softpipe: silence some MSVC signed/unsigned warnings
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keith@tungstengraphics.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50
51 /**
52 * Triangle edge info
53 */
54 struct edge {
55 float dx; /**< X(v1) - X(v0), used only during setup */
56 float dy; /**< Y(v1) - Y(v0), used only during setup */
57 float dxdy; /**< dx/dy */
58 float sx, sy; /**< first sample point coord */
59 int lines; /**< number of lines on this edge */
60 };
61
62
63 /**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68 #define MAX_QUADS 16
69
70
71 /**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75 struct setup_context {
76 struct softpipe_context *softpipe;
77
78 /* Vertices are just an array of floats making up each attribute in
79 * turn. Currently fixed at 4 floats, but should change in time.
80 * Codegen will help cope with this.
81 */
82 const float (*vmax)[4];
83 const float (*vmid)[4];
84 const float (*vmin)[4];
85 const float (*vprovoke)[4];
86
87 struct edge ebot;
88 struct edge etop;
89 struct edge emaj;
90
91 float oneoverarea;
92 int facing;
93
94 float pixel_offset;
95
96 struct quad_header quad[MAX_QUADS];
97 struct quad_header *quad_ptrs[MAX_QUADS];
98 unsigned count;
99
100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101 struct tgsi_interp_coef posCoef; /* For Z, W */
102
103 struct {
104 int left[2]; /**< [0] = row0, [1] = row1 */
105 int right[2];
106 int y;
107 } span;
108
109 #if DEBUG_FRAGS
110 uint numFragsEmitted; /**< per primitive */
111 uint numFragsWritten; /**< per primitive */
112 #endif
113
114 unsigned cull_face; /* which faces cull */
115 unsigned nr_vertex_attrs;
116 };
117
118
119
120
121
122
123
124 /**
125 * Clip setup->quad against the scissor/surface bounds.
126 */
127 static INLINE void
128 quad_clip(struct setup_context *setup, struct quad_header *quad)
129 {
130 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
131 const int minx = (int) cliprect->minx;
132 const int maxx = (int) cliprect->maxx;
133 const int miny = (int) cliprect->miny;
134 const int maxy = (int) cliprect->maxy;
135
136 if (quad->input.x0 >= maxx ||
137 quad->input.y0 >= maxy ||
138 quad->input.x0 + 1 < minx ||
139 quad->input.y0 + 1 < miny) {
140 /* totally clipped */
141 quad->inout.mask = 0x0;
142 return;
143 }
144 if (quad->input.x0 < minx)
145 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
146 if (quad->input.y0 < miny)
147 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
148 if (quad->input.x0 == maxx - 1)
149 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
150 if (quad->input.y0 == maxy - 1)
151 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
152 }
153
154
155 /**
156 * Emit a quad (pass to next stage) with clipping.
157 */
158 static INLINE void
159 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
160 {
161 quad_clip( setup, quad );
162
163 if (quad->inout.mask) {
164 struct softpipe_context *sp = setup->softpipe;
165
166 #if DEBUG_FRAGS
167 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
168 #endif
169
170 sp->quad.first->run( sp->quad.first, &quad, 1 );
171 }
172 }
173
174
175
176 /**
177 * Given an X or Y coordinate, return the block/quad coordinate that it
178 * belongs to.
179 */
180 static INLINE int
181 block(int x)
182 {
183 return x & ~(2-1);
184 }
185
186
187 static INLINE int
188 block_x(int x)
189 {
190 return x & ~(16-1);
191 }
192
193
194 /**
195 * Render a horizontal span of quads
196 */
197 static void
198 flush_spans(struct setup_context *setup)
199 {
200 const int step = MAX_QUADS;
201 const int xleft0 = setup->span.left[0];
202 const int xleft1 = setup->span.left[1];
203 const int xright0 = setup->span.right[0];
204 const int xright1 = setup->span.right[1];
205 struct quad_stage *pipe = setup->softpipe->quad.first;
206
207 const int minleft = block_x(MIN2(xleft0, xleft1));
208 const int maxright = MAX2(xright0, xright1);
209 int x;
210
211 /* process quads in horizontal chunks of 16 */
212 for (x = minleft; x < maxright; x += step) {
213 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
214 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
215 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
216 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
217 unsigned lx = x;
218 unsigned q = 0;
219
220 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
221 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
222
223 /* These calculations fail when step == 32 and skip_right == 0.
224 */
225 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
226 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
227
228 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
229 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
230
231 if (mask0 | mask1) {
232 do {
233 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
234 if (quadmask) {
235 setup->quad[q].input.x0 = lx;
236 setup->quad[q].input.y0 = setup->span.y;
237 setup->quad[q].input.facing = setup->facing;
238 setup->quad[q].inout.mask = quadmask;
239 setup->quad_ptrs[q] = &setup->quad[q];
240 q++;
241 #if DEBUG_FRAGS
242 setup->numFragsEmitted += util_bitcount(quadmask);
243 #endif
244 }
245 mask0 >>= 2;
246 mask1 >>= 2;
247 lx += 2;
248 } while (mask0 | mask1);
249
250 pipe->run( pipe, setup->quad_ptrs, q );
251 }
252 }
253
254
255 setup->span.y = 0;
256 setup->span.right[0] = 0;
257 setup->span.right[1] = 0;
258 setup->span.left[0] = 1000000; /* greater than right[0] */
259 setup->span.left[1] = 1000000; /* greater than right[1] */
260 }
261
262
263 #if DEBUG_VERTS
264 static void
265 print_vertex(const struct setup_context *setup,
266 const float (*v)[4])
267 {
268 int i;
269 debug_printf(" Vertex: (%p)\n", (void *) v);
270 for (i = 0; i < setup->nr_vertex_attrs; i++) {
271 debug_printf(" %d: %f %f %f %f\n", i,
272 v[i][0], v[i][1], v[i][2], v[i][3]);
273 if (util_is_inf_or_nan(v[i][0])) {
274 debug_printf(" NaN!\n");
275 }
276 }
277 }
278 #endif
279
280
281 /**
282 * Sort the vertices from top to bottom order, setting up the triangle
283 * edge fields (ebot, emaj, etop).
284 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
285 */
286 static boolean
287 setup_sort_vertices(struct setup_context *setup,
288 float det,
289 const float (*v0)[4],
290 const float (*v1)[4],
291 const float (*v2)[4])
292 {
293 if (setup->softpipe->rasterizer->flatshade_first)
294 setup->vprovoke = v0;
295 else
296 setup->vprovoke = v2;
297
298 /* determine bottom to top order of vertices */
299 {
300 float y0 = v0[0][1];
301 float y1 = v1[0][1];
302 float y2 = v2[0][1];
303 if (y0 <= y1) {
304 if (y1 <= y2) {
305 /* y0<=y1<=y2 */
306 setup->vmin = v0;
307 setup->vmid = v1;
308 setup->vmax = v2;
309 }
310 else if (y2 <= y0) {
311 /* y2<=y0<=y1 */
312 setup->vmin = v2;
313 setup->vmid = v0;
314 setup->vmax = v1;
315 }
316 else {
317 /* y0<=y2<=y1 */
318 setup->vmin = v0;
319 setup->vmid = v2;
320 setup->vmax = v1;
321 }
322 }
323 else {
324 if (y0 <= y2) {
325 /* y1<=y0<=y2 */
326 setup->vmin = v1;
327 setup->vmid = v0;
328 setup->vmax = v2;
329 }
330 else if (y2 <= y1) {
331 /* y2<=y1<=y0 */
332 setup->vmin = v2;
333 setup->vmid = v1;
334 setup->vmax = v0;
335 }
336 else {
337 /* y1<=y2<=y0 */
338 setup->vmin = v1;
339 setup->vmid = v2;
340 setup->vmax = v0;
341 }
342 }
343 }
344
345 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
346 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
347 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
348 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
349 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
350 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
351
352 /*
353 * Compute triangle's area. Use 1/area to compute partial
354 * derivatives of attributes later.
355 *
356 * The area will be the same as prim->det, but the sign may be
357 * different depending on how the vertices get sorted above.
358 *
359 * To determine whether the primitive is front or back facing we
360 * use the prim->det value because its sign is correct.
361 */
362 {
363 const float area = (setup->emaj.dx * setup->ebot.dy -
364 setup->ebot.dx * setup->emaj.dy);
365
366 setup->oneoverarea = 1.0f / area;
367
368 /*
369 debug_printf("%s one-over-area %f area %f det %f\n",
370 __FUNCTION__, setup->oneoverarea, area, det );
371 */
372 if (util_is_inf_or_nan(setup->oneoverarea))
373 return FALSE;
374 }
375
376 /* We need to know if this is a front or back-facing triangle for:
377 * - the GLSL gl_FrontFacing fragment attribute (bool)
378 * - two-sided stencil test
379 * 0 = front-facing, 1 = back-facing
380 */
381 setup->facing =
382 ((det < 0.0) ^
383 (setup->softpipe->rasterizer->front_ccw));
384
385 {
386 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
387
388 if (face & setup->cull_face)
389 return FALSE;
390 }
391
392
393 /* Prepare pixel offset for rasterisation:
394 * - pixel center (0.5, 0.5) for GL, or
395 * - assume (0.0, 0.0) for other APIs.
396 */
397 if (setup->softpipe->rasterizer->gl_rasterization_rules) {
398 setup->pixel_offset = 0.5f;
399 } else {
400 setup->pixel_offset = 0.0f;
401 }
402
403 return TRUE;
404 }
405
406
407 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
408 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
409 * Some combinations of coordinates produce invalid results,
410 * but this behaviour is acceptable.
411 */
412 static void
413 tri_apply_cylindrical_wrap(float v0,
414 float v1,
415 float v2,
416 uint cylindrical_wrap,
417 float output[3])
418 {
419 if (cylindrical_wrap) {
420 float delta;
421
422 delta = v1 - v0;
423 if (delta > 0.5f) {
424 v0 += 1.0f;
425 }
426 else if (delta < -0.5f) {
427 v1 += 1.0f;
428 }
429
430 delta = v2 - v1;
431 if (delta > 0.5f) {
432 v1 += 1.0f;
433 }
434 else if (delta < -0.5f) {
435 v2 += 1.0f;
436 }
437
438 delta = v0 - v2;
439 if (delta > 0.5f) {
440 v2 += 1.0f;
441 }
442 else if (delta < -0.5f) {
443 v0 += 1.0f;
444 }
445 }
446
447 output[0] = v0;
448 output[1] = v1;
449 output[2] = v2;
450 }
451
452
453 /**
454 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
455 * The value value comes from vertex[slot][i].
456 * The result will be put into setup->coef[slot].a0[i].
457 * \param slot which attribute slot
458 * \param i which component of the slot (0..3)
459 */
460 static void
461 const_coeff(struct setup_context *setup,
462 struct tgsi_interp_coef *coef,
463 uint vertSlot, uint i)
464 {
465 assert(i <= 3);
466
467 coef->dadx[i] = 0;
468 coef->dady[i] = 0;
469
470 /* need provoking vertex info!
471 */
472 coef->a0[i] = setup->vprovoke[vertSlot][i];
473 }
474
475
476 /**
477 * Compute a0, dadx and dady for a linearly interpolated coefficient,
478 * for a triangle.
479 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
480 */
481 static void
482 tri_linear_coeff(struct setup_context *setup,
483 struct tgsi_interp_coef *coef,
484 uint i,
485 const float v[3])
486 {
487 float botda = v[1] - v[0];
488 float majda = v[2] - v[0];
489 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
490 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
491 float dadx = a * setup->oneoverarea;
492 float dady = b * setup->oneoverarea;
493
494 assert(i <= 3);
495
496 coef->dadx[i] = dadx;
497 coef->dady[i] = dady;
498
499 /* calculate a0 as the value which would be sampled for the
500 * fragment at (0,0), taking into account that we want to sample at
501 * pixel centers, in other words (pixel_offset, pixel_offset).
502 *
503 * this is neat but unfortunately not a good way to do things for
504 * triangles with very large values of dadx or dady as it will
505 * result in the subtraction and re-addition from a0 of a very
506 * large number, which means we'll end up loosing a lot of the
507 * fractional bits and precision from a0. the way to fix this is
508 * to define a0 as the sample at a pixel center somewhere near vmin
509 * instead - i'll switch to this later.
510 */
511 coef->a0[i] = (v[0] -
512 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
513 dady * (setup->vmin[0][1] - setup->pixel_offset)));
514
515 /*
516 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
517 slot, "xyzw"[i],
518 setup->coef[slot].a0[i],
519 setup->coef[slot].dadx[i],
520 setup->coef[slot].dady[i]);
521 */
522 }
523
524
525 /**
526 * Compute a0, dadx and dady for a perspective-corrected interpolant,
527 * for a triangle.
528 * We basically multiply the vertex value by 1/w before computing
529 * the plane coefficients (a0, dadx, dady).
530 * Later, when we compute the value at a particular fragment position we'll
531 * divide the interpolated value by the interpolated W at that fragment.
532 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
533 */
534 static void
535 tri_persp_coeff(struct setup_context *setup,
536 struct tgsi_interp_coef *coef,
537 uint i,
538 const float v[3])
539 {
540 /* premultiply by 1/w (v[0][3] is always W):
541 */
542 float mina = v[0] * setup->vmin[0][3];
543 float mida = v[1] * setup->vmid[0][3];
544 float maxa = v[2] * setup->vmax[0][3];
545 float botda = mida - mina;
546 float majda = maxa - mina;
547 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
548 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
549 float dadx = a * setup->oneoverarea;
550 float dady = b * setup->oneoverarea;
551
552 /*
553 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
554 setup->vmin[vertSlot][i],
555 setup->vmid[vertSlot][i],
556 setup->vmax[vertSlot][i]
557 );
558 */
559 assert(i <= 3);
560
561 coef->dadx[i] = dadx;
562 coef->dady[i] = dady;
563 coef->a0[i] = (mina -
564 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
565 dady * (setup->vmin[0][1] - setup->pixel_offset)));
566 }
567
568
569 /**
570 * Special coefficient setup for gl_FragCoord.
571 * X and Y are trivial, though Y may have to be inverted for OpenGL.
572 * Z and W are copied from posCoef which should have already been computed.
573 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
574 */
575 static void
576 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
577 {
578 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
579
580 /*X*/
581 setup->coef[slot].a0[0] = fsInfo->pixel_center_integer ? 0.0f : 0.5f;
582 setup->coef[slot].dadx[0] = 1.0f;
583 setup->coef[slot].dady[0] = 0.0f;
584 /*Y*/
585 setup->coef[slot].a0[1] =
586 (fsInfo->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
587 + (fsInfo->pixel_center_integer ? 0.0f : 0.5f);
588 setup->coef[slot].dadx[1] = 0.0f;
589 setup->coef[slot].dady[1] = fsInfo->origin_lower_left ? -1.0f : 1.0f;
590 /*Z*/
591 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
592 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
593 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
594 /*W*/
595 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
596 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
597 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
598 }
599
600
601
602 /**
603 * Compute the setup->coef[] array dadx, dady, a0 values.
604 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
605 */
606 static void
607 setup_tri_coefficients(struct setup_context *setup)
608 {
609 struct softpipe_context *softpipe = setup->softpipe;
610 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
611 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
612 uint fragSlot;
613 float v[3];
614
615 /* z and w are done by linear interpolation:
616 */
617 v[0] = setup->vmin[0][2];
618 v[1] = setup->vmid[0][2];
619 v[2] = setup->vmax[0][2];
620 tri_linear_coeff(setup, &setup->posCoef, 2, v);
621
622 v[0] = setup->vmin[0][3];
623 v[1] = setup->vmid[0][3];
624 v[2] = setup->vmax[0][3];
625 tri_linear_coeff(setup, &setup->posCoef, 3, v);
626
627 /* setup interpolation for all the remaining attributes:
628 */
629 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
630 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
631 uint j;
632
633 switch (vinfo->attrib[fragSlot].interp_mode) {
634 case INTERP_CONSTANT:
635 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
636 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
637 break;
638 case INTERP_LINEAR:
639 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
640 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
641 setup->vmid[vertSlot][j],
642 setup->vmax[vertSlot][j],
643 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
644 v);
645 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
646 }
647 break;
648 case INTERP_PERSPECTIVE:
649 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
650 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
651 setup->vmid[vertSlot][j],
652 setup->vmax[vertSlot][j],
653 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
654 v);
655 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
656 }
657 break;
658 case INTERP_POS:
659 setup_fragcoord_coeff(setup, fragSlot);
660 break;
661 default:
662 assert(0);
663 }
664
665 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
666 /* convert 0 to 1.0 and 1 to -1.0 */
667 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
668 setup->coef[fragSlot].dadx[0] = 0.0;
669 setup->coef[fragSlot].dady[0] = 0.0;
670 }
671 }
672 }
673
674
675 static void
676 setup_tri_edges(struct setup_context *setup)
677 {
678 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
679 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
680
681 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
682 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
683 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
684
685 setup->emaj.sy = ceilf(vmin_y);
686 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
687 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
688 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
689
690 setup->etop.sy = ceilf(vmid_y);
691 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
692 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
693 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
694
695 setup->ebot.sy = ceilf(vmin_y);
696 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
697 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
698 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
699 }
700
701
702 /**
703 * Render the upper or lower half of a triangle.
704 * Scissoring/cliprect is applied here too.
705 */
706 static void
707 subtriangle(struct setup_context *setup,
708 struct edge *eleft,
709 struct edge *eright,
710 int lines)
711 {
712 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
713 const int minx = (int) cliprect->minx;
714 const int maxx = (int) cliprect->maxx;
715 const int miny = (int) cliprect->miny;
716 const int maxy = (int) cliprect->maxy;
717 int y, start_y, finish_y;
718 int sy = (int)eleft->sy;
719
720 assert((int)eleft->sy == (int) eright->sy);
721 assert(lines >= 0);
722
723 /* clip top/bottom */
724 start_y = sy;
725 if (start_y < miny)
726 start_y = miny;
727
728 finish_y = sy + lines;
729 if (finish_y > maxy)
730 finish_y = maxy;
731
732 start_y -= sy;
733 finish_y -= sy;
734
735 /*
736 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
737 */
738
739 for (y = start_y; y < finish_y; y++) {
740
741 /* avoid accumulating adds as floats don't have the precision to
742 * accurately iterate large triangle edges that way. luckily we
743 * can just multiply these days.
744 *
745 * this is all drowned out by the attribute interpolation anyway.
746 */
747 int left = (int)(eleft->sx + y * eleft->dxdy);
748 int right = (int)(eright->sx + y * eright->dxdy);
749
750 /* clip left/right */
751 if (left < minx)
752 left = minx;
753 if (right > maxx)
754 right = maxx;
755
756 if (left < right) {
757 int _y = sy + y;
758 if (block(_y) != setup->span.y) {
759 flush_spans(setup);
760 setup->span.y = block(_y);
761 }
762
763 setup->span.left[_y&1] = left;
764 setup->span.right[_y&1] = right;
765 }
766 }
767
768
769 /* save the values so that emaj can be restarted:
770 */
771 eleft->sx += lines * eleft->dxdy;
772 eright->sx += lines * eright->dxdy;
773 eleft->sy += lines;
774 eright->sy += lines;
775 }
776
777
778 /**
779 * Recalculate prim's determinant. This is needed as we don't have
780 * get this information through the vbuf_render interface & we must
781 * calculate it here.
782 */
783 static float
784 calc_det(const float (*v0)[4],
785 const float (*v1)[4],
786 const float (*v2)[4])
787 {
788 /* edge vectors e = v0 - v2, f = v1 - v2 */
789 const float ex = v0[0][0] - v2[0][0];
790 const float ey = v0[0][1] - v2[0][1];
791 const float fx = v1[0][0] - v2[0][0];
792 const float fy = v1[0][1] - v2[0][1];
793
794 /* det = cross(e,f).z */
795 return ex * fy - ey * fx;
796 }
797
798
799 /**
800 * Do setup for triangle rasterization, then render the triangle.
801 */
802 void
803 sp_setup_tri(struct setup_context *setup,
804 const float (*v0)[4],
805 const float (*v1)[4],
806 const float (*v2)[4])
807 {
808 float det;
809
810 #if DEBUG_VERTS
811 debug_printf("Setup triangle:\n");
812 print_vertex(setup, v0);
813 print_vertex(setup, v1);
814 print_vertex(setup, v2);
815 #endif
816
817 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
818 return;
819
820 det = calc_det(v0, v1, v2);
821 /*
822 debug_printf("%s\n", __FUNCTION__ );
823 */
824
825 #if DEBUG_FRAGS
826 setup->numFragsEmitted = 0;
827 setup->numFragsWritten = 0;
828 #endif
829
830 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
831 return;
832
833 setup_tri_coefficients( setup );
834 setup_tri_edges( setup );
835
836 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
837
838 setup->span.y = 0;
839 setup->span.right[0] = 0;
840 setup->span.right[1] = 0;
841 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
842
843 /* init_constant_attribs( setup ); */
844
845 if (setup->oneoverarea < 0.0) {
846 /* emaj on left:
847 */
848 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
849 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
850 }
851 else {
852 /* emaj on right:
853 */
854 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
855 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
856 }
857
858 flush_spans( setup );
859
860 #if DEBUG_FRAGS
861 printf("Tri: %u frags emitted, %u written\n",
862 setup->numFragsEmitted,
863 setup->numFragsWritten);
864 #endif
865 }
866
867
868 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
869 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
870 */
871 static void
872 line_apply_cylindrical_wrap(float v0,
873 float v1,
874 uint cylindrical_wrap,
875 float output[2])
876 {
877 if (cylindrical_wrap) {
878 float delta;
879
880 delta = v1 - v0;
881 if (delta > 0.5f) {
882 v0 += 1.0f;
883 }
884 else if (delta < -0.5f) {
885 v1 += 1.0f;
886 }
887 }
888
889 output[0] = v0;
890 output[1] = v1;
891 }
892
893
894 /**
895 * Compute a0, dadx and dady for a linearly interpolated coefficient,
896 * for a line.
897 * v[0] and v[1] are vmin and vmax, respectively.
898 */
899 static void
900 line_linear_coeff(const struct setup_context *setup,
901 struct tgsi_interp_coef *coef,
902 uint i,
903 const float v[2])
904 {
905 const float da = v[1] - v[0];
906 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
907 const float dady = da * setup->emaj.dy * setup->oneoverarea;
908 coef->dadx[i] = dadx;
909 coef->dady[i] = dady;
910 coef->a0[i] = (v[0] -
911 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
912 dady * (setup->vmin[0][1] - setup->pixel_offset)));
913 }
914
915
916 /**
917 * Compute a0, dadx and dady for a perspective-corrected interpolant,
918 * for a line.
919 * v[0] and v[1] are vmin and vmax, respectively.
920 */
921 static void
922 line_persp_coeff(const struct setup_context *setup,
923 struct tgsi_interp_coef *coef,
924 uint i,
925 const float v[2])
926 {
927 const float a0 = v[0] * setup->vmin[0][3];
928 const float a1 = v[1] * setup->vmax[0][3];
929 const float da = a1 - a0;
930 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
931 const float dady = da * setup->emaj.dy * setup->oneoverarea;
932 coef->dadx[i] = dadx;
933 coef->dady[i] = dady;
934 coef->a0[i] = (a0 -
935 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
936 dady * (setup->vmin[0][1] - setup->pixel_offset)));
937 }
938
939
940 /**
941 * Compute the setup->coef[] array dadx, dady, a0 values.
942 * Must be called after setup->vmin,vmax are initialized.
943 */
944 static boolean
945 setup_line_coefficients(struct setup_context *setup,
946 const float (*v0)[4],
947 const float (*v1)[4])
948 {
949 struct softpipe_context *softpipe = setup->softpipe;
950 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
951 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
952 uint fragSlot;
953 float area;
954 float v[2];
955
956 /* use setup->vmin, vmax to point to vertices */
957 if (softpipe->rasterizer->flatshade_first)
958 setup->vprovoke = v0;
959 else
960 setup->vprovoke = v1;
961 setup->vmin = v0;
962 setup->vmax = v1;
963
964 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
965 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
966
967 /* NOTE: this is not really area but something proportional to it */
968 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
969 if (area == 0.0f || util_is_inf_or_nan(area))
970 return FALSE;
971 setup->oneoverarea = 1.0f / area;
972
973 /* z and w are done by linear interpolation:
974 */
975 v[0] = setup->vmin[0][2];
976 v[1] = setup->vmax[0][2];
977 line_linear_coeff(setup, &setup->posCoef, 2, v);
978
979 v[0] = setup->vmin[0][3];
980 v[1] = setup->vmax[0][3];
981 line_linear_coeff(setup, &setup->posCoef, 3, v);
982
983 /* setup interpolation for all the remaining attributes:
984 */
985 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
986 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
987 uint j;
988
989 switch (vinfo->attrib[fragSlot].interp_mode) {
990 case INTERP_CONSTANT:
991 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
992 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
993 break;
994 case INTERP_LINEAR:
995 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
996 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
997 setup->vmax[vertSlot][j],
998 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
999 v);
1000 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1001 }
1002 break;
1003 case INTERP_PERSPECTIVE:
1004 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1005 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1006 setup->vmax[vertSlot][j],
1007 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1008 v);
1009 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1010 }
1011 break;
1012 case INTERP_POS:
1013 setup_fragcoord_coeff(setup, fragSlot);
1014 break;
1015 default:
1016 assert(0);
1017 }
1018
1019 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1020 /* convert 0 to 1.0 and 1 to -1.0 */
1021 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1022 setup->coef[fragSlot].dadx[0] = 0.0;
1023 setup->coef[fragSlot].dady[0] = 0.0;
1024 }
1025 }
1026 return TRUE;
1027 }
1028
1029
1030 /**
1031 * Plot a pixel in a line segment.
1032 */
1033 static INLINE void
1034 plot(struct setup_context *setup, int x, int y)
1035 {
1036 const int iy = y & 1;
1037 const int ix = x & 1;
1038 const int quadX = x - ix;
1039 const int quadY = y - iy;
1040 const int mask = (1 << ix) << (2 * iy);
1041
1042 if (quadX != setup->quad[0].input.x0 ||
1043 quadY != setup->quad[0].input.y0)
1044 {
1045 /* flush prev quad, start new quad */
1046
1047 if (setup->quad[0].input.x0 != -1)
1048 clip_emit_quad( setup, &setup->quad[0] );
1049
1050 setup->quad[0].input.x0 = quadX;
1051 setup->quad[0].input.y0 = quadY;
1052 setup->quad[0].inout.mask = 0x0;
1053 }
1054
1055 setup->quad[0].inout.mask |= mask;
1056 }
1057
1058
1059 /**
1060 * Do setup for line rasterization, then render the line.
1061 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1062 * to handle stippling and wide lines.
1063 */
1064 void
1065 sp_setup_line(struct setup_context *setup,
1066 const float (*v0)[4],
1067 const float (*v1)[4])
1068 {
1069 int x0 = (int) v0[0][0];
1070 int x1 = (int) v1[0][0];
1071 int y0 = (int) v0[0][1];
1072 int y1 = (int) v1[0][1];
1073 int dx = x1 - x0;
1074 int dy = y1 - y0;
1075 int xstep, ystep;
1076
1077 #if DEBUG_VERTS
1078 debug_printf("Setup line:\n");
1079 print_vertex(setup, v0);
1080 print_vertex(setup, v1);
1081 #endif
1082
1083 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1084 return;
1085
1086 if (dx == 0 && dy == 0)
1087 return;
1088
1089 if (!setup_line_coefficients(setup, v0, v1))
1090 return;
1091
1092 assert(v0[0][0] < 1.0e9);
1093 assert(v0[0][1] < 1.0e9);
1094 assert(v1[0][0] < 1.0e9);
1095 assert(v1[0][1] < 1.0e9);
1096
1097 if (dx < 0) {
1098 dx = -dx; /* make positive */
1099 xstep = -1;
1100 }
1101 else {
1102 xstep = 1;
1103 }
1104
1105 if (dy < 0) {
1106 dy = -dy; /* make positive */
1107 ystep = -1;
1108 }
1109 else {
1110 ystep = 1;
1111 }
1112
1113 assert(dx >= 0);
1114 assert(dy >= 0);
1115 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1116
1117 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1118 setup->quad[0].inout.mask = 0x0;
1119
1120 /* XXX temporary: set coverage to 1.0 so the line appears
1121 * if AA mode happens to be enabled.
1122 */
1123 setup->quad[0].input.coverage[0] =
1124 setup->quad[0].input.coverage[1] =
1125 setup->quad[0].input.coverage[2] =
1126 setup->quad[0].input.coverage[3] = 1.0;
1127
1128 if (dx > dy) {
1129 /*** X-major line ***/
1130 int i;
1131 const int errorInc = dy + dy;
1132 int error = errorInc - dx;
1133 const int errorDec = error - dx;
1134
1135 for (i = 0; i < dx; i++) {
1136 plot(setup, x0, y0);
1137
1138 x0 += xstep;
1139 if (error < 0) {
1140 error += errorInc;
1141 }
1142 else {
1143 error += errorDec;
1144 y0 += ystep;
1145 }
1146 }
1147 }
1148 else {
1149 /*** Y-major line ***/
1150 int i;
1151 const int errorInc = dx + dx;
1152 int error = errorInc - dy;
1153 const int errorDec = error - dy;
1154
1155 for (i = 0; i < dy; i++) {
1156 plot(setup, x0, y0);
1157
1158 y0 += ystep;
1159 if (error < 0) {
1160 error += errorInc;
1161 }
1162 else {
1163 error += errorDec;
1164 x0 += xstep;
1165 }
1166 }
1167 }
1168
1169 /* draw final quad */
1170 if (setup->quad[0].inout.mask) {
1171 clip_emit_quad( setup, &setup->quad[0] );
1172 }
1173 }
1174
1175
1176 static void
1177 point_persp_coeff(const struct setup_context *setup,
1178 const float (*vert)[4],
1179 struct tgsi_interp_coef *coef,
1180 uint vertSlot, uint i)
1181 {
1182 assert(i <= 3);
1183 coef->dadx[i] = 0.0F;
1184 coef->dady[i] = 0.0F;
1185 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1186 }
1187
1188
1189 /**
1190 * Do setup for point rasterization, then render the point.
1191 * Round or square points...
1192 * XXX could optimize a lot for 1-pixel points.
1193 */
1194 void
1195 sp_setup_point(struct setup_context *setup,
1196 const float (*v0)[4])
1197 {
1198 struct softpipe_context *softpipe = setup->softpipe;
1199 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1200 const int sizeAttr = setup->softpipe->psize_slot;
1201 const float size
1202 = sizeAttr > 0 ? v0[sizeAttr][0]
1203 : setup->softpipe->rasterizer->point_size;
1204 const float halfSize = 0.5F * size;
1205 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1206 const float x = v0[0][0]; /* Note: data[0] is always position */
1207 const float y = v0[0][1];
1208 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1209 uint fragSlot;
1210
1211 #if DEBUG_VERTS
1212 debug_printf("Setup point:\n");
1213 print_vertex(setup, v0);
1214 #endif
1215
1216 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1217 return;
1218
1219 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1220
1221 /* For points, all interpolants are constant-valued.
1222 * However, for point sprites, we'll need to setup texcoords appropriately.
1223 * XXX: which coefficients are the texcoords???
1224 * We may do point sprites as textured quads...
1225 *
1226 * KW: We don't know which coefficients are texcoords - ultimately
1227 * the choice of what interpolation mode to use for each attribute
1228 * should be determined by the fragment program, using
1229 * per-attribute declaration statements that include interpolation
1230 * mode as a parameter. So either the fragment program will have
1231 * to be adjusted for pointsprite vs normal point behaviour, or
1232 * otherwise a special interpolation mode will have to be defined
1233 * which matches the required behaviour for point sprites. But -
1234 * the latter is not a feature of normal hardware, and as such
1235 * probably should be ruled out on that basis.
1236 */
1237 setup->vprovoke = v0;
1238
1239 /* setup Z, W */
1240 const_coeff(setup, &setup->posCoef, 0, 2);
1241 const_coeff(setup, &setup->posCoef, 0, 3);
1242
1243 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1244 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1245 uint j;
1246
1247 switch (vinfo->attrib[fragSlot].interp_mode) {
1248 case INTERP_CONSTANT:
1249 /* fall-through */
1250 case INTERP_LINEAR:
1251 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1252 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1253 break;
1254 case INTERP_PERSPECTIVE:
1255 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1256 point_persp_coeff(setup, setup->vprovoke,
1257 &setup->coef[fragSlot], vertSlot, j);
1258 break;
1259 case INTERP_POS:
1260 setup_fragcoord_coeff(setup, fragSlot);
1261 break;
1262 default:
1263 assert(0);
1264 }
1265
1266 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1267 /* convert 0 to 1.0 and 1 to -1.0 */
1268 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1269 setup->coef[fragSlot].dadx[0] = 0.0;
1270 setup->coef[fragSlot].dady[0] = 0.0;
1271 }
1272 }
1273
1274
1275 if (halfSize <= 0.5 && !round) {
1276 /* special case for 1-pixel points */
1277 const int ix = ((int) x) & 1;
1278 const int iy = ((int) y) & 1;
1279 setup->quad[0].input.x0 = (int) x - ix;
1280 setup->quad[0].input.y0 = (int) y - iy;
1281 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1282 clip_emit_quad( setup, &setup->quad[0] );
1283 }
1284 else {
1285 if (round) {
1286 /* rounded points */
1287 const int ixmin = block((int) (x - halfSize));
1288 const int ixmax = block((int) (x + halfSize));
1289 const int iymin = block((int) (y - halfSize));
1290 const int iymax = block((int) (y + halfSize));
1291 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1292 const float rmax = halfSize + 0.7071F;
1293 const float rmin2 = MAX2(0.0F, rmin * rmin);
1294 const float rmax2 = rmax * rmax;
1295 const float cscale = 1.0F / (rmax2 - rmin2);
1296 int ix, iy;
1297
1298 for (iy = iymin; iy <= iymax; iy += 2) {
1299 for (ix = ixmin; ix <= ixmax; ix += 2) {
1300 float dx, dy, dist2, cover;
1301
1302 setup->quad[0].inout.mask = 0x0;
1303
1304 dx = (ix + 0.5f) - x;
1305 dy = (iy + 0.5f) - y;
1306 dist2 = dx * dx + dy * dy;
1307 if (dist2 <= rmax2) {
1308 cover = 1.0F - (dist2 - rmin2) * cscale;
1309 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1310 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1311 }
1312
1313 dx = (ix + 1.5f) - x;
1314 dy = (iy + 0.5f) - y;
1315 dist2 = dx * dx + dy * dy;
1316 if (dist2 <= rmax2) {
1317 cover = 1.0F - (dist2 - rmin2) * cscale;
1318 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1319 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1320 }
1321
1322 dx = (ix + 0.5f) - x;
1323 dy = (iy + 1.5f) - y;
1324 dist2 = dx * dx + dy * dy;
1325 if (dist2 <= rmax2) {
1326 cover = 1.0F - (dist2 - rmin2) * cscale;
1327 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1328 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1329 }
1330
1331 dx = (ix + 1.5f) - x;
1332 dy = (iy + 1.5f) - y;
1333 dist2 = dx * dx + dy * dy;
1334 if (dist2 <= rmax2) {
1335 cover = 1.0F - (dist2 - rmin2) * cscale;
1336 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1337 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1338 }
1339
1340 if (setup->quad[0].inout.mask) {
1341 setup->quad[0].input.x0 = ix;
1342 setup->quad[0].input.y0 = iy;
1343 clip_emit_quad( setup, &setup->quad[0] );
1344 }
1345 }
1346 }
1347 }
1348 else {
1349 /* square points */
1350 const int xmin = (int) (x + 0.75 - halfSize);
1351 const int ymin = (int) (y + 0.25 - halfSize);
1352 const int xmax = xmin + (int) size;
1353 const int ymax = ymin + (int) size;
1354 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1355 const int ixmin = block(xmin);
1356 const int ixmax = block(xmax - 1);
1357 const int iymin = block(ymin);
1358 const int iymax = block(ymax - 1);
1359 int ix, iy;
1360
1361 /*
1362 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1363 */
1364 for (iy = iymin; iy <= iymax; iy += 2) {
1365 uint rowMask = 0xf;
1366 if (iy < ymin) {
1367 /* above the top edge */
1368 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1369 }
1370 if (iy + 1 >= ymax) {
1371 /* below the bottom edge */
1372 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1373 }
1374
1375 for (ix = ixmin; ix <= ixmax; ix += 2) {
1376 uint mask = rowMask;
1377
1378 if (ix < xmin) {
1379 /* fragment is past left edge of point, turn off left bits */
1380 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1381 }
1382 if (ix + 1 >= xmax) {
1383 /* past the right edge */
1384 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1385 }
1386
1387 setup->quad[0].inout.mask = mask;
1388 setup->quad[0].input.x0 = ix;
1389 setup->quad[0].input.y0 = iy;
1390 clip_emit_quad( setup, &setup->quad[0] );
1391 }
1392 }
1393 }
1394 }
1395 }
1396
1397
1398 /**
1399 * Called by vbuf code just before we start buffering primitives.
1400 */
1401 void
1402 sp_setup_prepare(struct setup_context *setup)
1403 {
1404 struct softpipe_context *sp = setup->softpipe;
1405
1406 if (sp->dirty) {
1407 softpipe_update_derived(sp, sp->reduced_api_prim);
1408 }
1409
1410 /* Note: nr_attrs is only used for debugging (vertex printing) */
1411 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1412
1413 sp->quad.first->begin( sp->quad.first );
1414
1415 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1416 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1417 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1418 /* we'll do culling */
1419 setup->cull_face = sp->rasterizer->cull_face;
1420 }
1421 else {
1422 /* 'draw' will do culling */
1423 setup->cull_face = PIPE_FACE_NONE;
1424 }
1425 }
1426
1427
1428 void
1429 sp_setup_destroy_context(struct setup_context *setup)
1430 {
1431 FREE( setup );
1432 }
1433
1434
1435 /**
1436 * Create a new primitive setup/render stage.
1437 */
1438 struct setup_context *
1439 sp_setup_create_context(struct softpipe_context *softpipe)
1440 {
1441 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1442 unsigned i;
1443
1444 setup->softpipe = softpipe;
1445
1446 for (i = 0; i < MAX_QUADS; i++) {
1447 setup->quad[i].coef = setup->coef;
1448 setup->quad[i].posCoef = &setup->posCoef;
1449 }
1450
1451 setup->span.left[0] = 1000000; /* greater than right[0] */
1452 setup->span.left[1] = 1000000; /* greater than right[1] */
1453
1454 return setup;
1455 }