radeonsi: remove r600_fmask_info
[mesa.git] / src / gallium / drivers / radeonsi / si_texture.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 * Copyright 2018 Advanced Micro Devices, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * on the rights to use, copy, modify, merge, publish, distribute, sub
10 * license, and/or sell copies of the Software, and to permit persons to whom
11 * the Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "radeonsi/si_pipe.h"
27 #include "radeonsi/si_query.h"
28 #include "util/u_format.h"
29 #include "util/u_log.h"
30 #include "util/u_memory.h"
31 #include "util/u_pack_color.h"
32 #include "util/u_resource.h"
33 #include "util/u_surface.h"
34 #include "util/u_transfer.h"
35 #include "util/os_time.h"
36 #include <errno.h>
37 #include <inttypes.h>
38 #include "state_tracker/drm_driver.h"
39 #include "amd/common/sid.h"
40
41 static enum radeon_surf_mode
42 si_choose_tiling(struct si_screen *sscreen,
43 const struct pipe_resource *templ, bool tc_compatible_htile);
44
45
46 bool si_prepare_for_dma_blit(struct si_context *sctx,
47 struct r600_texture *rdst,
48 unsigned dst_level, unsigned dstx,
49 unsigned dsty, unsigned dstz,
50 struct r600_texture *rsrc,
51 unsigned src_level,
52 const struct pipe_box *src_box)
53 {
54 if (!sctx->dma_cs)
55 return false;
56
57 if (rdst->surface.bpe != rsrc->surface.bpe)
58 return false;
59
60 /* MSAA: Blits don't exist in the real world. */
61 if (rsrc->buffer.b.b.nr_samples > 1 ||
62 rdst->buffer.b.b.nr_samples > 1)
63 return false;
64
65 /* Depth-stencil surfaces:
66 * When dst is linear, the DB->CB copy preserves HTILE.
67 * When dst is tiled, the 3D path must be used to update HTILE.
68 */
69 if (rsrc->is_depth || rdst->is_depth)
70 return false;
71
72 /* DCC as:
73 * src: Use the 3D path. DCC decompression is expensive.
74 * dst: Use the 3D path to compress the pixels with DCC.
75 */
76 if (vi_dcc_enabled(rsrc, src_level) ||
77 vi_dcc_enabled(rdst, dst_level))
78 return false;
79
80 /* CMASK as:
81 * src: Both texture and SDMA paths need decompression. Use SDMA.
82 * dst: If overwriting the whole texture, discard CMASK and use
83 * SDMA. Otherwise, use the 3D path.
84 */
85 if (rdst->cmask.size && rdst->dirty_level_mask & (1 << dst_level)) {
86 /* The CMASK clear is only enabled for the first level. */
87 assert(dst_level == 0);
88 if (!util_texrange_covers_whole_level(&rdst->buffer.b.b, dst_level,
89 dstx, dsty, dstz, src_box->width,
90 src_box->height, src_box->depth))
91 return false;
92
93 si_texture_discard_cmask(sctx->screen, rdst);
94 }
95
96 /* All requirements are met. Prepare textures for SDMA. */
97 if (rsrc->cmask.size && rsrc->dirty_level_mask & (1 << src_level))
98 sctx->b.flush_resource(&sctx->b, &rsrc->buffer.b.b);
99
100 assert(!(rsrc->dirty_level_mask & (1 << src_level)));
101 assert(!(rdst->dirty_level_mask & (1 << dst_level)));
102
103 return true;
104 }
105
106 /* Same as resource_copy_region, except that both upsampling and downsampling are allowed. */
107 static void si_copy_region_with_blit(struct pipe_context *pipe,
108 struct pipe_resource *dst,
109 unsigned dst_level,
110 unsigned dstx, unsigned dsty, unsigned dstz,
111 struct pipe_resource *src,
112 unsigned src_level,
113 const struct pipe_box *src_box)
114 {
115 struct pipe_blit_info blit;
116
117 memset(&blit, 0, sizeof(blit));
118 blit.src.resource = src;
119 blit.src.format = src->format;
120 blit.src.level = src_level;
121 blit.src.box = *src_box;
122 blit.dst.resource = dst;
123 blit.dst.format = dst->format;
124 blit.dst.level = dst_level;
125 blit.dst.box.x = dstx;
126 blit.dst.box.y = dsty;
127 blit.dst.box.z = dstz;
128 blit.dst.box.width = src_box->width;
129 blit.dst.box.height = src_box->height;
130 blit.dst.box.depth = src_box->depth;
131 blit.mask = util_format_get_mask(src->format) &
132 util_format_get_mask(dst->format);
133 blit.filter = PIPE_TEX_FILTER_NEAREST;
134
135 if (blit.mask) {
136 pipe->blit(pipe, &blit);
137 }
138 }
139
140 /* Copy from a full GPU texture to a transfer's staging one. */
141 static void si_copy_to_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer)
142 {
143 struct si_context *sctx = (struct si_context*)ctx;
144 struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer;
145 struct pipe_resource *dst = &rtransfer->staging->b.b;
146 struct pipe_resource *src = transfer->resource;
147
148 if (src->nr_samples > 1) {
149 si_copy_region_with_blit(ctx, dst, 0, 0, 0, 0,
150 src, transfer->level, &transfer->box);
151 return;
152 }
153
154 sctx->dma_copy(ctx, dst, 0, 0, 0, 0, src, transfer->level,
155 &transfer->box);
156 }
157
158 /* Copy from a transfer's staging texture to a full GPU one. */
159 static void si_copy_from_staging_texture(struct pipe_context *ctx, struct r600_transfer *rtransfer)
160 {
161 struct si_context *sctx = (struct si_context*)ctx;
162 struct pipe_transfer *transfer = (struct pipe_transfer*)rtransfer;
163 struct pipe_resource *dst = transfer->resource;
164 struct pipe_resource *src = &rtransfer->staging->b.b;
165 struct pipe_box sbox;
166
167 u_box_3d(0, 0, 0, transfer->box.width, transfer->box.height, transfer->box.depth, &sbox);
168
169 if (dst->nr_samples > 1) {
170 si_copy_region_with_blit(ctx, dst, transfer->level,
171 transfer->box.x, transfer->box.y, transfer->box.z,
172 src, 0, &sbox);
173 return;
174 }
175
176 sctx->dma_copy(ctx, dst, transfer->level,
177 transfer->box.x, transfer->box.y, transfer->box.z,
178 src, 0, &sbox);
179 }
180
181 static unsigned si_texture_get_offset(struct si_screen *sscreen,
182 struct r600_texture *rtex, unsigned level,
183 const struct pipe_box *box,
184 unsigned *stride,
185 unsigned *layer_stride)
186 {
187 if (sscreen->info.chip_class >= GFX9) {
188 *stride = rtex->surface.u.gfx9.surf_pitch * rtex->surface.bpe;
189 *layer_stride = rtex->surface.u.gfx9.surf_slice_size;
190
191 if (!box)
192 return 0;
193
194 /* Each texture is an array of slices. Each slice is an array
195 * of mipmap levels. */
196 return box->z * rtex->surface.u.gfx9.surf_slice_size +
197 rtex->surface.u.gfx9.offset[level] +
198 (box->y / rtex->surface.blk_h *
199 rtex->surface.u.gfx9.surf_pitch +
200 box->x / rtex->surface.blk_w) * rtex->surface.bpe;
201 } else {
202 *stride = rtex->surface.u.legacy.level[level].nblk_x *
203 rtex->surface.bpe;
204 assert((uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4 <= UINT_MAX);
205 *layer_stride = (uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4;
206
207 if (!box)
208 return rtex->surface.u.legacy.level[level].offset;
209
210 /* Each texture is an array of mipmap levels. Each level is
211 * an array of slices. */
212 return rtex->surface.u.legacy.level[level].offset +
213 box->z * (uint64_t)rtex->surface.u.legacy.level[level].slice_size_dw * 4 +
214 (box->y / rtex->surface.blk_h *
215 rtex->surface.u.legacy.level[level].nblk_x +
216 box->x / rtex->surface.blk_w) * rtex->surface.bpe;
217 }
218 }
219
220 static int si_init_surface(struct si_screen *sscreen,
221 struct radeon_surf *surface,
222 const struct pipe_resource *ptex,
223 enum radeon_surf_mode array_mode,
224 unsigned pitch_in_bytes_override,
225 unsigned offset,
226 bool is_imported,
227 bool is_scanout,
228 bool is_flushed_depth,
229 bool tc_compatible_htile)
230 {
231 const struct util_format_description *desc =
232 util_format_description(ptex->format);
233 bool is_depth, is_stencil;
234 int r;
235 unsigned i, bpe, flags = 0;
236
237 is_depth = util_format_has_depth(desc);
238 is_stencil = util_format_has_stencil(desc);
239
240 if (!is_flushed_depth &&
241 ptex->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) {
242 bpe = 4; /* stencil is allocated separately on evergreen */
243 } else {
244 bpe = util_format_get_blocksize(ptex->format);
245 assert(util_is_power_of_two_or_zero(bpe));
246 }
247
248 if (!is_flushed_depth && is_depth) {
249 flags |= RADEON_SURF_ZBUFFER;
250
251 if (tc_compatible_htile &&
252 (sscreen->info.chip_class >= GFX9 ||
253 array_mode == RADEON_SURF_MODE_2D)) {
254 /* TC-compatible HTILE only supports Z32_FLOAT.
255 * GFX9 also supports Z16_UNORM.
256 * On VI, promote Z16 to Z32. DB->CB copies will convert
257 * the format for transfers.
258 */
259 if (sscreen->info.chip_class == VI)
260 bpe = 4;
261
262 flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
263 }
264
265 if (is_stencil)
266 flags |= RADEON_SURF_SBUFFER;
267 }
268
269 if (sscreen->info.chip_class >= VI &&
270 (ptex->flags & SI_RESOURCE_FLAG_DISABLE_DCC ||
271 ptex->format == PIPE_FORMAT_R9G9B9E5_FLOAT ||
272 (ptex->nr_samples >= 2 && !sscreen->dcc_msaa_allowed)))
273 flags |= RADEON_SURF_DISABLE_DCC;
274
275 /* VI: DCC clear for 4x and 8x MSAA array textures unimplemented. */
276 if (sscreen->info.chip_class == VI &&
277 ptex->nr_samples >= 4 &&
278 ptex->array_size > 1)
279 flags |= RADEON_SURF_DISABLE_DCC;
280
281 /* GFX9: DCC clear for 4x and 8x MSAA textures unimplemented. */
282 if (sscreen->info.chip_class >= GFX9 &&
283 ptex->nr_samples >= 4)
284 flags |= RADEON_SURF_DISABLE_DCC;
285
286 if (ptex->bind & PIPE_BIND_SCANOUT || is_scanout) {
287 /* This should catch bugs in gallium users setting incorrect flags. */
288 assert(ptex->nr_samples <= 1 &&
289 ptex->array_size == 1 &&
290 ptex->depth0 == 1 &&
291 ptex->last_level == 0 &&
292 !(flags & RADEON_SURF_Z_OR_SBUFFER));
293
294 flags |= RADEON_SURF_SCANOUT;
295 }
296
297 if (ptex->bind & PIPE_BIND_SHARED)
298 flags |= RADEON_SURF_SHAREABLE;
299 if (is_imported)
300 flags |= RADEON_SURF_IMPORTED | RADEON_SURF_SHAREABLE;
301 if (!(ptex->flags & SI_RESOURCE_FLAG_FORCE_TILING))
302 flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE;
303
304 r = sscreen->ws->surface_init(sscreen->ws, ptex, flags, bpe,
305 array_mode, surface);
306 if (r) {
307 return r;
308 }
309
310 unsigned pitch = pitch_in_bytes_override / bpe;
311
312 if (sscreen->info.chip_class >= GFX9) {
313 if (pitch) {
314 surface->u.gfx9.surf_pitch = pitch;
315 surface->u.gfx9.surf_slice_size =
316 (uint64_t)pitch * surface->u.gfx9.surf_height * bpe;
317 }
318 surface->u.gfx9.surf_offset = offset;
319 } else {
320 if (pitch) {
321 surface->u.legacy.level[0].nblk_x = pitch;
322 surface->u.legacy.level[0].slice_size_dw =
323 ((uint64_t)pitch * surface->u.legacy.level[0].nblk_y * bpe) / 4;
324 }
325 if (offset) {
326 for (i = 0; i < ARRAY_SIZE(surface->u.legacy.level); ++i)
327 surface->u.legacy.level[i].offset += offset;
328 }
329 }
330 return 0;
331 }
332
333 static void si_texture_init_metadata(struct si_screen *sscreen,
334 struct r600_texture *rtex,
335 struct radeon_bo_metadata *metadata)
336 {
337 struct radeon_surf *surface = &rtex->surface;
338
339 memset(metadata, 0, sizeof(*metadata));
340
341 if (sscreen->info.chip_class >= GFX9) {
342 metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode;
343 } else {
344 metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ?
345 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
346 metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ?
347 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
348 metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config;
349 metadata->u.legacy.bankw = surface->u.legacy.bankw;
350 metadata->u.legacy.bankh = surface->u.legacy.bankh;
351 metadata->u.legacy.tile_split = surface->u.legacy.tile_split;
352 metadata->u.legacy.mtilea = surface->u.legacy.mtilea;
353 metadata->u.legacy.num_banks = surface->u.legacy.num_banks;
354 metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe;
355 metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
356 }
357 }
358
359 static void si_surface_import_metadata(struct si_screen *sscreen,
360 struct radeon_surf *surf,
361 struct radeon_bo_metadata *metadata,
362 enum radeon_surf_mode *array_mode,
363 bool *is_scanout)
364 {
365 if (sscreen->info.chip_class >= GFX9) {
366 if (metadata->u.gfx9.swizzle_mode > 0)
367 *array_mode = RADEON_SURF_MODE_2D;
368 else
369 *array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
370
371 *is_scanout = metadata->u.gfx9.swizzle_mode == 0 ||
372 metadata->u.gfx9.swizzle_mode % 4 == 2;
373
374 surf->u.gfx9.surf.swizzle_mode = metadata->u.gfx9.swizzle_mode;
375 } else {
376 surf->u.legacy.pipe_config = metadata->u.legacy.pipe_config;
377 surf->u.legacy.bankw = metadata->u.legacy.bankw;
378 surf->u.legacy.bankh = metadata->u.legacy.bankh;
379 surf->u.legacy.tile_split = metadata->u.legacy.tile_split;
380 surf->u.legacy.mtilea = metadata->u.legacy.mtilea;
381 surf->u.legacy.num_banks = metadata->u.legacy.num_banks;
382
383 if (metadata->u.legacy.macrotile == RADEON_LAYOUT_TILED)
384 *array_mode = RADEON_SURF_MODE_2D;
385 else if (metadata->u.legacy.microtile == RADEON_LAYOUT_TILED)
386 *array_mode = RADEON_SURF_MODE_1D;
387 else
388 *array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
389
390 *is_scanout = metadata->u.legacy.scanout;
391 }
392 }
393
394 void si_eliminate_fast_color_clear(struct si_context *sctx,
395 struct r600_texture *rtex)
396 {
397 struct si_screen *sscreen = sctx->screen;
398 struct pipe_context *ctx = &sctx->b;
399
400 if (ctx == sscreen->aux_context)
401 mtx_lock(&sscreen->aux_context_lock);
402
403 unsigned n = sctx->num_decompress_calls;
404 ctx->flush_resource(ctx, &rtex->buffer.b.b);
405
406 /* Flush only if any fast clear elimination took place. */
407 if (n != sctx->num_decompress_calls)
408 ctx->flush(ctx, NULL, 0);
409
410 if (ctx == sscreen->aux_context)
411 mtx_unlock(&sscreen->aux_context_lock);
412 }
413
414 void si_texture_discard_cmask(struct si_screen *sscreen,
415 struct r600_texture *rtex)
416 {
417 if (!rtex->cmask.size)
418 return;
419
420 assert(rtex->buffer.b.b.nr_samples <= 1);
421
422 /* Disable CMASK. */
423 memset(&rtex->cmask, 0, sizeof(rtex->cmask));
424 rtex->cmask.base_address_reg = rtex->buffer.gpu_address >> 8;
425 rtex->dirty_level_mask = 0;
426
427 rtex->cb_color_info &= ~S_028C70_FAST_CLEAR(1);
428
429 if (rtex->cmask_buffer != &rtex->buffer)
430 r600_resource_reference(&rtex->cmask_buffer, NULL);
431
432 /* Notify all contexts about the change. */
433 p_atomic_inc(&sscreen->dirty_tex_counter);
434 p_atomic_inc(&sscreen->compressed_colortex_counter);
435 }
436
437 static bool si_can_disable_dcc(struct r600_texture *rtex)
438 {
439 /* We can't disable DCC if it can be written by another process. */
440 return rtex->dcc_offset &&
441 (!rtex->buffer.b.is_shared ||
442 !(rtex->buffer.external_usage & PIPE_HANDLE_USAGE_WRITE));
443 }
444
445 static bool si_texture_discard_dcc(struct si_screen *sscreen,
446 struct r600_texture *rtex)
447 {
448 if (!si_can_disable_dcc(rtex))
449 return false;
450
451 assert(rtex->dcc_separate_buffer == NULL);
452
453 /* Disable DCC. */
454 rtex->dcc_offset = 0;
455
456 /* Notify all contexts about the change. */
457 p_atomic_inc(&sscreen->dirty_tex_counter);
458 return true;
459 }
460
461 /**
462 * Disable DCC for the texture. (first decompress, then discard metadata).
463 *
464 * There is unresolved multi-context synchronization issue between
465 * screen::aux_context and the current context. If applications do this with
466 * multiple contexts, it's already undefined behavior for them and we don't
467 * have to worry about that. The scenario is:
468 *
469 * If context 1 disables DCC and context 2 has queued commands that write
470 * to the texture via CB with DCC enabled, and the order of operations is
471 * as follows:
472 * context 2 queues draw calls rendering to the texture, but doesn't flush
473 * context 1 disables DCC and flushes
474 * context 1 & 2 reset descriptors and FB state
475 * context 2 flushes (new compressed tiles written by the draw calls)
476 * context 1 & 2 read garbage, because DCC is disabled, yet there are
477 * compressed tiled
478 *
479 * \param sctx the current context if you have one, or rscreen->aux_context
480 * if you don't.
481 */
482 bool si_texture_disable_dcc(struct si_context *sctx,
483 struct r600_texture *rtex)
484 {
485 struct si_screen *sscreen = sctx->screen;
486
487 if (!si_can_disable_dcc(rtex))
488 return false;
489
490 if (&sctx->b == sscreen->aux_context)
491 mtx_lock(&sscreen->aux_context_lock);
492
493 /* Decompress DCC. */
494 si_decompress_dcc(sctx, rtex);
495 sctx->b.flush(&sctx->b, NULL, 0);
496
497 if (&sctx->b == sscreen->aux_context)
498 mtx_unlock(&sscreen->aux_context_lock);
499
500 return si_texture_discard_dcc(sscreen, rtex);
501 }
502
503 static void si_reallocate_texture_inplace(struct si_context *sctx,
504 struct r600_texture *rtex,
505 unsigned new_bind_flag,
506 bool invalidate_storage)
507 {
508 struct pipe_screen *screen = sctx->b.screen;
509 struct r600_texture *new_tex;
510 struct pipe_resource templ = rtex->buffer.b.b;
511 unsigned i;
512
513 templ.bind |= new_bind_flag;
514
515 if (rtex->buffer.b.is_shared)
516 return;
517
518 if (new_bind_flag == PIPE_BIND_LINEAR) {
519 if (rtex->surface.is_linear)
520 return;
521
522 /* This fails with MSAA, depth, and compressed textures. */
523 if (si_choose_tiling(sctx->screen, &templ, false) !=
524 RADEON_SURF_MODE_LINEAR_ALIGNED)
525 return;
526 }
527
528 new_tex = (struct r600_texture*)screen->resource_create(screen, &templ);
529 if (!new_tex)
530 return;
531
532 /* Copy the pixels to the new texture. */
533 if (!invalidate_storage) {
534 for (i = 0; i <= templ.last_level; i++) {
535 struct pipe_box box;
536
537 u_box_3d(0, 0, 0,
538 u_minify(templ.width0, i), u_minify(templ.height0, i),
539 util_num_layers(&templ, i), &box);
540
541 sctx->dma_copy(&sctx->b, &new_tex->buffer.b.b, i, 0, 0, 0,
542 &rtex->buffer.b.b, i, &box);
543 }
544 }
545
546 if (new_bind_flag == PIPE_BIND_LINEAR) {
547 si_texture_discard_cmask(sctx->screen, rtex);
548 si_texture_discard_dcc(sctx->screen, rtex);
549 }
550
551 /* Replace the structure fields of rtex. */
552 rtex->buffer.b.b.bind = templ.bind;
553 pb_reference(&rtex->buffer.buf, new_tex->buffer.buf);
554 rtex->buffer.gpu_address = new_tex->buffer.gpu_address;
555 rtex->buffer.vram_usage = new_tex->buffer.vram_usage;
556 rtex->buffer.gart_usage = new_tex->buffer.gart_usage;
557 rtex->buffer.bo_size = new_tex->buffer.bo_size;
558 rtex->buffer.bo_alignment = new_tex->buffer.bo_alignment;
559 rtex->buffer.domains = new_tex->buffer.domains;
560 rtex->buffer.flags = new_tex->buffer.flags;
561 rtex->size = new_tex->size;
562 rtex->db_render_format = new_tex->db_render_format;
563 rtex->db_compatible = new_tex->db_compatible;
564 rtex->can_sample_z = new_tex->can_sample_z;
565 rtex->can_sample_s = new_tex->can_sample_s;
566 rtex->surface = new_tex->surface;
567 rtex->fmask_offset = new_tex->fmask_offset;
568 rtex->cmask = new_tex->cmask;
569 rtex->cb_color_info = new_tex->cb_color_info;
570 rtex->last_msaa_resolve_target_micro_mode = new_tex->last_msaa_resolve_target_micro_mode;
571 rtex->htile_offset = new_tex->htile_offset;
572 rtex->tc_compatible_htile = new_tex->tc_compatible_htile;
573 rtex->depth_cleared = new_tex->depth_cleared;
574 rtex->stencil_cleared = new_tex->stencil_cleared;
575 rtex->dcc_gather_statistics = new_tex->dcc_gather_statistics;
576 rtex->framebuffers_bound = new_tex->framebuffers_bound;
577
578 if (new_bind_flag == PIPE_BIND_LINEAR) {
579 assert(!rtex->htile_offset);
580 assert(!rtex->cmask.size);
581 assert(!rtex->surface.fmask_size);
582 assert(!rtex->dcc_offset);
583 assert(!rtex->is_depth);
584 }
585
586 r600_texture_reference(&new_tex, NULL);
587
588 p_atomic_inc(&sctx->screen->dirty_tex_counter);
589 }
590
591 static uint32_t si_get_bo_metadata_word1(struct si_screen *sscreen)
592 {
593 return (ATI_VENDOR_ID << 16) | sscreen->info.pci_id;
594 }
595
596 static void si_query_opaque_metadata(struct si_screen *sscreen,
597 struct r600_texture *rtex,
598 struct radeon_bo_metadata *md)
599 {
600 struct pipe_resource *res = &rtex->buffer.b.b;
601 static const unsigned char swizzle[] = {
602 PIPE_SWIZZLE_X,
603 PIPE_SWIZZLE_Y,
604 PIPE_SWIZZLE_Z,
605 PIPE_SWIZZLE_W
606 };
607 uint32_t desc[8], i;
608 bool is_array = util_texture_is_array(res->target);
609
610 /* DRM 2.x.x doesn't support this. */
611 if (sscreen->info.drm_major != 3)
612 return;
613
614 assert(rtex->dcc_separate_buffer == NULL);
615 assert(rtex->surface.fmask_size == 0);
616
617 /* Metadata image format format version 1:
618 * [0] = 1 (metadata format identifier)
619 * [1] = (VENDOR_ID << 16) | PCI_ID
620 * [2:9] = image descriptor for the whole resource
621 * [2] is always 0, because the base address is cleared
622 * [9] is the DCC offset bits [39:8] from the beginning of
623 * the buffer
624 * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
625 */
626
627 md->metadata[0] = 1; /* metadata image format version 1 */
628
629 /* TILE_MODE_INDEX is ambiguous without a PCI ID. */
630 md->metadata[1] = si_get_bo_metadata_word1(sscreen);
631
632 si_make_texture_descriptor(sscreen, rtex, true,
633 res->target, res->format,
634 swizzle, 0, res->last_level, 0,
635 is_array ? res->array_size - 1 : 0,
636 res->width0, res->height0, res->depth0,
637 desc, NULL);
638
639 si_set_mutable_tex_desc_fields(sscreen, rtex, &rtex->surface.u.legacy.level[0],
640 0, 0, rtex->surface.blk_w, false, desc);
641
642 /* Clear the base address and set the relative DCC offset. */
643 desc[0] = 0;
644 desc[1] &= C_008F14_BASE_ADDRESS_HI;
645 desc[7] = rtex->dcc_offset >> 8;
646
647 /* Dwords [2:9] contain the image descriptor. */
648 memcpy(&md->metadata[2], desc, sizeof(desc));
649 md->size_metadata = 10 * 4;
650
651 /* Dwords [10:..] contain the mipmap level offsets. */
652 if (sscreen->info.chip_class <= VI) {
653 for (i = 0; i <= res->last_level; i++)
654 md->metadata[10+i] = rtex->surface.u.legacy.level[i].offset >> 8;
655
656 md->size_metadata += (1 + res->last_level) * 4;
657 }
658 }
659
660 static void si_apply_opaque_metadata(struct si_screen *sscreen,
661 struct r600_texture *rtex,
662 struct radeon_bo_metadata *md)
663 {
664 uint32_t *desc = &md->metadata[2];
665
666 if (sscreen->info.chip_class < VI)
667 return;
668
669 /* Return if DCC is enabled. The texture should be set up with it
670 * already.
671 */
672 if (md->size_metadata >= 10 * 4 && /* at least 2(header) + 8(desc) dwords */
673 md->metadata[0] != 0 &&
674 md->metadata[1] == si_get_bo_metadata_word1(sscreen) &&
675 G_008F28_COMPRESSION_EN(desc[6])) {
676 rtex->dcc_offset = (uint64_t)desc[7] << 8;
677 return;
678 }
679
680 /* Disable DCC. These are always set by texture_from_handle and must
681 * be cleared here.
682 */
683 rtex->dcc_offset = 0;
684 }
685
686 static boolean si_texture_get_handle(struct pipe_screen* screen,
687 struct pipe_context *ctx,
688 struct pipe_resource *resource,
689 struct winsys_handle *whandle,
690 unsigned usage)
691 {
692 struct si_screen *sscreen = (struct si_screen*)screen;
693 struct si_context *sctx;
694 struct r600_resource *res = r600_resource(resource);
695 struct r600_texture *rtex = (struct r600_texture*)resource;
696 struct radeon_bo_metadata metadata;
697 bool update_metadata = false;
698 unsigned stride, offset, slice_size;
699 bool flush = false;
700
701 ctx = threaded_context_unwrap_sync(ctx);
702 sctx = (struct si_context*)(ctx ? ctx : sscreen->aux_context);
703
704 if (resource->target != PIPE_BUFFER) {
705 /* This is not supported now, but it might be required for OpenCL
706 * interop in the future.
707 */
708 if (resource->nr_samples > 1 || rtex->is_depth)
709 return false;
710
711 /* Move a suballocated texture into a non-suballocated allocation. */
712 if (sscreen->ws->buffer_is_suballocated(res->buf) ||
713 rtex->surface.tile_swizzle ||
714 (rtex->buffer.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
715 sscreen->info.has_local_buffers &&
716 whandle->type != DRM_API_HANDLE_TYPE_KMS)) {
717 assert(!res->b.is_shared);
718 si_reallocate_texture_inplace(sctx, rtex,
719 PIPE_BIND_SHARED, false);
720 flush = true;
721 assert(res->b.b.bind & PIPE_BIND_SHARED);
722 assert(res->flags & RADEON_FLAG_NO_SUBALLOC);
723 assert(!(res->flags & RADEON_FLAG_NO_INTERPROCESS_SHARING));
724 assert(rtex->surface.tile_swizzle == 0);
725 }
726
727 /* Since shader image stores don't support DCC on VI,
728 * disable it for external clients that want write
729 * access.
730 */
731 if (usage & PIPE_HANDLE_USAGE_WRITE && rtex->dcc_offset) {
732 if (si_texture_disable_dcc(sctx, rtex)) {
733 update_metadata = true;
734 /* si_texture_disable_dcc flushes the context */
735 flush = false;
736 }
737 }
738
739 if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) &&
740 (rtex->cmask.size || rtex->dcc_offset)) {
741 /* Eliminate fast clear (both CMASK and DCC) */
742 si_eliminate_fast_color_clear(sctx, rtex);
743 /* eliminate_fast_color_clear flushes the context */
744 flush = false;
745
746 /* Disable CMASK if flush_resource isn't going
747 * to be called.
748 */
749 if (rtex->cmask.size)
750 si_texture_discard_cmask(sscreen, rtex);
751 }
752
753 /* Set metadata. */
754 if (!res->b.is_shared || update_metadata) {
755 si_texture_init_metadata(sscreen, rtex, &metadata);
756 si_query_opaque_metadata(sscreen, rtex, &metadata);
757
758 sscreen->ws->buffer_set_metadata(res->buf, &metadata);
759 }
760
761 if (sscreen->info.chip_class >= GFX9) {
762 offset = rtex->surface.u.gfx9.surf_offset;
763 stride = rtex->surface.u.gfx9.surf_pitch *
764 rtex->surface.bpe;
765 slice_size = rtex->surface.u.gfx9.surf_slice_size;
766 } else {
767 offset = rtex->surface.u.legacy.level[0].offset;
768 stride = rtex->surface.u.legacy.level[0].nblk_x *
769 rtex->surface.bpe;
770 slice_size = (uint64_t)rtex->surface.u.legacy.level[0].slice_size_dw * 4;
771 }
772 } else {
773 /* Buffer exports are for the OpenCL interop. */
774 /* Move a suballocated buffer into a non-suballocated allocation. */
775 if (sscreen->ws->buffer_is_suballocated(res->buf) ||
776 /* A DMABUF export always fails if the BO is local. */
777 (rtex->buffer.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
778 sscreen->info.has_local_buffers)) {
779 assert(!res->b.is_shared);
780
781 /* Allocate a new buffer with PIPE_BIND_SHARED. */
782 struct pipe_resource templ = res->b.b;
783 templ.bind |= PIPE_BIND_SHARED;
784
785 struct pipe_resource *newb =
786 screen->resource_create(screen, &templ);
787 if (!newb)
788 return false;
789
790 /* Copy the old buffer contents to the new one. */
791 struct pipe_box box;
792 u_box_1d(0, newb->width0, &box);
793 sctx->b.resource_copy_region(&sctx->b, newb, 0, 0, 0, 0,
794 &res->b.b, 0, &box);
795 flush = true;
796 /* Move the new buffer storage to the old pipe_resource. */
797 si_replace_buffer_storage(&sctx->b, &res->b.b, newb);
798 pipe_resource_reference(&newb, NULL);
799
800 assert(res->b.b.bind & PIPE_BIND_SHARED);
801 assert(res->flags & RADEON_FLAG_NO_SUBALLOC);
802 }
803
804 /* Buffers */
805 offset = 0;
806 stride = 0;
807 slice_size = 0;
808 }
809
810 if (flush)
811 sctx->b.flush(&sctx->b, NULL, 0);
812
813 if (res->b.is_shared) {
814 /* USAGE_EXPLICIT_FLUSH must be cleared if at least one user
815 * doesn't set it.
816 */
817 res->external_usage |= usage & ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
818 if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
819 res->external_usage &= ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
820 } else {
821 res->b.is_shared = true;
822 res->external_usage = usage;
823 }
824
825 return sscreen->ws->buffer_get_handle(res->buf, stride, offset,
826 slice_size, whandle);
827 }
828
829 static void si_texture_destroy(struct pipe_screen *screen,
830 struct pipe_resource *ptex)
831 {
832 struct r600_texture *rtex = (struct r600_texture*)ptex;
833 struct r600_resource *resource = &rtex->buffer;
834
835 r600_texture_reference(&rtex->flushed_depth_texture, NULL);
836
837 if (rtex->cmask_buffer != &rtex->buffer) {
838 r600_resource_reference(&rtex->cmask_buffer, NULL);
839 }
840 pb_reference(&resource->buf, NULL);
841 r600_resource_reference(&rtex->dcc_separate_buffer, NULL);
842 r600_resource_reference(&rtex->last_dcc_separate_buffer, NULL);
843 FREE(rtex);
844 }
845
846 static const struct u_resource_vtbl si_texture_vtbl;
847
848 void si_texture_get_cmask_info(struct si_screen *sscreen,
849 struct r600_texture *rtex,
850 struct r600_cmask_info *out)
851 {
852 unsigned pipe_interleave_bytes = sscreen->info.pipe_interleave_bytes;
853 unsigned num_pipes = sscreen->info.num_tile_pipes;
854 unsigned cl_width, cl_height;
855
856 if (sscreen->info.chip_class >= GFX9) {
857 out->alignment = rtex->surface.u.gfx9.cmask_alignment;
858 out->size = rtex->surface.u.gfx9.cmask_size;
859 return;
860 }
861
862 switch (num_pipes) {
863 case 2:
864 cl_width = 32;
865 cl_height = 16;
866 break;
867 case 4:
868 cl_width = 32;
869 cl_height = 32;
870 break;
871 case 8:
872 cl_width = 64;
873 cl_height = 32;
874 break;
875 case 16: /* Hawaii */
876 cl_width = 64;
877 cl_height = 64;
878 break;
879 default:
880 assert(0);
881 return;
882 }
883
884 unsigned base_align = num_pipes * pipe_interleave_bytes;
885
886 unsigned width = align(rtex->buffer.b.b.width0, cl_width*8);
887 unsigned height = align(rtex->buffer.b.b.height0, cl_height*8);
888 unsigned slice_elements = (width * height) / (8*8);
889
890 /* Each element of CMASK is a nibble. */
891 unsigned slice_bytes = slice_elements / 2;
892
893 out->slice_tile_max = (width * height) / (128*128);
894 if (out->slice_tile_max)
895 out->slice_tile_max -= 1;
896
897 out->alignment = MAX2(256, base_align);
898 out->size = util_num_layers(&rtex->buffer.b.b, 0) *
899 align(slice_bytes, base_align);
900 }
901
902 static void si_texture_allocate_cmask(struct si_screen *sscreen,
903 struct r600_texture *rtex)
904 {
905 si_texture_get_cmask_info(sscreen, rtex, &rtex->cmask);
906
907 rtex->cmask.offset = align64(rtex->size, rtex->cmask.alignment);
908 rtex->size = rtex->cmask.offset + rtex->cmask.size;
909
910 rtex->cb_color_info |= S_028C70_FAST_CLEAR(1);
911 }
912
913 static void si_texture_get_htile_size(struct si_screen *sscreen,
914 struct r600_texture *rtex)
915 {
916 unsigned cl_width, cl_height, width, height;
917 unsigned slice_elements, slice_bytes, pipe_interleave_bytes, base_align;
918 unsigned num_pipes = sscreen->info.num_tile_pipes;
919
920 assert(sscreen->info.chip_class <= VI);
921
922 rtex->surface.htile_size = 0;
923
924 /* HTILE is broken with 1D tiling on old kernels and CIK. */
925 if (sscreen->info.chip_class >= CIK &&
926 rtex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_1D &&
927 sscreen->info.drm_major == 2 && sscreen->info.drm_minor < 38)
928 return;
929
930 /* Overalign HTILE on P2 configs to work around GPU hangs in
931 * piglit/depthstencil-render-miplevels 585.
932 *
933 * This has been confirmed to help Kabini & Stoney, where the hangs
934 * are always reproducible. I think I have seen the test hang
935 * on Carrizo too, though it was very rare there.
936 */
937 if (sscreen->info.chip_class >= CIK && num_pipes < 4)
938 num_pipes = 4;
939
940 switch (num_pipes) {
941 case 1:
942 cl_width = 32;
943 cl_height = 16;
944 break;
945 case 2:
946 cl_width = 32;
947 cl_height = 32;
948 break;
949 case 4:
950 cl_width = 64;
951 cl_height = 32;
952 break;
953 case 8:
954 cl_width = 64;
955 cl_height = 64;
956 break;
957 case 16:
958 cl_width = 128;
959 cl_height = 64;
960 break;
961 default:
962 assert(0);
963 return;
964 }
965
966 width = align(rtex->buffer.b.b.width0, cl_width * 8);
967 height = align(rtex->buffer.b.b.height0, cl_height * 8);
968
969 slice_elements = (width * height) / (8 * 8);
970 slice_bytes = slice_elements * 4;
971
972 pipe_interleave_bytes = sscreen->info.pipe_interleave_bytes;
973 base_align = num_pipes * pipe_interleave_bytes;
974
975 rtex->surface.htile_alignment = base_align;
976 rtex->surface.htile_size =
977 util_num_layers(&rtex->buffer.b.b, 0) *
978 align(slice_bytes, base_align);
979 }
980
981 static void si_texture_allocate_htile(struct si_screen *sscreen,
982 struct r600_texture *rtex)
983 {
984 if (sscreen->info.chip_class <= VI && !rtex->tc_compatible_htile)
985 si_texture_get_htile_size(sscreen, rtex);
986
987 if (!rtex->surface.htile_size)
988 return;
989
990 rtex->htile_offset = align(rtex->size, rtex->surface.htile_alignment);
991 rtex->size = rtex->htile_offset + rtex->surface.htile_size;
992 }
993
994 void si_print_texture_info(struct si_screen *sscreen,
995 struct r600_texture *rtex, struct u_log_context *log)
996 {
997 int i;
998
999 /* Common parameters. */
1000 u_log_printf(log, " Info: npix_x=%u, npix_y=%u, npix_z=%u, blk_w=%u, "
1001 "blk_h=%u, array_size=%u, last_level=%u, "
1002 "bpe=%u, nsamples=%u, flags=0x%x, %s\n",
1003 rtex->buffer.b.b.width0, rtex->buffer.b.b.height0,
1004 rtex->buffer.b.b.depth0, rtex->surface.blk_w,
1005 rtex->surface.blk_h,
1006 rtex->buffer.b.b.array_size, rtex->buffer.b.b.last_level,
1007 rtex->surface.bpe, rtex->buffer.b.b.nr_samples,
1008 rtex->surface.flags, util_format_short_name(rtex->buffer.b.b.format));
1009
1010 if (sscreen->info.chip_class >= GFX9) {
1011 u_log_printf(log, " Surf: size=%"PRIu64", slice_size=%"PRIu64", "
1012 "alignment=%u, swmode=%u, epitch=%u, pitch=%u\n",
1013 rtex->surface.surf_size,
1014 rtex->surface.u.gfx9.surf_slice_size,
1015 rtex->surface.surf_alignment,
1016 rtex->surface.u.gfx9.surf.swizzle_mode,
1017 rtex->surface.u.gfx9.surf.epitch,
1018 rtex->surface.u.gfx9.surf_pitch);
1019
1020 if (rtex->surface.fmask_size) {
1021 u_log_printf(log, " FMASK: offset=%"PRIu64", size=%"PRIu64", "
1022 "alignment=%u, swmode=%u, epitch=%u\n",
1023 rtex->fmask_offset,
1024 rtex->surface.fmask_size,
1025 rtex->surface.fmask_alignment,
1026 rtex->surface.u.gfx9.fmask.swizzle_mode,
1027 rtex->surface.u.gfx9.fmask.epitch);
1028 }
1029
1030 if (rtex->cmask.size) {
1031 u_log_printf(log, " CMask: offset=%"PRIu64", size=%"PRIu64", "
1032 "alignment=%u, rb_aligned=%u, pipe_aligned=%u\n",
1033 rtex->cmask.offset,
1034 rtex->surface.u.gfx9.cmask_size,
1035 rtex->surface.u.gfx9.cmask_alignment,
1036 rtex->surface.u.gfx9.cmask.rb_aligned,
1037 rtex->surface.u.gfx9.cmask.pipe_aligned);
1038 }
1039
1040 if (rtex->htile_offset) {
1041 u_log_printf(log, " HTile: offset=%"PRIu64", size=%u, alignment=%u, "
1042 "rb_aligned=%u, pipe_aligned=%u\n",
1043 rtex->htile_offset,
1044 rtex->surface.htile_size,
1045 rtex->surface.htile_alignment,
1046 rtex->surface.u.gfx9.htile.rb_aligned,
1047 rtex->surface.u.gfx9.htile.pipe_aligned);
1048 }
1049
1050 if (rtex->dcc_offset) {
1051 u_log_printf(log, " DCC: offset=%"PRIu64", size=%u, "
1052 "alignment=%u, pitch_max=%u, num_dcc_levels=%u\n",
1053 rtex->dcc_offset, rtex->surface.dcc_size,
1054 rtex->surface.dcc_alignment,
1055 rtex->surface.u.gfx9.dcc_pitch_max,
1056 rtex->surface.num_dcc_levels);
1057 }
1058
1059 if (rtex->surface.u.gfx9.stencil_offset) {
1060 u_log_printf(log, " Stencil: offset=%"PRIu64", swmode=%u, epitch=%u\n",
1061 rtex->surface.u.gfx9.stencil_offset,
1062 rtex->surface.u.gfx9.stencil.swizzle_mode,
1063 rtex->surface.u.gfx9.stencil.epitch);
1064 }
1065 return;
1066 }
1067
1068 u_log_printf(log, " Layout: size=%"PRIu64", alignment=%u, bankw=%u, "
1069 "bankh=%u, nbanks=%u, mtilea=%u, tilesplit=%u, pipeconfig=%u, scanout=%u\n",
1070 rtex->surface.surf_size, rtex->surface.surf_alignment, rtex->surface.u.legacy.bankw,
1071 rtex->surface.u.legacy.bankh, rtex->surface.u.legacy.num_banks, rtex->surface.u.legacy.mtilea,
1072 rtex->surface.u.legacy.tile_split, rtex->surface.u.legacy.pipe_config,
1073 (rtex->surface.flags & RADEON_SURF_SCANOUT) != 0);
1074
1075 if (rtex->surface.fmask_size)
1076 u_log_printf(log, " FMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, pitch_in_pixels=%u, "
1077 "bankh=%u, slice_tile_max=%u, tile_mode_index=%u\n",
1078 rtex->fmask_offset, rtex->surface.fmask_size, rtex->surface.fmask_alignment,
1079 rtex->surface.u.legacy.fmask.pitch_in_pixels,
1080 rtex->surface.u.legacy.fmask.bankh,
1081 rtex->surface.u.legacy.fmask.slice_tile_max,
1082 rtex->surface.u.legacy.fmask.tiling_index);
1083
1084 if (rtex->cmask.size)
1085 u_log_printf(log, " CMask: offset=%"PRIu64", size=%"PRIu64", alignment=%u, "
1086 "slice_tile_max=%u\n",
1087 rtex->cmask.offset, rtex->cmask.size, rtex->cmask.alignment,
1088 rtex->cmask.slice_tile_max);
1089
1090 if (rtex->htile_offset)
1091 u_log_printf(log, " HTile: offset=%"PRIu64", size=%u, "
1092 "alignment=%u, TC_compatible = %u\n",
1093 rtex->htile_offset, rtex->surface.htile_size,
1094 rtex->surface.htile_alignment,
1095 rtex->tc_compatible_htile);
1096
1097 if (rtex->dcc_offset) {
1098 u_log_printf(log, " DCC: offset=%"PRIu64", size=%u, alignment=%u\n",
1099 rtex->dcc_offset, rtex->surface.dcc_size,
1100 rtex->surface.dcc_alignment);
1101 for (i = 0; i <= rtex->buffer.b.b.last_level; i++)
1102 u_log_printf(log, " DCCLevel[%i]: enabled=%u, offset=%u, "
1103 "fast_clear_size=%u\n",
1104 i, i < rtex->surface.num_dcc_levels,
1105 rtex->surface.u.legacy.level[i].dcc_offset,
1106 rtex->surface.u.legacy.level[i].dcc_fast_clear_size);
1107 }
1108
1109 for (i = 0; i <= rtex->buffer.b.b.last_level; i++)
1110 u_log_printf(log, " Level[%i]: offset=%"PRIu64", slice_size=%"PRIu64", "
1111 "npix_x=%u, npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
1112 "mode=%u, tiling_index = %u\n",
1113 i, rtex->surface.u.legacy.level[i].offset,
1114 (uint64_t)rtex->surface.u.legacy.level[i].slice_size_dw * 4,
1115 u_minify(rtex->buffer.b.b.width0, i),
1116 u_minify(rtex->buffer.b.b.height0, i),
1117 u_minify(rtex->buffer.b.b.depth0, i),
1118 rtex->surface.u.legacy.level[i].nblk_x,
1119 rtex->surface.u.legacy.level[i].nblk_y,
1120 rtex->surface.u.legacy.level[i].mode,
1121 rtex->surface.u.legacy.tiling_index[i]);
1122
1123 if (rtex->surface.has_stencil) {
1124 u_log_printf(log, " StencilLayout: tilesplit=%u\n",
1125 rtex->surface.u.legacy.stencil_tile_split);
1126 for (i = 0; i <= rtex->buffer.b.b.last_level; i++) {
1127 u_log_printf(log, " StencilLevel[%i]: offset=%"PRIu64", "
1128 "slice_size=%"PRIu64", npix_x=%u, "
1129 "npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
1130 "mode=%u, tiling_index = %u\n",
1131 i, rtex->surface.u.legacy.stencil_level[i].offset,
1132 (uint64_t)rtex->surface.u.legacy.stencil_level[i].slice_size_dw * 4,
1133 u_minify(rtex->buffer.b.b.width0, i),
1134 u_minify(rtex->buffer.b.b.height0, i),
1135 u_minify(rtex->buffer.b.b.depth0, i),
1136 rtex->surface.u.legacy.stencil_level[i].nblk_x,
1137 rtex->surface.u.legacy.stencil_level[i].nblk_y,
1138 rtex->surface.u.legacy.stencil_level[i].mode,
1139 rtex->surface.u.legacy.stencil_tiling_index[i]);
1140 }
1141 }
1142 }
1143
1144 /* Common processing for r600_texture_create and r600_texture_from_handle */
1145 static struct r600_texture *
1146 si_texture_create_object(struct pipe_screen *screen,
1147 const struct pipe_resource *base,
1148 struct pb_buffer *buf,
1149 struct radeon_surf *surface)
1150 {
1151 struct r600_texture *rtex;
1152 struct r600_resource *resource;
1153 struct si_screen *sscreen = (struct si_screen*)screen;
1154
1155 rtex = CALLOC_STRUCT(r600_texture);
1156 if (!rtex)
1157 return NULL;
1158
1159 resource = &rtex->buffer;
1160 resource->b.b = *base;
1161 resource->b.b.next = NULL;
1162 resource->b.vtbl = &si_texture_vtbl;
1163 pipe_reference_init(&resource->b.b.reference, 1);
1164 resource->b.b.screen = screen;
1165
1166 /* don't include stencil-only formats which we don't support for rendering */
1167 rtex->is_depth = util_format_has_depth(util_format_description(rtex->buffer.b.b.format));
1168
1169 rtex->surface = *surface;
1170 rtex->size = rtex->surface.surf_size;
1171
1172 rtex->tc_compatible_htile = rtex->surface.htile_size != 0 &&
1173 (rtex->surface.flags &
1174 RADEON_SURF_TC_COMPATIBLE_HTILE);
1175
1176 /* TC-compatible HTILE:
1177 * - VI only supports Z32_FLOAT.
1178 * - GFX9 only supports Z32_FLOAT and Z16_UNORM. */
1179 if (rtex->tc_compatible_htile) {
1180 if (sscreen->info.chip_class >= GFX9 &&
1181 base->format == PIPE_FORMAT_Z16_UNORM)
1182 rtex->db_render_format = base->format;
1183 else {
1184 rtex->db_render_format = PIPE_FORMAT_Z32_FLOAT;
1185 rtex->upgraded_depth = base->format != PIPE_FORMAT_Z32_FLOAT &&
1186 base->format != PIPE_FORMAT_Z32_FLOAT_S8X24_UINT;
1187 }
1188 } else {
1189 rtex->db_render_format = base->format;
1190 }
1191
1192 /* Applies to GCN. */
1193 rtex->last_msaa_resolve_target_micro_mode = rtex->surface.micro_tile_mode;
1194
1195 /* Disable separate DCC at the beginning. DRI2 doesn't reuse buffers
1196 * between frames, so the only thing that can enable separate DCC
1197 * with DRI2 is multiple slow clears within a frame.
1198 */
1199 rtex->ps_draw_ratio = 0;
1200
1201 if (rtex->is_depth) {
1202 if (sscreen->info.chip_class >= GFX9) {
1203 rtex->can_sample_z = true;
1204 rtex->can_sample_s = true;
1205 } else {
1206 rtex->can_sample_z = !rtex->surface.u.legacy.depth_adjusted;
1207 rtex->can_sample_s = !rtex->surface.u.legacy.stencil_adjusted;
1208 }
1209
1210 if (!(base->flags & (SI_RESOURCE_FLAG_TRANSFER |
1211 SI_RESOURCE_FLAG_FLUSHED_DEPTH))) {
1212 rtex->db_compatible = true;
1213
1214 if (!(sscreen->debug_flags & DBG(NO_HYPERZ)))
1215 si_texture_allocate_htile(sscreen, rtex);
1216 }
1217 } else {
1218 if (base->nr_samples > 1 &&
1219 !buf &&
1220 !(sscreen->debug_flags & DBG(NO_FMASK))) {
1221 /* Allocate FMASK. */
1222 rtex->fmask_offset = align64(rtex->size,
1223 rtex->surface.fmask_alignment);
1224 rtex->size = rtex->fmask_offset + rtex->surface.fmask_size;
1225
1226 si_texture_allocate_cmask(sscreen, rtex);
1227 rtex->cmask_buffer = &rtex->buffer;
1228
1229 if (!rtex->surface.fmask_size || !rtex->cmask.size) {
1230 FREE(rtex);
1231 return NULL;
1232 }
1233 }
1234
1235 /* Shared textures must always set up DCC here.
1236 * If it's not present, it will be disabled by
1237 * apply_opaque_metadata later.
1238 */
1239 if (rtex->surface.dcc_size &&
1240 (buf || !(sscreen->debug_flags & DBG(NO_DCC))) &&
1241 !(rtex->surface.flags & RADEON_SURF_SCANOUT)) {
1242 /* Reserve space for the DCC buffer. */
1243 rtex->dcc_offset = align64(rtex->size, rtex->surface.dcc_alignment);
1244 rtex->size = rtex->dcc_offset + rtex->surface.dcc_size;
1245 }
1246 }
1247
1248 /* Now create the backing buffer. */
1249 if (!buf) {
1250 si_init_resource_fields(sscreen, resource, rtex->size,
1251 rtex->surface.surf_alignment);
1252
1253 if (!si_alloc_resource(sscreen, resource)) {
1254 FREE(rtex);
1255 return NULL;
1256 }
1257 } else {
1258 resource->buf = buf;
1259 resource->gpu_address = sscreen->ws->buffer_get_virtual_address(resource->buf);
1260 resource->bo_size = buf->size;
1261 resource->bo_alignment = buf->alignment;
1262 resource->domains = sscreen->ws->buffer_get_initial_domain(resource->buf);
1263 if (resource->domains & RADEON_DOMAIN_VRAM)
1264 resource->vram_usage = buf->size;
1265 else if (resource->domains & RADEON_DOMAIN_GTT)
1266 resource->gart_usage = buf->size;
1267 }
1268
1269 if (rtex->cmask.size) {
1270 /* Initialize the cmask to 0xCC (= compressed state). */
1271 si_screen_clear_buffer(sscreen, &rtex->cmask_buffer->b.b,
1272 rtex->cmask.offset, rtex->cmask.size,
1273 0xCCCCCCCC);
1274 }
1275 if (rtex->htile_offset) {
1276 uint32_t clear_value = 0;
1277
1278 if (sscreen->info.chip_class >= GFX9 || rtex->tc_compatible_htile)
1279 clear_value = 0x0000030F;
1280
1281 si_screen_clear_buffer(sscreen, &rtex->buffer.b.b,
1282 rtex->htile_offset,
1283 rtex->surface.htile_size,
1284 clear_value);
1285 }
1286
1287 /* Initialize DCC only if the texture is not being imported. */
1288 if (!buf && rtex->dcc_offset) {
1289 si_screen_clear_buffer(sscreen, &rtex->buffer.b.b,
1290 rtex->dcc_offset,
1291 rtex->surface.dcc_size,
1292 0xFFFFFFFF);
1293 }
1294
1295 /* Initialize the CMASK base register value. */
1296 rtex->cmask.base_address_reg =
1297 (rtex->buffer.gpu_address + rtex->cmask.offset) >> 8;
1298
1299 if (sscreen->debug_flags & DBG(VM)) {
1300 fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Texture %ix%ix%i, %i levels, %i samples, %s\n",
1301 rtex->buffer.gpu_address,
1302 rtex->buffer.gpu_address + rtex->buffer.buf->size,
1303 base->width0, base->height0, util_num_layers(base, 0), base->last_level+1,
1304 base->nr_samples ? base->nr_samples : 1, util_format_short_name(base->format));
1305 }
1306
1307 if (sscreen->debug_flags & DBG(TEX)) {
1308 puts("Texture:");
1309 struct u_log_context log;
1310 u_log_context_init(&log);
1311 si_print_texture_info(sscreen, rtex, &log);
1312 u_log_new_page_print(&log, stdout);
1313 fflush(stdout);
1314 u_log_context_destroy(&log);
1315 }
1316
1317 return rtex;
1318 }
1319
1320 static enum radeon_surf_mode
1321 si_choose_tiling(struct si_screen *sscreen,
1322 const struct pipe_resource *templ, bool tc_compatible_htile)
1323 {
1324 const struct util_format_description *desc = util_format_description(templ->format);
1325 bool force_tiling = templ->flags & SI_RESOURCE_FLAG_FORCE_TILING;
1326 bool is_depth_stencil = util_format_is_depth_or_stencil(templ->format) &&
1327 !(templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH);
1328
1329 /* MSAA resources must be 2D tiled. */
1330 if (templ->nr_samples > 1)
1331 return RADEON_SURF_MODE_2D;
1332
1333 /* Transfer resources should be linear. */
1334 if (templ->flags & SI_RESOURCE_FLAG_TRANSFER)
1335 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1336
1337 /* Avoid Z/S decompress blits by forcing TC-compatible HTILE on VI,
1338 * which requires 2D tiling.
1339 */
1340 if (sscreen->info.chip_class == VI && tc_compatible_htile)
1341 return RADEON_SURF_MODE_2D;
1342
1343 /* Handle common candidates for the linear mode.
1344 * Compressed textures and DB surfaces must always be tiled.
1345 */
1346 if (!force_tiling &&
1347 !is_depth_stencil &&
1348 !util_format_is_compressed(templ->format)) {
1349 if (sscreen->debug_flags & DBG(NO_TILING))
1350 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1351
1352 /* Tiling doesn't work with the 422 (SUBSAMPLED) formats. */
1353 if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED)
1354 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1355
1356 /* Cursors are linear on SI.
1357 * (XXX double-check, maybe also use RADEON_SURF_SCANOUT) */
1358 if (templ->bind & PIPE_BIND_CURSOR)
1359 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1360
1361 if (templ->bind & PIPE_BIND_LINEAR)
1362 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1363
1364 /* Textures with a very small height are recommended to be linear. */
1365 if (templ->target == PIPE_TEXTURE_1D ||
1366 templ->target == PIPE_TEXTURE_1D_ARRAY ||
1367 /* Only very thin and long 2D textures should benefit from
1368 * linear_aligned. */
1369 (templ->width0 > 8 && templ->height0 <= 2))
1370 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1371
1372 /* Textures likely to be mapped often. */
1373 if (templ->usage == PIPE_USAGE_STAGING ||
1374 templ->usage == PIPE_USAGE_STREAM)
1375 return RADEON_SURF_MODE_LINEAR_ALIGNED;
1376 }
1377
1378 /* Make small textures 1D tiled. */
1379 if (templ->width0 <= 16 || templ->height0 <= 16 ||
1380 (sscreen->debug_flags & DBG(NO_2D_TILING)))
1381 return RADEON_SURF_MODE_1D;
1382
1383 /* The allocator will switch to 1D if needed. */
1384 return RADEON_SURF_MODE_2D;
1385 }
1386
1387 struct pipe_resource *si_texture_create(struct pipe_screen *screen,
1388 const struct pipe_resource *templ)
1389 {
1390 struct si_screen *sscreen = (struct si_screen*)screen;
1391 struct radeon_surf surface = {0};
1392 bool is_flushed_depth = templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH;
1393 bool tc_compatible_htile =
1394 sscreen->info.chip_class >= VI &&
1395 /* There are issues with TC-compatible HTILE on Tonga (and
1396 * Iceland is the same design), and documented bug workarounds
1397 * don't help. For example, this fails:
1398 * piglit/bin/tex-miplevel-selection 'texture()' 2DShadow -auto
1399 */
1400 sscreen->info.family != CHIP_TONGA &&
1401 sscreen->info.family != CHIP_ICELAND &&
1402 (templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY) &&
1403 !(sscreen->debug_flags & DBG(NO_HYPERZ)) &&
1404 !is_flushed_depth &&
1405 templ->nr_samples <= 1 && /* TC-compat HTILE is less efficient with MSAA */
1406 util_format_is_depth_or_stencil(templ->format);
1407
1408 int r;
1409
1410 r = si_init_surface(sscreen, &surface, templ,
1411 si_choose_tiling(sscreen, templ, tc_compatible_htile),
1412 0, 0, false, false, is_flushed_depth,
1413 tc_compatible_htile);
1414 if (r) {
1415 return NULL;
1416 }
1417
1418 return (struct pipe_resource *)
1419 si_texture_create_object(screen, templ, NULL, &surface);
1420 }
1421
1422 static struct pipe_resource *si_texture_from_handle(struct pipe_screen *screen,
1423 const struct pipe_resource *templ,
1424 struct winsys_handle *whandle,
1425 unsigned usage)
1426 {
1427 struct si_screen *sscreen = (struct si_screen*)screen;
1428 struct pb_buffer *buf = NULL;
1429 unsigned stride = 0, offset = 0;
1430 enum radeon_surf_mode array_mode;
1431 struct radeon_surf surface = {};
1432 int r;
1433 struct radeon_bo_metadata metadata = {};
1434 struct r600_texture *rtex;
1435 bool is_scanout;
1436
1437 /* Support only 2D textures without mipmaps */
1438 if ((templ->target != PIPE_TEXTURE_2D && templ->target != PIPE_TEXTURE_RECT) ||
1439 templ->depth0 != 1 || templ->last_level != 0)
1440 return NULL;
1441
1442 buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle, &stride, &offset);
1443 if (!buf)
1444 return NULL;
1445
1446 sscreen->ws->buffer_get_metadata(buf, &metadata);
1447 si_surface_import_metadata(sscreen, &surface, &metadata,
1448 &array_mode, &is_scanout);
1449
1450 r = si_init_surface(sscreen, &surface, templ, array_mode, stride,
1451 offset, true, is_scanout, false, false);
1452 if (r) {
1453 return NULL;
1454 }
1455
1456 rtex = si_texture_create_object(screen, templ, buf, &surface);
1457 if (!rtex)
1458 return NULL;
1459
1460 rtex->buffer.b.is_shared = true;
1461 rtex->buffer.external_usage = usage;
1462
1463 si_apply_opaque_metadata(sscreen, rtex, &metadata);
1464
1465 assert(rtex->surface.tile_swizzle == 0);
1466 return &rtex->buffer.b.b;
1467 }
1468
1469 bool si_init_flushed_depth_texture(struct pipe_context *ctx,
1470 struct pipe_resource *texture,
1471 struct r600_texture **staging)
1472 {
1473 struct r600_texture *rtex = (struct r600_texture*)texture;
1474 struct pipe_resource resource;
1475 struct r600_texture **flushed_depth_texture = staging ?
1476 staging : &rtex->flushed_depth_texture;
1477 enum pipe_format pipe_format = texture->format;
1478
1479 if (!staging) {
1480 if (rtex->flushed_depth_texture)
1481 return true; /* it's ready */
1482
1483 if (!rtex->can_sample_z && rtex->can_sample_s) {
1484 switch (pipe_format) {
1485 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
1486 /* Save memory by not allocating the S plane. */
1487 pipe_format = PIPE_FORMAT_Z32_FLOAT;
1488 break;
1489 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
1490 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
1491 /* Save memory bandwidth by not copying the
1492 * stencil part during flush.
1493 *
1494 * This potentially increases memory bandwidth
1495 * if an application uses both Z and S texturing
1496 * simultaneously (a flushed Z24S8 texture
1497 * would be stored compactly), but how often
1498 * does that really happen?
1499 */
1500 pipe_format = PIPE_FORMAT_Z24X8_UNORM;
1501 break;
1502 default:;
1503 }
1504 } else if (!rtex->can_sample_s && rtex->can_sample_z) {
1505 assert(util_format_has_stencil(util_format_description(pipe_format)));
1506
1507 /* DB->CB copies to an 8bpp surface don't work. */
1508 pipe_format = PIPE_FORMAT_X24S8_UINT;
1509 }
1510 }
1511
1512 memset(&resource, 0, sizeof(resource));
1513 resource.target = texture->target;
1514 resource.format = pipe_format;
1515 resource.width0 = texture->width0;
1516 resource.height0 = texture->height0;
1517 resource.depth0 = texture->depth0;
1518 resource.array_size = texture->array_size;
1519 resource.last_level = texture->last_level;
1520 resource.nr_samples = texture->nr_samples;
1521 resource.usage = staging ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT;
1522 resource.bind = texture->bind & ~PIPE_BIND_DEPTH_STENCIL;
1523 resource.flags = texture->flags | SI_RESOURCE_FLAG_FLUSHED_DEPTH;
1524
1525 if (staging)
1526 resource.flags |= SI_RESOURCE_FLAG_TRANSFER;
1527
1528 *flushed_depth_texture = (struct r600_texture *)ctx->screen->resource_create(ctx->screen, &resource);
1529 if (*flushed_depth_texture == NULL) {
1530 PRINT_ERR("failed to create temporary texture to hold flushed depth\n");
1531 return false;
1532 }
1533 return true;
1534 }
1535
1536 /**
1537 * Initialize the pipe_resource descriptor to be of the same size as the box,
1538 * which is supposed to hold a subregion of the texture "orig" at the given
1539 * mipmap level.
1540 */
1541 static void si_init_temp_resource_from_box(struct pipe_resource *res,
1542 struct pipe_resource *orig,
1543 const struct pipe_box *box,
1544 unsigned level, unsigned flags)
1545 {
1546 memset(res, 0, sizeof(*res));
1547 res->format = orig->format;
1548 res->width0 = box->width;
1549 res->height0 = box->height;
1550 res->depth0 = 1;
1551 res->array_size = 1;
1552 res->usage = flags & SI_RESOURCE_FLAG_TRANSFER ? PIPE_USAGE_STAGING : PIPE_USAGE_DEFAULT;
1553 res->flags = flags;
1554
1555 /* We must set the correct texture target and dimensions for a 3D box. */
1556 if (box->depth > 1 && util_max_layer(orig, level) > 0) {
1557 res->target = PIPE_TEXTURE_2D_ARRAY;
1558 res->array_size = box->depth;
1559 } else {
1560 res->target = PIPE_TEXTURE_2D;
1561 }
1562 }
1563
1564 static bool si_can_invalidate_texture(struct si_screen *sscreen,
1565 struct r600_texture *rtex,
1566 unsigned transfer_usage,
1567 const struct pipe_box *box)
1568 {
1569 return !rtex->buffer.b.is_shared &&
1570 !(transfer_usage & PIPE_TRANSFER_READ) &&
1571 rtex->buffer.b.b.last_level == 0 &&
1572 util_texrange_covers_whole_level(&rtex->buffer.b.b, 0,
1573 box->x, box->y, box->z,
1574 box->width, box->height,
1575 box->depth);
1576 }
1577
1578 static void si_texture_invalidate_storage(struct si_context *sctx,
1579 struct r600_texture *rtex)
1580 {
1581 struct si_screen *sscreen = sctx->screen;
1582
1583 /* There is no point in discarding depth and tiled buffers. */
1584 assert(!rtex->is_depth);
1585 assert(rtex->surface.is_linear);
1586
1587 /* Reallocate the buffer in the same pipe_resource. */
1588 si_alloc_resource(sscreen, &rtex->buffer);
1589
1590 /* Initialize the CMASK base address (needed even without CMASK). */
1591 rtex->cmask.base_address_reg =
1592 (rtex->buffer.gpu_address + rtex->cmask.offset) >> 8;
1593
1594 p_atomic_inc(&sscreen->dirty_tex_counter);
1595
1596 sctx->num_alloc_tex_transfer_bytes += rtex->size;
1597 }
1598
1599 static void *si_texture_transfer_map(struct pipe_context *ctx,
1600 struct pipe_resource *texture,
1601 unsigned level,
1602 unsigned usage,
1603 const struct pipe_box *box,
1604 struct pipe_transfer **ptransfer)
1605 {
1606 struct si_context *sctx = (struct si_context*)ctx;
1607 struct r600_texture *rtex = (struct r600_texture*)texture;
1608 struct r600_transfer *trans;
1609 struct r600_resource *buf;
1610 unsigned offset = 0;
1611 char *map;
1612 bool use_staging_texture = false;
1613
1614 assert(!(texture->flags & SI_RESOURCE_FLAG_TRANSFER));
1615 assert(box->width && box->height && box->depth);
1616
1617 /* Depth textures use staging unconditionally. */
1618 if (!rtex->is_depth) {
1619 /* Degrade the tile mode if we get too many transfers on APUs.
1620 * On dGPUs, the staging texture is always faster.
1621 * Only count uploads that are at least 4x4 pixels large.
1622 */
1623 if (!sctx->screen->info.has_dedicated_vram &&
1624 level == 0 &&
1625 box->width >= 4 && box->height >= 4 &&
1626 p_atomic_inc_return(&rtex->num_level0_transfers) == 10) {
1627 bool can_invalidate =
1628 si_can_invalidate_texture(sctx->screen, rtex,
1629 usage, box);
1630
1631 si_reallocate_texture_inplace(sctx, rtex,
1632 PIPE_BIND_LINEAR,
1633 can_invalidate);
1634 }
1635
1636 /* Tiled textures need to be converted into a linear texture for CPU
1637 * access. The staging texture is always linear and is placed in GART.
1638 *
1639 * Reading from VRAM or GTT WC is slow, always use the staging
1640 * texture in this case.
1641 *
1642 * Use the staging texture for uploads if the underlying BO
1643 * is busy.
1644 */
1645 if (!rtex->surface.is_linear)
1646 use_staging_texture = true;
1647 else if (usage & PIPE_TRANSFER_READ)
1648 use_staging_texture =
1649 rtex->buffer.domains & RADEON_DOMAIN_VRAM ||
1650 rtex->buffer.flags & RADEON_FLAG_GTT_WC;
1651 /* Write & linear only: */
1652 else if (si_rings_is_buffer_referenced(sctx, rtex->buffer.buf,
1653 RADEON_USAGE_READWRITE) ||
1654 !sctx->ws->buffer_wait(rtex->buffer.buf, 0,
1655 RADEON_USAGE_READWRITE)) {
1656 /* It's busy. */
1657 if (si_can_invalidate_texture(sctx->screen, rtex,
1658 usage, box))
1659 si_texture_invalidate_storage(sctx, rtex);
1660 else
1661 use_staging_texture = true;
1662 }
1663 }
1664
1665 trans = CALLOC_STRUCT(r600_transfer);
1666 if (!trans)
1667 return NULL;
1668 pipe_resource_reference(&trans->b.b.resource, texture);
1669 trans->b.b.level = level;
1670 trans->b.b.usage = usage;
1671 trans->b.b.box = *box;
1672
1673 if (rtex->is_depth) {
1674 struct r600_texture *staging_depth;
1675
1676 if (rtex->buffer.b.b.nr_samples > 1) {
1677 /* MSAA depth buffers need to be converted to single sample buffers.
1678 *
1679 * Mapping MSAA depth buffers can occur if ReadPixels is called
1680 * with a multisample GLX visual.
1681 *
1682 * First downsample the depth buffer to a temporary texture,
1683 * then decompress the temporary one to staging.
1684 *
1685 * Only the region being mapped is transfered.
1686 */
1687 struct pipe_resource resource;
1688
1689 si_init_temp_resource_from_box(&resource, texture, box, level, 0);
1690
1691 if (!si_init_flushed_depth_texture(ctx, &resource, &staging_depth)) {
1692 PRINT_ERR("failed to create temporary texture to hold untiled copy\n");
1693 goto fail_trans;
1694 }
1695
1696 if (usage & PIPE_TRANSFER_READ) {
1697 struct pipe_resource *temp = ctx->screen->resource_create(ctx->screen, &resource);
1698 if (!temp) {
1699 PRINT_ERR("failed to create a temporary depth texture\n");
1700 goto fail_trans;
1701 }
1702
1703 si_copy_region_with_blit(ctx, temp, 0, 0, 0, 0, texture, level, box);
1704 si_blit_decompress_depth(ctx, (struct r600_texture*)temp, staging_depth,
1705 0, 0, 0, box->depth, 0, 0);
1706 pipe_resource_reference(&temp, NULL);
1707 }
1708
1709 /* Just get the strides. */
1710 si_texture_get_offset(sctx->screen, staging_depth, level, NULL,
1711 &trans->b.b.stride,
1712 &trans->b.b.layer_stride);
1713 } else {
1714 /* XXX: only readback the rectangle which is being mapped? */
1715 /* XXX: when discard is true, no need to read back from depth texture */
1716 if (!si_init_flushed_depth_texture(ctx, texture, &staging_depth)) {
1717 PRINT_ERR("failed to create temporary texture to hold untiled copy\n");
1718 goto fail_trans;
1719 }
1720
1721 si_blit_decompress_depth(ctx, rtex, staging_depth,
1722 level, level,
1723 box->z, box->z + box->depth - 1,
1724 0, 0);
1725
1726 offset = si_texture_get_offset(sctx->screen, staging_depth,
1727 level, box,
1728 &trans->b.b.stride,
1729 &trans->b.b.layer_stride);
1730 }
1731
1732 trans->staging = &staging_depth->buffer;
1733 buf = trans->staging;
1734 } else if (use_staging_texture) {
1735 struct pipe_resource resource;
1736 struct r600_texture *staging;
1737
1738 si_init_temp_resource_from_box(&resource, texture, box, level,
1739 SI_RESOURCE_FLAG_TRANSFER);
1740 resource.usage = (usage & PIPE_TRANSFER_READ) ?
1741 PIPE_USAGE_STAGING : PIPE_USAGE_STREAM;
1742
1743 /* Create the temporary texture. */
1744 staging = (struct r600_texture*)ctx->screen->resource_create(ctx->screen, &resource);
1745 if (!staging) {
1746 PRINT_ERR("failed to create temporary texture to hold untiled copy\n");
1747 goto fail_trans;
1748 }
1749 trans->staging = &staging->buffer;
1750
1751 /* Just get the strides. */
1752 si_texture_get_offset(sctx->screen, staging, 0, NULL,
1753 &trans->b.b.stride,
1754 &trans->b.b.layer_stride);
1755
1756 if (usage & PIPE_TRANSFER_READ)
1757 si_copy_to_staging_texture(ctx, trans);
1758 else
1759 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
1760
1761 buf = trans->staging;
1762 } else {
1763 /* the resource is mapped directly */
1764 offset = si_texture_get_offset(sctx->screen, rtex, level, box,
1765 &trans->b.b.stride,
1766 &trans->b.b.layer_stride);
1767 buf = &rtex->buffer;
1768 }
1769
1770 if (!(map = si_buffer_map_sync_with_rings(sctx, buf, usage)))
1771 goto fail_trans;
1772
1773 *ptransfer = &trans->b.b;
1774 return map + offset;
1775
1776 fail_trans:
1777 r600_resource_reference(&trans->staging, NULL);
1778 pipe_resource_reference(&trans->b.b.resource, NULL);
1779 FREE(trans);
1780 return NULL;
1781 }
1782
1783 static void si_texture_transfer_unmap(struct pipe_context *ctx,
1784 struct pipe_transfer* transfer)
1785 {
1786 struct si_context *sctx = (struct si_context*)ctx;
1787 struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
1788 struct pipe_resource *texture = transfer->resource;
1789 struct r600_texture *rtex = (struct r600_texture*)texture;
1790
1791 if ((transfer->usage & PIPE_TRANSFER_WRITE) && rtransfer->staging) {
1792 if (rtex->is_depth && rtex->buffer.b.b.nr_samples <= 1) {
1793 ctx->resource_copy_region(ctx, texture, transfer->level,
1794 transfer->box.x, transfer->box.y, transfer->box.z,
1795 &rtransfer->staging->b.b, transfer->level,
1796 &transfer->box);
1797 } else {
1798 si_copy_from_staging_texture(ctx, rtransfer);
1799 }
1800 }
1801
1802 if (rtransfer->staging) {
1803 sctx->num_alloc_tex_transfer_bytes += rtransfer->staging->buf->size;
1804 r600_resource_reference(&rtransfer->staging, NULL);
1805 }
1806
1807 /* Heuristic for {upload, draw, upload, draw, ..}:
1808 *
1809 * Flush the gfx IB if we've allocated too much texture storage.
1810 *
1811 * The idea is that we don't want to build IBs that use too much
1812 * memory and put pressure on the kernel memory manager and we also
1813 * want to make temporary and invalidated buffers go idle ASAP to
1814 * decrease the total memory usage or make them reusable. The memory
1815 * usage will be slightly higher than given here because of the buffer
1816 * cache in the winsys.
1817 *
1818 * The result is that the kernel memory manager is never a bottleneck.
1819 */
1820 if (sctx->num_alloc_tex_transfer_bytes > sctx->screen->info.gart_size / 4) {
1821 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
1822 sctx->num_alloc_tex_transfer_bytes = 0;
1823 }
1824
1825 pipe_resource_reference(&transfer->resource, NULL);
1826 FREE(transfer);
1827 }
1828
1829 static const struct u_resource_vtbl si_texture_vtbl =
1830 {
1831 NULL, /* get_handle */
1832 si_texture_destroy, /* resource_destroy */
1833 si_texture_transfer_map, /* transfer_map */
1834 u_default_transfer_flush_region, /* transfer_flush_region */
1835 si_texture_transfer_unmap, /* transfer_unmap */
1836 };
1837
1838 /* Return if it's allowed to reinterpret one format as another with DCC enabled.
1839 */
1840 bool vi_dcc_formats_compatible(enum pipe_format format1,
1841 enum pipe_format format2)
1842 {
1843 const struct util_format_description *desc1, *desc2;
1844
1845 /* No format change - exit early. */
1846 if (format1 == format2)
1847 return true;
1848
1849 format1 = si_simplify_cb_format(format1);
1850 format2 = si_simplify_cb_format(format2);
1851
1852 /* Check again after format adjustments. */
1853 if (format1 == format2)
1854 return true;
1855
1856 desc1 = util_format_description(format1);
1857 desc2 = util_format_description(format2);
1858
1859 if (desc1->layout != UTIL_FORMAT_LAYOUT_PLAIN ||
1860 desc2->layout != UTIL_FORMAT_LAYOUT_PLAIN)
1861 return false;
1862
1863 /* Float and non-float are totally incompatible. */
1864 if ((desc1->channel[0].type == UTIL_FORMAT_TYPE_FLOAT) !=
1865 (desc2->channel[0].type == UTIL_FORMAT_TYPE_FLOAT))
1866 return false;
1867
1868 /* Channel sizes must match across DCC formats.
1869 * Comparing just the first 2 channels should be enough.
1870 */
1871 if (desc1->channel[0].size != desc2->channel[0].size ||
1872 (desc1->nr_channels >= 2 &&
1873 desc1->channel[1].size != desc2->channel[1].size))
1874 return false;
1875
1876 /* Everything below is not needed if the driver never uses the DCC
1877 * clear code with the value of 1.
1878 */
1879
1880 /* If the clear values are all 1 or all 0, this constraint can be
1881 * ignored. */
1882 if (vi_alpha_is_on_msb(format1) != vi_alpha_is_on_msb(format2))
1883 return false;
1884
1885 /* Channel types must match if the clear value of 1 is used.
1886 * The type categories are only float, signed, unsigned.
1887 * NORM and INT are always compatible.
1888 */
1889 if (desc1->channel[0].type != desc2->channel[0].type ||
1890 (desc1->nr_channels >= 2 &&
1891 desc1->channel[1].type != desc2->channel[1].type))
1892 return false;
1893
1894 return true;
1895 }
1896
1897 bool vi_dcc_formats_are_incompatible(struct pipe_resource *tex,
1898 unsigned level,
1899 enum pipe_format view_format)
1900 {
1901 struct r600_texture *rtex = (struct r600_texture *)tex;
1902
1903 return vi_dcc_enabled(rtex, level) &&
1904 !vi_dcc_formats_compatible(tex->format, view_format);
1905 }
1906
1907 /* This can't be merged with the above function, because
1908 * vi_dcc_formats_compatible should be called only when DCC is enabled. */
1909 void vi_disable_dcc_if_incompatible_format(struct si_context *sctx,
1910 struct pipe_resource *tex,
1911 unsigned level,
1912 enum pipe_format view_format)
1913 {
1914 struct r600_texture *rtex = (struct r600_texture *)tex;
1915
1916 if (vi_dcc_formats_are_incompatible(tex, level, view_format))
1917 if (!si_texture_disable_dcc(sctx, (struct r600_texture*)tex))
1918 si_decompress_dcc(sctx, rtex);
1919 }
1920
1921 struct pipe_surface *si_create_surface_custom(struct pipe_context *pipe,
1922 struct pipe_resource *texture,
1923 const struct pipe_surface *templ,
1924 unsigned width0, unsigned height0,
1925 unsigned width, unsigned height)
1926 {
1927 struct r600_surface *surface = CALLOC_STRUCT(r600_surface);
1928
1929 if (!surface)
1930 return NULL;
1931
1932 assert(templ->u.tex.first_layer <= util_max_layer(texture, templ->u.tex.level));
1933 assert(templ->u.tex.last_layer <= util_max_layer(texture, templ->u.tex.level));
1934
1935 pipe_reference_init(&surface->base.reference, 1);
1936 pipe_resource_reference(&surface->base.texture, texture);
1937 surface->base.context = pipe;
1938 surface->base.format = templ->format;
1939 surface->base.width = width;
1940 surface->base.height = height;
1941 surface->base.u = templ->u;
1942
1943 surface->width0 = width0;
1944 surface->height0 = height0;
1945
1946 surface->dcc_incompatible =
1947 texture->target != PIPE_BUFFER &&
1948 vi_dcc_formats_are_incompatible(texture, templ->u.tex.level,
1949 templ->format);
1950 return &surface->base;
1951 }
1952
1953 static struct pipe_surface *si_create_surface(struct pipe_context *pipe,
1954 struct pipe_resource *tex,
1955 const struct pipe_surface *templ)
1956 {
1957 unsigned level = templ->u.tex.level;
1958 unsigned width = u_minify(tex->width0, level);
1959 unsigned height = u_minify(tex->height0, level);
1960 unsigned width0 = tex->width0;
1961 unsigned height0 = tex->height0;
1962
1963 if (tex->target != PIPE_BUFFER && templ->format != tex->format) {
1964 const struct util_format_description *tex_desc
1965 = util_format_description(tex->format);
1966 const struct util_format_description *templ_desc
1967 = util_format_description(templ->format);
1968
1969 assert(tex_desc->block.bits == templ_desc->block.bits);
1970
1971 /* Adjust size of surface if and only if the block width or
1972 * height is changed. */
1973 if (tex_desc->block.width != templ_desc->block.width ||
1974 tex_desc->block.height != templ_desc->block.height) {
1975 unsigned nblks_x = util_format_get_nblocksx(tex->format, width);
1976 unsigned nblks_y = util_format_get_nblocksy(tex->format, height);
1977
1978 width = nblks_x * templ_desc->block.width;
1979 height = nblks_y * templ_desc->block.height;
1980
1981 width0 = util_format_get_nblocksx(tex->format, width0);
1982 height0 = util_format_get_nblocksy(tex->format, height0);
1983 }
1984 }
1985
1986 return si_create_surface_custom(pipe, tex, templ,
1987 width0, height0,
1988 width, height);
1989 }
1990
1991 static void si_surface_destroy(struct pipe_context *pipe,
1992 struct pipe_surface *surface)
1993 {
1994 pipe_resource_reference(&surface->texture, NULL);
1995 FREE(surface);
1996 }
1997
1998 unsigned si_translate_colorswap(enum pipe_format format, bool do_endian_swap)
1999 {
2000 const struct util_format_description *desc = util_format_description(format);
2001
2002 #define HAS_SWIZZLE(chan,swz) (desc->swizzle[chan] == PIPE_SWIZZLE_##swz)
2003
2004 if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */
2005 return V_028C70_SWAP_STD;
2006
2007 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
2008 return ~0U;
2009
2010 switch (desc->nr_channels) {
2011 case 1:
2012 if (HAS_SWIZZLE(0,X))
2013 return V_028C70_SWAP_STD; /* X___ */
2014 else if (HAS_SWIZZLE(3,X))
2015 return V_028C70_SWAP_ALT_REV; /* ___X */
2016 break;
2017 case 2:
2018 if ((HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,Y)) ||
2019 (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(1,NONE)) ||
2020 (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,Y)))
2021 return V_028C70_SWAP_STD; /* XY__ */
2022 else if ((HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,X)) ||
2023 (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(1,NONE)) ||
2024 (HAS_SWIZZLE(0,NONE) && HAS_SWIZZLE(1,X)))
2025 /* YX__ */
2026 return (do_endian_swap ? V_028C70_SWAP_STD : V_028C70_SWAP_STD_REV);
2027 else if (HAS_SWIZZLE(0,X) && HAS_SWIZZLE(3,Y))
2028 return V_028C70_SWAP_ALT; /* X__Y */
2029 else if (HAS_SWIZZLE(0,Y) && HAS_SWIZZLE(3,X))
2030 return V_028C70_SWAP_ALT_REV; /* Y__X */
2031 break;
2032 case 3:
2033 if (HAS_SWIZZLE(0,X))
2034 return (do_endian_swap ? V_028C70_SWAP_STD_REV : V_028C70_SWAP_STD);
2035 else if (HAS_SWIZZLE(0,Z))
2036 return V_028C70_SWAP_STD_REV; /* ZYX */
2037 break;
2038 case 4:
2039 /* check the middle channels, the 1st and 4th channel can be NONE */
2040 if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,Z)) {
2041 return V_028C70_SWAP_STD; /* XYZW */
2042 } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,Y)) {
2043 return V_028C70_SWAP_STD_REV; /* WZYX */
2044 } else if (HAS_SWIZZLE(1,Y) && HAS_SWIZZLE(2,X)) {
2045 return V_028C70_SWAP_ALT; /* ZYXW */
2046 } else if (HAS_SWIZZLE(1,Z) && HAS_SWIZZLE(2,W)) {
2047 /* YZWX */
2048 if (desc->is_array)
2049 return V_028C70_SWAP_ALT_REV;
2050 else
2051 return (do_endian_swap ? V_028C70_SWAP_ALT : V_028C70_SWAP_ALT_REV);
2052 }
2053 break;
2054 }
2055 return ~0U;
2056 }
2057
2058 /* PIPELINE_STAT-BASED DCC ENABLEMENT FOR DISPLAYABLE SURFACES */
2059
2060 static void vi_dcc_clean_up_context_slot(struct si_context *sctx,
2061 int slot)
2062 {
2063 int i;
2064
2065 if (sctx->dcc_stats[slot].query_active)
2066 vi_separate_dcc_stop_query(sctx,
2067 sctx->dcc_stats[slot].tex);
2068
2069 for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats[slot].ps_stats); i++)
2070 if (sctx->dcc_stats[slot].ps_stats[i]) {
2071 sctx->b.destroy_query(&sctx->b,
2072 sctx->dcc_stats[slot].ps_stats[i]);
2073 sctx->dcc_stats[slot].ps_stats[i] = NULL;
2074 }
2075
2076 r600_texture_reference(&sctx->dcc_stats[slot].tex, NULL);
2077 }
2078
2079 /**
2080 * Return the per-context slot where DCC statistics queries for the texture live.
2081 */
2082 static unsigned vi_get_context_dcc_stats_index(struct si_context *sctx,
2083 struct r600_texture *tex)
2084 {
2085 int i, empty_slot = -1;
2086
2087 /* Remove zombie textures (textures kept alive by this array only). */
2088 for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats); i++)
2089 if (sctx->dcc_stats[i].tex &&
2090 sctx->dcc_stats[i].tex->buffer.b.b.reference.count == 1)
2091 vi_dcc_clean_up_context_slot(sctx, i);
2092
2093 /* Find the texture. */
2094 for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats); i++) {
2095 /* Return if found. */
2096 if (sctx->dcc_stats[i].tex == tex) {
2097 sctx->dcc_stats[i].last_use_timestamp = os_time_get();
2098 return i;
2099 }
2100
2101 /* Record the first seen empty slot. */
2102 if (empty_slot == -1 && !sctx->dcc_stats[i].tex)
2103 empty_slot = i;
2104 }
2105
2106 /* Not found. Remove the oldest member to make space in the array. */
2107 if (empty_slot == -1) {
2108 int oldest_slot = 0;
2109
2110 /* Find the oldest slot. */
2111 for (i = 1; i < ARRAY_SIZE(sctx->dcc_stats); i++)
2112 if (sctx->dcc_stats[oldest_slot].last_use_timestamp >
2113 sctx->dcc_stats[i].last_use_timestamp)
2114 oldest_slot = i;
2115
2116 /* Clean up the oldest slot. */
2117 vi_dcc_clean_up_context_slot(sctx, oldest_slot);
2118 empty_slot = oldest_slot;
2119 }
2120
2121 /* Add the texture to the new slot. */
2122 r600_texture_reference(&sctx->dcc_stats[empty_slot].tex, tex);
2123 sctx->dcc_stats[empty_slot].last_use_timestamp = os_time_get();
2124 return empty_slot;
2125 }
2126
2127 static struct pipe_query *
2128 vi_create_resuming_pipestats_query(struct si_context *sctx)
2129 {
2130 struct si_query_hw *query = (struct si_query_hw*)
2131 sctx->b.create_query(&sctx->b, PIPE_QUERY_PIPELINE_STATISTICS, 0);
2132
2133 query->flags |= SI_QUERY_HW_FLAG_BEGIN_RESUMES;
2134 return (struct pipe_query*)query;
2135 }
2136
2137 /**
2138 * Called when binding a color buffer.
2139 */
2140 void vi_separate_dcc_start_query(struct si_context *sctx,
2141 struct r600_texture *tex)
2142 {
2143 unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
2144
2145 assert(!sctx->dcc_stats[i].query_active);
2146
2147 if (!sctx->dcc_stats[i].ps_stats[0])
2148 sctx->dcc_stats[i].ps_stats[0] = vi_create_resuming_pipestats_query(sctx);
2149
2150 /* begin or resume the query */
2151 sctx->b.begin_query(&sctx->b, sctx->dcc_stats[i].ps_stats[0]);
2152 sctx->dcc_stats[i].query_active = true;
2153 }
2154
2155 /**
2156 * Called when unbinding a color buffer.
2157 */
2158 void vi_separate_dcc_stop_query(struct si_context *sctx,
2159 struct r600_texture *tex)
2160 {
2161 unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
2162
2163 assert(sctx->dcc_stats[i].query_active);
2164 assert(sctx->dcc_stats[i].ps_stats[0]);
2165
2166 /* pause or end the query */
2167 sctx->b.end_query(&sctx->b, sctx->dcc_stats[i].ps_stats[0]);
2168 sctx->dcc_stats[i].query_active = false;
2169 }
2170
2171 static bool vi_should_enable_separate_dcc(struct r600_texture *tex)
2172 {
2173 /* The minimum number of fullscreen draws per frame that is required
2174 * to enable DCC. */
2175 return tex->ps_draw_ratio + tex->num_slow_clears >= 5;
2176 }
2177
2178 /* Called by fast clear. */
2179 void vi_separate_dcc_try_enable(struct si_context *sctx,
2180 struct r600_texture *tex)
2181 {
2182 /* The intent is to use this with shared displayable back buffers,
2183 * but it's not strictly limited only to them.
2184 */
2185 if (!tex->buffer.b.is_shared ||
2186 !(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) ||
2187 tex->buffer.b.b.target != PIPE_TEXTURE_2D ||
2188 tex->buffer.b.b.last_level > 0 ||
2189 !tex->surface.dcc_size)
2190 return;
2191
2192 if (tex->dcc_offset)
2193 return; /* already enabled */
2194
2195 /* Enable the DCC stat gathering. */
2196 if (!tex->dcc_gather_statistics) {
2197 tex->dcc_gather_statistics = true;
2198 vi_separate_dcc_start_query(sctx, tex);
2199 }
2200
2201 if (!vi_should_enable_separate_dcc(tex))
2202 return; /* stats show that DCC decompression is too expensive */
2203
2204 assert(tex->surface.num_dcc_levels);
2205 assert(!tex->dcc_separate_buffer);
2206
2207 si_texture_discard_cmask(sctx->screen, tex);
2208
2209 /* Get a DCC buffer. */
2210 if (tex->last_dcc_separate_buffer) {
2211 assert(tex->dcc_gather_statistics);
2212 assert(!tex->dcc_separate_buffer);
2213 tex->dcc_separate_buffer = tex->last_dcc_separate_buffer;
2214 tex->last_dcc_separate_buffer = NULL;
2215 } else {
2216 tex->dcc_separate_buffer =
2217 si_aligned_buffer_create(sctx->b.screen,
2218 SI_RESOURCE_FLAG_UNMAPPABLE,
2219 PIPE_USAGE_DEFAULT,
2220 tex->surface.dcc_size,
2221 tex->surface.dcc_alignment);
2222 if (!tex->dcc_separate_buffer)
2223 return;
2224 }
2225
2226 /* dcc_offset is the absolute GPUVM address. */
2227 tex->dcc_offset = tex->dcc_separate_buffer->gpu_address;
2228
2229 /* no need to flag anything since this is called by fast clear that
2230 * flags framebuffer state
2231 */
2232 }
2233
2234 /**
2235 * Called by pipe_context::flush_resource, the place where DCC decompression
2236 * takes place.
2237 */
2238 void vi_separate_dcc_process_and_reset_stats(struct pipe_context *ctx,
2239 struct r600_texture *tex)
2240 {
2241 struct si_context *sctx = (struct si_context*)ctx;
2242 struct pipe_query *tmp;
2243 unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
2244 bool query_active = sctx->dcc_stats[i].query_active;
2245 bool disable = false;
2246
2247 if (sctx->dcc_stats[i].ps_stats[2]) {
2248 union pipe_query_result result;
2249
2250 /* Read the results. */
2251 ctx->get_query_result(ctx, sctx->dcc_stats[i].ps_stats[2],
2252 true, &result);
2253 si_query_hw_reset_buffers(sctx,
2254 (struct si_query_hw*)
2255 sctx->dcc_stats[i].ps_stats[2]);
2256
2257 /* Compute the approximate number of fullscreen draws. */
2258 tex->ps_draw_ratio =
2259 result.pipeline_statistics.ps_invocations /
2260 (tex->buffer.b.b.width0 * tex->buffer.b.b.height0);
2261 sctx->last_tex_ps_draw_ratio = tex->ps_draw_ratio;
2262
2263 disable = tex->dcc_separate_buffer &&
2264 !vi_should_enable_separate_dcc(tex);
2265 }
2266
2267 tex->num_slow_clears = 0;
2268
2269 /* stop the statistics query for ps_stats[0] */
2270 if (query_active)
2271 vi_separate_dcc_stop_query(sctx, tex);
2272
2273 /* Move the queries in the queue by one. */
2274 tmp = sctx->dcc_stats[i].ps_stats[2];
2275 sctx->dcc_stats[i].ps_stats[2] = sctx->dcc_stats[i].ps_stats[1];
2276 sctx->dcc_stats[i].ps_stats[1] = sctx->dcc_stats[i].ps_stats[0];
2277 sctx->dcc_stats[i].ps_stats[0] = tmp;
2278
2279 /* create and start a new query as ps_stats[0] */
2280 if (query_active)
2281 vi_separate_dcc_start_query(sctx, tex);
2282
2283 if (disable) {
2284 assert(!tex->last_dcc_separate_buffer);
2285 tex->last_dcc_separate_buffer = tex->dcc_separate_buffer;
2286 tex->dcc_separate_buffer = NULL;
2287 tex->dcc_offset = 0;
2288 /* no need to flag anything since this is called after
2289 * decompression that re-sets framebuffer state
2290 */
2291 }
2292 }
2293
2294 static struct pipe_memory_object *
2295 si_memobj_from_handle(struct pipe_screen *screen,
2296 struct winsys_handle *whandle,
2297 bool dedicated)
2298 {
2299 struct si_screen *sscreen = (struct si_screen*)screen;
2300 struct r600_memory_object *memobj = CALLOC_STRUCT(r600_memory_object);
2301 struct pb_buffer *buf = NULL;
2302 uint32_t stride, offset;
2303
2304 if (!memobj)
2305 return NULL;
2306
2307 buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle,
2308 &stride, &offset);
2309 if (!buf) {
2310 free(memobj);
2311 return NULL;
2312 }
2313
2314 memobj->b.dedicated = dedicated;
2315 memobj->buf = buf;
2316 memobj->stride = stride;
2317 memobj->offset = offset;
2318
2319 return (struct pipe_memory_object *)memobj;
2320
2321 }
2322
2323 static void
2324 si_memobj_destroy(struct pipe_screen *screen,
2325 struct pipe_memory_object *_memobj)
2326 {
2327 struct r600_memory_object *memobj = (struct r600_memory_object *)_memobj;
2328
2329 pb_reference(&memobj->buf, NULL);
2330 free(memobj);
2331 }
2332
2333 static struct pipe_resource *
2334 si_texture_from_memobj(struct pipe_screen *screen,
2335 const struct pipe_resource *templ,
2336 struct pipe_memory_object *_memobj,
2337 uint64_t offset)
2338 {
2339 int r;
2340 struct si_screen *sscreen = (struct si_screen*)screen;
2341 struct r600_memory_object *memobj = (struct r600_memory_object *)_memobj;
2342 struct r600_texture *rtex;
2343 struct radeon_surf surface = {};
2344 struct radeon_bo_metadata metadata = {};
2345 enum radeon_surf_mode array_mode;
2346 bool is_scanout;
2347 struct pb_buffer *buf = NULL;
2348
2349 if (memobj->b.dedicated) {
2350 sscreen->ws->buffer_get_metadata(memobj->buf, &metadata);
2351 si_surface_import_metadata(sscreen, &surface, &metadata,
2352 &array_mode, &is_scanout);
2353 } else {
2354 /**
2355 * The bo metadata is unset for un-dedicated images. So we fall
2356 * back to linear. See answer to question 5 of the
2357 * VK_KHX_external_memory spec for some details.
2358 *
2359 * It is possible that this case isn't going to work if the
2360 * surface pitch isn't correctly aligned by default.
2361 *
2362 * In order to support it correctly we require multi-image
2363 * metadata to be syncrhonized between radv and radeonsi. The
2364 * semantics of associating multiple image metadata to a memory
2365 * object on the vulkan export side are not concretely defined
2366 * either.
2367 *
2368 * All the use cases we are aware of at the moment for memory
2369 * objects use dedicated allocations. So lets keep the initial
2370 * implementation simple.
2371 *
2372 * A possible alternative is to attempt to reconstruct the
2373 * tiling information when the TexParameter TEXTURE_TILING_EXT
2374 * is set.
2375 */
2376 array_mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
2377 is_scanout = false;
2378
2379 }
2380
2381 r = si_init_surface(sscreen, &surface, templ,
2382 array_mode, memobj->stride,
2383 offset, true, is_scanout,
2384 false, false);
2385 if (r)
2386 return NULL;
2387
2388 rtex = si_texture_create_object(screen, templ, memobj->buf, &surface);
2389 if (!rtex)
2390 return NULL;
2391
2392 /* r600_texture_create_object doesn't increment refcount of
2393 * memobj->buf, so increment it here.
2394 */
2395 pb_reference(&buf, memobj->buf);
2396
2397 rtex->buffer.b.is_shared = true;
2398 rtex->buffer.external_usage = PIPE_HANDLE_USAGE_READ_WRITE;
2399
2400 si_apply_opaque_metadata(sscreen, rtex, &metadata);
2401
2402 return &rtex->buffer.b.b;
2403 }
2404
2405 static bool si_check_resource_capability(struct pipe_screen *screen,
2406 struct pipe_resource *resource,
2407 unsigned bind)
2408 {
2409 struct r600_texture *tex = (struct r600_texture*)resource;
2410
2411 /* Buffers only support the linear flag. */
2412 if (resource->target == PIPE_BUFFER)
2413 return (bind & ~PIPE_BIND_LINEAR) == 0;
2414
2415 if (bind & PIPE_BIND_LINEAR && !tex->surface.is_linear)
2416 return false;
2417
2418 if (bind & PIPE_BIND_SCANOUT && !tex->surface.is_displayable)
2419 return false;
2420
2421 /* TODO: PIPE_BIND_CURSOR - do we care? */
2422 return true;
2423 }
2424
2425 void si_init_screen_texture_functions(struct si_screen *sscreen)
2426 {
2427 sscreen->b.resource_from_handle = si_texture_from_handle;
2428 sscreen->b.resource_get_handle = si_texture_get_handle;
2429 sscreen->b.resource_from_memobj = si_texture_from_memobj;
2430 sscreen->b.memobj_create_from_handle = si_memobj_from_handle;
2431 sscreen->b.memobj_destroy = si_memobj_destroy;
2432 sscreen->b.check_resource_capability = si_check_resource_capability;
2433 }
2434
2435 void si_init_context_texture_functions(struct si_context *sctx)
2436 {
2437 sctx->b.create_surface = si_create_surface;
2438 sctx->b.surface_destroy = si_surface_destroy;
2439 }