_verts_per_subgroup;
608 unsigned gs_prims_per_subgroup;
609 unsigned gs_inst_prims_in_subgroup;
610 unsigned max_prims_per_subgroup;
611 unsigned lds_size;
612 };
613
614 static void gfx9_get_gs_info(struct si_shader_selector *es,
615 struct si_shader_selector *gs,
616 struct gfx9_gs_info *out)
617 {
618 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
619 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
620 bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
621 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
622
623 /* All these are in dwords: */
624 /* We can't allow using the whole LDS, because GS waves compete with
625 * other shader stages for LDS space. */
626 const unsigned max_lds_size = 8 * 1024;
627 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
628 unsigned esgs_lds_size;
629
630 /* All these are per subgroup: */
631 const unsigned max_out_prims = 32 * 1024;
632 const unsigned max_es_verts = 255;
633 const unsigned ideal_gs_prims = 64;
634 unsigned max_gs_prims, gs_prims;
635 unsigned min_es_verts, es_verts, worst_case_es_verts;
636
637 assert(gs_num_invocations <= 32); /* GL maximum */
638
639 if (uses_adjacency || gs_num_invocations > 1)
640 max_gs_prims = 127 / gs_num_invocations;
641 else
642 max_gs_prims = 255;
643
644 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
645 * Make sure we don't go over the maximum value.
646 */
647 max_gs_prims = MIN2(max_gs_prims,
648 max_out_prims /
649 (gs->gs_max_out_vertices * gs_num_invocations));
650 assert(max_gs_prims > 0);
651
652 /* If the primitive has adjacency, halve the number of vertices
653 * that will be reused in multiple primitives.
654 */
655 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
656
657 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
658 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
659
660 /* Compute ESGS LDS size based on the worst case number of ES vertices
661 * needed to create the target number of GS prims per subgroup.
662 */
663 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
664
665 /* If total LDS usage is too big, refactor partitions based on ratio
666 * of ESGS item sizes.
667 */
668 if (esgs_lds_size > max_lds_size) {
669 /* Our target GS Prims Per Subgroup was too large. Calculate
670 * the maximum number of GS Prims Per Subgroup that will fit
671 * into LDS, capped by the maximum that the hardware can support.
672 */
673 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
674 max_gs_prims);
675 assert(gs_prims > 0);
676 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
677 max_es_verts);
678
679 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
680 assert(esgs_lds_size <= max_lds_size);
681 }
682
683 /* Now calculate remaining ESGS information. */
684 if (esgs_lds_size)
685 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
686 else
687 es_verts = max_es_verts;
688
689 /* Vertices for adjacency primitives are not always reused, so restore
690 * it for ES_VERTS_PER_SUBGRP.
691 */
692 min_es_verts = gs->gs_input_verts_per_prim;
693
694 /* For normal primitives, the VGT only checks if they are past the ES
695 * verts per subgroup after allocating a full GS primitive and if they
696 * are, kick off a new subgroup. But if those additional ES verts are
697 * unique (e.g. not reused) we need to make sure there is enough LDS
698 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
699 */
700 es_verts -= min_es_verts - 1;
701
702 out->es_verts_per_subgroup = es_verts;
703 out->gs_prims_per_subgroup = gs_prims;
704 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
705 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
706 gs->gs_max_out_vertices;
707 out->lds_size = align(esgs_lds_size, 128) / 128;
708
709 assert(out->max_prims_per_subgroup <= max_out_prims);
710 }
711
712 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
713 {
714 struct si_shader_selector *sel = shader->selector;
715 const ubyte *num_components = sel->info.num_stream_output_components;
716 unsigned gs_num_invocations = sel->gs_num_invocations;
717 struct si_pm4_state *pm4;
718 uint64_t va;
719 unsigned max_stream = sel->max_gs_stream;
720 unsigned offset;
721
722 pm4 = si_get_shader_pm4_state(shader);
723 if (!pm4)
724 return;
725
726 offset = num_components[0] * sel->gs_max_out_vertices;
727 si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
728 if (max_stream >= 1)
729 offset += num_components[1] * sel->gs_max_out_vertices;
730 si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
731 if (max_stream >= 2)
732 offset += num_components[2] * sel->gs_max_out_vertices;
733 si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
734 if (max_stream >= 3)
735 offset += num_components[3] * sel->gs_max_out_vertices;
736 si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
737
738 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
739 assert(offset < (1 << 15));
740
741 si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
742
743 si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
744 si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
745 si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
746 si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
747
748 si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
749 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
750 S_028B90_ENABLE(gs_num_invocations > 0));
751
752 va = shader->bo->gpu_address;
753 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
754
755 if (sscreen->b.chip_class >= GFX9) {
756 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
757 unsigned es_type = shader->key.part.gs.es->type;
758 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
759 struct gfx9_gs_info gs_info;
760
761 if (es_type == PIPE_SHADER_VERTEX)
762 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
763 es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
764 else if (es_type == PIPE_SHADER_TESS_EVAL)
765 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
766 else
767 unreachable("invalid shader selector type");
768
769 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
770 * VGPR[0:4] are always loaded.
771 */
772 if (sel->info.uses_invocationid)
773 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
774 else if (sel->info.uses_primid)
775 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
776 else if (input_prim >= PIPE_PRIM_TRIANGLES)
777 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
778 else
779 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
780
781 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
782
783 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
784 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, va >> 40);
785
786 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
787 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
788 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
789 S_00B228_DX10_CLAMP(1) |
790 S_00B228_FLOAT_MODE(shader->config.float_mode) |
791 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
792 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
793 S_00B22C_USER_SGPR(GFX9_GS_NUM_USER_SGPR) |
794 S_00B22C_USER_SGPR_MSB(GFX9_GS_NUM_USER_SGPR >> 5) |
795 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
796 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
797 S_00B22C_LDS_SIZE(gs_info.lds_size) |
798 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
799
800 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
801 S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
802 S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
803 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
804 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
805 S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
806 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
807 shader->key.part.gs.es->esgs_itemsize / 4);
808
809 if (es_type == PIPE_SHADER_TESS_EVAL)
810 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
811
812 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
813 NULL, pm4);
814 } else {
815 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
816 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
817
818 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
819 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
820 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
821 S_00B228_DX10_CLAMP(1) |
822 S_00B228_FLOAT_MODE(shader->config.float_mode));
823 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
824 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
825 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
826 }
827 }
828
829 /**
830 * Compute the state for \p shader, which will run as a vertex shader on the
831 * hardware.
832 *
833 * If \p gs is non-NULL, it points to the geometry shader for which this shader
834 * is the copy shader.
835 */
836 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
837 struct si_shader_selector *gs)
838 {
839 struct si_pm4_state *pm4;
840 unsigned num_user_sgprs;
841 unsigned nparams, vgpr_comp_cnt;
842 uint64_t va;
843 unsigned oc_lds_en;
844 unsigned window_space =
845 shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
846 bool enable_prim_id = shader->key.mono.vs_export_prim_id || shader->selector->info.uses_primid;
847
848 pm4 = si_get_shader_pm4_state(shader);
849 if (!pm4)
850 return;
851
852 /* We always write VGT_GS_MODE in the VS state, because every switch
853 * between different shader pipelines involving a different GS or no
854 * GS at all involves a switch of the VS (different GS use different
855 * copy shaders). On the other hand, when the API switches from a GS to
856 * no GS and then back to the same GS used originally, the GS state is
857 * not sent again.
858 */
859 if (!gs) {
860 unsigned mode = 0;
861
862 /* PrimID needs GS scenario A.
863 * GFX9 also needs it when ViewportIndex is enabled.
864 */
865 if (enable_prim_id ||
866 (sscreen->b.chip_class >= GFX9 &&
867 shader->selector->info.writes_viewport_index))
868 mode = V_028A40_GS_SCENARIO_A;
869
870 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
871 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
872 } else {
873 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
874 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
875 }
876
877 va = shader->bo->gpu_address;
878 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
879
880 if (gs) {
881 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
882 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
883 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
884 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
885 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
886 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
887 */
888 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
889 num_user_sgprs = SI_VS_NUM_USER_SGPR;
890 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
891 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
892 num_user_sgprs = SI_TES_NUM_USER_SGPR;
893 } else
894 unreachable("invalid shader selector type");
895
896 /* VS is required to export at least one param. */
897 nparams = MAX2(shader->info.nr_param_exports, 1);
898 si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
899 S_0286C4_VS_EXPORT_COUNT(nparams - 1));
900
901 si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
902 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
903 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
904 V_02870C_SPI_SHADER_4COMP :
905 V_02870C_SPI_SHADER_NONE) |
906 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
907 V_02870C_SPI_SHADER_4COMP :
908 V_02870C_SPI_SHADER_NONE) |
909 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
910 V_02870C_SPI_SHADER_4COMP :
911 V_02870C_SPI_SHADER_NONE));
912
913 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
914
915 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
916 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
917 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
918 S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
919 S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
920 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
921 S_00B128_DX10_CLAMP(1) |
922 S_00B128_FLOAT_MODE(shader->config.float_mode));
923 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
924 S_00B12C_USER_SGPR(num_user_sgprs) |
925 S_00B12C_OC_LDS_EN(oc_lds_en) |
926 S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
927 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
928 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
929 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
930 S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
931 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
932 if (window_space)
933 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
934 S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
935 else
936 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
937 S_028818_VTX_W0_FMT(1) |
938 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
939 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
940 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
941
942 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
943 si_set_tesseval_regs(sscreen, shader->selector, pm4);
944
945 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
946 }
947
948 static unsigned si_get_ps_num_interp(struct si_shader *ps)
949 {
950 struct tgsi_shader_info *info = &ps->selector->info;
951 unsigned num_colors = !!(info->colors_read & 0x0f) +
952 !!(info->colors_read & 0xf0);
953 unsigned num_interp = ps->selector->info.num_inputs +
954 (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
955
956 assert(num_interp <= 32);
957 return MIN2(num_interp, 32);
958 }
959
960 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
961 {
962 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
963 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
964
965 /* If the i-th target format is set, all previous target formats must
966 * be non-zero to avoid hangs.
967 */
968 for (i = 0; i < num_targets; i++)
969 if (!(value & (0xf << (i * 4))))
970 value |= V_028714_SPI_SHADER_32_R << (i * 4);
971
972 return value;
973 }
974
975 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
976 {
977 unsigned i, cb_shader_mask = 0;
978
979 for (i = 0; i < 8; i++) {
980 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
981 case V_028714_SPI_SHADER_ZERO:
982 break;
983 case V_028714_SPI_SHADER_32_R:
984 cb_shader_mask |= 0x1 << (i * 4);
985 break;
986 case V_028714_SPI_SHADER_32_GR:
987 cb_shader_mask |= 0x3 << (i * 4);
988 break;
989 case V_028714_SPI_SHADER_32_AR:
990 cb_shader_mask |= 0x9 << (i * 4);
991 break;
992 case V_028714_SPI_SHADER_FP16_ABGR:
993 case V_028714_SPI_SHADER_UNORM16_ABGR:
994 case V_028714_SPI_SHADER_SNORM16_ABGR:
995 case V_028714_SPI_SHADER_UINT16_ABGR:
996 case V_028714_SPI_SHADER_SINT16_ABGR:
997 case V_028714_SPI_SHADER_32_ABGR:
998 cb_shader_mask |= 0xf << (i * 4);
999 break;
1000 default:
1001 assert(0);
1002 }
1003 }
1004 return cb_shader_mask;
1005 }
1006
1007 static void si_shader_ps(struct si_shader *shader)
1008 {
1009 struct tgsi_shader_info *info = &shader->selector->info;
1010 struct si_pm4_state *pm4;
1011 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1012 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1013 uint64_t va;
1014 unsigned input_ena = shader->config.spi_ps_input_ena;
1015
1016 /* we need to enable at least one of them, otherwise we hang the GPU */
1017 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1018 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1019 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1020 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1021 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1022 G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1023 G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1024 G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1025 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1026 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1027 G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1028 G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1029 G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1030 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1031
1032 /* Validate interpolation optimization flags (read as implications). */
1033 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1034 (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1035 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1036 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1037 (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1038 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1039 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1040 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1041 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1042 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1043 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1044 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1045 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1046 (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1047 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1048 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1049 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1050 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1051
1052 /* Validate cases when the optimizations are off (read as implications). */
1053 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1054 !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1055 !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1056 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1057 !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1058 !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1059
1060 pm4 = si_get_shader_pm4_state(shader);
1061 if (!pm4)
1062 return;
1063
1064 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1065 * Possible vaules:
1066 * 0 -> Position = pixel center
1067 * 1 -> Position = pixel centroid
1068 * 2 -> Position = at sample position
1069 *
1070 * From GLSL 4.5 specification, section 7.1:
1071 * "The variable gl_FragCoord is available as an input variable from
1072 * within fragment shaders and it holds the window relative coordinates
1073 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1074 * value can be for any location within the pixel, or one of the
1075 * fragment samples. The use of centroid does not further restrict
1076 * this value to be inside the current primitive."
1077 *
1078 * Meaning that centroid has no effect and we can return anything within
1079 * the pixel. Thus, return the value at sample position, because that's
1080 * the most accurate one shaders can get.
1081 */
1082 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1083
1084 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1085 TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1086 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1087
1088 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1089 cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
1090
1091 /* Ensure that some export memory is always allocated, for two reasons:
1092 *
1093 * 1) Correctness: The hardware ignores the EXEC mask if no export
1094 * memory is allocated, so KILL and alpha test do not work correctly
1095 * without this.
1096 * 2) Performance: Every shader needs at least a NULL export, even when
1097 * it writes no color/depth output. The NULL export instruction
1098 * stalls without this setting.
1099 *
1100 * Don't add this to CB_SHADER_MASK.
1101 */
1102 if (!spi_shader_col_format &&
1103 !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1104 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1105
1106 si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1107 si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1108 shader->config.spi_ps_input_addr);
1109
1110 /* Set interpolation controls. */
1111 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1112
1113 /* Set registers. */
1114 si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1115 si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1116
1117 si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1118 si_get_spi_shader_z_format(info->writes_z,
1119 info->writes_stencil,
1120 info->writes_samplemask));
1121
1122 si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1123 si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1124
1125 va = shader->bo->gpu_address;
1126 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1127 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1128 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
1129
1130 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1131 S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1132 S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1133 S_00B028_DX10_CLAMP(1) |
1134 S_00B028_FLOAT_MODE(shader->config.float_mode));
1135 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1136 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1137 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1138 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1139 }
1140
1141 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1142 struct si_shader *shader)
1143 {
1144 switch (shader->selector->type) {
1145 case PIPE_SHADER_VERTEX:
1146 if (shader->key.as_ls)
1147 si_shader_ls(sscreen, shader);
1148 else if (shader->key.as_es)
1149 si_shader_es(sscreen, shader);
1150 else
1151 si_shader_vs(sscreen, shader, NULL);
1152 break;
1153 case PIPE_SHADER_TESS_CTRL:
1154 si_shader_hs(sscreen, shader);
1155 break;
1156 case PIPE_SHADER_TESS_EVAL:
1157 if (shader->key.as_es)
1158 si_shader_es(sscreen, shader);
1159 else
1160 si_shader_vs(sscreen, shader, NULL);
1161 break;
1162 case PIPE_SHADER_GEOMETRY:
1163 si_shader_gs(sscreen, shader);
1164 break;
1165 case PIPE_SHADER_FRAGMENT:
1166 si_shader_ps(shader);
1167 break;
1168 default:
1169 assert(0);
1170 }
1171 }
1172
1173 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1174 {
1175 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1176 if (sctx->queued.named.dsa)
1177 return sctx->queued.named.dsa->alpha_func;
1178
1179 return PIPE_FUNC_ALWAYS;
1180 }
1181
1182 static void si_shader_selector_key_vs(struct si_context *sctx,
1183 struct si_shader_selector *vs,
1184 struct si_shader_key *key,
1185 struct si_vs_prolog_bits *prolog_key)
1186 {
1187 if (!sctx->vertex_elements)
1188 return;
1189
1190 unsigned count = MIN2(vs->info.num_inputs,
1191 sctx->vertex_elements->count);
1192 for (unsigned i = 0; i < count; ++i) {
1193 prolog_key->instance_divisors[i] =
1194 sctx->vertex_elements->elements[i].instance_divisor;
1195 }
1196
1197 memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1198 }
1199
1200 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1201 struct si_shader_selector *vs,
1202 struct si_shader_key *key)
1203 {
1204 struct si_shader_selector *ps = sctx->ps_shader.cso;
1205
1206 key->opt.hw_vs.clip_disable =
1207 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1208 (vs->info.clipdist_writemask ||
1209 vs->info.writes_clipvertex) &&
1210 !vs->info.culldist_writemask;
1211
1212 /* Find out if PS is disabled. */
1213 bool ps_disabled = true;
1214 if (ps) {
1215 bool ps_modifies_zs = ps->info.uses_kill ||
1216 ps->info.writes_z ||
1217 ps->info.writes_stencil ||
1218 ps->info.writes_samplemask ||
1219 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1220
1221 unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
1222 sctx->queued.named.blend->cb_target_mask;
1223 if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1224 ps_colormask &= ps->colors_written_4bit;
1225
1226 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1227 (!ps_colormask &&
1228 !ps_modifies_zs &&
1229 !ps->info.writes_memory);
1230 }
1231
1232 /* Find out which VS outputs aren't used by the PS. */
1233 uint64_t outputs_written = vs->outputs_written;
1234 uint64_t inputs_read = 0;
1235
1236 outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
1237
1238 if (!ps_disabled) {
1239 inputs_read = ps->inputs_read;
1240 }
1241
1242 uint64_t linked = outputs_written & inputs_read;
1243
1244 key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
1245 }
1246
1247 /* Compute the key for the hw shader variant */
1248 static inline void si_shader_selector_key(struct pipe_context *ctx,
1249 struct si_shader_selector *sel,
1250 struct si_shader_key *key)
1251 {
1252 struct si_context *sctx = (struct si_context *)ctx;
1253
1254 memset(key, 0, sizeof(*key));
1255
1256 switch (sel->type) {
1257 case PIPE_SHADER_VERTEX:
1258 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1259
1260 if (sctx->tes_shader.cso)
1261 key->as_ls = 1;
1262 else if (sctx->gs_shader.cso)
1263 key->as_es = 1;
1264 else {
1265 si_shader_selector_key_hw_vs(sctx, sel, key);
1266
1267 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1268 key->mono.vs_export_prim_id = 1;
1269 }
1270 break;
1271 case PIPE_SHADER_TESS_CTRL:
1272 if (sctx->b.chip_class >= GFX9) {
1273 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1274 key, &key->part.tcs.ls_prolog);
1275 key->part.tcs.ls = sctx->vs_shader.cso;
1276 }
1277
1278 key->part.tcs.epilog.prim_mode =
1279 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1280 key->part.tcs.epilog.tes_reads_tess_factors =
1281 sctx->tes_shader.cso->info.reads_tess_factors;
1282
1283 if (sel == sctx->fixed_func_tcs_shader.cso)
1284 key->mono.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1285 break;
1286 case PIPE_SHADER_TESS_EVAL:
1287 if (sctx->gs_shader.cso)
1288 key->as_es = 1;
1289 else {
1290 si_shader_selector_key_hw_vs(sctx, sel, key);
1291
1292 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1293 key->mono.vs_export_prim_id = 1;
1294 }
1295 break;
1296 case PIPE_SHADER_GEOMETRY:
1297 if (sctx->b.chip_class >= GFX9) {
1298 if (sctx->tes_shader.cso) {
1299 key->part.gs.es = sctx->tes_shader.cso;
1300 } else {
1301 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1302 key, &key->part.gs.vs_prolog);
1303 key->part.gs.es = sctx->vs_shader.cso;
1304 }
1305
1306 /* Merged ES-GS can have unbalanced wave usage.
1307 *
1308 * ES threads are per-vertex, while GS threads are
1309 * per-primitive. So without any amplification, there
1310 * are fewer GS threads than ES threads, which can result
1311 * in empty (no-op) GS waves. With too much amplification,
1312 * there are more GS threads than ES threads, which
1313 * can result in empty (no-op) ES waves.
1314 *
1315 * Non-monolithic shaders are implemented by setting EXEC
1316 * at the beginning of shader parts, and don't jump to
1317 * the end if EXEC is 0.
1318 *
1319 * Monolithic shaders use conditional blocks, so they can
1320 * jump and skip empty waves of ES or GS. So set this to
1321 * always use optimized variants, which are monolithic.
1322 */
1323 key->opt.prefer_mono = 1;
1324 }
1325 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1326 break;
1327 case PIPE_SHADER_FRAGMENT: {
1328 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1329 struct si_state_blend *blend = sctx->queued.named.blend;
1330
1331 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1332 sel->info.colors_written == 0x1)
1333 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1334
1335 if (blend) {
1336 /* Select the shader color format based on whether
1337 * blending or alpha are needed.
1338 */
1339 key->part.ps.epilog.spi_shader_col_format =
1340 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1341 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1342 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1343 sctx->framebuffer.spi_shader_col_format_blend) |
1344 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1345 sctx->framebuffer.spi_shader_col_format_alpha) |
1346 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1347 sctx->framebuffer.spi_shader_col_format);
1348
1349 /* The output for dual source blending should have
1350 * the same format as the first output.
1351 */
1352 if (blend->dual_src_blend)
1353 key->part.ps.epilog.spi_shader_col_format |=
1354 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1355 } else
1356 key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1357
1358 /* If alpha-to-coverage is enabled, we have to export alpha
1359 * even if there is no color buffer.
1360 */
1361 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1362 blend && blend->alpha_to_coverage)
1363 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1364
1365 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1366 * to the range supported by the type if a channel has less
1367 * than 16 bits and the export format is 16_ABGR.
1368 */
1369 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1370 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1371 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1372 }
1373
1374 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1375 if (!key->part.ps.epilog.last_cbuf) {
1376 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1377 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1378 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1379 }
1380
1381 if (rs) {
1382 bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1383 sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1384 sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1385 bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1386
1387 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1388 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1389
1390 if (sctx->queued.named.blend) {
1391 key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1392 rs->multisample_enable;
1393 }
1394
1395 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1396 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1397 (is_line && rs->line_smooth)) &&
1398 sctx->framebuffer.nr_samples <= 1;
1399 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1400
1401 if (rs->force_persample_interp &&
1402 rs->multisample_enable &&
1403 sctx->framebuffer.nr_samples > 1 &&
1404 sctx->ps_iter_samples > 1) {
1405 key->part.ps.prolog.force_persp_sample_interp =
1406 sel->info.uses_persp_center ||
1407 sel->info.uses_persp_centroid;
1408
1409 key->part.ps.prolog.force_linear_sample_interp =
1410 sel->info.uses_linear_center ||
1411 sel->info.uses_linear_centroid;
1412 } else if (rs->multisample_enable &&
1413 sctx->framebuffer.nr_samples > 1) {
1414 key->part.ps.prolog.bc_optimize_for_persp =
1415 sel->info.uses_persp_center &&
1416 sel->info.uses_persp_centroid;
1417 key->part.ps.prolog.bc_optimize_for_linear =
1418 sel->info.uses_linear_center &&
1419 sel->info.uses_linear_centroid;
1420 } else {
1421 /* Make sure SPI doesn't compute more than 1 pair
1422 * of (i,j), which is the optimization here. */
1423 key->part.ps.prolog.force_persp_center_interp =
1424 sel->info.uses_persp_center +
1425 sel->info.uses_persp_centroid +
1426 sel->info.uses_persp_sample > 1;
1427
1428 key->part.ps.prolog.force_linear_center_interp =
1429 sel->info.uses_linear_center +
1430 sel->info.uses_linear_centroid +
1431 sel->info.uses_linear_sample > 1;
1432 }
1433 }
1434
1435 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1436 break;
1437 }
1438 default:
1439 assert(0);
1440 }
1441
1442 if (unlikely(sctx->screen->b.debug_flags & DBG_NO_OPT_VARIANT))
1443 memset(&key->opt, 0, sizeof(key->opt));
1444 }
1445
1446 static void si_build_shader_variant(void *job, int thread_index)
1447 {
1448 struct si_shader *shader = (struct si_shader *)job;
1449 struct si_shader_selector *sel = shader->selector;
1450 struct si_screen *sscreen = sel->screen;
1451 LLVMTargetMachineRef tm;
1452 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1453 int r;
1454
1455 if (thread_index >= 0) {
1456 assert(thread_index < ARRAY_SIZE(sscreen->tm_low_priority));
1457 tm = sscreen->tm_low_priority[thread_index];
1458 if (!debug->async)
1459 debug = NULL;
1460 } else {
1461 tm = shader->compiler_ctx_state.tm;
1462 }
1463
1464 r = si_shader_create(sscreen, tm, shader, debug);
1465 if (unlikely(r)) {
1466 R600_ERR("Failed to build shader variant (type=%u) %d\n",
1467 sel->type, r);
1468 shader->compilation_failed = true;
1469 return;
1470 }
1471
1472 if (shader->compiler_ctx_state.is_debug_context) {
1473 FILE *f = open_memstream(&shader->shader_log,
1474 &shader->shader_log_size);
1475 if (f) {
1476 si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1477 fclose(f);
1478 }
1479 }
1480
1481 si_shader_init_pm4_state(sscreen, shader);
1482 }
1483
1484 static const struct si_shader_key zeroed;
1485
1486 static bool si_check_missing_main_part(struct si_screen *sscreen,
1487 struct si_shader_selector *sel,
1488 struct si_compiler_ctx_state *compiler_state,
1489 struct si_shader_key *key)
1490 {
1491 struct si_shader **mainp = si_get_main_shader_part(sel, key);
1492
1493 if (!*mainp) {
1494 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1495
1496 if (!main_part)
1497 return false;
1498
1499 main_part->selector = sel;
1500 main_part->key.as_es = key->as_es;
1501 main_part->key.as_ls = key->as_ls;
1502
1503 if (si_compile_tgsi_shader(sscreen, compiler_state->tm,
1504 main_part, false,
1505 &compiler_state->debug) != 0) {
1506 FREE(main_part);
1507 return false;
1508 }
1509 *mainp = main_part;
1510 }
1511 return true;
1512 }
1513
1514 static void si_destroy_shader_selector(struct si_context *sctx,
1515 struct si_shader_selector *sel);
1516
1517 static void si_shader_selector_reference(struct si_context *sctx,
1518 struct si_shader_selector **dst,
1519 struct si_shader_selector *src)
1520 {
1521 if (pipe_reference(&(*dst)->reference, &src->reference))
1522 si_destroy_shader_selector(sctx, *dst);
1523
1524 *dst = src;
1525 }
1526
1527 /* Select the hw shader variant depending on the current state. */
1528 static int si_shader_select_with_key(struct si_screen *sscreen,
1529 struct si_shader_ctx_state *state,
1530 struct si_compiler_ctx_state *compiler_state,
1531 struct si_shader_key *key,
1532 int thread_index)
1533 {
1534 struct si_shader_selector *sel = state->cso;
1535 struct si_shader_selector *previous_stage_sel = NULL;
1536 struct si_shader *current = state->current;
1537 struct si_shader *iter, *shader = NULL;
1538
1539 again:
1540 /* Check if we don't need to change anything.
1541 * This path is also used for most shaders that don't need multiple
1542 * variants, it will cost just a computation of the key and this
1543 * test. */
1544 if (likely(current &&
1545 memcmp(&current->key, key, sizeof(*key)) == 0 &&
1546 (!current->is_optimized ||
1547 util_queue_fence_is_signalled(&current->optimized_ready))))
1548 return current->compilation_failed ? -1 : 0;
1549
1550 /* This must be done before the mutex is locked, because async GS
1551 * compilation calls this function too, and therefore must enter
1552 * the mutex first.
1553 *
1554 * Only wait if we are in a draw call. Don't wait if we are
1555 * in a compiler thread.
1556 */
1557 if (thread_index < 0)
1558 util_queue_fence_wait(&sel->ready);
1559
1560 mtx_lock(&sel->mutex);
1561
1562 /* Find the shader variant. */
1563 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1564 /* Don't check the "current" shader. We checked it above. */
1565 if (current != iter &&
1566 memcmp(&iter->key, key, sizeof(*key)) == 0) {
1567 /* If it's an optimized shader and its compilation has
1568 * been started but isn't done, use the unoptimized
1569 * shader so as not to cause a stall due to compilation.
1570 */
1571 if (iter->is_optimized &&
1572 !util_queue_fence_is_signalled(&iter->optimized_ready)) {
1573 memset(&key->opt, 0, sizeof(key->opt));
1574 mtx_unlock(&sel->mutex);
1575 goto again;
1576 }
1577
1578 if (iter->compilation_failed) {
1579 mtx_unlock(&sel->mutex);
1580 return -1; /* skip the draw call */
1581 }
1582
1583 state->current = iter;
1584 mtx_unlock(&sel->mutex);
1585 return 0;
1586 }
1587 }
1588
1589 /* Build a new shader. */
1590 shader = CALLOC_STRUCT(si_shader);
1591 if (!shader) {
1592 mtx_unlock(&sel->mutex);
1593 return -ENOMEM;
1594 }
1595 shader->selector = sel;
1596 shader->key = *key;
1597 shader->compiler_ctx_state = *compiler_state;
1598
1599 /* If this is a merged shader, get the first shader's selector. */
1600 if (sscreen->b.chip_class >= GFX9) {
1601 if (sel->type == PIPE_SHADER_TESS_CTRL)
1602 previous_stage_sel = key->part.tcs.ls;
1603 else if (sel->type == PIPE_SHADER_GEOMETRY)
1604 previous_stage_sel = key->part.gs.es;
1605 }
1606
1607 /* Compile the main shader part if it doesn't exist. This can happen
1608 * if the initial guess was wrong. */
1609 bool is_pure_monolithic =
1610 sscreen->use_monolithic_shaders ||
1611 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1612
1613 if (!is_pure_monolithic) {
1614 bool ok;
1615
1616 /* Make sure the main shader part is present. This is needed
1617 * for shaders that can be compiled as VS, LS, or ES, and only
1618 * one of them is compiled at creation.
1619 *
1620 * For merged shaders, check that the starting shader's main
1621 * part is present.
1622 */
1623 if (previous_stage_sel) {
1624 struct si_shader_key shader1_key = zeroed;
1625
1626 if (sel->type == PIPE_SHADER_TESS_CTRL)
1627 shader1_key.as_ls = 1;
1628 else if (sel->type == PIPE_SHADER_GEOMETRY)
1629 shader1_key.as_es = 1;
1630 else
1631 assert(0);
1632
1633 ok = si_check_missing_main_part(sscreen,
1634 previous_stage_sel,
1635 compiler_state, &shader1_key);
1636 } else {
1637 ok = si_check_missing_main_part(sscreen, sel,
1638 compiler_state, key);
1639 }
1640 if (!ok) {
1641 FREE(shader);
1642 mtx_unlock(&sel->mutex);
1643 return -ENOMEM; /* skip the draw call */
1644 }
1645 }
1646
1647 /* Keep the reference to the 1st shader of merged shaders, so that
1648 * Gallium can't destroy it before we destroy the 2nd shader.
1649 *
1650 * Set sctx = NULL, because it's unused if we're not releasing
1651 * the shader, and we don't have any sctx here.
1652 */
1653 si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1654 previous_stage_sel);
1655
1656 /* Monolithic-only shaders don't make a distinction between optimized
1657 * and unoptimized. */
1658 shader->is_monolithic =
1659 is_pure_monolithic ||
1660 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1661
1662 shader->is_optimized =
1663 !is_pure_monolithic &&
1664 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1665 if (shader->is_optimized)
1666 util_queue_fence_init(&shader->optimized_ready);
1667
1668 if (!sel->last_variant) {
1669 sel->first_variant = shader;
1670 sel->last_variant = shader;
1671 } else {
1672 sel->last_variant->next_variant = shader;
1673 sel->last_variant = shader;
1674 }
1675
1676 /* If it's an optimized shader, compile it asynchronously. */
1677 if (shader->is_optimized &&
1678 !is_pure_monolithic &&
1679 thread_index < 0) {
1680 /* Compile it asynchronously. */
1681 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1682 shader, &shader->optimized_ready,
1683 si_build_shader_variant, NULL);
1684
1685 /* Use the default (unoptimized) shader for now. */
1686 memset(&key->opt, 0, sizeof(key->opt));
1687 mtx_unlock(&sel->mutex);
1688 goto again;
1689 }
1690
1691 assert(!shader->is_optimized);
1692 si_build_shader_variant(shader, thread_index);
1693
1694 if (!shader->compilation_failed)
1695 state->current = shader;
1696
1697 mtx_unlock(&sel->mutex);
1698 return shader->compilation_failed ? -1 : 0;
1699 }
1700
1701 static int si_shader_select(struct pipe_context *ctx,
1702 struct si_shader_ctx_state *state,
1703 struct si_compiler_ctx_state *compiler_state)
1704 {
1705 struct si_context *sctx = (struct si_context *)ctx;
1706 struct si_shader_key key;
1707
1708 si_shader_selector_key(ctx, state->cso, &key);
1709 return si_shader_select_with_key(sctx->screen, state, compiler_state,
1710 &key, -1);
1711 }
1712
1713 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1714 struct si_shader_key *key)
1715 {
1716 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1717
1718 switch (info->processor) {
1719 case PIPE_SHADER_VERTEX:
1720 switch (next_shader) {
1721 case PIPE_SHADER_GEOMETRY:
1722 key->as_es = 1;
1723 break;
1724 case PIPE_SHADER_TESS_CTRL:
1725 case PIPE_SHADER_TESS_EVAL:
1726 key->as_ls = 1;
1727 break;
1728 default:
1729 /* If POSITION isn't written, it can't be a HW VS.
1730 * Assume that it's a HW LS. (the next shader is TCS)
1731 * This heuristic is needed for separate shader objects.
1732 */
1733 if (!info->writes_position)
1734 key->as_ls = 1;
1735 }
1736 break;
1737
1738 case PIPE_SHADER_TESS_EVAL:
1739 if (next_shader == PIPE_SHADER_GEOMETRY ||
1740 !info->writes_position)
1741 key->as_es = 1;
1742 break;
1743 }
1744 }
1745
1746 /**
1747 * Compile the main shader part or the monolithic shader as part of
1748 * si_shader_selector initialization. Since it can be done asynchronously,
1749 * there is no way to report compile failures to applications.
1750 */
1751 void si_init_shader_selector_async(void *job, int thread_index)
1752 {
1753 struct si_shader_selector *sel = (struct si_shader_selector *)job;
1754 struct si_screen *sscreen = sel->screen;
1755 LLVMTargetMachineRef tm;
1756 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1757 unsigned i;
1758
1759 if (thread_index >= 0) {
1760 assert(thread_index < ARRAY_SIZE(sscreen->tm));
1761 tm = sscreen->tm[thread_index];
1762 if (!debug->async)
1763 debug = NULL;
1764 } else {
1765 tm = sel->compiler_ctx_state.tm;
1766 }
1767
1768 /* Compile the main shader part for use with a prolog and/or epilog.
1769 * If this fails, the driver will try to compile a monolithic shader
1770 * on demand.
1771 */
1772 if (!sscreen->use_monolithic_shaders) {
1773 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1774 void *tgsi_binary;
1775
1776 if (!shader) {
1777 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1778 return;
1779 }
1780
1781 shader->selector = sel;
1782 si_parse_next_shader_property(&sel->info, &shader->key);
1783
1784 tgsi_binary = si_get_tgsi_binary(sel);
1785
1786 /* Try to load the shader from the shader cache. */
1787 mtx_lock(&sscreen->shader_cache_mutex);
1788
1789 if (tgsi_binary &&
1790 si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1791 mtx_unlock(&sscreen->shader_cache_mutex);
1792 } else {
1793 mtx_unlock(&sscreen->shader_cache_mutex);
1794
1795 /* Compile the shader if it hasn't been loaded from the cache. */
1796 if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1797 debug) != 0) {
1798 FREE(shader);
1799 FREE(tgsi_binary);
1800 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1801 return;
1802 }
1803
1804 if (tgsi_binary) {
1805 mtx_lock(&sscreen->shader_cache_mutex);
1806 if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader, true))
1807 FREE(tgsi_binary);
1808 mtx_unlock(&sscreen->shader_cache_mutex);
1809 }
1810 }
1811
1812 *si_get_main_shader_part(sel, &shader->key) = shader;
1813
1814 /* Unset "outputs_written" flags for outputs converted to
1815 * DEFAULT_VAL, so that later inter-shader optimizations don't
1816 * try to eliminate outputs that don't exist in the final
1817 * shader.
1818 *
1819 * This is only done if non-monolithic shaders are enabled.
1820 */
1821 if ((sel->type == PIPE_SHADER_VERTEX ||
1822 sel->type == PIPE_SHADER_TESS_EVAL) &&
1823 !shader->key.as_ls &&
1824 !shader->key.as_es) {
1825 unsigned i;
1826
1827 for (i = 0; i < sel->info.num_outputs; i++) {
1828 unsigned offset = shader->info.vs_output_param_offset[i];
1829
1830 if (offset <= AC_EXP_PARAM_OFFSET_31)
1831 continue;
1832
1833 unsigned name = sel->info.output_semantic_name[i];
1834 unsigned index = sel->info.output_semantic_index[i];
1835 unsigned id;
1836
1837 switch (name) {
1838 case TGSI_SEMANTIC_GENERIC:
1839 /* don't process indices the function can't handle */
1840 if (index >= SI_MAX_IO_GENERIC)
1841 break;
1842 /* fall through */
1843 default:
1844 id = si_shader_io_get_unique_index(name, index);
1845 sel->outputs_written &= ~(1ull << id);
1846 break;
1847 case TGSI_SEMANTIC_POSITION: /* ignore these */
1848 case TGSI_SEMANTIC_PSIZE:
1849 case TGSI_SEMANTIC_CLIPVERTEX:
1850 case TGSI_SEMANTIC_EDGEFLAG:
1851 break;
1852 }
1853 }
1854 }
1855 }
1856
1857 /* Pre-compilation. */
1858 if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
1859 struct si_shader_ctx_state state = {sel};
1860 struct si_shader_key key;
1861
1862 memset(&key, 0, sizeof(key));
1863 si_parse_next_shader_property(&sel->info, &key);
1864
1865 /* Set reasonable defaults, so that the shader key doesn't
1866 * cause any code to be eliminated.
1867 */
1868 switch (sel->type) {
1869 case PIPE_SHADER_TESS_CTRL:
1870 key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1871 break;
1872 case PIPE_SHADER_FRAGMENT:
1873 key.part.ps.prolog.bc_optimize_for_persp =
1874 sel->info.uses_persp_center &&
1875 sel->info.uses_persp_centroid;
1876 key.part.ps.prolog.bc_optimize_for_linear =
1877 sel->info.uses_linear_center &&
1878 sel->info.uses_linear_centroid;
1879 key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1880 for (i = 0; i < 8; i++)
1881 if (sel->info.colors_written & (1 << i))
1882 key.part.ps.epilog.spi_shader_col_format |=
1883 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1884 break;
1885 }
1886
1887 if (si_shader_select_with_key(sscreen, &state,
1888 &sel->compiler_ctx_state, &key,
1889 thread_index))
1890 fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1891 }
1892
1893 /* The GS copy shader is always pre-compiled. */
1894 if (sel->type == PIPE_SHADER_GEOMETRY) {
1895 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1896 if (!sel->gs_copy_shader) {
1897 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1898 return;
1899 }
1900
1901 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1902 }
1903 }
1904
1905 /* Return descriptor slot usage masks from the given shader info. */
1906 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
1907 uint32_t *const_and_shader_buffers,
1908 uint64_t *samplers_and_images)
1909 {
1910 unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
1911
1912 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
1913 num_constbufs = util_last_bit(info->const_buffers_declared);
1914 /* two 8-byte images share one 16-byte slot */
1915 num_images = align(util_last_bit(info->images_declared), 2);
1916 num_samplers = util_last_bit(info->samplers_declared);
1917
1918 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
1919 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
1920 *const_and_shader_buffers =
1921 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
1922
1923 /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
1924 start = si_get_image_slot(num_images - 1) / 2;
1925 *samplers_and_images =
1926 u_bit_consecutive64(start, num_images / 2 + num_samplers);
1927 }
1928
1929 static void *si_create_shader_selector(struct pipe_context *ctx,
1930 const struct pipe_shader_state *state)
1931 {
1932 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1933 struct si_context *sctx = (struct si_context*)ctx;
1934 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1935 int i;
1936
1937 if (!sel)
1938 return NULL;
1939
1940 pipe_reference_init(&sel->reference, 1);
1941 sel->screen = sscreen;
1942 sel->compiler_ctx_state.tm = sctx->tm;
1943 sel->compiler_ctx_state.debug = sctx->b.debug;
1944 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1945 sel->tokens = tgsi_dup_tokens(state->tokens);
1946 if (!sel->tokens) {
1947 FREE(sel);
1948 return NULL;
1949 }
1950
1951 sel->so = state->stream_output;
1952 tgsi_scan_shader(state->tokens, &sel->info);
1953 sel->type = sel->info.processor;
1954 p_atomic_inc(&sscreen->b.num_shaders_created);
1955 si_get_active_slot_masks(&sel->info,
1956 &sel->active_const_and_shader_buffers,
1957 &sel->active_samplers_and_images);
1958
1959 /* Record which streamout buffers are enabled. */
1960 for (i = 0; i < sel->so.num_outputs; i++) {
1961 sel->enabled_streamout_buffer_mask |=
1962 (1 << sel->so.output[i].output_buffer) <<
1963 (sel->so.output[i].stream * 4);
1964 }
1965
1966 /* The prolog is a no-op if there are no inputs. */
1967 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
1968 sel->info.num_inputs;
1969
1970 /* Set which opcode uses which (i,j) pair. */
1971 if (sel->info.uses_persp_opcode_interp_centroid)
1972 sel->info.uses_persp_centroid = true;
1973
1974 if (sel->info.uses_linear_opcode_interp_centroid)
1975 sel->info.uses_linear_centroid = true;
1976
1977 if (sel->info.uses_persp_opcode_interp_offset ||
1978 sel->info.uses_persp_opcode_interp_sample)
1979 sel->info.uses_persp_center = true;
1980
1981 if (sel->info.uses_linear_opcode_interp_offset ||
1982 sel->info.uses_linear_opcode_interp_sample)
1983 sel->info.uses_linear_center = true;
1984
1985 switch (sel->type) {
1986 case PIPE_SHADER_GEOMETRY:
1987 sel->gs_output_prim =
1988 sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1989 sel->gs_max_out_vertices =
1990 sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1991 sel->gs_num_invocations =
1992 sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1993 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1994 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1995 sel->gs_max_out_vertices;
1996
1997 sel->max_gs_stream = 0;
1998 for (i = 0; i < sel->so.num_outputs; i++)
1999 sel->max_gs_stream = MAX2(sel->max_gs_stream,
2000 sel->so.output[i].stream);
2001
2002 sel->gs_input_verts_per_prim =
2003 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2004 break;
2005
2006 case PIPE_SHADER_TESS_CTRL:
2007 /* Always reserve space for these. */
2008 sel->patch_outputs_written |=
2009 (1llu << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2010 (1llu << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2011 /* fall through */
2012 case PIPE_SHADER_VERTEX:
2013 case PIPE_SHADER_TESS_EVAL:
2014 for (i = 0; i < sel->info.num_outputs; i++) {
2015 unsigned name = sel->info.output_semantic_name[i];
2016 unsigned index = sel->info.output_semantic_index[i];
2017
2018 switch (name) {
2019 case TGSI_SEMANTIC_TESSINNER:
2020 case TGSI_SEMANTIC_TESSOUTER:
2021 case TGSI_SEMANTIC_PATCH:
2022 sel->patch_outputs_written |=
2023 1llu << si_shader_io_get_unique_index_patch(name, index);
2024 break;
2025
2026 case TGSI_SEMANTIC_GENERIC:
2027 /* don't process indices the function can't handle */
2028 if (index >= SI_MAX_IO_GENERIC)
2029 break;
2030 /* fall through */
2031 default:
2032 sel->outputs_written |=
2033 1llu << si_shader_io_get_unique_index(name, index);
2034 break;
2035 case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
2036 case TGSI_SEMANTIC_EDGEFLAG:
2037 break;
2038 }
2039 }
2040 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2041
2042 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2043 * conflicts, i.e. each vertex will start at a different bank.
2044 */
2045 if (sctx->b.chip_class >= GFX9)
2046 sel->esgs_itemsize += 4;
2047 break;
2048
2049 case PIPE_SHADER_FRAGMENT:
2050 for (i = 0; i < sel->info.num_inputs; i++) {
2051 unsigned name = sel->info.input_semantic_name[i];
2052 unsigned index = sel->info.input_semantic_index[i];
2053
2054 switch (name) {
2055 case TGSI_SEMANTIC_GENERIC:
2056 /* don't process indices the function can't handle */
2057 if (index >= SI_MAX_IO_GENERIC)
2058 break;
2059 /* fall through */
2060 default:
2061 sel->inputs_read |=
2062 1llu << si_shader_io_get_unique_index(name, index);
2063 break;
2064 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2065 break;
2066 }
2067 }
2068
2069 for (i = 0; i < 8; i++)
2070 if (sel->info.colors_written & (1 << i))
2071 sel->colors_written_4bit |= 0xf << (4 * i);
2072
2073 for (i = 0; i < sel->info.num_inputs; i++) {
2074 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2075 int index = sel->info.input_semantic_index[i];
2076 sel->color_attr_index[index] = i;
2077 }
2078 }
2079 break;
2080 }
2081
2082 /* DB_SHADER_CONTROL */
2083 sel->db_shader_control =
2084 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2085 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2086 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2087 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2088
2089 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2090 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2091 sel->db_shader_control |=
2092 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2093 break;
2094 case TGSI_FS_DEPTH_LAYOUT_LESS:
2095 sel->db_shader_control |=
2096 S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2097 break;
2098 }
2099
2100 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2101 *
2102 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2103 * --|-----------|------------|------------|--------------------|-------------------|-------------
2104 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2105 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2106 * 2 | false | true | n/a | LateZ | 1 | 0
2107 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2108 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2109 *
2110 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2111 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2112 *
2113 * Don't use ReZ without profiling !!!
2114 *
2115 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2116 * shaders.
2117 */
2118 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2119 /* Cases 3, 4. */
2120 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2121 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2122 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2123 } else if (sel->info.writes_memory) {
2124 /* Case 2. */
2125 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2126 S_02880C_EXEC_ON_HIER_FAIL(1);
2127 } else {
2128 /* Case 1. */
2129 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2130 }
2131
2132 (void) mtx_init(&sel->mutex, mtx_plain);
2133 util_queue_fence_init(&sel->ready);
2134
2135 if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
2136 sctx->is_debug ||
2137 r600_can_dump_shader(&sscreen->b, sel->info.processor))
2138 si_init_shader_selector_async(sel, -1);
2139 else
2140 util_queue_add_job(&sscreen->shader_compiler_queue, sel,
2141 &sel->ready, si_init_shader_selector_async,
2142 NULL);
2143
2144 return sel;
2145 }
2146
2147 static void si_update_streamout_state(struct si_context *sctx)
2148 {
2149 struct si_shader_selector *shader_with_so =
2150 sctx->gs_shader.cso ? sctx->gs_shader.cso :
2151 sctx->tes_shader.cso ? sctx->tes_shader.cso :
2152 sctx->vs_shader.cso;
2153 if (!shader_with_so)
2154 return;
2155
2156 sctx->b.streamout.enabled_stream_buffers_mask =
2157 shader_with_so->enabled_streamout_buffer_mask;
2158 sctx->b.streamout.stride_in_dw = shader_with_so->so.stride;
2159 }
2160
2161 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2162 {
2163 struct si_context *sctx = (struct si_context *)ctx;
2164 struct si_shader_selector *sel = state;
2165
2166 if (sctx->vs_shader.cso == sel)
2167 return;
2168
2169 sctx->vs_shader.cso = sel;
2170 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2171 sctx->do_update_shaders = true;
2172 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2173 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2174 si_set_active_descriptors_for_shader(sctx, sel);
2175 si_update_streamout_state(sctx);
2176 }
2177
2178 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2179 {
2180 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2181 (sctx->tes_shader.cso &&
2182 sctx->tes_shader.cso->info.uses_primid) ||
2183 (sctx->tcs_shader.cso &&
2184 sctx->tcs_shader.cso->info.uses_primid) ||
2185 (sctx->gs_shader.cso &&
2186 sctx->gs_shader.cso->info.uses_primid) ||
2187 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2188 sctx->ps_shader.cso->info.uses_primid);
2189 }
2190
2191 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2192 {
2193 struct si_context *sctx = (struct si_context *)ctx;
2194 struct si_shader_selector *sel = state;
2195 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2196
2197 if (sctx->gs_shader.cso == sel)
2198 return;
2199
2200 sctx->gs_shader.cso = sel;
2201 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2202 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2203 sctx->do_update_shaders = true;
2204 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2205 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2206
2207 if (enable_changed) {
2208 si_shader_change_notify(sctx);
2209 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2210 si_update_tess_uses_prim_id(sctx);
2211 }
2212 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2213 si_set_active_descriptors_for_shader(sctx, sel);
2214 si_update_streamout_state(sctx);
2215 }
2216
2217 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2218 {
2219 struct si_context *sctx = (struct si_context *)ctx;
2220 struct si_shader_selector *sel = state;
2221 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2222
2223 if (sctx->tcs_shader.cso == sel)
2224 return;
2225
2226 sctx->tcs_shader.cso = sel;
2227 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2228 si_update_tess_uses_prim_id(sctx);
2229 sctx->do_update_shaders = true;
2230
2231 if (enable_changed)
2232 sctx->last_tcs = NULL; /* invalidate derived tess state */
2233
2234 si_set_active_descriptors_for_shader(sctx, sel);
2235 }
2236
2237 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2238 {
2239 struct si_context *sctx = (struct si_context *)ctx;
2240 struct si_shader_selector *sel = state;
2241 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2242
2243 if (sctx->tes_shader.cso == sel)
2244 return;
2245
2246 sctx->tes_shader.cso = sel;
2247 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2248 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2249 si_update_tess_uses_prim_id(sctx);
2250 sctx->do_update_shaders = true;
2251 si_mark_atom_dirty(sctx, &sctx->clip_regs);
2252 sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2253
2254 if (enable_changed) {
2255 si_shader_change_notify(sctx);
2256 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2257 }
2258 r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
2259 si_set_active_descriptors_for_shader(sctx, sel);
2260 si_update_streamout_state(sctx);
2261 }
2262
2263 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2264 {
2265 struct si_context *sctx = (struct si_context *)ctx;
2266 struct si_shader_selector *sel = state;
2267
2268 /* skip if supplied shader is one already in use */
2269 if (sctx->ps_shader.cso == sel)
2270 return;
2271
2272 sctx->ps_shader.cso = sel;
2273 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2274 sctx->do_update_shaders = true;
2275 if (sel && sctx->ia_multi_vgt_param_key.u.uses_tess)
2276 si_update_tess_uses_prim_id(sctx);
2277 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2278 si_set_active_descriptors_for_shader(sctx, sel);
2279 }
2280
2281 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2282 {
2283 if (shader->is_optimized) {
2284 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2285 &shader->optimized_ready);
2286 util_queue_fence_destroy(&shader->optimized_ready);
2287 }
2288
2289 if (shader->pm4) {
2290 switch (shader->selector->type) {
2291 case PIPE_SHADER_VERTEX:
2292 if (shader->key.as_ls) {
2293 assert(sctx->b.chip_class <= VI);
2294 si_pm4_delete_state(sctx, ls, shader->pm4);
2295 } else if (shader->key.as_es) {
2296 assert(sctx->b.chip_class <= VI);
2297 si_pm4_delete_state(sctx, es, shader->pm4);
2298 } else {
2299 si_pm4_delete_state(sctx, vs, shader->pm4);
2300 }
2301 break;
2302 case PIPE_SHADER_TESS_CTRL:
2303 si_pm4_delete_state(sctx, hs, shader->pm4);
2304 break;
2305 case PIPE_SHADER_TESS_EVAL:
2306 if (shader->key.as_es) {
2307 assert(sctx->b.chip_class <= VI);
2308 si_pm4_delete_state(sctx, es, shader->pm4);
2309 } else {
2310 si_pm4_delete_state(sctx, vs, shader->pm4);
2311 }
2312 break;
2313 case PIPE_SHADER_GEOMETRY:
2314 if (shader->is_gs_copy_shader)
2315 si_pm4_delete_state(sctx, vs, shader->pm4);
2316 else
2317 si_pm4_delete_state(sctx, gs, shader->pm4);
2318 break;
2319 case PIPE_SHADER_FRAGMENT:
2320 si_pm4_delete_state(sctx, ps, shader->pm4);
2321 break;
2322 }
2323 }
2324
2325 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2326 si_shader_destroy(shader);
2327 free(shader);
2328 }
2329
2330 static void si_destroy_shader_selector(struct si_context *sctx,
2331 struct si_shader_selector *sel)
2332 {
2333 struct si_shader *p = sel->first_variant, *c;
2334 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2335 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2336 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2337 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2338 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2339 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2340 };
2341
2342 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2343
2344 if (current_shader[sel->type]->cso == sel) {
2345 current_shader[sel->type]->cso = NULL;
2346 current_shader[sel->type]->current = NULL;
2347 }
2348
2349 while (p) {
2350 c = p->next_variant;
2351 si_delete_shader(sctx, p);
2352 p = c;
2353 }
2354
2355 if (sel->main_shader_part)
2356 si_delete_shader(sctx, sel->main_shader_part);
2357 if (sel->main_shader_part_ls)
2358 si_delete_shader(sctx, sel->main_shader_part_ls);
2359 if (sel->main_shader_part_es)
2360 si_delete_shader(sctx, sel->main_shader_part_es);
2361 if (sel->gs_copy_shader)
2362 si_delete_shader(sctx, sel->gs_copy_shader);
2363
2364 util_queue_fence_destroy(&sel->ready);
2365 mtx_destroy(&sel->mutex);
2366 free(sel->tokens);
2367 free(sel);
2368 }
2369
2370 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2371 {
2372 struct si_context *sctx = (struct si_context *)ctx;
2373 struct si_shader_selector *sel = (struct si_shader_selector *)state;
2374
2375 si_shader_selector_reference(sctx, &sel, NULL);
2376 }
2377
2378 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2379 struct si_shader *vs, unsigned name,
2380 unsigned index, unsigned interpolate)
2381 {
2382 struct tgsi_shader_info *vsinfo = &vs->selector->info;
2383 unsigned j, offset, ps_input_cntl = 0;
2384
2385 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2386 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2387 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2388
2389 if (name == TGSI_SEMANTIC_PCOORD ||
2390 (name == TGSI_SEMANTIC_TEXCOORD &&
2391 sctx->sprite_coord_enable & (1 << index))) {
2392 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2393 }
2394
2395 for (j = 0; j < vsinfo->num_outputs; j++) {
2396 if (name == vsinfo->output_semantic_name[j] &&
2397 index == vsinfo->output_semantic_index[j]) {
2398 offset = vs->info.vs_output_param_offset[j];
2399
2400 if (offset <= AC_EXP_PARAM_OFFSET_31) {
2401 /* The input is loaded from parameter memory. */
2402 ps_input_cntl |= S_028644_OFFSET(offset);
2403 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2404 if (offset == AC_EXP_PARAM_UNDEFINED) {
2405 /* This can happen with depth-only rendering. */
2406 offset = 0;
2407 } else {
2408 /* The input is a DEFAULT_VAL constant. */
2409 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2410 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2411 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2412 }
2413
2414 ps_input_cntl = S_028644_OFFSET(0x20) |
2415 S_028644_DEFAULT_VAL(offset);
2416 }
2417 break;
2418 }
2419 }
2420
2421 if (name == TGSI_SEMANTIC_PRIMID)
2422 /* PrimID is written after the last output. */
2423 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2424 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2425 /* No corresponding output found, load defaults into input.
2426 * Don't set any other bits.
2427 * (FLAT_SHADE=1 completely changes behavior) */
2428 ps_input_cntl = S_028644_OFFSET(0x20);
2429 /* D3D 9 behaviour. GL is undefined */
2430 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2431 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2432 }
2433 return ps_input_cntl;
2434 }
2435
2436 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
2437 {
2438 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
2439 struct si_shader *ps = sctx->ps_shader.current;
2440 struct si_shader *vs = si_get_vs_state(sctx);
2441 struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2442 unsigned i, num_interp, num_written = 0, bcol_interp[2];
2443
2444 if (!ps || !ps->selector->info.num_inputs)
2445 return;
2446
2447 num_interp = si_get_ps_num_interp(ps);
2448 assert(num_interp > 0);
2449 radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
2450
2451 for (i = 0; i < psinfo->num_inputs; i++) {
2452 unsigned name = psinfo->input_semantic_name[i];
2453 unsigned index = psinfo->input_semantic_index[i];
2454 unsigned interpolate = psinfo->input_interpolate[i];
2455
2456 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
2457 interpolate));
2458 num_written++;
2459
2460 if (name == TGSI_SEMANTIC_COLOR) {
2461 assert(index < ARRAY_SIZE(bcol_interp));
2462 bcol_interp[index] = interpolate;
2463 }
2464 }
2465
2466 if (ps->key.part.ps.prolog.color_two_side) {
2467 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2468
2469 for (i = 0; i < 2; i++) {
2470 if (!(psinfo->colors_read & (0xf << (i * 4))))
2471 continue;
2472
2473 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
2474 i, bcol_interp[i]));
2475 num_written++;
2476 }
2477 }
2478 assert(num_interp == num_written);
2479 }
2480
2481 /**
2482 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2483 */
2484 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2485 {
2486 if (sctx->init_config_has_vgt_flush)
2487 return;
2488
2489 /* Done by Vulkan before VGT_FLUSH. */
2490 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2491 si_pm4_cmd_add(sctx->init_config,
2492 EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2493 si_pm4_cmd_end(sctx->init_config, false);
2494
2495 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2496 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2497 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2498 si_pm4_cmd_end(sctx->init_config, false);
2499 sctx->init_config_has_vgt_flush = true;
2500 }
2501
2502 /* Initialize state related to ESGS / GSVS ring buffers */
2503 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2504 {
2505 struct si_shader_selector *es =
2506 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2507 struct si_shader_selector *gs = sctx->gs_shader.cso;
2508 struct si_pm4_state *pm4;
2509
2510 /* Chip constants. */
2511 unsigned num_se = sctx->screen->b.info.max_se;
2512 unsigned wave_size = 64;
2513 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2514 /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2515 * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2516 */
2517 unsigned gs_vertex_reuse = (sctx->b.chip_class >= VI ? 32 : 16) * num_se;
2518 unsigned alignment = 256 * num_se;
2519 /* The maximum size is 63.999 MB per SE. */
2520 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2521
2522 /* Calculate the minimum size. */
2523 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2524 wave_size, alignment);
2525
2526 /* These are recommended sizes, not minimum sizes. */
2527 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2528 es->esgs_itemsize * gs->gs_input_verts_per_prim;
2529 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2530 gs->max_gsvs_emit_size;
2531
2532 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2533 esgs_ring_size = align(esgs_ring_size, alignment);
2534 gsvs_ring_size = align(gsvs_ring_size, alignment);
2535
2536 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2537 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2538
2539 /* Some rings don't have to be allocated if shaders don't use them.
2540 * (e.g. no varyings between ES and GS or GS and VS)
2541 *
2542 * GFX9 doesn't have the ESGS ring.
2543 */
2544 bool update_esgs = sctx->b.chip_class <= VI &&
2545 esgs_ring_size &&
2546 (!sctx->esgs_ring ||
2547 sctx->esgs_ring->width0 < esgs_ring_size);
2548 bool update_gsvs = gsvs_ring_size &&
2549 (!sctx->gsvs_ring ||
2550 sctx->gsvs_ring->width0 < gsvs_ring_size);
2551
2552 if (!update_esgs && !update_gsvs)
2553 return true;
2554
2555 if (update_esgs) {
2556 pipe_resource_reference(&sctx->esgs_ring, NULL);
2557 sctx->esgs_ring =
2558 r600_aligned_buffer_create(sctx->b.b.screen,
2559 R600_RESOURCE_FLAG_UNMAPPABLE,
2560 PIPE_USAGE_DEFAULT,
2561 esgs_ring_size, alignment);
2562 if (!sctx->esgs_ring)
2563 return false;
2564 }
2565
2566 if (update_gsvs) {
2567 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2568 sctx->gsvs_ring =
2569 r600_aligned_buffer_create(sctx->b.b.screen,
2570 R600_RESOURCE_FLAG_UNMAPPABLE,
2571 PIPE_USAGE_DEFAULT,
2572 gsvs_ring_size, alignment);
2573 if (!sctx->gsvs_ring)
2574 return false;
2575 }
2576
2577 /* Create the "init_config_gs_rings" state. */
2578 pm4 = CALLOC_STRUCT(si_pm4_state);
2579 if (!pm4)
2580 return false;
2581
2582 if (sctx->b.chip_class >= CIK) {
2583 if (sctx->esgs_ring) {
2584 assert(sctx->b.chip_class <= VI);
2585 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2586 sctx->esgs_ring->width0 / 256);
2587 }
2588 if (sctx->gsvs_ring)
2589 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2590 sctx->gsvs_ring->width0 / 256);
2591 } else {
2592 if (sctx->esgs_ring)
2593 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2594 sctx->esgs_ring->width0 / 256);
2595 if (sctx->gsvs_ring)
2596 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2597 sctx->gsvs_ring->width0 / 256);
2598 }
2599
2600 /* Set the state. */
2601 if (sctx->init_config_gs_rings)
2602 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2603 sctx->init_config_gs_rings = pm4;
2604
2605 if (!sctx->init_config_has_vgt_flush) {
2606 si_init_config_add_vgt_flush(sctx);
2607 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2608 }
2609
2610 /* Flush the context to re-emit both init_config states. */
2611 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2612 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2613
2614 /* Set ring bindings. */
2615 if (sctx->esgs_ring) {
2616 assert(sctx->b.chip_class <= VI);
2617 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2618 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2619 true, true, 4, 64, 0);
2620 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2621 sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2622 false, false, 0, 0, 0);
2623 }
2624 if (sctx->gsvs_ring) {
2625 si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2626 sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2627 false, false, 0, 0, 0);
2628 }
2629
2630 return true;
2631 }
2632
2633 static void si_shader_lock(struct si_shader *shader)
2634 {
2635 mtx_lock(&shader->selector->mutex);
2636 if (shader->previous_stage_sel) {
2637 assert(shader->previous_stage_sel != shader->selector);
2638 mtx_lock(&shader->previous_stage_sel->mutex);
2639 }
2640 }
2641
2642 static void si_shader_unlock(struct si_shader *shader)
2643 {
2644 if (shader->previous_stage_sel)
2645 mtx_unlock(&shader->previous_stage_sel->mutex);
2646 mtx_unlock(&shader->selector->mutex);
2647 }
2648
2649 /**
2650 * @returns 1 if \p sel has been updated to use a new scratch buffer
2651 * 0 if not
2652 * < 0 if there was a failure
2653 */
2654 static int si_update_scratch_buffer(struct si_context *sctx,
2655 struct si_shader *shader)
2656 {
2657 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2658 int r;
2659
2660 if (!shader)
2661 return 0;
2662
2663 /* This shader doesn't need a scratch buffer */
2664 if (shader->config.scratch_bytes_per_wave == 0)
2665 return 0;
2666
2667 /* Prevent race conditions when updating:
2668 * - si_shader::scratch_bo
2669 * - si_shader::binary::code
2670 * - si_shader::previous_stage::binary::code.
2671 */
2672 si_shader_lock(shader);
2673
2674 /* This shader is already configured to use the current
2675 * scratch buffer. */
2676 if (shader->scratch_bo == sctx->scratch_buffer) {
2677 si_shader_unlock(shader);
2678 return 0;
2679 }
2680
2681 assert(sctx->scratch_buffer);
2682
2683 if (shader->previous_stage)
2684 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2685
2686 si_shader_apply_scratch_relocs(shader, scratch_va);
2687
2688 /* Replace the shader bo with a new bo that has the relocs applied. */
2689 r = si_shader_binary_upload(sctx->screen, shader);
2690 if (r) {
2691 si_shader_unlock(shader);
2692 return r;
2693 }
2694
2695 /* Update the shader state to use the new shader bo. */
2696 si_shader_init_pm4_state(sctx->screen, shader);
2697
2698 r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2699
2700 si_shader_unlock(shader);
2701 return 1;
2702 }
2703
2704 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2705 {
2706 return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2707 }
2708
2709 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2710 {
2711 return shader ? shader->config.scratch_bytes_per_wave : 0;
2712 }
2713
2714 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2715 {
2716 if (!sctx->tes_shader.cso)
2717 return NULL; /* tessellation disabled */
2718
2719 return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2720 sctx->fixed_func_tcs_shader.current;
2721 }
2722
2723 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2724 {
2725 unsigned bytes = 0;
2726
2727 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2728 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2729 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2730 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2731
2732 if (sctx->tes_shader.cso) {
2733 struct si_shader *tcs = si_get_tcs_current(sctx);
2734
2735 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2736 }
2737 return bytes;
2738 }
2739
2740 static bool si_update_scratch_relocs(struct si_context *sctx)
2741 {
2742 struct si_shader *tcs = si_get_tcs_current(sctx);
2743 int r;
2744
2745 /* Update the shaders, so that they are using the latest scratch.
2746 * The scratch buffer may have been changed since these shaders were
2747 * last used, so we still need to try to update them, even if they
2748 * require scratch buffers smaller than the current size.
2749 */
2750 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2751 if (r < 0)
2752 return false;
2753 if (r == 1)
2754 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2755
2756 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2757 if (r < 0)
2758 return false;
2759 if (r == 1)
2760 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2761
2762 r = si_update_scratch_buffer(sctx, tcs);
2763 if (r < 0)
2764 return false;
2765 if (r == 1)
2766 si_pm4_bind_state(sctx, hs, tcs->pm4);
2767
2768 /* VS can be bound as LS, ES, or VS. */
2769 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2770 if (r < 0)
2771 return false;
2772 if (r == 1) {
2773 if (sctx->tes_shader.current)
2774 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2775 else if (sctx->gs_shader.current)
2776 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2777 else
2778 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2779 }
2780
2781 /* TES can be bound as ES or VS. */
2782 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2783 if (r < 0)
2784 return false;
2785 if (r == 1) {
2786 if (sctx->gs_shader.current)
2787 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2788 else
2789 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2790 }
2791
2792 return true;
2793 }
2794
2795 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2796 {
2797 unsigned current_scratch_buffer_size =
2798 si_get_current_scratch_buffer_size(sctx);
2799 unsigned scratch_bytes_per_wave =
2800 si_get_max_scratch_bytes_per_wave(sctx);
2801 unsigned scratch_needed_size = scratch_bytes_per_wave *
2802 sctx->scratch_waves;
2803 unsigned spi_tmpring_size;
2804
2805 if (scratch_needed_size > 0) {
2806 if (scratch_needed_size > current_scratch_buffer_size) {
2807 /* Create a bigger scratch buffer */
2808 r600_resource_reference(&sctx->scratch_buffer, NULL);
2809
2810 sctx->scratch_buffer = (struct r600_resource*)
2811 r600_aligned_buffer_create(&sctx->screen->b.b,
2812 R600_RESOURCE_FLAG_UNMAPPABLE,
2813 PIPE_USAGE_DEFAULT,
2814 scratch_needed_size, 256);
2815 if (!sctx->scratch_buffer)
2816 return false;
2817
2818 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2819 r600_context_add_resource_size(&sctx->b.b,
2820 &sctx->scratch_buffer->b.b);
2821 }
2822
2823 if (!si_update_scratch_relocs(sctx))
2824 return false;
2825 }
2826
2827 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
2828 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2829 "scratch size should already be aligned correctly.");
2830
2831 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2832 S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2833 if (spi_tmpring_size != sctx->spi_tmpring_size) {
2834 sctx->spi_tmpring_size = spi_tmpring_size;
2835 si_mark_atom_dirty(sctx, &sctx->scratch_state);
2836 }
2837 return true;
2838 }
2839
2840 static void si_init_tess_factor_ring(struct si_context *sctx)
2841 {
2842 bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
2843 sctx->b.family != CHIP_CARRIZO &&
2844 sctx->b.family != CHIP_STONEY;
2845 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
2846 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
2847 sctx->screen->b.info.max_se;
2848 unsigned offchip_granularity;
2849
2850 switch (sctx->screen->tess_offchip_block_dw_size) {
2851 default:
2852 assert(0);
2853 /* fall through */
2854 case 8192:
2855 offchip_granularity = V_03093C_X_8K_DWORDS;
2856 break;
2857 case 4096:
2858 offchip_granularity = V_03093C_X_4K_DWORDS;
2859 break;
2860 }
2861
2862 switch (sctx->b.chip_class) {
2863 case SI:
2864 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2865 break;
2866 case CIK:
2867 case VI:
2868 case GFX9:
2869 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2870 break;
2871 default:
2872 assert(0);
2873 return;
2874 }
2875
2876 assert(!sctx->tf_ring);
2877 /* Use 64K alignment for both rings, so that we can pass the address
2878 * to shaders as one SGPR containing bits [16:47].
2879 */
2880 sctx->tf_ring = r600_aligned_buffer_create(sctx->b.b.screen,
2881 R600_RESOURCE_FLAG_UNMAPPABLE,
2882 PIPE_USAGE_DEFAULT,
2883 32768 * sctx->screen->b.info.max_se,
2884 64 * 1024);
2885 if (!sctx->tf_ring)
2886 return;
2887
2888 assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2889
2890 sctx->tess_offchip_ring =
2891 r600_aligned_buffer_create(sctx->b.b.screen,
2892 R600_RESOURCE_FLAG_UNMAPPABLE,
2893 PIPE_USAGE_DEFAULT,
2894 max_offchip_buffers *
2895 sctx->screen->tess_offchip_block_dw_size * 4,
2896 64 * 1024);
2897 if (!sctx->tess_offchip_ring)
2898 return;
2899
2900 si_init_config_add_vgt_flush(sctx);
2901
2902 uint64_t offchip_va = r600_resource(sctx->tess_offchip_ring)->gpu_address;
2903 uint64_t factor_va = r600_resource(sctx->tf_ring)->gpu_address;
2904 assert((offchip_va & 0xffff) == 0);
2905 assert((factor_va & 0xffff) == 0);
2906
2907 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_offchip_ring),
2908 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
2909 si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tf_ring),
2910 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
2911
2912 /* Append these registers to the init config state. */
2913 if (sctx->b.chip_class >= CIK) {
2914 if (sctx->b.chip_class >= VI)
2915 --max_offchip_buffers;
2916
2917 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2918 S_030938_SIZE(sctx->tf_ring->width0 / 4));
2919 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2920 factor_va >> 8);
2921 if (sctx->b.chip_class >= GFX9)
2922 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
2923 factor_va >> 40);
2924 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2925 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2926 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2927 } else {
2928 assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2929 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2930 S_008988_SIZE(sctx->tf_ring->width0 / 4));
2931 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2932 factor_va >> 8);
2933 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2934 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2935 }
2936
2937 if (sctx->b.chip_class >= GFX9) {
2938 si_pm4_set_reg(sctx->init_config,
2939 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
2940 GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
2941 offchip_va >> 16);
2942 si_pm4_set_reg(sctx->init_config,
2943 R_00B430_SPI_SHADER_USER_DATA_LS_0 +
2944 GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
2945 factor_va >> 16);
2946 } else {
2947 si_pm4_set_reg(sctx->init_config,
2948 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
2949 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K * 4,
2950 offchip_va >> 16);
2951 si_pm4_set_reg(sctx->init_config,
2952 R_00B430_SPI_SHADER_USER_DATA_HS_0 +
2953 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K * 4,
2954 factor_va >> 16);
2955 }
2956
2957 /* Flush the context to re-emit the init_config state.
2958 * This is done only once in a lifetime of a context.
2959 */
2960 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2961 sctx->b.initial_gfx_cs_size = 0; /* force flush */
2962 si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2963 }
2964
2965 /**
2966 * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2967 * VS passes its outputs to TES directly, so the fixed-function shader only
2968 * has to write TESSOUTER and TESSINNER.
2969 */
2970 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2971 {
2972 struct ureg_src outer, inner;
2973 struct ureg_dst tessouter, tessinner;
2974 struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2975
2976 if (!ureg)
2977 return; /* if we get here, we're screwed */
2978
2979 assert(!sctx->fixed_func_tcs_shader.cso);
2980
2981 outer = ureg_DECL_system_value(ureg,
2982 TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2983 inner = ureg_DECL_system_value(ureg,
2984 TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2985
2986 tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2987 tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2988
2989 ureg_MOV(ureg, tessouter, outer);
2990 ureg_MOV(ureg, tessinner, inner);
2991 ureg_END(ureg);
2992
2993 sctx->fixed_func_tcs_shader.cso =
2994 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2995 }
2996
2997 static void si_update_vgt_shader_config(struct si_context *sctx)
2998 {
2999 /* Calculate the index of the config.
3000 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3001 unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3002 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3003
3004 if (!*pm4) {
3005 uint32_t stages = 0;
3006
3007 *pm4 = CALLOC_STRUCT(si_pm4_state);
3008
3009 if (sctx->tes_shader.cso) {
3010 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3011 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3012
3013 if (sctx->gs_shader.cso)
3014 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3015 S_028B54_GS_EN(1) |
3016 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3017 else
3018 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3019 } else if (sctx->gs_shader.cso) {
3020 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3021 S_028B54_GS_EN(1) |
3022 S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3023 }
3024
3025 if (sctx->b.chip_class >= GFX9)
3026 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3027
3028 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3029 }
3030 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3031 }
3032
3033 bool si_update_shaders(struct si_context *sctx)
3034 {
3035 struct pipe_context *ctx = (struct pipe_context*)sctx;
3036 struct si_compiler_ctx_state compiler_state;
3037 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3038 struct si_shader *old_vs = si_get_vs_state(sctx);
3039 bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
3040 int r;
3041
3042 compiler_state.tm = sctx->tm;
3043 compiler_state.debug = sctx->b.debug;
3044 compiler_state.is_debug_context = sctx->is_debug;
3045
3046 /* Update stages before GS. */
3047 if (sctx->tes_shader.cso) {
3048 if (!sctx->tf_ring) {
3049 si_init_tess_factor_ring(sctx);
3050 if (!sctx->tf_ring)
3051 return false;
3052 }
3053
3054 /* VS as LS */
3055 if (sctx->b.chip_class <= VI) {
3056 r = si_shader_select(ctx, &sctx->vs_shader,
3057 &compiler_state);
3058 if (r)
3059 return false;
3060 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3061 }
3062
3063 if (sctx->tcs_shader.cso) {
3064 r = si_shader_select(ctx, &sctx->tcs_shader,
3065 &compiler_state);
3066 if (r)
3067 return false;
3068 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3069 } else {
3070 if (!sctx->fixed_func_tcs_shader.cso) {
3071 si_generate_fixed_func_tcs(sctx);
3072 if (!sctx->fixed_func_tcs_shader.cso)
3073 return false;
3074 }
3075
3076 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3077 &compiler_state);
3078 if (r)
3079 return false;
3080 si_pm4_bind_state(sctx, hs,
3081 sctx->fixed_func_tcs_shader.current->pm4);
3082 }
3083
3084 if (sctx->gs_shader.cso) {
3085 /* TES as ES */
3086 if (sctx->b.chip_class <= VI) {
3087 r = si_shader_select(ctx, &sctx->tes_shader,
3088 &compiler_state);
3089 if (r)
3090 return false;
3091 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3092 }
3093 } else {
3094 /* TES as VS */
3095 r = si_shader_select(ctx, &sctx->tes_shader,
3096 &compiler_state);
3097 if (r)
3098 return false;
3099 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3100 }
3101 } else if (sctx->gs_shader.cso) {
3102 if (sctx->b.chip_class <= VI) {
3103 /* VS as ES */
3104 r = si_shader_select(ctx, &sctx->vs_shader,
3105 &compiler_state);
3106 if (r)
3107 return false;
3108 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3109
3110 si_pm4_bind_state(sctx, ls, NULL);
3111 si_pm4_bind_state(sctx, hs, NULL);
3112 }
3113 } else {
3114 /* VS as VS */
3115 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3116 if (r)
3117 return false;
3118 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3119 si_pm4_bind_state(sctx, ls, NULL);
3120 si_pm4_bind_state(sctx, hs, NULL);
3121 }
3122
3123 /* Update GS. */
3124 if (sctx->gs_shader.cso) {
3125 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3126 if (r)
3127 return false;
3128 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3129 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3130
3131 if (!si_update_gs_ring_buffers(sctx))
3132 return false;
3133 } else {
3134 si_pm4_bind_state(sctx, gs, NULL);
3135 if (sctx->b.chip_class <= VI)
3136 si_pm4_bind_state(sctx, es, NULL);
3137 }
3138
3139 si_update_vgt_shader_config(sctx);
3140
3141 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
3142 si_mark_atom_dirty(sctx, &sctx->clip_regs);
3143
3144 if (sctx->ps_shader.cso) {
3145 unsigned db_shader_control;
3146
3147 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3148 if (r)
3149 return false;
3150 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3151
3152 db_shader_control =
3153 sctx->ps_shader.cso->db_shader_control |
3154 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3155
3156 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3157 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3158 sctx->flatshade != rs->flatshade) {
3159 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3160 sctx->flatshade = rs->flatshade;
3161 si_mark_atom_dirty(sctx, &sctx->spi_map);
3162 }
3163
3164 if (sctx->screen->b.rbplus_allowed && si_pm4_state_changed(sctx, ps))
3165 si_mark_atom_dirty(sctx, &sctx->cb_render_state);
3166
3167 if (sctx->ps_db_shader_control != db_shader_control) {
3168 sctx->ps_db_shader_control = db_shader_control;
3169 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3170 }
3171
3172 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3173 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3174 si_mark_atom_dirty(sctx, &sctx->msaa_config);
3175
3176 if (sctx->b.chip_class == SI)
3177 si_mark_atom_dirty(sctx, &sctx->db_render_state);
3178
3179 if (sctx->framebuffer.nr_samples <= 1)
3180 si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
3181 }
3182 }
3183
3184 if (si_pm4_state_changed(sctx, ls) ||
3185 si_pm4_state_changed(sctx, hs) ||
3186 si_pm4_state_changed(sctx, es) ||
3187 si_pm4_state_changed(sctx, gs) ||
3188 si_pm4_state_changed(sctx, vs) ||
3189 si_pm4_state_changed(sctx, ps)) {
3190 if (!si_update_spi_tmpring_size(sctx))
3191 return false;
3192 }
3193
3194 if (sctx->b.chip_class >= CIK)
3195 si_mark_atom_dirty(sctx, &sctx->prefetch_L2);
3196
3197 sctx->do_update_shaders = false;
3198 return true;
3199 }
3200
3201 static void si_emit_scratch_state(struct si_context *sctx,
3202 struct r600_atom *atom)
3203 {
3204 struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
3205
3206 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3207 sctx->spi_tmpring_size);
3208
3209 if (sctx->scratch_buffer) {
3210 radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
3211 sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3212 RADEON_PRIO_SCRATCH_BUFFER);
3213 }
3214 }
3215
3216 void si_init_shader_functions(struct si_context *sctx)
3217 {
3218 si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
3219 si_init_atom(sctx, &sctx->scratch_state, &sctx->atoms.s.scratch_state,
3220 si_emit_scratch_state);
3221
3222 sctx->b.b.create_vs_state = si_create_shader_selector;
3223 sctx->b.b.create_tcs_state = si_create_shader_selector;
3224 sctx->b.b.create_tes_state = si_create_shader_selector;
3225 sctx->b.b.create_gs_state = si_create_shader_selector;
3226 sctx->b.b.create_fs_state = si_create_shader_selector;
3227
3228 sctx->b.b.bind_vs_state = si_bind_vs_shader;
3229 sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
3230 sctx->b.b.bind_tes_state = si_bind_tes_shader;
3231 sctx->b.b.bind_gs_state = si_bind_gs_shader;
3232 sctx->b.b.bind_fs_state = si_bind_ps_shader;
3233
3234 sctx->b.b.delete_vs_state = si_delete_shader_selector;
3235 sctx->b.b.delete_tcs_state = si_delete_shader_selector;
3236 sctx->b.b.delete_tes_state = si_delete_shader_selector;
3237 sctx->b.b.delete_gs_state = si_delete_shader_selector;
3238 sctx->b.b.delete_fs_state = si_delete_shader_selector;
3239 }